1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "gc_interface/collectedHeap.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #if INCLUDE_JFR
  36 #include "jfr/jfrEvents.hpp"
  37 #endif
  38 #include "memory/resourceArea.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/symbol.hpp"
  42 #include "runtime/compilationPolicy.hpp"
  43 #include "runtime/deoptimization.hpp"
  44 #include "runtime/frame.inline.hpp"
  45 #include "runtime/interfaceSupport.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/orderAccess.inline.hpp"
  48 #include "runtime/osThread.hpp"
  49 #include "runtime/safepoint.hpp"
  50 #include "runtime/signature.hpp"
  51 #include "runtime/stubCodeGenerator.hpp"
  52 #include "runtime/stubRoutines.hpp"
  53 #include "runtime/sweeper.hpp"
  54 #include "runtime/synchronizer.hpp"
  55 #include "runtime/thread.inline.hpp"
  56 #include "services/runtimeService.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/macros.hpp"
  59 #ifdef TARGET_ARCH_x86
  60 # include "nativeInst_x86.hpp"
  61 # include "vmreg_x86.inline.hpp"
  62 #endif
  63 #ifdef TARGET_ARCH_sparc
  64 # include "nativeInst_sparc.hpp"
  65 # include "vmreg_sparc.inline.hpp"
  66 #endif
  67 #ifdef TARGET_ARCH_zero
  68 # include "nativeInst_zero.hpp"
  69 # include "vmreg_zero.inline.hpp"
  70 #endif
  71 #ifdef TARGET_ARCH_arm
  72 # include "nativeInst_arm.hpp"
  73 # include "vmreg_arm.inline.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_ppc
  76 # include "nativeInst_ppc.hpp"
  77 # include "vmreg_ppc.inline.hpp"
  78 #endif
  79 #if INCLUDE_ALL_GCS
  80 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  81 #include "gc_implementation/shared/suspendibleThreadSet.hpp"
  82 #endif // INCLUDE_ALL_GCS
  83 #ifdef COMPILER1
  84 #include "c1/c1_globals.hpp"
  85 #endif
  86 
  87 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  88 
  89 template <typename E>
  90 static void set_current_safepoint_id(E* event, int adjustment = 0) {
  91   assert(event != NULL, "invariant");
  92   event->set_safepointId(SafepointSynchronize::safepoint_counter() + adjustment);
  93 }
  94 
  95 #if INCLUDE_JFR
  96 static void post_safepoint_begin_event(EventSafepointBegin* event,
  97                                        int thread_count,
  98                                        int critical_thread_count) {
  99   assert(event != NULL, "invariant");
 100   assert(event->should_commit(), "invariant");
 101   set_current_safepoint_id(event);
 102   event->set_totalThreadCount(thread_count);
 103   event->set_jniCriticalThreadCount(critical_thread_count);
 104   event->commit();
 105 }
 106 
 107 static void post_safepoint_cleanup_event(EventSafepointCleanup* event) {
 108   assert(event != NULL, "invariant");
 109   assert(event->should_commit(), "invariant");
 110   set_current_safepoint_id(event);
 111   event->commit();
 112 }
 113 
 114 static void post_safepoint_synchronize_event(EventSafepointStateSynchronization* event,
 115                                              int initial_number_of_threads,
 116                                              int threads_waiting_to_block,
 117                                              unsigned int iterations) {
 118   assert(event != NULL, "invariant");
 119   if (event->should_commit()) {
 120     // Group this event together with the ones committed after the counter is increased
 121     set_current_safepoint_id(event, 1);
 122     event->set_initialThreadCount(initial_number_of_threads);
 123     event->set_runningThreadCount(threads_waiting_to_block);
 124     event->set_iterations(iterations);
 125     event->commit();
 126   }
 127 }
 128 
 129 static void post_safepoint_wait_blocked_event(EventSafepointWaitBlocked* event,
 130                                               int initial_threads_waiting_to_block) {
 131   assert(event != NULL, "invariant");
 132   assert(event->should_commit(), "invariant");
 133   set_current_safepoint_id(event);
 134   event->set_runningThreadCount(initial_threads_waiting_to_block);
 135   event->commit();
 136 }
 137 
 138 static void post_safepoint_cleanup_task_event(EventSafepointCleanupTask* event,
 139                                               const char* name) {
 140   assert(event != NULL, "invariant");
 141   if (event->should_commit()) {
 142     set_current_safepoint_id(event);
 143     event->set_name(name);
 144     event->commit();
 145   }
 146 }
 147 
 148 static void post_safepoint_end_event(EventSafepointEnd* event) {
 149   assert(event != NULL, "invariant");
 150   if (event->should_commit()) {
 151     // Group this event together with the ones committed before the counter increased
 152     set_current_safepoint_id(event, -1);
 153     event->commit();
 154   }
 155 }
 156 #endif
 157 
 158 // --------------------------------------------------------------------------------------------------
 159 // Implementation of Safepoint begin/end
 160 
 161 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
 162 volatile int  SafepointSynchronize::_waiting_to_block = 0;
 163 volatile int SafepointSynchronize::_safepoint_counter = 0;
 164 int SafepointSynchronize::_current_jni_active_count = 0;
 165 long  SafepointSynchronize::_end_of_last_safepoint = 0;
 166 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
 167 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
 168 static bool timeout_error_printed = false;
 169 
 170 // Roll all threads forward to a safepoint and suspend them all
 171 void SafepointSynchronize::begin() {
 172 #if INCLUDE_JFR
 173   EventSafepointBegin begin_event;
 174 #endif
 175   Thread* myThread = Thread::current();
 176   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
 177 
 178   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 179     _safepoint_begin_time = os::javaTimeNanos();
 180     _ts_of_current_safepoint = tty->time_stamp().seconds();
 181   }
 182 
 183 #if INCLUDE_ALL_GCS
 184   if (UseConcMarkSweepGC) {
 185     // In the future we should investigate whether CMS can use the
 186     // more-general mechanism below.  DLD (01/05).
 187     ConcurrentMarkSweepThread::synchronize(false);
 188   } else if (UseG1GC) {
 189     SuspendibleThreadSet::synchronize();
 190   }
 191 #endif // INCLUDE_ALL_GCS
 192 
 193   // By getting the Threads_lock, we assure that no threads are about to start or
 194   // exit. It is released again in SafepointSynchronize::end().
