1 /*
   2  * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_thread.cpp.incl"
  27 
  28 #ifdef DTRACE_ENABLED
  29 
  30 // Only bother with this argument setup if dtrace is available
  31 
  32 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
  33 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
  34 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
  35   intptr_t, intptr_t, bool);
  36 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
  37   intptr_t, intptr_t, bool);
  38 
  39 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
  40   {                                                                        \
  41     ResourceMark rm(this);                                                 \
  42     int len = 0;                                                           \
  43     const char* name = (javathread)->get_thread_name();                    \
  44     len = strlen(name);                                                    \
  45     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
  46       name, len,                                                           \
  47       java_lang_Thread::thread_id((javathread)->threadObj()),              \
  48       (javathread)->osthread()->thread_id(),                               \
  49       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
  50   }
  51 
  52 #else //  ndef DTRACE_ENABLED
  53 
  54 #define DTRACE_THREAD_PROBE(probe, javathread)
  55 
  56 #endif // ndef DTRACE_ENABLED
  57 
  58 // Class hierarchy
  59 // - Thread
  60 //   - VMThread
  61 //   - WatcherThread
  62 //   - ConcurrentMarkSweepThread
  63 //   - JavaThread
  64 //     - CompilerThread
  65 
  66 // ======= Thread ========
  67 
  68 // Support for forcing alignment of thread objects for biased locking
  69 void* Thread::operator new(size_t size) {
  70   if (UseBiasedLocking) {
  71     const int alignment = markOopDesc::biased_lock_alignment;
  72     size_t aligned_size = size + (alignment - sizeof(intptr_t));
  73     void* real_malloc_addr = CHeapObj::operator new(aligned_size);
  74     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
  75     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
  76            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
  77            "JavaThread alignment code overflowed allocated storage");
  78     if (TraceBiasedLocking) {
  79       if (aligned_addr != real_malloc_addr)
  80         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
  81                       real_malloc_addr, aligned_addr);
  82     }
  83     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
  84     return aligned_addr;
  85   } else {
  86     return CHeapObj::operator new(size);
  87   }
  88 }
  89 
  90 void Thread::operator delete(void* p) {
  91   if (UseBiasedLocking) {
  92     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
  93     CHeapObj::operator delete(real_malloc_addr);
  94   } else {
  95     CHeapObj::operator delete(p);
  96   }
  97 }
  98 
  99 
 100 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 101 // JavaThread
 102 
 103 
 104 Thread::Thread() {
 105   // stack
 106   _stack_base   = NULL;
 107   _stack_size   = 0;
 108   _self_raw_id  = 0;
 109   _lgrp_id      = -1;
 110   _osthread     = NULL;
 111 
 112   // allocated data structures
 113   set_resource_area(new ResourceArea());
 114   set_handle_area(new HandleArea(NULL));
 115   set_active_handles(NULL);
 116   set_free_handle_block(NULL);
 117   set_last_handle_mark(NULL);
 118   set_osthread(NULL);
 119 
 120   // This initial value ==> never claimed.
 121   _oops_do_parity = 0;
 122 
 123   // the handle mark links itself to last_handle_mark
 124   new HandleMark(this);
 125 
 126   // plain initialization
 127   debug_only(_owned_locks = NULL;)
 128   debug_only(_allow_allocation_count = 0;)
 129   NOT_PRODUCT(_allow_safepoint_count = 0;)
 130   NOT_PRODUCT(_skip_gcalot = false;)
 131   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 132   _jvmti_env_iteration_count = 0;
 133   _vm_operation_started_count = 0;
 134   _vm_operation_completed_count = 0;
 135   _current_pending_monitor = NULL;
 136   _current_pending_monitor_is_from_java = true;
 137   _current_waiting_monitor = NULL;
 138   _num_nested_signal = 0;
 139   omFreeList = NULL ;
 140   omFreeCount = 0 ;
 141   omFreeProvision = 32 ;
 142 
 143   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 144   _suspend_flags = 0;
 145 
 146   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 147   _hashStateX = os::random() ;
 148   _hashStateY = 842502087 ;
 149   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 150   _hashStateW = 273326509 ;
 151 
 152   _OnTrap   = 0 ;
 153   _schedctl = NULL ;
 154   _Stalled  = 0 ;
 155   _TypeTag  = 0x2BAD ;
 156 
 157   // Many of the following fields are effectively final - immutable
 158   // Note that nascent threads can't use the Native Monitor-Mutex
 159   // construct until the _MutexEvent is initialized ...
 160   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 161   // we might instead use a stack of ParkEvents that we could provision on-demand.
 162   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 163   // and ::Release()
 164   _ParkEvent   = ParkEvent::Allocate (this) ;
 165   _SleepEvent  = ParkEvent::Allocate (this) ;
 166   _MutexEvent  = ParkEvent::Allocate (this) ;
 167   _MuxEvent    = ParkEvent::Allocate (this) ;
 168 
 169 #ifdef CHECK_UNHANDLED_OOPS
 170   if (CheckUnhandledOops) {
 171     _unhandled_oops = new UnhandledOops(this);
 172   }
 173 #endif // CHECK_UNHANDLED_OOPS
 174 #ifdef ASSERT
 175   if (UseBiasedLocking) {
 176     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 177     assert(this == _real_malloc_address ||
 178            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 179            "bug in forced alignment of thread objects");
 180   }
 181 #endif /* ASSERT */
 182 }
 183 
 184 void Thread::initialize_thread_local_storage() {
 185   // Note: Make sure this method only calls
 186   // non-blocking operations. Otherwise, it might not work
 187   // with the thread-startup/safepoint interaction.
 188 
 189   // During Java thread startup, safepoint code should allow this
 190   // method to complete because it may need to allocate memory to
 191   // store information for the new thread.
 192 
 193   // initialize structure dependent on thread local storage
 194   ThreadLocalStorage::set_thread(this);
 195 
 196   // set up any platform-specific state.
 197   os::initialize_thread();
 198 
 199 }
 200 
 201 void Thread::record_stack_base_and_size() {
 202   set_stack_base(os::current_stack_base());
 203   set_stack_size(os::current_stack_size());
 204 }
 205 
 206 
 207 Thread::~Thread() {
 208   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 209   ObjectSynchronizer::omFlush (this) ;
 210 
 211   // deallocate data structures
 212   delete resource_area();
 213   // since the handle marks are using the handle area, we have to deallocated the root
 214   // handle mark before deallocating the thread's handle area,
 215   assert(last_handle_mark() != NULL, "check we have an element");
 216   delete last_handle_mark();
 217   assert(last_handle_mark() == NULL, "check we have reached the end");
 218 
 219   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 220   // We NULL out the fields for good hygiene.
 221   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 222   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 223   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 224   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 225 
 226   delete handle_area();
 227 
 228   // osthread() can be NULL, if creation of thread failed.
 229   if (osthread() != NULL) os::free_thread(osthread());
 230 
 231   delete _SR_lock;
 232 
 233   // clear thread local storage if the Thread is deleting itself
 234   if (this == Thread::current()) {
 235     ThreadLocalStorage::set_thread(NULL);
 236   } else {
 237     // In the case where we're not the current thread, invalidate all the
 238     // caches in case some code tries to get the current thread or the
 239     // thread that was destroyed, and gets stale information.
 240     ThreadLocalStorage::invalidate_all();
 241   }
 242   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 243 }
 244 
 245 // NOTE: dummy function for assertion purpose.
 246 void Thread::run() {
 247   ShouldNotReachHere();
 248 }
 249 
 250 #ifdef ASSERT
 251 // Private method to check for dangling thread pointer
 252 void check_for_dangling_thread_pointer(Thread *thread) {
 253  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 254          "possibility of dangling Thread pointer");
 255 }
 256 #endif
 257 
 258 
 259 #ifndef PRODUCT
 260 // Tracing method for basic thread operations
 261 void Thread::trace(const char* msg, const Thread* const thread) {
 262   if (!TraceThreadEvents) return;
 263   ResourceMark rm;
 264   ThreadCritical tc;
 265   const char *name = "non-Java thread";
 266   int prio = -1;
 267   if (thread->is_Java_thread()
 268       && !thread->is_Compiler_thread()) {
 269     // The Threads_lock must be held to get information about
 270     // this thread but may not be in some situations when
 271     // tracing  thread events.
 272     bool release_Threads_lock = false;
 273     if (!Threads_lock->owned_by_self()) {
 274       Threads_lock->lock();
 275       release_Threads_lock = true;
 276     }
 277     JavaThread* jt = (JavaThread *)thread;
 278     name = (char *)jt->get_thread_name();
 279     oop thread_oop = jt->threadObj();
 280     if (thread_oop != NULL) {
 281       prio = java_lang_Thread::priority(thread_oop);
 282     }
 283     if (release_Threads_lock) {
 284       Threads_lock->unlock();
 285     }
 286   }
 287   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 288 }
 289 #endif
 290 
 291 
 292 ThreadPriority Thread::get_priority(const Thread* const thread) {
 293   trace("get priority", thread);
 294   ThreadPriority priority;
 295   // Can return an error!
 296   (void)os::get_priority(thread, priority);
 297   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 298   return priority;
 299 }
 300 
 301 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 302   trace("set priority", thread);
 303   debug_only(check_for_dangling_thread_pointer(thread);)
 304   // Can return an error!
 305   (void)os::set_priority(thread, priority);
 306 }
 307 
 308 
 309 void Thread::start(Thread* thread) {
 310   trace("start", thread);
 311   // Start is different from resume in that its safety is guaranteed by context or
 312   // being called from a Java method synchronized on the Thread object.
 313   if (!DisableStartThread) {
 314     if (thread->is_Java_thread()) {
 315       // Initialize the thread state to RUNNABLE before starting this thread.
 316       // Can not set it after the thread started because we do not know the
 317       // exact thread state at that time. It could be in MONITOR_WAIT or
 318       // in SLEEPING or some other state.
 319       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 320                                           java_lang_Thread::RUNNABLE);
 321     }
 322     os::start_thread(thread);
 323   }
 324 }
 325 
 326 // Enqueue a VM_Operation to do the job for us - sometime later
 327 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 328   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 329   VMThread::execute(vm_stop);
 330 }
 331 
 332 
 333 //
 334 // Check if an external suspend request has completed (or has been
 335 // cancelled). Returns true if the thread is externally suspended and
 336 // false otherwise.
 337 //
 338 // The bits parameter returns information about the code path through
 339 // the routine. Useful for debugging:
 340 //
 341 // set in is_ext_suspend_completed():
 342 // 0x00000001 - routine was entered
 343 // 0x00000010 - routine return false at end
 344 // 0x00000100 - thread exited (return false)
 345 // 0x00000200 - suspend request cancelled (return false)
 346 // 0x00000400 - thread suspended (return true)
 347 // 0x00001000 - thread is in a suspend equivalent state (return true)
 348 // 0x00002000 - thread is native and walkable (return true)
 349 // 0x00004000 - thread is native_trans and walkable (needed retry)
 350 //
 351 // set in wait_for_ext_suspend_completion():
 352 // 0x00010000 - routine was entered
 353 // 0x00020000 - suspend request cancelled before loop (return false)
 354 // 0x00040000 - thread suspended before loop (return true)
 355 // 0x00080000 - suspend request cancelled in loop (return false)
 356 // 0x00100000 - thread suspended in loop (return true)
 357 // 0x00200000 - suspend not completed during retry loop (return false)
 358 //
 359 
 360 // Helper class for tracing suspend wait debug bits.
 361 //
 362 // 0x00000100 indicates that the target thread exited before it could
 363 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 364 // 0x00080000 each indicate a cancelled suspend request so they don't
 365 // count as wait failures either.
 366 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 367 
 368 class TraceSuspendDebugBits : public StackObj {
 369  private:
 370   JavaThread * jt;
 371   bool         is_wait;
 372   bool         called_by_wait;  // meaningful when !is_wait
 373   uint32_t *   bits;
 374 
 375  public:
 376   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 377                         uint32_t *_bits) {
 378     jt             = _jt;
 379     is_wait        = _is_wait;
 380     called_by_wait = _called_by_wait;
 381     bits           = _bits;
 382   }
 383 
 384   ~TraceSuspendDebugBits() {
 385     if (!is_wait) {
 386 #if 1
 387       // By default, don't trace bits for is_ext_suspend_completed() calls.
 388       // That trace is very chatty.
 389       return;
 390 #else
 391       if (!called_by_wait) {
 392         // If tracing for is_ext_suspend_completed() is enabled, then only
 393         // trace calls to it from wait_for_ext_suspend_completion()
 394         return;
 395       }
 396 #endif
 397     }
 398 
 399     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 400       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 401         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 402         ResourceMark rm;
 403 
 404         tty->print_cr(
 405             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 406             jt->get_thread_name(), *bits);
 407 
 408         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 409       }
 410     }
 411   }
 412 };
 413 #undef DEBUG_FALSE_BITS
 414 
 415 
 416 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 417   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 418 
 419   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 420   bool do_trans_retry;           // flag to force the retry
 421 
 422   *bits |= 0x00000001;
 423 
 424   do {
 425     do_trans_retry = false;
 426 
 427     if (is_exiting()) {
 428       // Thread is in the process of exiting. This is always checked
 429       // first to reduce the risk of dereferencing a freed JavaThread.
 430       *bits |= 0x00000100;
 431       return false;
 432     }
 433 
 434     if (!is_external_suspend()) {
 435       // Suspend request is cancelled. This is always checked before
 436       // is_ext_suspended() to reduce the risk of a rogue resume
 437       // confusing the thread that made the suspend request.
 438       *bits |= 0x00000200;
 439       return false;
 440     }
 441 
 442     if (is_ext_suspended()) {
 443       // thread is suspended
 444       *bits |= 0x00000400;
 445       return true;
 446     }
 447 
 448     // Now that we no longer do hard suspends of threads running
 449     // native code, the target thread can be changing thread state
 450     // while we are in this routine:
 451     //
 452     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 453     //
 454     // We save a copy of the thread state as observed at this moment
 455     // and make our decision about suspend completeness based on the
 456     // copy. This closes the race where the thread state is seen as
 457     // _thread_in_native_trans in the if-thread_blocked check, but is
 458     // seen as _thread_blocked in if-thread_in_native_trans check.
 459     JavaThreadState save_state = thread_state();
 460 
 461     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 462       // If the thread's state is _thread_blocked and this blocking
 463       // condition is known to be equivalent to a suspend, then we can
 464       // consider the thread to be externally suspended. This means that
 465       // the code that sets _thread_blocked has been modified to do
 466       // self-suspension if the blocking condition releases. We also
 467       // used to check for CONDVAR_WAIT here, but that is now covered by
 468       // the _thread_blocked with self-suspension check.
 469       //
 470       // Return true since we wouldn't be here unless there was still an
 471       // external suspend request.
 472       *bits |= 0x00001000;
 473       return true;
 474     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 475       // Threads running native code will self-suspend on native==>VM/Java
 476       // transitions. If its stack is walkable (should always be the case
 477       // unless this function is called before the actual java_suspend()
 478       // call), then the wait is done.
 479       *bits |= 0x00002000;
 480       return true;
 481     } else if (!called_by_wait && !did_trans_retry &&
 482                save_state == _thread_in_native_trans &&
 483                frame_anchor()->walkable()) {
 484       // The thread is transitioning from thread_in_native to another
 485       // thread state. check_safepoint_and_suspend_for_native_trans()
 486       // will force the thread to self-suspend. If it hasn't gotten
 487       // there yet we may have caught the thread in-between the native
 488       // code check above and the self-suspend. Lucky us. If we were
 489       // called by wait_for_ext_suspend_completion(), then it
 490       // will be doing the retries so we don't have to.
 491       //
 492       // Since we use the saved thread state in the if-statement above,
 493       // there is a chance that the thread has already transitioned to
 494       // _thread_blocked by the time we get here. In that case, we will
 495       // make a single unnecessary pass through the logic below. This
 496       // doesn't hurt anything since we still do the trans retry.
 497 
 498       *bits |= 0x00004000;
 499 
 500       // Once the thread leaves thread_in_native_trans for another
 501       // thread state, we break out of this retry loop. We shouldn't
 502       // need this flag to prevent us from getting back here, but
 503       // sometimes paranoia is good.
 504       did_trans_retry = true;
 505 
 506       // We wait for the thread to transition to a more usable state.
 507       for (int i = 1; i <= SuspendRetryCount; i++) {
 508         // We used to do an "os::yield_all(i)" call here with the intention
 509         // that yielding would increase on each retry. However, the parameter
 510         // is ignored on Linux which means the yield didn't scale up. Waiting
 511         // on the SR_lock below provides a much more predictable scale up for
 512         // the delay. It also provides a simple/direct point to check for any
 513         // safepoint requests from the VMThread
 514 
 515         // temporarily drops SR_lock while doing wait with safepoint check
 516         // (if we're a JavaThread - the WatcherThread can also call this)
 517         // and increase delay with each retry
 518         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 519 
 520         // check the actual thread state instead of what we saved above
 521         if (thread_state() != _thread_in_native_trans) {
 522           // the thread has transitioned to another thread state so
 523           // try all the checks (except this one) one more time.
 524           do_trans_retry = true;
 525           break;
 526         }
 527       } // end retry loop
 528 
 529 
 530     }
 531   } while (do_trans_retry);
 532 
 533   *bits |= 0x00000010;
 534   return false;
 535 }
 536 
 537 //
 538 // Wait for an external suspend request to complete (or be cancelled).
 539 // Returns true if the thread is externally suspended and false otherwise.
