1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "compiler/oopMap.hpp"
  35 #if INCLUDE_JFR
  36 #include "jfr/jfrEvents.hpp"
  37 #endif
  38 #include "opto/addnode.hpp"
  39 #include "opto/block.hpp"
  40 #include "opto/c2compiler.hpp"
  41 #include "opto/callGenerator.hpp"
  42 #include "opto/callnode.hpp"
  43 #include "opto/cfgnode.hpp"
  44 #include "opto/chaitin.hpp"
  45 #include "opto/compile.hpp"
  46 #include "opto/connode.hpp"
  47 #include "opto/divnode.hpp"
  48 #include "opto/escape.hpp"
  49 #include "opto/idealGraphPrinter.hpp"
  50 #include "opto/loopnode.hpp"
  51 #include "opto/machnode.hpp"
  52 #include "opto/macro.hpp"
  53 #include "opto/matcher.hpp"
  54 #include "opto/mathexactnode.hpp"
  55 #include "opto/memnode.hpp"
  56 #include "opto/mulnode.hpp"
  57 #include "opto/node.hpp"
  58 #include "opto/opcodes.hpp"
  59 #include "opto/output.hpp"
  60 #include "opto/parse.hpp"
  61 #include "opto/phaseX.hpp"
  62 #include "opto/rootnode.hpp"
  63 #include "opto/runtime.hpp"
  64 #include "opto/stringopts.hpp"
  65 #include "opto/type.hpp"
  66 #include "opto/vectornode.hpp"
  67 #include "runtime/arguments.hpp"
  68 #include "runtime/signature.hpp"
  69 #include "runtime/stubRoutines.hpp"
  70 #include "runtime/timer.hpp"
  71 #include "utilities/copy.hpp"
  72 #if defined AD_MD_HPP
  73 # include AD_MD_HPP
  74 #elif defined TARGET_ARCH_MODEL_x86_32
  75 # include "adfiles/ad_x86_32.hpp"
  76 #elif defined TARGET_ARCH_MODEL_x86_64
  77 # include "adfiles/ad_x86_64.hpp"
  78 #elif defined TARGET_ARCH_MODEL_sparc
  79 # include "adfiles/ad_sparc.hpp"
  80 #elif defined TARGET_ARCH_MODEL_zero
  81 # include "adfiles/ad_zero.hpp"
  82 #elif defined TARGET_ARCH_MODEL_ppc_64
  83 # include "adfiles/ad_ppc_64.hpp"
  84 #endif
  85 
  86 // -------------------- Compile::mach_constant_base_node -----------------------
  87 // Constant table base node singleton.
  88 MachConstantBaseNode* Compile::mach_constant_base_node() {
  89   if (_mach_constant_base_node == NULL) {
  90     _mach_constant_base_node = new (C) MachConstantBaseNode();
  91     _mach_constant_base_node->add_req(C->root());
  92   }
  93   return _mach_constant_base_node;
  94 }
  95 
  96 
  97 /// Support for intrinsics.
  98 
  99 // Return the index at which m must be inserted (or already exists).
 100 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 101 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 102 #ifdef ASSERT
 103   for (int i = 1; i < _intrinsics->length(); i++) {
 104     CallGenerator* cg1 = _intrinsics->at(i-1);
 105     CallGenerator* cg2 = _intrinsics->at(i);
 106     assert(cg1->method() != cg2->method()
 107            ? cg1->method()     < cg2->method()
 108            : cg1->is_virtual() < cg2->is_virtual(),
 109            "compiler intrinsics list must stay sorted");
 110   }
 111 #endif
 112   // Binary search sorted list, in decreasing intervals [lo, hi].
 113   int lo = 0, hi = _intrinsics->length()-1;
 114   while (lo <= hi) {
 115     int mid = (uint)(hi + lo) / 2;
 116     ciMethod* mid_m = _intrinsics->at(mid)->method();
 117     if (m < mid_m) {
 118       hi = mid-1;
 119     } else if (m > mid_m) {
 120       lo = mid+1;
 121     } else {
 122       // look at minor sort key
 123       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 124       if (is_virtual < mid_virt) {
 125         hi = mid-1;
 126       } else if (is_virtual > mid_virt) {
 127         lo = mid+1;
 128       } else {
 129         return mid;  // exact match
 130       }
 131     }
 132   }
 133   return lo;  // inexact match
 134 }
 135 
 136 void Compile::register_intrinsic(CallGenerator* cg) {
 137   if (_intrinsics == NULL) {
 138     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 139   }
 140   // This code is stolen from ciObjectFactory::insert.
 141   // Really, GrowableArray should have methods for
 142   // insert_at, remove_at, and binary_search.
 143   int len = _intrinsics->length();
 144   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 145   if (index == len) {
 146     _intrinsics->append(cg);
 147   } else {
 148 #ifdef ASSERT
 149     CallGenerator* oldcg = _intrinsics->at(index);
 150     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 151 #endif
 152     _intrinsics->append(_intrinsics->at(len-1));
 153     int pos;
 154     for (pos = len-2; pos >= index; pos--) {
 155       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 156     }
 157     _intrinsics->at_put(index, cg);
 158   }
 159   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 160 }
 161 
 162 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 163   assert(m->is_loaded(), "don't try this on unloaded methods");
 164   if (_intrinsics != NULL) {
 165     int index = intrinsic_insertion_index(m, is_virtual);
 166     if (index < _intrinsics->length()
 167         && _intrinsics->at(index)->method() == m
 168         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 169       return _intrinsics->at(index);
 170     }
 171   }
 172   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 173   if (m->intrinsic_id() != vmIntrinsics::_none &&
 174       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 175     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 176     if (cg != NULL) {
 177       // Save it for next time:
 178       register_intrinsic(cg);
 179       return cg;
 180     } else {
 181       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 182     }
 183   }
 184   return NULL;
 185 }
 186 
 187 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 188 // in library_call.cpp.
 189 
 190 
 191 #ifndef PRODUCT
 192 // statistics gathering...
 193 
 194 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 195 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 196 
 197 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 198   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 199   int oflags = _intrinsic_hist_flags[id];
 200   assert(flags != 0, "what happened?");
 201   if (is_virtual) {
 202     flags |= _intrinsic_virtual;
 203   }
 204   bool changed = (flags != oflags);
 205   if ((flags & _intrinsic_worked) != 0) {
 206     juint count = (_intrinsic_hist_count[id] += 1);
 207     if (count == 1) {
 208       changed = true;           // first time
 209     }
 210     // increment the overall count also:
 211     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 212   }
 213   if (changed) {
 214     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 215       // Something changed about the intrinsic's virtuality.
 216       if ((flags & _intrinsic_virtual) != 0) {
 217         // This is the first use of this intrinsic as a virtual call.
 218         if (oflags != 0) {
 219           // We already saw it as a non-virtual, so note both cases.
 220           flags |= _intrinsic_both;
 221         }
 222       } else if ((oflags & _intrinsic_both) == 0) {
 223         // This is the first use of this intrinsic as a non-virtual
 224         flags |= _intrinsic_both;
 225       }
 226     }
 227     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 228   }
 229   // update the overall flags also:
 230   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 231   return changed;
 232 }
 233 
 234 static char* format_flags(int flags, char* buf) {
 235   buf[0] = 0;
 236   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 237   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 238   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 239   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 240   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 241   if (buf[0] == 0)  strcat(buf, ",");
 242   assert(buf[0] == ',', "must be");
 243   return &buf[1];
 244 }
 245 
 246 void Compile::print_intrinsic_statistics() {
 247   char flagsbuf[100];
 248   ttyLocker ttyl;
 249   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 250   tty->print_cr("Compiler intrinsic usage:");
 251   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 252   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 253   #define PRINT_STAT_LINE(name, c, f) \
 254     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 255   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 256     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 257     int   flags = _intrinsic_hist_flags[id];
 258     juint count = _intrinsic_hist_count[id];
 259     if ((flags | count) != 0) {
 260       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 261     }
 262   }
 263   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 264   if (xtty != NULL)  xtty->tail("statistics");
 265 }
 266 
 267 void Compile::print_statistics() {
 268   { ttyLocker ttyl;
 269     if (xtty != NULL)  xtty->head("statistics type='opto'");
 270     Parse::print_statistics();
 271     PhaseCCP::print_statistics();
 272     PhaseRegAlloc::print_statistics();
 273     Scheduling::print_statistics();
 274     PhasePeephole::print_statistics();
 275     PhaseIdealLoop::print_statistics();
 276     if (xtty != NULL)  xtty->tail("statistics");
 277   }
 278   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 279     // put this under its own <statistics> element.
 280     print_intrinsic_statistics();
 281   }
 282 }
 283 #endif //PRODUCT
 284 
 285 // Support for bundling info
 286 Bundle* Compile::node_bundling(const Node *n) {
 287   assert(valid_bundle_info(n), "oob");
 288   return &_node_bundling_base[n->_idx];
 289 }
 290 
 291 bool Compile::valid_bundle_info(const Node *n) {
 292   return (_node_bundling_limit > n->_idx);
 293 }
 294 
 295 
 296 void Compile::gvn_replace_by(Node* n, Node* nn) {
 297   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 298     Node* use = n->last_out(i);
 299     bool is_in_table = initial_gvn()->hash_delete(use);
 300     uint uses_found = 0;
 301     for (uint j = 0; j < use->len(); j++) {
 302       if (use->in(j) == n) {
 303         if (j < use->req())
 304           use->set_req(j, nn);
 305         else
 306           use->set_prec(j, nn);
 307         uses_found++;
 308       }
 309     }
 310     if (is_in_table) {
 311       // reinsert into table
 312       initial_gvn()->hash_find_insert(use);
 313     }
 314     record_for_igvn(use);
 315     i -= uses_found;    // we deleted 1 or more copies of this edge
 316   }
 317 }
 318 
 319 
 320 static inline bool not_a_node(const Node* n) {
 321   if (n == NULL)                   return true;
 322   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 323   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 324   return false;
 325 }
 326 
 327 // Identify all nodes that are reachable from below, useful.
 328 // Use breadth-first pass that records state in a Unique_Node_List,
 329 // recursive traversal is slower.
 330 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 331   int estimated_worklist_size = live_nodes();
 332   useful.map( estimated_worklist_size, NULL );  // preallocate space
 333 
 334   // Initialize worklist
 335   if (root() != NULL)     { useful.push(root()); }
 336   // If 'top' is cached, declare it useful to preserve cached node
 337   if( cached_top_node() ) { useful.push(cached_top_node()); }
 338 
 339   // Push all useful nodes onto the list, breadthfirst
 340   for( uint next = 0; next < useful.size(); ++next ) {
 341     assert( next < unique(), "Unique useful nodes < total nodes");
 342     Node *n  = useful.at(next);
 343     uint max = n->len();
 344     for( uint i = 0; i < max; ++i ) {
 345       Node *m = n->in(i);
 346       if (not_a_node(m))  continue;
 347       useful.push(m);
 348     }
 349   }
 350 }
 351 
 352 // Update dead_node_list with any missing dead nodes using useful
 353 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 354 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 355   uint max_idx = unique();
 356   VectorSet& useful_node_set = useful.member_set();
 357 
 358   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 359     // If node with index node_idx is not in useful set,
 360     // mark it as dead in dead node list.
 361     if (! useful_node_set.test(node_idx) ) {
 362       record_dead_node(node_idx);
 363     }
 364   }
 365 }
 366 
 367 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 368   int shift = 0;
 369   for (int i = 0; i < inlines->length(); i++) {
 370     CallGenerator* cg = inlines->at(i);
 371     CallNode* call = cg->call_node();
 372     if (shift > 0) {
 373       inlines->at_put(i-shift, cg);
 374     }
 375     if (!useful.member(call)) {
 376       shift++;
 377     }
 378   }
 379   inlines->trunc_to(inlines->length()-shift);
 380 }
 381 
 382 // Disconnect all useless nodes by disconnecting those at the boundary.
 383 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 384   uint next = 0;
 385   while (next < useful.size()) {
 386     Node *n = useful.at(next++);
 387     if (n->is_SafePoint()) {
 388       // We're done with a parsing phase. Replaced nodes are not valid
 389       // beyond that point.
 390       n->as_SafePoint()->delete_replaced_nodes();
 391     }
 392     // Use raw traversal of out edges since this code removes out edges
 393     int max = n->outcnt();
 394     for (int j = 0; j < max; ++j) {
 395       Node* child = n->raw_out(j);
 396       if (! useful.member(child)) {
 397         assert(!child->is_top() || child != top(),
 398                "If top is cached in Compile object it is in useful list");
 399         // Only need to remove this out-edge to the useless node
 400         n->raw_del_out(j);
 401         --j;
 402         --max;
 403       }
 404     }
 405     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 406       record_for_igvn(n->unique_out());
 407     }
 408   }
 409   // Remove useless macro and predicate opaq nodes
 410   for (int i = C->macro_count()-1; i >= 0; i--) {
 411     Node* n = C->macro_node(i);
 412     if (!useful.member(n)) {
 413       remove_macro_node(n);
 414     }
 415   }
 416   // Remove useless CastII nodes with range check dependency
 417   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 418     Node* cast = range_check_cast_node(i);
 419     if (!useful.member(cast)) {
 420       remove_range_check_cast(cast);
 421     }
 422   }
 423   // Remove useless expensive node
 424   for (int i = C->expensive_count()-1; i >= 0; i--) {
 425     Node* n = C->expensive_node(i);
 426     if (!useful.member(n)) {
 427       remove_expensive_node(n);
 428     }
 429   }
 430   // clean up the late inline lists
 431   remove_useless_late_inlines(&_string_late_inlines, useful);
 432   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 433   remove_useless_late_inlines(&_late_inlines, useful);
 434   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 435 }
 436 
 437 //------------------------------frame_size_in_words-----------------------------
 438 // frame_slots in units of words
 439 int Compile::frame_size_in_words() const {
 440   // shift is 0 in LP32 and 1 in LP64
 441   const int shift = (LogBytesPerWord - LogBytesPerInt);
 442   int words = _frame_slots >> shift;
 443   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 444   return words;
 445 }
 446 
 447 // To bang the stack of this compiled method we use the stack size
 448 // that the interpreter would need in case of a deoptimization. This
 449 // removes the need to bang the stack in the deoptimization blob which
 450 // in turn simplifies stack overflow handling.
 451 int Compile::bang_size_in_bytes() const {
 452   return MAX2(_interpreter_frame_size, frame_size_in_bytes());
 453 }
 454 
 455 // ============================================================================
 456 //------------------------------CompileWrapper---------------------------------
 457 class CompileWrapper : public StackObj {
 458   Compile *const _compile;
 459  public:
 460   CompileWrapper(Compile* compile);
 461 
 462   ~CompileWrapper();
 463 };
 464 
 465 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 466   // the Compile* pointer is stored in the current ciEnv:
 467   ciEnv* env = compile->env();
 468   assert(env == ciEnv::current(), "must already be a ciEnv active");
 469   assert(env->compiler_data() == NULL, "compile already active?");
 470   env->set_compiler_data(compile);
 471   assert(compile == Compile::current(), "sanity");
 472 
 473   compile->set_type_dict(NULL);
 474   compile->set_type_hwm(NULL);
 475   compile->set_type_last_size(0);
 476   compile->set_last_tf(NULL, NULL);
 477   compile->set_indexSet_arena(NULL);
 478   compile->set_indexSet_free_block_list(NULL);
 479   compile->init_type_arena();
 480   Type::Initialize(compile);
 481   _compile->set_scratch_buffer_blob(NULL);
 482   _compile->begin_method();
 483 }
 484 CompileWrapper::~CompileWrapper() {
 485   _compile->end_method();
 486   if (_compile->scratch_buffer_blob() != NULL)
 487     BufferBlob::free(_compile->scratch_buffer_blob());
 488   _compile->env()->set_compiler_data(NULL);
 489 }
 490 
 491 
 492 //----------------------------print_compile_messages---------------------------
 493 void Compile::print_compile_messages() {
 494 #ifndef PRODUCT
 495   // Check if recompiling
 496   if (_subsume_loads == false && PrintOpto) {
 497     // Recompiling without allowing machine instructions to subsume loads
 498     tty->print_cr("*********************************************************");
 499     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 500     tty->print_cr("*********************************************************");
 501   }
 502   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 503     // Recompiling without escape analysis
 504     tty->print_cr("*********************************************************");
 505     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 506     tty->print_cr("*********************************************************");
 507   }
 508   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 509     // Recompiling without boxing elimination
 510     tty->print_cr("*********************************************************");
 511     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 512     tty->print_cr("*********************************************************");
 513   }
 514   if (env()->break_at_compile()) {
 515     // Open the debugger when compiling this method.
 516     tty->print("### Breaking when compiling: ");
 517     method()->print_short_name();
 518     tty->cr();
 519     BREAKPOINT;
 520   }
 521 
 522   if( PrintOpto ) {
 523     if (is_osr_compilation()) {
 524       tty->print("[OSR]%3d", _compile_id);
 525     } else {
 526       tty->print("%3d", _compile_id);
 527     }
 528   }
 529 #endif
 530 }
 531 
 532 
 533 //-----------------------init_scratch_buffer_blob------------------------------
 534 // Construct a temporary BufferBlob and cache it for this compile.
