1 /*
   2  * Copyright 1997-2010 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #ifdef _WIN64
  26 // Must be at least Windows 2000 or XP to use VectoredExceptions
  27 #define _WIN32_WINNT 0x500
  28 #endif
  29 
  30 // do not include precompiled header file
  31 # include "incls/_os_windows.cpp.incl"
  32 
  33 #ifdef _DEBUG
  34 #include <crtdbg.h>
  35 #endif
  36 
  37 
  38 #include <windows.h>
  39 #include <sys/types.h>
  40 #include <sys/stat.h>
  41 #include <sys/timeb.h>
  42 #include <objidl.h>
  43 #include <shlobj.h>
  44 
  45 #include <malloc.h>
  46 #include <signal.h>
  47 #include <direct.h>
  48 #include <errno.h>
  49 #include <fcntl.h>
  50 #include <io.h>
  51 #include <process.h>              // For _beginthreadex(), _endthreadex()
  52 #include <imagehlp.h>             // For os::dll_address_to_function_name
  53 
  54 /* for enumerating dll libraries */
  55 #include <tlhelp32.h>
  56 #include <vdmdbg.h>
  57 
  58 // for timer info max values which include all bits
  59 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
  60 
  61 // For DLL loading/load error detection
  62 // Values of PE COFF
  63 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
  64 #define IMAGE_FILE_SIGNATURE_LENGTH 4
  65 
  66 static HANDLE main_process;
  67 static HANDLE main_thread;
  68 static int    main_thread_id;
  69 
  70 static FILETIME process_creation_time;
  71 static FILETIME process_exit_time;
  72 static FILETIME process_user_time;
  73 static FILETIME process_kernel_time;
  74 
  75 #ifdef _WIN64
  76 PVOID  topLevelVectoredExceptionHandler = NULL;
  77 #endif
  78 
  79 #ifdef _M_IA64
  80 #define __CPU__ ia64
  81 #elif _M_AMD64
  82 #define __CPU__ amd64
  83 #else
  84 #define __CPU__ i486
  85 #endif
  86 
  87 // save DLL module handle, used by GetModuleFileName
  88 
  89 HINSTANCE vm_lib_handle;
  90 static int getLastErrorString(char *buf, size_t len);
  91 
  92 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
  93   switch (reason) {
  94     case DLL_PROCESS_ATTACH:
  95       vm_lib_handle = hinst;
  96       if(ForceTimeHighResolution)
  97         timeBeginPeriod(1L);
  98       break;
  99     case DLL_PROCESS_DETACH:
 100       if(ForceTimeHighResolution)
 101         timeEndPeriod(1L);
 102 #ifdef _WIN64
 103       if (topLevelVectoredExceptionHandler != NULL) {
 104         RemoveVectoredExceptionHandler(topLevelVectoredExceptionHandler);
 105         topLevelVectoredExceptionHandler = NULL;
 106       }
 107 #endif
 108       break;
 109     default:
 110       break;
 111   }
 112   return true;
 113 }
 114 
 115 static inline double fileTimeAsDouble(FILETIME* time) {
 116   const double high  = (double) ((unsigned int) ~0);
 117   const double split = 10000000.0;
 118   double result = (time->dwLowDateTime / split) +
 119                    time->dwHighDateTime * (high/split);
 120   return result;
 121 }
 122 
 123 // Implementation of os
 124 
 125 bool os::getenv(const char* name, char* buffer, int len) {
 126  int result = GetEnvironmentVariable(name, buffer, len);
 127  return result > 0 && result < len;
 128 }
 129 
 130 
 131 // No setuid programs under Windows.
 132 bool os::have_special_privileges() {
 133   return false;
 134 }
 135 
 136 
 137 // This method is  a periodic task to check for misbehaving JNI applications
 138 // under CheckJNI, we can add any periodic checks here.
 139 // For Windows at the moment does nothing
 140 void os::run_periodic_checks() {
 141   return;
 142 }
 143 
 144 #ifndef _WIN64
 145 // previous UnhandledExceptionFilter, if there is one
 146 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 147 
 148 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 149 #endif
 150 void os::init_system_properties_values() {
 151   /* sysclasspath, java_home, dll_dir */
 152   {
 153       char *home_path;
 154       char *dll_path;
 155       char *pslash;
 156       char *bin = "\\bin";
 157       char home_dir[MAX_PATH];
 158 
 159       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
 160           os::jvm_path(home_dir, sizeof(home_dir));
 161           // Found the full path to jvm[_g].dll.
 162           // Now cut the path to <java_home>/jre if we can.
 163           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
 164           pslash = strrchr(home_dir, '\\');
 165           if (pslash != NULL) {
 166               *pslash = '\0';                 /* get rid of \{client|server} */
 167               pslash = strrchr(home_dir, '\\');
 168               if (pslash != NULL)
 169                   *pslash = '\0';             /* get rid of \bin */
 170           }
 171       }
 172 
 173       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1);
 174       if (home_path == NULL)
 175           return;
 176       strcpy(home_path, home_dir);
 177       Arguments::set_java_home(home_path);
 178 
 179       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1);
 180       if (dll_path == NULL)
 181           return;
 182       strcpy(dll_path, home_dir);
 183       strcat(dll_path, bin);
 184       Arguments::set_dll_dir(dll_path);
 185 
 186       if (!set_boot_path('\\', ';'))
 187           return;
 188   }
 189 
 190   /* library_path */
 191   #define EXT_DIR "\\lib\\ext"
 192   #define BIN_DIR "\\bin"
 193   #define PACKAGE_DIR "\\Sun\\Java"
 194   {
 195     /* Win32 library search order (See the documentation for LoadLibrary):
 196      *
 197      * 1. The directory from which application is loaded.
 198      * 2. The current directory
 199      * 3. The system wide Java Extensions directory (Java only)
 200      * 4. System directory (GetSystemDirectory)
 201      * 5. Windows directory (GetWindowsDirectory)
 202      * 6. The PATH environment variable
 203      */
 204 
 205     char *library_path;
 206     char tmp[MAX_PATH];
 207     char *path_str = ::getenv("PATH");
 208 
 209     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 210         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10);
 211 
 212     library_path[0] = '\0';
 213 
 214     GetModuleFileName(NULL, tmp, sizeof(tmp));
 215     *(strrchr(tmp, '\\')) = '\0';
 216     strcat(library_path, tmp);
 217 
 218     strcat(library_path, ";.");
 219 
 220     GetWindowsDirectory(tmp, sizeof(tmp));
 221     strcat(library_path, ";");
 222     strcat(library_path, tmp);
 223     strcat(library_path, PACKAGE_DIR BIN_DIR);
 224 
 225     GetSystemDirectory(tmp, sizeof(tmp));
 226     strcat(library_path, ";");
 227     strcat(library_path, tmp);
 228 
 229     GetWindowsDirectory(tmp, sizeof(tmp));
 230     strcat(library_path, ";");
 231     strcat(library_path, tmp);
 232 
 233     if (path_str) {
 234         strcat(library_path, ";");
 235         strcat(library_path, path_str);
 236     }
 237 
 238     Arguments::set_library_path(library_path);
 239     FREE_C_HEAP_ARRAY(char, library_path);
 240   }
 241 
 242   /* Default extensions directory */
 243   {
 244     char path[MAX_PATH];
 245     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 246     GetWindowsDirectory(path, MAX_PATH);
 247     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 248         path, PACKAGE_DIR, EXT_DIR);
 249     Arguments::set_ext_dirs(buf);
 250   }
 251   #undef EXT_DIR
 252   #undef BIN_DIR
 253   #undef PACKAGE_DIR
 254 
 255   /* Default endorsed standards directory. */
 256   {
 257     #define ENDORSED_DIR "\\lib\\endorsed"
 258     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
 259     char * buf = NEW_C_HEAP_ARRAY(char, len);
 260     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
 261     Arguments::set_endorsed_dirs(buf);
 262     #undef ENDORSED_DIR
 263   }
 264 
 265 #ifndef _WIN64
 266   // set our UnhandledExceptionFilter and save any previous one
 267   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 268 #endif
 269 
 270   // Done
 271   return;
 272 }
 273 
 274 void os::breakpoint() {
 275   DebugBreak();
 276 }
 277 
 278 // Invoked from the BREAKPOINT Macro
 279 extern "C" void breakpoint() {
 280   os::breakpoint();
 281 }
 282 
 283 // Returns an estimate of the current stack pointer. Result must be guaranteed
 284 // to point into the calling threads stack, and be no lower than the current
 285 // stack pointer.
 286 
 287 address os::current_stack_pointer() {
 288   int dummy;
 289   address sp = (address)&dummy;
 290   return sp;
 291 }
 292 
 293 // os::current_stack_base()
 294 //
 295 //   Returns the base of the stack, which is the stack's
 296 //   starting address.  This function must be called
 297 //   while running on the stack of the thread being queried.
 298 
 299 address os::current_stack_base() {
 300   MEMORY_BASIC_INFORMATION minfo;
 301   address stack_bottom;
 302   size_t stack_size;
 303 
 304   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 305   stack_bottom =  (address)minfo.AllocationBase;
 306   stack_size = minfo.RegionSize;
 307 
 308   // Add up the sizes of all the regions with the same
 309   // AllocationBase.
 310   while( 1 )
 311   {
 312     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 313     if ( stack_bottom == (address)minfo.AllocationBase )
 314       stack_size += minfo.RegionSize;
 315     else
 316       break;
 317   }
 318 
 319 #ifdef _M_IA64
 320   // IA64 has memory and register stacks
 321   stack_size = stack_size / 2;
 322 #endif
 323   return stack_bottom + stack_size;
 324 }
 325 
 326 size_t os::current_stack_size() {
 327   size_t sz;
 328   MEMORY_BASIC_INFORMATION minfo;
 329   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 330   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 331   return sz;
 332 }
 333 
 334 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 335   const struct tm* time_struct_ptr = localtime(clock);
 336   if (time_struct_ptr != NULL) {
 337     *res = *time_struct_ptr;
 338     return res;
 339   }
 340   return NULL;
 341 }
 342 
 343 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 344 
 345 // Thread start routine for all new Java threads
 346 static unsigned __stdcall java_start(Thread* thread) {
 347   // Try to randomize the cache line index of hot stack frames.
 348   // This helps when threads of the same stack traces evict each other's
 349   // cache lines. The threads can be either from the same JVM instance, or
 350   // from different JVM instances. The benefit is especially true for
 351   // processors with hyperthreading technology.
 352   static int counter = 0;
 353   int pid = os::current_process_id();
 354   _alloca(((pid ^ counter++) & 7) * 128);
 355 
 356   OSThread* osthr = thread->osthread();
 357   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 358 
 359   if (UseNUMA) {
 360     int lgrp_id = os::numa_get_group_id();
 361     if (lgrp_id != -1) {
 362       thread->set_lgrp_id(lgrp_id);
 363     }
 364   }
 365 
 366 
 367   if (UseVectoredExceptions) {
 368     // If we are using vectored exception we don't need to set a SEH
 369     thread->run();
 370   }
 371   else {
 372     // Install a win32 structured exception handler around every thread created
 373     // by VM, so VM can genrate error dump when an exception occurred in non-
 374     // Java thread (e.g. VM thread).
 375     __try {
 376        thread->run();
 377     } __except(topLevelExceptionFilter(
 378                (_EXCEPTION_POINTERS*)_exception_info())) {
 379         // Nothing to do.