 540 //
 541 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 542        uint32_t *bits) {
 543   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 544                              false /* !called_by_wait */, bits);
 545 
 546   // local flag copies to minimize SR_lock hold time
 547   bool is_suspended;
 548   bool pending;
 549   uint32_t reset_bits;
 550 
 551   // set a marker so is_ext_suspend_completed() knows we are the caller
 552   *bits |= 0x00010000;
 553 
 554   // We use reset_bits to reinitialize the bits value at the top of
 555   // each retry loop. This allows the caller to make use of any
 556   // unused bits for their own marking purposes.
 557   reset_bits = *bits;
 558 
 559   {
 560     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 561     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 562                                             delay, bits);
 563     pending = is_external_suspend();
 564   }
 565   // must release SR_lock to allow suspension to complete
 566 
 567   if (!pending) {
 568     // A cancelled suspend request is the only false return from
 569     // is_ext_suspend_completed() that keeps us from entering the
 570     // retry loop.
 571     *bits |= 0x00020000;
 572     return false;
 573   }
 574 
 575   if (is_suspended) {
 576     *bits |= 0x00040000;
 577     return true;
 578   }
 579 
 580   for (int i = 1; i <= retries; i++) {
 581     *bits = reset_bits;  // reinit to only track last retry
 582 
 583     // We used to do an "os::yield_all(i)" call here with the intention
 584     // that yielding would increase on each retry. However, the parameter
 585     // is ignored on Linux which means the yield didn't scale up. Waiting
 586     // on the SR_lock below provides a much more predictable scale up for
 587     // the delay. It also provides a simple/direct point to check for any
 588     // safepoint requests from the VMThread
 589 
 590     {
 591       MutexLocker ml(SR_lock());
 592       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 593       // can also call this)  and increase delay with each retry
 594       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 595 
 596       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 597                                               delay, bits);
 598 
 599       // It is possible for the external suspend request to be cancelled
 600       // (by a resume) before the actual suspend operation is completed.
 601       // Refresh our local copy to see if we still need to wait.
 602       pending = is_external_suspend();
 603     }
 604 
 605     if (!pending) {
 606       // A cancelled suspend request is the only false return from
 607       // is_ext_suspend_completed() that keeps us from staying in the
 608       // retry loop.
 609       *bits |= 0x00080000;
 610       return false;
 611     }
 612 
 613     if (is_suspended) {
 614       *bits |= 0x00100000;
 615       return true;
 616     }
 617   } // end retry loop
 618 
 619   // thread did not suspend after all our retries
 620   *bits |= 0x00200000;
 621   return false;
 622 }
 623 
 624 #ifndef PRODUCT
 625 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 626 
 627   // This should not need to be atomic as the only way for simultaneous
 628   // updates is via interrupts. Even then this should be rare or non-existant
 629   // and we don't care that much anyway.
 630 
 631   int index = _jmp_ring_index;
 632   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 633   _jmp_ring[index]._target = (intptr_t) target;
 634   _jmp_ring[index]._instruction = (intptr_t) instr;
 635   _jmp_ring[index]._file = file;
 636   _jmp_ring[index]._line = line;
 637 }
 638 #endif /* PRODUCT */
 639 
 640 // Called by flat profiler
 641 // Callers have already called wait_for_ext_suspend_completion
 642 // The assertion for that is currently too complex to put here:
 643 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 644   bool gotframe = false;
 645   // self suspension saves needed state.
 646   if (has_last_Java_frame() && _anchor.walkable()) {
 647      *_fr = pd_last_frame();
 648      gotframe = true;
 649   }
 650   return gotframe;
 651 }
 652 
 653 void Thread::interrupt(Thread* thread) {
 654   trace("interrupt", thread);
 655   debug_only(check_for_dangling_thread_pointer(thread);)
 656   os::interrupt(thread);
 657 }
 658 
 659 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 660   trace("is_interrupted", thread);
 661   debug_only(check_for_dangling_thread_pointer(thread);)
 662   // Note:  If clear_interrupted==false, this simply fetches and
 663   // returns the value of the field osthread()->interrupted().
 664   return os::is_interrupted(thread, clear_interrupted);
 665 }
 666 
 667 
 668 // GC Support
 669 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 670   jint thread_parity = _oops_do_parity;
 671   if (thread_parity != strong_roots_parity) {
 672     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 673     if (res == thread_parity) return true;
 674     else {
 675       guarantee(res == strong_roots_parity, "Or else what?");
 676       assert(SharedHeap::heap()->n_par_threads() > 0,
 677              "Should only fail when parallel.");
 678       return false;
 679     }
 680   }
 681   assert(SharedHeap::heap()->n_par_threads() > 0,
 682          "Should only fail when parallel.");
 683   return false;
 684 }
 685 
 686 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 687   active_handles()->oops_do(f);
 688   // Do oop for ThreadShadow
 689   f->do_oop((oop*)&_pending_exception);
 690   handle_area()->oops_do(f);
 691 }
 692 
 693 void Thread::nmethods_do(CodeBlobClosure* cf) {
 694   // no nmethods in a generic thread...
 695 }
 696 
 697 void Thread::print_on(outputStream* st) const {
 698   // get_priority assumes osthread initialized
 699   if (osthread() != NULL) {
 700     st->print("prio=%d tid=" INTPTR_FORMAT " ", get_priority(this), this);
 701     osthread()->print_on(st);
 702   }
 703   debug_only(if (WizardMode) print_owned_locks_on(st);)
 704 }
 705 
 706 // Thread::print_on_error() is called by fatal error handler. Don't use
 707 // any lock or allocate memory.
 708 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 709   if      (is_VM_thread())                  st->print("VMThread");
 710   else if (is_Compiler_thread())            st->print("CompilerThread");
 711   else if (is_Java_thread())                st->print("JavaThread");
 712   else if (is_GC_task_thread())             st->print("GCTaskThread");
 713   else if (is_Watcher_thread())             st->print("WatcherThread");
 714   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 715   else st->print("Thread");
 716 
 717   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 718             _stack_base - _stack_size, _stack_base);
 719 
 720   if (osthread()) {
 721     st->print(" [id=%d]", osthread()->thread_id());
 722   }
 723 }
 724 
 725 #ifdef ASSERT
 726 void Thread::print_owned_locks_on(outputStream* st) const {
 727   Monitor *cur = _owned_locks;
 728   if (cur == NULL) {
 729     st->print(" (no locks) ");
 730   } else {
 731     st->print_cr(" Locks owned:");
 732     while(cur) {
 733       cur->print_on(st);
 734       cur = cur->next();
 735     }
 736   }
 737 }
 738 
 739 static int ref_use_count  = 0;
 740 
 741 bool Thread::owns_locks_but_compiled_lock() const {
 742   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 743     if (cur != Compile_lock) return true;
 744   }
 745   return false;
 746 }
 747 
 748 
 749 #endif
 750 
 751 #ifndef PRODUCT
 752 
 753 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 754 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 755 // no threads which allow_vm_block's are held
 756 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 757     // Check if current thread is allowed to block at a safepoint
 758     if (!(_allow_safepoint_count == 0))
 759       fatal("Possible safepoint reached by thread that does not allow it");
 760     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 761       fatal("LEAF method calling lock?");
 762     }
 763 
 764 #ifdef ASSERT
 765     if (potential_vm_operation && is_Java_thread()
 766         && !Universe::is_bootstrapping()) {
 767       // Make sure we do not hold any locks that the VM thread also uses.
 768       // This could potentially lead to deadlocks
 769       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 770         // Threads_lock is special, since the safepoint synchronization will not start before this is
 771         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 772         // since it is used to transfer control between JavaThreads and the VMThread
 773         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 774         if ( (cur->allow_vm_block() &&
 775               cur != Threads_lock &&
 776               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 777               cur != VMOperationRequest_lock &&
 778               cur != VMOperationQueue_lock) ||
 779               cur->rank() == Mutex::special) {
 780           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 781         }
 782       }
 783     }
 784 
 785     if (GCALotAtAllSafepoints) {
 786       // We could enter a safepoint here and thus have a gc
 787       InterfaceSupport::check_gc_alot();
 788     }
 789 #endif
 790 }
 791 #endif
 792 
 793 bool Thread::is_in_stack(address adr) const {
 794   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 795   address end = os::current_stack_pointer();
 796   if (stack_base() >= adr && adr >= end) return true;
 797 
 798   return false;
 799 }
 800 
 801 
 802 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 803 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 804 // used for compilation in the future. If that change is made, the need for these methods
 805 // should be revisited, and they should be removed if possible.
 806 
 807 bool Thread::is_lock_owned(address adr) const {
 808   return (_stack_base >= adr && adr >= (_stack_base - _stack_size));
 809 }
 810 
 811 bool Thread::set_as_starting_thread() {
 812  // NOTE: this must be called inside the main thread.
 813   return os::create_main_thread((JavaThread*)this);
 814 }
 815 
 816 static void initialize_class(symbolHandle class_name, TRAPS) {
 817   klassOop klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 818   instanceKlass::cast(klass)->initialize(CHECK);
 819 }
 820 
 821 
 822 // Creates the initial ThreadGroup
 823 static Handle create_initial_thread_group(TRAPS) {
 824   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_ThreadGroup(), true, CHECK_NH);
 825   instanceKlassHandle klass (THREAD, k);
 826 
 827   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 828   {
 829     JavaValue result(T_VOID);
 830     JavaCalls::call_special(&result,
 831                             system_instance,
 832                             klass,
 833                             vmSymbolHandles::object_initializer_name(),
 834                             vmSymbolHandles::void_method_signature(),
 835                             CHECK_NH);
 836   }
 837   Universe::set_system_thread_group(system_instance());
 838 
 839   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 840   {
 841     JavaValue result(T_VOID);
 842     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 843     JavaCalls::call_special(&result,
 844                             main_instance,
 845                             klass,
 846                             vmSymbolHandles::object_initializer_name(),
 847                             vmSymbolHandles::threadgroup_string_void_signature(),
 848                             system_instance,
 849                             string,
 850                             CHECK_NH);
 851   }
 852   return main_instance;
 853 }
 854 
 855 // Creates the initial Thread
 856 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
 857   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK_NULL);
 858   instanceKlassHandle klass (THREAD, k);
 859   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 860 
 861   java_lang_Thread::set_thread(thread_oop(), thread);
 862   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 863   thread->set_threadObj(thread_oop());
 864 
 865   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 866 
 867   JavaValue result(T_VOID);
 868   JavaCalls::call_special(&result, thread_oop,
 869                                    klass,
 870                                    vmSymbolHandles::object_initializer_name(),
 871                                    vmSymbolHandles::threadgroup_string_void_signature(),
 872                                    thread_group,
 873                                    string,
 874                                    CHECK_NULL);
 875   return thread_oop();
 876 }
 877 
 878 static void call_initializeSystemClass(TRAPS) {
 879   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
 880   instanceKlassHandle klass (THREAD, k);
 881 
 882   JavaValue result(T_VOID);
 883   JavaCalls::call_static(&result, klass, vmSymbolHandles::initializeSystemClass_name(),
 884                                          vmSymbolHandles::void_method_signature(), CHECK);
 885 }
 886 
 887 #ifdef KERNEL
 888 static void set_jkernel_boot_classloader_hook(TRAPS) {
 889   klassOop k = SystemDictionary::sun_jkernel_DownloadManager_klass();
 890   instanceKlassHandle klass (THREAD, k);
 891 
 892   if (k == NULL) {
 893     // sun.jkernel.DownloadManager may not present in the JDK; just return
 894     return;
 895   }
 896 
 897   JavaValue result(T_VOID);
 898   JavaCalls::call_static(&result, klass, vmSymbolHandles::setBootClassLoaderHook_name(),
 899                                          vmSymbolHandles::void_method_signature(), CHECK);
 900 }
 901 #endif // KERNEL
 902 
 903 static void reset_vm_info_property(TRAPS) {
 904   // the vm info string
 905   ResourceMark rm(THREAD);
 906   const char *vm_info = VM_Version::vm_info_string();
 907 
 908   // java.lang.System class
 909   klassOop k =  SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_System(), true, CHECK);
 910   instanceKlassHandle klass (THREAD, k);
 911 
 912   // setProperty arguments
 913   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
 914   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
 915 
 916   // return value
 917   JavaValue r(T_OBJECT);
 918 
 919   // public static String setProperty(String key, String value);
 920   JavaCalls::call_static(&r,
 921                          klass,
 922                          vmSymbolHandles::setProperty_name(),
 923                          vmSymbolHandles::string_string_string_signature(),
 924                          key_str,
 925                          value_str,
 926                          CHECK);
 927 }
 928 
 929 
 930 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
 931   assert(thread_group.not_null(), "thread group should be specified");
 932   assert(threadObj() == NULL, "should only create Java thread object once");
 933 
 934   klassOop k = SystemDictionary::resolve_or_fail(vmSymbolHandles::java_lang_Thread(), true, CHECK);
 935   instanceKlassHandle klass (THREAD, k);
 936   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
 937 
 938   java_lang_Thread::set_thread(thread_oop(), this);
 939   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 940   set_threadObj(thread_oop());
 941 
 942   JavaValue result(T_VOID);
 943   if (thread_name != NULL) {
 944     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
 945     // Thread gets assigned specified name and null target
 946     JavaCalls::call_special(&result,
 947                             thread_oop,
 948                             klass,
 949                             vmSymbolHandles::object_initializer_name(),
 950                             vmSymbolHandles::threadgroup_string_void_signature(),
 951                             thread_group, // Argument 1
 952                             name,         // Argument 2
 953                             THREAD);
 954   } else {
 955     // Thread gets assigned name "Thread-nnn" and null target
 956     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
 957     JavaCalls::call_special(&result,
 958                             thread_oop,
 959                             klass,
 960                             vmSymbolHandles::object_initializer_name(),
 961                             vmSymbolHandles::threadgroup_runnable_void_signature(),
 962                             thread_group, // Argument 1
 963                             Handle(),     // Argument 2
 964                             THREAD);
 965   }
 966 
 967 
 968   if (daemon) {
 969       java_lang_Thread::set_daemon(thread_oop());
 970   }
 971 
 972   if (HAS_PENDING_EXCEPTION) {
 973     return;
 974   }
 975 
 976   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
 977   Handle threadObj(this, this->threadObj());
 978 
 979   JavaCalls::call_special(&result,
 980                          thread_group,
 981                          group,
 982                          vmSymbolHandles::add_method_name(),
 983                          vmSymbolHandles::thread_void_signature(),
 984                          threadObj,          // Arg 1
 985                          THREAD);
 986 
 987 
 988 }
 989 
 990 // NamedThread --  non-JavaThread subclasses with multiple
 991 // uniquely named instances should derive from this.
 992 NamedThread::NamedThread() : Thread() {
 993   _name = NULL;
 994   _processed_thread = NULL;
 995 }
 996 
 997 NamedThread::~NamedThread() {
 998   if (_name != NULL) {
 999     FREE_C_HEAP_ARRAY(char, _name);
1000     _name = NULL;
1001   }
1002 }
1003 
1004 void NamedThread::set_name(const char* format, ...) {
1005   guarantee(_name == NULL, "Only get to set name once.");
1006   _name = NEW_C_HEAP_ARRAY(char, max_name_len);
1007   guarantee(_name != NULL, "alloc failure");
1008   va_list ap;
1009   va_start(ap, format);
1010   jio_vsnprintf(_name, max_name_len, format, ap);
1011   va_end(ap);
1012 }
1013 
1014 // ======= WatcherThread ========
1015 
1016 // The watcher thread exists to simulate timer interrupts.  It should
1017 // be replaced by an abstraction over whatever native support for
1018 // timer interrupts exists on the platform.
1019 
1020 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1021 bool           WatcherThread::_should_terminate = false;
1022 
1023 WatcherThread::WatcherThread() : Thread() {
1024   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1025   if (os::create_thread(this, os::watcher_thread)) {
1026     _watcher_thread = this;
1027 
1028     // Set the watcher thread to the highest OS priority which should not be
1029     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1030     // is created. The only normal thread using this priority is the reference
1031     // handler thread, which runs for very short intervals only.
1032     // If the VMThread's priority is not lower than the WatcherThread profiling
1033     // will be inaccurate.
1034     os::set_priority(this, MaxPriority);
1035     if (!DisableStartThread) {
1036       os::start_thread(this);
1037     }
1038   }
1039 }
1040 
1041 void WatcherThread::run() {
1042   assert(this == watcher_thread(), "just checking");
1043 
1044   this->record_stack_base_and_size();
1045   this->initialize_thread_local_storage();
1046   this->set_active_handles(JNIHandleBlock::allocate_block());
1047   while(!_should_terminate) {
1048     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1049     assert(watcher_thread() == this,  "thread consistency check");
1050 
1051     // Calculate how long it'll be until the next PeriodicTask work
1052     // should be done, and sleep that amount of time.
1053     const size_t time_to_wait = PeriodicTask::time_to_wait();
1054     os::sleep(this, time_to_wait, false);
1055 
1056     if (is_error_reported()) {
1057       // A fatal error has happened, the error handler(VMError::report_and_die)
1058       // should abort JVM after creating an error log file. However in some
1059       // rare cases, the error handler itself might deadlock. Here we try to
1060       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1061       //
1062       // This code is in WatcherThread because WatcherThread wakes up
1063       // periodically so the fatal error handler doesn't need to do anything;
1064       // also because the WatcherThread is less likely to crash than other
1065       // threads.
1066 
1067       for (;;) {
1068         if (!ShowMessageBoxOnError
1069          && (OnError == NULL || OnError[0] == '\0')
1070          && Arguments::abort_hook() == NULL) {
1071              os::sleep(this, 2 * 60 * 1000, false);
1072              fdStream err(defaultStream::output_fd());
1073              err.print_raw_cr("# [ timer expired, abort... ]");
1074              // skip atexit/vm_exit/vm_abort hooks
1075              os::die();
1076         }
1077 
1078         // Wake up 5 seconds later, the fatal handler may reset OnError or
1079         // ShowMessageBoxOnError when it is ready to abort.
