1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "compiler/oopMap.hpp"
  35 #include "jfr/jfrEvents.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/block.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/callGenerator.hpp"
  40 #include "opto/callnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/chaitin.hpp"
  43 #include "opto/compile.hpp"
  44 #include "opto/connode.hpp"
  45 #include "opto/divnode.hpp"
  46 #include "opto/escape.hpp"
  47 #include "opto/idealGraphPrinter.hpp"
  48 #include "opto/loopnode.hpp"
  49 #include "opto/machnode.hpp"
  50 #include "opto/macro.hpp"
  51 #include "opto/matcher.hpp"
  52 #include "opto/mathexactnode.hpp"
  53 #include "opto/memnode.hpp"
  54 #include "opto/mulnode.hpp"
  55 #include "opto/node.hpp"
  56 #include "opto/opcodes.hpp"
  57 #include "opto/output.hpp"
  58 #include "opto/parse.hpp"
  59 #include "opto/phaseX.hpp"
  60 #include "opto/rootnode.hpp"
  61 #include "opto/runtime.hpp"
  62 #include "opto/stringopts.hpp"
  63 #include "opto/type.hpp"
  64 #include "opto/vectornode.hpp"
  65 #include "runtime/arguments.hpp"
  66 #include "runtime/signature.hpp"
  67 #include "runtime/stubRoutines.hpp"
  68 #include "runtime/timer.hpp"
  69 #include "utilities/copy.hpp"
  70 #if defined AD_MD_HPP
  71 # include AD_MD_HPP
  72 #elif defined TARGET_ARCH_MODEL_x86_32
  73 # include "adfiles/ad_x86_32.hpp"
  74 #elif defined TARGET_ARCH_MODEL_x86_64
  75 # include "adfiles/ad_x86_64.hpp"
  76 #elif defined TARGET_ARCH_MODEL_sparc
  77 # include "adfiles/ad_sparc.hpp"
  78 #elif defined TARGET_ARCH_MODEL_zero
  79 # include "adfiles/ad_zero.hpp"
  80 #elif defined TARGET_ARCH_MODEL_ppc_64
  81 # include "adfiles/ad_ppc_64.hpp"
  82 #endif
  83 
  84 // -------------------- Compile::mach_constant_base_node -----------------------
  85 // Constant table base node singleton.
  86 MachConstantBaseNode* Compile::mach_constant_base_node() {
  87   if (_mach_constant_base_node == NULL) {
  88     _mach_constant_base_node = new (C) MachConstantBaseNode();
  89     _mach_constant_base_node->add_req(C->root());
  90   }
  91   return _mach_constant_base_node;
  92 }
  93 
  94 
  95 /// Support for intrinsics.
  96 
  97 // Return the index at which m must be inserted (or already exists).
  98 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  99 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 100 #ifdef ASSERT
 101   for (int i = 1; i < _intrinsics->length(); i++) {
 102     CallGenerator* cg1 = _intrinsics->at(i-1);
 103     CallGenerator* cg2 = _intrinsics->at(i);
 104     assert(cg1->method() != cg2->method()
 105            ? cg1->method()     < cg2->method()
 106            : cg1->is_virtual() < cg2->is_virtual(),
 107            "compiler intrinsics list must stay sorted");
 108   }
 109 #endif
 110   // Binary search sorted list, in decreasing intervals [lo, hi].
 111   int lo = 0, hi = _intrinsics->length()-1;
 112   while (lo <= hi) {
 113     int mid = (uint)(hi + lo) / 2;
 114     ciMethod* mid_m = _intrinsics->at(mid)->method();
 115     if (m < mid_m) {
 116       hi = mid-1;
 117     } else if (m > mid_m) {
 118       lo = mid+1;
 119     } else {
 120       // look at minor sort key
 121       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 122       if (is_virtual < mid_virt) {
 123         hi = mid-1;
 124       } else if (is_virtual > mid_virt) {
 125         lo = mid+1;
 126       } else {
 127         return mid;  // exact match
 128       }
 129     }
 130   }
 131   return lo;  // inexact match
 132 }
 133 
 134 void Compile::register_intrinsic(CallGenerator* cg) {
 135   if (_intrinsics == NULL) {
 136     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 137   }
 138   // This code is stolen from ciObjectFactory::insert.
 139   // Really, GrowableArray should have methods for
 140   // insert_at, remove_at, and binary_search.
 141   int len = _intrinsics->length();
 142   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 143   if (index == len) {
 144     _intrinsics->append(cg);
 145   } else {
 146 #ifdef ASSERT
 147     CallGenerator* oldcg = _intrinsics->at(index);
 148     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 149 #endif
 150     _intrinsics->append(_intrinsics->at(len-1));
 151     int pos;
 152     for (pos = len-2; pos >= index; pos--) {
 153       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 154     }
 155     _intrinsics->at_put(index, cg);
 156   }
 157   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 158 }
 159 
 160 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 161   assert(m->is_loaded(), "don't try this on unloaded methods");
 162   if (_intrinsics != NULL) {
 163     int index = intrinsic_insertion_index(m, is_virtual);
 164     if (index < _intrinsics->length()
 165         && _intrinsics->at(index)->method() == m
 166         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 167       return _intrinsics->at(index);
 168     }
 169   }
 170   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 171   if (m->intrinsic_id() != vmIntrinsics::_none &&
 172       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 173     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 174     if (cg != NULL) {
 175       // Save it for next time:
 176       register_intrinsic(cg);
 177       return cg;
 178     } else {
 179       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 180     }
 181   }
 182   return NULL;
 183 }
 184 
 185 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 186 // in library_call.cpp.
 187 
 188 
 189 #ifndef PRODUCT
 190 // statistics gathering...
 191 
 192 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 193 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 194 
 195 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 196   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 197   int oflags = _intrinsic_hist_flags[id];
 198   assert(flags != 0, "what happened?");
 199   if (is_virtual) {
 200     flags |= _intrinsic_virtual;
 201   }
 202   bool changed = (flags != oflags);
 203   if ((flags & _intrinsic_worked) != 0) {
 204     juint count = (_intrinsic_hist_count[id] += 1);
 205     if (count == 1) {
 206       changed = true;           // first time
 207     }
 208     // increment the overall count also:
 209     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 210   }
 211   if (changed) {
 212     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 213       // Something changed about the intrinsic's virtuality.
 214       if ((flags & _intrinsic_virtual) != 0) {
 215         // This is the first use of this intrinsic as a virtual call.
 216         if (oflags != 0) {
 217           // We already saw it as a non-virtual, so note both cases.
 218           flags |= _intrinsic_both;
 219         }
 220       } else if ((oflags & _intrinsic_both) == 0) {
 221         // This is the first use of this intrinsic as a non-virtual
 222         flags |= _intrinsic_both;
 223       }
 224     }
 225     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 226   }
 227   // update the overall flags also:
 228   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 229   return changed;
 230 }
 231 
 232 static char* format_flags(int flags, char* buf) {
 233   buf[0] = 0;
 234   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 235   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 236   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 237   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 238   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 239   if (buf[0] == 0)  strcat(buf, ",");
 240   assert(buf[0] == ',', "must be");
 241   return &buf[1];
 242 }
 243 
 244 void Compile::print_intrinsic_statistics() {
 245   char flagsbuf[100];
 246   ttyLocker ttyl;
 247   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 248   tty->print_cr("Compiler intrinsic usage:");
 249   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 250   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 251   #define PRINT_STAT_LINE(name, c, f) \
 252     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 253   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 254     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 255     int   flags = _intrinsic_hist_flags[id];
 256     juint count = _intrinsic_hist_count[id];
 257     if ((flags | count) != 0) {
 258       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 259     }
 260   }
 261   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 262   if (xtty != NULL)  xtty->tail("statistics");
 263 }
 264 
 265 void Compile::print_statistics() {
 266   { ttyLocker ttyl;
 267     if (xtty != NULL)  xtty->head("statistics type='opto'");
 268     Parse::print_statistics();
 269     PhaseCCP::print_statistics();
 270     PhaseRegAlloc::print_statistics();
 271     Scheduling::print_statistics();
 272     PhasePeephole::print_statistics();
 273     PhaseIdealLoop::print_statistics();
 274     if (xtty != NULL)  xtty->tail("statistics");
 275   }
 276   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 277     // put this under its own <statistics> element.
 278     print_intrinsic_statistics();
 279   }
 280 }
 281 #endif //PRODUCT
 282 
 283 // Support for bundling info
 284 Bundle* Compile::node_bundling(const Node *n) {
 285   assert(valid_bundle_info(n), "oob");
 286   return &_node_bundling_base[n->_idx];
 287 }
 288 
 289 bool Compile::valid_bundle_info(const Node *n) {
 290   return (_node_bundling_limit > n->_idx);
 291 }
 292 
 293 
 294 void Compile::gvn_replace_by(Node* n, Node* nn) {
 295   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 296     Node* use = n->last_out(i);
 297     bool is_in_table = initial_gvn()->hash_delete(use);
 298     uint uses_found = 0;
 299     for (uint j = 0; j < use->len(); j++) {
 300       if (use->in(j) == n) {
 301         if (j < use->req())
 302           use->set_req(j, nn);
 303         else
 304           use->set_prec(j, nn);
 305         uses_found++;
 306       }
 307     }
 308     if (is_in_table) {
 309       // reinsert into table
 310       initial_gvn()->hash_find_insert(use);
 311     }
 312     record_for_igvn(use);
 313     i -= uses_found;    // we deleted 1 or more copies of this edge
 314   }
 315 }
 316 
 317 
 318 static inline bool not_a_node(const Node* n) {
 319   if (n == NULL)                   return true;
 320   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 321   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 322   return false;
 323 }
 324 
 325 // Identify all nodes that are reachable from below, useful.
 326 // Use breadth-first pass that records state in a Unique_Node_List,
 327 // recursive traversal is slower.
 328 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 329   int estimated_worklist_size = live_nodes();
 330   useful.map( estimated_worklist_size, NULL );  // preallocate space
 331 
 332   // Initialize worklist
 333   if (root() != NULL)     { useful.push(root()); }
 334   // If 'top' is cached, declare it useful to preserve cached node
 335   if( cached_top_node() ) { useful.push(cached_top_node()); }
 336 
 337   // Push all useful nodes onto the list, breadthfirst
 338   for( uint next = 0; next < useful.size(); ++next ) {
 339     assert( next < unique(), "Unique useful nodes < total nodes");
 340     Node *n  = useful.at(next);
 341     uint max = n->len();
 342     for( uint i = 0; i < max; ++i ) {
 343       Node *m = n->in(i);
 344       if (not_a_node(m))  continue;
 345       useful.push(m);
 346     }
 347   }
 348 }
 349 
 350 // Update dead_node_list with any missing dead nodes using useful
 351 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 352 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 353   uint max_idx = unique();
 354   VectorSet& useful_node_set = useful.member_set();
 355 
 356   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 357     // If node with index node_idx is not in useful set,
 358     // mark it as dead in dead node list.
 359     if (! useful_node_set.test(node_idx) ) {
 360       record_dead_node(node_idx);
 361     }
 362   }
 363 }
 364 
 365 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 366   int shift = 0;
 367   for (int i = 0; i < inlines->length(); i++) {
 368     CallGenerator* cg = inlines->at(i);
 369     CallNode* call = cg->call_node();
 370     if (shift > 0) {
 371       inlines->at_put(i-shift, cg);
 372     }
 373     if (!useful.member(call)) {
 374       shift++;
 375     }
 376   }
 377   inlines->trunc_to(inlines->length()-shift);
 378 }
 379 
 380 // Disconnect all useless nodes by disconnecting those at the boundary.
 381 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 382   uint next = 0;
 383   while (next < useful.size()) {
 384     Node *n = useful.at(next++);
 385     if (n->is_SafePoint()) {
 386       // We're done with a parsing phase. Replaced nodes are not valid
 387       // beyond that point.
 388       n->as_SafePoint()->delete_replaced_nodes();
 389     }
 390     // Use raw traversal of out edges since this code removes out edges
 391     int max = n->outcnt();
 392     for (int j = 0; j < max; ++j) {
 393       Node* child = n->raw_out(j);
 394       if (! useful.member(child)) {
 395         assert(!child->is_top() || child != top(),
 396                "If top is cached in Compile object it is in useful list");
 397         // Only need to remove this out-edge to the useless node
 398         n->raw_del_out(j);
 399         --j;
 400         --max;
 401       }
 402     }
 403     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 404       record_for_igvn(n->unique_out());
 405     }
 406   }
 407   // Remove useless macro and predicate opaq nodes
 408   for (int i = C->macro_count()-1; i >= 0; i--) {
 409     Node* n = C->macro_node(i);
 410     if (!useful.member(n)) {
 411       remove_macro_node(n);
 412     }
 413   }
 414   // Remove useless CastII nodes with range check dependency
 415   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 416     Node* cast = range_check_cast_node(i);
 417     if (!useful.member(cast)) {
 418       remove_range_check_cast(cast);
 419     }
 420   }
 421   // Remove useless expensive node
 422   for (int i = C->expensive_count()-1; i >= 0; i--) {
 423     Node* n = C->expensive_node(i);
 424     if (!useful.member(n)) {
 425       remove_expensive_node(n);
 426     }
 427   }
 428   // clean up the late inline lists
 429   remove_useless_late_inlines(&_string_late_inlines, useful);
 430   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 431   remove_useless_late_inlines(&_late_inlines, useful);
 432   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 433 }
 434 
 435 //------------------------------frame_size_in_words-----------------------------
 436 // frame_slots in units of words
 437 int Compile::frame_size_in_words() const {
 438   // shift is 0 in LP32 and 1 in LP64
 439   const int shift = (LogBytesPerWord - LogBytesPerInt);
 440   int words = _frame_slots >> shift;
 441   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 442   return words;
 443 }
 444 
 445 // To bang the stack of this compiled method we use the stack size
 446 // that the interpreter would need in case of a deoptimization. This
 447 // removes the need to bang the stack in the deoptimization blob which
 448 // in turn simplifies stack overflow handling.
 449 int Compile::bang_size_in_bytes() const {
 450   return MAX2(_interpreter_frame_size, frame_size_in_bytes());
 451 }
 452 
 453 // ============================================================================
 454 //------------------------------CompileWrapper---------------------------------
 455 class CompileWrapper : public StackObj {
 456   Compile *const _compile;
 457  public:
 458   CompileWrapper(Compile* compile);
 459 
 460   ~CompileWrapper();
 461 };
 462 
 463 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 464   // the Compile* pointer is stored in the current ciEnv:
 465   ciEnv* env = compile->env();
 466   assert(env == ciEnv::current(), "must already be a ciEnv active");
 467   assert(env->compiler_data() == NULL, "compile already active?");
 468   env->set_compiler_data(compile);
 469   assert(compile == Compile::current(), "sanity");
 470 
 471   compile->set_type_dict(NULL);
 472   compile->set_type_hwm(NULL);
 473   compile->set_type_last_size(0);
 474   compile->set_last_tf(NULL, NULL);
 475   compile->set_indexSet_arena(NULL);
 476   compile->set_indexSet_free_block_list(NULL);
 477   compile->init_type_arena();
 478   Type::Initialize(compile);
 479   _compile->set_scratch_buffer_blob(NULL);
 480   _compile->begin_method();
 481 }
 482 CompileWrapper::~CompileWrapper() {
 483   _compile->end_method();
 484   if (_compile->scratch_buffer_blob() != NULL)
 485     BufferBlob::free(_compile->scratch_buffer_blob());
 486   _compile->env()->set_compiler_data(NULL);
 487 }
 488 
 489 
 490 //----------------------------print_compile_messages---------------------------
 491 void Compile::print_compile_messages() {
 492 #ifndef PRODUCT
 493   // Check if recompiling
 494   if (_subsume_loads == false && PrintOpto) {
 495     // Recompiling without allowing machine instructions to subsume loads
 496     tty->print_cr("*********************************************************");
 497     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 498     tty->print_cr("*********************************************************");
 499   }
 500   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 501     // Recompiling without escape analysis
 502     tty->print_cr("*********************************************************");
 503     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 504     tty->print_cr("*********************************************************");
 505   }
 506   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 507     // Recompiling without boxing elimination
 508     tty->print_cr("*********************************************************");
 509     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 510     tty->print_cr("*********************************************************");
 511   }
 512   if (env()->break_at_compile()) {
 513     // Open the debugger when compiling this method.
 514     tty->print("### Breaking when compiling: ");
 515     method()->print_short_name();
 516     tty->cr();
 517     BREAKPOINT;
 518   }
 519 
 520   if( PrintOpto ) {
 521     if (is_osr_compilation()) {
 522       tty->print("[OSR]%3d", _compile_id);
 523     } else {
 524       tty->print("%3d", _compile_id);
 525     }
 526   }
 527 #endif
 528 }
 529 
 530 
 531 //-----------------------init_scratch_buffer_blob------------------------------
 532 // Construct a temporary BufferBlob and cache it for this compile.
 533 void Compile::init_scratch_buffer_blob(int const_size) {
 534   // If there is already a scratch buffer blob allocated and the
 535   // constant section is big enough, use it.  Otherwise free the
 536   // current and allocate a new one.