 380     }
 381   }
 382 
 383   // One less thread is executing
 384   // When the VMThread gets here, the main thread may have already exited
 385   // which frees the CodeHeap containing the Atomic::add code
 386   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 387     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 388   }
 389 
 390   return 0;
 391 }
 392 
 393 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
 394   // Allocate the OSThread object
 395   OSThread* osthread = new OSThread(NULL, NULL);
 396   if (osthread == NULL) return NULL;
 397 
 398   // Initialize support for Java interrupts
 399   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 400   if (interrupt_event == NULL) {
 401     delete osthread;
 402     return NULL;
 403   }
 404   osthread->set_interrupt_event(interrupt_event);
 405 
 406   // Store info on the Win32 thread into the OSThread
 407   osthread->set_thread_handle(thread_handle);
 408   osthread->set_thread_id(thread_id);
 409 
 410   if (UseNUMA) {
 411     int lgrp_id = os::numa_get_group_id();
 412     if (lgrp_id != -1) {
 413       thread->set_lgrp_id(lgrp_id);
 414     }
 415   }
 416 
 417   // Initial thread state is INITIALIZED, not SUSPENDED
 418   osthread->set_state(INITIALIZED);
 419 
 420   return osthread;
 421 }
 422 
 423 
 424 bool os::create_attached_thread(JavaThread* thread) {
 425 #ifdef ASSERT
 426   thread->verify_not_published();
 427 #endif
 428   HANDLE thread_h;
 429   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 430                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 431     fatal("DuplicateHandle failed\n");
 432   }
 433   OSThread* osthread = create_os_thread(thread, thread_h,
 434                                         (int)current_thread_id());
 435   if (osthread == NULL) {
 436      return false;
 437   }
 438 
 439   // Initial thread state is RUNNABLE
 440   osthread->set_state(RUNNABLE);
 441 
 442   thread->set_osthread(osthread);
 443   return true;
 444 }
 445 
 446 bool os::create_main_thread(JavaThread* thread) {
 447 #ifdef ASSERT
 448   thread->verify_not_published();
 449 #endif
 450   if (_starting_thread == NULL) {
 451     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 452      if (_starting_thread == NULL) {
 453         return false;
 454      }
 455   }
 456 
 457   // The primordial thread is runnable from the start)
 458   _starting_thread->set_state(RUNNABLE);
 459 
 460   thread->set_osthread(_starting_thread);
 461   return true;
 462 }
 463 
 464 // Allocate and initialize a new OSThread
 465 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 466   unsigned thread_id;
 467 
 468   // Allocate the OSThread object
 469   OSThread* osthread = new OSThread(NULL, NULL);
 470   if (osthread == NULL) {
 471     return false;
 472   }
 473 
 474   // Initialize support for Java interrupts
 475   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 476   if (interrupt_event == NULL) {
 477     delete osthread;
 478     return NULL;
 479   }
 480   osthread->set_interrupt_event(interrupt_event);
 481   osthread->set_interrupted(false);
 482 
 483   thread->set_osthread(osthread);
 484 
 485   if (stack_size == 0) {
 486     switch (thr_type) {
 487     case os::java_thread:
 488       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 489       if (JavaThread::stack_size_at_create() > 0)
 490         stack_size = JavaThread::stack_size_at_create();
 491       break;
 492     case os::compiler_thread:
 493       if (CompilerThreadStackSize > 0) {
 494         stack_size = (size_t)(CompilerThreadStackSize * K);
 495         break;
 496       } // else fall through:
 497         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 498     case os::vm_thread:
 499     case os::pgc_thread:
 500     case os::cgc_thread:
 501     case os::watcher_thread:
 502       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 503       break;
 504     }
 505   }
 506 
 507   // Create the Win32 thread
 508   //
 509   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 510   // does not specify stack size. Instead, it specifies the size of
 511   // initially committed space. The stack size is determined by
 512   // PE header in the executable. If the committed "stack_size" is larger
 513   // than default value in the PE header, the stack is rounded up to the
 514   // nearest multiple of 1MB. For example if the launcher has default
 515   // stack size of 320k, specifying any size less than 320k does not
 516   // affect the actual stack size at all, it only affects the initial
 517   // commitment. On the other hand, specifying 'stack_size' larger than
 518   // default value may cause significant increase in memory usage, because
 519   // not only the stack space will be rounded up to MB, but also the
 520   // entire space is committed upfront.
 521   //
 522   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 523   // for CreateThread() that can treat 'stack_size' as stack size. However we
 524   // are not supposed to call CreateThread() directly according to MSDN
 525   // document because JVM uses C runtime library. The good news is that the
 526   // flag appears to work with _beginthredex() as well.
 527 
 528 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 529 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 530 #endif
 531 
 532   HANDLE thread_handle =
 533     (HANDLE)_beginthreadex(NULL,
 534                            (unsigned)stack_size,
 535                            (unsigned (__stdcall *)(void*)) java_start,
 536                            thread,
 537                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 538                            &thread_id);
 539   if (thread_handle == NULL) {
 540     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 541     // without the flag.
 542     thread_handle =
 543     (HANDLE)_beginthreadex(NULL,
 544                            (unsigned)stack_size,
 545                            (unsigned (__stdcall *)(void*)) java_start,
 546                            thread,
 547                            CREATE_SUSPENDED,
 548                            &thread_id);
 549   }
 550   if (thread_handle == NULL) {
 551     // Need to clean up stuff we've allocated so far
 552     CloseHandle(osthread->interrupt_event());
 553     thread->set_osthread(NULL);
 554     delete osthread;
 555     return NULL;
 556   }
 557 
 558   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 559 
 560   // Store info on the Win32 thread into the OSThread
 561   osthread->set_thread_handle(thread_handle);
 562   osthread->set_thread_id(thread_id);
 563 
 564   // Initial thread state is INITIALIZED, not SUSPENDED
 565   osthread->set_state(INITIALIZED);
 566 
 567   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 568   return true;
 569 }
 570 
 571 
 572 // Free Win32 resources related to the OSThread
 573 void os::free_thread(OSThread* osthread) {
 574   assert(osthread != NULL, "osthread not set");
 575   CloseHandle(osthread->thread_handle());
 576   CloseHandle(osthread->interrupt_event());
 577   delete osthread;
 578 }
 579 
 580 
 581 static int    has_performance_count = 0;
 582 static jlong first_filetime;
 583 static jlong initial_performance_count;
 584 static jlong performance_frequency;
 585 
 586 
 587 jlong as_long(LARGE_INTEGER x) {
 588   jlong result = 0; // initialization to avoid warning
 589   set_high(&result, x.HighPart);
 590   set_low(&result,  x.LowPart);
 591   return result;
 592 }
 593 
 594 
 595 jlong os::elapsed_counter() {
 596   LARGE_INTEGER count;
 597   if (has_performance_count) {
 598     QueryPerformanceCounter(&count);
 599     return as_long(count) - initial_performance_count;
 600   } else {
 601     FILETIME wt;
 602     GetSystemTimeAsFileTime(&wt);
 603     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 604   }
 605 }
 606 
 607 
 608 jlong os::elapsed_frequency() {
 609   if (has_performance_count) {
 610     return performance_frequency;
 611   } else {
 612    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 613    return 10000000;
 614   }
 615 }
 616 
 617 
 618 julong os::available_memory() {
 619   return win32::available_memory();
 620 }
 621 
 622 julong os::win32::available_memory() {
 623   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 624   // value if total memory is larger than 4GB
 625   MEMORYSTATUSEX ms;
 626   ms.dwLength = sizeof(ms);
 627   GlobalMemoryStatusEx(&ms);
 628 
 629   return (julong)ms.ullAvailPhys;
 630 }
 631 
 632 julong os::physical_memory() {
 633   return win32::physical_memory();
 634 }
 635 
 636 julong os::allocatable_physical_memory(julong size) {
 637 #ifdef _LP64
 638   return size;
 639 #else
 640   // Limit to 1400m because of the 2gb address space wall
 641   return MIN2(size, (julong)1400*M);
 642 #endif
 643 }
 644 
 645 // VC6 lacks DWORD_PTR
 646 #if _MSC_VER < 1300
 647 typedef UINT_PTR DWORD_PTR;
 648 #endif
 649 
 650 int os::active_processor_count() {
 651   DWORD_PTR lpProcessAffinityMask = 0;
 652   DWORD_PTR lpSystemAffinityMask = 0;
 653   int proc_count = processor_count();
 654   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 655       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 656     // Nof active processors is number of bits in process affinity mask
 657     int bitcount = 0;
 658     while (lpProcessAffinityMask != 0) {
 659       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 660       bitcount++;
 661     }
 662     return bitcount;
 663   } else {
 664     return proc_count;
 665   }
 666 }
 667 
 668 bool os::distribute_processes(uint length, uint* distribution) {
 669   // Not yet implemented.
 670   return false;
 671 }
 672 
 673 bool os::bind_to_processor(uint processor_id) {
 674   // Not yet implemented.
 675   return false;
 676 }
 677 
 678 static void initialize_performance_counter() {
 679   LARGE_INTEGER count;
 680   if (QueryPerformanceFrequency(&count)) {
 681     has_performance_count = 1;
 682     performance_frequency = as_long(count);
 683     QueryPerformanceCounter(&count);
 684     initial_performance_count = as_long(count);
 685   } else {
 686     has_performance_count = 0;
 687     FILETIME wt;
 688     GetSystemTimeAsFileTime(&wt);
 689     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 690   }
 691 }
 692 
 693 
 694 double os::elapsedTime() {
 695   return (double) elapsed_counter() / (double) elapsed_frequency();
 696 }
 697 
 698 
 699 // Windows format:
 700 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 701 // Java format:
 702 //   Java standards require the number of milliseconds since 1/1/1970
 703 
 704 // Constant offset - calculated using offset()
 705 static jlong  _offset   = 116444736000000000;
 706 // Fake time counter for reproducible results when debugging
 707 static jlong  fake_time = 0;
 708 
 709 #ifdef ASSERT
 710 // Just to be safe, recalculate the offset in debug mode
 711 static jlong _calculated_offset = 0;
 712 static int   _has_calculated_offset = 0;
 713 
 714 jlong offset() {
 715   if (_has_calculated_offset) return _calculated_offset;
 716   SYSTEMTIME java_origin;
 717   java_origin.wYear          = 1970;
 718   java_origin.wMonth         = 1;
 719   java_origin.wDayOfWeek     = 0; // ignored
 720   java_origin.wDay           = 1;
 721   java_origin.wHour          = 0;
 722   java_origin.wMinute        = 0;
 723   java_origin.wSecond        = 0;
 724   java_origin.wMilliseconds  = 0;
 725   FILETIME jot;
 726   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 727     fatal1("Error = %d\nWindows error", GetLastError());
 728   }
 729   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 730   _has_calculated_offset = 1;
 731   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 732   return _calculated_offset;
 733 }
 734 #else
 735 jlong offset() {
 736   return _offset;
 737 }
 738 #endif
 739 
 740 jlong windows_to_java_time(FILETIME wt) {
 741   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 742   return (a - offset()) / 10000;
 743 }
 744 
 745 FILETIME java_to_windows_time(jlong l) {
 746   jlong a = (l * 10000) + offset();
 747   FILETIME result;
 748   result.dwHighDateTime = high(a);
 749   result.dwLowDateTime  = low(a);
 750   return result;
 751 }
 752 
 753 // For now, we say that Windows does not support vtime.  I have no idea
 754 // whether it can actually be made to (DLD, 9/13/05).
 755 
 756 bool os::supports_vtime() { return false; }
 757 bool os::enable_vtime() { return false; }
 758 bool os::vtime_enabled() { return false; }
 759 double os::elapsedVTime() {
 760   // better than nothing, but not much
 761   return elapsedTime();
 762 }
 763 
 764 jlong os::javaTimeMillis() {
 765   if (UseFakeTimers) {
 766     return fake_time++;
 767   } else {
 768     FILETIME wt;
 769     GetSystemTimeAsFileTime(&wt);
 770     return windows_to_java_time(wt);
 771   }
 772 }
 773 
 774 #define NANOS_PER_SEC         CONST64(1000000000)
 775 #define NANOS_PER_MILLISEC    1000000
 776 jlong os::javaTimeNanos() {
 777   if (!has_performance_count) {
 778     return javaTimeMillis() * NANOS_PER_MILLISEC; // the best we can do.
 779   } else {
 780     LARGE_INTEGER current_count;
 781     QueryPerformanceCounter(&current_count);
 782     double current = as_long(current_count);
 783     double freq = performance_frequency;
 784     jlong time = (jlong)((current/freq) * NANOS_PER_SEC);
 785     return time;
 786   }
 787 }
 788 
 789 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 790   if (!has_performance_count) {
 791     // javaTimeMillis() doesn't have much percision,
 792     // but it is not going to wrap -- so all 64 bits
 793     info_ptr->max_value = ALL_64_BITS;
 794 
 795     // this is a wall clock timer, so may skip
 796     info_ptr->may_skip_backward = true;
 797     info_ptr->may_skip_forward = true;
 798   } else {
 799     jlong freq = performance_frequency;
 800     if (freq < NANOS_PER_SEC) {
 801       // the performance counter is 64 bits and we will
 802       // be multiplying it -- so no wrap in 64 bits
 803       info_ptr->max_value = ALL_64_BITS;
 804     } else if (freq > NANOS_PER_SEC) {
 805       // use the max value the counter can reach to
 806       // determine the max value which could be returned
 807       julong max_counter = (julong)ALL_64_BITS;
 808       info_ptr->max_value = (jlong)(max_counter / (freq / NANOS_PER_SEC));
 809     } else {
 810       // the performance counter is 64 bits and we will
 811       // be using it directly -- so no wrap in 64 bits
 812       info_ptr->max_value = ALL_64_BITS;
 813     }
 814 
 815     // using a counter, so no skipping
 816     info_ptr->may_skip_backward = false;
 817     info_ptr->may_skip_forward = false;
 818   }
 819   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 820 }
 821 
 822 char* os::local_time_string(char *buf, size_t buflen) {
 823   SYSTEMTIME st;
 824   GetLocalTime(&st);
 825   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 826                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 827   return buf;
 828 }
 829 
 830 bool os::getTimesSecs(double* process_real_time,
 831                      double* process_user_time,
 832                      double* process_system_time) {
 833   HANDLE h_process = GetCurrentProcess();
 834   FILETIME create_time, exit_time, kernel_time, user_time;
 835   BOOL result = GetProcessTimes(h_process,
 836                                &create_time,
 837                                &exit_time,
 838                                &kernel_time,
 839                                &user_time);
 840   if (result != 0) {
 841     FILETIME wt;
 842     GetSystemTimeAsFileTime(&wt);
 843     jlong rtc_millis = windows_to_java_time(wt);
 844     jlong user_millis = windows_to_java_time(user_time);
 845     jlong system_millis = windows_to_java_time(kernel_time);
 846     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 847     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 848     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 849     return true;
 850   } else {
 851     return false;
 852   }
 853 }
 854 
 855 void os::shutdown() {
 856 
 857   // allow PerfMemory to attempt cleanup of any persistent resources
 858   perfMemory_exit();
 859 
 860   // flush buffered output, finish log files
 861   ostream_abort();
 862 
 863   // Check for abort hook
 864   abort_hook_t abort_hook = Arguments::abort_hook();
 865   if (abort_hook != NULL) {
 866     abort_hook();
 867   }
 868 }
 869 
 870 void os::abort(bool dump_core)
 871 {
 872   os::shutdown();
 873   // no core dump on Windows
 874   ::exit(1);
 875 }
 876 
 877 // Die immediately, no exit hook, no abort hook, no cleanup.