1080         os::sleep(this, 5 * 1000, false);
1081       }
1082     }
1083 
1084     PeriodicTask::real_time_tick(time_to_wait);
1085 
1086     // If we have no more tasks left due to dynamic disenrollment,
1087     // shut down the thread since we don't currently support dynamic enrollment
1088     if (PeriodicTask::num_tasks() == 0) {
1089       _should_terminate = true;
1090     }
1091   }
1092 
1093   // Signal that it is terminated
1094   {
1095     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1096     _watcher_thread = NULL;
1097     Terminator_lock->notify();
1098   }
1099 
1100   // Thread destructor usually does this..
1101   ThreadLocalStorage::set_thread(NULL);
1102 }
1103 
1104 void WatcherThread::start() {
1105   if (watcher_thread() == NULL) {
1106     _should_terminate = false;
1107     // Create the single instance of WatcherThread
1108     new WatcherThread();
1109   }
1110 }
1111 
1112 void WatcherThread::stop() {
1113   // it is ok to take late safepoints here, if needed
1114   MutexLocker mu(Terminator_lock);
1115   _should_terminate = true;
1116   while(watcher_thread() != NULL) {
1117     // This wait should make safepoint checks, wait without a timeout,
1118     // and wait as a suspend-equivalent condition.
1119     //
1120     // Note: If the FlatProfiler is running, then this thread is waiting
1121     // for the WatcherThread to terminate and the WatcherThread, via the
1122     // FlatProfiler task, is waiting for the external suspend request on
1123     // this thread to complete. wait_for_ext_suspend_completion() will
1124     // eventually timeout, but that takes time. Making this wait a
1125     // suspend-equivalent condition solves that timeout problem.
1126     //
1127     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1128                           Mutex::_as_suspend_equivalent_flag);
1129   }
1130 }
1131 
1132 void WatcherThread::print_on(outputStream* st) const {
1133   st->print("\"%s\" ", name());
1134   Thread::print_on(st);
1135   st->cr();
1136 }
1137 
1138 // ======= JavaThread ========
1139 
1140 // A JavaThread is a normal Java thread
1141 
1142 void JavaThread::initialize() {
1143   // Initialize fields
1144 
1145   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1146   set_claimed_par_id(-1);
1147 
1148   set_saved_exception_pc(NULL);
1149   set_threadObj(NULL);
1150   _anchor.clear();
1151   set_entry_point(NULL);
1152   set_jni_functions(jni_functions());
1153   set_callee_target(NULL);
1154   set_vm_result(NULL);
1155   set_vm_result_2(NULL);
1156   set_vframe_array_head(NULL);
1157   set_vframe_array_last(NULL);
1158   set_deferred_locals(NULL);
1159   set_deopt_mark(NULL);
1160   clear_must_deopt_id();
1161   set_monitor_chunks(NULL);
1162   set_next(NULL);
1163   set_thread_state(_thread_new);
1164   _terminated = _not_terminated;
1165   _privileged_stack_top = NULL;
1166   _array_for_gc = NULL;
1167   _suspend_equivalent = false;
1168   _in_deopt_handler = 0;
1169   _doing_unsafe_access = false;
1170   _stack_guard_state = stack_guard_unused;
1171   _exception_oop = NULL;
1172   _exception_pc  = 0;
1173   _exception_handler_pc = 0;
1174   _exception_stack_size = 0;
1175   _jvmti_thread_state= NULL;
1176   _should_post_on_exceptions_flag = JNI_FALSE;
1177   _jvmti_get_loaded_classes_closure = NULL;
1178   _interp_only_mode    = 0;
1179   _special_runtime_exit_condition = _no_async_condition;
1180   _pending_async_exception = NULL;
1181   _is_compiling = false;
1182   _thread_stat = NULL;
1183   _thread_stat = new ThreadStatistics();
1184   _blocked_on_compilation = false;
1185   _jni_active_critical = 0;
1186   _do_not_unlock_if_synchronized = false;
1187   _cached_monitor_info = NULL;
1188   _parker = Parker::Allocate(this) ;
1189 
1190 #ifndef PRODUCT
1191   _jmp_ring_index = 0;
1192   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1193     record_jump(NULL, NULL, NULL, 0);
1194   }
1195 #endif /* PRODUCT */
1196 
1197   set_thread_profiler(NULL);
1198   if (FlatProfiler::is_active()) {
1199     // This is where we would decide to either give each thread it's own profiler
1200     // or use one global one from FlatProfiler,
1201     // or up to some count of the number of profiled threads, etc.
1202     ThreadProfiler* pp = new ThreadProfiler();
1203     pp->engage();
1204     set_thread_profiler(pp);
1205   }
1206 
1207   // Setup safepoint state info for this thread
1208   ThreadSafepointState::create(this);
1209 
1210   debug_only(_java_call_counter = 0);
1211 
1212   // JVMTI PopFrame support
1213   _popframe_condition = popframe_inactive;
1214   _popframe_preserved_args = NULL;
1215   _popframe_preserved_args_size = 0;
1216 
1217   pd_initialize();
1218 }
1219 
1220 #ifndef SERIALGC
1221 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1222 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1223 #endif // !SERIALGC
1224 
1225 JavaThread::JavaThread(bool is_attaching) :
1226   Thread()
1227 #ifndef SERIALGC
1228   , _satb_mark_queue(&_satb_mark_queue_set),
1229   _dirty_card_queue(&_dirty_card_queue_set)
1230 #endif // !SERIALGC
1231 {
1232   initialize();
1233   _is_attaching = is_attaching;
1234   assert(_deferred_card_mark.is_empty(), "Default MemRegion ctor");
1235 }
1236 
1237 bool JavaThread::reguard_stack(address cur_sp) {
1238   if (_stack_guard_state != stack_guard_yellow_disabled) {
1239     return true; // Stack already guarded or guard pages not needed.
1240   }
1241 
1242   if (register_stack_overflow()) {
1243     // For those architectures which have separate register and
1244     // memory stacks, we must check the register stack to see if
1245     // it has overflowed.
1246     return false;
1247   }
1248 
1249   // Java code never executes within the yellow zone: the latter is only
1250   // there to provoke an exception during stack banging.  If java code
1251   // is executing there, either StackShadowPages should be larger, or
1252   // some exception code in c1, c2 or the interpreter isn't unwinding
1253   // when it should.
1254   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1255 
1256   enable_stack_yellow_zone();
1257   return true;
1258 }
1259 
1260 bool JavaThread::reguard_stack(void) {
1261   return reguard_stack(os::current_stack_pointer());
1262 }
1263 
1264 
1265 void JavaThread::block_if_vm_exited() {
1266   if (_terminated == _vm_exited) {
1267     // _vm_exited is set at safepoint, and Threads_lock is never released
1268     // we will block here forever
1269     Threads_lock->lock_without_safepoint_check();
1270     ShouldNotReachHere();
1271   }
1272 }
1273 
1274 
1275 // Remove this ifdef when C1 is ported to the compiler interface.
1276 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1277 
1278 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1279   Thread()
1280 #ifndef SERIALGC
1281   , _satb_mark_queue(&_satb_mark_queue_set),
1282   _dirty_card_queue(&_dirty_card_queue_set)
1283 #endif // !SERIALGC
1284 {
1285   if (TraceThreadEvents) {
1286     tty->print_cr("creating thread %p", this);
1287   }
1288   initialize();
1289   _is_attaching = false;
1290   set_entry_point(entry_point);
1291   // Create the native thread itself.
1292   // %note runtime_23
1293   os::ThreadType thr_type = os::java_thread;
1294   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1295                                                      os::java_thread;
1296   os::create_thread(this, thr_type, stack_sz);
1297 
1298   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1299   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1300   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1301   // the exception consists of creating the exception object & initializing it, initialization
1302   // will leave the VM via a JavaCall and then all locks must be unlocked).
1303   //
1304   // The thread is still suspended when we reach here. Thread must be explicit started
1305   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1306   // by calling Threads:add. The reason why this is not done here, is because the thread
1307   // object must be fully initialized (take a look at JVM_Start)
1308 }
1309 
1310 JavaThread::~JavaThread() {
1311   if (TraceThreadEvents) {
1312       tty->print_cr("terminate thread %p", this);
1313   }
1314 
1315   // JSR166 -- return the parker to the free list
1316   Parker::Release(_parker);
1317   _parker = NULL ;
1318 
1319   // Free any remaining  previous UnrollBlock
1320   vframeArray* old_array = vframe_array_last();
1321 
1322   if (old_array != NULL) {
1323     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1324     old_array->set_unroll_block(NULL);
1325     delete old_info;
1326     delete old_array;
1327   }
1328 
1329   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1330   if (deferred != NULL) {
1331     // This can only happen if thread is destroyed before deoptimization occurs.
1332     assert(deferred->length() != 0, "empty array!");
1333     do {
1334       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1335       deferred->remove_at(0);
1336       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1337       delete dlv;
1338     } while (deferred->length() != 0);
1339     delete deferred;
1340   }
1341 
1342   // All Java related clean up happens in exit
1343   ThreadSafepointState::destroy(this);
1344   if (_thread_profiler != NULL) delete _thread_profiler;
1345   if (_thread_stat != NULL) delete _thread_stat;
1346 }
1347 
1348 
1349 // The first routine called by a new Java thread
1350 void JavaThread::run() {
1351   // initialize thread-local alloc buffer related fields
1352   this->initialize_tlab();
1353 
1354   // used to test validitity of stack trace backs
1355   this->record_base_of_stack_pointer();
1356 
1357   // Record real stack base and size.
1358   this->record_stack_base_and_size();
1359 
1360   // Initialize thread local storage; set before calling MutexLocker
1361   this->initialize_thread_local_storage();
1362 
1363   this->create_stack_guard_pages();
1364 
1365   // Thread is now sufficient initialized to be handled by the safepoint code as being
1366   // in the VM. Change thread state from _thread_new to _thread_in_vm
1367   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1368 
1369   assert(JavaThread::current() == this, "sanity check");
1370   assert(!Thread::current()->owns_locks(), "sanity check");
1371 
1372   DTRACE_THREAD_PROBE(start, this);
1373 
1374   // This operation might block. We call that after all safepoint checks for a new thread has
1375   // been completed.
1376   this->set_active_handles(JNIHandleBlock::allocate_block());
1377 
1378   if (JvmtiExport::should_post_thread_life()) {
1379     JvmtiExport::post_thread_start(this);
1380   }
1381 
1382   // We call another function to do the rest so we are sure that the stack addresses used
1383   // from there will be lower than the stack base just computed
1384   thread_main_inner();
1385 
1386   // Note, thread is no longer valid at this point!
1387 }
1388 
1389 
1390 void JavaThread::thread_main_inner() {
1391   assert(JavaThread::current() == this, "sanity check");
1392   assert(this->threadObj() != NULL, "just checking");
1393 
1394   // Execute thread entry point. If this thread is being asked to restart,
1395   // or has been stopped before starting, do not reexecute entry point.
1396   // Note: Due to JVM_StopThread we can have pending exceptions already!
1397   if (!this->has_pending_exception() && !java_lang_Thread::is_stillborn(this->threadObj())) {
1398     // enter the thread's entry point only if we have no pending exceptions
1399     HandleMark hm(this);
1400     this->entry_point()(this, this);
1401   }
1402 
1403   DTRACE_THREAD_PROBE(stop, this);
1404 
1405   this->exit(false);
1406   delete this;
1407 }
1408 
1409 
1410 static void ensure_join(JavaThread* thread) {
1411   // We do not need to grap the Threads_lock, since we are operating on ourself.
1412   Handle threadObj(thread, thread->threadObj());
1413   assert(threadObj.not_null(), "java thread object must exist");
1414   ObjectLocker lock(threadObj, thread);
1415   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1416   thread->clear_pending_exception();
1417   // It is of profound importance that we set the stillborn bit and reset the thread object,
1418   // before we do the notify. Since, changing these two variable will make JVM_IsAlive return
1419   // false. So in case another thread is doing a join on this thread , it will detect that the thread
1420   // is dead when it gets notified.
1421   java_lang_Thread::set_stillborn(threadObj());
1422   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1423   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1424   java_lang_Thread::set_thread(threadObj(), NULL);
1425   lock.notify_all(thread);
1426   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1427   thread->clear_pending_exception();
1428 }
1429 
1430 
1431 // For any new cleanup additions, please check to see if they need to be applied to
1432 // cleanup_failed_attach_current_thread as well.
1433 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1434   assert(this == JavaThread::current(),  "thread consistency check");
1435   if (!InitializeJavaLangSystem) return;
1436 
1437   HandleMark hm(this);
1438   Handle uncaught_exception(this, this->pending_exception());
1439   this->clear_pending_exception();
1440   Handle threadObj(this, this->threadObj());
1441   assert(threadObj.not_null(), "Java thread object should be created");
1442 
1443   if (get_thread_profiler() != NULL) {
1444     get_thread_profiler()->disengage();
1445     ResourceMark rm;
1446     get_thread_profiler()->print(get_thread_name());
1447   }
1448 
1449 
1450   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1451   {
1452     EXCEPTION_MARK;
1453 
1454     CLEAR_PENDING_EXCEPTION;
1455   }
1456   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1457   // has to be fixed by a runtime query method
1458   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1459     // JSR-166: change call from from ThreadGroup.uncaughtException to
1460     // java.lang.Thread.dispatchUncaughtException
1461     if (uncaught_exception.not_null()) {
1462       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1463       Events::log("uncaught exception INTPTR_FORMAT " " INTPTR_FORMAT " " INTPTR_FORMAT",
1464         (address)uncaught_exception(), (address)threadObj(), (address)group());
1465       {
1466         EXCEPTION_MARK;
1467         // Check if the method Thread.dispatchUncaughtException() exists. If so
1468         // call it.  Otherwise we have an older library without the JSR-166 changes,
1469         // so call ThreadGroup.uncaughtException()
1470         KlassHandle recvrKlass(THREAD, threadObj->klass());
1471         CallInfo callinfo;
1472         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1473         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1474                                            vmSymbolHandles::dispatchUncaughtException_name(),
1475                                            vmSymbolHandles::throwable_void_signature(),
1476                                            KlassHandle(), false, false, THREAD);
1477         CLEAR_PENDING_EXCEPTION;
1478         methodHandle method = callinfo.selected_method();
1479         if (method.not_null()) {
1480           JavaValue result(T_VOID);
1481           JavaCalls::call_virtual(&result,
1482                                   threadObj, thread_klass,
1483                                   vmSymbolHandles::dispatchUncaughtException_name(),
1484                                   vmSymbolHandles::throwable_void_signature(),
1485                                   uncaught_exception,
1486                                   THREAD);
1487         } else {
1488           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1489           JavaValue result(T_VOID);
1490           JavaCalls::call_virtual(&result,
1491                                   group, thread_group,
1492                                   vmSymbolHandles::uncaughtException_name(),
1493                                   vmSymbolHandles::thread_throwable_void_signature(),
1494                                   threadObj,           // Arg 1
1495                                   uncaught_exception,  // Arg 2
1496                                   THREAD);
1497         }
1498         CLEAR_PENDING_EXCEPTION;
1499       }
1500     }
1501 
1502     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1503     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1504     // is deprecated anyhow.
1505     { int count = 3;
1506       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1507         EXCEPTION_MARK;
1508         JavaValue result(T_VOID);
1509         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1510         JavaCalls::call_virtual(&result,
1511                               threadObj, thread_klass,
1512                               vmSymbolHandles::exit_method_name(),
1513                               vmSymbolHandles::void_method_signature(),
1514                               THREAD);
1515         CLEAR_PENDING_EXCEPTION;
1516       }
1517     }
1518 
1519     // notify JVMTI
1520     if (JvmtiExport::should_post_thread_life()) {
1521       JvmtiExport::post_thread_end(this);
1522     }
1523 
1524     // We have notified the agents that we are exiting, before we go on,
1525     // we must check for a pending external suspend request and honor it
1526     // in order to not surprise the thread that made the suspend request.
1527     while (true) {
1528       {
1529         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1530         if (!is_external_suspend()) {
1531           set_terminated(_thread_exiting);
1532           ThreadService::current_thread_exiting(this);
1533           break;
1534         }
1535         // Implied else:
1536         // Things get a little tricky here. We have a pending external
1537         // suspend request, but we are holding the SR_lock so we
1538         // can't just self-suspend. So we temporarily drop the lock
1539         // and then self-suspend.
1540       }
1541 
1542       ThreadBlockInVM tbivm(this);
1543       java_suspend_self();
1544 
1545       // We're done with this suspend request, but we have to loop around
1546       // and check again. Eventually we will get SR_lock without a pending
1547       // external suspend request and will be able to mark ourselves as
1548       // exiting.
1549     }
1550     // no more external suspends are allowed at this point
1551   } else {
1552     // before_exit() has already posted JVMTI THREAD_END events
1553   }
1554 
1555   // Notify waiters on thread object. This has to be done after exit() is called
1556   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1557   // group should have the destroyed bit set before waiters are notified).
1558   ensure_join(this);
1559   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1560 
1561   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1562   // held by this thread must be released.  A detach operation must only
1563   // get here if there are no Java frames on the stack.  Therefore, any
1564   // owned monitors at this point MUST be JNI-acquired monitors which are
1565   // pre-inflated and in the monitor cache.