 537   BufferBlob* blob = scratch_buffer_blob();
 538   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 539     // Use the current blob.
 540   } else {
 541     if (blob != NULL) {
 542       BufferBlob::free(blob);
 543     }
 544 
 545     ResourceMark rm;
 546     _scratch_const_size = const_size;
 547     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 548     blob = BufferBlob::create("Compile::scratch_buffer", size);
 549     // Record the buffer blob for next time.
 550     set_scratch_buffer_blob(blob);
 551     // Have we run out of code space?
 552     if (scratch_buffer_blob() == NULL) {
 553       // Let CompilerBroker disable further compilations.
 554       record_failure("Not enough space for scratch buffer in CodeCache");
 555       return;
 556     }
 557   }
 558 
 559   // Initialize the relocation buffers
 560   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 561   set_scratch_locs_memory(locs_buf);
 562 }
 563 
 564 
 565 //-----------------------scratch_emit_size-------------------------------------
 566 // Helper function that computes size by emitting code
 567 uint Compile::scratch_emit_size(const Node* n) {
 568   // Start scratch_emit_size section.
 569   set_in_scratch_emit_size(true);
 570 
 571   // Emit into a trash buffer and count bytes emitted.
 572   // This is a pretty expensive way to compute a size,
 573   // but it works well enough if seldom used.
 574   // All common fixed-size instructions are given a size
 575   // method by the AD file.
 576   // Note that the scratch buffer blob and locs memory are
 577   // allocated at the beginning of the compile task, and
 578   // may be shared by several calls to scratch_emit_size.
 579   // The allocation of the scratch buffer blob is particularly
 580   // expensive, since it has to grab the code cache lock.
 581   BufferBlob* blob = this->scratch_buffer_blob();
 582   assert(blob != NULL, "Initialize BufferBlob at start");
 583   assert(blob->size() > MAX_inst_size, "sanity");
 584   relocInfo* locs_buf = scratch_locs_memory();
 585   address blob_begin = blob->content_begin();
 586   address blob_end   = (address)locs_buf;
 587   assert(blob->content_contains(blob_end), "sanity");
 588   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 589   buf.initialize_consts_size(_scratch_const_size);
 590   buf.initialize_stubs_size(MAX_stubs_size);
 591   assert(locs_buf != NULL, "sanity");
 592   int lsize = MAX_locs_size / 3;
 593   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 594   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 595   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 596 
 597   // Do the emission.
 598 
 599   Label fakeL; // Fake label for branch instructions.
 600   Label*   saveL = NULL;
 601   uint save_bnum = 0;
 602   bool is_branch = n->is_MachBranch();
 603   if (is_branch) {
 604     MacroAssembler masm(&buf);
 605     masm.bind(fakeL);
 606     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 607     n->as_MachBranch()->label_set(&fakeL, 0);
 608   }
 609   n->emit(buf, this->regalloc());
 610 
 611   // Emitting into the scratch buffer should not fail
 612   assert (!failing(), err_msg_res("Must not have pending failure. Reason is: %s", failure_reason()));
 613 
 614   if (is_branch) // Restore label.
 615     n->as_MachBranch()->label_set(saveL, save_bnum);
 616 
 617   // End scratch_emit_size section.
 618   set_in_scratch_emit_size(false);
 619 
 620   return buf.insts_size();
 621 }
 622 
 623 
 624 // ============================================================================
 625 //------------------------------Compile standard-------------------------------
 626 debug_only( int Compile::_debug_idx = 100000; )
 627 
 628 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 629 // the continuation bci for on stack replacement.
 630 
 631 
 632 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 633                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 634                 : Phase(Compiler),
 635                   _env(ci_env),
 636                   _log(ci_env->log()),
 637                   _compile_id(ci_env->compile_id()),
 638                   _save_argument_registers(false),
 639                   _stub_name(NULL),
 640                   _stub_function(NULL),
 641                   _stub_entry_point(NULL),
 642                   _method(target),
 643                   _entry_bci(osr_bci),
 644                   _initial_gvn(NULL),
 645                   _for_igvn(NULL),
 646                   _warm_calls(NULL),
 647                   _subsume_loads(subsume_loads),
 648                   _do_escape_analysis(do_escape_analysis),
 649                   _eliminate_boxing(eliminate_boxing),
 650                   _failure_reason(NULL),
 651                   _code_buffer("Compile::Fill_buffer"),
 652                   _orig_pc_slot(0),
 653                   _orig_pc_slot_offset_in_bytes(0),
 654                   _has_method_handle_invokes(false),
 655                   _mach_constant_base_node(NULL),
 656                   _node_bundling_limit(0),
 657                   _node_bundling_base(NULL),
 658                   _java_calls(0),
 659                   _inner_loops(0),
 660                   _scratch_const_size(-1),
 661                   _in_scratch_emit_size(false),
 662                   _dead_node_list(comp_arena()),
 663                   _dead_node_count(0),
 664 #ifndef PRODUCT
 665                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 666                   _in_dump_cnt(0),
 667                   _printer(IdealGraphPrinter::printer()),
 668 #endif
 669                   _congraph(NULL),
 670                   _comp_arena(mtCompiler),
 671                   _node_arena(mtCompiler),
 672                   _old_arena(mtCompiler),
 673                   _Compile_types(mtCompiler),
 674                   _replay_inline_data(NULL),
 675                   _late_inlines(comp_arena(), 2, 0, NULL),
 676                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 677                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 678                   _late_inlines_pos(0),
 679                   _number_of_mh_late_inlines(0),
 680                   _inlining_progress(false),
 681                   _inlining_incrementally(false),
 682                   _print_inlining_list(NULL),
 683                   _print_inlining_idx(0),
 684                   _interpreter_frame_size(0),
 685                   _max_node_limit(MaxNodeLimit) {
 686   C = this;
 687 
 688   CompileWrapper cw(this);
 689 #ifndef PRODUCT
 690   if (TimeCompiler2) {
 691     tty->print(" ");
 692     target->holder()->name()->print();
 693     tty->print(".");
 694     target->print_short_name();
 695     tty->print("  ");
 696   }
 697   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 698   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 699   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 700   if (!print_opto_assembly) {
 701     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 702     if (print_assembly && !Disassembler::can_decode()) {
 703       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 704       print_opto_assembly = true;
 705     }
 706   }
 707   set_print_assembly(print_opto_assembly);
 708   set_parsed_irreducible_loop(false);
 709 
 710   if (method()->has_option("ReplayInline")) {
 711     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 712   }
 713 #endif
 714   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 715   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 716   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 717 
 718   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 719     // Make sure the method being compiled gets its own MDO,
 720     // so we can at least track the decompile_count().
 721     // Need MDO to record RTM code generation state.
 722     method()->ensure_method_data();
 723   }
 724 
 725   Init(::AliasLevel);
 726 
 727 
 728   print_compile_messages();
 729 
 730   _ilt = InlineTree::build_inline_tree_root();
 731 
 732   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 733   assert(num_alias_types() >= AliasIdxRaw, "");
 734 
 735 #define MINIMUM_NODE_HASH  1023
 736   // Node list that Iterative GVN will start with
 737   Unique_Node_List for_igvn(comp_arena());
 738   set_for_igvn(&for_igvn);
 739 
 740   // GVN that will be run immediately on new nodes
 741   uint estimated_size = method()->code_size()*4+64;
 742   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 743   PhaseGVN gvn(node_arena(), estimated_size);
 744   set_initial_gvn(&gvn);
 745 
 746   if (print_inlining() || print_intrinsics()) {
 747     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
 748   }
 749   { // Scope for timing the parser
 750     TracePhase t3("parse", &_t_parser, true);
 751 
 752     // Put top into the hash table ASAP.
 753     initial_gvn()->transform_no_reclaim(top());
 754 
 755     // Set up tf(), start(), and find a CallGenerator.
 756     CallGenerator* cg = NULL;
 757     if (is_osr_compilation()) {
 758       const TypeTuple *domain = StartOSRNode::osr_domain();
 759       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 760       init_tf(TypeFunc::make(domain, range));
 761       StartNode* s = new (this) StartOSRNode(root(), domain);
 762       initial_gvn()->set_type_bottom(s);
 763       init_start(s);
 764       cg = CallGenerator::for_osr(method(), entry_bci());
 765     } else {
 766       // Normal case.
 767       init_tf(TypeFunc::make(method()));
 768       StartNode* s = new (this) StartNode(root(), tf()->domain());
 769       initial_gvn()->set_type_bottom(s);
 770       init_start(s);
 771       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 772         // With java.lang.ref.reference.get() we must go through the
 773         // intrinsic when G1 is enabled - even when get() is the root
 774         // method of the compile - so that, if necessary, the value in
 775         // the referent field of the reference object gets recorded by
 776         // the pre-barrier code.
 777         // Specifically, if G1 is enabled, the value in the referent
 778         // field is recorded by the G1 SATB pre barrier. This will
 779         // result in the referent being marked live and the reference
 780         // object removed from the list of discovered references during
 781         // reference processing.
 782         cg = find_intrinsic(method(), false);
 783       }
 784       if (cg == NULL) {
 785         float past_uses = method()->interpreter_invocation_count();
 786         float expected_uses = past_uses;
 787         cg = CallGenerator::for_inline(method(), expected_uses);
 788       }
 789     }
 790     if (failing())  return;
 791     if (cg == NULL) {
 792       record_method_not_compilable_all_tiers("cannot parse method");
 793       return;
 794     }
 795     JVMState* jvms = build_start_state(start(), tf());
 796     if ((jvms = cg->generate(jvms)) == NULL) {
 797       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 798         record_method_not_compilable("method parse failed");
 799       }
 800       return;
 801     }
 802     GraphKit kit(jvms);
 803 
 804     if (!kit.stopped()) {
 805       // Accept return values, and transfer control we know not where.
 806       // This is done by a special, unique ReturnNode bound to root.
 807       return_values(kit.jvms());
 808     }
 809 
 810     if (kit.has_exceptions()) {
 811       // Any exceptions that escape from this call must be rethrown
 812       // to whatever caller is dynamically above us on the stack.
 813       // This is done by a special, unique RethrowNode bound to root.
 814       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 815     }
 816 
 817     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 818 
 819     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 820       inline_string_calls(true);
 821     }
 822 
 823     if (failing())  return;
 824 
 825     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 826 
 827     // Remove clutter produced by parsing.
 828     if (!failing()) {
 829       ResourceMark rm;
 830       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 831     }
 832   }
 833 
 834   // Note:  Large methods are capped off in do_one_bytecode().
 835   if (failing())  return;
 836 
 837   // After parsing, node notes are no longer automagic.
 838   // They must be propagated by register_new_node_with_optimizer(),
 839   // clone(), or the like.
 840   set_default_node_notes(NULL);
 841 
 842   for (;;) {
 843     int successes = Inline_Warm();
 844     if (failing())  return;
 845     if (successes == 0)  break;
 846   }
 847 
 848   // Drain the list.
 849   Finish_Warm();
 850 #ifndef PRODUCT
 851   if (_printer) {
 852     _printer->print_inlining(this);
 853   }
 854 #endif
 855 
 856   if (failing())  return;
 857   NOT_PRODUCT( verify_graph_edges(); )
 858 
 859   // Now optimize
 860   Optimize();
 861   if (failing())  return;
 862   NOT_PRODUCT( verify_graph_edges(); )
 863 
 864 #ifndef PRODUCT
 865   if (PrintIdeal) {
 866     ttyLocker ttyl;  // keep the following output all in one block
 867     // This output goes directly to the tty, not the compiler log.
 868     // To enable tools to match it up with the compilation activity,
 869     // be sure to tag this tty output with the compile ID.
 870     if (xtty != NULL) {
 871       xtty->head("ideal compile_id='%d'%s", compile_id(),
 872                  is_osr_compilation()    ? " compile_kind='osr'" :
 873                  "");
 874     }
 875     root()->dump(9999);
 876     if (xtty != NULL) {
 877       xtty->tail("ideal");
 878     }
 879   }
 880 #endif
 881 
 882   NOT_PRODUCT( verify_barriers(); )
 883 
 884   // Dump compilation data to replay it.
 885   if (method()->has_option("DumpReplay")) {
 886     env()->dump_replay_data(_compile_id);
 887   }
 888   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
 889     env()->dump_inline_data(_compile_id);
 890   }
 891 
 892   // Now that we know the size of all the monitors we can add a fixed slot
 893   // for the original deopt pc.
 894 
 895   _orig_pc_slot =  fixed_slots();
 896   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 897   set_fixed_slots(next_slot);
 898 
 899   // Compute when to use implicit null checks. Used by matching trap based
 900   // nodes and NullCheck optimization.
 901   set_allowed_deopt_reasons();
 902 
 903   // Now generate code
 904   Code_Gen();
 905   if (failing())  return;
 906 
 907   // Check if we want to skip execution of all compiled code.
 908   {
 909 #ifndef PRODUCT
 910     if (OptoNoExecute) {
 911       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 912       return;
 913     }
 914     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 915 #endif
 916 
 917     if (is_osr_compilation()) {
 918       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 919       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 920     } else {
 921       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 922       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 923     }
 924 
 925     env()->register_method(_method, _entry_bci,
 926                            &_code_offsets,
 927                            _orig_pc_slot_offset_in_bytes,
 928                            code_buffer(),
 929                            frame_size_in_words(), _oop_map_set,
 930                            &_handler_table, &_inc_table,
 931                            compiler,
 932                            env()->comp_level(),
 933                            has_unsafe_access(),
 934                            SharedRuntime::is_wide_vector(max_vector_size()),
 935                            rtm_state()
 936                            );
 937 
 938     if (log() != NULL) // Print code cache state into compiler log
 939       log()->code_cache_state();
 940   }
 941 }
 942 
 943 //------------------------------Compile----------------------------------------
 944 // Compile a runtime stub
 945 Compile::Compile( ciEnv* ci_env,
 946                   TypeFunc_generator generator,
 947                   address stub_function,
 948                   const char *stub_name,
 949                   int is_fancy_jump,
 950                   bool pass_tls,
 951                   bool save_arg_registers,
 952                   bool return_pc )
 953   : Phase(Compiler),
 954     _env(ci_env),
 955     _log(ci_env->log()),
 956     _compile_id(0),
 957     _save_argument_registers(save_arg_registers),
 958     _method(NULL),
 959     _stub_name(stub_name),
 960     _stub_function(stub_function),
 961     _stub_entry_point(NULL),
 962     _entry_bci(InvocationEntryBci),
 963     _initial_gvn(NULL),
 964     _for_igvn(NULL),
 965     _warm_calls(NULL),
 966     _orig_pc_slot(0),
 967     _orig_pc_slot_offset_in_bytes(0),
 968     _subsume_loads(true),
 969     _do_escape_analysis(false),
 970     _eliminate_boxing(false),
 971     _failure_reason(NULL),
 972     _code_buffer("Compile::Fill_buffer"),
 973     _has_method_handle_invokes(false),
 974     _mach_constant_base_node(NULL),
 975     _node_bundling_limit(0),
 976     _node_bundling_base(NULL),
 977     _java_calls(0),
 978     _inner_loops(0),
 979 #ifndef PRODUCT
 980     _trace_opto_output(TraceOptoOutput),
 981     _in_dump_cnt(0),
 982     _printer(NULL),
 983 #endif
 984     _comp_arena(mtCompiler),
 985     _node_arena(mtCompiler),
 986     _old_arena(mtCompiler),
 987     _Compile_types(mtCompiler),
 988     _dead_node_list(comp_arena()),
 989     _dead_node_count(0),
 990     _congraph(NULL),
 991     _replay_inline_data(NULL),
 992     _number_of_mh_late_inlines(0),
 993     _inlining_progress(false),
 994     _inlining_incrementally(false),
 995     _print_inlining_list(NULL),
 996     _print_inlining_idx(0),
 997     _allowed_reasons(0),
 998     _interpreter_frame_size(0),
 999     _max_node_limit(MaxNodeLimit) {
1000   C = this;
1001 
1002 #ifndef PRODUCT
1003   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
1004   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
1005   set_print_assembly(PrintFrameConverterAssembly);
1006   set_parsed_irreducible_loop(false);
1007 #endif
1008   set_has_irreducible_loop(false); // no loops
1009 
1010   CompileWrapper cw(this);
1011   Init(/*AliasLevel=*/ 0);
1012   init_tf((*generator)());
1013 
1014   {
1015     // The following is a dummy for the sake of GraphKit::gen_stub
1016     Unique_Node_List for_igvn(comp_arena());
1017     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1018     PhaseGVN gvn(Thread::current()->resource_area(),255);
1019     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1020     gvn.transform_no_reclaim(top());
1021 
1022     GraphKit kit;
1023     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1024   }
1025 
1026   NOT_PRODUCT( verify_graph_edges(); )
1027   Code_Gen();
1028   if (failing())  return;
1029 
1030 
1031   // Entry point will be accessed using compile->stub_entry_point();
1032   if (code_buffer() == NULL) {
1033     Matcher::soft_match_failure();
1034   } else {
1035     if (PrintAssembly && (WizardMode || Verbose))
1036       tty->print_cr("### Stub::%s", stub_name);
1037 
1038     if (!failing()) {
1039       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1040 
1041       // Make the NMethod
1042       // For now we mark the frame as never safe for profile stackwalking
1043       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1044                                                       code_buffer(),
1045                                                       CodeOffsets::frame_never_safe,
1046                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1047                                                       frame_size_in_words(),
1048                                                       _oop_map_set,
1049                                                       save_arg_registers);
1050       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1051 
1052       _stub_entry_point = rs->entry_point();
1053     }
1054   }
1055 }
1056 
1057 //------------------------------Init-------------------------------------------
1058 // Prepare for a single compilation
1059 void Compile::Init(int aliaslevel) {
1060   _unique  = 0;
1061   _regalloc = NULL;
1062 
1063   _tf      = NULL;  // filled in later
1064   _top     = NULL;  // cached later
1065   _matcher = NULL;  // filled in later
1066   _cfg     = NULL;  // filled in later
1067 
1068   set_24_bit_selection_and_mode(Use24BitFP, false);
1069 
1070   _node_note_array = NULL;
1071   _default_node_notes = NULL;
1072 
1073   _immutable_memory = NULL; // filled in at first inquiry
1074 
1075   // Globally visible Nodes
1076   // First set TOP to NULL to give safe behavior during creation of RootNode
1077   set_cached_top_node(NULL);
1078   set_root(new (this) RootNode());
1079   // Now that you have a Root to point to, create the real TOP
1080   set_cached_top_node( new (this) ConNode(Type::TOP) );
1081   set_recent_alloc(NULL, NULL);
1082 
1083   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1084   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1085   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1086   env()->set_dependencies(new Dependencies(env()));
1087 
1088   _fixed_slots = 0;
1089   set_has_split_ifs(false);
1090   set_has_loops(has_method() && method()->has_loops()); // first approximation
1091   set_has_stringbuilder(false);
1092   set_has_boxed_value(false);
1093   _trap_can_recompile = false;  // no traps emitted yet
1094   _major_progress = true; // start out assuming good things will happen
1095   set_has_unsafe_access(false);
1096   set_max_vector_size(0);
1097   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1098   set_decompile_count(0);
1099 
1100   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1101   set_num_loop_opts(LoopOptsCount);
1102   set_do_inlining(Inline);
1103   set_max_inline_size(MaxInlineSize);
1104   set_freq_inline_size(FreqInlineSize);
1105   set_do_scheduling(OptoScheduling);
1106   set_do_count_invocations(false);
1107   set_do_method_data_update(false);
1108   set_rtm_state(NoRTM); // No RTM lock eliding by default
1109   method_has_option_value("MaxNodeLimit", _max_node_limit);
1110 #if INCLUDE_RTM_OPT
1111   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1112     int rtm_state = method()->method_data()->rtm_state();
1113     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1114       // Don't generate RTM lock eliding code.