 535 void Compile::init_scratch_buffer_blob(int const_size) {
 536   // If there is already a scratch buffer blob allocated and the
 537   // constant section is big enough, use it.  Otherwise free the
 538   // current and allocate a new one.
 539   BufferBlob* blob = scratch_buffer_blob();
 540   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 541     // Use the current blob.
 542   } else {
 543     if (blob != NULL) {
 544       BufferBlob::free(blob);
 545     }
 546 
 547     ResourceMark rm;
 548     _scratch_const_size = const_size;
 549     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 550     blob = BufferBlob::create("Compile::scratch_buffer", size);
 551     // Record the buffer blob for next time.
 552     set_scratch_buffer_blob(blob);
 553     // Have we run out of code space?
 554     if (scratch_buffer_blob() == NULL) {
 555       // Let CompilerBroker disable further compilations.
 556       record_failure("Not enough space for scratch buffer in CodeCache");
 557       return;
 558     }
 559   }
 560 
 561   // Initialize the relocation buffers
 562   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 563   set_scratch_locs_memory(locs_buf);
 564 }
 565 
 566 
 567 //-----------------------scratch_emit_size-------------------------------------
 568 // Helper function that computes size by emitting code
 569 uint Compile::scratch_emit_size(const Node* n) {
 570   // Start scratch_emit_size section.
 571   set_in_scratch_emit_size(true);
 572 
 573   // Emit into a trash buffer and count bytes emitted.
 574   // This is a pretty expensive way to compute a size,
 575   // but it works well enough if seldom used.
 576   // All common fixed-size instructions are given a size
 577   // method by the AD file.
 578   // Note that the scratch buffer blob and locs memory are
 579   // allocated at the beginning of the compile task, and
 580   // may be shared by several calls to scratch_emit_size.
 581   // The allocation of the scratch buffer blob is particularly
 582   // expensive, since it has to grab the code cache lock.
 583   BufferBlob* blob = this->scratch_buffer_blob();
 584   assert(blob != NULL, "Initialize BufferBlob at start");
 585   assert(blob->size() > MAX_inst_size, "sanity");
 586   relocInfo* locs_buf = scratch_locs_memory();
 587   address blob_begin = blob->content_begin();
 588   address blob_end   = (address)locs_buf;
 589   assert(blob->content_contains(blob_end), "sanity");
 590   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 591   buf.initialize_consts_size(_scratch_const_size);
 592   buf.initialize_stubs_size(MAX_stubs_size);
 593   assert(locs_buf != NULL, "sanity");
 594   int lsize = MAX_locs_size / 3;
 595   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 596   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 597   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 598 
 599   // Do the emission.
 600 
 601   Label fakeL; // Fake label for branch instructions.
 602   Label*   saveL = NULL;
 603   uint save_bnum = 0;
 604   bool is_branch = n->is_MachBranch();
 605   if (is_branch) {
 606     MacroAssembler masm(&buf);
 607     masm.bind(fakeL);
 608     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 609     n->as_MachBranch()->label_set(&fakeL, 0);
 610   }
 611   n->emit(buf, this->regalloc());
 612 
 613   // Emitting into the scratch buffer should not fail
 614   assert (!failing(), err_msg_res("Must not have pending failure. Reason is: %s", failure_reason()));
 615 
 616   if (is_branch) // Restore label.
 617     n->as_MachBranch()->label_set(saveL, save_bnum);
 618 
 619   // End scratch_emit_size section.
 620   set_in_scratch_emit_size(false);
 621 
 622   return buf.insts_size();
 623 }
 624 
 625 
 626 // ============================================================================
 627 //------------------------------Compile standard-------------------------------
 628 debug_only( int Compile::_debug_idx = 100000; )
 629 
 630 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 631 // the continuation bci for on stack replacement.
 632 
 633 
 634 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 635                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 636                 : Phase(Compiler),
 637                   _env(ci_env),
 638                   _log(ci_env->log()),
 639                   _compile_id(ci_env->compile_id()),
 640                   _save_argument_registers(false),
 641                   _stub_name(NULL),
 642                   _stub_function(NULL),
 643                   _stub_entry_point(NULL),
 644                   _method(target),
 645                   _entry_bci(osr_bci),
 646                   _initial_gvn(NULL),
 647                   _for_igvn(NULL),
 648                   _warm_calls(NULL),
 649                   _subsume_loads(subsume_loads),
 650                   _do_escape_analysis(do_escape_analysis),
 651                   _eliminate_boxing(eliminate_boxing),
 652                   _failure_reason(NULL),
 653                   _code_buffer("Compile::Fill_buffer"),
 654                   _orig_pc_slot(0),
 655                   _orig_pc_slot_offset_in_bytes(0),
 656                   _has_method_handle_invokes(false),
 657                   _mach_constant_base_node(NULL),
 658                   _node_bundling_limit(0),
 659                   _node_bundling_base(NULL),
 660                   _java_calls(0),
 661                   _inner_loops(0),
 662                   _scratch_const_size(-1),
 663                   _in_scratch_emit_size(false),
 664                   _dead_node_list(comp_arena()),
 665                   _dead_node_count(0),
 666 #ifndef PRODUCT
 667                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 668                   _in_dump_cnt(0),
 669                   _printer(IdealGraphPrinter::printer()),
 670 #endif
 671                   _congraph(NULL),
 672                   _comp_arena(mtCompiler),
 673                   _node_arena(mtCompiler),
 674                   _old_arena(mtCompiler),
 675                   _Compile_types(mtCompiler),
 676                   _replay_inline_data(NULL),
 677                   _late_inlines(comp_arena(), 2, 0, NULL),
 678                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 679                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 680                   _late_inlines_pos(0),
 681                   _number_of_mh_late_inlines(0),
 682                   _inlining_progress(false),
 683                   _inlining_incrementally(false),
 684                   _print_inlining_list(NULL),
 685                   _print_inlining_idx(0),
 686                   _interpreter_frame_size(0),
 687                   _max_node_limit(MaxNodeLimit) {
 688   C = this;
 689 
 690   CompileWrapper cw(this);
 691 #ifndef PRODUCT
 692   if (TimeCompiler2) {
 693     tty->print(" ");
 694     target->holder()->name()->print();
 695     tty->print(".");
 696     target->print_short_name();
 697     tty->print("  ");
 698   }
 699   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 700   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 701   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 702   if (!print_opto_assembly) {
 703     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 704     if (print_assembly && !Disassembler::can_decode()) {
 705       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 706       print_opto_assembly = true;
 707     }
 708   }
 709   set_print_assembly(print_opto_assembly);
 710   set_parsed_irreducible_loop(false);
 711 
 712   if (method()->has_option("ReplayInline")) {
 713     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 714   }
 715 #endif
 716   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 717   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 718   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 719 
 720   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 721     // Make sure the method being compiled gets its own MDO,
 722     // so we can at least track the decompile_count().
 723     // Need MDO to record RTM code generation state.
 724     method()->ensure_method_data();
 725   }
 726 
 727   Init(::AliasLevel);
 728 
 729 
 730   print_compile_messages();
 731 
 732   _ilt = InlineTree::build_inline_tree_root();
 733 
 734   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 735   assert(num_alias_types() >= AliasIdxRaw, "");
 736 
 737 #define MINIMUM_NODE_HASH  1023
 738   // Node list that Iterative GVN will start with
 739   Unique_Node_List for_igvn(comp_arena());
 740   set_for_igvn(&for_igvn);
 741 
 742   // GVN that will be run immediately on new nodes
 743   uint estimated_size = method()->code_size()*4+64;
 744   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 745   PhaseGVN gvn(node_arena(), estimated_size);
 746   set_initial_gvn(&gvn);
 747 
 748   if (print_inlining() || print_intrinsics()) {
 749     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
 750   }
 751   { // Scope for timing the parser
 752     TracePhase t3("parse", &_t_parser, true);
 753 
 754     // Put top into the hash table ASAP.
 755     initial_gvn()->transform_no_reclaim(top());
 756 
 757     // Set up tf(), start(), and find a CallGenerator.
 758     CallGenerator* cg = NULL;
 759     if (is_osr_compilation()) {
 760       const TypeTuple *domain = StartOSRNode::osr_domain();
 761       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 762       init_tf(TypeFunc::make(domain, range));
 763       StartNode* s = new (this) StartOSRNode(root(), domain);
 764       initial_gvn()->set_type_bottom(s);
 765       init_start(s);
 766       cg = CallGenerator::for_osr(method(), entry_bci());
 767     } else {
 768       // Normal case.
 769       init_tf(TypeFunc::make(method()));
 770       StartNode* s = new (this) StartNode(root(), tf()->domain());
 771       initial_gvn()->set_type_bottom(s);
 772       init_start(s);
 773       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 774         // With java.lang.ref.reference.get() we must go through the
 775         // intrinsic when G1 is enabled - even when get() is the root
 776         // method of the compile - so that, if necessary, the value in
 777         // the referent field of the reference object gets recorded by
 778         // the pre-barrier code.
 779         // Specifically, if G1 is enabled, the value in the referent
 780         // field is recorded by the G1 SATB pre barrier. This will
 781         // result in the referent being marked live and the reference
 782         // object removed from the list of discovered references during
 783         // reference processing.
 784         cg = find_intrinsic(method(), false);
 785       }
 786       if (cg == NULL) {
 787         float past_uses = method()->interpreter_invocation_count();
 788         float expected_uses = past_uses;
 789         cg = CallGenerator::for_inline(method(), expected_uses);
 790       }
 791     }
 792     if (failing())  return;
 793     if (cg == NULL) {
 794       record_method_not_compilable_all_tiers("cannot parse method");
 795       return;
 796     }
 797     JVMState* jvms = build_start_state(start(), tf());
 798     if ((jvms = cg->generate(jvms)) == NULL) {
 799       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 800         record_method_not_compilable("method parse failed");
 801       }
 802       return;
 803     }
 804     GraphKit kit(jvms);
 805 
 806     if (!kit.stopped()) {
 807       // Accept return values, and transfer control we know not where.
 808       // This is done by a special, unique ReturnNode bound to root.
 809       return_values(kit.jvms());
 810     }
 811 
 812     if (kit.has_exceptions()) {
 813       // Any exceptions that escape from this call must be rethrown
 814       // to whatever caller is dynamically above us on the stack.
 815       // This is done by a special, unique RethrowNode bound to root.
 816       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 817     }
 818 
 819     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 820 
 821     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 822       inline_string_calls(true);
 823     }
 824 
 825     if (failing())  return;
 826 
 827     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 828 
 829     // Remove clutter produced by parsing.
 830     if (!failing()) {
 831       ResourceMark rm;
 832       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 833     }
 834   }
 835 
 836   // Note:  Large methods are capped off in do_one_bytecode().
 837   if (failing())  return;
 838 
 839   // After parsing, node notes are no longer automagic.
 840   // They must be propagated by register_new_node_with_optimizer(),
 841   // clone(), or the like.
 842   set_default_node_notes(NULL);
 843 
 844   for (;;) {
 845     int successes = Inline_Warm();
 846     if (failing())  return;
 847     if (successes == 0)  break;
 848   }
 849 
 850   // Drain the list.
 851   Finish_Warm();
 852 #ifndef PRODUCT
 853   if (_printer) {
 854     _printer->print_inlining(this);
 855   }
 856 #endif
 857 
 858   if (failing())  return;
 859   NOT_PRODUCT( verify_graph_edges(); )
 860 
 861   // Now optimize
 862   Optimize();
 863   if (failing())  return;
 864   NOT_PRODUCT( verify_graph_edges(); )
 865 
 866 #ifndef PRODUCT
 867   if (PrintIdeal) {
 868     ttyLocker ttyl;  // keep the following output all in one block
 869     // This output goes directly to the tty, not the compiler log.
 870     // To enable tools to match it up with the compilation activity,
 871     // be sure to tag this tty output with the compile ID.
 872     if (xtty != NULL) {
 873       xtty->head("ideal compile_id='%d'%s", compile_id(),
 874                  is_osr_compilation()    ? " compile_kind='osr'" :
 875                  "");
 876     }
 877     root()->dump(9999);
 878     if (xtty != NULL) {
 879       xtty->tail("ideal");
 880     }
 881   }
 882 #endif
 883 
 884   NOT_PRODUCT( verify_barriers(); )
 885 
 886   // Dump compilation data to replay it.
 887   if (method()->has_option("DumpReplay")) {
 888     env()->dump_replay_data(_compile_id);
 889   }
 890   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
 891     env()->dump_inline_data(_compile_id);
 892   }
 893 
 894   // Now that we know the size of all the monitors we can add a fixed slot
 895   // for the original deopt pc.
 896 
 897   _orig_pc_slot =  fixed_slots();
 898   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 899   set_fixed_slots(next_slot);
 900 
 901   // Compute when to use implicit null checks. Used by matching trap based
 902   // nodes and NullCheck optimization.
 903   set_allowed_deopt_reasons();
 904 
 905   // Now generate code
 906   Code_Gen();
 907   if (failing())  return;
 908 
 909   // Check if we want to skip execution of all compiled code.
 910   {
 911 #ifndef PRODUCT
 912     if (OptoNoExecute) {
 913       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 914       return;
 915     }
 916     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 917 #endif
 918 
 919     if (is_osr_compilation()) {
 920       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 921       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 922     } else {
 923       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 924       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 925     }
 926 
 927     env()->register_method(_method, _entry_bci,
 928                            &_code_offsets,
 929                            _orig_pc_slot_offset_in_bytes,
 930                            code_buffer(),
 931                            frame_size_in_words(), _oop_map_set,
 932                            &_handler_table, &_inc_table,
 933                            compiler,
 934                            env()->comp_level(),
 935                            has_unsafe_access(),
 936                            SharedRuntime::is_wide_vector(max_vector_size()),
 937                            rtm_state()
 938                            );
 939 
 940     if (log() != NULL) // Print code cache state into compiler log
 941       log()->code_cache_state();
 942   }
 943 }
 944 
 945 //------------------------------Compile----------------------------------------
 946 // Compile a runtime stub
 947 Compile::Compile( ciEnv* ci_env,
 948                   TypeFunc_generator generator,
 949                   address stub_function,
 950                   const char *stub_name,
 951                   int is_fancy_jump,
 952                   bool pass_tls,
 953                   bool save_arg_registers,
 954                   bool return_pc )
 955   : Phase(Compiler),
 956     _env(ci_env),
 957     _log(ci_env->log()),
 958     _compile_id(0),
 959     _save_argument_registers(save_arg_registers),
 960     _method(NULL),
 961     _stub_name(stub_name),
 962     _stub_function(stub_function),
 963     _stub_entry_point(NULL),
 964     _entry_bci(InvocationEntryBci),
 965     _initial_gvn(NULL),
 966     _for_igvn(NULL),
 967     _warm_calls(NULL),
 968     _orig_pc_slot(0),
 969     _orig_pc_slot_offset_in_bytes(0),
 970     _subsume_loads(true),
 971     _do_escape_analysis(false),
 972     _eliminate_boxing(false),
 973     _failure_reason(NULL),
 974     _code_buffer("Compile::Fill_buffer"),
 975     _has_method_handle_invokes(false),
 976     _mach_constant_base_node(NULL),
 977     _node_bundling_limit(0),
 978     _node_bundling_base(NULL),
 979     _java_calls(0),
 980     _inner_loops(0),
 981 #ifndef PRODUCT
 982     _trace_opto_output(TraceOptoOutput),
 983     _in_dump_cnt(0),
 984     _printer(NULL),
 985 #endif
 986     _comp_arena(mtCompiler),
 987     _node_arena(mtCompiler),
 988     _old_arena(mtCompiler),
 989     _Compile_types(mtCompiler),
 990     _dead_node_list(comp_arena()),
 991     _dead_node_count(0),
 992     _congraph(NULL),
 993     _replay_inline_data(NULL),
 994     _number_of_mh_late_inlines(0),
 995     _inlining_progress(false),
 996     _inlining_incrementally(false),
 997     _print_inlining_list(NULL),
 998     _print_inlining_idx(0),
 999     _allowed_reasons(0),
1000     _interpreter_frame_size(0),
1001     _max_node_limit(MaxNodeLimit) {
1002   C = this;
1003 
1004 #ifndef PRODUCT
1005   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
1006   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
1007   set_print_assembly(PrintFrameConverterAssembly);
1008   set_parsed_irreducible_loop(false);
1009 #endif
1010   set_has_irreducible_loop(false); // no loops
1011 
1012   CompileWrapper cw(this);
1013   Init(/*AliasLevel=*/ 0);
1014   init_tf((*generator)());
1015 
1016   {
1017     // The following is a dummy for the sake of GraphKit::gen_stub
1018     Unique_Node_List for_igvn(comp_arena());
1019     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1020     PhaseGVN gvn(Thread::current()->resource_area(),255);
1021     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1022     gvn.transform_no_reclaim(top());
1023 
1024     GraphKit kit;
1025     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1026   }
1027 
1028   NOT_PRODUCT( verify_graph_edges(); )
1029   Code_Gen();
1030   if (failing())  return;
1031 
1032 
1033   // Entry point will be accessed using compile->stub_entry_point();
1034   if (code_buffer() == NULL) {
1035     Matcher::soft_match_failure();
1036   } else {
1037     if (PrintAssembly && (WizardMode || Verbose))
1038       tty->print_cr("### Stub::%s", stub_name);
1039 
1040     if (!failing()) {
1041       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1042 
1043       // Make the NMethod
1044       // For now we mark the frame as never safe for profile stackwalking
1045       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1046                                                       code_buffer(),
1047                                                       CodeOffsets::frame_never_safe,
1048                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1049                                                       frame_size_in_words(),
1050                                                       _oop_map_set,
1051                                                       save_arg_registers);
1052       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1053 
1054       _stub_entry_point = rs->entry_point();
1055     }
1056   }
1057 }
1058 
1059 //------------------------------Init-------------------------------------------
1060 // Prepare for a single compilation
1061 void Compile::Init(int aliaslevel) {
1062   _unique  = 0;
1063   _regalloc = NULL;
1064 
1065   _tf      = NULL;  // filled in later
1066   _top     = NULL;  // cached later
1067   _matcher = NULL;  // filled in later
1068   _cfg     = NULL;  // filled in later
1069 
1070   set_24_bit_selection_and_mode(Use24BitFP, false);
1071 
1072   _node_note_array = NULL;
1073   _default_node_notes = NULL;
1074 
1075   _immutable_memory = NULL; // filled in at first inquiry
1076 
1077   // Globally visible Nodes
1078   // First set TOP to NULL to give safe behavior during creation of RootNode
1079   set_cached_top_node(NULL);
1080   set_root(new (this) RootNode());
1081   // Now that you have a Root to point to, create the real TOP
1082   set_cached_top_node( new (this) ConNode(Type::TOP) );
1083   set_recent_alloc(NULL, NULL);
1084 
1085   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1086   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1087   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1088   env()->set_dependencies(new Dependencies(env()));
1089 
1090   _fixed_slots = 0;
1091   set_has_split_ifs(false);
1092   set_has_loops(has_method() && method()->has_loops()); // first approximation
1093   set_has_stringbuilder(false);
1094   set_has_boxed_value(false);
1095   _trap_can_recompile = false;  // no traps emitted yet
1096   _major_progress = true; // start out assuming good things will happen
1097   set_has_unsafe_access(false);
1098   set_max_vector_size(0);
1099   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1100   set_decompile_count(0);
1101 
1102   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1103   set_num_loop_opts(LoopOptsCount);
1104   set_do_inlining(Inline);
1105   set_max_inline_size(MaxInlineSize);
1106   set_freq_inline_size(FreqInlineSize);
1107   set_do_scheduling(OptoScheduling);
1108   set_do_count_invocations(false);
1109   set_do_method_data_update(false);
1110   set_rtm_state(NoRTM); // No RTM lock eliding by default
1111   method_has_option_value("MaxNodeLimit", _max_node_limit);
1112 #if INCLUDE_RTM_OPT
1113   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1114     int rtm_state = method()->method_data()->rtm_state();
1115     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1116       // Don't generate RTM lock eliding code.