1566   //
1567   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1568   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1569     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1570     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1571     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1572   }
1573 
1574   // These things needs to be done while we are still a Java Thread. Make sure that thread
1575   // is in a consistent state, in case GC happens
1576   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1577 
1578   if (active_handles() != NULL) {
1579     JNIHandleBlock* block = active_handles();
1580     set_active_handles(NULL);
1581     JNIHandleBlock::release_block(block);
1582   }
1583 
1584   if (free_handle_block() != NULL) {
1585     JNIHandleBlock* block = free_handle_block();
1586     set_free_handle_block(NULL);
1587     JNIHandleBlock::release_block(block);
1588   }
1589 
1590   // These have to be removed while this is still a valid thread.
1591   remove_stack_guard_pages();
1592 
1593   if (UseTLAB) {
1594     tlab().make_parsable(true);  // retire TLAB
1595   }
1596 
1597   if (jvmti_thread_state() != NULL) {
1598     JvmtiExport::cleanup_thread(this);
1599   }
1600 
1601 #ifndef SERIALGC
1602   // We must flush G1-related buffers before removing a thread from
1603   // the list of active threads.
1604   if (UseG1GC) {
1605     flush_barrier_queues();
1606   }
1607 #endif
1608 
1609   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1610   Threads::remove(this);
1611 }
1612 
1613 #ifndef SERIALGC
1614 // Flush G1-related queues.
1615 void JavaThread::flush_barrier_queues() {
1616   satb_mark_queue().flush();
1617   dirty_card_queue().flush();
1618 }
1619 #endif
1620 
1621 void JavaThread::cleanup_failed_attach_current_thread() {
1622   if (get_thread_profiler() != NULL) {
1623     get_thread_profiler()->disengage();
1624     ResourceMark rm;
1625     get_thread_profiler()->print(get_thread_name());
1626   }
1627 
1628   if (active_handles() != NULL) {
1629     JNIHandleBlock* block = active_handles();
1630     set_active_handles(NULL);
1631     JNIHandleBlock::release_block(block);
1632   }
1633 
1634   if (free_handle_block() != NULL) {
1635     JNIHandleBlock* block = free_handle_block();
1636     set_free_handle_block(NULL);
1637     JNIHandleBlock::release_block(block);
1638   }
1639 
1640   if (UseTLAB) {
1641     tlab().make_parsable(true);  // retire TLAB, if any
1642   }
1643 
1644 #ifndef SERIALGC
1645   if (UseG1GC) {
1646     flush_barrier_queues();
1647   }
1648 #endif
1649 
1650   Threads::remove(this);
1651   delete this;
1652 }
1653 
1654 
1655 
1656 
1657 JavaThread* JavaThread::active() {
1658   Thread* thread = ThreadLocalStorage::thread();
1659   assert(thread != NULL, "just checking");
1660   if (thread->is_Java_thread()) {
1661     return (JavaThread*) thread;
1662   } else {
1663     assert(thread->is_VM_thread(), "this must be a vm thread");
1664     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1665     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1666     assert(ret->is_Java_thread(), "must be a Java thread");
1667     return ret;
1668   }
1669 }
1670 
1671 bool JavaThread::is_lock_owned(address adr) const {
1672   if (Thread::is_lock_owned(adr)) return true;
1673 
1674   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1675     if (chunk->contains(adr)) return true;
1676   }
1677 
1678   return false;
1679 }
1680 
1681 
1682 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1683   chunk->set_next(monitor_chunks());
1684   set_monitor_chunks(chunk);
1685 }
1686 
1687 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1688   guarantee(monitor_chunks() != NULL, "must be non empty");
1689   if (monitor_chunks() == chunk) {
1690     set_monitor_chunks(chunk->next());
1691   } else {
1692     MonitorChunk* prev = monitor_chunks();
1693     while (prev->next() != chunk) prev = prev->next();
1694     prev->set_next(chunk->next());
1695   }
1696 }
1697 
1698 // JVM support.
1699 
1700 // Note: this function shouldn't block if it's called in
1701 // _thread_in_native_trans state (such as from
1702 // check_special_condition_for_native_trans()).
1703 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
1704 
1705   if (has_last_Java_frame() && has_async_condition()) {
1706     // If we are at a polling page safepoint (not a poll return)
1707     // then we must defer async exception because live registers
1708     // will be clobbered by the exception path. Poll return is
1709     // ok because the call we a returning from already collides
1710     // with exception handling registers and so there is no issue.
1711     // (The exception handling path kills call result registers but
1712     //  this is ok since the exception kills the result anyway).
1713 
1714     if (is_at_poll_safepoint()) {
1715       // if the code we are returning to has deoptimized we must defer
1716       // the exception otherwise live registers get clobbered on the
1717       // exception path before deoptimization is able to retrieve them.
1718       //
1719       RegisterMap map(this, false);
1720       frame caller_fr = last_frame().sender(&map);
1721       assert(caller_fr.is_compiled_frame(), "what?");
1722       if (caller_fr.is_deoptimized_frame()) {
1723         if (TraceExceptions) {
1724           ResourceMark rm;
1725           tty->print_cr("deferred async exception at compiled safepoint");
1726         }
1727         return;
1728       }
1729     }
1730   }
1731 
1732   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
1733   if (condition == _no_async_condition) {
1734     // Conditions have changed since has_special_runtime_exit_condition()
1735     // was called:
1736     // - if we were here only because of an external suspend request,
1737     //   then that was taken care of above (or cancelled) so we are done
1738     // - if we were here because of another async request, then it has
1739     //   been cleared between the has_special_runtime_exit_condition()
1740     //   and now so again we are done
1741     return;
1742   }
1743 
1744   // Check for pending async. exception
1745   if (_pending_async_exception != NULL) {
1746     // Only overwrite an already pending exception, if it is not a threadDeath.
1747     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
1748 
1749       // We cannot call Exceptions::_throw(...) here because we cannot block
1750       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1751 
1752       if (TraceExceptions) {
1753         ResourceMark rm;
1754         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
1755         if (has_last_Java_frame() ) {
1756           frame f = last_frame();
1757           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
1758         }
1759         tty->print_cr(" of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1760       }
1761       _pending_async_exception = NULL;
1762       clear_has_async_exception();
1763     }
1764   }
1765 
1766   if (check_unsafe_error &&
1767       condition == _async_unsafe_access_error && !has_pending_exception()) {
1768     condition = _no_async_condition;  // done
1769     switch (thread_state()) {
1770     case _thread_in_vm:
1771       {
1772         JavaThread* THREAD = this;
1773         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1774       }
1775     case _thread_in_native:
1776       {
1777         ThreadInVMfromNative tiv(this);
1778         JavaThread* THREAD = this;
1779         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
1780       }
1781     case _thread_in_Java:
1782       {
1783         ThreadInVMfromJava tiv(this);
1784         JavaThread* THREAD = this;
1785         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
1786       }
1787     default:
1788       ShouldNotReachHere();
1789     }
1790   }
1791 
1792   assert(condition == _no_async_condition || has_pending_exception() ||
1793          (!check_unsafe_error && condition == _async_unsafe_access_error),
1794          "must have handled the async condition, if no exception");
1795 }
1796 
1797 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
1798   //
1799   // Check for pending external suspend. Internal suspend requests do
1800   // not use handle_special_runtime_exit_condition().
1801   // If JNIEnv proxies are allowed, don't self-suspend if the target
1802   // thread is not the current thread. In older versions of jdbx, jdbx
1803   // threads could call into the VM with another thread's JNIEnv so we
1804   // can be here operating on behalf of a suspended thread (4432884).
1805   bool do_self_suspend = is_external_suspend_with_lock();
1806   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
1807     //
1808     // Because thread is external suspended the safepoint code will count
1809     // thread as at a safepoint. This can be odd because we can be here
1810     // as _thread_in_Java which would normally transition to _thread_blocked
1811     // at a safepoint. We would like to mark the thread as _thread_blocked
1812     // before calling java_suspend_self like all other callers of it but
1813     // we must then observe proper safepoint protocol. (We can't leave
1814     // _thread_blocked with a safepoint in progress). However we can be
1815     // here as _thread_in_native_trans so we can't use a normal transition
1816     // constructor/destructor pair because they assert on that type of
1817     // transition. We could do something like:
1818     //
1819     // JavaThreadState state = thread_state();
1820     // set_thread_state(_thread_in_vm);
1821     // {
1822     //   ThreadBlockInVM tbivm(this);
1823     //   java_suspend_self()
1824     // }
1825     // set_thread_state(_thread_in_vm_trans);
1826     // if (safepoint) block;
1827     // set_thread_state(state);
1828     //
1829     // but that is pretty messy. Instead we just go with the way the
1830     // code has worked before and note that this is the only path to
1831     // java_suspend_self that doesn't put the thread in _thread_blocked
1832     // mode.
1833 
1834     frame_anchor()->make_walkable(this);
1835     java_suspend_self();
1836 
1837     // We might be here for reasons in addition to the self-suspend request
1838     // so check for other async requests.
1839   }
1840 
1841   if (check_asyncs) {
1842     check_and_handle_async_exceptions();
1843   }
1844 }
1845 
1846 void JavaThread::send_thread_stop(oop java_throwable)  {
1847   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
1848   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
1849   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
1850 
1851   // Do not throw asynchronous exceptions against the compiler thread
1852   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
1853   if (is_Compiler_thread()) return;
1854 
1855   // This is a change from JDK 1.1, but JDK 1.2 will also do it:
1856   if (java_throwable->is_a(SystemDictionary::ThreadDeath_klass())) {
1857     java_lang_Thread::set_stillborn(threadObj());
1858   }
1859 
1860   {
1861     // Actually throw the Throwable against the target Thread - however
1862     // only if there is no thread death exception installed already.
1863     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
1864       // If the topmost frame is a runtime stub, then we are calling into
1865       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
1866       // must deoptimize the caller before continuing, as the compiled  exception handler table
1867       // may not be valid
1868       if (has_last_Java_frame()) {
1869         frame f = last_frame();
1870         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
1871           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
1872           RegisterMap reg_map(this, UseBiasedLocking);
1873           frame compiled_frame = f.sender(&reg_map);
1874           if (compiled_frame.can_be_deoptimized()) {
1875             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
1876           }
1877         }
1878       }
1879 
1880       // Set async. pending exception in thread.
1881       set_pending_async_exception(java_throwable);
1882 
1883       if (TraceExceptions) {
1884        ResourceMark rm;
1885        tty->print_cr("Pending Async. exception installed of type: %s", instanceKlass::cast(_pending_async_exception->klass())->external_name());
1886       }
1887       // for AbortVMOnException flag
1888       NOT_PRODUCT(Exceptions::debug_check_abort(instanceKlass::cast(_pending_async_exception->klass())->external_name()));
1889     }
1890   }
1891 
1892 
1893   // Interrupt thread so it will wake up from a potential wait()
1894   Thread::interrupt(this);
1895 }
1896 
1897 // External suspension mechanism.
1898 //
1899 // Tell the VM to suspend a thread when ever it knows that it does not hold on
1900 // to any VM_locks and it is at a transition
1901 // Self-suspension will happen on the transition out of the vm.
1902 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
1903 //
1904 // Guarantees on return:
1905 //   + Target thread will not execute any new bytecode (that's why we need to
1906 //     force a safepoint)
1907 //   + Target thread will not enter any new monitors
1908 //
1909 void JavaThread::java_suspend() {
1910   { MutexLocker mu(Threads_lock);
1911     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
1912        return;
1913     }
1914   }
1915 
1916   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1917     if (!is_external_suspend()) {
1918       // a racing resume has cancelled us; bail out now
1919       return;
1920     }
1921 
1922     // suspend is done
1923     uint32_t debug_bits = 0;
1924     // Warning: is_ext_suspend_completed() may temporarily drop the
1925     // SR_lock to allow the thread to reach a stable thread state if
1926     // it is currently in a transient thread state.
1927     if (is_ext_suspend_completed(false /* !called_by_wait */,
1928                                  SuspendRetryDelay, &debug_bits) ) {
1929       return;
1930     }
1931   }
1932 
1933   VM_ForceSafepoint vm_suspend;
1934   VMThread::execute(&vm_suspend);
1935 }
1936 
1937 // Part II of external suspension.
1938 // A JavaThread self suspends when it detects a pending external suspend
1939 // request. This is usually on transitions. It is also done in places
1940 // where continuing to the next transition would surprise the caller,
1941 // e.g., monitor entry.
1942 //
1943 // Returns the number of times that the thread self-suspended.
1944 //
1945 // Note: DO NOT call java_suspend_self() when you just want to block current
1946 //       thread. java_suspend_self() is the second stage of cooperative
1947 //       suspension for external suspend requests and should only be used
1948 //       to complete an external suspend request.
1949 //
1950 int JavaThread::java_suspend_self() {
1951   int ret = 0;
1952 
1953   // we are in the process of exiting so don't suspend
1954   if (is_exiting()) {
1955      clear_external_suspend();
1956      return ret;
1957   }
1958 
1959   assert(_anchor.walkable() ||
1960     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
1961     "must have walkable stack");
1962 
1963   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1964 
1965   assert(!this->is_ext_suspended(),
1966     "a thread trying to self-suspend should not already be suspended");
1967 
1968   if (this->is_suspend_equivalent()) {
1969     // If we are self-suspending as a result of the lifting of a
1970     // suspend equivalent condition, then the suspend_equivalent
1971     // flag is not cleared until we set the ext_suspended flag so
1972     // that wait_for_ext_suspend_completion() returns consistent
1973     // results.
1974     this->clear_suspend_equivalent();
1975   }
1976 
1977   // A racing resume may have cancelled us before we grabbed SR_lock
1978   // above. Or another external suspend request could be waiting for us
1979   // by the time we return from SR_lock()->wait(). The thread
1980   // that requested the suspension may already be trying to walk our
1981   // stack and if we return now, we can change the stack out from under
1982   // it. This would be a "bad thing (TM)" and cause the stack walker
1983   // to crash. We stay self-suspended until there are no more pending
1984   // external suspend requests.
1985   while (is_external_suspend()) {
1986     ret++;
1987     this->set_ext_suspended();
1988 
1989     // _ext_suspended flag is cleared by java_resume()
1990     while (is_ext_suspended()) {
1991       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
1992     }
1993   }
1994 
1995   return ret;
1996 }
1997 
1998 #ifdef ASSERT
1999 // verify the JavaThread has not yet been published in the Threads::list, and
2000 // hence doesn't need protection from concurrent access at this stage
2001 void JavaThread::verify_not_published() {
2002   if (!Threads_lock->owned_by_self()) {
2003    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2004    assert( !Threads::includes(this),
2005            "java thread shouldn't have been published yet!");
2006   }
2007   else {
2008    assert( !Threads::includes(this),
2009            "java thread shouldn't have been published yet!");
2010   }
2011 }
2012 #endif
2013 
2014 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2015 // progress or when _suspend_flags is non-zero.
2016 // Current thread needs to self-suspend if there is a suspend request and/or
2017 // block if a safepoint is in progress.
2018 // Async exception ISN'T checked.
2019 // Note only the ThreadInVMfromNative transition can call this function
2020 // directly and when thread state is _thread_in_native_trans
2021 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2022   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2023 
2024   JavaThread *curJT = JavaThread::current();
2025   bool do_self_suspend = thread->is_external_suspend();
2026 
2027   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2028 
2029   // If JNIEnv proxies are allowed, don't self-suspend if the target
2030   // thread is not the current thread. In older versions of jdbx, jdbx
2031   // threads could call into the VM with another thread's JNIEnv so we
2032   // can be here operating on behalf of a suspended thread (4432884).
2033   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2034     JavaThreadState state = thread->thread_state();
2035 
2036     // We mark this thread_blocked state as a suspend-equivalent so
2037     // that a caller to is_ext_suspend_completed() won't be confused.
2038     // The suspend-equivalent state is cleared by java_suspend_self().
2039     thread->set_suspend_equivalent();
2040 
2041     // If the safepoint code sees the _thread_in_native_trans state, it will
2042     // wait until the thread changes to other thread state. There is no
2043     // guarantee on how soon we can obtain the SR_lock and complete the
2044     // self-suspend request. It would be a bad idea to let safepoint wait for
2045     // too long. Temporarily change the state to _thread_blocked to
2046     // let the VM thread know that this thread is ready for GC. The problem
2047     // of changing thread state is that safepoint could happen just after
2048     // java_suspend_self() returns after being resumed, and VM thread will
2049     // see the _thread_blocked state. We must check for safepoint
2050     // after restoring the state and make sure we won't leave while a safepoint
2051     // is in progress.
2052     thread->set_thread_state(_thread_blocked);
2053     thread->java_suspend_self();
2054     thread->set_thread_state(state);
2055     // Make sure new state is seen by VM thread
2056     if (os::is_MP()) {
2057       if (UseMembar) {
2058         // Force a fence between the write above and read below
2059         OrderAccess::fence();
2060       } else {
2061         // Must use this rather than serialization page in particular on Windows
2062         InterfaceSupport::serialize_memory(thread);
2063       }
2064     }
2065   }
2066 
2067   if (SafepointSynchronize::do_call_back()) {
2068     // If we are safepointing, then block the caller which may not be
2069     // the same as the target thread (see above).
2070     SafepointSynchronize::block(curJT);
2071   }
2072 
2073   if (thread->is_deopt_suspend()) {
2074     thread->clear_deopt_suspend();
2075     RegisterMap map(thread, false);
2076     frame f = thread->last_frame();
2077     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2078       f = f.sender(&map);
2079     }
2080     if (f.id() == thread->must_deopt_id()) {
2081       thread->clear_must_deopt_id();
2082       // Since we know we're safe to deopt the current state is a safe state
2083       f.deoptimize(thread, true);
2084     } else {
2085       fatal("missed deoptimization!");
2086     }
2087   }
2088 }
2089 
2090 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2091 // progress or when _suspend_flags is non-zero.