 878 void os::die() {
 879   _exit(-1);
 880 }
 881 
 882 // Directory routines copied from src/win32/native/java/io/dirent_md.c
 883 //  * dirent_md.c       1.15 00/02/02
 884 //
 885 // The declarations for DIR and struct dirent are in jvm_win32.h.
 886 
 887 /* Caller must have already run dirname through JVM_NativePath, which removes
 888    duplicate slashes and converts all instances of '/' into '\\'. */
 889 
 890 DIR *
 891 os::opendir(const char *dirname)
 892 {
 893     assert(dirname != NULL, "just checking");   // hotspot change
 894     DIR *dirp = (DIR *)malloc(sizeof(DIR));
 895     DWORD fattr;                                // hotspot change
 896     char alt_dirname[4] = { 0, 0, 0, 0 };
 897 
 898     if (dirp == 0) {
 899         errno = ENOMEM;
 900         return 0;
 901     }
 902 
 903     /*
 904      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
 905      * as a directory in FindFirstFile().  We detect this case here and
 906      * prepend the current drive name.
 907      */
 908     if (dirname[1] == '\0' && dirname[0] == '\\') {
 909         alt_dirname[0] = _getdrive() + 'A' - 1;
 910         alt_dirname[1] = ':';
 911         alt_dirname[2] = '\\';
 912         alt_dirname[3] = '\0';
 913         dirname = alt_dirname;
 914     }
 915 
 916     dirp->path = (char *)malloc(strlen(dirname) + 5);
 917     if (dirp->path == 0) {
 918         free(dirp);
 919         errno = ENOMEM;
 920         return 0;
 921     }
 922     strcpy(dirp->path, dirname);
 923 
 924     fattr = GetFileAttributes(dirp->path);
 925     if (fattr == 0xffffffff) {
 926         free(dirp->path);
 927         free(dirp);
 928         errno = ENOENT;
 929         return 0;
 930     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
 931         free(dirp->path);
 932         free(dirp);
 933         errno = ENOTDIR;
 934         return 0;
 935     }
 936 
 937     /* Append "*.*", or possibly "\\*.*", to path */
 938     if (dirp->path[1] == ':'
 939         && (dirp->path[2] == '\0'
 940             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
 941         /* No '\\' needed for cases like "Z:" or "Z:\" */
 942         strcat(dirp->path, "*.*");
 943     } else {
 944         strcat(dirp->path, "\\*.*");
 945     }
 946 
 947     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
 948     if (dirp->handle == INVALID_HANDLE_VALUE) {
 949         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
 950             free(dirp->path);
 951             free(dirp);
 952             errno = EACCES;
 953             return 0;
 954         }
 955     }
 956     return dirp;
 957 }
 958 
 959 /* parameter dbuf unused on Windows */
 960 
 961 struct dirent *
 962 os::readdir(DIR *dirp, dirent *dbuf)
 963 {
 964     assert(dirp != NULL, "just checking");      // hotspot change
 965     if (dirp->handle == INVALID_HANDLE_VALUE) {
 966         return 0;
 967     }
 968 
 969     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
 970 
 971     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
 972         if (GetLastError() == ERROR_INVALID_HANDLE) {
 973             errno = EBADF;
 974             return 0;
 975         }
 976         FindClose(dirp->handle);
 977         dirp->handle = INVALID_HANDLE_VALUE;
 978     }
 979 
 980     return &dirp->dirent;
 981 }
 982 
 983 int
 984 os::closedir(DIR *dirp)
 985 {
 986     assert(dirp != NULL, "just checking");      // hotspot change
 987     if (dirp->handle != INVALID_HANDLE_VALUE) {
 988         if (!FindClose(dirp->handle)) {
 989             errno = EBADF;
 990             return -1;
 991         }
 992         dirp->handle = INVALID_HANDLE_VALUE;
 993     }
 994     free(dirp->path);
 995     free(dirp);
 996     return 0;
 997 }
 998 
 999 const char* os::dll_file_extension() { return ".dll"; }
1000 
1001 const char * os::get_temp_directory()
1002 {
1003     static char path_buf[MAX_PATH];
1004     if (GetTempPath(MAX_PATH, path_buf)>0)
1005       return path_buf;
1006     else{
1007       path_buf[0]='\0';
1008       return path_buf;
1009     }
1010 }
1011 
1012 static bool file_exists(const char* filename) {
1013   if (filename == NULL || strlen(filename) == 0) {
1014     return false;
1015   }
1016   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1017 }
1018 
1019 void os::dll_build_name(char *buffer, size_t buflen,
1020                         const char* pname, const char* fname) {
1021   // Copied from libhpi
1022   const size_t pnamelen = pname ? strlen(pname) : 0;
1023   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1024 
1025   // Quietly truncates on buffer overflow. Should be an error.
1026   if (pnamelen + strlen(fname) + 10 > buflen) {
1027     *buffer = '\0';
1028     return;
1029   }
1030 
1031   if (pnamelen == 0) {
1032     jio_snprintf(buffer, buflen, "%s.dll", fname);
1033   } else if (c == ':' || c == '\\') {
1034     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1035   } else if (strchr(pname, *os::path_separator()) != NULL) {
1036     int n;
1037     char** pelements = split_path(pname, &n);
1038     for (int i = 0 ; i < n ; i++) {
1039       char* path = pelements[i];
1040       // Really shouldn't be NULL, but check can't hurt
1041       size_t plen = (path == NULL) ? 0 : strlen(path);
1042       if (plen == 0) {
1043         continue; // skip the empty path values
1044       }
1045       const char lastchar = path[plen - 1];
1046       if (lastchar == ':' || lastchar == '\\') {
1047         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1048       } else {
1049         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1050       }
1051       if (file_exists(buffer)) {
1052         break;
1053       }
1054     }
1055     // release the storage
1056     for (int i = 0 ; i < n ; i++) {
1057       if (pelements[i] != NULL) {
1058         FREE_C_HEAP_ARRAY(char, pelements[i]);
1059       }
1060     }
1061     if (pelements != NULL) {
1062       FREE_C_HEAP_ARRAY(char*, pelements);
1063     }
1064   } else {
1065     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1066   }
1067 }
1068 
1069 // Needs to be in os specific directory because windows requires another
1070 // header file <direct.h>
1071 const char* os::get_current_directory(char *buf, int buflen) {
1072   return _getcwd(buf, buflen);
1073 }
1074 
1075 //-----------------------------------------------------------
1076 // Helper functions for fatal error handler
1077 
1078 // The following library functions are resolved dynamically at runtime:
1079 
1080 // PSAPI functions, for Windows NT, 2000, XP
1081 
1082 // psapi.h doesn't come with Visual Studio 6; it can be downloaded as Platform
1083 // SDK from Microsoft.  Here are the definitions copied from psapi.h
1084 typedef struct _MODULEINFO {
1085     LPVOID lpBaseOfDll;
1086     DWORD SizeOfImage;
1087     LPVOID EntryPoint;
1088 } MODULEINFO, *LPMODULEINFO;
1089 
1090 static BOOL  (WINAPI *_EnumProcessModules)  ( HANDLE, HMODULE *, DWORD, LPDWORD );
1091 static DWORD (WINAPI *_GetModuleFileNameEx) ( HANDLE, HMODULE, LPTSTR, DWORD );
1092 static BOOL  (WINAPI *_GetModuleInformation)( HANDLE, HMODULE, LPMODULEINFO, DWORD );
1093 
1094 // ToolHelp Functions, for Windows 95, 98 and ME
1095 
1096 static HANDLE(WINAPI *_CreateToolhelp32Snapshot)(DWORD,DWORD) ;
1097 static BOOL  (WINAPI *_Module32First)           (HANDLE,LPMODULEENTRY32) ;
1098 static BOOL  (WINAPI *_Module32Next)            (HANDLE,LPMODULEENTRY32) ;
1099 
1100 bool _has_psapi;
1101 bool _psapi_init = false;
1102 bool _has_toolhelp;
1103 
1104 static bool _init_psapi() {
1105   HINSTANCE psapi = LoadLibrary( "PSAPI.DLL" ) ;
1106   if( psapi == NULL ) return false ;
1107 
1108   _EnumProcessModules = CAST_TO_FN_PTR(
1109       BOOL(WINAPI *)(HANDLE, HMODULE *, DWORD, LPDWORD),
1110       GetProcAddress(psapi, "EnumProcessModules")) ;
1111   _GetModuleFileNameEx = CAST_TO_FN_PTR(
1112       DWORD (WINAPI *)(HANDLE, HMODULE, LPTSTR, DWORD),
1113       GetProcAddress(psapi, "GetModuleFileNameExA"));
1114   _GetModuleInformation = CAST_TO_FN_PTR(
1115       BOOL (WINAPI *)(HANDLE, HMODULE, LPMODULEINFO, DWORD),
1116       GetProcAddress(psapi, "GetModuleInformation"));
1117 
1118   _has_psapi = (_EnumProcessModules && _GetModuleFileNameEx && _GetModuleInformation);
1119   _psapi_init = true;
1120   return _has_psapi;
1121 }
1122 
1123 static bool _init_toolhelp() {
1124   HINSTANCE kernel32 = LoadLibrary("Kernel32.DLL") ;
1125   if (kernel32 == NULL) return false ;
1126 
1127   _CreateToolhelp32Snapshot = CAST_TO_FN_PTR(
1128       HANDLE(WINAPI *)(DWORD,DWORD),
1129       GetProcAddress(kernel32, "CreateToolhelp32Snapshot"));
1130   _Module32First = CAST_TO_FN_PTR(
1131       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
1132       GetProcAddress(kernel32, "Module32First" ));
1133   _Module32Next = CAST_TO_FN_PTR(
1134       BOOL(WINAPI *)(HANDLE,LPMODULEENTRY32),
1135       GetProcAddress(kernel32, "Module32Next" ));
1136 
1137   _has_toolhelp = (_CreateToolhelp32Snapshot && _Module32First && _Module32Next);
1138   return _has_toolhelp;
1139 }
1140 
1141 #ifdef _WIN64
1142 // Helper routine which returns true if address in
1143 // within the NTDLL address space.
1144 //
1145 static bool _addr_in_ntdll( address addr )
1146 {
1147   HMODULE hmod;
1148   MODULEINFO minfo;
1149 
1150   hmod = GetModuleHandle("NTDLL.DLL");
1151   if ( hmod == NULL ) return false;
1152   if ( !_GetModuleInformation( GetCurrentProcess(), hmod,
1153                                &minfo, sizeof(MODULEINFO)) )
1154     return false;
1155 
1156   if ( (addr >= minfo.lpBaseOfDll) &&
1157        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1158     return true;
1159   else
1160     return false;
1161 }
1162 #endif
1163 
1164 
1165 // Enumerate all modules for a given process ID
1166 //
1167 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
1168 // different API for doing this. We use PSAPI.DLL on NT based
1169 // Windows and ToolHelp on 95/98/Me.
1170 
1171 // Callback function that is called by enumerate_modules() on
1172 // every DLL module.
1173 // Input parameters:
1174 //    int       pid,
1175 //    char*     module_file_name,
1176 //    address   module_base_addr,
1177 //    unsigned  module_size,
1178 //    void*     param
1179 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1180 
1181 // enumerate_modules for Windows NT, using PSAPI
1182 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1183 {
1184   HANDLE   hProcess ;
1185 
1186 # define MAX_NUM_MODULES 128
1187   HMODULE     modules[MAX_NUM_MODULES];
1188   static char filename[ MAX_PATH ];
1189   int         result = 0;
1190 
1191   if (!_has_psapi && (_psapi_init || !_init_psapi())) return 0;
1192 
1193   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1194                          FALSE, pid ) ;
1195   if (hProcess == NULL) return 0;
1196 
1197   DWORD size_needed;
1198   if (!_EnumProcessModules(hProcess, modules,
1199                            sizeof(modules), &size_needed)) {
1200       CloseHandle( hProcess );
1201       return 0;
1202   }
1203 
1204   // number of modules that are currently loaded
1205   int num_modules = size_needed / sizeof(HMODULE);
1206 
1207   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1208     // Get Full pathname:
1209     if(!_GetModuleFileNameEx(hProcess, modules[i],
1210                              filename, sizeof(filename))) {
1211         filename[0] = '\0';
1212     }
1213 
1214     MODULEINFO modinfo;
1215     if (!_GetModuleInformation(hProcess, modules[i],
1216                                &modinfo, sizeof(modinfo))) {
1217         modinfo.lpBaseOfDll = NULL;
1218         modinfo.SizeOfImage = 0;
1219     }
1220 
1221     // Invoke callback function
1222     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1223                   modinfo.SizeOfImage, param);
1224     if (result) break;
1225   }
1226 
1227   CloseHandle( hProcess ) ;
1228   return result;
1229 }
1230 
1231 
1232 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
1233 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1234 {
1235   HANDLE                hSnapShot ;
1236   static MODULEENTRY32  modentry ;
1237   int                   result = 0;
1238 
1239   if (!_has_toolhelp) return 0;
1240 
1241   // Get a handle to a Toolhelp snapshot of the system
1242   hSnapShot = _CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1243   if( hSnapShot == INVALID_HANDLE_VALUE ) {
1244       return FALSE ;
1245   }
1246 
1247   // iterate through all modules
1248   modentry.dwSize = sizeof(MODULEENTRY32) ;
1249   bool not_done = _Module32First( hSnapShot, &modentry ) != 0;
1250 
1251   while( not_done ) {
1252     // invoke the callback
1253     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1254                 modentry.modBaseSize, param);
1255     if (result) break;
1256 
1257     modentry.dwSize = sizeof(MODULEENTRY32) ;
1258     not_done = _Module32Next( hSnapShot, &modentry ) != 0;
1259   }
1260 
1261   CloseHandle(hSnapShot);
1262   return result;
1263 }
1264 
1265 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1266 {
1267   // Get current process ID if caller doesn't provide it.