 195   Threads_lock->lock();
 196 
 197   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
 198 
 199   int nof_threads = Threads::number_of_threads();
 200 
 201   if (TraceSafepoint) {
 202     tty->print_cr("Safepoint synchronization initiated. (%d)", nof_threads);
 203   }
 204 
 205   RuntimeService::record_safepoint_begin();
 206 
 207   MutexLocker mu(Safepoint_lock);
 208 
 209   // Reset the count of active JNI critical threads
 210   _current_jni_active_count = 0;
 211 
 212   // Set number of threads to wait for, before we initiate the callbacks
 213   _waiting_to_block = nof_threads;
 214   TryingToBlock     = 0 ;
 215   int still_running = nof_threads;
 216 
 217   // Save the starting time, so that it can be compared to see if this has taken
 218   // too long to complete.
 219   jlong safepoint_limit_time = 0;
 220   timeout_error_printed = false;
 221 
 222   // PrintSafepointStatisticsTimeout can be specified separately. When
 223   // specified, PrintSafepointStatistics will be set to true in
 224   // deferred_initialize_stat method. The initialization has to be done
 225   // early enough to avoid any races. See bug 6880029 for details.
 226   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 227     deferred_initialize_stat();
 228   }
 229 
 230   // Begin the process of bringing the system to a safepoint.
 231   // Java threads can be in several different states and are
 232   // stopped by different mechanisms:
 233   //
 234   //  1. Running interpreted
 235   //     The interpeter dispatch table is changed to force it to
 236   //     check for a safepoint condition between bytecodes.
 237   //  2. Running in native code
 238   //     When returning from the native code, a Java thread must check
 239   //     the safepoint _state to see if we must block.  If the
 240   //     VM thread sees a Java thread in native, it does
 241   //     not wait for this thread to block.  The order of the memory
 242   //     writes and reads of both the safepoint state and the Java
 243   //     threads state is critical.  In order to guarantee that the
 244   //     memory writes are serialized with respect to each other,
 245   //     the VM thread issues a memory barrier instruction
 246   //     (on MP systems).  In order to avoid the overhead of issuing
 247   //     a memory barrier for each Java thread making native calls, each Java
 248   //     thread performs a write to a single memory page after changing
 249   //     the thread state.  The VM thread performs a sequence of
 250   //     mprotect OS calls which forces all previous writes from all
 251   //     Java threads to be serialized.  This is done in the
 252   //     os::serialize_thread_states() call.  This has proven to be
 253   //     much more efficient than executing a membar instruction
 254   //     on every call to native code.
 255   //  3. Running compiled Code
 256   //     Compiled code reads a global (Safepoint Polling) page that
 257   //     is set to fault if we are trying to get to a safepoint.
 258   //  4. Blocked
 259   //     A thread which is blocked will not be allowed to return from the
 260   //     block condition until the safepoint operation is complete.
 261   //  5. In VM or Transitioning between states
 262   //     If a Java thread is currently running in the VM or transitioning
 263   //     between states, the safepointing code will wait for the thread to
 264   //     block itself when it attempts transitions to a new state.
 265   //
 266 #if INCLUDE_JFR
 267   EventSafepointStateSynchronization sync_event;
 268 #endif
 269   int initial_running = 0;
 270 
 271   _state            = _synchronizing;
 272   OrderAccess::fence();
 273 
 274   // Flush all thread states to memory
 275   if (!UseMembar) {
 276     os::serialize_thread_states();
 277   }
 278 
 279   // Make interpreter safepoint aware
 280   Interpreter::notice_safepoints();
 281 
 282   if (UseCompilerSafepoints && DeferPollingPageLoopCount < 0) {
 283     // Make polling safepoint aware
 284     guarantee (PageArmed == 0, "invariant") ;
 285     PageArmed = 1 ;
 286     os::make_polling_page_unreadable();
 287   }
 288 
 289   // Consider using active_processor_count() ... but that call is expensive.
 290   int ncpus = os::processor_count() ;
 291 
 292 #ifdef ASSERT
 293   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 294     assert(cur->safepoint_state()->is_running(), "Illegal initial state");
 295     // Clear the visited flag to ensure that the critical counts are collected properly.
 296     cur->set_visited_for_critical_count(false);
 297   }
 298 #endif // ASSERT
 299 
 300   if (SafepointTimeout)
 301     safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
 302 
 303   // Iterate through all threads until it have been determined how to stop them all at a safepoint
 304   unsigned int iterations = 0;
 305   int steps = 0 ;
 306   while(still_running > 0) {
 307     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 308       assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
 309       ThreadSafepointState *cur_state = cur->safepoint_state();
 310       if (cur_state->is_running()) {
 311         cur_state->examine_state_of_thread();
 312         if (!cur_state->is_running()) {
 313            still_running--;
 314            // consider adjusting steps downward:
 315            //   steps = 0
 316            //   steps -= NNN
 317            //   steps >>= 1
 318            //   steps = MIN(steps, 2000-100)
 319            //   if (iterations != 0) steps -= NNN
 320         }
 321         if (TraceSafepoint && Verbose) cur_state->print();
 322       }
 323     }
 324 
 325     if (iterations == 0) {
 326       initial_running = still_running;
 327       if (PrintSafepointStatistics) {
 328         begin_statistics(nof_threads, still_running);
 329       }
 330     }
 331 
 332     if (still_running > 0) {
 333       // Check for if it takes to long
 334       if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
 335         print_safepoint_timeout(_spinning_timeout);
 336       }
 337 
 338       // Spin to avoid context switching.
 339       // There's a tension between allowing the mutators to run (and rendezvous)
 340       // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
 341       // a mutator might otherwise use profitably to reach a safepoint.  Excessive
 342       // spinning by the VM thread on a saturated system can increase rendezvous latency.
 343       // Blocking or yielding incur their own penalties in the form of context switching
 344       // and the resultant loss of $ residency.
 345       //
 346       // Further complicating matters is that yield() does not work as naively expected
 347       // on many platforms -- yield() does not guarantee that any other ready threads
 348       // will run.   As such we revert yield_all() after some number of iterations.
 349       // Yield_all() is implemented as a short unconditional sleep on some platforms.
 350       // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
 351       // can actually increase the time it takes the VM thread to detect that a system-wide
 352       // stop-the-world safepoint has been reached.  In a pathological scenario such as that
 353       // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
 354       // In that case the mutators will be stalled waiting for the safepoint to complete and the
 355       // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
 356       // will eventually wake up and detect that all mutators are safe, at which point
 357       // we'll again make progress.
 358       //
 359       // Beware too that that the VMThread typically runs at elevated priority.
 360       // Its default priority is higher than the default mutator priority.
 361       // Obviously, this complicates spinning.
 362       //
 363       // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
 364       // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
 365       //
 366       // See the comments in synchronizer.cpp for additional remarks on spinning.
 367       //
 368       // In the future we might:
 369       // 1. Modify the safepoint scheme to avoid potentally unbounded spinning.
 370       //    This is tricky as the path used by a thread exiting the JVM (say on
 371       //    on JNI call-out) simply stores into its state field.  The burden
 372       //    is placed on the VM thread, which must poll (spin).