2092 // Current thread needs to self-suspend if there is a suspend request and/or
2093 // block if a safepoint is in progress.
2094 // Also check for pending async exception (not including unsafe access error).
2095 // Note only the native==>VM/Java barriers can call this function and when
2096 // thread state is _thread_in_native_trans.
2097 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2098   check_safepoint_and_suspend_for_native_trans(thread);
2099 
2100   if (thread->has_async_exception()) {
2101     // We are in _thread_in_native_trans state, don't handle unsafe
2102     // access error since that may block.
2103     thread->check_and_handle_async_exceptions(false);
2104   }
2105 }
2106 
2107 // We need to guarantee the Threads_lock here, since resumes are not
2108 // allowed during safepoint synchronization
2109 // Can only resume from an external suspension
2110 void JavaThread::java_resume() {
2111   assert_locked_or_safepoint(Threads_lock);
2112 
2113   // Sanity check: thread is gone, has started exiting or the thread
2114   // was not externally suspended.
2115   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2116     return;
2117   }
2118 
2119   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2120 
2121   clear_external_suspend();
2122 
2123   if (is_ext_suspended()) {
2124     clear_ext_suspended();
2125     SR_lock()->notify_all();
2126   }
2127 }
2128 
2129 void JavaThread::create_stack_guard_pages() {
2130   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2131   address low_addr = stack_base() - stack_size();
2132   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2133 
2134   int allocate = os::allocate_stack_guard_pages();
2135   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2136 
2137   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2138     warning("Attempt to allocate stack guard pages failed.");
2139     return;
2140   }
2141 
2142   if (os::guard_memory((char *) low_addr, len)) {
2143     _stack_guard_state = stack_guard_enabled;
2144   } else {
2145     warning("Attempt to protect stack guard pages failed.");
2146     if (os::uncommit_memory((char *) low_addr, len)) {
2147       warning("Attempt to deallocate stack guard pages failed.");
2148     }
2149   }
2150 }
2151 
2152 void JavaThread::remove_stack_guard_pages() {
2153   if (_stack_guard_state == stack_guard_unused) return;
2154   address low_addr = stack_base() - stack_size();
2155   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2156 
2157   if (os::allocate_stack_guard_pages()) {
2158     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2159       _stack_guard_state = stack_guard_unused;
2160     } else {
2161       warning("Attempt to deallocate stack guard pages failed.");
2162     }
2163   } else {
2164     if (_stack_guard_state == stack_guard_unused) return;
2165     if (os::unguard_memory((char *) low_addr, len)) {
2166       _stack_guard_state = stack_guard_unused;
2167     } else {
2168         warning("Attempt to unprotect stack guard pages failed.");
2169     }
2170   }
2171 }
2172 
2173 void JavaThread::enable_stack_yellow_zone() {
2174   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2175   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2176 
2177   // The base notation is from the stacks point of view, growing downward.
2178   // We need to adjust it to work correctly with guard_memory()
2179   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2180 
2181   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2182   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2183 
2184   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2185     _stack_guard_state = stack_guard_enabled;
2186   } else {
2187     warning("Attempt to guard stack yellow zone failed.");
2188   }
2189   enable_register_stack_guard();
2190 }
2191 
2192 void JavaThread::disable_stack_yellow_zone() {
2193   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2194   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2195 
2196   // Simply return if called for a thread that does not use guard pages.
2197   if (_stack_guard_state == stack_guard_unused) return;
2198 
2199   // The base notation is from the stacks point of view, growing downward.
2200   // We need to adjust it to work correctly with guard_memory()
2201   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2202 
2203   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2204     _stack_guard_state = stack_guard_yellow_disabled;
2205   } else {
2206     warning("Attempt to unguard stack yellow zone failed.");
2207   }
2208   disable_register_stack_guard();
2209 }
2210 
2211 void JavaThread::enable_stack_red_zone() {
2212   // The base notation is from the stacks point of view, growing downward.
2213   // We need to adjust it to work correctly with guard_memory()
2214   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2215   address base = stack_red_zone_base() - stack_red_zone_size();
2216 
2217   guarantee(base < stack_base(),"Error calculating stack red zone");
2218   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2219 
2220   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2221     warning("Attempt to guard stack red zone failed.");
2222   }
2223 }
2224 
2225 void JavaThread::disable_stack_red_zone() {
2226   // The base notation is from the stacks point of view, growing downward.
2227   // We need to adjust it to work correctly with guard_memory()
2228   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2229   address base = stack_red_zone_base() - stack_red_zone_size();
2230   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2231     warning("Attempt to unguard stack red zone failed.");
2232   }
2233 }
2234 
2235 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2236   // ignore is there is no stack
2237   if (!has_last_Java_frame()) return;
2238   // traverse the stack frames. Starts from top frame.
2239   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2240     frame* fr = fst.current();
2241     f(fr, fst.register_map());
2242   }
2243 }
2244 
2245 
2246 #ifndef PRODUCT
2247 // Deoptimization
2248 // Function for testing deoptimization
2249 void JavaThread::deoptimize() {
2250   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2251   StackFrameStream fst(this, UseBiasedLocking);
2252   bool deopt = false;           // Dump stack only if a deopt actually happens.
2253   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2254   // Iterate over all frames in the thread and deoptimize
2255   for(; !fst.is_done(); fst.next()) {
2256     if(fst.current()->can_be_deoptimized()) {
2257 
2258       if (only_at) {
2259         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2260         // consists of comma or carriage return separated numbers so
2261         // search for the current bci in that string.
2262         address pc = fst.current()->pc();
2263         nmethod* nm =  (nmethod*) fst.current()->cb();
2264         ScopeDesc* sd = nm->scope_desc_at( pc);
2265         char buffer[8];
2266         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2267         size_t len = strlen(buffer);
2268         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2269         while (found != NULL) {
2270           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2271               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2272             // Check that the bci found is bracketed by terminators.
2273             break;
2274           }
2275           found = strstr(found + 1, buffer);
2276         }
2277         if (!found) {
2278           continue;
2279         }
2280       }
2281 
2282       if (DebugDeoptimization && !deopt) {
2283         deopt = true; // One-time only print before deopt
2284         tty->print_cr("[BEFORE Deoptimization]");
2285         trace_frames();
2286         trace_stack();
2287       }
2288       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2289     }
2290   }
2291 
2292   if (DebugDeoptimization && deopt) {
2293     tty->print_cr("[AFTER Deoptimization]");
2294     trace_frames();
2295   }
2296 }
2297 
2298 
2299 // Make zombies
2300 void JavaThread::make_zombies() {
2301   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2302     if (fst.current()->can_be_deoptimized()) {
2303       // it is a Java nmethod
2304       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2305       nm->make_not_entrant();
2306     }
2307   }
2308 }
2309 #endif // PRODUCT
2310 
2311 
2312 void JavaThread::deoptimized_wrt_marked_nmethods() {
2313   if (!has_last_Java_frame()) return;
2314   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2315   StackFrameStream fst(this, UseBiasedLocking);
2316   for(; !fst.is_done(); fst.next()) {
2317     if (fst.current()->should_be_deoptimized()) {
2318       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2319     }
2320   }
2321 }
2322 
2323 
2324 // GC support
2325 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2326 
2327 void JavaThread::gc_epilogue() {
2328   frames_do(frame_gc_epilogue);
2329 }
2330 
2331 
2332 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2333 
2334 void JavaThread::gc_prologue() {
2335   frames_do(frame_gc_prologue);
2336 }
2337 
2338 // If the caller is a NamedThread, then remember, in the current scope,
2339 // the given JavaThread in its _processed_thread field.
2340 class RememberProcessedThread: public StackObj {
2341   NamedThread* _cur_thr;
2342 public:
2343   RememberProcessedThread(JavaThread* jthr) {
2344     Thread* thread = Thread::current();
2345     if (thread->is_Named_thread()) {
2346       _cur_thr = (NamedThread *)thread;
2347       _cur_thr->set_processed_thread(jthr);
2348     } else {
2349       _cur_thr = NULL;
2350     }
2351   }
2352 
2353   ~RememberProcessedThread() {
2354     if (_cur_thr) {
2355       _cur_thr->set_processed_thread(NULL);
2356     }
2357   }
2358 };
2359 
2360 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2361   // Verify that the deferred card marks have been flushed.
2362   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2363 
2364   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2365   // since there may be more than one thread using each ThreadProfiler.
2366 
2367   // Traverse the GCHandles
2368   Thread::oops_do(f, cf);
2369 
2370   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2371           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2372 
2373   if (has_last_Java_frame()) {
2374     // Record JavaThread to GC thread
2375     RememberProcessedThread rpt(this);
2376 
2377     // Traverse the privileged stack
2378     if (_privileged_stack_top != NULL) {
2379       _privileged_stack_top->oops_do(f);
2380     }
2381 
2382     // traverse the registered growable array
2383     if (_array_for_gc != NULL) {
2384       for (int index = 0; index < _array_for_gc->length(); index++) {
2385         f->do_oop(_array_for_gc->adr_at(index));
2386       }
2387     }
2388 
2389     // Traverse the monitor chunks
2390     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2391       chunk->oops_do(f);
2392     }
2393 
2394     // Traverse the execution stack
2395     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2396       fst.current()->oops_do(f, cf, fst.register_map());
2397     }
2398   }
2399 
2400   // callee_target is never live across a gc point so NULL it here should
2401   // it still contain a methdOop.
2402 
2403   set_callee_target(NULL);
2404 
2405   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2406   // If we have deferred set_locals there might be oops waiting to be
2407   // written
2408   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2409   if (list != NULL) {
2410     for (int i = 0; i < list->length(); i++) {
2411       list->at(i)->oops_do(f);
2412     }
2413   }
2414 
2415   // Traverse instance variables at the end since the GC may be moving things
2416   // around using this function
2417   f->do_oop((oop*) &_threadObj);
2418   f->do_oop((oop*) &_vm_result);
2419   f->do_oop((oop*) &_vm_result_2);
2420   f->do_oop((oop*) &_exception_oop);
2421   f->do_oop((oop*) &_pending_async_exception);
2422 
2423   if (jvmti_thread_state() != NULL) {
2424     jvmti_thread_state()->oops_do(f);
2425   }
2426 }
2427 
2428 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2429   Thread::nmethods_do(cf);  // (super method is a no-op)
2430 
2431   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2432           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2433 
2434   if (has_last_Java_frame()) {
2435     // Traverse the execution stack
2436     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2437       fst.current()->nmethods_do(cf);
2438     }
2439   }
2440 }
2441 
2442 // Printing
2443 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2444   switch (_thread_state) {
2445   case _thread_uninitialized:     return "_thread_uninitialized";
2446   case _thread_new:               return "_thread_new";
2447   case _thread_new_trans:         return "_thread_new_trans";
2448   case _thread_in_native:         return "_thread_in_native";
2449   case _thread_in_native_trans:   return "_thread_in_native_trans";
2450   case _thread_in_vm:             return "_thread_in_vm";
2451   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2452   case _thread_in_Java:           return "_thread_in_Java";
2453   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2454   case _thread_blocked:           return "_thread_blocked";
2455   case _thread_blocked_trans:     return "_thread_blocked_trans";
2456   default:                        return "unknown thread state";
2457   }
2458 }
2459 
2460 #ifndef PRODUCT
2461 void JavaThread::print_thread_state_on(outputStream *st) const {
2462   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2463 };
2464 void JavaThread::print_thread_state() const {
2465   print_thread_state_on(tty);
2466 };
2467 #endif // PRODUCT
2468 
2469 // Called by Threads::print() for VM_PrintThreads operation
2470 void JavaThread::print_on(outputStream *st) const {
2471   st->print("\"%s\" ", get_thread_name());
2472   oop thread_oop = threadObj();
2473   if (thread_oop != NULL && java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2474   Thread::print_on(st);
2475   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2476   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2477   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2478     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2479   }
2480 #ifndef PRODUCT
2481   print_thread_state_on(st);
2482   _safepoint_state->print_on(st);
2483 #endif // PRODUCT
2484 }
2485 
2486 // Called by fatal error handler. The difference between this and
2487 // JavaThread::print() is that we can't grab lock or allocate memory.
2488 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2489   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2490   oop thread_obj = threadObj();
2491   if (thread_obj != NULL) {
2492      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2493   }
2494   st->print(" [");
2495   st->print("%s", _get_thread_state_name(_thread_state));
2496   if (osthread()) {
2497     st->print(", id=%d", osthread()->thread_id());
2498   }
2499   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2500             _stack_base - _stack_size, _stack_base);
2501   st->print("]");
2502   return;
2503 }
2504 
2505 // Verification
2506 
2507 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2508 
2509 void JavaThread::verify() {
2510   // Verify oops in the thread.
2511   oops_do(&VerifyOopClosure::verify_oop, NULL);
2512 
2513   // Verify the stack frames.
2514   frames_do(frame_verify);
2515 }
2516 
2517 // CR 6300358 (sub-CR 2137150)
2518 // Most callers of this method assume that it can't return NULL but a
2519 // thread may not have a name whilst it is in the process of attaching to
2520 // the VM - see CR 6412693, and there are places where a JavaThread can be
2521 // seen prior to having it's threadObj set (eg JNI attaching threads and
2522 // if vm exit occurs during initialization). These cases can all be accounted
2523 // for such that this method never returns NULL.
2524 const char* JavaThread::get_thread_name() const {
2525 #ifdef ASSERT
2526   // early safepoints can hit while current thread does not yet have TLS
2527   if (!SafepointSynchronize::is_at_safepoint()) {
2528     Thread *cur = Thread::current();
2529     if (!(cur->is_Java_thread() && cur == this)) {
2530       // Current JavaThreads are allowed to get their own name without
2531       // the Threads_lock.
2532       assert_locked_or_safepoint(Threads_lock);
2533     }
2534   }
2535 #endif // ASSERT
2536     return get_thread_name_string();
2537 }
2538 
2539 // Returns a non-NULL representation of this thread's name, or a suitable
2540 // descriptive string if there is no set name
2541 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2542   const char* name_str;
2543   oop thread_obj = threadObj();
2544   if (thread_obj != NULL) {
2545     typeArrayOop name = java_lang_Thread::name(thread_obj);
2546     if (name != NULL) {
2547       if (buf == NULL) {
2548         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2549       }
2550       else {
2551         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2552       }
2553     }
2554     else if (is_attaching()) { // workaround for 6412693 - see 6404306
2555       name_str = "<no-name - thread is attaching>";
2556     }
2557     else {
2558       name_str = Thread::name();
2559     }
2560   }
2561   else {
2562     name_str = Thread::name();
2563   }
2564   assert(name_str != NULL, "unexpected NULL thread name");
2565   return name_str;
2566 }
2567 
2568 
2569 const char* JavaThread::get_threadgroup_name() const {
2570   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2571   oop thread_obj = threadObj();
2572   if (thread_obj != NULL) {
2573     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2574     if (thread_group != NULL) {
2575       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2576       // ThreadGroup.name can be null
2577       if (name != NULL) {
2578         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2579         return str;
2580       }
2581     }
2582   }
2583   return NULL;
2584 }
2585 
2586 const char* JavaThread::get_parent_name() const {
2587   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2588   oop thread_obj = threadObj();
2589   if (thread_obj != NULL) {
2590     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2591     if (thread_group != NULL) {
2592       oop parent = java_lang_ThreadGroup::parent(thread_group);
2593       if (parent != NULL) {
2594         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2595         // ThreadGroup.name can be null
2596         if (name != NULL) {
2597           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2598           return str;
2599         }
2600       }
2601     }
2602   }
2603   return NULL;
2604 }
2605 
2606 ThreadPriority JavaThread::java_priority() const {
2607   oop thr_oop = threadObj();
2608   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2609   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2610   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2611   return priority;
2612 }
2613 
2614 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2615 
2616   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2617   // Link Java Thread object <-> C++ Thread
2618 
2619   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2620   // and put it into a new Handle.  The Handle "thread_oop" can then
2621   // be used to pass the C++ thread object to other methods.
2622 
2623   // Set the Java level thread object (jthread) field of the
2624   // new thread (a JavaThread *) to C++ thread object using the
2625   // "thread_oop" handle.
2626 
2627   // Set the thread field (a JavaThread *) of the
2628   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2629 
2630   Handle thread_oop(Thread::current(),
2631                     JNIHandles::resolve_non_null(jni_thread));
2632   assert(instanceKlass::cast(thread_oop->klass())->is_linked(),
2633     "must be initialized");
2634   set_threadObj(thread_oop());
2635   java_lang_Thread::set_thread(thread_oop(), this);
2636 
2637   if (prio == NoPriority) {
2638     prio = java_lang_Thread::priority(thread_oop());
2639     assert(prio != NoPriority, "A valid priority should be present");
2640   }
2641 
2642   // Push the Java priority down to the native thread; needs Threads_lock
2643   Thread::set_priority(this, prio);
2644 
2645   // Add the new thread to the Threads list and set it in motion.
2646   // We must have threads lock in order to call Threads::add.
2647   // It is crucial that we do not block before the thread is
2648   // added to the Threads list for if a GC happens, then the java_thread oop
2649   // will not be visited by GC.