1117       set_rtm_state(NoRTM);
1118     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1119       // Generate RTM lock eliding code without abort ratio calculation code.
1120       set_rtm_state(UseRTM);
1121     } else if (UseRTMDeopt) {
1122       // Generate RTM lock eliding code and include abort ratio calculation
1123       // code if UseRTMDeopt is on.
1124       set_rtm_state(ProfileRTM);
1125     }
1126   }
1127 #endif
1128   if (debug_info()->recording_non_safepoints()) {
1129     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1130                         (comp_arena(), 8, 0, NULL));
1131     set_default_node_notes(Node_Notes::make(this));
1132   }
1133 
1134   // // -- Initialize types before each compile --
1135   // // Update cached type information
1136   // if( _method && _method->constants() )
1137   //   Type::update_loaded_types(_method, _method->constants());
1138 
1139   // Init alias_type map.
1140   if (!_do_escape_analysis && aliaslevel == 3)
1141     aliaslevel = 2;  // No unique types without escape analysis
1142   _AliasLevel = aliaslevel;
1143   const int grow_ats = 16;
1144   _max_alias_types = grow_ats;
1145   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1146   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1147   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1148   {
1149     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1150   }
1151   // Initialize the first few types.
1152   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1153   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1154   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1155   _num_alias_types = AliasIdxRaw+1;
1156   // Zero out the alias type cache.
1157   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1158   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1159   probe_alias_cache(NULL)->_index = AliasIdxTop;
1160 
1161   _intrinsics = NULL;
1162   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1163   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1164   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1165   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1166   register_library_intrinsics();
1167 }
1168 
1169 //---------------------------init_start----------------------------------------
1170 // Install the StartNode on this compile object.
1171 void Compile::init_start(StartNode* s) {
1172   if (failing())
1173     return; // already failing
1174   assert(s == start(), "");
1175 }
1176 
1177 StartNode* Compile::start() const {
1178   assert(!failing(), "");
1179   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1180     Node* start = root()->fast_out(i);
1181     if( start->is_Start() )
1182       return start->as_Start();
1183   }
1184   fatal("Did not find Start node!");
1185   return NULL;
1186 }
1187 
1188 //-------------------------------immutable_memory-------------------------------------
1189 // Access immutable memory
1190 Node* Compile::immutable_memory() {
1191   if (_immutable_memory != NULL) {
1192     return _immutable_memory;
1193   }
1194   StartNode* s = start();
1195   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1196     Node *p = s->fast_out(i);
1197     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1198       _immutable_memory = p;
1199       return _immutable_memory;
1200     }
1201   }
1202   ShouldNotReachHere();
1203   return NULL;
1204 }
1205 
1206 //----------------------set_cached_top_node------------------------------------
1207 // Install the cached top node, and make sure Node::is_top works correctly.
1208 void Compile::set_cached_top_node(Node* tn) {
1209   if (tn != NULL)  verify_top(tn);
1210   Node* old_top = _top;
1211   _top = tn;
1212   // Calling Node::setup_is_top allows the nodes the chance to adjust
1213   // their _out arrays.
1214   if (_top != NULL)     _top->setup_is_top();
1215   if (old_top != NULL)  old_top->setup_is_top();
1216   assert(_top == NULL || top()->is_top(), "");
1217 }
1218 
1219 #ifdef ASSERT
1220 uint Compile::count_live_nodes_by_graph_walk() {
1221   Unique_Node_List useful(comp_arena());
1222   // Get useful node list by walking the graph.
1223   identify_useful_nodes(useful);
1224   return useful.size();
1225 }
1226 
1227 void Compile::print_missing_nodes() {
1228 
1229   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1230   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1231     return;
1232   }
1233 
1234   // This is an expensive function. It is executed only when the user
1235   // specifies VerifyIdealNodeCount option or otherwise knows the
1236   // additional work that needs to be done to identify reachable nodes
1237   // by walking the flow graph and find the missing ones using
1238   // _dead_node_list.
1239 
1240   Unique_Node_List useful(comp_arena());
1241   // Get useful node list by walking the graph.
1242   identify_useful_nodes(useful);
1243 
1244   uint l_nodes = C->live_nodes();
1245   uint l_nodes_by_walk = useful.size();
1246 
1247   if (l_nodes != l_nodes_by_walk) {
1248     if (_log != NULL) {
1249       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1250       _log->stamp();
1251       _log->end_head();
1252     }
1253     VectorSet& useful_member_set = useful.member_set();
1254     int last_idx = l_nodes_by_walk;
1255     for (int i = 0; i < last_idx; i++) {
1256       if (useful_member_set.test(i)) {
1257         if (_dead_node_list.test(i)) {
1258           if (_log != NULL) {
1259             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1260           }
1261           if (PrintIdealNodeCount) {
1262             // Print the log message to tty
1263               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1264               useful.at(i)->dump();
1265           }
1266         }
1267       }
1268       else if (! _dead_node_list.test(i)) {
1269         if (_log != NULL) {
1270           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1271         }
1272         if (PrintIdealNodeCount) {
1273           // Print the log message to tty
1274           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1275         }
1276       }
1277     }
1278     if (_log != NULL) {
1279       _log->tail("mismatched_nodes");
1280     }
1281   }
1282 }
1283 #endif
1284 
1285 #ifndef PRODUCT
1286 void Compile::verify_top(Node* tn) const {
1287   if (tn != NULL) {
1288     assert(tn->is_Con(), "top node must be a constant");
1289     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1290     assert(tn->in(0) != NULL, "must have live top node");
1291   }
1292 }
1293 #endif
1294 
1295 
1296 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1297 
1298 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1299   guarantee(arr != NULL, "");
1300   int num_blocks = arr->length();
1301   if (grow_by < num_blocks)  grow_by = num_blocks;
1302   int num_notes = grow_by * _node_notes_block_size;
1303   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1304   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1305   while (num_notes > 0) {
1306     arr->append(notes);
1307     notes     += _node_notes_block_size;
1308     num_notes -= _node_notes_block_size;
1309   }
1310   assert(num_notes == 0, "exact multiple, please");
1311 }
1312 
1313 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1314   if (source == NULL || dest == NULL)  return false;
1315 
1316   if (dest->is_Con())
1317     return false;               // Do not push debug info onto constants.
1318 
1319 #ifdef ASSERT
1320   // Leave a bread crumb trail pointing to the original node:
1321   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1322     dest->set_debug_orig(source);
1323   }
1324 #endif
1325 
1326   if (node_note_array() == NULL)
1327     return false;               // Not collecting any notes now.
1328 
1329   // This is a copy onto a pre-existing node, which may already have notes.
1330   // If both nodes have notes, do not overwrite any pre-existing notes.
1331   Node_Notes* source_notes = node_notes_at(source->_idx);
1332   if (source_notes == NULL || source_notes->is_clear())  return false;
1333   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1334   if (dest_notes == NULL || dest_notes->is_clear()) {
1335     return set_node_notes_at(dest->_idx, source_notes);
1336   }
1337 
1338   Node_Notes merged_notes = (*source_notes);
1339   // The order of operations here ensures that dest notes will win...
1340   merged_notes.update_from(dest_notes);
1341   return set_node_notes_at(dest->_idx, &merged_notes);
1342 }
1343 
1344 
1345 //--------------------------allow_range_check_smearing-------------------------
1346 // Gating condition for coalescing similar range checks.
1347 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1348 // single covering check that is at least as strong as any of them.
1349 // If the optimization succeeds, the simplified (strengthened) range check
1350 // will always succeed.  If it fails, we will deopt, and then give up
1351 // on the optimization.
1352 bool Compile::allow_range_check_smearing() const {
1353   // If this method has already thrown a range-check,
1354   // assume it was because we already tried range smearing
1355   // and it failed.
1356   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1357   return !already_trapped;
1358 }
1359 
1360 
1361 //------------------------------flatten_alias_type-----------------------------
1362 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1363   int offset = tj->offset();
1364   TypePtr::PTR ptr = tj->ptr();
1365 
1366   // Known instance (scalarizable allocation) alias only with itself.
1367   bool is_known_inst = tj->isa_oopptr() != NULL &&
1368                        tj->is_oopptr()->is_known_instance();
1369 
1370   // Process weird unsafe references.
1371   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1372     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1373     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1374     tj = TypeOopPtr::BOTTOM;
1375     ptr = tj->ptr();
1376     offset = tj->offset();
1377   }
1378 
1379   // Array pointers need some flattening
1380   const TypeAryPtr *ta = tj->isa_aryptr();
1381   if (ta && ta->is_stable()) {
1382     // Erase stability property for alias analysis.
1383     tj = ta = ta->cast_to_stable(false);
1384   }
1385   if( ta && is_known_inst ) {
1386     if ( offset != Type::OffsetBot &&
1387          offset > arrayOopDesc::length_offset_in_bytes() ) {
1388       offset = Type::OffsetBot; // Flatten constant access into array body only
1389       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1390     }
1391   } else if( ta && _AliasLevel >= 2 ) {
1392     // For arrays indexed by constant indices, we flatten the alias
1393     // space to include all of the array body.  Only the header, klass
1394     // and array length can be accessed un-aliased.
1395     if( offset != Type::OffsetBot ) {
1396       if( ta->const_oop() ) { // MethodData* or Method*
1397         offset = Type::OffsetBot;   // Flatten constant access into array body
1398         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1399       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1400         // range is OK as-is.
1401         tj = ta = TypeAryPtr::RANGE;
1402       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1403         tj = TypeInstPtr::KLASS; // all klass loads look alike
1404         ta = TypeAryPtr::RANGE; // generic ignored junk
1405         ptr = TypePtr::BotPTR;
1406       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1407         tj = TypeInstPtr::MARK;
1408         ta = TypeAryPtr::RANGE; // generic ignored junk
1409         ptr = TypePtr::BotPTR;
1410       } else {                  // Random constant offset into array body
1411         offset = Type::OffsetBot;   // Flatten constant access into array body
1412         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1413       }
1414     }
1415     // Arrays of fixed size alias with arrays of unknown size.
1416     if (ta->size() != TypeInt::POS) {
1417       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1418       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1419     }
1420     // Arrays of known objects become arrays of unknown objects.
1421     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1422       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1423       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1424     }
1425     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1426       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1427       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1428     }
1429     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1430     // cannot be distinguished by bytecode alone.
1431     if (ta->elem() == TypeInt::BOOL) {
1432       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1433       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1434       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1435     }
1436     // During the 2nd round of IterGVN, NotNull castings are removed.
1437     // Make sure the Bottom and NotNull variants alias the same.
1438     // Also, make sure exact and non-exact variants alias the same.
1439     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1440       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1441     }
1442   }
1443 
1444   // Oop pointers need some flattening
1445   const TypeInstPtr *to = tj->isa_instptr();
1446   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1447     ciInstanceKlass *k = to->klass()->as_instance_klass();
1448     if( ptr == TypePtr::Constant ) {
1449       if (to->klass() != ciEnv::current()->Class_klass() ||
1450           offset < k->size_helper() * wordSize) {
1451         // No constant oop pointers (such as Strings); they alias with
1452         // unknown strings.
1453         assert(!is_known_inst, "not scalarizable allocation");
1454         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1455       }
1456     } else if( is_known_inst ) {
1457       tj = to; // Keep NotNull and klass_is_exact for instance type
1458     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1459       // During the 2nd round of IterGVN, NotNull castings are removed.
1460       // Make sure the Bottom and NotNull variants alias the same.
1461       // Also, make sure exact and non-exact variants alias the same.
1462       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1463     }
1464     if (to->speculative() != NULL) {
1465       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1466     }
1467     // Canonicalize the holder of this field
1468     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1469       // First handle header references such as a LoadKlassNode, even if the
1470       // object's klass is unloaded at compile time (4965979).
1471       if (!is_known_inst) { // Do it only for non-instance types
1472         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1473       }
1474     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1475       // Static fields are in the space above the normal instance
1476       // fields in the java.lang.Class instance.
1477       if (to->klass() != ciEnv::current()->Class_klass()) {
1478         to = NULL;
1479         tj = TypeOopPtr::BOTTOM;
1480         offset = tj->offset();
1481       }
1482     } else {
1483       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1484       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1485         if( is_known_inst ) {
1486           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1487         } else {
1488           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1489         }
1490       }
1491     }
1492   }
1493 
1494   // Klass pointers to object array klasses need some flattening
1495   const TypeKlassPtr *tk = tj->isa_klassptr();
1496   if( tk ) {
1497     // If we are referencing a field within a Klass, we need
1498     // to assume the worst case of an Object.  Both exact and
1499     // inexact types must flatten to the same alias class so
1500     // use NotNull as the PTR.
1501     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1502 
1503       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1504                                    TypeKlassPtr::OBJECT->klass(),
1505                                    offset);
1506     }
1507 
1508     ciKlass* klass = tk->klass();
1509     if( klass->is_obj_array_klass() ) {
1510       ciKlass* k = TypeAryPtr::OOPS->klass();
1511       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1512         k = TypeInstPtr::BOTTOM->klass();
1513       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1514     }
1515 
1516     // Check for precise loads from the primary supertype array and force them
1517     // to the supertype cache alias index.  Check for generic array loads from
1518     // the primary supertype array and also force them to the supertype cache
1519     // alias index.  Since the same load can reach both, we need to merge
1520     // these 2 disparate memories into the same alias class.  Since the
1521     // primary supertype array is read-only, there's no chance of confusion
1522     // where we bypass an array load and an array store.
1523     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1524     if (offset == Type::OffsetBot ||
1525         (offset >= primary_supers_offset &&
1526          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1527         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1528       offset = in_bytes(Klass::secondary_super_cache_offset());
1529       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1530     }
1531   }
1532 
1533   // Flatten all Raw pointers together.