 373       // 2. Find something useful to do while spinning.  If the safepoint is GC-related
 374       //    we might aggressively scan the stacks of threads that are already safe.
 375       // 3. Use Solaris schedctl to examine the state of the still-running mutators.
 376       //    If all the mutators are ONPROC there's no reason to sleep or yield.
 377       // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
 378       // 5. Check system saturation.  If the system is not fully saturated then
 379       //    simply spin and avoid sleep/yield.
 380       // 6. As still-running mutators rendezvous they could unpark the sleeping
 381       //    VMthread.  This works well for still-running mutators that become
 382       //    safe.  The VMthread must still poll for mutators that call-out.
 383       // 7. Drive the policy on time-since-begin instead of iterations.
 384       // 8. Consider making the spin duration a function of the # of CPUs:
 385       //    Spin = (((ncpus-1) * M) + K) + F(still_running)
 386       //    Alternately, instead of counting iterations of the outer loop
 387       //    we could count the # of threads visited in the inner loop, above.
 388       // 9. On windows consider using the return value from SwitchThreadTo()
 389       //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
 390 
 391       if (UseCompilerSafepoints && int(iterations) == DeferPollingPageLoopCount) {
 392          guarantee (PageArmed == 0, "invariant") ;
 393          PageArmed = 1 ;
 394          os::make_polling_page_unreadable();
 395       }
 396 
 397       // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
 398       // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
 399       ++steps ;
 400       if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
 401         SpinPause() ;     // MP-Polite spin
 402       } else
 403       if (steps < DeferThrSuspendLoopCount) {
 404         os::NakedYield() ;
 405       } else {
 406         os::yield_all(steps) ;
 407         // Alternately, the VM thread could transiently depress its scheduling priority or
 408         // transiently increase the priority of the tardy mutator(s).
 409       }
 410 
 411       iterations ++ ;
 412     }
 413     assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
 414   }
 415   assert(still_running == 0, "sanity check");
 416 
 417   if (PrintSafepointStatistics) {
 418     update_statistics_on_spin_end();
 419   }
 420 
 421 #if INCLUDE_JFR
 422   if (sync_event.should_commit()) {
 423     post_safepoint_synchronize_event(&sync_event, initial_running, _waiting_to_block, iterations);
 424   }
 425 #endif
 426 
 427   // wait until all threads are stopped
 428   {
 429 #if INCLUDE_JFR
 430     EventSafepointWaitBlocked wait_blocked_event;
 431 #endif
 432     int initial_waiting_to_block = _waiting_to_block;
 433 
 434     while (_waiting_to_block > 0) {
 435       if (TraceSafepoint) tty->print_cr("Waiting for %d thread(s) to block", _waiting_to_block);
 436       if (!SafepointTimeout || timeout_error_printed) {
 437         Safepoint_lock->wait(true);  // true, means with no safepoint checks
 438       } else {
 439         // Compute remaining time
 440         jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
 441 
 442         // If there is no remaining time, then there is an error
 443         if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
 444           print_safepoint_timeout(_blocking_timeout);
 445         }
 446       }
 447     }
 448     assert(_waiting_to_block == 0, "sanity check");
 449 
 450 #ifndef PRODUCT
 451     if (SafepointTimeout) {
 452       jlong current_time = os::javaTimeNanos();
 453       if (safepoint_limit_time < current_time) {
 454         tty->print_cr("# SafepointSynchronize: Finished after "
 455                       INT64_FORMAT_W(6) " ms",
 456                       ((current_time - safepoint_limit_time) / MICROUNITS +
 457                        SafepointTimeoutDelay));
 458       }
 459     }
 460 #endif
 461 
 462     assert((_safepoint_counter & 0x1) == 0, "must be even");
 463     assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 464     _safepoint_counter ++;
 465 
 466     // Record state
 467     _state = _synchronized;
 468 
 469     OrderAccess::fence();
 470 
 471 #if INCLUDE_JFR
 472     if (wait_blocked_event.should_commit()) {
 473       post_safepoint_wait_blocked_event(&wait_blocked_event, initial_waiting_to_block);
 474     }
 475 #endif
 476   }
 477 
 478 #ifdef ASSERT
 479   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 480     // make sure all the threads were visited
 481     assert(cur->was_visited_for_critical_count(), "missed a thread");
 482   }
 483 #endif // ASSERT
 484 
 485   // Update the count of active JNI critical regions
 486   GC_locker::set_jni_lock_count(_current_jni_active_count);
 487 
 488   if (TraceSafepoint) {
 489     VM_Operation *op = VMThread::vm_operation();
 490     tty->print_cr("Entering safepoint region: %s", (op != NULL) ? op->name() : "no vm operation");
 491   }
 492 
 493   RuntimeService::record_safepoint_synchronized();
 494   if (PrintSafepointStatistics) {
 495     update_statistics_on_sync_end(os::javaTimeNanos());
 496   }
 497 
 498   // Call stuff that needs to be run when a safepoint is just about to be completed
 499   {
 500 #if INCLUDE_JFR
 501     EventSafepointCleanup cleanup_event;
 502 #endif
 503     do_cleanup_tasks();
 504 #if INCLUDE_JFR
 505     if (cleanup_event.should_commit()) {
 506       post_safepoint_cleanup_event(&cleanup_event);
 507     }
 508 #endif
 509   }
 510 
 511   if (PrintSafepointStatistics) {
 512     // Record how much time spend on the above cleanup tasks
 513     update_statistics_on_cleanup_end(os::javaTimeNanos());
 514   }
 515 
 516 #if INCLUDE_JFR
 517   if (begin_event.should_commit()) {
 518     post_safepoint_begin_event(&begin_event, nof_threads, _current_jni_active_count);
 519   }
 520 #endif
 521 }
 522 
 523 // Wake up all threads, so they are ready to resume execution after the safepoint
 524 // operation has been carried out
 525 void SafepointSynchronize::end() {
 526 
 527   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 528   assert((_safepoint_counter & 0x1) == 1, "must be odd");
 529 #if INCLUDE_JFR
 530   EventSafepointEnd event;
 531 #endif
 532   _safepoint_counter ++;
 533   // memory fence isn't required here since an odd _safepoint_counter
 534   // value can do no harm and a fence is issued below anyway.
 535 
 536   DEBUG_ONLY(Thread* myThread = Thread::current();)
 537   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
 538 
 539   if (PrintSafepointStatistics) {
 540     end_statistics(os::javaTimeNanos());
 541   }
 542 
 543 #ifdef ASSERT
 544   // A pending_exception cannot be installed during a safepoint.  The threads
 545   // may install an async exception after they come back from a safepoint into
 546   // pending_exception after they unblock.  But that should happen later.