2650   Threads::add(this);
2651 }
2652 
2653 oop JavaThread::current_park_blocker() {
2654   // Support for JSR-166 locks
2655   oop thread_oop = threadObj();
2656   if (thread_oop != NULL &&
2657       JDK_Version::current().supports_thread_park_blocker()) {
2658     return java_lang_Thread::park_blocker(thread_oop);
2659   }
2660   return NULL;
2661 }
2662 
2663 
2664 void JavaThread::print_stack_on(outputStream* st) {
2665   if (!has_last_Java_frame()) return;
2666   ResourceMark rm;
2667   HandleMark   hm;
2668 
2669   RegisterMap reg_map(this);
2670   vframe* start_vf = last_java_vframe(&reg_map);
2671   int count = 0;
2672   for (vframe* f = start_vf; f; f = f->sender() ) {
2673     if (f->is_java_frame()) {
2674       javaVFrame* jvf = javaVFrame::cast(f);
2675       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2676 
2677       // Print out lock information
2678       if (JavaMonitorsInStackTrace) {
2679         jvf->print_lock_info_on(st, count);
2680       }
2681     } else {
2682       // Ignore non-Java frames
2683     }
2684 
2685     // Bail-out case for too deep stacks
2686     count++;
2687     if (MaxJavaStackTraceDepth == count) return;
2688   }
2689 }
2690 
2691 
2692 // JVMTI PopFrame support
2693 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2694   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2695   if (in_bytes(size_in_bytes) != 0) {
2696     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes));
2697     _popframe_preserved_args_size = in_bytes(size_in_bytes);
2698     Copy::conjoint_bytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2699   }
2700 }
2701 
2702 void* JavaThread::popframe_preserved_args() {
2703   return _popframe_preserved_args;
2704 }
2705 
2706 ByteSize JavaThread::popframe_preserved_args_size() {
2707   return in_ByteSize(_popframe_preserved_args_size);
2708 }
2709 
2710 WordSize JavaThread::popframe_preserved_args_size_in_words() {
2711   int sz = in_bytes(popframe_preserved_args_size());
2712   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2713   return in_WordSize(sz / wordSize);
2714 }
2715 
2716 void JavaThread::popframe_free_preserved_args() {
2717   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2718   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
2719   _popframe_preserved_args = NULL;
2720   _popframe_preserved_args_size = 0;
2721 }
2722 
2723 #ifndef PRODUCT
2724 
2725 void JavaThread::trace_frames() {
2726   tty->print_cr("[Describe stack]");
2727   int frame_no = 1;
2728   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2729     tty->print("  %d. ", frame_no++);
2730     fst.current()->print_value_on(tty,this);
2731     tty->cr();
2732   }
2733 }
2734 
2735 
2736 void JavaThread::trace_stack_from(vframe* start_vf) {
2737   ResourceMark rm;
2738   int vframe_no = 1;
2739   for (vframe* f = start_vf; f; f = f->sender() ) {
2740     if (f->is_java_frame()) {
2741       javaVFrame::cast(f)->print_activation(vframe_no++);
2742     } else {
2743       f->print();
2744     }
2745     if (vframe_no > StackPrintLimit) {
2746       tty->print_cr("...<more frames>...");
2747       return;
2748     }
2749   }
2750 }
2751 
2752 
2753 void JavaThread::trace_stack() {
2754   if (!has_last_Java_frame()) return;
2755   ResourceMark rm;
2756   HandleMark   hm;
2757   RegisterMap reg_map(this);
2758   trace_stack_from(last_java_vframe(&reg_map));
2759 }
2760 
2761 
2762 #endif // PRODUCT
2763 
2764 
2765 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
2766   assert(reg_map != NULL, "a map must be given");
2767   frame f = last_frame();
2768   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
2769     if (vf->is_java_frame()) return javaVFrame::cast(vf);
2770   }
2771   return NULL;
2772 }
2773 
2774 
2775 klassOop JavaThread::security_get_caller_class(int depth) {
2776   vframeStream vfst(this);
2777   vfst.security_get_caller_frame(depth);
2778   if (!vfst.at_end()) {
2779     return vfst.method()->method_holder();
2780   }
2781   return NULL;
2782 }
2783 
2784 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
2785   assert(thread->is_Compiler_thread(), "must be compiler thread");
2786   CompileBroker::compiler_thread_loop();
2787 }
2788 
2789 // Create a CompilerThread
2790 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
2791 : JavaThread(&compiler_thread_entry) {
2792   _env   = NULL;
2793   _log   = NULL;
2794   _task  = NULL;
2795   _queue = queue;
2796   _counters = counters;
2797 
2798 #ifndef PRODUCT
2799   _ideal_graph_printer = NULL;
2800 #endif
2801 }
2802 
2803 
2804 // ======= Threads ========
2805 
2806 // The Threads class links together all active threads, and provides
2807 // operations over all threads.  It is protected by its own Mutex
2808 // lock, which is also used in other contexts to protect thread
2809 // operations from having the thread being operated on from exiting
2810 // and going away unexpectedly (e.g., safepoint synchronization)
2811 
2812 JavaThread* Threads::_thread_list = NULL;
2813 int         Threads::_number_of_threads = 0;
2814 int         Threads::_number_of_non_daemon_threads = 0;
2815 int         Threads::_return_code = 0;
2816 size_t      JavaThread::_stack_size_at_create = 0;
2817 
2818 // All JavaThreads
2819 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
2820 
2821 void os_stream();
2822 
2823 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
2824 void Threads::threads_do(ThreadClosure* tc) {
2825   assert_locked_or_safepoint(Threads_lock);
2826   // ALL_JAVA_THREADS iterates through all JavaThreads
2827   ALL_JAVA_THREADS(p) {
2828     tc->do_thread(p);
2829   }
2830   // Someday we could have a table or list of all non-JavaThreads.
2831   // For now, just manually iterate through them.
2832   tc->do_thread(VMThread::vm_thread());
2833   Universe::heap()->gc_threads_do(tc);
2834   WatcherThread *wt = WatcherThread::watcher_thread();
2835   // Strictly speaking, the following NULL check isn't sufficient to make sure
2836   // the data for WatcherThread is still valid upon being examined. However,
2837   // considering that WatchThread terminates when the VM is on the way to
2838   // exit at safepoint, the chance of the above is extremely small. The right
2839   // way to prevent termination of WatcherThread would be to acquire
2840   // Terminator_lock, but we can't do that without violating the lock rank
2841   // checking in some cases.
2842   if (wt != NULL)
2843     tc->do_thread(wt);
2844 
2845   // If CompilerThreads ever become non-JavaThreads, add them here
2846 }
2847 
2848 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
2849 
2850   extern void JDK_Version_init();
2851 
2852   // Check version
2853   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
2854 
2855   // Initialize the output stream module
2856   ostream_init();
2857 
2858   // Process java launcher properties.
2859   Arguments::process_sun_java_launcher_properties(args);
2860 
2861   // Initialize the os module before using TLS
2862   os::init();
2863 
2864   // Initialize system properties.
2865   Arguments::init_system_properties();
2866 
2867   // So that JDK version can be used as a discrimintor when parsing arguments
2868   JDK_Version_init();
2869 
2870   // Parse arguments
2871   jint parse_result = Arguments::parse(args);
2872   if (parse_result != JNI_OK) return parse_result;
2873 
2874   if (PauseAtStartup) {
2875     os::pause();
2876   }
2877 
2878   HS_DTRACE_PROBE(hotspot, vm__init__begin);
2879 
2880   // Record VM creation timing statistics
2881   TraceVmCreationTime create_vm_timer;
2882   create_vm_timer.start();
2883 
2884   // Timing (must come after argument parsing)
2885   TraceTime timer("Create VM", TraceStartupTime);
2886 
2887   // Initialize the os module after parsing the args
2888   jint os_init_2_result = os::init_2();
2889   if (os_init_2_result != JNI_OK) return os_init_2_result;
2890 
2891   // Initialize output stream logging
2892   ostream_init_log();
2893 
2894   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
2895   // Must be before create_vm_init_agents()
2896   if (Arguments::init_libraries_at_startup()) {
2897     convert_vm_init_libraries_to_agents();
2898   }
2899 
2900   // Launch -agentlib/-agentpath and converted -Xrun agents
2901   if (Arguments::init_agents_at_startup()) {
2902     create_vm_init_agents();
2903   }
2904 
2905   // Initialize Threads state
2906   _thread_list = NULL;
2907   _number_of_threads = 0;
2908   _number_of_non_daemon_threads = 0;
2909 
2910   // Initialize TLS
2911   ThreadLocalStorage::init();
2912 
2913   // Initialize global data structures and create system classes in heap
2914   vm_init_globals();
2915 
2916   // Attach the main thread to this os thread
2917   JavaThread* main_thread = new JavaThread();
2918   main_thread->set_thread_state(_thread_in_vm);
2919   // must do this before set_active_handles and initialize_thread_local_storage
2920   // Note: on solaris initialize_thread_local_storage() will (indirectly)
2921   // change the stack size recorded here to one based on the java thread
2922   // stacksize. This adjusted size is what is used to figure the placement
2923   // of the guard pages.
2924   main_thread->record_stack_base_and_size();
2925   main_thread->initialize_thread_local_storage();
2926 
2927   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
2928 
2929   if (!main_thread->set_as_starting_thread()) {
2930     vm_shutdown_during_initialization(
2931       "Failed necessary internal allocation. Out of swap space");
2932     delete main_thread;
2933     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2934     return JNI_ENOMEM;
2935   }
2936 
2937   // Enable guard page *after* os::create_main_thread(), otherwise it would
2938   // crash Linux VM, see notes in os_linux.cpp.
2939   main_thread->create_stack_guard_pages();
2940 
2941   // Initialize Java-Leve synchronization subsystem
2942   ObjectSynchronizer::Initialize() ;
2943 
2944   // Initialize global modules
2945   jint status = init_globals();
2946   if (status != JNI_OK) {
2947     delete main_thread;
2948     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2949     return status;
2950   }
2951 
2952   HandleMark hm;
2953 
2954   { MutexLocker mu(Threads_lock);
2955     Threads::add(main_thread);
2956   }
2957 
2958   // Any JVMTI raw monitors entered in onload will transition into
2959   // real raw monitor. VM is setup enough here for raw monitor enter.
2960   JvmtiExport::transition_pending_onload_raw_monitors();
2961 
2962   if (VerifyBeforeGC &&
2963       Universe::heap()->total_collections() >= VerifyGCStartAt) {
2964     Universe::heap()->prepare_for_verify();
2965     Universe::verify();   // make sure we're starting with a clean slate
2966   }
2967 
2968   // Create the VMThread
2969   { TraceTime timer("Start VMThread", TraceStartupTime);
2970     VMThread::create();
2971     Thread* vmthread = VMThread::vm_thread();
2972 
2973     if (!os::create_thread(vmthread, os::vm_thread))
2974       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
2975 
2976     // Wait for the VM thread to become ready, and VMThread::run to initialize
2977     // Monitors can have spurious returns, must always check another state flag
2978     {
2979       MutexLocker ml(Notify_lock);
2980       os::start_thread(vmthread);
2981       while (vmthread->active_handles() == NULL) {
2982         Notify_lock->wait();
2983       }
2984     }
2985   }
2986 
2987   assert (Universe::is_fully_initialized(), "not initialized");
2988   EXCEPTION_MARK;
2989 
2990   // At this point, the Universe is initialized, but we have not executed
2991   // any byte code.  Now is a good time (the only time) to dump out the
2992   // internal state of the JVM for sharing.
2993 
2994   if (DumpSharedSpaces) {
2995     Universe::heap()->preload_and_dump(CHECK_0);
2996     ShouldNotReachHere();
2997   }
2998 
2999   // Always call even when there are not JVMTI environments yet, since environments
3000   // may be attached late and JVMTI must track phases of VM execution
3001   JvmtiExport::enter_start_phase();
3002 
3003   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3004   JvmtiExport::post_vm_start();
3005 
3006   {
3007     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3008 
3009     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3010       create_vm_init_libraries();
3011     }
3012 
3013     if (InitializeJavaLangString) {
3014       initialize_class(vmSymbolHandles::java_lang_String(), CHECK_0);
3015     } else {
3016       warning("java.lang.String not initialized");
3017     }
3018 
3019     if (AggressiveOpts) {
3020       {
3021         // Forcibly initialize java/util/HashMap and mutate the private
3022         // static final "frontCacheEnabled" field before we start creating instances
3023 #ifdef ASSERT
3024         klassOop tmp_k = SystemDictionary::find(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3025         assert(tmp_k == NULL, "java/util/HashMap should not be loaded yet");
3026 #endif
3027         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_util_HashMap(), Handle(), Handle(), CHECK_0);
3028         KlassHandle k = KlassHandle(THREAD, k_o);
3029         guarantee(k.not_null(), "Must find java/util/HashMap");
3030         instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3031         ik->initialize(CHECK_0);
3032         fieldDescriptor fd;
3033         // Possible we might not find this field; if so, don't break
3034         if (ik->find_local_field(vmSymbols::frontCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3035           k()->bool_field_put(fd.offset(), true);
3036         }
3037       }
3038 
3039       if (UseStringCache) {
3040         // Forcibly initialize java/lang/StringValue and mutate the private
3041         // static final "stringCacheEnabled" field before we start creating instances
3042         klassOop k_o = SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_StringValue(), Handle(), Handle(), CHECK_0);
3043         // Possible that StringValue isn't present: if so, silently don't break
3044         if (k_o != NULL) {
3045           KlassHandle k = KlassHandle(THREAD, k_o);
3046           instanceKlassHandle ik = instanceKlassHandle(THREAD, k());
3047           ik->initialize(CHECK_0);
3048           fieldDescriptor fd;
3049           // Possible we might not find this field: if so, silently don't break
3050           if (ik->find_local_field(vmSymbols::stringCacheEnabled_name(), vmSymbols::bool_signature(), &fd)) {
3051             k()->bool_field_put(fd.offset(), true);
3052           }
3053         }
3054       }
3055     }
3056 
3057     // Initialize java_lang.System (needed before creating the thread)
3058     if (InitializeJavaLangSystem) {
3059       initialize_class(vmSymbolHandles::java_lang_System(), CHECK_0);
3060       initialize_class(vmSymbolHandles::java_lang_ThreadGroup(), CHECK_0);
3061       Handle thread_group = create_initial_thread_group(CHECK_0);
3062       Universe::set_main_thread_group(thread_group());
3063       initialize_class(vmSymbolHandles::java_lang_Thread(), CHECK_0);
3064       oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3065       main_thread->set_threadObj(thread_object);
3066       // Set thread status to running since main thread has
3067       // been started and running.
3068       java_lang_Thread::set_thread_status(thread_object,
3069                                           java_lang_Thread::RUNNABLE);
3070 
3071       // The VM preresolve methods to these classes. Make sure that get initialized
3072       initialize_class(vmSymbolHandles::java_lang_reflect_Method(), CHECK_0);
3073       initialize_class(vmSymbolHandles::java_lang_ref_Finalizer(),  CHECK_0);
3074       // The VM creates & returns objects of this class. Make sure it's initialized.
3075       initialize_class(vmSymbolHandles::java_lang_Class(), CHECK_0);
3076       call_initializeSystemClass(CHECK_0);
3077     } else {
3078       warning("java.lang.System not initialized");
3079     }
3080 
3081     // an instance of OutOfMemory exception has been allocated earlier
3082     if (InitializeJavaLangExceptionsErrors) {
3083       initialize_class(vmSymbolHandles::java_lang_OutOfMemoryError(), CHECK_0);
3084       initialize_class(vmSymbolHandles::java_lang_NullPointerException(), CHECK_0);
3085       initialize_class(vmSymbolHandles::java_lang_ClassCastException(), CHECK_0);
3086       initialize_class(vmSymbolHandles::java_lang_ArrayStoreException(), CHECK_0);
3087       initialize_class(vmSymbolHandles::java_lang_ArithmeticException(), CHECK_0);
3088       initialize_class(vmSymbolHandles::java_lang_StackOverflowError(), CHECK_0);
3089       initialize_class(vmSymbolHandles::java_lang_IllegalMonitorStateException(), CHECK_0);
3090     } else {
3091       warning("java.lang.OutOfMemoryError has not been initialized");
3092       warning("java.lang.NullPointerException has not been initialized");
3093       warning("java.lang.ClassCastException has not been initialized");
3094       warning("java.lang.ArrayStoreException has not been initialized");
3095       warning("java.lang.ArithmeticException has not been initialized");
3096       warning("java.lang.StackOverflowError has not been initialized");
3097     }
3098 
3099     if (EnableInvokeDynamic) {
3100       // JSR 292: An intialized java.dyn.InvokeDynamic is required in
3101       // the compiler.
3102       initialize_class(vmSymbolHandles::java_dyn_InvokeDynamic(), CHECK_0);
3103     }
3104   }
3105 
3106   // See        : bugid 4211085.
3107   // Background : the static initializer of java.lang.Compiler tries to read
3108   //              property"java.compiler" and read & write property "java.vm.info".
3109   //              When a security manager is installed through the command line
3110   //              option "-Djava.security.manager", the above properties are not
3111   //              readable and the static initializer for java.lang.Compiler fails
3112   //              resulting in a NoClassDefFoundError.  This can happen in any
3113   //              user code which calls methods in java.lang.Compiler.
3114   // Hack :       the hack is to pre-load and initialize this class, so that only
3115   //              system domains are on the stack when the properties are read.
3116   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3117   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3118   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3119   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3120   //              Once that is done, we should remove this hack.
3121   initialize_class(vmSymbolHandles::java_lang_Compiler(), CHECK_0);
3122 
3123   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3124   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3125   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3126   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3127   // This should also be taken out as soon as 4211383 gets fixed.
3128   reset_vm_info_property(CHECK_0);
3129 
3130   quicken_jni_functions();
3131 
3132   // Set flag that basic initialization has completed. Used by exceptions and various
3133   // debug stuff, that does not work until all basic classes have been initialized.