1268   if (!pid) pid = os::current_process_id();
1269 
1270   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1271   else                    return _enumerate_modules_windows(pid, func, param);
1272 }
1273 
1274 struct _modinfo {
1275    address addr;
1276    char*   full_path;   // point to a char buffer
1277    int     buflen;      // size of the buffer
1278    address base_addr;
1279 };
1280 
1281 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1282                                   unsigned size, void * param) {
1283    struct _modinfo *pmod = (struct _modinfo *)param;
1284    if (!pmod) return -1;
1285 
1286    if (base_addr     <= pmod->addr &&
1287        base_addr+size > pmod->addr) {
1288      // if a buffer is provided, copy path name to the buffer
1289      if (pmod->full_path) {
1290        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1291      }
1292      pmod->base_addr = base_addr;
1293      return 1;
1294    }
1295    return 0;
1296 }
1297 
1298 bool os::dll_address_to_library_name(address addr, char* buf,
1299                                      int buflen, int* offset) {
1300 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1301 //       return the full path to the DLL file, sometimes it returns path
1302 //       to the corresponding PDB file (debug info); sometimes it only
1303 //       returns partial path, which makes life painful.
1304 
1305    struct _modinfo mi;
1306    mi.addr      = addr;
1307    mi.full_path = buf;
1308    mi.buflen    = buflen;
1309    int pid = os::current_process_id();
1310    if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1311       // buf already contains path name
1312       if (offset) *offset = addr - mi.base_addr;
1313       return true;
1314    } else {
1315       if (buf) buf[0] = '\0';
1316       if (offset) *offset = -1;
1317       return false;
1318    }
1319 }
1320 
1321 bool os::dll_address_to_function_name(address addr, char *buf,
1322                                       int buflen, int *offset) {
1323   // Unimplemented on Windows - in order to use SymGetSymFromAddr(),
1324   // we need to initialize imagehlp/dbghelp, then load symbol table
1325   // for every module. That's too much work to do after a fatal error.
1326   // For an example on how to implement this function, see 1.4.2.
1327   if (offset)  *offset  = -1;
1328   if (buf) buf[0] = '\0';
1329   return false;
1330 }
1331 
1332 void* os::dll_lookup(void* handle, const char* name) {
1333   return GetProcAddress((HMODULE)handle, name);
1334 }
1335 
1336 // save the start and end address of jvm.dll into param[0] and param[1]
1337 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1338                     unsigned size, void * param) {
1339    if (!param) return -1;
1340 
1341    if (base_addr     <= (address)_locate_jvm_dll &&
1342        base_addr+size > (address)_locate_jvm_dll) {
1343          ((address*)param)[0] = base_addr;
1344          ((address*)param)[1] = base_addr + size;
1345          return 1;
1346    }
1347    return 0;
1348 }
1349 
1350 address vm_lib_location[2];    // start and end address of jvm.dll
1351 
1352 // check if addr is inside jvm.dll
1353 bool os::address_is_in_vm(address addr) {
1354   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1355     int pid = os::current_process_id();
1356     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1357       assert(false, "Can't find jvm module.");
1358       return false;
1359     }
1360   }
1361 
1362   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1363 }
1364 
1365 // print module info; param is outputStream*
1366 static int _print_module(int pid, char* fname, address base,
1367                          unsigned size, void* param) {
1368    if (!param) return -1;
1369 
1370    outputStream* st = (outputStream*)param;
1371 
1372    address end_addr = base + size;
1373    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1374    return 0;
1375 }
1376 
1377 // Loads .dll/.so and
1378 // in case of error it checks if .dll/.so was built for the
1379 // same architecture as Hotspot is running on
1380 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1381 {
1382   void * result = LoadLibrary(name);
1383   if (result != NULL)
1384   {
1385     return result;
1386   }
1387 
1388   long errcode = GetLastError();
1389   if (errcode == ERROR_MOD_NOT_FOUND) {
1390     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1391     ebuf[ebuflen-1]='\0';
1392     return NULL;
1393   }
1394 
1395   // Parsing dll below
1396   // If we can read dll-info and find that dll was built
1397   // for an architecture other than Hotspot is running in
1398   // - then print to buffer "DLL was built for a different architecture"
1399   // else call getLastErrorString to obtain system error message
1400 
1401   // Read system error message into ebuf
1402   // It may or may not be overwritten below (in the for loop and just above)
1403   getLastErrorString(ebuf, (size_t) ebuflen);
1404   ebuf[ebuflen-1]='\0';
1405   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1406   if (file_descriptor<0)
1407   {
1408     return NULL;
1409   }
1410 
1411   uint32_t signature_offset;
1412   uint16_t lib_arch=0;
1413   bool failed_to_get_lib_arch=
1414   (
1415     //Go to position 3c in the dll
1416     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1417     ||
1418     // Read loacation of signature
1419     (sizeof(signature_offset)!=
1420       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1421     ||
1422     //Go to COFF File Header in dll
1423     //that is located after"signature" (4 bytes long)
1424     (os::seek_to_file_offset(file_descriptor,
1425       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1426     ||
1427     //Read field that contains code of architecture
1428     // that dll was build for
1429     (sizeof(lib_arch)!=
1430       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1431   );
1432 
1433   ::close(file_descriptor);
1434   if (failed_to_get_lib_arch)
1435   {
1436     // file i/o error - report getLastErrorString(...) msg
1437     return NULL;
1438   }
1439 
1440   typedef struct
1441   {
1442     uint16_t arch_code;
1443     char* arch_name;
1444   } arch_t;
1445 
1446   static const arch_t arch_array[]={
1447     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1448     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1449     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1450   };
1451   #if   (defined _M_IA64)
1452     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1453   #elif (defined _M_AMD64)
1454     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1455   #elif (defined _M_IX86)
1456     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1457   #else
1458     #error Method os::dll_load requires that one of following \
1459            is defined :_M_IA64,_M_AMD64 or _M_IX86
1460   #endif
1461 
1462 
1463   // Obtain a string for printf operation
1464   // lib_arch_str shall contain string what platform this .dll was built for
1465   // running_arch_str shall string contain what platform Hotspot was built for
1466   char *running_arch_str=NULL,*lib_arch_str=NULL;
1467   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1468   {
1469     if (lib_arch==arch_array[i].arch_code)
1470       lib_arch_str=arch_array[i].arch_name;
1471     if (running_arch==arch_array[i].arch_code)
1472       running_arch_str=arch_array[i].arch_name;
1473   }
1474 
1475   assert(running_arch_str,
1476     "Didn't find runing architecture code in arch_array");
1477 
1478   // If the architure is right
1479   // but some other error took place - report getLastErrorString(...) msg
1480   if (lib_arch == running_arch)
1481   {
1482     return NULL;
1483   }
1484 
1485   if (lib_arch_str!=NULL)
1486   {
1487     ::_snprintf(ebuf, ebuflen-1,
1488       "Can't load %s-bit .dll on a %s-bit platform",
1489       lib_arch_str,running_arch_str);
1490   }
1491   else
1492   {
1493     // don't know what architecture this dll was build for
1494     ::_snprintf(ebuf, ebuflen-1,
1495       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1496       lib_arch,running_arch_str);
1497   }
1498 
1499   return NULL;
1500 }
1501 
1502 
1503 void os::print_dll_info(outputStream *st) {
1504    int pid = os::current_process_id();
1505    st->print_cr("Dynamic libraries:");
1506    enumerate_modules(pid, _print_module, (void *)st);
1507 }
1508 
1509 // function pointer to Windows API "GetNativeSystemInfo".
1510 typedef void (WINAPI *GetNativeSystemInfo_func_type)(LPSYSTEM_INFO);
1511 static GetNativeSystemInfo_func_type _GetNativeSystemInfo;
1512 
1513 void os::print_os_info(outputStream* st) {
1514   st->print("OS:");
1515 
1516   OSVERSIONINFOEX osvi;
1517   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1518   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1519 
1520   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1521     st->print_cr("N/A");
1522     return;
1523   }
1524 
1525   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1526   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1527     switch (os_vers) {
1528     case 3051: st->print(" Windows NT 3.51"); break;
1529     case 4000: st->print(" Windows NT 4.0"); break;
1530     case 5000: st->print(" Windows 2000"); break;
1531     case 5001: st->print(" Windows XP"); break;
1532     case 5002:
1533     case 6000:
1534     case 6001: {
1535       // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1536       // find out whether we are running on 64 bit processor or not.
1537       SYSTEM_INFO si;
1538       ZeroMemory(&si, sizeof(SYSTEM_INFO));
1539       // Check to see if _GetNativeSystemInfo has been initialized.
1540       if (_GetNativeSystemInfo == NULL) {
1541         HMODULE hKernel32 = GetModuleHandle(TEXT("kernel32.dll"));
1542         _GetNativeSystemInfo =
1543             CAST_TO_FN_PTR(GetNativeSystemInfo_func_type,
1544                            GetProcAddress(hKernel32,
1545                                           "GetNativeSystemInfo"));
1546         if (_GetNativeSystemInfo == NULL)
1547           GetSystemInfo(&si);
1548       } else {
1549         _GetNativeSystemInfo(&si);
1550       }
1551       if (os_vers == 5002) {
1552         if (osvi.wProductType == VER_NT_WORKSTATION &&
1553             si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1554           st->print(" Windows XP x64 Edition");
1555         else
1556             st->print(" Windows Server 2003 family");
1557       } else if (os_vers == 6000) {
1558         if (osvi.wProductType == VER_NT_WORKSTATION)
1559             st->print(" Windows Vista");
1560         else
1561             st->print(" Windows Server 2008");
1562         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1563             st->print(" , 64 bit");
1564       } else if (os_vers == 6001) {
1565         if (osvi.wProductType == VER_NT_WORKSTATION) {
1566             st->print(" Windows 7");
1567         } else {
1568             // Unrecognized windows, print out its major and minor versions
1569             st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1570         }
1571         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1572             st->print(" , 64 bit");
1573       } else { // future os
1574         // Unrecognized windows, print out its major and minor versions
1575         st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1576         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1577             st->print(" , 64 bit");
1578       }
1579       break;
1580     }
1581     default: // future windows, print out its major and minor versions
1582       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1583     }
1584   } else {
1585     switch (os_vers) {
1586     case 4000: st->print(" Windows 95"); break;
1587     case 4010: st->print(" Windows 98"); break;
1588     case 4090: st->print(" Windows Me"); break;
1589     default: // future windows, print out its major and minor versions
1590       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1591     }
1592   }
1593   st->print(" Build %d", osvi.dwBuildNumber);
1594   st->print(" %s", osvi.szCSDVersion);           // service pack
1595   st->cr();
1596 }
1597 
1598 void os::print_memory_info(outputStream* st) {
1599   st->print("Memory:");
1600   st->print(" %dk page", os::vm_page_size()>>10);
1601 
1602   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1603   // value if total memory is larger than 4GB
1604   MEMORYSTATUSEX ms;
1605   ms.dwLength = sizeof(ms);
1606   GlobalMemoryStatusEx(&ms);
1607 
1608   st->print(", physical %uk", os::physical_memory() >> 10);
1609   st->print("(%uk free)", os::available_memory() >> 10);
1610 
1611   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1612   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1613   st->cr();
1614 }
1615 
1616 void os::print_siginfo(outputStream *st, void *siginfo) {
1617   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1618   st->print("siginfo:");
1619   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1620 
1621   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1622       er->NumberParameters >= 2) {
1623       switch (er->ExceptionInformation[0]) {
1624       case 0: st->print(", reading address"); break;
1625       case 1: st->print(", writing address"); break;
1626       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1627                             er->ExceptionInformation[0]);
1628       }
1629       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1630   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1631              er->NumberParameters >= 2 && UseSharedSpaces) {
1632     FileMapInfo* mapinfo = FileMapInfo::current_info();
1633     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1634       st->print("\n\nError accessing class data sharing archive."       \
1635                 " Mapped file inaccessible during execution, "          \
1636                 " possible disk/network problem.");
1637     }
1638   } else {
1639     int num = er->NumberParameters;
1640     if (num > 0) {
1641       st->print(", ExceptionInformation=");
1642       for (int i = 0; i < num; i++) {
1643         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1644       }
1645     }
1646   }
1647   st->cr();
1648 }
1649 
1650 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1651   // do nothing
1652 }
1653 
1654 static char saved_jvm_path[MAX_PATH] = {0};
1655 
1656 // Find the full path to the current module, jvm.dll or jvm_g.dll
1657 void os::jvm_path(char *buf, jint buflen) {
1658   // Error checking.