 547   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
 548     assert (!(cur->has_pending_exception() &&
 549               cur->safepoint_state()->is_at_poll_safepoint()),
 550             "safepoint installed a pending exception");
 551   }
 552 #endif // ASSERT
 553 
 554   if (PageArmed) {
 555     // Make polling safepoint aware
 556     os::make_polling_page_readable();
 557     PageArmed = 0 ;
 558   }
 559 
 560   // Remove safepoint check from interpreter
 561   Interpreter::ignore_safepoints();
 562 
 563   {
 564     MutexLocker mu(Safepoint_lock);
 565 
 566     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
 567 
 568     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
 569     // when they get restarted.
 570     _state = _not_synchronized;
 571     OrderAccess::fence();
 572 
 573     if (TraceSafepoint) {
 574        tty->print_cr("Leaving safepoint region");
 575     }
 576 
 577     // Start suspended threads
 578     for(JavaThread *current = Threads::first(); current; current = current->next()) {
 579       // A problem occurring on Solaris is when attempting to restart threads
 580       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
 581       // to the next one (since it has been running the longest).  We then have
 582       // to wait for a cpu to become available before we can continue restarting
 583       // threads.
 584       // FIXME: This causes the performance of the VM to degrade when active and with
 585       // large numbers of threads.  Apparently this is due to the synchronous nature
 586       // of suspending threads.
 587       //
 588       // TODO-FIXME: the comments above are vestigial and no longer apply.
 589       // Furthermore, using solaris' schedctl in this particular context confers no benefit
 590       if (VMThreadHintNoPreempt) {
 591         os::hint_no_preempt();
 592       }
 593       ThreadSafepointState* cur_state = current->safepoint_state();
 594       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
 595       cur_state->restart();
 596       assert(cur_state->is_running(), "safepoint state has not been reset");
 597     }
 598 
 599     RuntimeService::record_safepoint_end();
 600 
 601     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
 602     // blocked in signal_thread_blocked
 603     Threads_lock->unlock();
 604 
 605   }
 606 #if INCLUDE_ALL_GCS
 607   // If there are any concurrent GC threads resume them.
 608   if (UseConcMarkSweepGC) {
 609     ConcurrentMarkSweepThread::desynchronize(false);
 610   } else if (UseG1GC) {
 611     SuspendibleThreadSet::desynchronize();
 612   }
 613 #endif // INCLUDE_ALL_GCS
 614   // record this time so VMThread can keep track how much time has elasped
 615   // since last safepoint.
 616   _end_of_last_safepoint = os::javaTimeMillis();
 617 #if INCLUDE_JFR
 618   if (event.should_commit()) {
 619     post_safepoint_end_event(&event);
 620   }
 621 #endif
 622 }
 623 
 624 bool SafepointSynchronize::is_cleanup_needed() {
 625   // Need a safepoint if some inline cache buffers is non-empty
 626   if (!InlineCacheBuffer::is_empty()) return true;
 627   return false;
 628 }
 629 
 630 
 631 
 632 // Various cleaning tasks that should be done periodically at safepoints
 633 void SafepointSynchronize::do_cleanup_tasks() {
 634   {
 635     const char* name = "deflating idle monitors";
 636 #if INCLUDE_JFR
 637     EventSafepointCleanupTask event;
 638 #endif
 639     TraceTime t1(name, TraceSafepointCleanupTime);
 640     ObjectSynchronizer::deflate_idle_monitors();
 641 #if INCLUDE_JFR
 642     if (event.should_commit()) {
 643       post_safepoint_cleanup_task_event(&event, name);
 644     }
 645 #endif
 646   }
 647 
 648   {
 649     const char* name = "updating inline caches";
 650 #if INCLUDE_JFR
 651     EventSafepointCleanupTask event;
 652 #endif
 653     TraceTime t2(name, TraceSafepointCleanupTime);
 654     InlineCacheBuffer::update_inline_caches();
 655 #if INCLUDE_JFR
 656     if (event.should_commit()) {
 657       post_safepoint_cleanup_task_event(&event, name);
 658     }
 659 #endif
 660   }
 661   {
 662     const char* name = "compilation policy safepoint handler";
 663 #if INCLUDE_JFR
 664     EventSafepointCleanupTask event;
 665 #endif
 666     TraceTime t3(name, TraceSafepointCleanupTime);
 667     CompilationPolicy::policy()->do_safepoint_work();
 668 #if INCLUDE_JFR
 669     if (event.should_commit()) {
 670       post_safepoint_cleanup_task_event(&event, name);
 671     }
 672 #endif
 673   }
 674 
 675   {
 676     const char* name = "mark nmethods";
 677 #if INCLUDE_JFR
 678     EventSafepointCleanupTask event;
 679 #endif
 680     TraceTime t4(name, TraceSafepointCleanupTime);
 681     NMethodSweeper::mark_active_nmethods();
 682 #if INCLUDE_JFR
 683     if (event.should_commit()) {
 684       post_safepoint_cleanup_task_event(&event, name);
 685     }
 686 #endif
 687   }
 688 
 689   if (SymbolTable::needs_rehashing()) {
 690     const char* name = "rehashing symbol table";
 691 #if INCLUDE_JFR
 692     EventSafepointCleanupTask event;
 693 #endif
 694     TraceTime t5(name, TraceSafepointCleanupTime);
 695     SymbolTable::rehash_table();
 696 #if INCLUDE_JFR
 697     if (event.should_commit()) {
 698       post_safepoint_cleanup_task_event(&event, name);
 699     }
 700 #endif
 701   }
 702 
 703   if (StringTable::needs_rehashing()) {
 704     const char* name = "rehashing string table";
 705 #if INCLUDE_JFR
 706     EventSafepointCleanupTask event;
 707 #endif
 708     TraceTime t6(name, TraceSafepointCleanupTime);
 709     StringTable::rehash_table();
 710 #if INCLUDE_JFR
 711     if (event.should_commit()) {
 712       post_safepoint_cleanup_task_event(&event, name);
 713     }
 714 #endif
 715   }
 716 
 717   // rotate log files?
 718   if (UseGCLogFileRotation) {
 719     gclog_or_tty->rotate_log(false);
 720   }
 721 
 722   {
 723     // CMS delays purging the CLDG until the beginning of the next safepoint and to
 724     // make sure concurrent sweep is done
 725     TraceTime t7("purging class loader data graph", TraceSafepointCleanupTime);
 726     ClassLoaderDataGraph::purge_if_needed();
 727   }
 728 }
 729 
 730 
 731 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
 732   switch(state) {
 733   case _thread_in_native:
 734     // native threads are safe if they have no java stack or have walkable stack
 735     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
 736 
 737    // blocked threads should have already have walkable stack
 738   case _thread_blocked:
 739     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
 740     return true;
 741 
 742   default:
 743     return false;
 744   }
 745 }
 746 
 747 
 748 // See if the thread is running inside a lazy critical native and
 749 // update the thread critical count if so.  Also set a suspend flag to
 750 // cause the native wrapper to return into the JVM to do the unlock
 751 // once the native finishes.