3134   set_init_completed();
3135 
3136   HS_DTRACE_PROBE(hotspot, vm__init__end);
3137 
3138   // record VM initialization completion time
3139   Management::record_vm_init_completed();
3140 
3141   // Compute system loader. Note that this has to occur after set_init_completed, since
3142   // valid exceptions may be thrown in the process.
3143   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3144   // set_init_completed has just been called, causing exceptions not to be shortcut
3145   // anymore. We call vm_exit_during_initialization directly instead.
3146   SystemDictionary::compute_java_system_loader(THREAD);
3147   if (HAS_PENDING_EXCEPTION) {
3148     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3149   }
3150 
3151 #ifdef KERNEL
3152   if (JDK_Version::is_gte_jdk17x_version()) {
3153     set_jkernel_boot_classloader_hook(THREAD);
3154   }
3155 #endif // KERNEL
3156 
3157 #ifndef SERIALGC
3158   // Support for ConcurrentMarkSweep. This should be cleaned up
3159   // and better encapsulated. The ugly nested if test would go away
3160   // once things are properly refactored. XXX YSR
3161   if (UseConcMarkSweepGC || UseG1GC) {
3162     if (UseConcMarkSweepGC) {
3163       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3164     } else {
3165       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3166     }
3167     if (HAS_PENDING_EXCEPTION) {
3168       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3169     }
3170   }
3171 #endif // SERIALGC
3172 
3173   // Always call even when there are not JVMTI environments yet, since environments
3174   // may be attached late and JVMTI must track phases of VM execution
3175   JvmtiExport::enter_live_phase();
3176 
3177   // Signal Dispatcher needs to be started before VMInit event is posted
3178   os::signal_init();
3179 
3180   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3181   if (!DisableAttachMechanism) {
3182     if (StartAttachListener || AttachListener::init_at_startup()) {
3183       AttachListener::init();
3184     }
3185   }
3186 
3187   // Launch -Xrun agents
3188   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3189   // back-end can launch with -Xdebug -Xrunjdwp.
3190   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3191     create_vm_init_libraries();
3192   }
3193 
3194   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3195   JvmtiExport::post_vm_initialized();
3196 
3197   Chunk::start_chunk_pool_cleaner_task();
3198 
3199   // initialize compiler(s)
3200   CompileBroker::compilation_init();
3201 
3202   Management::initialize(THREAD);
3203   if (HAS_PENDING_EXCEPTION) {
3204     // management agent fails to start possibly due to
3205     // configuration problem and is responsible for printing
3206     // stack trace if appropriate. Simply exit VM.
3207     vm_exit(1);
3208   }
3209 
3210   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3211   if (Arguments::has_alloc_profile()) AllocationProfiler::engage();
3212   if (MemProfiling)                   MemProfiler::engage();
3213   StatSampler::engage();
3214   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3215 
3216   BiasedLocking::init();
3217 
3218 
3219   // Start up the WatcherThread if there are any periodic tasks
3220   // NOTE:  All PeriodicTasks should be registered by now. If they
3221   //   aren't, late joiners might appear to start slowly (we might
3222   //   take a while to process their first tick).
3223   if (PeriodicTask::num_tasks() > 0) {
3224     WatcherThread::start();
3225   }
3226 
3227   create_vm_timer.end();
3228   return JNI_OK;
3229 }
3230 
3231 // type for the Agent_OnLoad and JVM_OnLoad entry points
3232 extern "C" {
3233   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3234 }
3235 // Find a command line agent library and return its entry point for
3236 //         -agentlib:  -agentpath:   -Xrun
3237 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3238 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3239   OnLoadEntry_t on_load_entry = NULL;
3240   void *library = agent->os_lib();  // check if we have looked it up before
3241 
3242   if (library == NULL) {
3243     char buffer[JVM_MAXPATHLEN];
3244     char ebuf[1024];
3245     const char *name = agent->name();
3246 
3247     if (agent->is_absolute_path()) {
3248       library = hpi::dll_load(name, ebuf, sizeof ebuf);
3249       if (library == NULL) {
3250         // If we can't find the agent, exit.
3251         vm_exit_during_initialization("Could not find agent library in absolute path", name);
3252       }
3253     } else {
3254       // Try to load the agent from the standard dll directory
3255       hpi::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), name);
3256       library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3257 #ifdef KERNEL
3258       // Download instrument dll
3259       if (library == NULL && strcmp(name, "instrument") == 0) {
3260         char *props = Arguments::get_kernel_properties();
3261         char *home  = Arguments::get_java_home();
3262         const char *fmt   = "%s/bin/java %s -Dkernel.background.download=false"
3263                       " sun.jkernel.DownloadManager -download client_jvm";
3264         int length = strlen(props) + strlen(home) + strlen(fmt) + 1;
3265         char *cmd = AllocateHeap(length);
3266         jio_snprintf(cmd, length, fmt, home, props);
3267         int status = os::fork_and_exec(cmd);
3268         FreeHeap(props);
3269         FreeHeap(cmd);
3270         if (status == -1) {
3271           warning(cmd);
3272           vm_exit_during_initialization("fork_and_exec failed: %s",
3273                                          strerror(errno));
3274         }
3275         // when this comes back the instrument.dll should be where it belongs.
3276         library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3277       }
3278 #endif // KERNEL
3279       if (library == NULL) { // Try the local directory
3280         char ns[1] = {0};
3281         hpi::dll_build_name(buffer, sizeof(buffer), ns, name);
3282         library = hpi::dll_load(buffer, ebuf, sizeof ebuf);
3283         if (library == NULL) {
3284           // If we can't find the agent, exit.
3285           vm_exit_during_initialization("Could not find agent library on the library path or in the local directory", name);
3286         }
3287       }
3288     }
3289     agent->set_os_lib(library);
3290   }
3291 
3292   // Find the OnLoad function.
3293   for (size_t symbol_index = 0; symbol_index < num_symbol_entries; symbol_index++) {
3294     on_load_entry = CAST_TO_FN_PTR(OnLoadEntry_t, hpi::dll_lookup(library, on_load_symbols[symbol_index]));
3295     if (on_load_entry != NULL) break;
3296   }
3297   return on_load_entry;
3298 }
3299 
3300 // Find the JVM_OnLoad entry point
3301 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3302   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3303   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3304 }
3305 
3306 // Find the Agent_OnLoad entry point
3307 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3308   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3309   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3310 }
3311 
3312 // For backwards compatibility with -Xrun
3313 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3314 // treated like -agentpath:
3315 // Must be called before agent libraries are created
3316 void Threads::convert_vm_init_libraries_to_agents() {
3317   AgentLibrary* agent;
3318   AgentLibrary* next;
3319 
3320   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3321     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3322     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3323 
3324     // If there is an JVM_OnLoad function it will get called later,
3325     // otherwise see if there is an Agent_OnLoad
3326     if (on_load_entry == NULL) {
3327       on_load_entry = lookup_agent_on_load(agent);
3328       if (on_load_entry != NULL) {
3329         // switch it to the agent list -- so that Agent_OnLoad will be called,
3330         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3331         Arguments::convert_library_to_agent(agent);
3332       } else {
3333         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3334       }
3335     }
3336   }
3337 }
3338 
3339 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3340 // Invokes Agent_OnLoad
3341 // Called very early -- before JavaThreads exist
3342 void Threads::create_vm_init_agents() {
3343   extern struct JavaVM_ main_vm;
3344   AgentLibrary* agent;
3345 
3346   JvmtiExport::enter_onload_phase();
3347   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3348     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3349 
3350     if (on_load_entry != NULL) {
3351       // Invoke the Agent_OnLoad function
3352       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3353       if (err != JNI_OK) {
3354         vm_exit_during_initialization("agent library failed to init", agent->name());
3355       }
3356     } else {
3357       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3358     }
3359   }
3360   JvmtiExport::enter_primordial_phase();
3361 }
3362 
3363 extern "C" {
3364   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3365 }
3366 
3367 void Threads::shutdown_vm_agents() {
3368   // Send any Agent_OnUnload notifications
3369   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3370   extern struct JavaVM_ main_vm;
3371   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3372 
3373     // Find the Agent_OnUnload function.
3374     for (uint symbol_index = 0; symbol_index < ARRAY_SIZE(on_unload_symbols); symbol_index++) {
3375       Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3376                hpi::dll_lookup(agent->os_lib(), on_unload_symbols[symbol_index]));
3377 
3378       // Invoke the Agent_OnUnload function
3379       if (unload_entry != NULL) {
3380         JavaThread* thread = JavaThread::current();
3381         ThreadToNativeFromVM ttn(thread);
3382         HandleMark hm(thread);
3383         (*unload_entry)(&main_vm);
3384         break;
3385       }
3386     }
3387   }
3388 }
3389 
3390 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3391 // Invokes JVM_OnLoad
3392 void Threads::create_vm_init_libraries() {
3393   extern struct JavaVM_ main_vm;
3394   AgentLibrary* agent;
3395 
3396   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3397     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3398 
3399     if (on_load_entry != NULL) {
3400       // Invoke the JVM_OnLoad function
3401       JavaThread* thread = JavaThread::current();
3402       ThreadToNativeFromVM ttn(thread);
3403       HandleMark hm(thread);
3404       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3405       if (err != JNI_OK) {
3406         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3407       }
3408     } else {
3409       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3410     }
3411   }
3412 }
3413 
3414 // Last thread running calls java.lang.Shutdown.shutdown()
3415 void JavaThread::invoke_shutdown_hooks() {
3416   HandleMark hm(this);
3417 
3418   // We could get here with a pending exception, if so clear it now.
3419   if (this->has_pending_exception()) {
3420     this->clear_pending_exception();
3421   }
3422 
3423   EXCEPTION_MARK;
3424   klassOop k =
3425     SystemDictionary::resolve_or_null(vmSymbolHandles::java_lang_Shutdown(),
3426                                       THREAD);
3427   if (k != NULL) {
3428     // SystemDictionary::resolve_or_null will return null if there was
3429     // an exception.  If we cannot load the Shutdown class, just don't
3430     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3431     // and finalizers (if runFinalizersOnExit is set) won't be run.
3432     // Note that if a shutdown hook was registered or runFinalizersOnExit
3433     // was called, the Shutdown class would have already been loaded
3434     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3435     instanceKlassHandle shutdown_klass (THREAD, k);
3436     JavaValue result(T_VOID);
3437     JavaCalls::call_static(&result,
3438                            shutdown_klass,
3439                            vmSymbolHandles::shutdown_method_name(),
3440                            vmSymbolHandles::void_method_signature(),
3441                            THREAD);
3442   }
3443   CLEAR_PENDING_EXCEPTION;
3444 }
3445 
3446 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3447 // the program falls off the end of main(). Another VM exit path is through
3448 // vm_exit() when the program calls System.exit() to return a value or when
3449 // there is a serious error in VM. The two shutdown paths are not exactly
3450 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3451 // and VM_Exit op at VM level.
3452 //
3453 // Shutdown sequence:
3454 //   + Wait until we are the last non-daemon thread to execute
3455 //     <-- every thing is still working at this moment -->
3456 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3457 //        shutdown hooks, run finalizers if finalization-on-exit
3458 //   + Call before_exit(), prepare for VM exit
3459 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3460 //        currently the only user of this mechanism is File.deleteOnExit())
3461 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3462 //        post thread end and vm death events to JVMTI,
3463 //        stop signal thread
3464 //   + Call JavaThread::exit(), it will:
3465 //      > release JNI handle blocks, remove stack guard pages
3466 //      > remove this thread from Threads list
3467 //     <-- no more Java code from this thread after this point -->
3468 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3469 //     the compiler threads at safepoint
3470 //     <-- do not use anything that could get blocked by Safepoint -->
3471 //   + Disable tracing at JNI/JVM barriers
3472 //   + Set _vm_exited flag for threads that are still running native code
3473 //   + Delete this thread
3474 //   + Call exit_globals()
3475 //      > deletes tty
3476 //      > deletes PerfMemory resources
3477 //   + Return to caller
3478 
3479 bool Threads::destroy_vm() {
3480   JavaThread* thread = JavaThread::current();
3481 
3482   // Wait until we are the last non-daemon thread to execute
3483   { MutexLocker nu(Threads_lock);
3484     while (Threads::number_of_non_daemon_threads() > 1 )
3485       // This wait should make safepoint checks, wait without a timeout,
3486       // and wait as a suspend-equivalent condition.
3487       //
3488       // Note: If the FlatProfiler is running and this thread is waiting
3489       // for another non-daemon thread to finish, then the FlatProfiler
3490       // is waiting for the external suspend request on this thread to
3491       // complete. wait_for_ext_suspend_completion() will eventually
3492       // timeout, but that takes time. Making this wait a suspend-
3493       // equivalent condition solves that timeout problem.
3494       //
3495       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3496                          Mutex::_as_suspend_equivalent_flag);
3497   }
3498 
3499   // Hang forever on exit if we are reporting an error.
3500   if (ShowMessageBoxOnError && is_error_reported()) {
3501     os::infinite_sleep();
3502   }
3503 
3504   if (JDK_Version::is_jdk12x_version()) {
3505     // We are the last thread running, so check if finalizers should be run.
3506     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3507     HandleMark rm(thread);
3508     Universe::run_finalizers_on_exit();
3509   } else {
3510     // run Java level shutdown hooks
3511     thread->invoke_shutdown_hooks();
3512   }
3513 
3514   before_exit(thread);
3515 
3516   thread->exit(true);
3517 
3518   // Stop VM thread.
3519   {
3520     // 4945125 The vm thread comes to a safepoint during exit.
3521     // GC vm_operations can get caught at the safepoint, and the
3522     // heap is unparseable if they are caught. Grab the Heap_lock
3523     // to prevent this. The GC vm_operations will not be able to
3524     // queue until after the vm thread is dead.
3525     MutexLocker ml(Heap_lock);
3526 
3527     VMThread::wait_for_vm_thread_exit();
3528     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3529     VMThread::destroy();
3530   }
3531 
3532   // clean up ideal graph printers
3533 #if defined(COMPILER2) && !defined(PRODUCT)
3534   IdealGraphPrinter::clean_up();
3535 #endif
3536 
3537   // Now, all Java threads are gone except daemon threads. Daemon threads
3538   // running Java code or in VM are stopped by the Safepoint. However,
3539   // daemon threads executing native code are still running.  But they
3540   // will be stopped at native=>Java/VM barriers. Note that we can't
3541   // simply kill or suspend them, as it is inherently deadlock-prone.
3542 
3543 #ifndef PRODUCT
3544   // disable function tracing at JNI/JVM barriers
3545   TraceHPI = false;
3546   TraceJNICalls = false;
3547   TraceJVMCalls = false;
3548   TraceRuntimeCalls = false;
3549 #endif
3550 
3551   VM_Exit::set_vm_exited();
3552 
3553   notify_vm_shutdown();
3554 
3555   delete thread;
3556 
3557   // exit_globals() will delete tty
3558   exit_globals();
3559 
3560   return true;
3561 }
3562 
3563 
3564 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3565   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3566   return is_supported_jni_version(version);
3567 }
3568 
3569 
3570 jboolean Threads::is_supported_jni_version(jint version) {
3571   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3572   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3573   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3574   return JNI_FALSE;
3575 }
3576 
3577 
3578 void Threads::add(JavaThread* p, bool force_daemon) {
3579   // The threads lock must be owned at this point
3580   assert_locked_or_safepoint(Threads_lock);
3581   p->set_next(_thread_list);
3582   _thread_list = p;
3583   _number_of_threads++;
3584   oop threadObj = p->threadObj();
3585   bool daemon = true;
3586   // Bootstrapping problem: threadObj can be null for initial
3587   // JavaThread (or for threads attached via JNI)
3588   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
3589     _number_of_non_daemon_threads++;
3590     daemon = false;
3591   }
3592 
3593   ThreadService::add_thread(p, daemon);
3594 
3595   // Possible GC point.
3596   Events::log("Thread added: " INTPTR_FORMAT, p);
3597 }
3598 
3599 void Threads::remove(JavaThread* p) {
3600   // Extra scope needed for Thread_lock, so we can check
3601   // that we do not remove thread without safepoint code notice
3602   { MutexLocker ml(Threads_lock);
3603 
3604     assert(includes(p), "p must be present");
3605 
3606     JavaThread* current = _thread_list;
3607     JavaThread* prev    = NULL;
3608 
3609     while (current != p) {
3610       prev    = current;
3611       current = current->next();
3612     }
3613 
3614     if (prev) {
3615       prev->set_next(current->next());
3616     } else {
3617       _thread_list = p->next();
3618     }
3619     _number_of_threads--;
3620     oop threadObj = p->threadObj();
3621     bool daemon = true;
3622     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
3623       _number_of_non_daemon_threads--;
3624       daemon = false;
3625 
3626       // Only one thread left, do a notify on the Threads_lock so a thread waiting
3627       // on destroy_vm will wake up.
3628       if (number_of_non_daemon_threads() == 1)
3629         Threads_lock->notify_all();
3630     }
3631     ThreadService::remove_thread(p, daemon);
3632 
3633     // Make sure that safepoint code disregard this thread. This is needed since
3634     // the thread might mess around with locks after this point. This can cause it
3635     // to do callbacks into the safepoint code. However, the safepoint code is not aware
3636     // of this thread since it is removed from the queue.
3637     p->set_terminated_value();
3638   } // unlock Threads_lock
3639 
3640   // Since Events::log uses a lock, we grab it outside the Threads_lock
3641   Events::log("Thread exited: " INTPTR_FORMAT, p);
3642 }
3643 
3644 // Threads_lock must be held when this is called (or must be called during a safepoint)
3645 bool Threads::includes(JavaThread* p) {
3646   assert(Threads_lock->is_locked(), "sanity check");
3647   ALL_JAVA_THREADS(q) {
3648     if (q == p ) {
3649       return true;
3650     }
3651   }
3652   return false;
3653 }
3654 
3655 // Operations on the Threads list for GC.  These are not explicitly locked,
3656 // but the garbage collector must provide a safe context for them to run.