1534   if (tj->base() == Type::RawPtr)
1535     tj = TypeRawPtr::BOTTOM;
1536 
1537   if (tj->base() == Type::AnyPtr)
1538     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1539 
1540   // Flatten all to bottom for now
1541   switch( _AliasLevel ) {
1542   case 0:
1543     tj = TypePtr::BOTTOM;
1544     break;
1545   case 1:                       // Flatten to: oop, static, field or array
1546     switch (tj->base()) {
1547     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1548     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1549     case Type::AryPtr:   // do not distinguish arrays at all
1550     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1551     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1552     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1553     default: ShouldNotReachHere();
1554     }
1555     break;
1556   case 2:                       // No collapsing at level 2; keep all splits
1557   case 3:                       // No collapsing at level 3; keep all splits
1558     break;
1559   default:
1560     Unimplemented();
1561   }
1562 
1563   offset = tj->offset();
1564   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1565 
1566   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1567           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1568           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1569           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1570           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1571           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1572           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1573           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1574   assert( tj->ptr() != TypePtr::TopPTR &&
1575           tj->ptr() != TypePtr::AnyNull &&
1576           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1577 //    assert( tj->ptr() != TypePtr::Constant ||
1578 //            tj->base() == Type::RawPtr ||
1579 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1580 
1581   return tj;
1582 }
1583 
1584 void Compile::AliasType::Init(int i, const TypePtr* at) {
1585   _index = i;
1586   _adr_type = at;
1587   _field = NULL;
1588   _element = NULL;
1589   _is_rewritable = true; // default
1590   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1591   if (atoop != NULL && atoop->is_known_instance()) {
1592     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1593     _general_index = Compile::current()->get_alias_index(gt);
1594   } else {
1595     _general_index = 0;
1596   }
1597 }
1598 
1599 BasicType Compile::AliasType::basic_type() const {
1600   if (element() != NULL) {
1601     const Type* element = adr_type()->is_aryptr()->elem();
1602     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1603   } if (field() != NULL) {
1604     return field()->layout_type();
1605   } else {
1606     return T_ILLEGAL; // unknown
1607   }
1608 }
1609 
1610 //---------------------------------print_on------------------------------------
1611 #ifndef PRODUCT
1612 void Compile::AliasType::print_on(outputStream* st) {
1613   if (index() < 10)
1614         st->print("@ <%d> ", index());
1615   else  st->print("@ <%d>",  index());
1616   st->print(is_rewritable() ? "   " : " RO");
1617   int offset = adr_type()->offset();
1618   if (offset == Type::OffsetBot)
1619         st->print(" +any");
1620   else  st->print(" +%-3d", offset);
1621   st->print(" in ");
1622   adr_type()->dump_on(st);
1623   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1624   if (field() != NULL && tjp) {
1625     if (tjp->klass()  != field()->holder() ||
1626         tjp->offset() != field()->offset_in_bytes()) {
1627       st->print(" != ");
1628       field()->print();
1629       st->print(" ***");
1630     }
1631   }
1632 }
1633 
1634 void print_alias_types() {
1635   Compile* C = Compile::current();
1636   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1637   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1638     C->alias_type(idx)->print_on(tty);
1639     tty->cr();
1640   }
1641 }
1642 #endif
1643 
1644 
1645 //----------------------------probe_alias_cache--------------------------------
1646 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1647   intptr_t key = (intptr_t) adr_type;
1648   key ^= key >> logAliasCacheSize;
1649   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1650 }
1651 
1652 
1653 //-----------------------------grow_alias_types--------------------------------
1654 void Compile::grow_alias_types() {
1655   const int old_ats  = _max_alias_types; // how many before?
1656   const int new_ats  = old_ats;          // how many more?
1657   const int grow_ats = old_ats+new_ats;  // how many now?
1658   _max_alias_types = grow_ats;
1659   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1660   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1661   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1662   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1663 }
1664 
1665 
1666 //--------------------------------find_alias_type------------------------------
1667 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1668   if (_AliasLevel == 0)
1669     return alias_type(AliasIdxBot);
1670 
1671   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1672   if (ace->_adr_type == adr_type) {
1673     return alias_type(ace->_index);
1674   }
1675 
1676   // Handle special cases.
1677   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1678   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1679 
1680   // Do it the slow way.
1681   const TypePtr* flat = flatten_alias_type(adr_type);
1682 
1683 #ifdef ASSERT
1684   {
1685     ResourceMark rm;
1686     assert(flat == flatten_alias_type(flat),
1687            err_msg("not idempotent: adr_type = %s; flat = %s => %s", Type::str(adr_type),
1688                    Type::str(flat), Type::str(flatten_alias_type(flat))));
1689     assert(flat != TypePtr::BOTTOM,
1690            err_msg("cannot alias-analyze an untyped ptr: adr_type = %s", Type::str(adr_type)));
1691     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1692       const TypeOopPtr* foop = flat->is_oopptr();
1693       // Scalarizable allocations have exact klass always.
1694       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1695       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1696       assert(foop == flatten_alias_type(xoop),
1697              err_msg("exactness must not affect alias type: foop = %s; xoop = %s",
1698                      Type::str(foop), Type::str(xoop)));
1699     }
1700   }
1701 #endif
1702 
1703   int idx = AliasIdxTop;
1704   for (int i = 0; i < num_alias_types(); i++) {
1705     if (alias_type(i)->adr_type() == flat) {
1706       idx = i;
1707       break;
1708     }
1709   }
1710 
1711   if (idx == AliasIdxTop) {
1712     if (no_create)  return NULL;
1713     // Grow the array if necessary.
1714     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1715     // Add a new alias type.
1716     idx = _num_alias_types++;
1717     _alias_types[idx]->Init(idx, flat);
1718     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1719     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1720     if (flat->isa_instptr()) {
1721       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1722           && flat->is_instptr()->klass() == env()->Class_klass())
1723         alias_type(idx)->set_rewritable(false);
1724     }
1725     if (flat->isa_aryptr()) {
1726 #ifdef ASSERT
1727       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1728       // (T_BYTE has the weakest alignment and size restrictions...)
1729       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1730 #endif
1731       if (flat->offset() == TypePtr::OffsetBot) {
1732         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1733       }
1734     }
1735     if (flat->isa_klassptr()) {
1736       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1737         alias_type(idx)->set_rewritable(false);
1738       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1739         alias_type(idx)->set_rewritable(false);
1740       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1741         alias_type(idx)->set_rewritable(false);
1742       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1743         alias_type(idx)->set_rewritable(false);
1744     }
1745     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1746     // but the base pointer type is not distinctive enough to identify
1747     // references into JavaThread.)
1748 
1749     // Check for final fields.
1750     const TypeInstPtr* tinst = flat->isa_instptr();
1751     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1752       ciField* field;
1753       if (tinst->const_oop() != NULL &&
1754           tinst->klass() == ciEnv::current()->Class_klass() &&
1755           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1756         // static field
1757         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1758         field = k->get_field_by_offset(tinst->offset(), true);
1759       } else {
1760         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1761         field = k->get_field_by_offset(tinst->offset(), false);
1762       }
1763       assert(field == NULL ||
1764              original_field == NULL ||
1765              (field->holder() == original_field->holder() &&
1766               field->offset() == original_field->offset() &&
1767               field->is_static() == original_field->is_static()), "wrong field?");
1768       // Set field() and is_rewritable() attributes.
1769       if (field != NULL)  alias_type(idx)->set_field(field);
1770     }
1771   }
1772 
1773   // Fill the cache for next time.
1774   ace->_adr_type = adr_type;
1775   ace->_index    = idx;
1776   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1777 
1778   // Might as well try to fill the cache for the flattened version, too.
1779   AliasCacheEntry* face = probe_alias_cache(flat);
1780   if (face->_adr_type == NULL) {
1781     face->_adr_type = flat;
1782     face->_index    = idx;
1783     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1784   }
1785 
1786   return alias_type(idx);
1787 }
1788 
1789 
1790 Compile::AliasType* Compile::alias_type(ciField* field) {
1791   const TypeOopPtr* t;
1792   if (field->is_static())
1793     t = TypeInstPtr::make(field->holder()->java_mirror());
1794   else
1795     t = TypeOopPtr::make_from_klass_raw(field->holder());
1796   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1797   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1798   return atp;
1799 }
1800 
1801 
1802 //------------------------------have_alias_type--------------------------------
1803 bool Compile::have_alias_type(const TypePtr* adr_type) {
1804   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1805   if (ace->_adr_type == adr_type) {
1806     return true;
1807   }
1808 
1809   // Handle special cases.
1810   if (adr_type == NULL)             return true;
1811   if (adr_type == TypePtr::BOTTOM)  return true;
1812 
1813   return find_alias_type(adr_type, true, NULL) != NULL;
1814 }
1815 
1816 //-----------------------------must_alias--------------------------------------
1817 // True if all values of the given address type are in the given alias category.
1818 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1819   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1820   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1821   if (alias_idx == AliasIdxTop)         return false; // the empty category
1822   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1823 
1824   // the only remaining possible overlap is identity
1825   int adr_idx = get_alias_index(adr_type);
1826   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1827   assert(adr_idx == alias_idx ||
1828          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1829           && adr_type                       != TypeOopPtr::BOTTOM),
1830          "should not be testing for overlap with an unsafe pointer");
1831   return adr_idx == alias_idx;
1832 }
1833 
1834 //------------------------------can_alias--------------------------------------
1835 // True if any values of the given address type are in the given alias category.
1836 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1837   if (alias_idx == AliasIdxTop)         return false; // the empty category
1838   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1839   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1840   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1841 
1842   // the only remaining possible overlap is identity
1843   int adr_idx = get_alias_index(adr_type);
1844   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1845   return adr_idx == alias_idx;
1846 }
1847 
1848 
1849 
1850 //---------------------------pop_warm_call-------------------------------------
1851 WarmCallInfo* Compile::pop_warm_call() {
1852   WarmCallInfo* wci = _warm_calls;
1853   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1854   return wci;
1855 }
1856 
1857 //----------------------------Inline_Warm--------------------------------------
1858 int Compile::Inline_Warm() {
1859   // If there is room, try to inline some more warm call sites.
1860   // %%% Do a graph index compaction pass when we think we're out of space?
1861   if (!InlineWarmCalls)  return 0;
1862 
1863   int calls_made_hot = 0;
1864   int room_to_grow   = NodeCountInliningCutoff - unique();
1865   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1866   int amount_grown   = 0;
1867   WarmCallInfo* call;
1868   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1869     int est_size = (int)call->size();
1870     if (est_size > (room_to_grow - amount_grown)) {
1871       // This one won't fit anyway.  Get rid of it.
1872       call->make_cold();
1873       continue;
1874     }
1875     call->make_hot();
1876     calls_made_hot++;
1877     amount_grown   += est_size;
1878     amount_to_grow -= est_size;
1879   }
1880 
1881   if (calls_made_hot > 0)  set_major_progress();
1882   return calls_made_hot;
1883 }
1884 
1885 
1886 //----------------------------Finish_Warm--------------------------------------
1887 void Compile::Finish_Warm() {
1888   if (!InlineWarmCalls)  return;
1889   if (failing())  return;
1890   if (warm_calls() == NULL)  return;
1891 
1892   // Clean up loose ends, if we are out of space for inlining.
1893   WarmCallInfo* call;
1894   while ((call = pop_warm_call()) != NULL) {
1895     call->make_cold();
1896   }
1897 }
1898 
1899 //---------------------cleanup_loop_predicates-----------------------
1900 // Remove the opaque nodes that protect the predicates so that all unused
1901 // checks and uncommon_traps will be eliminated from the ideal graph
1902 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1903   if (predicate_count()==0) return;
1904   for (int i = predicate_count(); i > 0; i--) {
1905     Node * n = predicate_opaque1_node(i-1);
1906     assert(n->Opcode() == Op_Opaque1, "must be");
1907     igvn.replace_node(n, n->in(1));
1908   }
1909   assert(predicate_count()==0, "should be clean!");
1910 }
1911 
1912 void Compile::add_range_check_cast(Node* n) {
1913   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1914   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1915   _range_check_casts->append(n);
1916 }
1917 
1918 // Remove all range check dependent CastIINodes.
1919 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1920   for (int i = range_check_cast_count(); i > 0; i--) {
1921     Node* cast = range_check_cast_node(i-1);
1922     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1923     igvn.replace_node(cast, cast->in(1));
1924   }
1925   assert(range_check_cast_count() == 0, "should be empty");
1926 }
1927 
1928 // StringOpts and late inlining of string methods
1929 void Compile::inline_string_calls(bool parse_time) {
1930   {
1931     // remove useless nodes to make the usage analysis simpler
1932     ResourceMark rm;
1933     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1934   }
1935 
1936   {
1937     ResourceMark rm;
1938     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1939     PhaseStringOpts pso(initial_gvn(), for_igvn());
1940     print_method(PHASE_AFTER_STRINGOPTS, 3);
1941   }
1942 
1943   // now inline anything that we skipped the first time around
1944   if (!parse_time) {
1945     _late_inlines_pos = _late_inlines.length();
1946   }
1947 
1948   while (_string_late_inlines.length() > 0) {
1949     CallGenerator* cg = _string_late_inlines.pop();
1950     cg->do_late_inline();
1951     if (failing())  return;
1952   }
1953   _string_late_inlines.trunc_to(0);
1954 }
1955 
1956 // Late inlining of boxing methods
1957 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1958   if (_boxing_late_inlines.length() > 0) {
1959     assert(has_boxed_value(), "inconsistent");
1960 
1961     PhaseGVN* gvn = initial_gvn();
1962     set_inlining_incrementally(true);
1963 
1964     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1965     for_igvn()->clear();
1966     gvn->replace_with(&igvn);
1967 
1968     _late_inlines_pos = _late_inlines.length();
1969 
1970     while (_boxing_late_inlines.length() > 0) {
1971       CallGenerator* cg = _boxing_late_inlines.pop();
1972       cg->do_late_inline();
1973       if (failing())  return;
1974     }
1975     _boxing_late_inlines.trunc_to(0);
1976 
1977     {
1978       ResourceMark rm;
1979       PhaseRemoveUseless pru(gvn, for_igvn());
1980     }
1981 
1982     igvn = PhaseIterGVN(gvn);
1983     igvn.optimize();
1984 
1985     set_inlining_progress(false);
1986     set_inlining_incrementally(false);
1987   }
1988 }
1989 
1990 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1991   assert(IncrementalInline, "incremental inlining should be on");
1992   PhaseGVN* gvn = initial_gvn();
1993 
1994   set_inlining_progress(false);
1995   for_igvn()->clear();
1996   gvn->replace_with(&igvn);
1997 
1998   int i = 0;
1999 
2000   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2001     CallGenerator* cg = _late_inlines.at(i);
2002     _late_inlines_pos = i+1;
2003     cg->do_late_inline();
2004     if (failing())  return;
2005   }
2006   int j = 0;
2007   for (; i < _late_inlines.length(); i++, j++) {
2008     _late_inlines.at_put(j, _late_inlines.at(i));
2009   }
2010   _late_inlines.trunc_to(j);
2011 
2012   {
2013     ResourceMark rm;
2014     PhaseRemoveUseless pru(gvn, for_igvn());
2015   }
2016 
2017   igvn = PhaseIterGVN(gvn);
2018 }
2019 
2020 // Perform incremental inlining until bound on number of live nodes is reached
2021 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2022   PhaseGVN* gvn = initial_gvn();
2023 
2024   set_inlining_incrementally(true);
2025   set_inlining_progress(true);
2026   uint low_live_nodes = 0;
2027 
2028   while(inlining_progress() && _late_inlines.length() > 0) {
2029 
2030     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2031       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2032         // PhaseIdealLoop is expensive so we only try it once we are
2033         // out of live nodes and we only try it again if the previous
2034         // helped got the number of nodes down significantly
2035         PhaseIdealLoop ideal_loop( igvn, false, true );
2036         if (failing())  return;
2037         low_live_nodes = live_nodes();
2038         _major_progress = true;
2039       }
2040 
2041       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2042         break;
2043       }
2044     }
2045 
2046     inline_incrementally_one(igvn);
2047 
2048     if (failing())  return;
2049 
2050     igvn.optimize();
2051 
2052     if (failing())  return;
2053   }
2054 
2055   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2056 
2057   if (_string_late_inlines.length() > 0) {
2058     assert(has_stringbuilder(), "inconsistent");
2059     for_igvn()->clear();
2060     initial_gvn()->replace_with(&igvn);
2061 
2062     inline_string_calls(false);
2063 
2064     if (failing())  return;
2065 
2066     {
2067       ResourceMark rm;
2068       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2069     }
2070 
2071     igvn = PhaseIterGVN(gvn);
2072 
2073     igvn.optimize();
2074   }
2075 
2076   set_inlining_incrementally(false);
2077 }
2078 
2079 
2080 //------------------------------Optimize---------------------------------------
2081 // Given a graph, optimize it.
2082 void Compile::Optimize() {
2083   TracePhase t1("optimizer", &_t_optimizer, true);
2084 
2085 #ifndef PRODUCT
2086   if (env()->break_at_compile()) {
2087     BREAKPOINT;
2088   }
2089 
2090 #endif
2091 
2092   ResourceMark rm;
2093   int          loop_opts_cnt;
2094 
2095   NOT_PRODUCT( verify_graph_edges(); )
2096 
2097   print_method(PHASE_AFTER_PARSING);
2098 
2099  {
2100   // Iterative Global Value Numbering, including ideal transforms
2101   // Initialize IterGVN with types and values from parse-time GVN
2102   PhaseIterGVN igvn(initial_gvn());
2103   {
2104     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
2105     igvn.optimize();
2106   }
2107 
2108   print_method(PHASE_ITER_GVN1, 2);
2109 
2110   if (failing())  return;
2111 
2112   {
2113     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2114     inline_incrementally(igvn);
2115   }
2116 
2117   print_method(PHASE_INCREMENTAL_INLINE, 2);
2118 
2119   if (failing())  return;
2120 
2121   if (eliminate_boxing()) {
2122     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2123     // Inline valueOf() methods now.