1659   if (buflen < MAX_PATH) {
1660     assert(false, "must use a large-enough buffer");
1661     buf[0] = '\0';
1662     return;
1663   }
1664   // Lazy resolve the path to current module.
1665   if (saved_jvm_path[0] != 0) {
1666     strcpy(buf, saved_jvm_path);
1667     return;
1668   }
1669 
1670   GetModuleFileName(vm_lib_handle, buf, buflen);
1671   strcpy(saved_jvm_path, buf);
1672 }
1673 
1674 
1675 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1676 #ifndef _WIN64
1677   st->print("_");
1678 #endif
1679 }
1680 
1681 
1682 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1683 #ifndef _WIN64
1684   st->print("@%d", args_size  * sizeof(int));
1685 #endif
1686 }
1687 
1688 // sun.misc.Signal
1689 // NOTE that this is a workaround for an apparent kernel bug where if
1690 // a signal handler for SIGBREAK is installed then that signal handler
1691 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1692 // See bug 4416763.
1693 static void (*sigbreakHandler)(int) = NULL;
1694 
1695 static void UserHandler(int sig, void *siginfo, void *context) {
1696   os::signal_notify(sig);
1697   // We need to reinstate the signal handler each time...
1698   os::signal(sig, (void*)UserHandler);
1699 }
1700 
1701 void* os::user_handler() {
1702   return (void*) UserHandler;
1703 }
1704 
1705 void* os::signal(int signal_number, void* handler) {
1706   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1707     void (*oldHandler)(int) = sigbreakHandler;
1708     sigbreakHandler = (void (*)(int)) handler;
1709     return (void*) oldHandler;
1710   } else {
1711     return (void*)::signal(signal_number, (void (*)(int))handler);
1712   }
1713 }
1714 
1715 void os::signal_raise(int signal_number) {
1716   raise(signal_number);
1717 }
1718 
1719 // The Win32 C runtime library maps all console control events other than ^C
1720 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1721 // logoff, and shutdown events.  We therefore install our own console handler
1722 // that raises SIGTERM for the latter cases.
1723 //
1724 static BOOL WINAPI consoleHandler(DWORD event) {
1725   switch(event) {
1726     case CTRL_C_EVENT:
1727       if (is_error_reported()) {
1728         // Ctrl-C is pressed during error reporting, likely because the error
1729         // handler fails to abort. Let VM die immediately.
1730         os::die();
1731       }
1732 
1733       os::signal_raise(SIGINT);
1734       return TRUE;
1735       break;
1736     case CTRL_BREAK_EVENT:
1737       if (sigbreakHandler != NULL) {
1738         (*sigbreakHandler)(SIGBREAK);
1739       }
1740       return TRUE;
1741       break;
1742     case CTRL_CLOSE_EVENT:
1743     case CTRL_LOGOFF_EVENT:
1744     case CTRL_SHUTDOWN_EVENT:
1745       os::signal_raise(SIGTERM);
1746       return TRUE;
1747       break;
1748     default:
1749       break;
1750   }
1751   return FALSE;
1752 }
1753 
1754 /*
1755  * The following code is moved from os.cpp for making this
1756  * code platform specific, which it is by its very nature.
1757  */
1758 
1759 // Return maximum OS signal used + 1 for internal use only
1760 // Used as exit signal for signal_thread
1761 int os::sigexitnum_pd(){
1762   return NSIG;
1763 }
1764 
1765 // a counter for each possible signal value, including signal_thread exit signal
1766 static volatile jint pending_signals[NSIG+1] = { 0 };
1767 static HANDLE sig_sem;
1768 
1769 void os::signal_init_pd() {
1770   // Initialize signal structures
1771   memset((void*)pending_signals, 0, sizeof(pending_signals));
1772 
1773   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1774 
1775   // Programs embedding the VM do not want it to attempt to receive
1776   // events like CTRL_LOGOFF_EVENT, which are used to implement the
1777   // shutdown hooks mechanism introduced in 1.3.  For example, when
1778   // the VM is run as part of a Windows NT service (i.e., a servlet
1779   // engine in a web server), the correct behavior is for any console
1780   // control handler to return FALSE, not TRUE, because the OS's
1781   // "final" handler for such events allows the process to continue if
1782   // it is a service (while terminating it if it is not a service).
1783   // To make this behavior uniform and the mechanism simpler, we
1784   // completely disable the VM's usage of these console events if -Xrs
1785   // (=ReduceSignalUsage) is specified.  This means, for example, that
1786   // the CTRL-BREAK thread dump mechanism is also disabled in this
1787   // case.  See bugs 4323062, 4345157, and related bugs.
1788 
1789   if (!ReduceSignalUsage) {
1790     // Add a CTRL-C handler
1791     SetConsoleCtrlHandler(consoleHandler, TRUE);
1792   }
1793 }
1794 
1795 void os::signal_notify(int signal_number) {
1796   BOOL ret;
1797 
1798   Atomic::inc(&pending_signals[signal_number]);
1799   ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1800   assert(ret != 0, "ReleaseSemaphore() failed");
1801 }
1802 
1803 static int check_pending_signals(bool wait_for_signal) {
1804   DWORD ret;
1805   while (true) {
1806     for (int i = 0; i < NSIG + 1; i++) {
1807       jint n = pending_signals[i];
1808       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1809         return i;
1810       }
1811     }
1812     if (!wait_for_signal) {
1813       return -1;
1814     }
1815 
1816     JavaThread *thread = JavaThread::current();
1817 
1818     ThreadBlockInVM tbivm(thread);
1819 
1820     bool threadIsSuspended;
1821     do {
1822       thread->set_suspend_equivalent();
1823       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1824       ret = ::WaitForSingleObject(sig_sem, INFINITE);
1825       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
1826 
1827       // were we externally suspended while we were waiting?
1828       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1829       if (threadIsSuspended) {
1830         //
1831         // The semaphore has been incremented, but while we were waiting
1832         // another thread suspended us. We don't want to continue running
1833         // while suspended because that would surprise the thread that
1834         // suspended us.
1835         //
1836         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
1837         assert(ret != 0, "ReleaseSemaphore() failed");
1838 
1839         thread->java_suspend_self();
1840       }
1841     } while (threadIsSuspended);
1842   }
1843 }
1844 
1845 int os::signal_lookup() {
1846   return check_pending_signals(false);
1847 }
1848 
1849 int os::signal_wait() {
1850   return check_pending_signals(true);
1851 }
1852 
1853 // Implicit OS exception handling
1854 
1855 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
1856   JavaThread* thread = JavaThread::current();
1857   // Save pc in thread
1858 #ifdef _M_IA64
1859   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->StIIP);
1860   // Set pc to handler
1861   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
1862 #elif _M_AMD64
1863   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Rip);
1864   // Set pc to handler
1865   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
1866 #else
1867   thread->set_saved_exception_pc((address)exceptionInfo->ContextRecord->Eip);
1868   // Set pc to handler
1869   exceptionInfo->ContextRecord->Eip = (LONG)handler;
1870 #endif
1871 
1872   // Continue the execution
1873   return EXCEPTION_CONTINUE_EXECUTION;
1874 }
1875 
1876 
1877 // Used for PostMortemDump
1878 extern "C" void safepoints();
1879 extern "C" void find(int x);
1880 extern "C" void events();
1881 
1882 // According to Windows API documentation, an illegal instruction sequence should generate
1883 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
1884 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
1885 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
1886 
1887 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
1888 
1889 // From "Execution Protection in the Windows Operating System" draft 0.35
1890 // Once a system header becomes available, the "real" define should be
1891 // included or copied here.
1892 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
1893 
1894 #define def_excpt(val) #val, val
1895 
1896 struct siglabel {
1897   char *name;
1898   int   number;
1899 };
1900 
1901 struct siglabel exceptlabels[] = {
1902     def_excpt(EXCEPTION_ACCESS_VIOLATION),
1903     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
1904     def_excpt(EXCEPTION_BREAKPOINT),
1905     def_excpt(EXCEPTION_SINGLE_STEP),
1906     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
1907     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
1908     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
1909     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
1910     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
1911     def_excpt(EXCEPTION_FLT_OVERFLOW),
1912     def_excpt(EXCEPTION_FLT_STACK_CHECK),
1913     def_excpt(EXCEPTION_FLT_UNDERFLOW),
1914     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
1915     def_excpt(EXCEPTION_INT_OVERFLOW),
1916     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
1917     def_excpt(EXCEPTION_IN_PAGE_ERROR),
1918     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
1919     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
1920     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
1921     def_excpt(EXCEPTION_STACK_OVERFLOW),
1922     def_excpt(EXCEPTION_INVALID_DISPOSITION),
1923     def_excpt(EXCEPTION_GUARD_PAGE),
1924     def_excpt(EXCEPTION_INVALID_HANDLE),
1925     NULL, 0
1926 };
1927 
1928 const char* os::exception_name(int exception_code, char *buf, size_t size) {
1929   for (int i = 0; exceptlabels[i].name != NULL; i++) {
1930     if (exceptlabels[i].number == exception_code) {
1931        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
1932        return buf;
1933     }
1934   }
1935 
1936   return NULL;
1937 }
1938 
1939 //-----------------------------------------------------------------------------
1940 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
1941   // handle exception caused by idiv; should only happen for -MinInt/-1
1942   // (division by zero is handled explicitly)
1943 #ifdef _M_IA64
1944   assert(0, "Fix Handle_IDiv_Exception");
1945 #elif _M_AMD64
1946   PCONTEXT ctx = exceptionInfo->ContextRecord;
1947   address pc = (address)ctx->Rip;
1948   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
1949   assert(pc[0] == 0xF7, "not an idiv opcode");
1950   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
1951   assert(ctx->Rax == min_jint, "unexpected idiv exception");
1952   // set correct result values and continue after idiv instruction
1953   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
1954   ctx->Rax = (DWORD)min_jint;      // result
1955   ctx->Rdx = (DWORD)0;             // remainder
1956   // Continue the execution
1957 #else
1958   PCONTEXT ctx = exceptionInfo->ContextRecord;
1959   address pc = (address)ctx->Eip;
1960   NOT_PRODUCT(Events::log("idiv overflow exception at " INTPTR_FORMAT , pc));
1961   assert(pc[0] == 0xF7, "not an idiv opcode");
1962   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
1963   assert(ctx->Eax == min_jint, "unexpected idiv exception");
1964   // set correct result values and continue after idiv instruction
1965   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
1966   ctx->Eax = (DWORD)min_jint;      // result
1967   ctx->Edx = (DWORD)0;             // remainder
1968   // Continue the execution
1969 #endif
1970   return EXCEPTION_CONTINUE_EXECUTION;
1971 }
1972 
1973 #ifndef  _WIN64
1974 //-----------------------------------------------------------------------------
1975 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
1976   // handle exception caused by native method modifying control word
1977   PCONTEXT ctx = exceptionInfo->ContextRecord;
1978   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
1979 
1980   switch (exception_code) {
1981     case EXCEPTION_FLT_DENORMAL_OPERAND:
1982     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
1983     case EXCEPTION_FLT_INEXACT_RESULT:
1984     case EXCEPTION_FLT_INVALID_OPERATION:
1985     case EXCEPTION_FLT_OVERFLOW:
1986     case EXCEPTION_FLT_STACK_CHECK:
1987     case EXCEPTION_FLT_UNDERFLOW:
1988       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
1989       if (fp_control_word != ctx->FloatSave.ControlWord) {
1990         // Restore FPCW and mask out FLT exceptions
1991         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
1992         // Mask out pending FLT exceptions
1993         ctx->FloatSave.StatusWord &=  0xffffff00;
1994         return EXCEPTION_CONTINUE_EXECUTION;
1995       }
1996   }
1997 
1998   if (prev_uef_handler != NULL) {
1999     // We didn't handle this exception so pass it to the previous
2000     // UnhandledExceptionFilter.
2001     return (prev_uef_handler)(exceptionInfo);
2002   }
2003 
2004   return EXCEPTION_CONTINUE_SEARCH;
2005 }
2006 #else //_WIN64
2007 /*
2008   On Windows, the mxcsr control bits are non-volatile across calls
2009   See also CR 6192333
2010   If EXCEPTION_FLT_* happened after some native method modified
2011   mxcsr - it is not a jvm fault.