3657 // In particular, these things should never be called when the Threads_lock
3658 // is held by some other thread. (Note: the Safepoint abstraction also
3659 // uses the Threads_lock to gurantee this property. It also makes sure that
3660 // all threads gets blocked when exiting or starting).
3661 
3662 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3663   ALL_JAVA_THREADS(p) {
3664     p->oops_do(f, cf);
3665   }
3666   VMThread::vm_thread()->oops_do(f, cf);
3667 }
3668 
3669 void Threads::possibly_parallel_oops_do(OopClosure* f, CodeBlobClosure* cf) {
3670   // Introduce a mechanism allowing parallel threads to claim threads as
3671   // root groups.  Overhead should be small enough to use all the time,
3672   // even in sequential code.
3673   SharedHeap* sh = SharedHeap::heap();
3674   bool is_par = (sh->n_par_threads() > 0);
3675   int cp = SharedHeap::heap()->strong_roots_parity();
3676   ALL_JAVA_THREADS(p) {
3677     if (p->claim_oops_do(is_par, cp)) {
3678       p->oops_do(f, cf);
3679     }
3680   }
3681   VMThread* vmt = VMThread::vm_thread();
3682   if (vmt->claim_oops_do(is_par, cp))
3683     vmt->oops_do(f, cf);
3684 }
3685 
3686 #ifndef SERIALGC
3687 // Used by ParallelScavenge
3688 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
3689   ALL_JAVA_THREADS(p) {
3690     q->enqueue(new ThreadRootsTask(p));
3691   }
3692   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
3693 }
3694 
3695 // Used by Parallel Old
3696 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
3697   ALL_JAVA_THREADS(p) {
3698     q->enqueue(new ThreadRootsMarkingTask(p));
3699   }
3700   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
3701 }
3702 #endif // SERIALGC
3703 
3704 void Threads::nmethods_do(CodeBlobClosure* cf) {
3705   ALL_JAVA_THREADS(p) {
3706     p->nmethods_do(cf);
3707   }
3708   VMThread::vm_thread()->nmethods_do(cf);
3709 }
3710 
3711 void Threads::gc_epilogue() {
3712   ALL_JAVA_THREADS(p) {
3713     p->gc_epilogue();
3714   }
3715 }
3716 
3717 void Threads::gc_prologue() {
3718   ALL_JAVA_THREADS(p) {
3719     p->gc_prologue();
3720   }
3721 }
3722 
3723 void Threads::deoptimized_wrt_marked_nmethods() {
3724   ALL_JAVA_THREADS(p) {
3725     p->deoptimized_wrt_marked_nmethods();
3726   }
3727 }
3728 
3729 
3730 // Get count Java threads that are waiting to enter the specified monitor.
3731 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
3732   address monitor, bool doLock) {
3733   assert(doLock || SafepointSynchronize::is_at_safepoint(),
3734     "must grab Threads_lock or be at safepoint");
3735   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
3736 
3737   int i = 0;
3738   {
3739     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3740     ALL_JAVA_THREADS(p) {
3741       if (p->is_Compiler_thread()) continue;
3742 
3743       address pending = (address)p->current_pending_monitor();
3744       if (pending == monitor) {             // found a match
3745         if (i < count) result->append(p);   // save the first count matches
3746         i++;
3747       }
3748     }
3749   }
3750   return result;
3751 }
3752 
3753 
3754 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
3755   assert(doLock ||
3756          Threads_lock->owned_by_self() ||
3757          SafepointSynchronize::is_at_safepoint(),
3758          "must grab Threads_lock or be at safepoint");
3759 
3760   // NULL owner means not locked so we can skip the search
3761   if (owner == NULL) return NULL;
3762 
3763   {
3764     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3765     ALL_JAVA_THREADS(p) {
3766       // first, see if owner is the address of a Java thread
3767       if (owner == (address)p) return p;
3768     }
3769   }
3770   assert(UseHeavyMonitors == false, "Did not find owning Java thread with UseHeavyMonitors enabled");
3771   if (UseHeavyMonitors) return NULL;
3772 
3773   //
3774   // If we didn't find a matching Java thread and we didn't force use of
3775   // heavyweight monitors, then the owner is the stack address of the
3776   // Lock Word in the owning Java thread's stack.
3777   //
3778   JavaThread* the_owner = NULL;
3779   {
3780     MutexLockerEx ml(doLock ? Threads_lock : NULL);
3781     ALL_JAVA_THREADS(q) {
3782       if (q->is_lock_owned(owner)) {
3783         the_owner = q;
3784         break;
3785       }
3786     }
3787   }
3788   assert(the_owner != NULL, "Did not find owning Java thread for lock word address");
3789   return the_owner;
3790 }
3791 
3792 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
3793 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
3794   char buf[32];
3795   st->print_cr(os::local_time_string(buf, sizeof(buf)));
3796 
3797   st->print_cr("Full thread dump %s (%s %s):",
3798                 Abstract_VM_Version::vm_name(),
3799                 Abstract_VM_Version::vm_release(),
3800                 Abstract_VM_Version::vm_info_string()
3801                );
3802   st->cr();
3803 
3804 #ifndef SERIALGC
3805   // Dump concurrent locks
3806   ConcurrentLocksDump concurrent_locks;
3807   if (print_concurrent_locks) {
3808     concurrent_locks.dump_at_safepoint();
3809   }
3810 #endif // SERIALGC
3811 
3812   ALL_JAVA_THREADS(p) {
3813     ResourceMark rm;
3814     p->print_on(st);
3815     if (print_stacks) {
3816       if (internal_format) {
3817         p->trace_stack();
3818       } else {
3819         p->print_stack_on(st);
3820       }
3821     }
3822     st->cr();
3823 #ifndef SERIALGC
3824     if (print_concurrent_locks) {
3825       concurrent_locks.print_locks_on(p, st);
3826     }
3827 #endif // SERIALGC
3828   }
3829 
3830   VMThread::vm_thread()->print_on(st);
3831   st->cr();
3832   Universe::heap()->print_gc_threads_on(st);
3833   WatcherThread* wt = WatcherThread::watcher_thread();
3834   if (wt != NULL) wt->print_on(st);
3835   st->cr();
3836   CompileBroker::print_compiler_threads_on(st);
3837   st->flush();
3838 }
3839 
3840 // Threads::print_on_error() is called by fatal error handler. It's possible
3841 // that VM is not at safepoint and/or current thread is inside signal handler.
3842 // Don't print stack trace, as the stack may not be walkable. Don't allocate
3843 // memory (even in resource area), it might deadlock the error handler.
3844 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
3845   bool found_current = false;
3846   st->print_cr("Java Threads: ( => current thread )");
3847   ALL_JAVA_THREADS(thread) {
3848     bool is_current = (current == thread);
3849     found_current = found_current || is_current;
3850 
3851     st->print("%s", is_current ? "=>" : "  ");
3852 
3853     st->print(PTR_FORMAT, thread);
3854     st->print(" ");
3855     thread->print_on_error(st, buf, buflen);
3856     st->cr();
3857   }
3858   st->cr();
3859 
3860   st->print_cr("Other Threads:");
3861   if (VMThread::vm_thread()) {
3862     bool is_current = (current == VMThread::vm_thread());
3863     found_current = found_current || is_current;
3864     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
3865 
3866     st->print(PTR_FORMAT, VMThread::vm_thread());
3867     st->print(" ");
3868     VMThread::vm_thread()->print_on_error(st, buf, buflen);
3869     st->cr();
3870   }
3871   WatcherThread* wt = WatcherThread::watcher_thread();
3872   if (wt != NULL) {
3873     bool is_current = (current == wt);
3874     found_current = found_current || is_current;
3875     st->print("%s", is_current ? "=>" : "  ");
3876 
3877     st->print(PTR_FORMAT, wt);
3878     st->print(" ");
3879     wt->print_on_error(st, buf, buflen);
3880     st->cr();
3881   }
3882   if (!found_current) {
3883     st->cr();
3884     st->print("=>" PTR_FORMAT " (exited) ", current);
3885     current->print_on_error(st, buf, buflen);
3886     st->cr();
3887   }
3888 }
3889 
3890 
3891 // Lifecycle management for TSM ParkEvents.
3892 // ParkEvents are type-stable (TSM).
3893 // In our particular implementation they happen to be immortal.
3894 //
3895 // We manage concurrency on the FreeList with a CAS-based
3896 // detach-modify-reattach idiom that avoids the ABA problems
3897 // that would otherwise be present in a simple CAS-based
3898 // push-pop implementation.   (push-one and pop-all)
3899 //
3900 // Caveat: Allocate() and Release() may be called from threads
3901 // other than the thread associated with the Event!
3902 // If we need to call Allocate() when running as the thread in
3903 // question then look for the PD calls to initialize native TLS.
3904 // Native TLS (Win32/Linux/Solaris) can only be initialized or
3905 // accessed by the associated thread.
3906 // See also pd_initialize().
3907 //
3908 // Note that we could defer associating a ParkEvent with a thread
3909 // until the 1st time the thread calls park().  unpark() calls to
3910 // an unprovisioned thread would be ignored.  The first park() call
3911 // for a thread would allocate and associate a ParkEvent and return
3912 // immediately.
3913 
3914 volatile int ParkEvent::ListLock = 0 ;
3915 ParkEvent * volatile ParkEvent::FreeList = NULL ;
3916 
3917 ParkEvent * ParkEvent::Allocate (Thread * t) {
3918   // In rare cases -- JVM_RawMonitor* operations -- we can find t == null.
3919   ParkEvent * ev ;
3920 
3921   // Start by trying to recycle an existing but unassociated
3922   // ParkEvent from the global free list.
3923   for (;;) {
3924     ev = FreeList ;
3925     if (ev == NULL) break ;
3926     // 1: Detach - sequester or privatize the list
3927     // Tantamount to ev = Swap (&FreeList, NULL)
3928     if (Atomic::cmpxchg_ptr (NULL, &FreeList, ev) != ev) {
3929        continue ;
3930     }
3931 
3932     // We've detached the list.  The list in-hand is now
3933     // local to this thread.   This thread can operate on the
3934     // list without risk of interference from other threads.
3935     // 2: Extract -- pop the 1st element from the list.
3936     ParkEvent * List = ev->FreeNext ;
3937     if (List == NULL) break ;
3938     for (;;) {
3939         // 3: Try to reattach the residual list
3940         guarantee (List != NULL, "invariant") ;
3941         ParkEvent * Arv =  (ParkEvent *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
3942         if (Arv == NULL) break ;
3943 
3944         // New nodes arrived.  Try to detach the recent arrivals.
3945         if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
3946             continue ;
3947         }
3948         guarantee (Arv != NULL, "invariant") ;
3949         // 4: Merge Arv into List
3950         ParkEvent * Tail = List ;
3951         while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
3952         Tail->FreeNext = Arv ;
3953     }
3954     break ;
3955   }
3956 
3957   if (ev != NULL) {
3958     guarantee (ev->AssociatedWith == NULL, "invariant") ;
3959   } else {
3960     // Do this the hard way -- materialize a new ParkEvent.
3961     // In rare cases an allocating thread might detach a long list --
3962     // installing null into FreeList -- and then stall or be obstructed.
3963     // A 2nd thread calling Allocate() would see FreeList == null.
3964     // The list held privately by the 1st thread is unavailable to the 2nd thread.
3965     // In that case the 2nd thread would have to materialize a new ParkEvent,
3966     // even though free ParkEvents existed in the system.  In this case we end up
3967     // with more ParkEvents in circulation than we need, but the race is
3968     // rare and the outcome is benign.  Ideally, the # of extant ParkEvents
3969     // is equal to the maximum # of threads that existed at any one time.
3970     // Because of the race mentioned above, segments of the freelist
3971     // can be transiently inaccessible.  At worst we may end up with the
3972     // # of ParkEvents in circulation slightly above the ideal.
3973     // Note that if we didn't have the TSM/immortal constraint, then
3974     // when reattaching, above, we could trim the list.
3975     ev = new ParkEvent () ;
3976     guarantee ((intptr_t(ev) & 0xFF) == 0, "invariant") ;
3977   }
3978   ev->reset() ;                     // courtesy to caller
3979   ev->AssociatedWith = t ;          // Associate ev with t
3980   ev->FreeNext       = NULL ;
3981   return ev ;
3982 }
3983 
3984 void ParkEvent::Release (ParkEvent * ev) {
3985   if (ev == NULL) return ;
3986   guarantee (ev->FreeNext == NULL      , "invariant") ;
3987   ev->AssociatedWith = NULL ;
3988   for (;;) {
3989     // Push ev onto FreeList
3990     // The mechanism is "half" lock-free.
3991     ParkEvent * List = FreeList ;
3992     ev->FreeNext = List ;
3993     if (Atomic::cmpxchg_ptr (ev, &FreeList, List) == List) break ;
3994   }
3995 }
3996 
3997 // Override operator new and delete so we can ensure that the
3998 // least significant byte of ParkEvent addresses is 0.
3999 // Beware that excessive address alignment is undesirable
4000 // as it can result in D$ index usage imbalance as
4001 // well as bank access imbalance on Niagara-like platforms,
4002 // although Niagara's hash function should help.
4003 
4004 void * ParkEvent::operator new (size_t sz) {
4005   return (void *) ((intptr_t (CHeapObj::operator new (sz + 256)) + 256) & -256) ;
4006 }
4007 
4008 void ParkEvent::operator delete (void * a) {
4009   // ParkEvents are type-stable and immortal ...
4010   ShouldNotReachHere();
4011 }
4012 
4013 
4014 // 6399321 As a temporary measure we copied & modified the ParkEvent::
4015 // allocate() and release() code for use by Parkers.  The Parker:: forms
4016 // will eventually be removed as we consolide and shift over to ParkEvents
4017 // for both builtin synchronization and JSR166 operations.
4018 
4019 volatile int Parker::ListLock = 0 ;
4020 Parker * volatile Parker::FreeList = NULL ;
4021 
4022 Parker * Parker::Allocate (JavaThread * t) {
4023   guarantee (t != NULL, "invariant") ;
4024   Parker * p ;
4025 
4026   // Start by trying to recycle an existing but unassociated
4027   // Parker from the global free list.
4028   for (;;) {
4029     p = FreeList ;
4030     if (p  == NULL) break ;
4031     // 1: Detach
4032     // Tantamount to p = Swap (&FreeList, NULL)
4033     if (Atomic::cmpxchg_ptr (NULL, &FreeList, p) != p) {
4034        continue ;
4035     }
4036 
4037     // We've detached the list.  The list in-hand is now
4038     // local to this thread.   This thread can operate on the
4039     // list without risk of interference from other threads.
4040     // 2: Extract -- pop the 1st element from the list.
4041     Parker * List = p->FreeNext ;
4042     if (List == NULL) break ;
4043     for (;;) {
4044         // 3: Try to reattach the residual list
4045         guarantee (List != NULL, "invariant") ;
4046         Parker * Arv =  (Parker *) Atomic::cmpxchg_ptr (List, &FreeList, NULL) ;
4047         if (Arv == NULL) break ;
4048 
4049         // New nodes arrived.  Try to detach the recent arrivals.
4050         if (Atomic::cmpxchg_ptr (NULL, &FreeList, Arv) != Arv) {
4051             continue ;
4052         }
4053         guarantee (Arv != NULL, "invariant") ;
4054         // 4: Merge Arv into List
4055         Parker * Tail = List ;
4056         while (Tail->FreeNext != NULL) Tail = Tail->FreeNext ;
4057         Tail->FreeNext = Arv ;
4058     }
4059     break ;
4060   }
4061 
4062   if (p != NULL) {
4063     guarantee (p->AssociatedWith == NULL, "invariant") ;
4064   } else {
4065     // Do this the hard way -- materialize a new Parker..
4066     // In rare cases an allocating thread might detach
4067     // a long list -- installing null into FreeList --and
4068     // then stall.  Another thread calling Allocate() would see
4069     // FreeList == null and then invoke the ctor.  In this case we
4070     // end up with more Parkers in circulation than we need, but
4071     // the race is rare and the outcome is benign.
4072     // Ideally, the # of extant Parkers is equal to the
4073     // maximum # of threads that existed at any one time.
4074     // Because of the race mentioned above, segments of the
4075     // freelist can be transiently inaccessible.  At worst
4076     // we may end up with the # of Parkers in circulation
4077     // slightly above the ideal.
4078     p = new Parker() ;
4079   }
4080   p->AssociatedWith = t ;          // Associate p with t
4081   p->FreeNext       = NULL ;
4082   return p ;
4083 }
4084 
4085 
4086 void Parker::Release (Parker * p) {
4087   if (p == NULL) return ;
4088   guarantee (p->AssociatedWith != NULL, "invariant") ;
4089   guarantee (p->FreeNext == NULL      , "invariant") ;
4090   p->AssociatedWith = NULL ;
4091   for (;;) {
4092     // Push p onto FreeList
4093     Parker * List = FreeList ;
4094     p->FreeNext = List ;
4095     if (Atomic::cmpxchg_ptr (p, &FreeList, List) == List) break ;
4096   }
4097 }
4098 
4099 void Threads::verify() {
4100   ALL_JAVA_THREADS(p) {
4101     p->verify();
4102   }
4103   VMThread* thread = VMThread::vm_thread();
4104   if (thread != NULL) thread->verify();
4105 }