2124     inline_boxing_calls(igvn);
2125 
2126     if (AlwaysIncrementalInline) {
2127       inline_incrementally(igvn);
2128     }
2129 
2130     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2131 
2132     if (failing())  return;
2133   }
2134 
2135   // Remove the speculative part of types and clean up the graph from
2136   // the extra CastPP nodes whose only purpose is to carry them. Do
2137   // that early so that optimizations are not disrupted by the extra
2138   // CastPP nodes.
2139   remove_speculative_types(igvn);
2140 
2141   // No more new expensive nodes will be added to the list from here
2142   // so keep only the actual candidates for optimizations.
2143   cleanup_expensive_nodes(igvn);
2144 
2145   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2146     NOT_PRODUCT(Compile::TracePhase t2("", &_t_renumberLive, TimeCompiler);)
2147     initial_gvn()->replace_with(&igvn);
2148     for_igvn()->clear();
2149     Unique_Node_List new_worklist(C->comp_arena());
2150     {
2151       ResourceMark rm;
2152       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2153     }
2154     set_for_igvn(&new_worklist);
2155     igvn = PhaseIterGVN(initial_gvn());
2156     igvn.optimize();
2157   }
2158 
2159   // Perform escape analysis
2160   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2161     if (has_loops()) {
2162       // Cleanup graph (remove dead nodes).
2163       TracePhase t2("idealLoop", &_t_idealLoop, true);
2164       PhaseIdealLoop ideal_loop( igvn, false, true );
2165       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2166       if (failing())  return;
2167     }
2168     ConnectionGraph::do_analysis(this, &igvn);
2169 
2170     if (failing())  return;
2171 
2172     // Optimize out fields loads from scalar replaceable allocations.
2173     igvn.optimize();
2174     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2175 
2176     if (failing())  return;
2177 
2178     if (congraph() != NULL && macro_count() > 0) {
2179       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2180       PhaseMacroExpand mexp(igvn);
2181       mexp.eliminate_macro_nodes();
2182       igvn.set_delay_transform(false);
2183 
2184       igvn.optimize();
2185       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2186 
2187       if (failing())  return;
2188     }
2189   }
2190 
2191   // Loop transforms on the ideal graph.  Range Check Elimination,
2192   // peeling, unrolling, etc.
2193 
2194   // Set loop opts counter
2195   loop_opts_cnt = num_loop_opts();
2196   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2197     {
2198       TracePhase t2("idealLoop", &_t_idealLoop, true);
2199       PhaseIdealLoop ideal_loop( igvn, true );
2200       loop_opts_cnt--;
2201       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2202       if (failing())  return;
2203     }
2204     // Loop opts pass if partial peeling occurred in previous pass
2205     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2206       TracePhase t3("idealLoop", &_t_idealLoop, true);
2207       PhaseIdealLoop ideal_loop( igvn, false );
2208       loop_opts_cnt--;
2209       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2210       if (failing())  return;
2211     }
2212     // Loop opts pass for loop-unrolling before CCP
2213     if(major_progress() && (loop_opts_cnt > 0)) {
2214       TracePhase t4("idealLoop", &_t_idealLoop, true);
2215       PhaseIdealLoop ideal_loop( igvn, false );
2216       loop_opts_cnt--;
2217       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2218     }
2219     if (!failing()) {
2220       // Verify that last round of loop opts produced a valid graph
2221       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2222       PhaseIdealLoop::verify(igvn);
2223     }
2224   }
2225   if (failing())  return;
2226 
2227   // Conditional Constant Propagation;
2228   PhaseCCP ccp( &igvn );
2229   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2230   {
2231     TracePhase t2("ccp", &_t_ccp, true);
2232     ccp.do_transform();
2233   }
2234   print_method(PHASE_CPP1, 2);
2235 
2236   assert( true, "Break here to ccp.dump_old2new_map()");
2237 
2238   // Iterative Global Value Numbering, including ideal transforms
2239   {
2240     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2241     igvn = ccp;
2242     igvn.optimize();
2243   }
2244 
2245   print_method(PHASE_ITER_GVN2, 2);
2246 
2247   if (failing())  return;
2248 
2249   // Loop transforms on the ideal graph.  Range Check Elimination,
2250   // peeling, unrolling, etc.
2251   if(loop_opts_cnt > 0) {
2252     debug_only( int cnt = 0; );
2253     while(major_progress() && (loop_opts_cnt > 0)) {
2254       TracePhase t2("idealLoop", &_t_idealLoop, true);
2255       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2256       PhaseIdealLoop ideal_loop( igvn, true);
2257       loop_opts_cnt--;
2258       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2259       if (failing())  return;
2260     }
2261   }
2262 
2263   {
2264     // Verify that all previous optimizations produced a valid graph
2265     // at least to this point, even if no loop optimizations were done.
2266     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2267     PhaseIdealLoop::verify(igvn);
2268   }
2269 
2270   if (range_check_cast_count() > 0) {
2271     // No more loop optimizations. Remove all range check dependent CastIINodes.
2272     C->remove_range_check_casts(igvn);
2273     igvn.optimize();
2274   }
2275 
2276   {
2277     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2278     PhaseMacroExpand  mex(igvn);
2279     if (mex.expand_macro_nodes()) {
2280       assert(failing(), "must bail out w/ explicit message");
2281       return;
2282     }
2283   }
2284 
2285  } // (End scope of igvn; run destructor if necessary for asserts.)
2286 
2287   dump_inlining();
2288   // A method with only infinite loops has no edges entering loops from root
2289   {
2290     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2291     if (final_graph_reshaping()) {
2292       assert(failing(), "must bail out w/ explicit message");
2293       return;
2294     }
2295   }
2296 
2297   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2298 }
2299 
2300 
2301 //------------------------------Code_Gen---------------------------------------
2302 // Given a graph, generate code for it
2303 void Compile::Code_Gen() {
2304   if (failing()) {
2305     return;
2306   }
2307 
2308   // Perform instruction selection.  You might think we could reclaim Matcher
2309   // memory PDQ, but actually the Matcher is used in generating spill code.
2310   // Internals of the Matcher (including some VectorSets) must remain live
2311   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2312   // set a bit in reclaimed memory.
2313 
2314   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2315   // nodes.  Mapping is only valid at the root of each matched subtree.
2316   NOT_PRODUCT( verify_graph_edges(); )
2317 
2318   Matcher matcher;
2319   _matcher = &matcher;
2320   {
2321     TracePhase t2("matcher", &_t_matcher, true);
2322     matcher.match();
2323   }
2324   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2325   // nodes.  Mapping is only valid at the root of each matched subtree.
2326   NOT_PRODUCT( verify_graph_edges(); )
2327 
2328   // If you have too many nodes, or if matching has failed, bail out
2329   check_node_count(0, "out of nodes matching instructions");
2330   if (failing()) {
2331     return;
2332   }
2333 
2334   // Build a proper-looking CFG
2335   PhaseCFG cfg(node_arena(), root(), matcher);
2336   _cfg = &cfg;
2337   {
2338     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2339     bool success = cfg.do_global_code_motion();
2340     if (!success) {
2341       return;
2342     }
2343 
2344     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2345     NOT_PRODUCT( verify_graph_edges(); )
2346     debug_only( cfg.verify(); )
2347   }
2348 
2349   PhaseChaitin regalloc(unique(), cfg, matcher);
2350   _regalloc = &regalloc;
2351   {
2352     TracePhase t2("regalloc", &_t_registerAllocation, true);
2353     // Perform register allocation.  After Chaitin, use-def chains are
2354     // no longer accurate (at spill code) and so must be ignored.
2355     // Node->LRG->reg mappings are still accurate.
2356     _regalloc->Register_Allocate();
2357 
2358     // Bail out if the allocator builds too many nodes
2359     if (failing()) {
2360       return;
2361     }
2362   }
2363 
2364   // Prior to register allocation we kept empty basic blocks in case the
2365   // the allocator needed a place to spill.  After register allocation we
2366   // are not adding any new instructions.  If any basic block is empty, we
2367   // can now safely remove it.
2368   {
2369     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2370     cfg.remove_empty_blocks();
2371     if (do_freq_based_layout()) {
2372       PhaseBlockLayout layout(cfg);
2373     } else {
2374       cfg.set_loop_alignment();
2375     }
2376     cfg.fixup_flow();
2377   }
2378 
2379   // Apply peephole optimizations
2380   if( OptoPeephole ) {
2381     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2382     PhasePeephole peep( _regalloc, cfg);
2383     peep.do_transform();
2384   }
2385 
2386   // Do late expand if CPU requires this.
2387   if (Matcher::require_postalloc_expand) {
2388     NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
2389     cfg.postalloc_expand(_regalloc);
2390   }
2391 
2392   // Convert Nodes to instruction bits in a buffer
2393   {
2394     // %%%% workspace merge brought two timers together for one job
2395     TracePhase t2a("output", &_t_output, true);
2396     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2397     Output();
2398   }
2399 
2400   print_method(PHASE_FINAL_CODE);
2401 
2402   // He's dead, Jim.
2403   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
2404   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2405 }
2406 
2407 
2408 //------------------------------dump_asm---------------------------------------
2409 // Dump formatted assembly
2410 #ifndef PRODUCT
2411 void Compile::dump_asm(int *pcs, uint pc_limit) {
2412   bool cut_short = false;
2413   tty->print_cr("#");
2414   tty->print("#  ");  _tf->dump();  tty->cr();
2415   tty->print_cr("#");
2416 
2417   // For all blocks
2418   int pc = 0x0;                 // Program counter
2419   char starts_bundle = ' ';
2420   _regalloc->dump_frame();
2421 
2422   Node *n = NULL;
2423   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2424     if (VMThread::should_terminate()) {
2425       cut_short = true;
2426       break;
2427     }
2428     Block* block = _cfg->get_block(i);
2429     if (block->is_connector() && !Verbose) {
2430       continue;
2431     }
2432     n = block->head();
2433     if (pcs && n->_idx < pc_limit) {
2434       tty->print("%3.3x   ", pcs[n->_idx]);
2435     } else {
2436       tty->print("      ");
2437     }
2438     block->dump_head(_cfg);
2439     if (block->is_connector()) {
2440       tty->print_cr("        # Empty connector block");
2441     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2442       tty->print_cr("        # Block is sole successor of call");
2443     }
2444 
2445     // For all instructions
2446     Node *delay = NULL;
2447     for (uint j = 0; j < block->number_of_nodes(); j++) {
2448       if (VMThread::should_terminate()) {
2449         cut_short = true;
2450         break;
2451       }
2452       n = block->get_node(j);
2453       if (valid_bundle_info(n)) {
2454         Bundle* bundle = node_bundling(n);
2455         if (bundle->used_in_unconditional_delay()) {
2456           delay = n;
2457           continue;
2458         }
2459         if (bundle->starts_bundle()) {
2460           starts_bundle = '+';
2461         }
2462       }
2463 
2464       if (WizardMode) {
2465         n->dump();
2466       }
2467 
2468       if( !n->is_Region() &&    // Dont print in the Assembly
2469           !n->is_Phi() &&       // a few noisely useless nodes
2470           !n->is_Proj() &&
2471           !n->is_MachTemp() &&
2472           !n->is_SafePointScalarObject() &&
2473           !n->is_Catch() &&     // Would be nice to print exception table targets
2474           !n->is_MergeMem() &&  // Not very interesting
2475           !n->is_top() &&       // Debug info table constants
2476           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2477           ) {
2478         if (pcs && n->_idx < pc_limit)
2479           tty->print("%3.3x", pcs[n->_idx]);
2480         else
2481           tty->print("   ");
2482         tty->print(" %c ", starts_bundle);
2483         starts_bundle = ' ';
2484         tty->print("\t");
2485         n->format(_regalloc, tty);
2486         tty->cr();
2487       }
2488 
2489       // If we have an instruction with a delay slot, and have seen a delay,
2490       // then back up and print it
2491       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2492         assert(delay != NULL, "no unconditional delay instruction");
2493         if (WizardMode) delay->dump();
2494 
2495         if (node_bundling(delay)->starts_bundle())
2496           starts_bundle = '+';
2497         if (pcs && n->_idx < pc_limit)
2498           tty->print("%3.3x", pcs[n->_idx]);
2499         else
2500           tty->print("   ");
2501         tty->print(" %c ", starts_bundle);
2502         starts_bundle = ' ';
2503         tty->print("\t");
2504         delay->format(_regalloc, tty);
2505         tty->cr();
2506         delay = NULL;
2507       }
2508 
2509       // Dump the exception table as well
2510       if( n->is_Catch() && (Verbose || WizardMode) ) {
2511         // Print the exception table for this offset
2512         _handler_table.print_subtable_for(pc);
2513       }
2514     }
2515 
2516     if (pcs && n->_idx < pc_limit)
2517       tty->print_cr("%3.3x", pcs[n->_idx]);
2518     else
2519       tty->cr();
2520 
2521     assert(cut_short || delay == NULL, "no unconditional delay branch");
2522 
2523   } // End of per-block dump
2524   tty->cr();
2525 
2526   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2527 }
2528 #endif
2529 
2530 //------------------------------Final_Reshape_Counts---------------------------
2531 // This class defines counters to help identify when a method
2532 // may/must be executed using hardware with only 24-bit precision.
2533 struct Final_Reshape_Counts : public StackObj {
2534   int  _call_count;             // count non-inlined 'common' calls
2535   int  _float_count;            // count float ops requiring 24-bit precision
2536   int  _double_count;           // count double ops requiring more precision
2537   int  _java_call_count;        // count non-inlined 'java' calls
2538   int  _inner_loop_count;       // count loops which need alignment
2539   VectorSet _visited;           // Visitation flags
2540   Node_List _tests;             // Set of IfNodes & PCTableNodes
2541 
2542   Final_Reshape_Counts() :
2543     _call_count(0), _float_count(0), _double_count(0),
2544     _java_call_count(0), _inner_loop_count(0),
2545     _visited( Thread::current()->resource_area() ) { }
2546 
2547   void inc_call_count  () { _call_count  ++; }
2548   void inc_float_count () { _float_count ++; }
2549   void inc_double_count() { _double_count++; }
2550   void inc_java_call_count() { _java_call_count++; }
2551   void inc_inner_loop_count() { _inner_loop_count++; }
2552 
2553   int  get_call_count  () const { return _call_count  ; }
2554   int  get_float_count () const { return _float_count ; }
2555   int  get_double_count() const { return _double_count; }
2556   int  get_java_call_count() const { return _java_call_count; }
2557   int  get_inner_loop_count() const { return _inner_loop_count; }
2558 };
2559 
2560 #ifdef ASSERT
2561 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2562   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2563   // Make sure the offset goes inside the instance layout.
2564   return k->contains_field_offset(tp->offset());
2565   // Note that OffsetBot and OffsetTop are very negative.
2566 }
2567 #endif
2568 
2569 // Eliminate trivially redundant StoreCMs and accumulate their
2570 // precedence edges.
2571 void Compile::eliminate_redundant_card_marks(Node* n) {
2572   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2573   if (n->in(MemNode::Address)->outcnt() > 1) {
2574     // There are multiple users of the same address so it might be
2575     // possible to eliminate some of the StoreCMs
2576     Node* mem = n->in(MemNode::Memory);
2577     Node* adr = n->in(MemNode::Address);
2578     Node* val = n->in(MemNode::ValueIn);
2579     Node* prev = n;
2580     bool done = false;
2581     // Walk the chain of StoreCMs eliminating ones that match.  As
2582     // long as it's a chain of single users then the optimization is
2583     // safe.  Eliminating partially redundant StoreCMs would require
2584     // cloning copies down the other paths.
2585     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2586       if (adr == mem->in(MemNode::Address) &&
2587           val == mem->in(MemNode::ValueIn)) {
2588         // redundant StoreCM
2589         if (mem->req() > MemNode::OopStore) {
2590           // Hasn't been processed by this code yet.
2591           n->add_prec(mem->in(MemNode::OopStore));
2592         } else {
2593           // Already converted to precedence edge
2594           for (uint i = mem->req(); i < mem->len(); i++) {
2595             // Accumulate any precedence edges
2596             if (mem->in(i) != NULL) {
2597               n->add_prec(mem->in(i));
2598             }
2599           }
2600           // Everything above this point has been processed.
2601           done = true;
2602         }
2603         // Eliminate the previous StoreCM
2604         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2605         assert(mem->outcnt() == 0, "should be dead");
2606         mem->disconnect_inputs(NULL, this);
2607       } else {
2608         prev = mem;
2609       }
2610       mem = prev->in(MemNode::Memory);
2611     }
2612   }
2613 }
2614 
2615 //------------------------------final_graph_reshaping_impl----------------------
2616 // Implement items 1-5 from final_graph_reshaping below.