 752 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
 753   if (state == _thread_in_native &&
 754       thread->has_last_Java_frame() &&
 755       thread->frame_anchor()->walkable()) {
 756     // This thread might be in a critical native nmethod so look at
 757     // the top of the stack and increment the critical count if it
 758     // is.
 759     frame wrapper_frame = thread->last_frame();
 760     CodeBlob* stub_cb = wrapper_frame.cb();
 761     if (stub_cb != NULL &&
 762         stub_cb->is_nmethod() &&
 763         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
 764       // A thread could potentially be in a critical native across
 765       // more than one safepoint, so only update the critical state on
 766       // the first one.  When it returns it will perform the unlock.
 767       if (!thread->do_critical_native_unlock()) {
 768 #ifdef ASSERT
 769         if (!thread->in_critical()) {
 770           GC_locker::increment_debug_jni_lock_count();
 771         }
 772 #endif
 773         thread->enter_critical();
 774         // Make sure the native wrapper calls back on return to
 775         // perform the needed critical unlock.
 776         thread->set_critical_native_unlock();
 777       }
 778     }
 779   }
 780 }
 781 
 782 
 783 
 784 // -------------------------------------------------------------------------------------------------------
 785 // Implementation of Safepoint callback point
 786 
 787 void SafepointSynchronize::block(JavaThread *thread) {
 788   assert(thread != NULL, "thread must be set");
 789   assert(thread->is_Java_thread(), "not a Java thread");
 790 
 791   // Threads shouldn't block if they are in the middle of printing, but...
 792   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
 793 
 794   // Only bail from the block() call if the thread is gone from the
 795   // thread list; starting to exit should still block.
 796   if (thread->is_terminated()) {
 797      // block current thread if we come here from native code when VM is gone
 798      thread->block_if_vm_exited();
 799 
 800      // otherwise do nothing
 801      return;
 802   }
 803 
 804   JavaThreadState state = thread->thread_state();
 805   thread->frame_anchor()->make_walkable(thread);
 806 
 807   // Check that we have a valid thread_state at this point
 808   switch(state) {
 809     case _thread_in_vm_trans:
 810     case _thread_in_Java:        // From compiled code
 811 
 812       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
 813       // we pretend we are still in the VM.
 814       thread->set_thread_state(_thread_in_vm);
 815 
 816       if (is_synchronizing()) {
 817          Atomic::inc (&TryingToBlock) ;
 818       }
 819 
 820       // We will always be holding the Safepoint_lock when we are examine the state
 821       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
 822       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
 823       Safepoint_lock->lock_without_safepoint_check();
 824       if (is_synchronizing()) {
 825         // Decrement the number of threads to wait for and signal vm thread
 826         assert(_waiting_to_block > 0, "sanity check");
 827         _waiting_to_block--;
 828         thread->safepoint_state()->set_has_called_back(true);
 829 
 830         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
 831         if (thread->in_critical()) {
 832           // Notice that this thread is in a critical section
 833           increment_jni_active_count();
 834         }
 835 
 836         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
 837         if (_waiting_to_block == 0) {
 838           Safepoint_lock->notify_all();
 839         }
 840       }
 841 
 842       // We transition the thread to state _thread_blocked here, but
 843       // we can't do our usual check for external suspension and then
 844       // self-suspend after the lock_without_safepoint_check() call
 845       // below because we are often called during transitions while
 846       // we hold different locks. That would leave us suspended while
 847       // holding a resource which results in deadlocks.
 848       thread->set_thread_state(_thread_blocked);
 849       Safepoint_lock->unlock();
 850 
 851       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
 852       // the entire safepoint, the threads will all line up here during the safepoint.
 853       Threads_lock->lock_without_safepoint_check();
 854       // restore original state. This is important if the thread comes from compiled code, so it
 855       // will continue to execute with the _thread_in_Java state.
 856       thread->set_thread_state(state);
 857       Threads_lock->unlock();
 858       break;
 859 
 860     case _thread_in_native_trans:
 861     case _thread_blocked_trans:
 862     case _thread_new_trans:
 863       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
 864         thread->print_thread_state();
 865         fatal("Deadlock in safepoint code.  "
 866               "Should have called back to the VM before blocking.");
 867       }
 868 
 869       // We transition the thread to state _thread_blocked here, but
 870       // we can't do our usual check for external suspension and then
 871       // self-suspend after the lock_without_safepoint_check() call
 872       // below because we are often called during transitions while
 873       // we hold different locks. That would leave us suspended while
 874       // holding a resource which results in deadlocks.
 875       thread->set_thread_state(_thread_blocked);
 876 
 877       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
 878       // the safepoint code might still be waiting for it to block. We need to change the state here,
 879       // so it can see that it is at a safepoint.
 880 
 881       // Block until the safepoint operation is completed.
 882       Threads_lock->lock_without_safepoint_check();
 883 
 884       // Restore state
 885       thread->set_thread_state(state);
 886 
 887       Threads_lock->unlock();
 888       break;
 889 
 890     default:
 891      fatal(err_msg("Illegal threadstate encountered: %d", state));
 892   }
 893 
 894   // Check for pending. async. exceptions or suspends - except if the
 895   // thread was blocked inside the VM. has_special_runtime_exit_condition()
 896   // is called last since it grabs a lock and we only want to do that when
 897   // we must.
 898   //
 899   // Note: we never deliver an async exception at a polling point as the
 900   // compiler may not have an exception handler for it. The polling
 901   // code will notice the async and deoptimize and the exception will
 902   // be delivered. (Polling at a return point is ok though). Sure is
 903   // a lot of bother for a deprecated feature...
 904   //
 905   // We don't deliver an async exception if the thread state is
 906   // _thread_in_native_trans so JNI functions won't be called with
 907   // a surprising pending exception. If the thread state is going back to java,
 908   // async exception is checked in check_special_condition_for_native_trans().
 909 
 910   if (state != _thread_blocked_trans &&
 911       state != _thread_in_vm_trans &&
 912       thread->has_special_runtime_exit_condition()) {
 913     thread->handle_special_runtime_exit_condition(
 914       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
 915   }
 916 }
 917 
 918 // ------------------------------------------------------------------------------------------------------
 919 // Exception handlers
 920 
 921 
 922 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
 923   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
 924   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
 925   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
 926 
 927   if (ShowSafepointMsgs) {
 928     tty->print("handle_polling_page_exception: ");
 929   }
 930 
 931   if (PrintSafepointStatistics) {
 932     inc_page_trap_count();
 933   }
 934 
 935   ThreadSafepointState* state = thread->safepoint_state();
 936 
 937   state->handle_polling_page_exception();
 938 }
 939 
 940 
 941 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
 942   if (!timeout_error_printed) {
 943     timeout_error_printed = true;
 944     // Print out the thread infor which didn't reach the safepoint for debugging
 945     // purposes (useful when there are lots of threads in the debugger).