1115       set_rtm_state(NoRTM);
1116     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1117       // Generate RTM lock eliding code without abort ratio calculation code.
1118       set_rtm_state(UseRTM);
1119     } else if (UseRTMDeopt) {
1120       // Generate RTM lock eliding code and include abort ratio calculation
1121       // code if UseRTMDeopt is on.
1122       set_rtm_state(ProfileRTM);
1123     }
1124   }
1125 #endif
1126   if (debug_info()->recording_non_safepoints()) {
1127     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1128                         (comp_arena(), 8, 0, NULL));
1129     set_default_node_notes(Node_Notes::make(this));
1130   }
1131 
1132   // // -- Initialize types before each compile --
1133   // // Update cached type information
1134   // if( _method && _method->constants() )
1135   //   Type::update_loaded_types(_method, _method->constants());
1136 
1137   // Init alias_type map.
1138   if (!_do_escape_analysis && aliaslevel == 3)
1139     aliaslevel = 2;  // No unique types without escape analysis
1140   _AliasLevel = aliaslevel;
1141   const int grow_ats = 16;
1142   _max_alias_types = grow_ats;
1143   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1144   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1145   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1146   {
1147     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1148   }
1149   // Initialize the first few types.
1150   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1151   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1152   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1153   _num_alias_types = AliasIdxRaw+1;
1154   // Zero out the alias type cache.
1155   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1156   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1157   probe_alias_cache(NULL)->_index = AliasIdxTop;
1158 
1159   _intrinsics = NULL;
1160   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1161   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1162   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1163   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1164   register_library_intrinsics();
1165 }
1166 
1167 //---------------------------init_start----------------------------------------
1168 // Install the StartNode on this compile object.
1169 void Compile::init_start(StartNode* s) {
1170   if (failing())
1171     return; // already failing
1172   assert(s == start(), "");
1173 }
1174 
1175 StartNode* Compile::start() const {
1176   assert(!failing(), "");
1177   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1178     Node* start = root()->fast_out(i);
1179     if( start->is_Start() )
1180       return start->as_Start();
1181   }
1182   fatal("Did not find Start node!");
1183   return NULL;
1184 }
1185 
1186 //-------------------------------immutable_memory-------------------------------------
1187 // Access immutable memory
1188 Node* Compile::immutable_memory() {
1189   if (_immutable_memory != NULL) {
1190     return _immutable_memory;
1191   }
1192   StartNode* s = start();
1193   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1194     Node *p = s->fast_out(i);
1195     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1196       _immutable_memory = p;
1197       return _immutable_memory;
1198     }
1199   }
1200   ShouldNotReachHere();
1201   return NULL;
1202 }
1203 
1204 //----------------------set_cached_top_node------------------------------------
1205 // Install the cached top node, and make sure Node::is_top works correctly.
1206 void Compile::set_cached_top_node(Node* tn) {
1207   if (tn != NULL)  verify_top(tn);
1208   Node* old_top = _top;
1209   _top = tn;
1210   // Calling Node::setup_is_top allows the nodes the chance to adjust
1211   // their _out arrays.
1212   if (_top != NULL)     _top->setup_is_top();
1213   if (old_top != NULL)  old_top->setup_is_top();
1214   assert(_top == NULL || top()->is_top(), "");
1215 }
1216 
1217 #ifdef ASSERT
1218 uint Compile::count_live_nodes_by_graph_walk() {
1219   Unique_Node_List useful(comp_arena());
1220   // Get useful node list by walking the graph.
1221   identify_useful_nodes(useful);
1222   return useful.size();
1223 }
1224 
1225 void Compile::print_missing_nodes() {
1226 
1227   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1228   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1229     return;
1230   }
1231 
1232   // This is an expensive function. It is executed only when the user
1233   // specifies VerifyIdealNodeCount option or otherwise knows the
1234   // additional work that needs to be done to identify reachable nodes
1235   // by walking the flow graph and find the missing ones using
1236   // _dead_node_list.
1237 
1238   Unique_Node_List useful(comp_arena());
1239   // Get useful node list by walking the graph.
1240   identify_useful_nodes(useful);
1241 
1242   uint l_nodes = C->live_nodes();
1243   uint l_nodes_by_walk = useful.size();
1244 
1245   if (l_nodes != l_nodes_by_walk) {
1246     if (_log != NULL) {
1247       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1248       _log->stamp();
1249       _log->end_head();
1250     }
1251     VectorSet& useful_member_set = useful.member_set();
1252     int last_idx = l_nodes_by_walk;
1253     for (int i = 0; i < last_idx; i++) {
1254       if (useful_member_set.test(i)) {
1255         if (_dead_node_list.test(i)) {
1256           if (_log != NULL) {
1257             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1258           }
1259           if (PrintIdealNodeCount) {
1260             // Print the log message to tty
1261               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1262               useful.at(i)->dump();
1263           }
1264         }
1265       }
1266       else if (! _dead_node_list.test(i)) {
1267         if (_log != NULL) {
1268           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1269         }
1270         if (PrintIdealNodeCount) {
1271           // Print the log message to tty
1272           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1273         }
1274       }
1275     }
1276     if (_log != NULL) {
1277       _log->tail("mismatched_nodes");
1278     }
1279   }
1280 }
1281 #endif
1282 
1283 #ifndef PRODUCT
1284 void Compile::verify_top(Node* tn) const {
1285   if (tn != NULL) {
1286     assert(tn->is_Con(), "top node must be a constant");
1287     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1288     assert(tn->in(0) != NULL, "must have live top node");
1289   }
1290 }
1291 #endif
1292 
1293 
1294 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1295 
1296 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1297   guarantee(arr != NULL, "");
1298   int num_blocks = arr->length();
1299   if (grow_by < num_blocks)  grow_by = num_blocks;
1300   int num_notes = grow_by * _node_notes_block_size;
1301   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1302   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1303   while (num_notes > 0) {
1304     arr->append(notes);
1305     notes     += _node_notes_block_size;
1306     num_notes -= _node_notes_block_size;
1307   }
1308   assert(num_notes == 0, "exact multiple, please");
1309 }
1310 
1311 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1312   if (source == NULL || dest == NULL)  return false;
1313 
1314   if (dest->is_Con())
1315     return false;               // Do not push debug info onto constants.
1316 
1317 #ifdef ASSERT
1318   // Leave a bread crumb trail pointing to the original node:
1319   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1320     dest->set_debug_orig(source);
1321   }
1322 #endif
1323 
1324   if (node_note_array() == NULL)
1325     return false;               // Not collecting any notes now.
1326 
1327   // This is a copy onto a pre-existing node, which may already have notes.
1328   // If both nodes have notes, do not overwrite any pre-existing notes.
1329   Node_Notes* source_notes = node_notes_at(source->_idx);
1330   if (source_notes == NULL || source_notes->is_clear())  return false;
1331   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1332   if (dest_notes == NULL || dest_notes->is_clear()) {
1333     return set_node_notes_at(dest->_idx, source_notes);
1334   }
1335 
1336   Node_Notes merged_notes = (*source_notes);
1337   // The order of operations here ensures that dest notes will win...
1338   merged_notes.update_from(dest_notes);
1339   return set_node_notes_at(dest->_idx, &merged_notes);
1340 }
1341 
1342 
1343 //--------------------------allow_range_check_smearing-------------------------
1344 // Gating condition for coalescing similar range checks.
1345 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1346 // single covering check that is at least as strong as any of them.
1347 // If the optimization succeeds, the simplified (strengthened) range check
1348 // will always succeed.  If it fails, we will deopt, and then give up
1349 // on the optimization.
1350 bool Compile::allow_range_check_smearing() const {
1351   // If this method has already thrown a range-check,
1352   // assume it was because we already tried range smearing
1353   // and it failed.
1354   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1355   return !already_trapped;
1356 }
1357 
1358 
1359 //------------------------------flatten_alias_type-----------------------------
1360 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1361   int offset = tj->offset();
1362   TypePtr::PTR ptr = tj->ptr();
1363 
1364   // Known instance (scalarizable allocation) alias only with itself.
1365   bool is_known_inst = tj->isa_oopptr() != NULL &&
1366                        tj->is_oopptr()->is_known_instance();
1367 
1368   // Process weird unsafe references.
1369   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1370     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1371     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1372     tj = TypeOopPtr::BOTTOM;
1373     ptr = tj->ptr();
1374     offset = tj->offset();
1375   }
1376 
1377   // Array pointers need some flattening
1378   const TypeAryPtr *ta = tj->isa_aryptr();
1379   if (ta && ta->is_stable()) {
1380     // Erase stability property for alias analysis.
1381     tj = ta = ta->cast_to_stable(false);
1382   }
1383   if( ta && is_known_inst ) {
1384     if ( offset != Type::OffsetBot &&
1385          offset > arrayOopDesc::length_offset_in_bytes() ) {
1386       offset = Type::OffsetBot; // Flatten constant access into array body only
1387       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1388     }
1389   } else if( ta && _AliasLevel >= 2 ) {
1390     // For arrays indexed by constant indices, we flatten the alias
1391     // space to include all of the array body.  Only the header, klass
1392     // and array length can be accessed un-aliased.
1393     if( offset != Type::OffsetBot ) {
1394       if( ta->const_oop() ) { // MethodData* or Method*
1395         offset = Type::OffsetBot;   // Flatten constant access into array body
1396         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1397       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1398         // range is OK as-is.
1399         tj = ta = TypeAryPtr::RANGE;
1400       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1401         tj = TypeInstPtr::KLASS; // all klass loads look alike
1402         ta = TypeAryPtr::RANGE; // generic ignored junk
1403         ptr = TypePtr::BotPTR;
1404       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1405         tj = TypeInstPtr::MARK;
1406         ta = TypeAryPtr::RANGE; // generic ignored junk
1407         ptr = TypePtr::BotPTR;
1408       } else {                  // Random constant offset into array body
1409         offset = Type::OffsetBot;   // Flatten constant access into array body
1410         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1411       }
1412     }
1413     // Arrays of fixed size alias with arrays of unknown size.
1414     if (ta->size() != TypeInt::POS) {
1415       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1416       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1417     }
1418     // Arrays of known objects become arrays of unknown objects.
1419     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1420       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1421       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1422     }
1423     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1424       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1425       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1426     }
1427     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1428     // cannot be distinguished by bytecode alone.
1429     if (ta->elem() == TypeInt::BOOL) {
1430       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1431       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1432       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1433     }
1434     // During the 2nd round of IterGVN, NotNull castings are removed.
1435     // Make sure the Bottom and NotNull variants alias the same.
1436     // Also, make sure exact and non-exact variants alias the same.
1437     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1438       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1439     }
1440   }
1441 
1442   // Oop pointers need some flattening
1443   const TypeInstPtr *to = tj->isa_instptr();
1444   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1445     ciInstanceKlass *k = to->klass()->as_instance_klass();
1446     if( ptr == TypePtr::Constant ) {
1447       if (to->klass() != ciEnv::current()->Class_klass() ||
1448           offset < k->size_helper() * wordSize) {
1449         // No constant oop pointers (such as Strings); they alias with
1450         // unknown strings.
1451         assert(!is_known_inst, "not scalarizable allocation");
1452         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1453       }
1454     } else if( is_known_inst ) {
1455       tj = to; // Keep NotNull and klass_is_exact for instance type
1456     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1457       // During the 2nd round of IterGVN, NotNull castings are removed.
1458       // Make sure the Bottom and NotNull variants alias the same.
1459       // Also, make sure exact and non-exact variants alias the same.
1460       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1461     }
1462     if (to->speculative() != NULL) {
1463       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1464     }
1465     // Canonicalize the holder of this field
1466     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1467       // First handle header references such as a LoadKlassNode, even if the
1468       // object's klass is unloaded at compile time (4965979).
1469       if (!is_known_inst) { // Do it only for non-instance types
1470         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1471       }
1472     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1473       // Static fields are in the space above the normal instance
1474       // fields in the java.lang.Class instance.
1475       if (to->klass() != ciEnv::current()->Class_klass()) {
1476         to = NULL;
1477         tj = TypeOopPtr::BOTTOM;
1478         offset = tj->offset();
1479       }
1480     } else {
1481       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1482       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1483         if( is_known_inst ) {
1484           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1485         } else {
1486           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1487         }
1488       }
1489     }
1490   }
1491 
1492   // Klass pointers to object array klasses need some flattening
1493   const TypeKlassPtr *tk = tj->isa_klassptr();
1494   if( tk ) {
1495     // If we are referencing a field within a Klass, we need
1496     // to assume the worst case of an Object.  Both exact and
1497     // inexact types must flatten to the same alias class so
1498     // use NotNull as the PTR.
1499     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1500 
1501       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1502                                    TypeKlassPtr::OBJECT->klass(),
1503                                    offset);
1504     }
1505 
1506     ciKlass* klass = tk->klass();
1507     if( klass->is_obj_array_klass() ) {
1508       ciKlass* k = TypeAryPtr::OOPS->klass();
1509       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1510         k = TypeInstPtr::BOTTOM->klass();
1511       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1512     }
1513 
1514     // Check for precise loads from the primary supertype array and force them
1515     // to the supertype cache alias index.  Check for generic array loads from
1516     // the primary supertype array and also force them to the supertype cache
1517     // alias index.  Since the same load can reach both, we need to merge
1518     // these 2 disparate memories into the same alias class.  Since the
1519     // primary supertype array is read-only, there's no chance of confusion
1520     // where we bypass an array load and an array store.
1521     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1522     if (offset == Type::OffsetBot ||
1523         (offset >= primary_supers_offset &&
1524          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1525         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1526       offset = in_bytes(Klass::secondary_super_cache_offset());
1527       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1528     }
1529   }
1530 
1531   // Flatten all Raw pointers together.