2012   However should we decide to restore of mxcsr after a faulty
2013   native method we can uncomment following code
2014       jint MxCsr = INITIAL_MXCSR;
2015         // we can't use StubRoutines::addr_mxcsr_std()
2016         // because in Win64 mxcsr is not saved there
2017       if (MxCsr != ctx->MxCsr) {
2018         ctx->MxCsr = MxCsr;
2019         return EXCEPTION_CONTINUE_EXECUTION;
2020       }
2021 
2022 */
2023 #endif //_WIN64
2024 
2025 
2026 // Fatal error reporting is single threaded so we can make this a
2027 // static and preallocated.  If it's more than MAX_PATH silently ignore
2028 // it.
2029 static char saved_error_file[MAX_PATH] = {0};
2030 
2031 void os::set_error_file(const char *logfile) {
2032   if (strlen(logfile) <= MAX_PATH) {
2033     strncpy(saved_error_file, logfile, MAX_PATH);
2034   }
2035 }
2036 
2037 static inline void report_error(Thread* t, DWORD exception_code,
2038                                 address addr, void* siginfo, void* context) {
2039   VMError err(t, exception_code, addr, siginfo, context);
2040   err.report_and_die();
2041 
2042   // If UseOsErrorReporting, this will return here and save the error file
2043   // somewhere where we can find it in the minidump.
2044 }
2045 
2046 //-----------------------------------------------------------------------------
2047 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2048   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2049   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2050 #ifdef _M_IA64
2051   address pc = (address) exceptionInfo->ContextRecord->StIIP;
2052 #elif _M_AMD64
2053   address pc = (address) exceptionInfo->ContextRecord->Rip;
2054 #else
2055   address pc = (address) exceptionInfo->ContextRecord->Eip;
2056 #endif
2057   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2058 
2059 #ifndef _WIN64
2060   // Execution protection violation - win32 running on AMD64 only
2061   // Handled first to avoid misdiagnosis as a "normal" access violation;
2062   // This is safe to do because we have a new/unique ExceptionInformation
2063   // code for this condition.
2064   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2065     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2066     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2067     address addr = (address) exceptionRecord->ExceptionInformation[1];
2068 
2069     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2070       int page_size = os::vm_page_size();
2071 
2072       // Make sure the pc and the faulting address are sane.
2073       //
2074       // If an instruction spans a page boundary, and the page containing
2075       // the beginning of the instruction is executable but the following
2076       // page is not, the pc and the faulting address might be slightly
2077       // different - we still want to unguard the 2nd page in this case.
2078       //
2079       // 15 bytes seems to be a (very) safe value for max instruction size.
2080       bool pc_is_near_addr =
2081         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2082       bool instr_spans_page_boundary =
2083         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2084                          (intptr_t) page_size) > 0);
2085 
2086       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2087         static volatile address last_addr =
2088           (address) os::non_memory_address_word();
2089 
2090         // In conservative mode, don't unguard unless the address is in the VM
2091         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2092             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2093 
2094           // Set memory to RWX and retry
2095           address page_start =
2096             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2097           bool res = os::protect_memory((char*) page_start, page_size,
2098                                         os::MEM_PROT_RWX);
2099 
2100           if (PrintMiscellaneous && Verbose) {
2101             char buf[256];
2102             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2103                          "at " INTPTR_FORMAT
2104                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2105                          page_start, (res ? "success" : strerror(errno)));
2106             tty->print_raw_cr(buf);
2107           }
2108 
2109           // Set last_addr so if we fault again at the same address, we don't
2110           // end up in an endless loop.
2111           //
2112           // There are two potential complications here.  Two threads trapping
2113           // at the same address at the same time could cause one of the
2114           // threads to think it already unguarded, and abort the VM.  Likely
2115           // very rare.
2116           //
2117           // The other race involves two threads alternately trapping at
2118           // different addresses and failing to unguard the page, resulting in
2119           // an endless loop.  This condition is probably even more unlikely
2120           // than the first.
2121           //
2122           // Although both cases could be avoided by using locks or thread
2123           // local last_addr, these solutions are unnecessary complication:
2124           // this handler is a best-effort safety net, not a complete solution.
2125           // It is disabled by default and should only be used as a workaround
2126           // in case we missed any no-execute-unsafe VM code.
2127 
2128           last_addr = addr;
2129 
2130           return EXCEPTION_CONTINUE_EXECUTION;
2131         }
2132       }
2133 
2134       // Last unguard failed or not unguarding
2135       tty->print_raw_cr("Execution protection violation");
2136       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2137                    exceptionInfo->ContextRecord);
2138       return EXCEPTION_CONTINUE_SEARCH;
2139     }
2140   }
2141 #endif // _WIN64
2142 
2143   // Check to see if we caught the safepoint code in the
2144   // process of write protecting the memory serialization page.
2145   // It write enables the page immediately after protecting it
2146   // so just return.
2147   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2148     JavaThread* thread = (JavaThread*) t;
2149     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2150     address addr = (address) exceptionRecord->ExceptionInformation[1];
2151     if ( os::is_memory_serialize_page(thread, addr) ) {
2152       // Block current thread until the memory serialize page permission restored.
2153       os::block_on_serialize_page_trap();
2154       return EXCEPTION_CONTINUE_EXECUTION;
2155     }
2156   }
2157 
2158 
2159   if (t != NULL && t->is_Java_thread()) {
2160     JavaThread* thread = (JavaThread*) t;
2161     bool in_java = thread->thread_state() == _thread_in_Java;
2162 
2163     // Handle potential stack overflows up front.
2164     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2165       if (os::uses_stack_guard_pages()) {
2166 #ifdef _M_IA64
2167         //
2168         // If it's a legal stack address continue, Windows will map it in.
2169         //
2170         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2171         address addr = (address) exceptionRecord->ExceptionInformation[1];
2172         if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() )
2173           return EXCEPTION_CONTINUE_EXECUTION;
2174 
2175         // The register save area is the same size as the memory stack
2176         // and starts at the page just above the start of the memory stack.
2177         // If we get a fault in this area, we've run out of register
2178         // stack.  If we are in java, try throwing a stack overflow exception.
2179         if (addr > thread->stack_base() &&
2180                       addr <= (thread->stack_base()+thread->stack_size()) ) {
2181           char buf[256];
2182           jio_snprintf(buf, sizeof(buf),
2183                        "Register stack overflow, addr:%p, stack_base:%p\n",
2184                        addr, thread->stack_base() );
2185           tty->print_raw_cr(buf);
2186           // If not in java code, return and hope for the best.
2187           return in_java ? Handle_Exception(exceptionInfo,
2188             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2189             :  EXCEPTION_CONTINUE_EXECUTION;
2190         }
2191 #endif
2192         if (thread->stack_yellow_zone_enabled()) {
2193           // Yellow zone violation.  The o/s has unprotected the first yellow
2194           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2195           // update the enabled status, even if the zone contains only one page.
2196           thread->disable_stack_yellow_zone();
2197           // If not in java code, return and hope for the best.
2198           return in_java ? Handle_Exception(exceptionInfo,
2199             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2200             :  EXCEPTION_CONTINUE_EXECUTION;
2201         } else {
2202           // Fatal red zone violation.
2203           thread->disable_stack_red_zone();
2204           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2205           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2206                        exceptionInfo->ContextRecord);
2207           return EXCEPTION_CONTINUE_SEARCH;
2208         }
2209       } else if (in_java) {
2210         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2211         // a one-time-only guard page, which it has released to us.  The next
2212         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2213         return Handle_Exception(exceptionInfo,
2214           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2215       } else {
2216         // Can only return and hope for the best.  Further stack growth will
2217         // result in an ACCESS_VIOLATION.
2218         return EXCEPTION_CONTINUE_EXECUTION;
2219       }
2220     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2221       // Either stack overflow or null pointer exception.
2222       if (in_java) {
2223         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2224         address addr = (address) exceptionRecord->ExceptionInformation[1];
2225         address stack_end = thread->stack_base() - thread->stack_size();
2226         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2227           // Stack overflow.
2228           assert(!os::uses_stack_guard_pages(),
2229             "should be caught by red zone code above.");
2230           return Handle_Exception(exceptionInfo,
2231             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2232         }
2233         //
2234         // Check for safepoint polling and implicit null
2235         // We only expect null pointers in the stubs (vtable)
2236         // the rest are checked explicitly now.
2237         //
2238         CodeBlob* cb = CodeCache::find_blob(pc);
2239         if (cb != NULL) {
2240           if (os::is_poll_address(addr)) {
2241             address stub = SharedRuntime::get_poll_stub(pc);
2242             return Handle_Exception(exceptionInfo, stub);
2243           }
2244         }
2245         {
2246 #ifdef _WIN64
2247           //
2248           // If it's a legal stack address map the entire region in
2249           //
2250           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2251           address addr = (address) exceptionRecord->ExceptionInformation[1];
2252           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2253                   addr = (address)((uintptr_t)addr &
2254                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2255                   os::commit_memory((char *)addr, thread->stack_base() - addr,
2256                                     false );
2257                   return EXCEPTION_CONTINUE_EXECUTION;
2258           }
2259           else
2260 #endif
2261           {
2262             // Null pointer exception.
2263 #ifdef _M_IA64
2264             // We catch register stack overflows in compiled code by doing
2265             // an explicit compare and executing a st8(G0, G0) if the
2266             // BSP enters into our guard area.  We test for the overflow
2267             // condition and fall into the normal null pointer exception
2268             // code if BSP hasn't overflowed.
2269             if ( in_java ) {
2270               if(thread->register_stack_overflow()) {
2271                 assert((address)exceptionInfo->ContextRecord->IntS3 ==
2272                                 thread->register_stack_limit(),
2273                                "GR7 doesn't contain register_stack_limit");
2274                 // Disable the yellow zone which sets the state that
2275                 // we've got a stack overflow problem.
2276                 if (thread->stack_yellow_zone_enabled()) {
2277                   thread->disable_stack_yellow_zone();
2278                 }
2279                 // Give us some room to process the exception
2280                 thread->disable_register_stack_guard();
2281                 // Update GR7 with the new limit so we can continue running
2282                 // compiled code.
2283                 exceptionInfo->ContextRecord->IntS3 =
2284                                (ULONGLONG)thread->register_stack_limit();
2285                 return Handle_Exception(exceptionInfo,
2286                        SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2287               } else {
2288                 //
2289                 // Check for implicit null
2290                 // We only expect null pointers in the stubs (vtable)
2291                 // the rest are checked explicitly now.
2292                 //
2293                 if (((uintptr_t)addr) < os::vm_page_size() ) {
2294                   // an access to the first page of VM--assume it is a null pointer
2295                   address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2296                   if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2297                 }
2298               }
2299             } // in_java
2300 
2301             // IA64 doesn't use implicit null checking yet. So we shouldn't
2302             // get here.
2303             tty->print_raw_cr("Access violation, possible null pointer exception");
2304             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2305                          exceptionInfo->ContextRecord);
2306             return EXCEPTION_CONTINUE_SEARCH;
2307 #else /* !IA64 */
2308 
2309             // Windows 98 reports faulting addresses incorrectly
2310             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2311                 !os::win32::is_nt()) {
2312               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2313               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2314             }
2315             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2316                          exceptionInfo->ContextRecord);
2317             return EXCEPTION_CONTINUE_SEARCH;
2318 #endif
2319           }
2320         }
2321       }
2322 
2323 #ifdef _WIN64
2324       // Special care for fast JNI field accessors.
2325       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2326       // in and the heap gets shrunk before the field access.
2327       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2328         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2329         if (addr != (address)-1) {
2330           return Handle_Exception(exceptionInfo, addr);
2331         }
2332       }
2333 #endif
2334 
2335 #ifdef _WIN64
2336       // Windows will sometimes generate an access violation
2337       // when we call malloc.  Since we use VectoredExceptions
2338       // on 64 bit platforms, we see this exception.  We must
2339       // pass this exception on so Windows can recover.
2340       // We check to see if the pc of the fault is in NTDLL.DLL
2341       // if so, we pass control on to Windows for handling.
2342       if (UseVectoredExceptions && _addr_in_ntdll(pc)) return EXCEPTION_CONTINUE_SEARCH;
2343 #endif
2344 
2345       // Stack overflow or null pointer exception in native code.
2346       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2347                    exceptionInfo->ContextRecord);
2348       return EXCEPTION_CONTINUE_SEARCH;
2349     }
2350 
2351     if (in_java) {
2352       switch (exception_code) {
2353       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2354         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2355 
2356       case EXCEPTION_INT_OVERFLOW:
2357         return Handle_IDiv_Exception(exceptionInfo);
2358 
2359       } // switch
2360     }
2361 #ifndef _WIN64
2362     if ((thread->thread_state() == _thread_in_Java) ||
2363         (thread->thread_state() == _thread_in_native) )
2364     {
2365       LONG result=Handle_FLT_Exception(exceptionInfo);
2366       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2367     }
2368 #endif //_WIN64
2369   }
2370 
2371   if (exception_code != EXCEPTION_BREAKPOINT) {
2372 #ifndef _WIN64
2373     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2374                  exceptionInfo->ContextRecord);
2375 #else
2376     // Itanium Windows uses a VectoredExceptionHandler
2377     // Which means that C++ programatic exception handlers (try/except)
2378     // will get here.  Continue the search for the right except block if
2379     // the exception code is not a fatal code.