 946     tty->cr();
 947     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
 948     if (reason ==  _spinning_timeout) {
 949       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
 950     } else if (reason == _blocking_timeout) {
 951       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
 952     }
 953 
 954     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
 955     ThreadSafepointState *cur_state;
 956     ResourceMark rm;
 957     for(JavaThread *cur_thread = Threads::first(); cur_thread;
 958         cur_thread = cur_thread->next()) {
 959       cur_state = cur_thread->safepoint_state();
 960 
 961       if (cur_thread->thread_state() != _thread_blocked &&
 962           ((reason == _spinning_timeout && cur_state->is_running()) ||
 963            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
 964         tty->print("# ");
 965         cur_thread->print();
 966         tty->cr();
 967       }
 968     }
 969     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
 970   }
 971 
 972   // To debug the long safepoint, specify both AbortVMOnSafepointTimeout &
 973   // ShowMessageBoxOnError.
 974   if (AbortVMOnSafepointTimeout) {
 975     char msg[1024];
 976     VM_Operation *op = VMThread::vm_operation();
 977     sprintf(msg, "Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
 978             SafepointTimeoutDelay,
 979             op != NULL ? op->name() : "no vm operation");
 980     fatal(msg);
 981   }
 982 }
 983 
 984 
 985 // -------------------------------------------------------------------------------------------------------
 986 // Implementation of ThreadSafepointState
 987 
 988 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
 989   _thread = thread;
 990   _type   = _running;
 991   _has_called_back = false;
 992   _at_poll_safepoint = false;
 993 }
 994 
 995 void ThreadSafepointState::create(JavaThread *thread) {
 996   ThreadSafepointState *state = new ThreadSafepointState(thread);
 997   thread->set_safepoint_state(state);
 998 }
 999 
1000 void ThreadSafepointState::destroy(JavaThread *thread) {
1001   if (thread->safepoint_state()) {
1002     delete(thread->safepoint_state());
1003     thread->set_safepoint_state(NULL);
1004   }
1005 }
1006 
1007 void ThreadSafepointState::examine_state_of_thread() {
1008   assert(is_running(), "better be running or just have hit safepoint poll");
1009 
1010   JavaThreadState state = _thread->thread_state();
1011 
1012   // Save the state at the start of safepoint processing.
1013   _orig_thread_state = state;
1014 
1015   // Check for a thread that is suspended. Note that thread resume tries
1016   // to grab the Threads_lock which we own here, so a thread cannot be
1017   // resumed during safepoint synchronization.
1018 
1019   // We check to see if this thread is suspended without locking to
1020   // avoid deadlocking with a third thread that is waiting for this
1021   // thread to be suspended. The third thread can notice the safepoint
1022   // that we're trying to start at the beginning of its SR_lock->wait()
1023   // call. If that happens, then the third thread will block on the
1024   // safepoint while still holding the underlying SR_lock. We won't be
1025   // able to get the SR_lock and we'll deadlock.
1026   //
1027   // We don't need to grab the SR_lock here for two reasons:
1028   // 1) The suspend flags are both volatile and are set with an
1029   //    Atomic::cmpxchg() call so we should see the suspended
1030   //    state right away.
1031   // 2) We're being called from the safepoint polling loop; if
1032   //    we don't see the suspended state on this iteration, then
1033   //    we'll come around again.
1034   //
1035   bool is_suspended = _thread->is_ext_suspended();
1036   if (is_suspended) {
1037     roll_forward(_at_safepoint);
1038     return;
1039   }
1040 
1041   // Some JavaThread states have an initial safepoint state of
1042   // running, but are actually at a safepoint. We will happily
1043   // agree and update the safepoint state here.
1044   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
1045     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
1046     roll_forward(_at_safepoint);
1047     return;
1048   }
1049 
1050   if (state == _thread_in_vm) {
1051     roll_forward(_call_back);
1052     return;
1053   }
1054 
1055   // All other thread states will continue to run until they
1056   // transition and self-block in state _blocked
1057   // Safepoint polling in compiled code causes the Java threads to do the same.
1058   // Note: new threads may require a malloc so they must be allowed to finish
1059 
1060   assert(is_running(), "examine_state_of_thread on non-running thread");
1061   return;
1062 }
1063 
1064 // Returns true is thread could not be rolled forward at present position.
1065 void ThreadSafepointState::roll_forward(suspend_type type) {
1066   _type = type;
1067 
1068   switch(_type) {
1069     case _at_safepoint:
1070       SafepointSynchronize::signal_thread_at_safepoint();
1071       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
1072       if (_thread->in_critical()) {
1073         // Notice that this thread is in a critical section
1074         SafepointSynchronize::increment_jni_active_count();
1075       }
1076       break;
1077 
1078     case _call_back:
1079       set_has_called_back(false);
1080       break;
1081 
1082     case _running:
1083     default:
1084       ShouldNotReachHere();
1085   }
1086 }
1087 
1088 void ThreadSafepointState::restart() {
1089   switch(type()) {
1090     case _at_safepoint:
1091     case _call_back:
1092       break;
1093 
1094     case _running:
1095     default:
1096        tty->print_cr("restart thread " INTPTR_FORMAT " with state %d",
1097                       _thread, _type);
1098        _thread->print();
1099       ShouldNotReachHere();
1100   }
1101   _type = _running;
1102   set_has_called_back(false);
1103 }
1104 
1105 
1106 void ThreadSafepointState::print_on(outputStream *st) const {
1107   const char *s = NULL;
1108 
1109   switch(_type) {
1110     case _running                : s = "_running";              break;
1111     case _at_safepoint           : s = "_at_safepoint";         break;
1112     case _call_back              : s = "_call_back";            break;
1113     default:
1114       ShouldNotReachHere();
1115   }
1116 
1117   st->print_cr("Thread: " INTPTR_FORMAT
1118               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
1119                _thread, _thread->osthread()->thread_id(), s, _has_called_back,
1120                _at_poll_safepoint);
1121 
1122   _thread->print_thread_state_on(st);
1123 }
1124 
1125 
1126 // ---------------------------------------------------------------------------------------------------------------------
1127 
1128 // Block the thread at the safepoint poll or poll return.