1532   if (tj->base() == Type::RawPtr)
1533     tj = TypeRawPtr::BOTTOM;
1534 
1535   if (tj->base() == Type::AnyPtr)
1536     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1537 
1538   // Flatten all to bottom for now
1539   switch( _AliasLevel ) {
1540   case 0:
1541     tj = TypePtr::BOTTOM;
1542     break;
1543   case 1:                       // Flatten to: oop, static, field or array
1544     switch (tj->base()) {
1545     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1546     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1547     case Type::AryPtr:   // do not distinguish arrays at all
1548     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1549     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1550     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1551     default: ShouldNotReachHere();
1552     }
1553     break;
1554   case 2:                       // No collapsing at level 2; keep all splits
1555   case 3:                       // No collapsing at level 3; keep all splits
1556     break;
1557   default:
1558     Unimplemented();
1559   }
1560 
1561   offset = tj->offset();
1562   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1563 
1564   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1565           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1566           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1567           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1568           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1569           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1570           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1571           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1572   assert( tj->ptr() != TypePtr::TopPTR &&
1573           tj->ptr() != TypePtr::AnyNull &&
1574           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1575 //    assert( tj->ptr() != TypePtr::Constant ||
1576 //            tj->base() == Type::RawPtr ||
1577 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1578 
1579   return tj;
1580 }
1581 
1582 void Compile::AliasType::Init(int i, const TypePtr* at) {
1583   _index = i;
1584   _adr_type = at;
1585   _field = NULL;
1586   _element = NULL;
1587   _is_rewritable = true; // default
1588   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1589   if (atoop != NULL && atoop->is_known_instance()) {
1590     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1591     _general_index = Compile::current()->get_alias_index(gt);
1592   } else {
1593     _general_index = 0;
1594   }
1595 }
1596 
1597 BasicType Compile::AliasType::basic_type() const {
1598   if (element() != NULL) {
1599     const Type* element = adr_type()->is_aryptr()->elem();
1600     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1601   } if (field() != NULL) {
1602     return field()->layout_type();
1603   } else {
1604     return T_ILLEGAL; // unknown
1605   }
1606 }
1607 
1608 //---------------------------------print_on------------------------------------
1609 #ifndef PRODUCT
1610 void Compile::AliasType::print_on(outputStream* st) {
1611   if (index() < 10)
1612         st->print("@ <%d> ", index());
1613   else  st->print("@ <%d>",  index());
1614   st->print(is_rewritable() ? "   " : " RO");
1615   int offset = adr_type()->offset();
1616   if (offset == Type::OffsetBot)
1617         st->print(" +any");
1618   else  st->print(" +%-3d", offset);
1619   st->print(" in ");
1620   adr_type()->dump_on(st);
1621   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1622   if (field() != NULL && tjp) {
1623     if (tjp->klass()  != field()->holder() ||
1624         tjp->offset() != field()->offset_in_bytes()) {
1625       st->print(" != ");
1626       field()->print();
1627       st->print(" ***");
1628     }
1629   }
1630 }
1631 
1632 void print_alias_types() {
1633   Compile* C = Compile::current();
1634   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1635   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1636     C->alias_type(idx)->print_on(tty);
1637     tty->cr();
1638   }
1639 }
1640 #endif
1641 
1642 
1643 //----------------------------probe_alias_cache--------------------------------
1644 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1645   intptr_t key = (intptr_t) adr_type;
1646   key ^= key >> logAliasCacheSize;
1647   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1648 }
1649 
1650 
1651 //-----------------------------grow_alias_types--------------------------------
1652 void Compile::grow_alias_types() {
1653   const int old_ats  = _max_alias_types; // how many before?
1654   const int new_ats  = old_ats;          // how many more?
1655   const int grow_ats = old_ats+new_ats;  // how many now?
1656   _max_alias_types = grow_ats;
1657   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1658   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1659   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1660   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1661 }
1662 
1663 
1664 //--------------------------------find_alias_type------------------------------
1665 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1666   if (_AliasLevel == 0)
1667     return alias_type(AliasIdxBot);
1668 
1669   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1670   if (ace->_adr_type == adr_type) {
1671     return alias_type(ace->_index);
1672   }
1673 
1674   // Handle special cases.
1675   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1676   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1677 
1678   // Do it the slow way.
1679   const TypePtr* flat = flatten_alias_type(adr_type);
1680 
1681 #ifdef ASSERT
1682   {
1683     ResourceMark rm;
1684     assert(flat == flatten_alias_type(flat),
1685            err_msg("not idempotent: adr_type = %s; flat = %s => %s", Type::str(adr_type),
1686                    Type::str(flat), Type::str(flatten_alias_type(flat))));
1687     assert(flat != TypePtr::BOTTOM,
1688            err_msg("cannot alias-analyze an untyped ptr: adr_type = %s", Type::str(adr_type)));
1689     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1690       const TypeOopPtr* foop = flat->is_oopptr();
1691       // Scalarizable allocations have exact klass always.
1692       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1693       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1694       assert(foop == flatten_alias_type(xoop),
1695              err_msg("exactness must not affect alias type: foop = %s; xoop = %s",
1696                      Type::str(foop), Type::str(xoop)));
1697     }
1698   }
1699 #endif
1700 
1701   int idx = AliasIdxTop;
1702   for (int i = 0; i < num_alias_types(); i++) {
1703     if (alias_type(i)->adr_type() == flat) {
1704       idx = i;
1705       break;
1706     }
1707   }
1708 
1709   if (idx == AliasIdxTop) {
1710     if (no_create)  return NULL;
1711     // Grow the array if necessary.
1712     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1713     // Add a new alias type.
1714     idx = _num_alias_types++;
1715     _alias_types[idx]->Init(idx, flat);
1716     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1717     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1718     if (flat->isa_instptr()) {
1719       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1720           && flat->is_instptr()->klass() == env()->Class_klass())
1721         alias_type(idx)->set_rewritable(false);
1722     }
1723     if (flat->isa_aryptr()) {
1724 #ifdef ASSERT
1725       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1726       // (T_BYTE has the weakest alignment and size restrictions...)
1727       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1728 #endif
1729       if (flat->offset() == TypePtr::OffsetBot) {
1730         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1731       }
1732     }
1733     if (flat->isa_klassptr()) {
1734       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1735         alias_type(idx)->set_rewritable(false);
1736       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1737         alias_type(idx)->set_rewritable(false);
1738       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1739         alias_type(idx)->set_rewritable(false);
1740       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1741         alias_type(idx)->set_rewritable(false);
1742     }
1743     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1744     // but the base pointer type is not distinctive enough to identify
1745     // references into JavaThread.)
1746 
1747     // Check for final fields.
1748     const TypeInstPtr* tinst = flat->isa_instptr();
1749     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1750       ciField* field;
1751       if (tinst->const_oop() != NULL &&
1752           tinst->klass() == ciEnv::current()->Class_klass() &&
1753           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1754         // static field
1755         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1756         field = k->get_field_by_offset(tinst->offset(), true);
1757       } else {
1758         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1759         field = k->get_field_by_offset(tinst->offset(), false);
1760       }
1761       assert(field == NULL ||
1762              original_field == NULL ||
1763              (field->holder() == original_field->holder() &&
1764               field->offset() == original_field->offset() &&
1765               field->is_static() == original_field->is_static()), "wrong field?");
1766       // Set field() and is_rewritable() attributes.
1767       if (field != NULL)  alias_type(idx)->set_field(field);
1768     }
1769   }
1770 
1771   // Fill the cache for next time.
1772   ace->_adr_type = adr_type;
1773   ace->_index    = idx;
1774   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1775 
1776   // Might as well try to fill the cache for the flattened version, too.
1777   AliasCacheEntry* face = probe_alias_cache(flat);
1778   if (face->_adr_type == NULL) {
1779     face->_adr_type = flat;
1780     face->_index    = idx;
1781     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1782   }
1783 
1784   return alias_type(idx);
1785 }
1786 
1787 
1788 Compile::AliasType* Compile::alias_type(ciField* field) {
1789   const TypeOopPtr* t;
1790   if (field->is_static())
1791     t = TypeInstPtr::make(field->holder()->java_mirror());
1792   else
1793     t = TypeOopPtr::make_from_klass_raw(field->holder());
1794   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1795   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1796   return atp;
1797 }
1798 
1799 
1800 //------------------------------have_alias_type--------------------------------
1801 bool Compile::have_alias_type(const TypePtr* adr_type) {
1802   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1803   if (ace->_adr_type == adr_type) {
1804     return true;
1805   }
1806 
1807   // Handle special cases.
1808   if (adr_type == NULL)             return true;
1809   if (adr_type == TypePtr::BOTTOM)  return true;
1810 
1811   return find_alias_type(adr_type, true, NULL) != NULL;
1812 }
1813 
1814 //-----------------------------must_alias--------------------------------------
1815 // True if all values of the given address type are in the given alias category.
1816 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1817   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1818   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1819   if (alias_idx == AliasIdxTop)         return false; // the empty category
1820   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1821 
1822   // the only remaining possible overlap is identity
1823   int adr_idx = get_alias_index(adr_type);
1824   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1825   assert(adr_idx == alias_idx ||
1826          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1827           && adr_type                       != TypeOopPtr::BOTTOM),
1828          "should not be testing for overlap with an unsafe pointer");
1829   return adr_idx == alias_idx;
1830 }
1831 
1832 //------------------------------can_alias--------------------------------------
1833 // True if any values of the given address type are in the given alias category.
1834 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1835   if (alias_idx == AliasIdxTop)         return false; // the empty category
1836   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1837   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1838   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1839 
1840   // the only remaining possible overlap is identity
1841   int adr_idx = get_alias_index(adr_type);
1842   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1843   return adr_idx == alias_idx;
1844 }
1845 
1846 
1847 
1848 //---------------------------pop_warm_call-------------------------------------
1849 WarmCallInfo* Compile::pop_warm_call() {
1850   WarmCallInfo* wci = _warm_calls;
1851   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1852   return wci;
1853 }
1854 
1855 //----------------------------Inline_Warm--------------------------------------
1856 int Compile::Inline_Warm() {
1857   // If there is room, try to inline some more warm call sites.
1858   // %%% Do a graph index compaction pass when we think we're out of space?
1859   if (!InlineWarmCalls)  return 0;
1860 
1861   int calls_made_hot = 0;
1862   int room_to_grow   = NodeCountInliningCutoff - unique();
1863   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1864   int amount_grown   = 0;
1865   WarmCallInfo* call;
1866   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1867     int est_size = (int)call->size();
1868     if (est_size > (room_to_grow - amount_grown)) {
1869       // This one won't fit anyway.  Get rid of it.
1870       call->make_cold();
1871       continue;
1872     }
1873     call->make_hot();
1874     calls_made_hot++;
1875     amount_grown   += est_size;
1876     amount_to_grow -= est_size;
1877   }
1878 
1879   if (calls_made_hot > 0)  set_major_progress();
1880   return calls_made_hot;
1881 }
1882 
1883 
1884 //----------------------------Finish_Warm--------------------------------------
1885 void Compile::Finish_Warm() {
1886   if (!InlineWarmCalls)  return;
1887   if (failing())  return;
1888   if (warm_calls() == NULL)  return;
1889 
1890   // Clean up loose ends, if we are out of space for inlining.
1891   WarmCallInfo* call;
1892   while ((call = pop_warm_call()) != NULL) {
1893     call->make_cold();
1894   }
1895 }
1896 
1897 //---------------------cleanup_loop_predicates-----------------------
1898 // Remove the opaque nodes that protect the predicates so that all unused
1899 // checks and uncommon_traps will be eliminated from the ideal graph
1900 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1901   if (predicate_count()==0) return;
1902   for (int i = predicate_count(); i > 0; i--) {
1903     Node * n = predicate_opaque1_node(i-1);
1904     assert(n->Opcode() == Op_Opaque1, "must be");
1905     igvn.replace_node(n, n->in(1));
1906   }
1907   assert(predicate_count()==0, "should be clean!");
1908 }
1909 
1910 void Compile::add_range_check_cast(Node* n) {
1911   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1912   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1913   _range_check_casts->append(n);
1914 }
1915 
1916 // Remove all range check dependent CastIINodes.
1917 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1918   for (int i = range_check_cast_count(); i > 0; i--) {
1919     Node* cast = range_check_cast_node(i-1);
1920     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1921     igvn.replace_node(cast, cast->in(1));
1922   }
1923   assert(range_check_cast_count() == 0, "should be empty");
1924 }
1925 
1926 // StringOpts and late inlining of string methods
1927 void Compile::inline_string_calls(bool parse_time) {
1928   {
1929     // remove useless nodes to make the usage analysis simpler
1930     ResourceMark rm;
1931     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1932   }
1933 
1934   {
1935     ResourceMark rm;
1936     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1937     PhaseStringOpts pso(initial_gvn(), for_igvn());
1938     print_method(PHASE_AFTER_STRINGOPTS, 3);
1939   }
1940 
1941   // now inline anything that we skipped the first time around
1942   if (!parse_time) {
1943     _late_inlines_pos = _late_inlines.length();
1944   }
1945 
1946   while (_string_late_inlines.length() > 0) {
1947     CallGenerator* cg = _string_late_inlines.pop();
1948     cg->do_late_inline();
1949     if (failing())  return;
1950   }
1951   _string_late_inlines.trunc_to(0);
1952 }
1953 
1954 // Late inlining of boxing methods
1955 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1956   if (_boxing_late_inlines.length() > 0) {
1957     assert(has_boxed_value(), "inconsistent");
1958 
1959     PhaseGVN* gvn = initial_gvn();
1960     set_inlining_incrementally(true);
1961 
1962     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1963     for_igvn()->clear();
1964     gvn->replace_with(&igvn);
1965 
1966     _late_inlines_pos = _late_inlines.length();
1967 
1968     while (_boxing_late_inlines.length() > 0) {
1969       CallGenerator* cg = _boxing_late_inlines.pop();
1970       cg->do_late_inline();
1971       if (failing())  return;
1972     }
1973     _boxing_late_inlines.trunc_to(0);
1974 
1975     {
1976       ResourceMark rm;
1977       PhaseRemoveUseless pru(gvn, for_igvn());
1978     }
1979 
1980     igvn = PhaseIterGVN(gvn);
1981     igvn.optimize();
1982 
1983     set_inlining_progress(false);
1984     set_inlining_incrementally(false);
1985   }
1986 }
1987 
1988 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1989   assert(IncrementalInline, "incremental inlining should be on");
1990   PhaseGVN* gvn = initial_gvn();
1991 
1992   set_inlining_progress(false);
1993   for_igvn()->clear();
1994   gvn->replace_with(&igvn);
1995 
1996   int i = 0;
1997 
1998   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1999     CallGenerator* cg = _late_inlines.at(i);
2000     _late_inlines_pos = i+1;
2001     cg->do_late_inline();
2002     if (failing())  return;
2003   }
2004   int j = 0;
2005   for (; i < _late_inlines.length(); i++, j++) {
2006     _late_inlines.at_put(j, _late_inlines.at(i));
2007   }
2008   _late_inlines.trunc_to(j);
2009 
2010   {
2011     ResourceMark rm;
2012     PhaseRemoveUseless pru(gvn, for_igvn());
2013   }
2014 
2015   igvn = PhaseIterGVN(gvn);
2016 }
2017 
2018 // Perform incremental inlining until bound on number of live nodes is reached
2019 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2020   PhaseGVN* gvn = initial_gvn();
2021 
2022   set_inlining_incrementally(true);
2023   set_inlining_progress(true);
2024   uint low_live_nodes = 0;
2025 
2026   while(inlining_progress() && _late_inlines.length() > 0) {
2027 
2028     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2029       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2030         // PhaseIdealLoop is expensive so we only try it once we are
2031         // out of live nodes and we only try it again if the previous
2032         // helped got the number of nodes down significantly
2033         PhaseIdealLoop ideal_loop( igvn, false, true );
2034         if (failing())  return;
2035         low_live_nodes = live_nodes();
2036         _major_progress = true;
2037       }
2038 
2039       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2040         break;
2041       }
2042     }
2043 
2044     inline_incrementally_one(igvn);
2045 
2046     if (failing())  return;
2047 
2048     igvn.optimize();
2049 
2050     if (failing())  return;
2051   }
2052 
2053   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2054 
2055   if (_string_late_inlines.length() > 0) {
2056     assert(has_stringbuilder(), "inconsistent");
2057     for_igvn()->clear();
2058     initial_gvn()->replace_with(&igvn);
2059 
2060     inline_string_calls(false);
2061 
2062     if (failing())  return;
2063 
2064     {
2065       ResourceMark rm;
2066       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2067     }
2068 
2069     igvn = PhaseIterGVN(gvn);
2070 
2071     igvn.optimize();
2072   }
2073 
2074   set_inlining_incrementally(false);
2075 }
2076 
2077 
2078 //------------------------------Optimize---------------------------------------
2079 // Given a graph, optimize it.
2080 void Compile::Optimize() {
2081   TracePhase t1("optimizer", &_t_optimizer, true);
2082 
2083 #ifndef PRODUCT
2084   if (env()->break_at_compile()) {
2085     BREAKPOINT;
2086   }
2087 
2088 #endif
2089 
2090   ResourceMark rm;
2091   int          loop_opts_cnt;
2092 
2093   NOT_PRODUCT( verify_graph_edges(); )
2094 
2095   print_method(PHASE_AFTER_PARSING);
2096 
2097  {
2098   // Iterative Global Value Numbering, including ideal transforms
2099   // Initialize IterGVN with types and values from parse-time GVN
2100   PhaseIterGVN igvn(initial_gvn());
2101   {
2102     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
2103     igvn.optimize();
2104   }
2105 
2106   print_method(PHASE_ITER_GVN1, 2);
2107 
2108   if (failing())  return;
2109 
2110   {
2111     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2112     inline_incrementally(igvn);
2113   }
2114 
2115   print_method(PHASE_INCREMENTAL_INLINE, 2);
2116 
2117   if (failing())  return;
2118 
2119   if (eliminate_boxing()) {
2120     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2121     // Inline valueOf() methods now.