2617 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2618 
2619   if ( n->outcnt() == 0 ) return; // dead node
2620   uint nop = n->Opcode();
2621 
2622   // Check for 2-input instruction with "last use" on right input.
2623   // Swap to left input.  Implements item (2).
2624   if( n->req() == 3 &&          // two-input instruction
2625       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2626       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2627       n->in(2)->outcnt() == 1 &&// right use IS a last use
2628       !n->in(2)->is_Con() ) {   // right use is not a constant
2629     // Check for commutative opcode
2630     switch( nop ) {
2631     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2632     case Op_MaxI:  case Op_MinI:
2633     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2634     case Op_AndL:  case Op_XorL:  case Op_OrL:
2635     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2636       // Move "last use" input to left by swapping inputs
2637       n->swap_edges(1, 2);
2638       break;
2639     }
2640     default:
2641       break;
2642     }
2643   }
2644 
2645 #ifdef ASSERT
2646   if( n->is_Mem() ) {
2647     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2648     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2649             // oop will be recorded in oop map if load crosses safepoint
2650             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2651                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2652             "raw memory operations should have control edge");
2653   }
2654 #endif
2655   // Count FPU ops and common calls, implements item (3)
2656   switch( nop ) {
2657   // Count all float operations that may use FPU
2658   case Op_AddF:
2659   case Op_SubF:
2660   case Op_MulF:
2661   case Op_DivF:
2662   case Op_NegF:
2663   case Op_ModF:
2664   case Op_ConvI2F:
2665   case Op_ConF:
2666   case Op_CmpF:
2667   case Op_CmpF3:
2668   // case Op_ConvL2F: // longs are split into 32-bit halves
2669     frc.inc_float_count();
2670     break;
2671 
2672   case Op_ConvF2D:
2673   case Op_ConvD2F:
2674     frc.inc_float_count();
2675     frc.inc_double_count();
2676     break;
2677 
2678   // Count all double operations that may use FPU
2679   case Op_AddD:
2680   case Op_SubD:
2681   case Op_MulD:
2682   case Op_DivD:
2683   case Op_NegD:
2684   case Op_ModD:
2685   case Op_ConvI2D:
2686   case Op_ConvD2I:
2687   // case Op_ConvL2D: // handled by leaf call
2688   // case Op_ConvD2L: // handled by leaf call
2689   case Op_ConD:
2690   case Op_CmpD:
2691   case Op_CmpD3:
2692     frc.inc_double_count();
2693     break;
2694   case Op_Opaque1:              // Remove Opaque Nodes before matching
2695   case Op_Opaque2:              // Remove Opaque Nodes before matching
2696   case Op_Opaque3:
2697     n->subsume_by(n->in(1), this);
2698     break;
2699   case Op_CallStaticJava:
2700   case Op_CallJava:
2701   case Op_CallDynamicJava:
2702     frc.inc_java_call_count(); // Count java call site;
2703   case Op_CallRuntime:
2704   case Op_CallLeaf:
2705   case Op_CallLeafNoFP: {
2706     assert( n->is_Call(), "" );
2707     CallNode *call = n->as_Call();
2708     // Count call sites where the FP mode bit would have to be flipped.
2709     // Do not count uncommon runtime calls:
2710     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2711     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2712     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2713       frc.inc_call_count();   // Count the call site
2714     } else {                  // See if uncommon argument is shared
2715       Node *n = call->in(TypeFunc::Parms);
2716       int nop = n->Opcode();
2717       // Clone shared simple arguments to uncommon calls, item (1).
2718       if( n->outcnt() > 1 &&
2719           !n->is_Proj() &&
2720           nop != Op_CreateEx &&
2721           nop != Op_CheckCastPP &&
2722           nop != Op_DecodeN &&
2723           nop != Op_DecodeNKlass &&
2724           !n->is_Mem() ) {
2725         Node *x = n->clone();
2726         call->set_req( TypeFunc::Parms, x );
2727       }
2728     }
2729     break;
2730   }
2731 
2732   case Op_StoreD:
2733   case Op_LoadD:
2734   case Op_LoadD_unaligned:
2735     frc.inc_double_count();
2736     goto handle_mem;
2737   case Op_StoreF:
2738   case Op_LoadF:
2739     frc.inc_float_count();
2740     goto handle_mem;
2741 
2742   case Op_StoreCM:
2743     {
2744       // Convert OopStore dependence into precedence edge
2745       Node* prec = n->in(MemNode::OopStore);
2746       n->del_req(MemNode::OopStore);
2747       n->add_prec(prec);
2748       eliminate_redundant_card_marks(n);
2749     }
2750 
2751     // fall through
2752 
2753   case Op_StoreB:
2754   case Op_StoreC:
2755   case Op_StorePConditional:
2756   case Op_StoreI:
2757   case Op_StoreL:
2758   case Op_StoreIConditional:
2759   case Op_StoreLConditional:
2760   case Op_CompareAndSwapI:
2761   case Op_CompareAndSwapL:
2762   case Op_CompareAndSwapP:
2763   case Op_CompareAndSwapN:
2764   case Op_GetAndAddI:
2765   case Op_GetAndAddL:
2766   case Op_GetAndSetI:
2767   case Op_GetAndSetL:
2768   case Op_GetAndSetP:
2769   case Op_GetAndSetN:
2770   case Op_StoreP:
2771   case Op_StoreN:
2772   case Op_StoreNKlass:
2773   case Op_LoadB:
2774   case Op_LoadUB:
2775   case Op_LoadUS:
2776   case Op_LoadI:
2777   case Op_LoadKlass:
2778   case Op_LoadNKlass:
2779   case Op_LoadL:
2780   case Op_LoadL_unaligned:
2781   case Op_LoadPLocked:
2782   case Op_LoadP:
2783   case Op_LoadN:
2784   case Op_LoadRange:
2785   case Op_LoadS: {
2786   handle_mem:
2787 #ifdef ASSERT
2788     if( VerifyOptoOopOffsets ) {
2789       assert( n->is_Mem(), "" );
2790       MemNode *mem  = (MemNode*)n;
2791       // Check to see if address types have grounded out somehow.
2792       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2793       assert( !tp || oop_offset_is_sane(tp), "" );
2794     }
2795 #endif
2796     break;
2797   }
2798 
2799   case Op_AddP: {               // Assert sane base pointers
2800     Node *addp = n->in(AddPNode::Address);
2801     assert( !addp->is_AddP() ||
2802             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2803             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2804             "Base pointers must match" );
2805 #ifdef _LP64
2806     if ((UseCompressedOops || UseCompressedClassPointers) &&
2807         addp->Opcode() == Op_ConP &&
2808         addp == n->in(AddPNode::Base) &&
2809         n->in(AddPNode::Offset)->is_Con()) {
2810       // Use addressing with narrow klass to load with offset on x86.
2811       // On sparc loading 32-bits constant and decoding it have less
2812       // instructions (4) then load 64-bits constant (7).
2813       // Do this transformation here since IGVN will convert ConN back to ConP.
2814       const Type* t = addp->bottom_type();
2815       if (t->isa_oopptr() || t->isa_klassptr()) {
2816         Node* nn = NULL;
2817 
2818         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2819 
2820         // Look for existing ConN node of the same exact type.
2821         Node* r  = root();
2822         uint cnt = r->outcnt();
2823         for (uint i = 0; i < cnt; i++) {
2824           Node* m = r->raw_out(i);
2825           if (m!= NULL && m->Opcode() == op &&
2826               m->bottom_type()->make_ptr() == t) {
2827             nn = m;
2828             break;
2829           }
2830         }
2831         if (nn != NULL) {
2832           // Decode a narrow oop to match address
2833           // [R12 + narrow_oop_reg<<3 + offset]
2834           if (t->isa_oopptr()) {
2835             nn = new (this) DecodeNNode(nn, t);
2836           } else {
2837             nn = new (this) DecodeNKlassNode(nn, t);
2838           }
2839           n->set_req(AddPNode::Base, nn);
2840           n->set_req(AddPNode::Address, nn);
2841           if (addp->outcnt() == 0) {
2842             addp->disconnect_inputs(NULL, this);
2843           }
2844         }
2845       }
2846     }
2847 #endif
2848     break;
2849   }
2850 
2851 #ifdef _LP64
2852   case Op_CastPP:
2853     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2854       Node* in1 = n->in(1);
2855       const Type* t = n->bottom_type();
2856       Node* new_in1 = in1->clone();
2857       new_in1->as_DecodeN()->set_type(t);
2858 
2859       if (!Matcher::narrow_oop_use_complex_address()) {
2860         //
2861         // x86, ARM and friends can handle 2 adds in addressing mode
2862         // and Matcher can fold a DecodeN node into address by using
2863         // a narrow oop directly and do implicit NULL check in address:
2864         //
2865         // [R12 + narrow_oop_reg<<3 + offset]
2866         // NullCheck narrow_oop_reg
2867         //
2868         // On other platforms (Sparc) we have to keep new DecodeN node and
2869         // use it to do implicit NULL check in address:
2870         //
2871         // decode_not_null narrow_oop_reg, base_reg
2872         // [base_reg + offset]
2873         // NullCheck base_reg
2874         //
2875         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2876         // to keep the information to which NULL check the new DecodeN node
2877         // corresponds to use it as value in implicit_null_check().
2878         //
2879         new_in1->set_req(0, n->in(0));
2880       }
2881 
2882       n->subsume_by(new_in1, this);
2883       if (in1->outcnt() == 0) {
2884         in1->disconnect_inputs(NULL, this);
2885       }
2886     }
2887     break;
2888 
2889   case Op_CmpP:
2890     // Do this transformation here to preserve CmpPNode::sub() and
2891     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2892     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2893       Node* in1 = n->in(1);
2894       Node* in2 = n->in(2);
2895       if (!in1->is_DecodeNarrowPtr()) {
2896         in2 = in1;
2897         in1 = n->in(2);
2898       }
2899       assert(in1->is_DecodeNarrowPtr(), "sanity");
2900 
2901       Node* new_in2 = NULL;
2902       if (in2->is_DecodeNarrowPtr()) {
2903         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2904         new_in2 = in2->in(1);
2905       } else if (in2->Opcode() == Op_ConP) {
2906         const Type* t = in2->bottom_type();
2907         if (t == TypePtr::NULL_PTR) {
2908           assert(in1->is_DecodeN(), "compare klass to null?");
2909           // Don't convert CmpP null check into CmpN if compressed
2910           // oops implicit null check is not generated.
2911           // This will allow to generate normal oop implicit null check.
2912           if (Matcher::gen_narrow_oop_implicit_null_checks())
2913             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2914           //
2915           // This transformation together with CastPP transformation above
2916           // will generated code for implicit NULL checks for compressed oops.
2917           //
2918           // The original code after Optimize()
2919           //
2920           //    LoadN memory, narrow_oop_reg
2921           //    decode narrow_oop_reg, base_reg
2922           //    CmpP base_reg, NULL
2923           //    CastPP base_reg // NotNull
2924           //    Load [base_reg + offset], val_reg
2925           //
2926           // after these transformations will be
2927           //
2928           //    LoadN memory, narrow_oop_reg
2929           //    CmpN narrow_oop_reg, NULL
2930           //    decode_not_null narrow_oop_reg, base_reg
2931           //    Load [base_reg + offset], val_reg
2932           //
2933           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2934           // since narrow oops can be used in debug info now (see the code in
2935           // final_graph_reshaping_walk()).
2936           //
2937           // At the end the code will be matched to
2938           // on x86:
2939           //
2940           //    Load_narrow_oop memory, narrow_oop_reg
2941           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2942           //    NullCheck narrow_oop_reg
2943           //
2944           // and on sparc:
2945           //
2946           //    Load_narrow_oop memory, narrow_oop_reg
2947           //    decode_not_null narrow_oop_reg, base_reg
2948           //    Load [base_reg + offset], val_reg
2949           //    NullCheck base_reg
2950           //
2951         } else if (t->isa_oopptr()) {
2952           new_in2 = ConNode::make(this, t->make_narrowoop());
2953         } else if (t->isa_klassptr()) {
2954           new_in2 = ConNode::make(this, t->make_narrowklass());
2955         }
2956       }
2957       if (new_in2 != NULL) {
2958         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2959         n->subsume_by(cmpN, this);
2960         if (in1->outcnt() == 0) {
2961           in1->disconnect_inputs(NULL, this);
2962         }
2963         if (in2->outcnt() == 0) {
2964           in2->disconnect_inputs(NULL, this);
2965         }
2966       }
2967     }
2968     break;
2969 
2970   case Op_DecodeN:
2971   case Op_DecodeNKlass:
2972     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2973     // DecodeN could be pinned when it can't be fold into
2974     // an address expression, see the code for Op_CastPP above.
2975     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2976     break;
2977 
2978   case Op_EncodeP:
2979   case Op_EncodePKlass: {
2980     Node* in1 = n->in(1);
2981     if (in1->is_DecodeNarrowPtr()) {
2982       n->subsume_by(in1->in(1), this);
2983     } else if (in1->Opcode() == Op_ConP) {
2984       const Type* t = in1->bottom_type();
2985       if (t == TypePtr::NULL_PTR) {
2986         assert(t->isa_oopptr(), "null klass?");
2987         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2988       } else if (t->isa_oopptr()) {
2989         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2990       } else if (t->isa_klassptr()) {
2991         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2992       }
2993     }
2994     if (in1->outcnt() == 0) {
2995       in1->disconnect_inputs(NULL, this);
2996     }
2997     break;
2998   }
2999 
3000   case Op_Proj: {
3001     if (OptimizeStringConcat) {
3002       ProjNode* p = n->as_Proj();
3003       if (p->_is_io_use) {
3004         // Separate projections were used for the exception path which
3005         // are normally removed by a late inline.  If it wasn't inlined
3006         // then they will hang around and should just be replaced with
3007         // the original one.
3008         Node* proj = NULL;
3009         // Replace with just one
3010         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3011           Node *use = i.get();
3012           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3013             proj = use;
3014             break;
3015           }
3016         }
3017         assert(proj != NULL, "must be found");
3018         p->subsume_by(proj, this);
3019       }
3020     }
3021     break;
3022   }
3023 
3024   case Op_Phi:
3025     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3026       // The EncodeP optimization may create Phi with the same edges
3027       // for all paths. It is not handled well by Register Allocator.
3028       Node* unique_in = n->in(1);
3029       assert(unique_in != NULL, "");
3030       uint cnt = n->req();
3031       for (uint i = 2; i < cnt; i++) {
3032         Node* m = n->in(i);
3033         assert(m != NULL, "");
3034         if (unique_in != m)
3035           unique_in = NULL;
3036       }
3037       if (unique_in != NULL) {
3038         n->subsume_by(unique_in, this);
3039       }
3040     }
3041     break;
3042 
3043 #endif
3044 
3045 #ifdef ASSERT
3046   case Op_CastII:
3047     // Verify that all range check dependent CastII nodes were removed.
3048     if (n->isa_CastII()->has_range_check()) {
3049       n->dump(3);
3050       assert(false, "Range check dependent CastII node was not removed");
3051     }
3052     break;
3053 #endif
3054 
3055   case Op_ModI:
3056     if (UseDivMod) {
3057       // Check if a%b and a/b both exist
3058       Node* d = n->find_similar(Op_DivI);
3059       if (d) {
3060         // Replace them with a fused divmod if supported
3061         if (Matcher::has_match_rule(Op_DivModI)) {
3062           DivModINode* divmod = DivModINode::make(this, n);
3063           d->subsume_by(divmod->div_proj(), this);
3064           n->subsume_by(divmod->mod_proj(), this);
3065         } else {
3066           // replace a%b with a-((a/b)*b)
3067           Node* mult = new (this) MulINode(d, d->in(2));
3068           Node* sub  = new (this) SubINode(d->in(1), mult);
3069           n->subsume_by(sub, this);
3070         }
3071       }
3072     }
3073     break;
3074 
3075   case Op_ModL:
3076     if (UseDivMod) {
3077       // Check if a%b and a/b both exist
3078       Node* d = n->find_similar(Op_DivL);
3079       if (d) {
3080         // Replace them with a fused divmod if supported
3081         if (Matcher::has_match_rule(Op_DivModL)) {
3082           DivModLNode* divmod = DivModLNode::make(this, n);
3083           d->subsume_by(divmod->div_proj(), this);
3084           n->subsume_by(divmod->mod_proj(), this);
3085         } else {
3086           // replace a%b with a-((a/b)*b)
3087           Node* mult = new (this) MulLNode(d, d->in(2));
3088           Node* sub  = new (this) SubLNode(d->in(1), mult);
3089           n->subsume_by(sub, this);
3090         }
3091       }
3092     }
3093     break;
3094 
3095   case Op_LoadVector:
3096   case Op_StoreVector:
3097     break;
3098 
3099   case Op_PackB:
3100   case Op_PackS:
3101   case Op_PackI:
3102   case Op_PackF:
3103   case Op_PackL:
3104   case Op_PackD:
3105     if (n->req()-1 > 2) {
3106       // Replace many operand PackNodes with a binary tree for matching
3107       PackNode* p = (PackNode*) n;
3108       Node* btp = p->binary_tree_pack(this, 1, n->req());
3109       n->subsume_by(btp, this);
3110     }
3111     break;
3112   case Op_Loop:
3113   case Op_CountedLoop:
3114     if (n->as_Loop()->is_inner_loop()) {
3115       frc.inc_inner_loop_count();
3116     }
3117     break;
3118   case Op_LShiftI:
3119   case Op_RShiftI:
3120   case Op_URShiftI:
3121   case Op_LShiftL:
3122   case Op_RShiftL:
3123   case Op_URShiftL:
3124     if (Matcher::need_masked_shift_count) {
3125       // The cpu's shift instructions don't restrict the count to the
3126       // lower 5/6 bits. We need to do the masking ourselves.