1129 void ThreadSafepointState::handle_polling_page_exception() {
1130 
1131   // Check state.  block() will set thread state to thread_in_vm which will
1132   // cause the safepoint state _type to become _call_back.
1133   assert(type() == ThreadSafepointState::_running,
1134          "polling page exception on thread not running state");
1135 
1136   // Step 1: Find the nmethod from the return address
1137   if (ShowSafepointMsgs && Verbose) {
1138     tty->print_cr("Polling page exception at " INTPTR_FORMAT, thread()->saved_exception_pc());
1139   }
1140   address real_return_addr = thread()->saved_exception_pc();
1141 
1142   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
1143   assert(cb != NULL && cb->is_nmethod(), "return address should be in nmethod");
1144   nmethod* nm = (nmethod*)cb;
1145 
1146   // Find frame of caller
1147   frame stub_fr = thread()->last_frame();
1148   CodeBlob* stub_cb = stub_fr.cb();
1149   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
1150   RegisterMap map(thread(), true);
1151   frame caller_fr = stub_fr.sender(&map);
1152 
1153   // Should only be poll_return or poll
1154   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
1155 
1156   // This is a poll immediately before a return. The exception handling code
1157   // has already had the effect of causing the return to occur, so the execution
1158   // will continue immediately after the call. In addition, the oopmap at the
1159   // return point does not mark the return value as an oop (if it is), so
1160   // it needs a handle here to be updated.
1161   if( nm->is_at_poll_return(real_return_addr) ) {
1162     // See if return type is an oop.
1163     bool return_oop = nm->method()->is_returning_oop();
1164     Handle return_value;
1165     if (return_oop) {
1166       // The oop result has been saved on the stack together with all
1167       // the other registers. In order to preserve it over GCs we need
1168       // to keep it in a handle.
1169       oop result = caller_fr.saved_oop_result(&map);
1170       assert(result == NULL || result->is_oop(), "must be oop");
1171       return_value = Handle(thread(), result);
1172       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
1173     }
1174 
1175     // Block the thread
1176     SafepointSynchronize::block(thread());
1177 
1178     // restore oop result, if any
1179     if (return_oop) {
1180       caller_fr.set_saved_oop_result(&map, return_value());
1181     }
1182   }
1183 
1184   // This is a safepoint poll. Verify the return address and block.
1185   else {
1186     set_at_poll_safepoint(true);
1187 
1188     // verify the blob built the "return address" correctly
1189     assert(real_return_addr == caller_fr.pc(), "must match");
1190 
1191     // Block the thread
1192     SafepointSynchronize::block(thread());
1193     set_at_poll_safepoint(false);
1194 
1195     // If we have a pending async exception deoptimize the frame
1196     // as otherwise we may never deliver it.
1197     if (thread()->has_async_condition()) {
1198       ThreadInVMfromJavaNoAsyncException __tiv(thread());
1199       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
1200     }
1201 
1202     // If an exception has been installed we must check for a pending deoptimization
1203     // Deoptimize frame if exception has been thrown.
1204 
1205     if (thread()->has_pending_exception() ) {
1206       RegisterMap map(thread(), true);
1207       frame caller_fr = stub_fr.sender(&map);
1208       if (caller_fr.is_deoptimized_frame()) {
1209         // The exception patch will destroy registers that are still
1210         // live and will be needed during deoptimization. Defer the
1211         // Async exception should have defered the exception until the
1212         // next safepoint which will be detected when we get into
1213         // the interpreter so if we have an exception now things
1214         // are messed up.
1215 
1216         fatal("Exception installed and deoptimization is pending");
1217       }
1218     }
1219   }
1220 }
1221 
1222 
1223 //
1224 //                     Statistics & Instrumentations
1225 //
1226 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1227 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1228 int    SafepointSynchronize::_cur_stat_index = 0;
1229 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1230 julong SafepointSynchronize::_coalesced_vmop_count = 0;
1231 jlong  SafepointSynchronize::_max_sync_time = 0;
1232 jlong  SafepointSynchronize::_max_vmop_time = 0;
1233 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1234 
1235 static jlong  cleanup_end_time = 0;
1236 static bool   need_to_track_page_armed_status = false;
1237 static bool   init_done = false;
1238 
1239 // Helper method to print the header.
1240 static void print_header() {
1241   tty->print("         vmop                    "
1242              "[threads: total initially_running wait_to_block]    ");
1243   tty->print("[time: spin block sync cleanup vmop] ");
1244 
1245   // no page armed status printed out if it is always armed.
1246   if (need_to_track_page_armed_status) {
1247     tty->print("page_armed ");
1248   }
1249 
1250   tty->print_cr("page_trap_count");
1251 }
1252 
1253 void SafepointSynchronize::deferred_initialize_stat() {
1254   if (init_done) return;
1255 
1256   if (PrintSafepointStatisticsCount <= 0) {
1257     fatal("Wrong PrintSafepointStatisticsCount");
1258   }
1259 
1260   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1261   // be printed right away, in which case, _safepoint_stats will regress to
1262   // a single element array. Otherwise, it is a circular ring buffer with default
1263   // size of PrintSafepointStatisticsCount.
1264   int stats_array_size;
1265   if (PrintSafepointStatisticsTimeout > 0) {
1266     stats_array_size = 1;
1267     PrintSafepointStatistics = true;
1268   } else {
1269     stats_array_size = PrintSafepointStatisticsCount;
1270   }
1271   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1272                                                  * sizeof(SafepointStats), mtInternal);
1273   guarantee(_safepoint_stats != NULL,
1274             "not enough memory for safepoint instrumentation data");
1275 
1276   if (UseCompilerSafepoints && DeferPollingPageLoopCount >= 0) {
1277     need_to_track_page_armed_status = true;
1278   }
1279   init_done = true;
1280 }
1281 
1282 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1283   assert(init_done, "safepoint statistics array hasn't been initialized");
1284   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1285 
1286   spstat->_time_stamp = _ts_of_current_safepoint;
1287 
1288   VM_Operation *op = VMThread::vm_operation();
1289   spstat->_vmop_type = (op != NULL ? op->type() : -1);
1290   if (op != NULL) {
1291     _safepoint_reasons[spstat->_vmop_type]++;
1292   }
1293 
1294   spstat->_nof_total_threads = nof_threads;
1295   spstat->_nof_initial_running_threads = nof_running;
1296   spstat->_nof_threads_hit_page_trap = 0;
1297 
1298   // Records the start time of spinning. The real time spent on spinning
1299   // will be adjusted when spin is done. Same trick is applied for time
1300   // spent on waiting for threads to block.