2122     inline_boxing_calls(igvn);
2123 
2124     if (AlwaysIncrementalInline) {
2125       inline_incrementally(igvn);
2126     }
2127 
2128     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2129 
2130     if (failing())  return;
2131   }
2132 
2133   // Remove the speculative part of types and clean up the graph from
2134   // the extra CastPP nodes whose only purpose is to carry them. Do
2135   // that early so that optimizations are not disrupted by the extra
2136   // CastPP nodes.
2137   remove_speculative_types(igvn);
2138 
2139   // No more new expensive nodes will be added to the list from here
2140   // so keep only the actual candidates for optimizations.
2141   cleanup_expensive_nodes(igvn);
2142 
2143   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2144     NOT_PRODUCT(Compile::TracePhase t2("", &_t_renumberLive, TimeCompiler);)
2145     initial_gvn()->replace_with(&igvn);
2146     for_igvn()->clear();
2147     Unique_Node_List new_worklist(C->comp_arena());
2148     {
2149       ResourceMark rm;
2150       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2151     }
2152     set_for_igvn(&new_worklist);
2153     igvn = PhaseIterGVN(initial_gvn());
2154     igvn.optimize();
2155   }
2156 
2157   // Perform escape analysis
2158   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2159     if (has_loops()) {
2160       // Cleanup graph (remove dead nodes).
2161       TracePhase t2("idealLoop", &_t_idealLoop, true);
2162       PhaseIdealLoop ideal_loop( igvn, false, true );
2163       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2164       if (failing())  return;
2165     }
2166     ConnectionGraph::do_analysis(this, &igvn);
2167 
2168     if (failing())  return;
2169 
2170     // Optimize out fields loads from scalar replaceable allocations.
2171     igvn.optimize();
2172     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2173 
2174     if (failing())  return;
2175 
2176     if (congraph() != NULL && macro_count() > 0) {
2177       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2178       PhaseMacroExpand mexp(igvn);
2179       mexp.eliminate_macro_nodes();
2180       igvn.set_delay_transform(false);
2181 
2182       igvn.optimize();
2183       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2184 
2185       if (failing())  return;
2186     }
2187   }
2188 
2189   // Loop transforms on the ideal graph.  Range Check Elimination,
2190   // peeling, unrolling, etc.
2191 
2192   // Set loop opts counter
2193   loop_opts_cnt = num_loop_opts();
2194   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2195     {
2196       TracePhase t2("idealLoop", &_t_idealLoop, true);
2197       PhaseIdealLoop ideal_loop( igvn, true );
2198       loop_opts_cnt--;
2199       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2200       if (failing())  return;
2201     }
2202     // Loop opts pass if partial peeling occurred in previous pass
2203     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2204       TracePhase t3("idealLoop", &_t_idealLoop, true);
2205       PhaseIdealLoop ideal_loop( igvn, false );
2206       loop_opts_cnt--;
2207       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2208       if (failing())  return;
2209     }
2210     // Loop opts pass for loop-unrolling before CCP
2211     if(major_progress() && (loop_opts_cnt > 0)) {
2212       TracePhase t4("idealLoop", &_t_idealLoop, true);
2213       PhaseIdealLoop ideal_loop( igvn, false );
2214       loop_opts_cnt--;
2215       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2216     }
2217     if (!failing()) {
2218       // Verify that last round of loop opts produced a valid graph
2219       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2220       PhaseIdealLoop::verify(igvn);
2221     }
2222   }
2223   if (failing())  return;
2224 
2225   // Conditional Constant Propagation;
2226   PhaseCCP ccp( &igvn );
2227   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2228   {
2229     TracePhase t2("ccp", &_t_ccp, true);
2230     ccp.do_transform();
2231   }
2232   print_method(PHASE_CPP1, 2);
2233 
2234   assert( true, "Break here to ccp.dump_old2new_map()");
2235 
2236   // Iterative Global Value Numbering, including ideal transforms
2237   {
2238     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2239     igvn = ccp;
2240     igvn.optimize();
2241   }
2242 
2243   print_method(PHASE_ITER_GVN2, 2);
2244 
2245   if (failing())  return;
2246 
2247   // Loop transforms on the ideal graph.  Range Check Elimination,
2248   // peeling, unrolling, etc.
2249   if(loop_opts_cnt > 0) {
2250     debug_only( int cnt = 0; );
2251     while(major_progress() && (loop_opts_cnt > 0)) {
2252       TracePhase t2("idealLoop", &_t_idealLoop, true);
2253       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2254       PhaseIdealLoop ideal_loop( igvn, true);
2255       loop_opts_cnt--;
2256       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2257       if (failing())  return;
2258     }
2259   }
2260 
2261   {
2262     // Verify that all previous optimizations produced a valid graph
2263     // at least to this point, even if no loop optimizations were done.
2264     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2265     PhaseIdealLoop::verify(igvn);
2266   }
2267 
2268   if (range_check_cast_count() > 0) {
2269     // No more loop optimizations. Remove all range check dependent CastIINodes.
2270     C->remove_range_check_casts(igvn);
2271     igvn.optimize();
2272   }
2273 
2274   {
2275     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2276     PhaseMacroExpand  mex(igvn);
2277     if (mex.expand_macro_nodes()) {
2278       assert(failing(), "must bail out w/ explicit message");
2279       return;
2280     }
2281   }
2282 
2283  } // (End scope of igvn; run destructor if necessary for asserts.)
2284 
2285   dump_inlining();
2286   // A method with only infinite loops has no edges entering loops from root
2287   {
2288     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2289     if (final_graph_reshaping()) {
2290       assert(failing(), "must bail out w/ explicit message");
2291       return;
2292     }
2293   }
2294 
2295   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2296 }
2297 
2298 
2299 //------------------------------Code_Gen---------------------------------------
2300 // Given a graph, generate code for it
2301 void Compile::Code_Gen() {
2302   if (failing()) {
2303     return;
2304   }
2305 
2306   // Perform instruction selection.  You might think we could reclaim Matcher
2307   // memory PDQ, but actually the Matcher is used in generating spill code.
2308   // Internals of the Matcher (including some VectorSets) must remain live
2309   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2310   // set a bit in reclaimed memory.
2311 
2312   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2313   // nodes.  Mapping is only valid at the root of each matched subtree.
2314   NOT_PRODUCT( verify_graph_edges(); )
2315 
2316   Matcher matcher;
2317   _matcher = &matcher;
2318   {
2319     TracePhase t2("matcher", &_t_matcher, true);
2320     matcher.match();
2321   }
2322   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2323   // nodes.  Mapping is only valid at the root of each matched subtree.
2324   NOT_PRODUCT( verify_graph_edges(); )
2325 
2326   // If you have too many nodes, or if matching has failed, bail out
2327   check_node_count(0, "out of nodes matching instructions");
2328   if (failing()) {
2329     return;
2330   }
2331 
2332   // Build a proper-looking CFG
2333   PhaseCFG cfg(node_arena(), root(), matcher);
2334   _cfg = &cfg;
2335   {
2336     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2337     bool success = cfg.do_global_code_motion();
2338     if (!success) {
2339       return;
2340     }
2341 
2342     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2343     NOT_PRODUCT( verify_graph_edges(); )
2344     debug_only( cfg.verify(); )
2345   }
2346 
2347   PhaseChaitin regalloc(unique(), cfg, matcher);
2348   _regalloc = &regalloc;
2349   {
2350     TracePhase t2("regalloc", &_t_registerAllocation, true);
2351     // Perform register allocation.  After Chaitin, use-def chains are
2352     // no longer accurate (at spill code) and so must be ignored.
2353     // Node->LRG->reg mappings are still accurate.
2354     _regalloc->Register_Allocate();
2355 
2356     // Bail out if the allocator builds too many nodes
2357     if (failing()) {
2358       return;
2359     }
2360   }
2361 
2362   // Prior to register allocation we kept empty basic blocks in case the
2363   // the allocator needed a place to spill.  After register allocation we
2364   // are not adding any new instructions.  If any basic block is empty, we
2365   // can now safely remove it.
2366   {
2367     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2368     cfg.remove_empty_blocks();
2369     if (do_freq_based_layout()) {
2370       PhaseBlockLayout layout(cfg);
2371     } else {
2372       cfg.set_loop_alignment();
2373     }
2374     cfg.fixup_flow();
2375   }
2376 
2377   // Apply peephole optimizations
2378   if( OptoPeephole ) {
2379     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2380     PhasePeephole peep( _regalloc, cfg);
2381     peep.do_transform();
2382   }
2383 
2384   // Do late expand if CPU requires this.
2385   if (Matcher::require_postalloc_expand) {
2386     NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
2387     cfg.postalloc_expand(_regalloc);
2388   }
2389 
2390   // Convert Nodes to instruction bits in a buffer
2391   {
2392     // %%%% workspace merge brought two timers together for one job
2393     TracePhase t2a("output", &_t_output, true);
2394     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2395     Output();
2396   }
2397 
2398   print_method(PHASE_FINAL_CODE);
2399 
2400   // He's dead, Jim.
2401   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
2402   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2403 }
2404 
2405 
2406 //------------------------------dump_asm---------------------------------------
2407 // Dump formatted assembly
2408 #ifndef PRODUCT
2409 void Compile::dump_asm(int *pcs, uint pc_limit) {
2410   bool cut_short = false;
2411   tty->print_cr("#");
2412   tty->print("#  ");  _tf->dump();  tty->cr();
2413   tty->print_cr("#");
2414 
2415   // For all blocks
2416   int pc = 0x0;                 // Program counter
2417   char starts_bundle = ' ';
2418   _regalloc->dump_frame();
2419 
2420   Node *n = NULL;
2421   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2422     if (VMThread::should_terminate()) {
2423       cut_short = true;
2424       break;
2425     }
2426     Block* block = _cfg->get_block(i);
2427     if (block->is_connector() && !Verbose) {
2428       continue;
2429     }
2430     n = block->head();
2431     if (pcs && n->_idx < pc_limit) {
2432       tty->print("%3.3x   ", pcs[n->_idx]);
2433     } else {
2434       tty->print("      ");
2435     }
2436     block->dump_head(_cfg);
2437     if (block->is_connector()) {
2438       tty->print_cr("        # Empty connector block");
2439     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2440       tty->print_cr("        # Block is sole successor of call");
2441     }
2442 
2443     // For all instructions
2444     Node *delay = NULL;
2445     for (uint j = 0; j < block->number_of_nodes(); j++) {
2446       if (VMThread::should_terminate()) {
2447         cut_short = true;
2448         break;
2449       }
2450       n = block->get_node(j);
2451       if (valid_bundle_info(n)) {
2452         Bundle* bundle = node_bundling(n);
2453         if (bundle->used_in_unconditional_delay()) {
2454           delay = n;
2455           continue;
2456         }
2457         if (bundle->starts_bundle()) {
2458           starts_bundle = '+';
2459         }
2460       }
2461 
2462       if (WizardMode) {
2463         n->dump();
2464       }
2465 
2466       if( !n->is_Region() &&    // Dont print in the Assembly
2467           !n->is_Phi() &&       // a few noisely useless nodes
2468           !n->is_Proj() &&
2469           !n->is_MachTemp() &&
2470           !n->is_SafePointScalarObject() &&
2471           !n->is_Catch() &&     // Would be nice to print exception table targets
2472           !n->is_MergeMem() &&  // Not very interesting
2473           !n->is_top() &&       // Debug info table constants
2474           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2475           ) {
2476         if (pcs && n->_idx < pc_limit)
2477           tty->print("%3.3x", pcs[n->_idx]);
2478         else
2479           tty->print("   ");
2480         tty->print(" %c ", starts_bundle);
2481         starts_bundle = ' ';
2482         tty->print("\t");
2483         n->format(_regalloc, tty);
2484         tty->cr();
2485       }
2486 
2487       // If we have an instruction with a delay slot, and have seen a delay,
2488       // then back up and print it
2489       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2490         assert(delay != NULL, "no unconditional delay instruction");
2491         if (WizardMode) delay->dump();
2492 
2493         if (node_bundling(delay)->starts_bundle())
2494           starts_bundle = '+';
2495         if (pcs && n->_idx < pc_limit)
2496           tty->print("%3.3x", pcs[n->_idx]);
2497         else
2498           tty->print("   ");
2499         tty->print(" %c ", starts_bundle);
2500         starts_bundle = ' ';
2501         tty->print("\t");
2502         delay->format(_regalloc, tty);
2503         tty->cr();
2504         delay = NULL;
2505       }
2506 
2507       // Dump the exception table as well
2508       if( n->is_Catch() && (Verbose || WizardMode) ) {
2509         // Print the exception table for this offset
2510         _handler_table.print_subtable_for(pc);
2511       }
2512     }
2513 
2514     if (pcs && n->_idx < pc_limit)
2515       tty->print_cr("%3.3x", pcs[n->_idx]);
2516     else
2517       tty->cr();
2518 
2519     assert(cut_short || delay == NULL, "no unconditional delay branch");
2520 
2521   } // End of per-block dump
2522   tty->cr();
2523 
2524   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2525 }
2526 #endif
2527 
2528 //------------------------------Final_Reshape_Counts---------------------------
2529 // This class defines counters to help identify when a method
2530 // may/must be executed using hardware with only 24-bit precision.
2531 struct Final_Reshape_Counts : public StackObj {
2532   int  _call_count;             // count non-inlined 'common' calls
2533   int  _float_count;            // count float ops requiring 24-bit precision
2534   int  _double_count;           // count double ops requiring more precision
2535   int  _java_call_count;        // count non-inlined 'java' calls
2536   int  _inner_loop_count;       // count loops which need alignment
2537   VectorSet _visited;           // Visitation flags
2538   Node_List _tests;             // Set of IfNodes & PCTableNodes
2539 
2540   Final_Reshape_Counts() :
2541     _call_count(0), _float_count(0), _double_count(0),
2542     _java_call_count(0), _inner_loop_count(0),
2543     _visited( Thread::current()->resource_area() ) { }
2544 
2545   void inc_call_count  () { _call_count  ++; }
2546   void inc_float_count () { _float_count ++; }
2547   void inc_double_count() { _double_count++; }
2548   void inc_java_call_count() { _java_call_count++; }
2549   void inc_inner_loop_count() { _inner_loop_count++; }
2550 
2551   int  get_call_count  () const { return _call_count  ; }
2552   int  get_float_count () const { return _float_count ; }
2553   int  get_double_count() const { return _double_count; }
2554   int  get_java_call_count() const { return _java_call_count; }
2555   int  get_inner_loop_count() const { return _inner_loop_count; }
2556 };
2557 
2558 #ifdef ASSERT
2559 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2560   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2561   // Make sure the offset goes inside the instance layout.
2562   return k->contains_field_offset(tp->offset());
2563   // Note that OffsetBot and OffsetTop are very negative.
2564 }
2565 #endif
2566 
2567 // Eliminate trivially redundant StoreCMs and accumulate their
2568 // precedence edges.
2569 void Compile::eliminate_redundant_card_marks(Node* n) {
2570   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2571   if (n->in(MemNode::Address)->outcnt() > 1) {
2572     // There are multiple users of the same address so it might be
2573     // possible to eliminate some of the StoreCMs
2574     Node* mem = n->in(MemNode::Memory);
2575     Node* adr = n->in(MemNode::Address);
2576     Node* val = n->in(MemNode::ValueIn);
2577     Node* prev = n;
2578     bool done = false;
2579     // Walk the chain of StoreCMs eliminating ones that match.  As
2580     // long as it's a chain of single users then the optimization is
2581     // safe.  Eliminating partially redundant StoreCMs would require
2582     // cloning copies down the other paths.
2583     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2584       if (adr == mem->in(MemNode::Address) &&
2585           val == mem->in(MemNode::ValueIn)) {
2586         // redundant StoreCM
2587         if (mem->req() > MemNode::OopStore) {
2588           // Hasn't been processed by this code yet.
2589           n->add_prec(mem->in(MemNode::OopStore));
2590         } else {
2591           // Already converted to precedence edge
2592           for (uint i = mem->req(); i < mem->len(); i++) {
2593             // Accumulate any precedence edges
2594             if (mem->in(i) != NULL) {
2595               n->add_prec(mem->in(i));
2596             }
2597           }
2598           // Everything above this point has been processed.
2599           done = true;
2600         }
2601         // Eliminate the previous StoreCM
2602         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2603         assert(mem->outcnt() == 0, "should be dead");
2604         mem->disconnect_inputs(NULL, this);
2605       } else {
2606         prev = mem;
2607       }
2608       mem = prev->in(MemNode::Memory);
2609     }
2610   }
2611 }
2612 
2613 //------------------------------final_graph_reshaping_impl----------------------
2614 // Implement items 1-5 from final_graph_reshaping below.