3127       Node* in2 = n->in(2);
3128       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3129       const TypeInt* t = in2->find_int_type();
3130       if (t != NULL && t->is_con()) {
3131         juint shift = t->get_con();
3132         if (shift > mask) { // Unsigned cmp
3133           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
3134         }
3135       } else {
3136         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3137           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
3138           n->set_req(2, shift);
3139         }
3140       }
3141       if (in2->outcnt() == 0) { // Remove dead node
3142         in2->disconnect_inputs(NULL, this);
3143       }
3144     }
3145     break;
3146   case Op_MemBarStoreStore:
3147   case Op_MemBarRelease:
3148     // Break the link with AllocateNode: it is no longer useful and
3149     // confuses register allocation.
3150     if (n->req() > MemBarNode::Precedent) {
3151       n->set_req(MemBarNode::Precedent, top());
3152     }
3153     break;
3154   default:
3155     assert( !n->is_Call(), "" );
3156     assert( !n->is_Mem(), "" );
3157     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3158     break;
3159   }
3160 
3161   // Collect CFG split points
3162   if (n->is_MultiBranch())
3163     frc._tests.push(n);
3164 }
3165 
3166 //------------------------------final_graph_reshaping_walk---------------------
3167 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3168 // requires that the walk visits a node's inputs before visiting the node.
3169 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3170   ResourceArea *area = Thread::current()->resource_area();
3171   Unique_Node_List sfpt(area);
3172 
3173   frc._visited.set(root->_idx); // first, mark node as visited
3174   uint cnt = root->req();
3175   Node *n = root;
3176   uint  i = 0;
3177   while (true) {
3178     if (i < cnt) {
3179       // Place all non-visited non-null inputs onto stack
3180       Node* m = n->in(i);
3181       ++i;
3182       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3183         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3184           // compute worst case interpreter size in case of a deoptimization
3185           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3186 
3187           sfpt.push(m);
3188         }
3189         cnt = m->req();
3190         nstack.push(n, i); // put on stack parent and next input's index
3191         n = m;
3192         i = 0;
3193       }
3194     } else {
3195       // Now do post-visit work
3196       final_graph_reshaping_impl( n, frc );
3197       if (nstack.is_empty())
3198         break;             // finished
3199       n = nstack.node();   // Get node from stack
3200       cnt = n->req();
3201       i = nstack.index();
3202       nstack.pop();        // Shift to the next node on stack
3203     }
3204   }
3205 
3206   // Skip next transformation if compressed oops are not used.
3207   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3208       (!UseCompressedOops && !UseCompressedClassPointers))
3209     return;
3210 
3211   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3212   // It could be done for an uncommon traps or any safepoints/calls
3213   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3214   while (sfpt.size() > 0) {
3215     n = sfpt.pop();
3216     JVMState *jvms = n->as_SafePoint()->jvms();
3217     assert(jvms != NULL, "sanity");
3218     int start = jvms->debug_start();
3219     int end   = n->req();
3220     bool is_uncommon = (n->is_CallStaticJava() &&
3221                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3222     for (int j = start; j < end; j++) {
3223       Node* in = n->in(j);
3224       if (in->is_DecodeNarrowPtr()) {
3225         bool safe_to_skip = true;
3226         if (!is_uncommon ) {
3227           // Is it safe to skip?
3228           for (uint i = 0; i < in->outcnt(); i++) {
3229             Node* u = in->raw_out(i);
3230             if (!u->is_SafePoint() ||
3231                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3232               safe_to_skip = false;
3233             }
3234           }
3235         }
3236         if (safe_to_skip) {
3237           n->set_req(j, in->in(1));
3238         }
3239         if (in->outcnt() == 0) {
3240           in->disconnect_inputs(NULL, this);
3241         }
3242       }
3243     }
3244   }
3245 }
3246 
3247 //------------------------------final_graph_reshaping--------------------------
3248 // Final Graph Reshaping.
3249 //
3250 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3251 //     and not commoned up and forced early.  Must come after regular
3252 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3253 //     inputs to Loop Phis; these will be split by the allocator anyways.
3254 //     Remove Opaque nodes.
3255 // (2) Move last-uses by commutative operations to the left input to encourage
3256 //     Intel update-in-place two-address operations and better register usage
3257 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3258 //     calls canonicalizing them back.
3259 // (3) Count the number of double-precision FP ops, single-precision FP ops
3260 //     and call sites.  On Intel, we can get correct rounding either by
3261 //     forcing singles to memory (requires extra stores and loads after each
3262 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3263 //     clearing the mode bit around call sites).  The mode bit is only used
3264 //     if the relative frequency of single FP ops to calls is low enough.
3265 //     This is a key transform for SPEC mpeg_audio.
3266 // (4) Detect infinite loops; blobs of code reachable from above but not
3267 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3268 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3269 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3270 //     Detection is by looking for IfNodes where only 1 projection is
3271 //     reachable from below or CatchNodes missing some targets.
3272 // (5) Assert for insane oop offsets in debug mode.
3273 
3274 bool Compile::final_graph_reshaping() {
3275   // an infinite loop may have been eliminated by the optimizer,
3276   // in which case the graph will be empty.
3277   if (root()->req() == 1) {
3278     record_method_not_compilable("trivial infinite loop");
3279     return true;
3280   }
3281 
3282   // Expensive nodes have their control input set to prevent the GVN
3283   // from freely commoning them. There's no GVN beyond this point so
3284   // no need to keep the control input. We want the expensive nodes to
3285   // be freely moved to the least frequent code path by gcm.
3286   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3287   for (int i = 0; i < expensive_count(); i++) {
3288     _expensive_nodes->at(i)->set_req(0, NULL);
3289   }
3290 
3291   Final_Reshape_Counts frc;
3292 
3293   // Visit everybody reachable!
3294   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3295   Node_Stack nstack(live_nodes() >> 1);
3296   final_graph_reshaping_walk(nstack, root(), frc);
3297 
3298   // Check for unreachable (from below) code (i.e., infinite loops).
3299   for( uint i = 0; i < frc._tests.size(); i++ ) {
3300     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3301     // Get number of CFG targets.
3302     // Note that PCTables include exception targets after calls.
3303     uint required_outcnt = n->required_outcnt();
3304     if (n->outcnt() != required_outcnt) {
3305       // Check for a few special cases.  Rethrow Nodes never take the
3306       // 'fall-thru' path, so expected kids is 1 less.
3307       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3308         if (n->in(0)->in(0)->is_Call()) {
3309           CallNode *call = n->in(0)->in(0)->as_Call();
3310           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3311             required_outcnt--;      // Rethrow always has 1 less kid
3312           } else if (call->req() > TypeFunc::Parms &&
3313                      call->is_CallDynamicJava()) {
3314             // Check for null receiver. In such case, the optimizer has
3315             // detected that the virtual call will always result in a null
3316             // pointer exception. The fall-through projection of this CatchNode
3317             // will not be populated.
3318             Node *arg0 = call->in(TypeFunc::Parms);
3319             if (arg0->is_Type() &&
3320                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3321               required_outcnt--;
3322             }
3323           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3324                      call->req() > TypeFunc::Parms+1 &&
3325                      call->is_CallStaticJava()) {
3326             // Check for negative array length. In such case, the optimizer has
3327             // detected that the allocation attempt will always result in an
3328             // exception. There is no fall-through projection of this CatchNode .
3329             Node *arg1 = call->in(TypeFunc::Parms+1);
3330             if (arg1->is_Type() &&
3331                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3332               required_outcnt--;
3333             }
3334           }
3335         }
3336       }
3337       // Recheck with a better notion of 'required_outcnt'
3338       if (n->outcnt() != required_outcnt) {
3339         record_method_not_compilable("malformed control flow");
3340         return true;            // Not all targets reachable!
3341       }
3342     }
3343     // Check that I actually visited all kids.  Unreached kids
3344     // must be infinite loops.
3345     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3346       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3347         record_method_not_compilable("infinite loop");
3348         return true;            // Found unvisited kid; must be unreach
3349       }
3350   }
3351 
3352   // If original bytecodes contained a mixture of floats and doubles
3353   // check if the optimizer has made it homogenous, item (3).
3354   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3355       frc.get_float_count() > 32 &&
3356       frc.get_double_count() == 0 &&
3357       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3358     set_24_bit_selection_and_mode( false,  true );
3359   }
3360 
3361   set_java_calls(frc.get_java_call_count());
3362   set_inner_loops(frc.get_inner_loop_count());
3363 
3364   // No infinite loops, no reason to bail out.
3365   return false;
3366 }
3367 
3368 //-----------------------------too_many_traps----------------------------------
3369 // Report if there are too many traps at the current method and bci.
3370 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3371 bool Compile::too_many_traps(ciMethod* method,
3372                              int bci,
3373                              Deoptimization::DeoptReason reason) {
3374   ciMethodData* md = method->method_data();
3375   if (md->is_empty()) {
3376     // Assume the trap has not occurred, or that it occurred only
3377     // because of a transient condition during start-up in the interpreter.
3378     return false;
3379   }
3380   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3381   if (md->has_trap_at(bci, m, reason) != 0) {
3382     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3383     // Also, if there are multiple reasons, or if there is no per-BCI record,
3384     // assume the worst.
3385     if (log())
3386       log()->elem("observe trap='%s' count='%d'",
3387                   Deoptimization::trap_reason_name(reason),
3388                   md->trap_count(reason));
3389     return true;
3390   } else {
3391     // Ignore method/bci and see if there have been too many globally.
3392     return too_many_traps(reason, md);
3393   }
3394 }
3395 
3396 // Less-accurate variant which does not require a method and bci.
3397 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3398                              ciMethodData* logmd) {
3399   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3400     // Too many traps globally.
3401     // Note that we use cumulative trap_count, not just md->trap_count.
3402     if (log()) {
3403       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3404       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3405                   Deoptimization::trap_reason_name(reason),
3406                   mcount, trap_count(reason));
3407     }
3408     return true;
3409   } else {
3410     // The coast is clear.
3411     return false;
3412   }
3413 }
3414 
3415 //--------------------------too_many_recompiles--------------------------------
3416 // Report if there are too many recompiles at the current method and bci.
3417 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3418 // Is not eager to return true, since this will cause the compiler to use
3419 // Action_none for a trap point, to avoid too many recompilations.
3420 bool Compile::too_many_recompiles(ciMethod* method,
3421                                   int bci,
3422                                   Deoptimization::DeoptReason reason) {
3423   ciMethodData* md = method->method_data();
3424   if (md->is_empty()) {
3425     // Assume the trap has not occurred, or that it occurred only
3426     // because of a transient condition during start-up in the interpreter.
3427     return false;
3428   }
3429   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3430   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3431   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3432   Deoptimization::DeoptReason per_bc_reason
3433     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3434   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3435   if ((per_bc_reason == Deoptimization::Reason_none
3436        || md->has_trap_at(bci, m, reason) != 0)
3437       // The trap frequency measure we care about is the recompile count:
3438       && md->trap_recompiled_at(bci, m)
3439       && md->overflow_recompile_count() >= bc_cutoff) {
3440     // Do not emit a trap here if it has already caused recompilations.
3441     // Also, if there are multiple reasons, or if there is no per-BCI record,
3442     // assume the worst.
3443     if (log())
3444       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3445                   Deoptimization::trap_reason_name(reason),
3446                   md->trap_count(reason),
3447                   md->overflow_recompile_count());
3448     return true;
3449   } else if (trap_count(reason) != 0
3450              && decompile_count() >= m_cutoff) {
3451     // Too many recompiles globally, and we have seen this sort of trap.
3452     // Use cumulative decompile_count, not just md->decompile_count.
3453     if (log())
3454       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3455                   Deoptimization::trap_reason_name(reason),
3456                   md->trap_count(reason), trap_count(reason),
3457                   md->decompile_count(), decompile_count());
3458     return true;
3459   } else {
3460     // The coast is clear.
3461     return false;
3462   }
3463 }
3464 
3465 // Compute when not to trap. Used by matching trap based nodes and
3466 // NullCheck optimization.
3467 void Compile::set_allowed_deopt_reasons() {
3468   _allowed_reasons = 0;
3469   if (is_method_compilation()) {
3470     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3471       assert(rs < BitsPerInt, "recode bit map");
3472       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3473         _allowed_reasons |= nth_bit(rs);
3474       }
3475     }
3476   }
3477 }
3478 
3479 #ifndef PRODUCT
3480 //------------------------------verify_graph_edges---------------------------
3481 // Walk the Graph and verify that there is a one-to-one correspondence
3482 // between Use-Def edges and Def-Use edges in the graph.
3483 void Compile::verify_graph_edges(bool no_dead_code) {
3484   if (VerifyGraphEdges) {
3485     ResourceArea *area = Thread::current()->resource_area();
3486     Unique_Node_List visited(area);
3487     // Call recursive graph walk to check edges
3488     _root->verify_edges(visited);
3489     if (no_dead_code) {
3490       // Now make sure that no visited node is used by an unvisited node.
3491       bool dead_nodes = false;
3492       Unique_Node_List checked(area);
3493       while (visited.size() > 0) {
3494         Node* n = visited.pop();
3495         checked.push(n);
3496         for (uint i = 0; i < n->outcnt(); i++) {
3497           Node* use = n->raw_out(i);
3498           if (checked.member(use))  continue;  // already checked
3499           if (visited.member(use))  continue;  // already in the graph
3500           if (use->is_Con())        continue;  // a dead ConNode is OK
3501           // At this point, we have found a dead node which is DU-reachable.
3502           if (!dead_nodes) {
3503             tty->print_cr("*** Dead nodes reachable via DU edges:");
3504             dead_nodes = true;
3505           }
3506           use->dump(2);
3507           tty->print_cr("---");
3508           checked.push(use);  // No repeats; pretend it is now checked.
3509         }
3510       }
3511       assert(!dead_nodes, "using nodes must be reachable from root");
3512     }
3513   }
3514 }
3515 
3516 // Verify GC barriers consistency
3517 // Currently supported:
3518 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3519 void Compile::verify_barriers() {
3520   if (UseG1GC) {
3521     // Verify G1 pre-barriers
3522     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3523 
3524     ResourceArea *area = Thread::current()->resource_area();
3525     Unique_Node_List visited(area);
3526     Node_List worklist(area);
3527     // We're going to walk control flow backwards starting from the Root
3528     worklist.push(_root);
3529     while (worklist.size() > 0) {
3530       Node* x = worklist.pop();
3531       if (x == NULL || x == top()) continue;
3532       if (visited.member(x)) {
3533         continue;
3534       } else {
3535         visited.push(x);
3536       }
3537 
3538       if (x->is_Region()) {
3539         for (uint i = 1; i < x->req(); i++) {
3540           worklist.push(x->in(i));
3541         }
3542       } else {
3543         worklist.push(x->in(0));
3544         // We are looking for the pattern:
3545         //                            /->ThreadLocal
3546         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3547         //              \->ConI(0)
3548         // We want to verify that the If and the LoadB have the same control
3549         // See GraphKit::g1_write_barrier_pre()
3550         if (x->is_If()) {
3551           IfNode *iff = x->as_If();
3552           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3553             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3554             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3555                 && cmp->in(1)->is_Load()) {
3556               LoadNode* load = cmp->in(1)->as_Load();
3557               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3558                   && load->in(2)->in(3)->is_Con()
3559                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3560 
3561                 Node* if_ctrl = iff->in(0);
3562                 Node* load_ctrl = load->in(0);
3563 
3564                 if (if_ctrl != load_ctrl) {
3565                   // Skip possible CProj->NeverBranch in infinite loops
3566                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3567                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3568                     if_ctrl = if_ctrl->in(0)->in(0);
3569                   }
3570                 }
3571                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3572               }
3573             }
3574           }
3575         }
3576       }
3577     }
3578   }
3579 }
3580 
3581 #endif
3582 
3583 // The Compile object keeps track of failure reasons separately from the ciEnv.
3584 // This is required because there is not quite a 1-1 relation between the
3585 // ciEnv and its compilation task and the Compile object.  Note that one
3586 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3587 // to backtrack and retry without subsuming loads.  Other than this backtracking
3588 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3589 // by the logic in C2Compiler.
3590 void Compile::record_failure(const char* reason) {
3591   if (log() != NULL) {
3592     log()->elem("failure reason='%s' phase='compile'", reason);
3593   }
3594   if (_failure_reason == NULL) {
3595     // Record the first failure reason.