2380     switch ( exception_code ) {
2381       case EXCEPTION_ACCESS_VIOLATION:
2382       case EXCEPTION_STACK_OVERFLOW:
2383       case EXCEPTION_ILLEGAL_INSTRUCTION:
2384       case EXCEPTION_ILLEGAL_INSTRUCTION_2:
2385       case EXCEPTION_INT_OVERFLOW:
2386       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2387       {  report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2388                        exceptionInfo->ContextRecord);
2389       }
2390         break;
2391       default:
2392         break;
2393     }
2394 #endif
2395   }
2396   return EXCEPTION_CONTINUE_SEARCH;
2397 }
2398 
2399 #ifndef _WIN64
2400 // Special care for fast JNI accessors.
2401 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2402 // the heap gets shrunk before the field access.
2403 // Need to install our own structured exception handler since native code may
2404 // install its own.
2405 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2406   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2407   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2408     address pc = (address) exceptionInfo->ContextRecord->Eip;
2409     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2410     if (addr != (address)-1) {
2411       return Handle_Exception(exceptionInfo, addr);
2412     }
2413   }
2414   return EXCEPTION_CONTINUE_SEARCH;
2415 }
2416 
2417 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2418 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2419   __try { \
2420     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2421   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2422   } \
2423   return 0; \
2424 }
2425 
2426 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2427 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2428 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2429 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2430 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2431 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2432 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2433 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2434 
2435 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2436   switch (type) {
2437     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2438     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2439     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2440     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2441     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2442     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2443     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2444     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2445     default:        ShouldNotReachHere();
2446   }
2447   return (address)-1;
2448 }
2449 #endif
2450 
2451 // Virtual Memory
2452 
2453 int os::vm_page_size() { return os::win32::vm_page_size(); }
2454 int os::vm_allocation_granularity() {
2455   return os::win32::vm_allocation_granularity();
2456 }
2457 
2458 // Windows large page support is available on Windows 2003. In order to use
2459 // large page memory, the administrator must first assign additional privilege
2460 // to the user:
2461 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2462 //   + select Local Policies -> User Rights Assignment
2463 //   + double click "Lock pages in memory", add users and/or groups
2464 //   + reboot
2465 // Note the above steps are needed for administrator as well, as administrators
2466 // by default do not have the privilege to lock pages in memory.
2467 //
2468 // Note about Windows 2003: although the API supports committing large page
2469 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2470 // scenario, I found through experiment it only uses large page if the entire
2471 // memory region is reserved and committed in a single VirtualAlloc() call.
2472 // This makes Windows large page support more or less like Solaris ISM, in
2473 // that the entire heap must be committed upfront. This probably will change
2474 // in the future, if so the code below needs to be revisited.
2475 
2476 #ifndef MEM_LARGE_PAGES
2477 #define MEM_LARGE_PAGES 0x20000000
2478 #endif
2479 
2480 // GetLargePageMinimum is only available on Windows 2003. The other functions
2481 // are available on NT but not on Windows 98/Me. We have to resolve them at
2482 // runtime.
2483 typedef SIZE_T (WINAPI *GetLargePageMinimum_func_type) (void);
2484 typedef BOOL (WINAPI *AdjustTokenPrivileges_func_type)
2485              (HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
2486 typedef BOOL (WINAPI *OpenProcessToken_func_type) (HANDLE, DWORD, PHANDLE);
2487 typedef BOOL (WINAPI *LookupPrivilegeValue_func_type) (LPCTSTR, LPCTSTR, PLUID);
2488 
2489 static GetLargePageMinimum_func_type   _GetLargePageMinimum;
2490 static AdjustTokenPrivileges_func_type _AdjustTokenPrivileges;
2491 static OpenProcessToken_func_type      _OpenProcessToken;
2492 static LookupPrivilegeValue_func_type  _LookupPrivilegeValue;
2493 
2494 static HINSTANCE _kernel32;
2495 static HINSTANCE _advapi32;
2496 static HANDLE    _hProcess;
2497 static HANDLE    _hToken;
2498 
2499 static size_t _large_page_size = 0;
2500 
2501 static bool resolve_functions_for_large_page_init() {
2502   _kernel32 = LoadLibrary("kernel32.dll");
2503   if (_kernel32 == NULL) return false;
2504 
2505   _GetLargePageMinimum   = CAST_TO_FN_PTR(GetLargePageMinimum_func_type,
2506                             GetProcAddress(_kernel32, "GetLargePageMinimum"));
2507   if (_GetLargePageMinimum == NULL) return false;
2508 
2509   _advapi32 = LoadLibrary("advapi32.dll");
2510   if (_advapi32 == NULL) return false;
2511 
2512   _AdjustTokenPrivileges = CAST_TO_FN_PTR(AdjustTokenPrivileges_func_type,
2513                             GetProcAddress(_advapi32, "AdjustTokenPrivileges"));
2514   _OpenProcessToken      = CAST_TO_FN_PTR(OpenProcessToken_func_type,
2515                             GetProcAddress(_advapi32, "OpenProcessToken"));
2516   _LookupPrivilegeValue  = CAST_TO_FN_PTR(LookupPrivilegeValue_func_type,
2517                             GetProcAddress(_advapi32, "LookupPrivilegeValueA"));
2518   return _AdjustTokenPrivileges != NULL &&
2519          _OpenProcessToken      != NULL &&
2520          _LookupPrivilegeValue  != NULL;
2521 }
2522 
2523 static bool request_lock_memory_privilege() {
2524   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2525                                 os::current_process_id());
2526 
2527   LUID luid;
2528   if (_hProcess != NULL &&
2529       _OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2530       _LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2531 
2532     TOKEN_PRIVILEGES tp;
2533     tp.PrivilegeCount = 1;
2534     tp.Privileges[0].Luid = luid;
2535     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2536 
2537     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2538     // privilege. Check GetLastError() too. See MSDN document.
2539     if (_AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2540         (GetLastError() == ERROR_SUCCESS)) {
2541       return true;
2542     }
2543   }
2544 
2545   return false;
2546 }
2547 
2548 static void cleanup_after_large_page_init() {
2549   _GetLargePageMinimum = NULL;
2550   _AdjustTokenPrivileges = NULL;
2551   _OpenProcessToken = NULL;
2552   _LookupPrivilegeValue = NULL;
2553   if (_kernel32) FreeLibrary(_kernel32);
2554   _kernel32 = NULL;
2555   if (_advapi32) FreeLibrary(_advapi32);
2556   _advapi32 = NULL;
2557   if (_hProcess) CloseHandle(_hProcess);
2558   _hProcess = NULL;
2559   if (_hToken) CloseHandle(_hToken);
2560   _hToken = NULL;
2561 }
2562 
2563 bool os::large_page_init() {
2564   if (!UseLargePages) return false;
2565 
2566   // print a warning if any large page related flag is specified on command line
2567   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2568                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2569   bool success = false;
2570 
2571 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2572   if (resolve_functions_for_large_page_init()) {
2573     if (request_lock_memory_privilege()) {
2574       size_t s = _GetLargePageMinimum();
2575       if (s) {
2576 #if defined(IA32) || defined(AMD64)
2577         if (s > 4*M || LargePageSizeInBytes > 4*M) {
2578           WARN("JVM cannot use large pages bigger than 4mb.");
2579         } else {
2580 #endif
2581           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2582             _large_page_size = LargePageSizeInBytes;
2583           } else {
2584             _large_page_size = s;
2585           }
2586           success = true;
2587 #if defined(IA32) || defined(AMD64)
2588         }
2589 #endif
2590       } else {
2591         WARN("Large page is not supported by the processor.");
2592       }
2593     } else {
2594       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2595     }
2596   } else {
2597     WARN("Large page is not supported by the operating system.");
2598   }
2599 #undef WARN
2600 
2601   const size_t default_page_size = (size_t) vm_page_size();
2602   if (success && _large_page_size > default_page_size) {
2603     _page_sizes[0] = _large_page_size;
2604     _page_sizes[1] = default_page_size;
2605     _page_sizes[2] = 0;
2606   }
2607 
2608   cleanup_after_large_page_init();
2609   return success;
2610 }
2611 
2612 // On win32, one cannot release just a part of reserved memory, it's an
2613 // all or nothing deal.  When we split a reservation, we must break the
2614 // reservation into two reservations.
2615 void os::split_reserved_memory(char *base, size_t size, size_t split,
2616                               bool realloc) {
2617   if (size > 0) {
2618     release_memory(base, size);
2619     if (realloc) {
2620       reserve_memory(split, base);
2621     }
2622     if (size != split) {
2623       reserve_memory(size - split, base + split);
2624     }
2625   }
2626 }
2627 
2628 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
2629   assert((size_t)addr % os::vm_allocation_granularity() == 0,
2630          "reserve alignment");
2631   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
2632   char* res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
2633   assert(res == NULL || addr == NULL || addr == res,
2634          "Unexpected address from reserve.");
2635   return res;
2636 }
2637 
2638 // Reserve memory at an arbitrary address, only if that area is
2639 // available (and not reserved for something else).
2640 char* os::attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2641   // Windows os::reserve_memory() fails of the requested address range is
2642   // not avilable.
2643   return reserve_memory(bytes, requested_addr);
2644 }
2645 
2646 size_t os::large_page_size() {
2647   return _large_page_size;
2648 }
2649 
2650 bool os::can_commit_large_page_memory() {
2651   // Windows only uses large page memory when the entire region is reserved
2652   // and committed in a single VirtualAlloc() call. This may change in the
2653   // future, but with Windows 2003 it's not possible to commit on demand.
2654   return false;
2655 }
2656 
2657 bool os::can_execute_large_page_memory() {
2658   return true;
2659 }
2660 
2661 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
2662 
2663   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
2664 
2665   if (UseLargePagesIndividualAllocation) {
2666     if (TracePageSizes && Verbose) {
2667        tty->print_cr("Reserving large pages individually.");
2668     }
2669     char * p_buf;
2670     // first reserve enough address space in advance since we want to be
2671     // able to break a single contiguous virtual address range into multiple
2672     // large page commits but WS2003 does not allow reserving large page space
2673     // so we just use 4K pages for reserve, this gives us a legal contiguous
2674     // address space. then we will deallocate that reservation, and re alloc
2675     // using large pages
2676     const size_t size_of_reserve = bytes + _large_page_size;
2677     if (bytes > size_of_reserve) {
2678       // Overflowed.
2679       warning("Individually allocated large pages failed, "
2680         "use -XX:-UseLargePagesIndividualAllocation to turn off");
2681       return NULL;
2682     }
2683     p_buf = (char *) VirtualAlloc(addr,
2684                                  size_of_reserve,  // size of Reserve
2685                                  MEM_RESERVE,
2686                                  PAGE_READWRITE);
2687     // If reservation failed, return NULL
2688     if (p_buf == NULL) return NULL;
2689 
2690     release_memory(p_buf, bytes + _large_page_size);
2691     // round up to page boundary.  If the size_of_reserve did not
2692     // overflow and the reservation did not fail, this align up
2693     // should not overflow.
2694     p_buf = (char *) align_size_up((size_t)p_buf, _large_page_size);
2695 
2696     // now go through and allocate one page at a time until all bytes are
2697     // allocated
2698     size_t  bytes_remaining = align_size_up(bytes, _large_page_size);
2699     // An overflow of align_size_up() would have been caught above
2700     // in the calculation of size_of_reserve.
2701     char * next_alloc_addr = p_buf;
2702 
2703 #ifdef ASSERT
2704     // Variable for the failure injection
2705     long ran_num = os::random();
2706     size_t fail_after = ran_num % bytes;
2707 #endif
2708 
2709     while (bytes_remaining) {
2710       size_t bytes_to_rq = MIN2(bytes_remaining, _large_page_size);
2711       // Note allocate and commit
2712       char * p_new;
2713 
2714 #ifdef ASSERT
2715       bool inject_error = LargePagesIndividualAllocationInjectError &&
2716           (bytes_remaining <= fail_after);
2717 #else
2718       const bool inject_error = false;
2719 #endif
2720 
2721       if (inject_error) {
2722         p_new = NULL;
2723       } else {
2724         p_new = (char *) VirtualAlloc(next_alloc_addr,
2725                                     bytes_to_rq,
2726                                     MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES,
2727                                     prot);
2728       }
2729 
2730       if (p_new == NULL) {
2731         // Free any allocated pages
2732         if (next_alloc_addr > p_buf) {
2733           // Some memory was committed so release it.
2734           size_t bytes_to_release = bytes - bytes_remaining;
2735           release_memory(p_buf, bytes_to_release);
2736         }
2737 #ifdef ASSERT
2738         if (UseLargePagesIndividualAllocation &&
2739             LargePagesIndividualAllocationInjectError) {
2740           if (TracePageSizes && Verbose) {
2741              tty->print_cr("Reserving large pages individually failed.");
2742           }
2743         }
2744 #endif
2745         return NULL;
2746       }
2747       bytes_remaining -= bytes_to_rq;
2748       next_alloc_addr += bytes_to_rq;
2749     }
2750 
2751     return p_buf;
2752 
2753   } else {
2754     // normal policy just allocate it all at once
2755     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
2756     char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
2757     return res;
2758   }
2759 }
2760 
2761 bool os::release_memory_special(char* base, size_t bytes) {
2762   return release_memory(base, bytes);
2763 }
2764 
2765 void os::print_statistics() {
2766 }
2767 
2768 bool os::commit_memory(char* addr, size_t bytes, bool exec) {
2769   if (bytes == 0) {
2770     // Don't bother the OS with noops.