2615 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2616 
2617   if ( n->outcnt() == 0 ) return; // dead node
2618   uint nop = n->Opcode();
2619 
2620   // Check for 2-input instruction with "last use" on right input.
2621   // Swap to left input.  Implements item (2).
2622   if( n->req() == 3 &&          // two-input instruction
2623       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2624       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2625       n->in(2)->outcnt() == 1 &&// right use IS a last use
2626       !n->in(2)->is_Con() ) {   // right use is not a constant
2627     // Check for commutative opcode
2628     switch( nop ) {
2629     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2630     case Op_MaxI:  case Op_MinI:
2631     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2632     case Op_AndL:  case Op_XorL:  case Op_OrL:
2633     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2634       // Move "last use" input to left by swapping inputs
2635       n->swap_edges(1, 2);
2636       break;
2637     }
2638     default:
2639       break;
2640     }
2641   }
2642 
2643 #ifdef ASSERT
2644   if( n->is_Mem() ) {
2645     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2646     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2647             // oop will be recorded in oop map if load crosses safepoint
2648             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2649                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2650             "raw memory operations should have control edge");
2651   }
2652 #endif
2653   // Count FPU ops and common calls, implements item (3)
2654   switch( nop ) {
2655   // Count all float operations that may use FPU
2656   case Op_AddF:
2657   case Op_SubF:
2658   case Op_MulF:
2659   case Op_DivF:
2660   case Op_NegF:
2661   case Op_ModF:
2662   case Op_ConvI2F:
2663   case Op_ConF:
2664   case Op_CmpF:
2665   case Op_CmpF3:
2666   // case Op_ConvL2F: // longs are split into 32-bit halves
2667     frc.inc_float_count();
2668     break;
2669 
2670   case Op_ConvF2D:
2671   case Op_ConvD2F:
2672     frc.inc_float_count();
2673     frc.inc_double_count();
2674     break;
2675 
2676   // Count all double operations that may use FPU
2677   case Op_AddD:
2678   case Op_SubD:
2679   case Op_MulD:
2680   case Op_DivD:
2681   case Op_NegD:
2682   case Op_ModD:
2683   case Op_ConvI2D:
2684   case Op_ConvD2I:
2685   // case Op_ConvL2D: // handled by leaf call
2686   // case Op_ConvD2L: // handled by leaf call
2687   case Op_ConD:
2688   case Op_CmpD:
2689   case Op_CmpD3:
2690     frc.inc_double_count();
2691     break;
2692   case Op_Opaque1:              // Remove Opaque Nodes before matching
2693   case Op_Opaque2:              // Remove Opaque Nodes before matching
2694   case Op_Opaque3:
2695     n->subsume_by(n->in(1), this);
2696     break;
2697   case Op_CallStaticJava:
2698   case Op_CallJava:
2699   case Op_CallDynamicJava:
2700     frc.inc_java_call_count(); // Count java call site;
2701   case Op_CallRuntime:
2702   case Op_CallLeaf:
2703   case Op_CallLeafNoFP: {
2704     assert( n->is_Call(), "" );
2705     CallNode *call = n->as_Call();
2706     // Count call sites where the FP mode bit would have to be flipped.
2707     // Do not count uncommon runtime calls:
2708     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2709     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2710     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2711       frc.inc_call_count();   // Count the call site
2712     } else {                  // See if uncommon argument is shared
2713       Node *n = call->in(TypeFunc::Parms);
2714       int nop = n->Opcode();
2715       // Clone shared simple arguments to uncommon calls, item (1).
2716       if( n->outcnt() > 1 &&
2717           !n->is_Proj() &&
2718           nop != Op_CreateEx &&
2719           nop != Op_CheckCastPP &&
2720           nop != Op_DecodeN &&
2721           nop != Op_DecodeNKlass &&
2722           !n->is_Mem() ) {
2723         Node *x = n->clone();
2724         call->set_req( TypeFunc::Parms, x );
2725       }
2726     }
2727     break;
2728   }
2729 
2730   case Op_StoreD:
2731   case Op_LoadD:
2732   case Op_LoadD_unaligned:
2733     frc.inc_double_count();
2734     goto handle_mem;
2735   case Op_StoreF:
2736   case Op_LoadF:
2737     frc.inc_float_count();
2738     goto handle_mem;
2739 
2740   case Op_StoreCM:
2741     {
2742       // Convert OopStore dependence into precedence edge
2743       Node* prec = n->in(MemNode::OopStore);
2744       n->del_req(MemNode::OopStore);
2745       n->add_prec(prec);
2746       eliminate_redundant_card_marks(n);
2747     }
2748 
2749     // fall through
2750 
2751   case Op_StoreB:
2752   case Op_StoreC:
2753   case Op_StorePConditional:
2754   case Op_StoreI:
2755   case Op_StoreL:
2756   case Op_StoreIConditional:
2757   case Op_StoreLConditional:
2758   case Op_CompareAndSwapI:
2759   case Op_CompareAndSwapL:
2760   case Op_CompareAndSwapP:
2761   case Op_CompareAndSwapN:
2762   case Op_GetAndAddI:
2763   case Op_GetAndAddL:
2764   case Op_GetAndSetI:
2765   case Op_GetAndSetL:
2766   case Op_GetAndSetP:
2767   case Op_GetAndSetN:
2768   case Op_StoreP:
2769   case Op_StoreN:
2770   case Op_StoreNKlass:
2771   case Op_LoadB:
2772   case Op_LoadUB:
2773   case Op_LoadUS:
2774   case Op_LoadI:
2775   case Op_LoadKlass:
2776   case Op_LoadNKlass:
2777   case Op_LoadL:
2778   case Op_LoadL_unaligned:
2779   case Op_LoadPLocked:
2780   case Op_LoadP:
2781   case Op_LoadN:
2782   case Op_LoadRange:
2783   case Op_LoadS: {
2784   handle_mem:
2785 #ifdef ASSERT
2786     if( VerifyOptoOopOffsets ) {
2787       assert( n->is_Mem(), "" );
2788       MemNode *mem  = (MemNode*)n;
2789       // Check to see if address types have grounded out somehow.
2790       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2791       assert( !tp || oop_offset_is_sane(tp), "" );
2792     }
2793 #endif
2794     break;
2795   }
2796 
2797   case Op_AddP: {               // Assert sane base pointers
2798     Node *addp = n->in(AddPNode::Address);
2799     assert( !addp->is_AddP() ||
2800             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2801             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2802             "Base pointers must match" );
2803 #ifdef _LP64
2804     if ((UseCompressedOops || UseCompressedClassPointers) &&
2805         addp->Opcode() == Op_ConP &&
2806         addp == n->in(AddPNode::Base) &&
2807         n->in(AddPNode::Offset)->is_Con()) {
2808       // Use addressing with narrow klass to load with offset on x86.
2809       // On sparc loading 32-bits constant and decoding it have less
2810       // instructions (4) then load 64-bits constant (7).
2811       // Do this transformation here since IGVN will convert ConN back to ConP.
2812       const Type* t = addp->bottom_type();
2813       if (t->isa_oopptr() || t->isa_klassptr()) {
2814         Node* nn = NULL;
2815 
2816         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2817 
2818         // Look for existing ConN node of the same exact type.
2819         Node* r  = root();
2820         uint cnt = r->outcnt();
2821         for (uint i = 0; i < cnt; i++) {
2822           Node* m = r->raw_out(i);
2823           if (m!= NULL && m->Opcode() == op &&
2824               m->bottom_type()->make_ptr() == t) {
2825             nn = m;
2826             break;
2827           }
2828         }
2829         if (nn != NULL) {
2830           // Decode a narrow oop to match address
2831           // [R12 + narrow_oop_reg<<3 + offset]
2832           if (t->isa_oopptr()) {
2833             nn = new (this) DecodeNNode(nn, t);
2834           } else {
2835             nn = new (this) DecodeNKlassNode(nn, t);
2836           }
2837           n->set_req(AddPNode::Base, nn);
2838           n->set_req(AddPNode::Address, nn);
2839           if (addp->outcnt() == 0) {
2840             addp->disconnect_inputs(NULL, this);
2841           }
2842         }
2843       }
2844     }
2845 #endif
2846     break;
2847   }
2848 
2849 #ifdef _LP64
2850   case Op_CastPP:
2851     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2852       Node* in1 = n->in(1);
2853       const Type* t = n->bottom_type();
2854       Node* new_in1 = in1->clone();
2855       new_in1->as_DecodeN()->set_type(t);
2856 
2857       if (!Matcher::narrow_oop_use_complex_address()) {
2858         //
2859         // x86, ARM and friends can handle 2 adds in addressing mode
2860         // and Matcher can fold a DecodeN node into address by using
2861         // a narrow oop directly and do implicit NULL check in address:
2862         //
2863         // [R12 + narrow_oop_reg<<3 + offset]
2864         // NullCheck narrow_oop_reg
2865         //
2866         // On other platforms (Sparc) we have to keep new DecodeN node and
2867         // use it to do implicit NULL check in address:
2868         //
2869         // decode_not_null narrow_oop_reg, base_reg
2870         // [base_reg + offset]
2871         // NullCheck base_reg
2872         //
2873         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2874         // to keep the information to which NULL check the new DecodeN node
2875         // corresponds to use it as value in implicit_null_check().
2876         //
2877         new_in1->set_req(0, n->in(0));
2878       }
2879 
2880       n->subsume_by(new_in1, this);
2881       if (in1->outcnt() == 0) {
2882         in1->disconnect_inputs(NULL, this);
2883       }
2884     }
2885     break;
2886 
2887   case Op_CmpP:
2888     // Do this transformation here to preserve CmpPNode::sub() and
2889     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2890     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2891       Node* in1 = n->in(1);
2892       Node* in2 = n->in(2);
2893       if (!in1->is_DecodeNarrowPtr()) {
2894         in2 = in1;
2895         in1 = n->in(2);
2896       }
2897       assert(in1->is_DecodeNarrowPtr(), "sanity");
2898 
2899       Node* new_in2 = NULL;
2900       if (in2->is_DecodeNarrowPtr()) {
2901         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2902         new_in2 = in2->in(1);
2903       } else if (in2->Opcode() == Op_ConP) {
2904         const Type* t = in2->bottom_type();
2905         if (t == TypePtr::NULL_PTR) {
2906           assert(in1->is_DecodeN(), "compare klass to null?");
2907           // Don't convert CmpP null check into CmpN if compressed
2908           // oops implicit null check is not generated.
2909           // This will allow to generate normal oop implicit null check.
2910           if (Matcher::gen_narrow_oop_implicit_null_checks())
2911             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2912           //
2913           // This transformation together with CastPP transformation above
2914           // will generated code for implicit NULL checks for compressed oops.
2915           //
2916           // The original code after Optimize()
2917           //
2918           //    LoadN memory, narrow_oop_reg
2919           //    decode narrow_oop_reg, base_reg
2920           //    CmpP base_reg, NULL
2921           //    CastPP base_reg // NotNull
2922           //    Load [base_reg + offset], val_reg
2923           //
2924           // after these transformations will be
2925           //
2926           //    LoadN memory, narrow_oop_reg
2927           //    CmpN narrow_oop_reg, NULL
2928           //    decode_not_null narrow_oop_reg, base_reg
2929           //    Load [base_reg + offset], val_reg
2930           //
2931           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2932           // since narrow oops can be used in debug info now (see the code in
2933           // final_graph_reshaping_walk()).
2934           //
2935           // At the end the code will be matched to
2936           // on x86:
2937           //
2938           //    Load_narrow_oop memory, narrow_oop_reg
2939           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2940           //    NullCheck narrow_oop_reg
2941           //
2942           // and on sparc:
2943           //
2944           //    Load_narrow_oop memory, narrow_oop_reg
2945           //    decode_not_null narrow_oop_reg, base_reg
2946           //    Load [base_reg + offset], val_reg
2947           //    NullCheck base_reg
2948           //
2949         } else if (t->isa_oopptr()) {
2950           new_in2 = ConNode::make(this, t->make_narrowoop());
2951         } else if (t->isa_klassptr()) {
2952           new_in2 = ConNode::make(this, t->make_narrowklass());
2953         }
2954       }
2955       if (new_in2 != NULL) {
2956         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2957         n->subsume_by(cmpN, this);
2958         if (in1->outcnt() == 0) {
2959           in1->disconnect_inputs(NULL, this);
2960         }
2961         if (in2->outcnt() == 0) {
2962           in2->disconnect_inputs(NULL, this);
2963         }
2964       }
2965     }
2966     break;
2967 
2968   case Op_DecodeN:
2969   case Op_DecodeNKlass:
2970     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2971     // DecodeN could be pinned when it can't be fold into
2972     // an address expression, see the code for Op_CastPP above.
2973     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2974     break;
2975 
2976   case Op_EncodeP:
2977   case Op_EncodePKlass: {
2978     Node* in1 = n->in(1);
2979     if (in1->is_DecodeNarrowPtr()) {
2980       n->subsume_by(in1->in(1), this);
2981     } else if (in1->Opcode() == Op_ConP) {
2982       const Type* t = in1->bottom_type();
2983       if (t == TypePtr::NULL_PTR) {
2984         assert(t->isa_oopptr(), "null klass?");
2985         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2986       } else if (t->isa_oopptr()) {
2987         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2988       } else if (t->isa_klassptr()) {
2989         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2990       }
2991     }
2992     if (in1->outcnt() == 0) {
2993       in1->disconnect_inputs(NULL, this);
2994     }
2995     break;
2996   }
2997 
2998   case Op_Proj: {
2999     if (OptimizeStringConcat) {
3000       ProjNode* p = n->as_Proj();
3001       if (p->_is_io_use) {
3002         // Separate projections were used for the exception path which
3003         // are normally removed by a late inline.  If it wasn't inlined
3004         // then they will hang around and should just be replaced with
3005         // the original one.
3006         Node* proj = NULL;
3007         // Replace with just one
3008         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3009           Node *use = i.get();
3010           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3011             proj = use;
3012             break;
3013           }
3014         }
3015         assert(proj != NULL, "must be found");
3016         p->subsume_by(proj, this);
3017       }
3018     }
3019     break;
3020   }
3021 
3022   case Op_Phi:
3023     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3024       // The EncodeP optimization may create Phi with the same edges
3025       // for all paths. It is not handled well by Register Allocator.
3026       Node* unique_in = n->in(1);
3027       assert(unique_in != NULL, "");
3028       uint cnt = n->req();
3029       for (uint i = 2; i < cnt; i++) {
3030         Node* m = n->in(i);
3031         assert(m != NULL, "");
3032         if (unique_in != m)
3033           unique_in = NULL;
3034       }
3035       if (unique_in != NULL) {
3036         n->subsume_by(unique_in, this);
3037       }
3038     }
3039     break;
3040 
3041 #endif
3042 
3043 #ifdef ASSERT
3044   case Op_CastII:
3045     // Verify that all range check dependent CastII nodes were removed.
3046     if (n->isa_CastII()->has_range_check()) {
3047       n->dump(3);
3048       assert(false, "Range check dependent CastII node was not removed");
3049     }
3050     break;
3051 #endif
3052 
3053   case Op_ModI:
3054     if (UseDivMod) {
3055       // Check if a%b and a/b both exist
3056       Node* d = n->find_similar(Op_DivI);
3057       if (d) {
3058         // Replace them with a fused divmod if supported
3059         if (Matcher::has_match_rule(Op_DivModI)) {
3060           DivModINode* divmod = DivModINode::make(this, n);
3061           d->subsume_by(divmod->div_proj(), this);
3062           n->subsume_by(divmod->mod_proj(), this);
3063         } else {
3064           // replace a%b with a-((a/b)*b)
3065           Node* mult = new (this) MulINode(d, d->in(2));
3066           Node* sub  = new (this) SubINode(d->in(1), mult);
3067           n->subsume_by(sub, this);
3068         }
3069       }
3070     }
3071     break;
3072 
3073   case Op_ModL:
3074     if (UseDivMod) {
3075       // Check if a%b and a/b both exist
3076       Node* d = n->find_similar(Op_DivL);
3077       if (d) {
3078         // Replace them with a fused divmod if supported
3079         if (Matcher::has_match_rule(Op_DivModL)) {
3080           DivModLNode* divmod = DivModLNode::make(this, n);
3081           d->subsume_by(divmod->div_proj(), this);
3082           n->subsume_by(divmod->mod_proj(), this);
3083         } else {
3084           // replace a%b with a-((a/b)*b)
3085           Node* mult = new (this) MulLNode(d, d->in(2));
3086           Node* sub  = new (this) SubLNode(d->in(1), mult);
3087           n->subsume_by(sub, this);
3088         }
3089       }
3090     }
3091     break;
3092 
3093   case Op_LoadVector:
3094   case Op_StoreVector:
3095     break;
3096 
3097   case Op_PackB:
3098   case Op_PackS:
3099   case Op_PackI:
3100   case Op_PackF:
3101   case Op_PackL:
3102   case Op_PackD:
3103     if (n->req()-1 > 2) {
3104       // Replace many operand PackNodes with a binary tree for matching
3105       PackNode* p = (PackNode*) n;
3106       Node* btp = p->binary_tree_pack(this, 1, n->req());
3107       n->subsume_by(btp, this);
3108     }
3109     break;
3110   case Op_Loop:
3111   case Op_CountedLoop:
3112     if (n->as_Loop()->is_inner_loop()) {
3113       frc.inc_inner_loop_count();
3114     }
3115     break;
3116   case Op_LShiftI:
3117   case Op_RShiftI:
3118   case Op_URShiftI:
3119   case Op_LShiftL:
3120   case Op_RShiftL:
3121   case Op_URShiftL:
3122     if (Matcher::need_masked_shift_count) {
3123       // The cpu's shift instructions don't restrict the count to the
3124       // lower 5/6 bits. We need to do the masking ourselves.