3596     _failure_reason = reason;
3597   }
3598 
3599   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3600     C->print_method(PHASE_FAILURE);
3601   }
3602   _root = NULL;  // flush the graph, too
3603 }
3604 
3605 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3606   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3607     _phase_name(name), _dolog(dolog)
3608 {
3609   if (dolog) {
3610     C = Compile::current();
3611     _log = C->log();
3612   } else {
3613     C = NULL;
3614     _log = NULL;
3615   }
3616   if (_log != NULL) {
3617     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3618     _log->stamp();
3619     _log->end_head();
3620   }
3621 }
3622 
3623 Compile::TracePhase::~TracePhase() {
3624 
3625   C = Compile::current();
3626   if (_dolog) {
3627     _log = C->log();
3628   } else {
3629     _log = NULL;
3630   }
3631 
3632 #ifdef ASSERT
3633   if (PrintIdealNodeCount) {
3634     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3635                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3636   }
3637 
3638   if (VerifyIdealNodeCount) {
3639     Compile::current()->print_missing_nodes();
3640   }
3641 #endif
3642 
3643   if (_log != NULL) {
3644     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3645   }
3646 }
3647 
3648 //=============================================================================
3649 // Two Constant's are equal when the type and the value are equal.
3650 bool Compile::Constant::operator==(const Constant& other) {
3651   if (type()          != other.type()         )  return false;
3652   if (can_be_reused() != other.can_be_reused())  return false;
3653   // For floating point values we compare the bit pattern.
3654   switch (type()) {
3655   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3656   case T_LONG:
3657   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3658   case T_OBJECT:
3659   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3660   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3661   case T_METADATA: return (_v._metadata == other._v._metadata);
3662   default: ShouldNotReachHere();
3663   }
3664   return false;
3665 }
3666 
3667 static int type_to_size_in_bytes(BasicType t) {
3668   switch (t) {
3669   case T_LONG:    return sizeof(jlong  );
3670   case T_FLOAT:   return sizeof(jfloat );
3671   case T_DOUBLE:  return sizeof(jdouble);
3672   case T_METADATA: return sizeof(Metadata*);
3673     // We use T_VOID as marker for jump-table entries (labels) which
3674     // need an internal word relocation.
3675   case T_VOID:
3676   case T_ADDRESS:
3677   case T_OBJECT:  return sizeof(jobject);
3678   }
3679 
3680   ShouldNotReachHere();
3681   return -1;
3682 }
3683 
3684 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3685   // sort descending
3686   if (a->freq() > b->freq())  return -1;
3687   if (a->freq() < b->freq())  return  1;
3688   return 0;
3689 }
3690 
3691 void Compile::ConstantTable::calculate_offsets_and_size() {
3692   // First, sort the array by frequencies.
3693   _constants.sort(qsort_comparator);
3694 
3695 #ifdef ASSERT
3696   // Make sure all jump-table entries were sorted to the end of the
3697   // array (they have a negative frequency).
3698   bool found_void = false;
3699   for (int i = 0; i < _constants.length(); i++) {
3700     Constant con = _constants.at(i);
3701     if (con.type() == T_VOID)
3702       found_void = true;  // jump-tables
3703     else
3704       assert(!found_void, "wrong sorting");
3705   }
3706 #endif
3707 
3708   int offset = 0;
3709   for (int i = 0; i < _constants.length(); i++) {
3710     Constant* con = _constants.adr_at(i);
3711 
3712     // Align offset for type.
3713     int typesize = type_to_size_in_bytes(con->type());
3714     offset = align_size_up(offset, typesize);
3715     con->set_offset(offset);   // set constant's offset
3716 
3717     if (con->type() == T_VOID) {
3718       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3719       offset = offset + typesize * n->outcnt();  // expand jump-table
3720     } else {
3721       offset = offset + typesize;
3722     }
3723   }
3724 
3725   // Align size up to the next section start (which is insts; see
3726   // CodeBuffer::align_at_start).
3727   assert(_size == -1, "already set?");
3728   _size = align_size_up(offset, CodeEntryAlignment);
3729 }
3730 
3731 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3732   MacroAssembler _masm(&cb);
3733   for (int i = 0; i < _constants.length(); i++) {
3734     Constant con = _constants.at(i);
3735     address constant_addr = NULL;
3736     switch (con.type()) {
3737     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3738     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3739     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3740     case T_OBJECT: {
3741       jobject obj = con.get_jobject();
3742       int oop_index = _masm.oop_recorder()->find_index(obj);
3743       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3744       break;
3745     }
3746     case T_ADDRESS: {
3747       address addr = (address) con.get_jobject();
3748       constant_addr = _masm.address_constant(addr);
3749       break;
3750     }
3751     // We use T_VOID as marker for jump-table entries (labels) which
3752     // need an internal word relocation.
3753     case T_VOID: {
3754       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3755       // Fill the jump-table with a dummy word.  The real value is
3756       // filled in later in fill_jump_table.
3757       address dummy = (address) n;
3758       constant_addr = _masm.address_constant(dummy);
3759       // Expand jump-table
3760       for (uint i = 1; i < n->outcnt(); i++) {
3761         address temp_addr = _masm.address_constant(dummy + i);
3762         assert(temp_addr, "consts section too small");
3763       }
3764       break;
3765     }
3766     case T_METADATA: {
3767       Metadata* obj = con.get_metadata();
3768       int metadata_index = _masm.oop_recorder()->find_index(obj);
3769       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3770       break;
3771     }
3772     default: ShouldNotReachHere();
3773     }
3774     assert(constant_addr, "consts section too small");
3775     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3776             err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
3777   }
3778 }
3779 
3780 int Compile::ConstantTable::find_offset(Constant& con) const {
3781   int idx = _constants.find(con);
3782   assert(idx != -1, "constant must be in constant table");
3783   int offset = _constants.at(idx).offset();
3784   assert(offset != -1, "constant table not emitted yet?");
3785   return offset;
3786 }
3787 
3788 void Compile::ConstantTable::add(Constant& con) {
3789   if (con.can_be_reused()) {
3790     int idx = _constants.find(con);
3791     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3792       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3793       return;
3794     }
3795   }
3796   (void) _constants.append(con);
3797 }
3798 
3799 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3800   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3801   Constant con(type, value, b->_freq);
3802   add(con);
3803   return con;
3804 }
3805 
3806 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3807   Constant con(metadata);
3808   add(con);
3809   return con;
3810 }
3811 
3812 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3813   jvalue value;
3814   BasicType type = oper->type()->basic_type();
3815   switch (type) {
3816   case T_LONG:    value.j = oper->constantL(); break;
3817   case T_FLOAT:   value.f = oper->constantF(); break;
3818   case T_DOUBLE:  value.d = oper->constantD(); break;
3819   case T_OBJECT:
3820   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3821   case T_METADATA: return add((Metadata*)oper->constant()); break;
3822   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3823   }
3824   return add(n, type, value);
3825 }
3826 
3827 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3828   jvalue value;
3829   // We can use the node pointer here to identify the right jump-table
3830   // as this method is called from Compile::Fill_buffer right before
3831   // the MachNodes are emitted and the jump-table is filled (means the
3832   // MachNode pointers do not change anymore).
3833   value.l = (jobject) n;
3834   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3835   add(con);
3836   return con;
3837 }
3838 
3839 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3840   // If called from Compile::scratch_emit_size do nothing.
3841   if (Compile::current()->in_scratch_emit_size())  return;
3842 
3843   assert(labels.is_nonempty(), "must be");
3844   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3845 
3846   // Since MachConstantNode::constant_offset() also contains
3847   // table_base_offset() we need to subtract the table_base_offset()
3848   // to get the plain offset into the constant table.
3849   int offset = n->constant_offset() - table_base_offset();
3850 
3851   MacroAssembler _masm(&cb);
3852   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3853 
3854   for (uint i = 0; i < n->outcnt(); i++) {
3855     address* constant_addr = &jump_table_base[i];
3856     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
3857     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3858     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3859   }
3860 }
3861 
3862 void Compile::dump_inlining() {
3863   if (print_inlining() || print_intrinsics()) {
3864     // Print inlining message for candidates that we couldn't inline
3865     // for lack of space or non constant receiver
3866     for (int i = 0; i < _late_inlines.length(); i++) {
3867       CallGenerator* cg = _late_inlines.at(i);
3868       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
3869     }
3870     Unique_Node_List useful;
3871     useful.push(root());
3872     for (uint next = 0; next < useful.size(); ++next) {
3873       Node* n  = useful.at(next);
3874       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
3875         CallNode* call = n->as_Call();
3876         CallGenerator* cg = call->generator();
3877         cg->print_inlining_late("receiver not constant");
3878       }
3879       uint max = n->len();
3880       for ( uint i = 0; i < max; ++i ) {
3881         Node *m = n->in(i);
3882         if ( m == NULL ) continue;
3883         useful.push(m);
3884       }
3885     }
3886     for (int i = 0; i < _print_inlining_list->length(); i++) {
3887       tty->print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
3888     }
3889   }
3890 }
3891 
3892 // Dump inlining replay data to the stream.
3893 // Don't change thread state and acquire any locks.
3894 void Compile::dump_inline_data(outputStream* out) {
3895   InlineTree* inl_tree = ilt();
3896   if (inl_tree != NULL) {
3897     out->print(" inline %d", inl_tree->count());
3898     inl_tree->dump_replay_data(out);
3899   }
3900 }
3901 
3902 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3903   if (n1->Opcode() < n2->Opcode())      return -1;
3904   else if (n1->Opcode() > n2->Opcode()) return 1;
3905 
3906   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3907   for (uint i = 1; i < n1->req(); i++) {
3908     if (n1->in(i) < n2->in(i))      return -1;
3909     else if (n1->in(i) > n2->in(i)) return 1;
3910   }
3911 
3912   return 0;
3913 }
3914 
3915 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3916   Node* n1 = *n1p;
3917   Node* n2 = *n2p;
3918 
3919   return cmp_expensive_nodes(n1, n2);
3920 }
3921 
3922 void Compile::sort_expensive_nodes() {
3923   if (!expensive_nodes_sorted()) {
3924     _expensive_nodes->sort(cmp_expensive_nodes);
3925   }
3926 }
3927 
3928 bool Compile::expensive_nodes_sorted() const {
3929   for (int i = 1; i < _expensive_nodes->length(); i++) {
3930     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3931       return false;
3932     }
3933   }
3934   return true;
3935 }
3936 
3937 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3938   if (_expensive_nodes->length() == 0) {
3939     return false;
3940   }
3941 
3942   assert(OptimizeExpensiveOps, "optimization off?");
3943 
3944   // Take this opportunity to remove dead nodes from the list
3945   int j = 0;
3946   for (int i = 0; i < _expensive_nodes->length(); i++) {
3947     Node* n = _expensive_nodes->at(i);
3948     if (!n->is_unreachable(igvn)) {
3949       assert(n->is_expensive(), "should be expensive");
3950       _expensive_nodes->at_put(j, n);
3951       j++;
3952     }
3953   }
3954   _expensive_nodes->trunc_to(j);
3955 
3956   // Then sort the list so that similar nodes are next to each other
3957   // and check for at least two nodes of identical kind with same data
3958   // inputs.
3959   sort_expensive_nodes();
3960 
3961   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
3962     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
3963       return true;
3964     }
3965   }
3966 
3967   return false;
3968 }
3969 
3970 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
3971   if (_expensive_nodes->length() == 0) {
3972     return;
3973   }
3974 
3975   assert(OptimizeExpensiveOps, "optimization off?");
3976 
3977   // Sort to bring similar nodes next to each other and clear the
3978   // control input of nodes for which there's only a single copy.
3979   sort_expensive_nodes();
3980 
3981   int j = 0;
3982   int identical = 0;
3983   int i = 0;
3984   for (; i < _expensive_nodes->length()-1; i++) {
3985     assert(j <= i, "can't write beyond current index");
3986     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
3987       identical++;
3988       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3989       continue;
3990     }
3991     if (identical > 0) {
3992       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3993       identical = 0;
3994     } else {
3995       Node* n = _expensive_nodes->at(i);
3996       igvn.hash_delete(n);
3997       n->set_req(0, NULL);
3998       igvn.hash_insert(n);
3999     }
4000   }
4001   if (identical > 0) {
4002     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4003   } else if (_expensive_nodes->length() >= 1) {
4004     Node* n = _expensive_nodes->at(i);
4005     igvn.hash_delete(n);
4006     n->set_req(0, NULL);
4007     igvn.hash_insert(n);
4008   }
4009   _expensive_nodes->trunc_to(j);
4010 }
4011 
4012 void Compile::add_expensive_node(Node * n) {
4013   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4014   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4015   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4016   if (OptimizeExpensiveOps) {
4017     _expensive_nodes->append(n);
4018   } else {
4019     // Clear control input and let IGVN optimize expensive nodes if
4020     // OptimizeExpensiveOps is off.
4021     n->set_req(0, NULL);
4022   }
4023 }
4024 
4025 /**
4026  * Remove the speculative part of types and clean up the graph
4027  */
4028 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4029   if (UseTypeSpeculation) {
4030     Unique_Node_List worklist;
4031     worklist.push(root());
4032     int modified = 0;
4033     // Go over all type nodes that carry a speculative type, drop the
4034     // speculative part of the type and enqueue the node for an igvn
4035     // which may optimize it out.
4036     for (uint next = 0; next < worklist.size(); ++next) {
4037       Node *n  = worklist.at(next);
4038       if (n->is_Type()) {
4039         TypeNode* tn = n->as_Type();
4040         const Type* t = tn->type();
4041         const Type* t_no_spec = t->remove_speculative();
4042         if (t_no_spec != t) {
4043           bool in_hash = igvn.hash_delete(n);
4044           assert(in_hash, "node should be in igvn hash table");
4045           tn->set_type(t_no_spec);
4046           igvn.hash_insert(n);
4047           igvn._worklist.push(n); // give it a chance to go away
4048           modified++;
4049         }
4050       }
4051       uint max = n->len();
4052       for( uint i = 0; i < max; ++i ) {
4053         Node *m = n->in(i);
4054         if (not_a_node(m))  continue;
4055         worklist.push(m);
4056       }
4057     }
4058     // Drop the speculative part of all types in the igvn's type table
4059     igvn.remove_speculative_types();
4060     if (modified > 0) {
4061       igvn.optimize();
4062     }
4063 #ifdef ASSERT
4064     // Verify that after the IGVN is over no speculative type has resurfaced
4065     worklist.clear();
4066     worklist.push(root());
4067     for (uint next = 0; next < worklist.size(); ++next) {
4068       Node *n  = worklist.at(next);
4069       const Type* t = igvn.type_or_null(n);
4070       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4071       if (n->is_Type()) {
4072         t = n->as_Type()->type();
4073         assert(t == t->remove_speculative(), "no more speculative types");
4074       }
4075       uint max = n->len();
4076       for( uint i = 0; i < max; ++i ) {
4077         Node *m = n->in(i);
4078         if (not_a_node(m))  continue;
4079         worklist.push(m);
4080       }
4081     }
4082     igvn.check_no_speculative_types();
4083 #endif
4084   }
4085 }
4086 
4087 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4088 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4089   if (ctrl != NULL) {
4090     // Express control dependency by a CastII node with a narrow type.
4091     value = new (phase->C) CastIINode(value, itype, false, true /* range check dependency */);
4092     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4093     // node from floating above the range check during loop optimizations. Otherwise, the
4094     // ConvI2L node may be eliminated independently of the range check, causing the data path
4095     // to become TOP while the control path is still there (although it's unreachable).
4096     value->set_req(0, ctrl);
4097     // Save CastII node to remove it after loop optimizations.
4098     phase->C->add_range_check_cast(value);
4099     value = phase->transform(value);
4100   }
4101   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4102   return phase->transform(new (phase->C) ConvI2LNode(value, ltype));
4103 }
4104 
4105 // Auxiliary method to support randomized stressing/fuzzing.
4106 //
4107 // This method can be called the arbitrary number of times, with current count
4108 // as the argument. The logic allows selecting a single candidate from the
4109 // running list of candidates as follows:
4110 //    int count = 0;
4111 //    Cand* selected = null;
4112 //    while(cand = cand->next()) {
4113 //      if (randomized_select(++count)) {
4114 //        selected = cand;
4115 //      }
4116 //    }
4117 //
4118 // Including count equalizes the chances any candidate is "selected".
4119 // This is useful when we don't have the complete list of candidates to choose
4120 // from uniformly. In this case, we need to adjust the randomicity of the
4121 // selection, or else we will end up biasing the selection towards the latter
4122 // candidates.
4123 //
4124 // Quick back-envelope calculation shows that for the list of n candidates
4125 // the equal probability for the candidate to persist as "best" can be
4126 // achieved by replacing it with "next" k-th candidate with the probability
4127 // of 1/k. It can be easily shown that by the end of the run, the
4128 // probability for any candidate is converged to 1/n, thus giving the
4129 // uniform distribution among all the candidates.
4130 //
4131 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4132 #define RANDOMIZED_DOMAIN_POW 29
4133 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4134 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4135 bool Compile::randomized_select(int count) {
4136   assert(count > 0, "only positive");
4137   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4138 }