1301   if (nof_running != 0) {
1302     spstat->_time_to_spin = os::javaTimeNanos();
1303   }  else {
1304     spstat->_time_to_spin = 0;
1305   }
1306 }
1307 
1308 void SafepointSynchronize::update_statistics_on_spin_end() {
1309   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1310 
1311   jlong cur_time = os::javaTimeNanos();
1312 
1313   spstat->_nof_threads_wait_to_block = _waiting_to_block;
1314   if (spstat->_nof_initial_running_threads != 0) {
1315     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1316   }
1317 
1318   if (need_to_track_page_armed_status) {
1319     spstat->_page_armed = (PageArmed == 1);
1320   }
1321 
1322   // Records the start time of waiting for to block. Updated when block is done.
1323   if (_waiting_to_block != 0) {
1324     spstat->_time_to_wait_to_block = cur_time;
1325   } else {
1326     spstat->_time_to_wait_to_block = 0;
1327   }
1328 }
1329 
1330 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1331   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1332 
1333   if (spstat->_nof_threads_wait_to_block != 0) {
1334     spstat->_time_to_wait_to_block = end_time -
1335       spstat->_time_to_wait_to_block;
1336   }
1337 
1338   // Records the end time of sync which will be used to calculate the total
1339   // vm operation time. Again, the real time spending in syncing will be deducted
1340   // from the start of the sync time later when end_statistics is called.
1341   spstat->_time_to_sync = end_time - _safepoint_begin_time;
1342   if (spstat->_time_to_sync > _max_sync_time) {
1343     _max_sync_time = spstat->_time_to_sync;
1344   }
1345 
1346   spstat->_time_to_do_cleanups = end_time;
1347 }
1348 
1349 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1350   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1351 
1352   // Record how long spent in cleanup tasks.
1353   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1354 
1355   cleanup_end_time = end_time;
1356 }
1357 
1358 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1359   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1360 
1361   // Update the vm operation time.
1362   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1363   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1364     _max_vmop_time = spstat->_time_to_exec_vmop;
1365   }
1366   // Only the sync time longer than the specified
1367   // PrintSafepointStatisticsTimeout will be printed out right away.
1368   // By default, it is -1 meaning all samples will be put into the list.
1369   if ( PrintSafepointStatisticsTimeout > 0) {
1370     if (spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1371       print_statistics();
1372     }
1373   } else {
1374     // The safepoint statistics will be printed out when the _safepoin_stats
1375     // array fills up.
1376     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1377       print_statistics();
1378       _cur_stat_index = 0;
1379     } else {
1380       _cur_stat_index++;
1381     }
1382   }
1383 }
1384 
1385 void SafepointSynchronize::print_statistics() {
1386   SafepointStats* sstats = _safepoint_stats;
1387 
1388   for (int index = 0; index <= _cur_stat_index; index++) {
1389     if (index % 30 == 0) {
1390       print_header();
1391     }
1392     sstats = &_safepoint_stats[index];
1393     tty->print("%.3f: ", sstats->_time_stamp);
1394     tty->print("%-26s       ["
1395                INT32_FORMAT_W(8) INT32_FORMAT_W(11) INT32_FORMAT_W(15)
1396                "    ]    ",
1397                sstats->_vmop_type == -1 ? "no vm operation" :
1398                VM_Operation::name(sstats->_vmop_type),
1399                sstats->_nof_total_threads,
1400                sstats->_nof_initial_running_threads,
1401                sstats->_nof_threads_wait_to_block);
1402     // "/ MICROUNITS " is to convert the unit from nanos to millis.
1403     tty->print("  ["
1404                INT64_FORMAT_W(6) INT64_FORMAT_W(6)
1405                INT64_FORMAT_W(6) INT64_FORMAT_W(6)
1406                INT64_FORMAT_W(6) "    ]  ",
1407                sstats->_time_to_spin / MICROUNITS,
1408                sstats->_time_to_wait_to_block / MICROUNITS,
1409                sstats->_time_to_sync / MICROUNITS,
1410                sstats->_time_to_do_cleanups / MICROUNITS,
1411                sstats->_time_to_exec_vmop / MICROUNITS);
1412 
1413     if (need_to_track_page_armed_status) {
1414       tty->print(INT32_FORMAT "         ", sstats->_page_armed);
1415     }
1416     tty->print_cr(INT32_FORMAT "   ", sstats->_nof_threads_hit_page_trap);
1417   }
1418 }
1419 
1420 // This method will be called when VM exits. It will first call
1421 // print_statistics to print out the rest of the sampling.  Then
1422 // it tries to summarize the sampling.
1423 void SafepointSynchronize::print_stat_on_exit() {
1424   if (_safepoint_stats == NULL) return;
1425 
1426   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1427 
1428   // During VM exit, end_statistics may not get called and in that
1429   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1430   // don't print it out.
1431   // Approximate the vm op time.
1432   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1433     os::javaTimeNanos() - cleanup_end_time;
1434 
1435   if ( PrintSafepointStatisticsTimeout < 0 ||
1436        spstat->_time_to_sync > PrintSafepointStatisticsTimeout * MICROUNITS) {
1437     print_statistics();
1438   }
1439   tty->cr();
1440 
1441   // Print out polling page sampling status.
1442   if (!need_to_track_page_armed_status) {
1443     if (UseCompilerSafepoints) {
1444       tty->print_cr("Polling page always armed");
1445     }
1446   } else {
1447     tty->print_cr("Defer polling page loop count = %d\n",
1448                  DeferPollingPageLoopCount);
1449   }
1450 
1451   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1452     if (_safepoint_reasons[index] != 0) {
1453       tty->print_cr("%-26s" UINT64_FORMAT_W(10), VM_Operation::name(index),
1454                     _safepoint_reasons[index]);
1455     }
1456   }
1457 
1458   tty->print_cr(UINT64_FORMAT_W(5) " VM operations coalesced during safepoint",
1459                 _coalesced_vmop_count);
1460   tty->print_cr("Maximum sync time  " INT64_FORMAT_W(5) " ms",
1461                 _max_sync_time / MICROUNITS);
1462   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1463                 INT64_FORMAT_W(5) " ms",
1464                 _max_vmop_time / MICROUNITS);
1465 }
1466 
1467 // ------------------------------------------------------------------------------------------------
1468 // Non-product code
1469 
1470 #ifndef PRODUCT
1471 
1472 void SafepointSynchronize::print_state() {
1473   if (_state == _not_synchronized) {
1474     tty->print_cr("not synchronized");
1475   } else if (_state == _synchronizing || _state == _synchronized) {
1476     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1477                   "synchronized");
1478 
1479     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1480        cur->safepoint_state()->print();
1481     }
1482   }
1483 }
1484 
1485 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1486   if (ShowSafepointMsgs) {
1487     va_list ap;
1488     va_start(ap, format);
1489     tty->vprint_cr(format, ap);
1490     va_end(ap);
1491   }
1492 }
1493 
1494 #endif // !PRODUCT