3125       Node* in2 = n->in(2);
3126       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3127       const TypeInt* t = in2->find_int_type();
3128       if (t != NULL && t->is_con()) {
3129         juint shift = t->get_con();
3130         if (shift > mask) { // Unsigned cmp
3131           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
3132         }
3133       } else {
3134         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3135           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
3136           n->set_req(2, shift);
3137         }
3138       }
3139       if (in2->outcnt() == 0) { // Remove dead node
3140         in2->disconnect_inputs(NULL, this);
3141       }
3142     }
3143     break;
3144   case Op_MemBarStoreStore:
3145   case Op_MemBarRelease:
3146     // Break the link with AllocateNode: it is no longer useful and
3147     // confuses register allocation.
3148     if (n->req() > MemBarNode::Precedent) {
3149       n->set_req(MemBarNode::Precedent, top());
3150     }
3151     break;
3152   default:
3153     assert( !n->is_Call(), "" );
3154     assert( !n->is_Mem(), "" );
3155     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3156     break;
3157   }
3158 
3159   // Collect CFG split points
3160   if (n->is_MultiBranch())
3161     frc._tests.push(n);
3162 }
3163 
3164 //------------------------------final_graph_reshaping_walk---------------------
3165 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3166 // requires that the walk visits a node's inputs before visiting the node.
3167 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3168   ResourceArea *area = Thread::current()->resource_area();
3169   Unique_Node_List sfpt(area);
3170 
3171   frc._visited.set(root->_idx); // first, mark node as visited
3172   uint cnt = root->req();
3173   Node *n = root;
3174   uint  i = 0;
3175   while (true) {
3176     if (i < cnt) {
3177       // Place all non-visited non-null inputs onto stack
3178       Node* m = n->in(i);
3179       ++i;
3180       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3181         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3182           // compute worst case interpreter size in case of a deoptimization
3183           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3184 
3185           sfpt.push(m);
3186         }
3187         cnt = m->req();
3188         nstack.push(n, i); // put on stack parent and next input's index
3189         n = m;
3190         i = 0;
3191       }
3192     } else {
3193       // Now do post-visit work
3194       final_graph_reshaping_impl( n, frc );
3195       if (nstack.is_empty())
3196         break;             // finished
3197       n = nstack.node();   // Get node from stack
3198       cnt = n->req();
3199       i = nstack.index();
3200       nstack.pop();        // Shift to the next node on stack
3201     }
3202   }
3203 
3204   // Skip next transformation if compressed oops are not used.
3205   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3206       (!UseCompressedOops && !UseCompressedClassPointers))
3207     return;
3208 
3209   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3210   // It could be done for an uncommon traps or any safepoints/calls
3211   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3212   while (sfpt.size() > 0) {
3213     n = sfpt.pop();
3214     JVMState *jvms = n->as_SafePoint()->jvms();
3215     assert(jvms != NULL, "sanity");
3216     int start = jvms->debug_start();
3217     int end   = n->req();
3218     bool is_uncommon = (n->is_CallStaticJava() &&
3219                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3220     for (int j = start; j < end; j++) {
3221       Node* in = n->in(j);
3222       if (in->is_DecodeNarrowPtr()) {
3223         bool safe_to_skip = true;
3224         if (!is_uncommon ) {
3225           // Is it safe to skip?
3226           for (uint i = 0; i < in->outcnt(); i++) {
3227             Node* u = in->raw_out(i);
3228             if (!u->is_SafePoint() ||
3229                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3230               safe_to_skip = false;
3231             }
3232           }
3233         }
3234         if (safe_to_skip) {
3235           n->set_req(j, in->in(1));
3236         }
3237         if (in->outcnt() == 0) {
3238           in->disconnect_inputs(NULL, this);
3239         }
3240       }
3241     }
3242   }
3243 }
3244 
3245 //------------------------------final_graph_reshaping--------------------------
3246 // Final Graph Reshaping.
3247 //
3248 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3249 //     and not commoned up and forced early.  Must come after regular
3250 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3251 //     inputs to Loop Phis; these will be split by the allocator anyways.
3252 //     Remove Opaque nodes.
3253 // (2) Move last-uses by commutative operations to the left input to encourage
3254 //     Intel update-in-place two-address operations and better register usage
3255 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3256 //     calls canonicalizing them back.
3257 // (3) Count the number of double-precision FP ops, single-precision FP ops
3258 //     and call sites.  On Intel, we can get correct rounding either by
3259 //     forcing singles to memory (requires extra stores and loads after each
3260 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3261 //     clearing the mode bit around call sites).  The mode bit is only used
3262 //     if the relative frequency of single FP ops to calls is low enough.
3263 //     This is a key transform for SPEC mpeg_audio.
3264 // (4) Detect infinite loops; blobs of code reachable from above but not
3265 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3266 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3267 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3268 //     Detection is by looking for IfNodes where only 1 projection is
3269 //     reachable from below or CatchNodes missing some targets.
3270 // (5) Assert for insane oop offsets in debug mode.
3271 
3272 bool Compile::final_graph_reshaping() {
3273   // an infinite loop may have been eliminated by the optimizer,
3274   // in which case the graph will be empty.
3275   if (root()->req() == 1) {
3276     record_method_not_compilable("trivial infinite loop");
3277     return true;
3278   }
3279 
3280   // Expensive nodes have their control input set to prevent the GVN
3281   // from freely commoning them. There's no GVN beyond this point so
3282   // no need to keep the control input. We want the expensive nodes to
3283   // be freely moved to the least frequent code path by gcm.
3284   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3285   for (int i = 0; i < expensive_count(); i++) {
3286     _expensive_nodes->at(i)->set_req(0, NULL);
3287   }
3288 
3289   Final_Reshape_Counts frc;
3290 
3291   // Visit everybody reachable!
3292   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3293   Node_Stack nstack(live_nodes() >> 1);
3294   final_graph_reshaping_walk(nstack, root(), frc);
3295 
3296   // Check for unreachable (from below) code (i.e., infinite loops).
3297   for( uint i = 0; i < frc._tests.size(); i++ ) {
3298     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3299     // Get number of CFG targets.
3300     // Note that PCTables include exception targets after calls.
3301     uint required_outcnt = n->required_outcnt();
3302     if (n->outcnt() != required_outcnt) {
3303       // Check for a few special cases.  Rethrow Nodes never take the
3304       // 'fall-thru' path, so expected kids is 1 less.
3305       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3306         if (n->in(0)->in(0)->is_Call()) {
3307           CallNode *call = n->in(0)->in(0)->as_Call();
3308           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3309             required_outcnt--;      // Rethrow always has 1 less kid
3310           } else if (call->req() > TypeFunc::Parms &&
3311                      call->is_CallDynamicJava()) {
3312             // Check for null receiver. In such case, the optimizer has
3313             // detected that the virtual call will always result in a null
3314             // pointer exception. The fall-through projection of this CatchNode
3315             // will not be populated.
3316             Node *arg0 = call->in(TypeFunc::Parms);
3317             if (arg0->is_Type() &&
3318                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3319               required_outcnt--;
3320             }
3321           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3322                      call->req() > TypeFunc::Parms+1 &&
3323                      call->is_CallStaticJava()) {
3324             // Check for negative array length. In such case, the optimizer has
3325             // detected that the allocation attempt will always result in an
3326             // exception. There is no fall-through projection of this CatchNode .
3327             Node *arg1 = call->in(TypeFunc::Parms+1);
3328             if (arg1->is_Type() &&
3329                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3330               required_outcnt--;
3331             }
3332           }
3333         }
3334       }
3335       // Recheck with a better notion of 'required_outcnt'
3336       if (n->outcnt() != required_outcnt) {
3337         record_method_not_compilable("malformed control flow");
3338         return true;            // Not all targets reachable!
3339       }
3340     }
3341     // Check that I actually visited all kids.  Unreached kids
3342     // must be infinite loops.
3343     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3344       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3345         record_method_not_compilable("infinite loop");
3346         return true;            // Found unvisited kid; must be unreach
3347       }
3348   }
3349 
3350   // If original bytecodes contained a mixture of floats and doubles
3351   // check if the optimizer has made it homogenous, item (3).
3352   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3353       frc.get_float_count() > 32 &&
3354       frc.get_double_count() == 0 &&
3355       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3356     set_24_bit_selection_and_mode( false,  true );
3357   }
3358 
3359   set_java_calls(frc.get_java_call_count());
3360   set_inner_loops(frc.get_inner_loop_count());
3361 
3362   // No infinite loops, no reason to bail out.
3363   return false;
3364 }
3365 
3366 //-----------------------------too_many_traps----------------------------------
3367 // Report if there are too many traps at the current method and bci.
3368 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3369 bool Compile::too_many_traps(ciMethod* method,
3370                              int bci,
3371                              Deoptimization::DeoptReason reason) {
3372   ciMethodData* md = method->method_data();
3373   if (md->is_empty()) {
3374     // Assume the trap has not occurred, or that it occurred only
3375     // because of a transient condition during start-up in the interpreter.
3376     return false;
3377   }
3378   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3379   if (md->has_trap_at(bci, m, reason) != 0) {
3380     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3381     // Also, if there are multiple reasons, or if there is no per-BCI record,
3382     // assume the worst.
3383     if (log())
3384       log()->elem("observe trap='%s' count='%d'",
3385                   Deoptimization::trap_reason_name(reason),
3386                   md->trap_count(reason));
3387     return true;
3388   } else {
3389     // Ignore method/bci and see if there have been too many globally.
3390     return too_many_traps(reason, md);
3391   }
3392 }
3393 
3394 // Less-accurate variant which does not require a method and bci.
3395 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3396                              ciMethodData* logmd) {
3397   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3398     // Too many traps globally.
3399     // Note that we use cumulative trap_count, not just md->trap_count.
3400     if (log()) {
3401       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3402       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3403                   Deoptimization::trap_reason_name(reason),
3404                   mcount, trap_count(reason));
3405     }
3406     return true;
3407   } else {
3408     // The coast is clear.
3409     return false;
3410   }
3411 }
3412 
3413 //--------------------------too_many_recompiles--------------------------------
3414 // Report if there are too many recompiles at the current method and bci.
3415 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3416 // Is not eager to return true, since this will cause the compiler to use
3417 // Action_none for a trap point, to avoid too many recompilations.
3418 bool Compile::too_many_recompiles(ciMethod* method,
3419                                   int bci,
3420                                   Deoptimization::DeoptReason reason) {
3421   ciMethodData* md = method->method_data();
3422   if (md->is_empty()) {
3423     // Assume the trap has not occurred, or that it occurred only
3424     // because of a transient condition during start-up in the interpreter.
3425     return false;
3426   }
3427   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3428   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3429   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3430   Deoptimization::DeoptReason per_bc_reason
3431     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3432   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3433   if ((per_bc_reason == Deoptimization::Reason_none
3434        || md->has_trap_at(bci, m, reason) != 0)
3435       // The trap frequency measure we care about is the recompile count:
3436       && md->trap_recompiled_at(bci, m)
3437       && md->overflow_recompile_count() >= bc_cutoff) {
3438     // Do not emit a trap here if it has already caused recompilations.
3439     // Also, if there are multiple reasons, or if there is no per-BCI record,
3440     // assume the worst.
3441     if (log())
3442       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3443                   Deoptimization::trap_reason_name(reason),
3444                   md->trap_count(reason),
3445                   md->overflow_recompile_count());
3446     return true;
3447   } else if (trap_count(reason) != 0
3448              && decompile_count() >= m_cutoff) {
3449     // Too many recompiles globally, and we have seen this sort of trap.
3450     // Use cumulative decompile_count, not just md->decompile_count.
3451     if (log())
3452       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3453                   Deoptimization::trap_reason_name(reason),
3454                   md->trap_count(reason), trap_count(reason),
3455                   md->decompile_count(), decompile_count());
3456     return true;
3457   } else {
3458     // The coast is clear.
3459     return false;
3460   }
3461 }
3462 
3463 // Compute when not to trap. Used by matching trap based nodes and
3464 // NullCheck optimization.
3465 void Compile::set_allowed_deopt_reasons() {
3466   _allowed_reasons = 0;
3467   if (is_method_compilation()) {
3468     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3469       assert(rs < BitsPerInt, "recode bit map");
3470       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3471         _allowed_reasons |= nth_bit(rs);
3472       }
3473     }
3474   }
3475 }
3476 
3477 #ifndef PRODUCT
3478 //------------------------------verify_graph_edges---------------------------
3479 // Walk the Graph and verify that there is a one-to-one correspondence
3480 // between Use-Def edges and Def-Use edges in the graph.
3481 void Compile::verify_graph_edges(bool no_dead_code) {
3482   if (VerifyGraphEdges) {
3483     ResourceArea *area = Thread::current()->resource_area();
3484     Unique_Node_List visited(area);
3485     // Call recursive graph walk to check edges
3486     _root->verify_edges(visited);
3487     if (no_dead_code) {
3488       // Now make sure that no visited node is used by an unvisited node.
3489       bool dead_nodes = false;
3490       Unique_Node_List checked(area);
3491       while (visited.size() > 0) {
3492         Node* n = visited.pop();
3493         checked.push(n);
3494         for (uint i = 0; i < n->outcnt(); i++) {
3495           Node* use = n->raw_out(i);
3496           if (checked.member(use))  continue;  // already checked
3497           if (visited.member(use))  continue;  // already in the graph
3498           if (use->is_Con())        continue;  // a dead ConNode is OK
3499           // At this point, we have found a dead node which is DU-reachable.
3500           if (!dead_nodes) {
3501             tty->print_cr("*** Dead nodes reachable via DU edges:");
3502             dead_nodes = true;
3503           }
3504           use->dump(2);
3505           tty->print_cr("---");
3506           checked.push(use);  // No repeats; pretend it is now checked.
3507         }
3508       }
3509       assert(!dead_nodes, "using nodes must be reachable from root");
3510     }
3511   }
3512 }
3513 
3514 // Verify GC barriers consistency
3515 // Currently supported:
3516 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3517 void Compile::verify_barriers() {
3518   if (UseG1GC) {
3519     // Verify G1 pre-barriers
3520     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3521 
3522     ResourceArea *area = Thread::current()->resource_area();
3523     Unique_Node_List visited(area);
3524     Node_List worklist(area);
3525     // We're going to walk control flow backwards starting from the Root
3526     worklist.push(_root);
3527     while (worklist.size() > 0) {
3528       Node* x = worklist.pop();
3529       if (x == NULL || x == top()) continue;
3530       if (visited.member(x)) {
3531         continue;
3532       } else {
3533         visited.push(x);
3534       }
3535 
3536       if (x->is_Region()) {
3537         for (uint i = 1; i < x->req(); i++) {
3538           worklist.push(x->in(i));
3539         }
3540       } else {
3541         worklist.push(x->in(0));
3542         // We are looking for the pattern:
3543         //                            /->ThreadLocal
3544         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3545         //              \->ConI(0)
3546         // We want to verify that the If and the LoadB have the same control
3547         // See GraphKit::g1_write_barrier_pre()
3548         if (x->is_If()) {
3549           IfNode *iff = x->as_If();
3550           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3551             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3552             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3553                 && cmp->in(1)->is_Load()) {
3554               LoadNode* load = cmp->in(1)->as_Load();
3555               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3556                   && load->in(2)->in(3)->is_Con()
3557                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3558 
3559                 Node* if_ctrl = iff->in(0);
3560                 Node* load_ctrl = load->in(0);
3561 
3562                 if (if_ctrl != load_ctrl) {
3563                   // Skip possible CProj->NeverBranch in infinite loops
3564                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3565                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3566                     if_ctrl = if_ctrl->in(0)->in(0);
3567                   }
3568                 }
3569                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3570               }
3571             }
3572           }
3573         }
3574       }
3575     }
3576   }
3577 }
3578 
3579 #endif
3580 
3581 // The Compile object keeps track of failure reasons separately from the ciEnv.
3582 // This is required because there is not quite a 1-1 relation between the
3583 // ciEnv and its compilation task and the Compile object.  Note that one
3584 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3585 // to backtrack and retry without subsuming loads.  Other than this backtracking
3586 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3587 // by the logic in C2Compiler.
3588 void Compile::record_failure(const char* reason) {
3589   if (log() != NULL) {
3590     log()->elem("failure reason='%s' phase='compile'", reason);
3591   }
3592   if (_failure_reason == NULL) {
3593     // Record the first failure reason.
3594     _failure_reason = reason;
3595   }
3596 
3597   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3598     C->print_method(PHASE_FAILURE);
3599   }
3600   _root = NULL;  // flush the graph, too
3601 }
3602 
3603 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3604   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3605     _phase_name(name), _dolog(dolog)
3606 {
3607   if (dolog) {
3608     C = Compile::current();
3609     _log = C->log();
3610   } else {
3611     C = NULL;
3612     _log = NULL;
3613   }
3614   if (_log != NULL) {
3615     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3616     _log->stamp();
3617     _log->end_head();
3618   }
3619 }
3620 
3621 Compile::TracePhase::~TracePhase() {
3622 
3623   C = Compile::current();
3624   if (_dolog) {
3625     _log = C->log();
3626   } else {
3627     _log = NULL;
3628   }
3629 
3630 #ifdef ASSERT
3631   if (PrintIdealNodeCount) {
3632     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3633                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3634   }
3635 
3636   if (VerifyIdealNodeCount) {
3637     Compile::current()->print_missing_nodes();
3638   }
3639 #endif
3640 
3641   if (_log != NULL) {
3642     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3643   }
3644 }
3645 
3646 //=============================================================================
3647 // Two Constant's are equal when the type and the value are equal.
3648 bool Compile::Constant::operator==(const Constant& other) {
3649   if (type()          != other.type()         )  return false;
3650   if (can_be_reused() != other.can_be_reused())  return false;
3651   // For floating point values we compare the bit pattern.
3652   switch (type()) {
3653   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3654   case T_LONG:
3655   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3656   case T_OBJECT:
3657   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3658   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3659   case T_METADATA: return (_v._metadata == other._v._metadata);
3660   default: ShouldNotReachHere();
3661   }
3662   return false;
3663 }
3664 
3665 static int type_to_size_in_bytes(BasicType t) {
3666   switch (t) {
3667   case T_LONG:    return sizeof(jlong  );
3668   case T_FLOAT:   return sizeof(jfloat );
3669   case T_DOUBLE:  return sizeof(jdouble);
3670   case T_METADATA: return sizeof(Metadata*);
3671     // We use T_VOID as marker for jump-table entries (labels) which
3672     // need an internal word relocation.
3673   case T_VOID:
3674   case T_ADDRESS:
3675   case T_OBJECT:  return sizeof(jobject);
3676   }
3677 
3678   ShouldNotReachHere();
3679   return -1;
3680 }
3681 
3682 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3683   // sort descending
3684   if (a->freq() > b->freq())  return -1;
3685   if (a->freq() < b->freq())  return  1;
3686   return 0;
3687 }
3688 
3689 void Compile::ConstantTable::calculate_offsets_and_size() {
3690   // First, sort the array by frequencies.
3691   _constants.sort(qsort_comparator);
3692 
3693 #ifdef ASSERT
3694   // Make sure all jump-table entries were sorted to the end of the
3695   // array (they have a negative frequency).
3696   bool found_void = false;
3697   for (int i = 0; i < _constants.length(); i++) {
3698     Constant con = _constants.at(i);
3699     if (con.type() == T_VOID)
3700       found_void = true;  // jump-tables
3701     else
3702       assert(!found_void, "wrong sorting");
3703   }
3704 #endif
3705 
3706   int offset = 0;
3707   for (int i = 0; i < _constants.length(); i++) {
3708     Constant* con = _constants.adr_at(i);
3709 
3710     // Align offset for type.
3711     int typesize = type_to_size_in_bytes(con->type());
3712     offset = align_size_up(offset, typesize);
3713     con->set_offset(offset);   // set constant's offset
3714 
3715     if (con->type() == T_VOID) {
3716       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3717       offset = offset + typesize * n->outcnt();  // expand jump-table
3718     } else {
3719       offset = offset + typesize;
3720     }
3721   }
3722 
3723   // Align size up to the next section start (which is insts; see
3724   // CodeBuffer::align_at_start).
3725   assert(_size == -1, "already set?");
3726   _size = align_size_up(offset, CodeEntryAlignment);
3727 }
3728 
3729 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3730   MacroAssembler _masm(&cb);
3731   for (int i = 0; i < _constants.length(); i++) {
3732     Constant con = _constants.at(i);
3733     address constant_addr = NULL;
3734     switch (con.type()) {
3735     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3736     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3737     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3738     case T_OBJECT: {
3739       jobject obj = con.get_jobject();
3740       int oop_index = _masm.oop_recorder()->find_index(obj);
3741       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3742       break;
3743     }
3744     case T_ADDRESS: {
3745       address addr = (address) con.get_jobject();
3746       constant_addr = _masm.address_constant(addr);
3747       break;
3748     }
3749     // We use T_VOID as marker for jump-table entries (labels) which
3750     // need an internal word relocation.
3751     case T_VOID: {
3752       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3753       // Fill the jump-table with a dummy word.  The real value is
3754       // filled in later in fill_jump_table.
3755       address dummy = (address) n;
3756       constant_addr = _masm.address_constant(dummy);
3757       // Expand jump-table
3758       for (uint i = 1; i < n->outcnt(); i++) {
3759         address temp_addr = _masm.address_constant(dummy + i);
3760         assert(temp_addr, "consts section too small");
3761       }
3762       break;
3763     }
3764     case T_METADATA: {
3765       Metadata* obj = con.get_metadata();
3766       int metadata_index = _masm.oop_recorder()->find_index(obj);
3767       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3768       break;
3769     }
3770     default: ShouldNotReachHere();
3771     }
3772     assert(constant_addr, "consts section too small");
3773     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3774             err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
3775   }
3776 }
3777 
3778 int Compile::ConstantTable::find_offset(Constant& con) const {
3779   int idx = _constants.find(con);
3780   assert(idx != -1, "constant must be in constant table");
3781   int offset = _constants.at(idx).offset();
3782   assert(offset != -1, "constant table not emitted yet?");
3783   return offset;
3784 }
3785 
3786 void Compile::ConstantTable::add(Constant& con) {
3787   if (con.can_be_reused()) {
3788     int idx = _constants.find(con);
3789     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3790       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3791       return;
3792     }
3793   }
3794   (void) _constants.append(con);
3795 }
3796 
3797 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3798   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3799   Constant con(type, value, b->_freq);
3800   add(con);
3801   return con;
3802 }
3803 
3804 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3805   Constant con(metadata);
3806   add(con);
3807   return con;
3808 }
3809 
3810 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3811   jvalue value;
3812   BasicType type = oper->type()->basic_type();
3813   switch (type) {
3814   case T_LONG:    value.j = oper->constantL(); break;
3815   case T_FLOAT:   value.f = oper->constantF(); break;
3816   case T_DOUBLE:  value.d = oper->constantD(); break;
3817   case T_OBJECT:
3818   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3819   case T_METADATA: return add((Metadata*)oper->constant()); break;
3820   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3821   }
3822   return add(n, type, value);
3823 }
3824 
3825 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3826   jvalue value;
3827   // We can use the node pointer here to identify the right jump-table
3828   // as this method is called from Compile::Fill_buffer right before
3829   // the MachNodes are emitted and the jump-table is filled (means the
3830   // MachNode pointers do not change anymore).
3831   value.l = (jobject) n;
3832   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3833   add(con);
3834   return con;
3835 }
3836 
3837 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3838   // If called from Compile::scratch_emit_size do nothing.
3839   if (Compile::current()->in_scratch_emit_size())  return;
3840 
3841   assert(labels.is_nonempty(), "must be");
3842   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3843 
3844   // Since MachConstantNode::constant_offset() also contains
3845   // table_base_offset() we need to subtract the table_base_offset()
3846   // to get the plain offset into the constant table.
3847   int offset = n->constant_offset() - table_base_offset();
3848 
3849   MacroAssembler _masm(&cb);
3850   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3851 
3852   for (uint i = 0; i < n->outcnt(); i++) {
3853     address* constant_addr = &jump_table_base[i];
3854     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
3855     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3856     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3857   }
3858 }
3859 
3860 void Compile::dump_inlining() {
3861   if (print_inlining() || print_intrinsics()) {
3862     // Print inlining message for candidates that we couldn't inline
3863     // for lack of space or non constant receiver
3864     for (int i = 0; i < _late_inlines.length(); i++) {
3865       CallGenerator* cg = _late_inlines.at(i);
3866       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
3867     }
3868     Unique_Node_List useful;
3869     useful.push(root());
3870     for (uint next = 0; next < useful.size(); ++next) {
3871       Node* n  = useful.at(next);
3872       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
3873         CallNode* call = n->as_Call();
3874         CallGenerator* cg = call->generator();
3875         cg->print_inlining_late("receiver not constant");
3876       }
3877       uint max = n->len();
3878       for ( uint i = 0; i < max; ++i ) {
3879         Node *m = n->in(i);
3880         if ( m == NULL ) continue;
3881         useful.push(m);
3882       }
3883     }
3884     for (int i = 0; i < _print_inlining_list->length(); i++) {
3885       tty->print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
3886     }
3887   }
3888 }
3889 
3890 // Dump inlining replay data to the stream.
3891 // Don't change thread state and acquire any locks.
3892 void Compile::dump_inline_data(outputStream* out) {
3893   InlineTree* inl_tree = ilt();
3894   if (inl_tree != NULL) {
3895     out->print(" inline %d", inl_tree->count());
3896     inl_tree->dump_replay_data(out);
3897   }
3898 }
3899 
3900 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3901   if (n1->Opcode() < n2->Opcode())      return -1;
3902   else if (n1->Opcode() > n2->Opcode()) return 1;
3903 
3904   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3905   for (uint i = 1; i < n1->req(); i++) {
3906     if (n1->in(i) < n2->in(i))      return -1;
3907     else if (n1->in(i) > n2->in(i)) return 1;
3908   }
3909 
3910   return 0;
3911 }
3912 
3913 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3914   Node* n1 = *n1p;
3915   Node* n2 = *n2p;
3916 
3917   return cmp_expensive_nodes(n1, n2);
3918 }
3919 
3920 void Compile::sort_expensive_nodes() {
3921   if (!expensive_nodes_sorted()) {
3922     _expensive_nodes->sort(cmp_expensive_nodes);
3923   }
3924 }
3925 
3926 bool Compile::expensive_nodes_sorted() const {
3927   for (int i = 1; i < _expensive_nodes->length(); i++) {
3928     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3929       return false;
3930     }
3931   }
3932   return true;
3933 }
3934 
3935 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3936   if (_expensive_nodes->length() == 0) {
3937     return false;
3938   }
3939 
3940   assert(OptimizeExpensiveOps, "optimization off?");
3941 
3942   // Take this opportunity to remove dead nodes from the list
3943   int j = 0;
3944   for (int i = 0; i < _expensive_nodes->length(); i++) {
3945     Node* n = _expensive_nodes->at(i);
3946     if (!n->is_unreachable(igvn)) {
3947       assert(n->is_expensive(), "should be expensive");
3948       _expensive_nodes->at_put(j, n);
3949       j++;
3950     }
3951   }
3952   _expensive_nodes->trunc_to(j);
3953 
3954   // Then sort the list so that similar nodes are next to each other
3955   // and check for at least two nodes of identical kind with same data
3956   // inputs.
3957   sort_expensive_nodes();
3958 
3959   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
3960     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
3961       return true;
3962     }
3963   }
3964 
3965   return false;
3966 }
3967 
3968 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
3969   if (_expensive_nodes->length() == 0) {
3970     return;
3971   }
3972 
3973   assert(OptimizeExpensiveOps, "optimization off?");
3974 
3975   // Sort to bring similar nodes next to each other and clear the
3976   // control input of nodes for which there's only a single copy.
3977   sort_expensive_nodes();
3978 
3979   int j = 0;
3980   int identical = 0;
3981   int i = 0;
3982   for (; i < _expensive_nodes->length()-1; i++) {
3983     assert(j <= i, "can't write beyond current index");
3984     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
3985       identical++;
3986       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3987       continue;
3988     }
3989     if (identical > 0) {
3990       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3991       identical = 0;
3992     } else {
3993       Node* n = _expensive_nodes->at(i);
3994       igvn.hash_delete(n);
3995       n->set_req(0, NULL);
3996       igvn.hash_insert(n);
3997     }
3998   }
3999   if (identical > 0) {
4000     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4001   } else if (_expensive_nodes->length() >= 1) {
4002     Node* n = _expensive_nodes->at(i);
4003     igvn.hash_delete(n);
4004     n->set_req(0, NULL);
4005     igvn.hash_insert(n);
4006   }
4007   _expensive_nodes->trunc_to(j);
4008 }
4009 
4010 void Compile::add_expensive_node(Node * n) {
4011   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4012   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4013   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4014   if (OptimizeExpensiveOps) {
4015     _expensive_nodes->append(n);
4016   } else {
4017     // Clear control input and let IGVN optimize expensive nodes if
4018     // OptimizeExpensiveOps is off.
4019     n->set_req(0, NULL);
4020   }
4021 }
4022 
4023 /**
4024  * Remove the speculative part of types and clean up the graph
4025  */
4026 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4027   if (UseTypeSpeculation) {
4028     Unique_Node_List worklist;
4029     worklist.push(root());
4030     int modified = 0;
4031     // Go over all type nodes that carry a speculative type, drop the
4032     // speculative part of the type and enqueue the node for an igvn
4033     // which may optimize it out.
4034     for (uint next = 0; next < worklist.size(); ++next) {
4035       Node *n  = worklist.at(next);
4036       if (n->is_Type()) {
4037         TypeNode* tn = n->as_Type();
4038         const Type* t = tn->type();
4039         const Type* t_no_spec = t->remove_speculative();
4040         if (t_no_spec != t) {
4041           bool in_hash = igvn.hash_delete(n);
4042           assert(in_hash, "node should be in igvn hash table");
4043           tn->set_type(t_no_spec);
4044           igvn.hash_insert(n);
4045           igvn._worklist.push(n); // give it a chance to go away
4046           modified++;
4047         }
4048       }
4049       uint max = n->len();
4050       for( uint i = 0; i < max; ++i ) {
4051         Node *m = n->in(i);
4052         if (not_a_node(m))  continue;
4053         worklist.push(m);
4054       }
4055     }
4056     // Drop the speculative part of all types in the igvn's type table
4057     igvn.remove_speculative_types();
4058     if (modified > 0) {
4059       igvn.optimize();
4060     }
4061 #ifdef ASSERT
4062     // Verify that after the IGVN is over no speculative type has resurfaced
4063     worklist.clear();
4064     worklist.push(root());
4065     for (uint next = 0; next < worklist.size(); ++next) {
4066       Node *n  = worklist.at(next);
4067       const Type* t = igvn.type_or_null(n);
4068       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4069       if (n->is_Type()) {
4070         t = n->as_Type()->type();
4071         assert(t == t->remove_speculative(), "no more speculative types");
4072       }
4073       uint max = n->len();
4074       for( uint i = 0; i < max; ++i ) {
4075         Node *m = n->in(i);
4076         if (not_a_node(m))  continue;
4077         worklist.push(m);
4078       }
4079     }
4080     igvn.check_no_speculative_types();
4081 #endif
4082   }
4083 }
4084 
4085 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4086 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4087   if (ctrl != NULL) {
4088     // Express control dependency by a CastII node with a narrow type.
4089     value = new (phase->C) CastIINode(value, itype, false, true /* range check dependency */);
4090     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4091     // node from floating above the range check during loop optimizations. Otherwise, the
4092     // ConvI2L node may be eliminated independently of the range check, causing the data path
4093     // to become TOP while the control path is still there (although it's unreachable).
4094     value->set_req(0, ctrl);
4095     // Save CastII node to remove it after loop optimizations.
4096     phase->C->add_range_check_cast(value);
4097     value = phase->transform(value);
4098   }
4099   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4100   return phase->transform(new (phase->C) ConvI2LNode(value, ltype));
4101 }
4102 
4103 // Auxiliary method to support randomized stressing/fuzzing.
4104 //
4105 // This method can be called the arbitrary number of times, with current count
4106 // as the argument. The logic allows selecting a single candidate from the
4107 // running list of candidates as follows:
4108 //    int count = 0;
4109 //    Cand* selected = null;
4110 //    while(cand = cand->next()) {
4111 //      if (randomized_select(++count)) {
4112 //        selected = cand;
4113 //      }
4114 //    }
4115 //
4116 // Including count equalizes the chances any candidate is "selected".
4117 // This is useful when we don't have the complete list of candidates to choose
4118 // from uniformly. In this case, we need to adjust the randomicity of the
4119 // selection, or else we will end up biasing the selection towards the latter
4120 // candidates.
4121 //
4122 // Quick back-envelope calculation shows that for the list of n candidates
4123 // the equal probability for the candidate to persist as "best" can be
4124 // achieved by replacing it with "next" k-th candidate with the probability
4125 // of 1/k. It can be easily shown that by the end of the run, the
4126 // probability for any candidate is converged to 1/n, thus giving the
4127 // uniform distribution among all the candidates.
4128 //
4129 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4130 #define RANDOMIZED_DOMAIN_POW 29
4131 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4132 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4133 bool Compile::randomized_select(int count) {
4134   assert(count > 0, "only positive");
4135   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4136 }