2771     return true;
2772   }
2773   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
2774   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
2775   // Don't attempt to print anything if the OS call fails. We're
2776   // probably low on resources, so the print itself may cause crashes.
2777   bool result = VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) != 0;
2778   if (result != NULL && exec) {
2779     DWORD oldprot;
2780     // Windows doc says to use VirtualProtect to get execute permissions
2781     return VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot) != 0;
2782   } else {
2783     return result;
2784   }
2785 }
2786 
2787 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
2788                        bool exec) {
2789   return commit_memory(addr, size, exec);
2790 }
2791 
2792 bool os::uncommit_memory(char* addr, size_t bytes) {
2793   if (bytes == 0) {
2794     // Don't bother the OS with noops.
2795     return true;
2796   }
2797   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
2798   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
2799   return VirtualFree(addr, bytes, MEM_DECOMMIT) != 0;
2800 }
2801 
2802 bool os::release_memory(char* addr, size_t bytes) {
2803   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
2804 }
2805 
2806 bool os::create_stack_guard_pages(char* addr, size_t size) {
2807   return os::commit_memory(addr, size);
2808 }
2809 
2810 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2811   return os::uncommit_memory(addr, size);
2812 }
2813 
2814 // Set protections specified
2815 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2816                         bool is_committed) {
2817   unsigned int p = 0;
2818   switch (prot) {
2819   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
2820   case MEM_PROT_READ: p = PAGE_READONLY; break;
2821   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
2822   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
2823   default:
2824     ShouldNotReachHere();
2825   }
2826 
2827   DWORD old_status;
2828 
2829   // Strange enough, but on Win32 one can change protection only for committed
2830   // memory, not a big deal anyway, as bytes less or equal than 64K
2831   if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
2832     fatal("cannot commit protection page");
2833   }
2834   // One cannot use os::guard_memory() here, as on Win32 guard page
2835   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
2836   //
2837   // Pages in the region become guard pages. Any attempt to access a guard page
2838   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
2839   // the guard page status. Guard pages thus act as a one-time access alarm.
2840   return VirtualProtect(addr, bytes, p, &old_status) != 0;
2841 }
2842 
2843 bool os::guard_memory(char* addr, size_t bytes) {
2844   DWORD old_status;
2845   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
2846 }
2847 
2848 bool os::unguard_memory(char* addr, size_t bytes) {
2849   DWORD old_status;
2850   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
2851 }
2852 
2853 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
2854 void os::free_memory(char *addr, size_t bytes)         { }
2855 void os::numa_make_global(char *addr, size_t bytes)    { }
2856 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
2857 bool os::numa_topology_changed()                       { return false; }
2858 size_t os::numa_get_groups_num()                       { return 1; }
2859 int os::numa_get_group_id()                            { return 0; }
2860 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2861   if (size > 0) {
2862     ids[0] = 0;
2863     return 1;
2864   }
2865   return 0;
2866 }
2867 
2868 bool os::get_page_info(char *start, page_info* info) {
2869   return false;
2870 }
2871 
2872 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2873   return end;
2874 }
2875 
2876 char* os::non_memory_address_word() {
2877   // Must never look like an address returned by reserve_memory,
2878   // even in its subfields (as defined by the CPU immediate fields,
2879   // if the CPU splits constants across multiple instructions).
2880   return (char*)-1;
2881 }
2882 
2883 #define MAX_ERROR_COUNT 100
2884 #define SYS_THREAD_ERROR 0xffffffffUL
2885 
2886 void os::pd_start_thread(Thread* thread) {
2887   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
2888   // Returns previous suspend state:
2889   // 0:  Thread was not suspended
2890   // 1:  Thread is running now
2891   // >1: Thread is still suspended.
2892   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
2893 }
2894 
2895 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2896   return ::read(fd, buf, nBytes);
2897 }
2898 
2899 class HighResolutionInterval {
2900   // The default timer resolution seems to be 10 milliseconds.
2901   // (Where is this written down?)
2902   // If someone wants to sleep for only a fraction of the default,
2903   // then we set the timer resolution down to 1 millisecond for
2904   // the duration of their interval.
2905   // We carefully set the resolution back, since otherwise we
2906   // seem to incur an overhead (3%?) that we don't need.
2907   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
2908   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
2909   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
2910   // timeBeginPeriod() if the relative error exceeded some threshold.
2911   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
2912   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
2913   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
2914   // resolution timers running.
2915 private:
2916     jlong resolution;
2917 public:
2918   HighResolutionInterval(jlong ms) {
2919     resolution = ms % 10L;
2920     if (resolution != 0) {
2921       MMRESULT result = timeBeginPeriod(1L);
2922     }
2923   }
2924   ~HighResolutionInterval() {
2925     if (resolution != 0) {
2926       MMRESULT result = timeEndPeriod(1L);
2927     }
2928     resolution = 0L;
2929   }
2930 };
2931 
2932 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
2933   jlong limit = (jlong) MAXDWORD;
2934 
2935   while(ms > limit) {
2936     int res;
2937     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
2938       return res;
2939     ms -= limit;
2940   }
2941 
2942   assert(thread == Thread::current(),  "thread consistency check");
2943   OSThread* osthread = thread->osthread();
2944   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
2945   int result;
2946   if (interruptable) {
2947     assert(thread->is_Java_thread(), "must be java thread");
2948     JavaThread *jt = (JavaThread *) thread;
2949     ThreadBlockInVM tbivm(jt);
2950 
2951     jt->set_suspend_equivalent();
2952     // cleared by handle_special_suspend_equivalent_condition() or
2953     // java_suspend_self() via check_and_wait_while_suspended()
2954 
2955     HANDLE events[1];
2956     events[0] = osthread->interrupt_event();
2957     HighResolutionInterval *phri=NULL;
2958     if(!ForceTimeHighResolution)
2959       phri = new HighResolutionInterval( ms );
2960     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
2961       result = OS_TIMEOUT;
2962     } else {
2963       ResetEvent(osthread->interrupt_event());
2964       osthread->set_interrupted(false);
2965       result = OS_INTRPT;
2966     }
2967     delete phri; //if it is NULL, harmless
2968 
2969     // were we externally suspended while we were waiting?
2970     jt->check_and_wait_while_suspended();
2971   } else {
2972     assert(!thread->is_Java_thread(), "must not be java thread");
2973     Sleep((long) ms);
2974     result = OS_TIMEOUT;
2975   }
2976   return result;
2977 }
2978 
2979 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2980 void os::infinite_sleep() {
2981   while (true) {    // sleep forever ...
2982     Sleep(100000);  // ... 100 seconds at a time
2983   }
2984 }
2985 
2986 typedef BOOL (WINAPI * STTSignature)(void) ;
2987 
2988 os::YieldResult os::NakedYield() {
2989   // Use either SwitchToThread() or Sleep(0)
2990   // Consider passing back the return value from SwitchToThread().
2991   // We use GetProcAddress() as ancient Win9X versions of windows doen't support SwitchToThread.
2992   // In that case we revert to Sleep(0).
2993   static volatile STTSignature stt = (STTSignature) 1 ;
2994 
2995   if (stt == ((STTSignature) 1)) {
2996     stt = (STTSignature) ::GetProcAddress (LoadLibrary ("Kernel32.dll"), "SwitchToThread") ;
2997     // It's OK if threads race during initialization as the operation above is idempotent.
2998   }
2999   if (stt != NULL) {
3000     return (*stt)() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
3001   } else {
3002     Sleep (0) ;
3003   }
3004   return os::YIELD_UNKNOWN ;
3005 }
3006 
3007 void os::yield() {  os::NakedYield(); }
3008 
3009 void os::yield_all(int attempts) {
3010   // Yields to all threads, including threads with lower priorities
3011   Sleep(1);
3012 }
3013 
3014 // Win32 only gives you access to seven real priorities at a time,
3015 // so we compress Java's ten down to seven.  It would be better
3016 // if we dynamically adjusted relative priorities.
3017 
3018 int os::java_to_os_priority[MaxPriority + 1] = {
3019   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3020   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3021   THREAD_PRIORITY_LOWEST,                       // 2
3022   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3023   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3024   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3025   THREAD_PRIORITY_NORMAL,                       // 6
3026   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3027   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3028   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3029   THREAD_PRIORITY_HIGHEST                       // 10 MaxPriority
3030 };
3031 
3032 int prio_policy1[MaxPriority + 1] = {
3033   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3034   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3035   THREAD_PRIORITY_LOWEST,                       // 2
3036   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3037   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3038   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3039   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3040   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3041   THREAD_PRIORITY_HIGHEST,                      // 8
3042   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3043   THREAD_PRIORITY_TIME_CRITICAL                 // 10 MaxPriority
3044 };
3045 
3046 static int prio_init() {
3047   // If ThreadPriorityPolicy is 1, switch tables
3048   if (ThreadPriorityPolicy == 1) {
3049     int i;
3050     for (i = 0; i < MaxPriority + 1; i++) {
3051       os::java_to_os_priority[i] = prio_policy1[i];
3052     }
3053   }
3054   return 0;
3055 }
3056 
3057 OSReturn os::set_native_priority(Thread* thread, int priority) {
3058   if (!UseThreadPriorities) return OS_OK;
3059   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3060   return ret ? OS_OK : OS_ERR;
3061 }
3062 
3063 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3064   if ( !UseThreadPriorities ) {
3065     *priority_ptr = java_to_os_priority[NormPriority];
3066     return OS_OK;
3067   }
3068   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3069   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3070     assert(false, "GetThreadPriority failed");
3071     return OS_ERR;
3072   }
3073   *priority_ptr = os_prio;
3074   return OS_OK;
3075 }
3076 
3077 
3078 // Hint to the underlying OS that a task switch would not be good.
3079 // Void return because it's a hint and can fail.
3080 void os::hint_no_preempt() {}
3081 
3082 void os::interrupt(Thread* thread) {
3083   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3084          "possibility of dangling Thread pointer");
3085 
3086   OSThread* osthread = thread->osthread();
3087   osthread->set_interrupted(true);
3088   // More than one thread can get here with the same value of osthread,
3089   // resulting in multiple notifications.  We do, however, want the store
3090   // to interrupted() to be visible to other threads before we post
3091   // the interrupt event.
3092   OrderAccess::release();
3093   SetEvent(osthread->interrupt_event());
3094   // For JSR166:  unpark after setting status
3095   if (thread->is_Java_thread())
3096     ((JavaThread*)thread)->parker()->unpark();
3097 
3098   ParkEvent * ev = thread->_ParkEvent ;
3099   if (ev != NULL) ev->unpark() ;
3100 
3101 }
3102 
3103 
3104 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3105   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3106          "possibility of dangling Thread pointer");
3107 
3108   OSThread* osthread = thread->osthread();
3109   bool interrupted;
3110   interrupted = osthread->interrupted();
3111   if (clear_interrupted == true) {
3112     osthread->set_interrupted(false);
3113     ResetEvent(osthread->interrupt_event());
3114   } // Otherwise leave the interrupted state alone
3115 
3116   return interrupted;
3117 }
3118 
3119 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3120 ExtendedPC os::get_thread_pc(Thread* thread) {
3121   CONTEXT context;
3122   context.ContextFlags = CONTEXT_CONTROL;
3123   HANDLE handle = thread->osthread()->thread_handle();
3124 #ifdef _M_IA64
3125   assert(0, "Fix get_thread_pc");
3126   return ExtendedPC(NULL);
3127 #else
3128   if (GetThreadContext(handle, &context)) {
3129 #ifdef _M_AMD64
3130     return ExtendedPC((address) context.Rip);
3131 #else
3132     return ExtendedPC((address) context.Eip);
3133 #endif
3134   } else {
3135     return ExtendedPC(NULL);
3136   }
3137 #endif
3138 }
3139 
3140 // GetCurrentThreadId() returns DWORD
3141 intx os::current_thread_id()          { return GetCurrentThreadId(); }
3142 
3143 static int _initial_pid = 0;
3144 
3145 int os::current_process_id()
3146 {
3147   return (_initial_pid ? _initial_pid : _getpid());
3148 }
3149 
3150 int    os::win32::_vm_page_size       = 0;
3151 int    os::win32::_vm_allocation_granularity = 0;
3152 int    os::win32::_processor_type     = 0;
3153 // Processor level is not available on non-NT systems, use vm_version instead
3154 int    os::win32::_processor_level    = 0;
3155 julong os::win32::_physical_memory    = 0;
3156 size_t os::win32::_default_stack_size = 0;
3157 
3158          intx os::win32::_os_thread_limit    = 0;
3159 volatile intx os::win32::_os_thread_count    = 0;
3160 
3161 bool   os::win32::_is_nt              = false;
3162 bool   os::win32::_is_windows_2003    = false;
3163 
3164 
3165 void os::win32::initialize_system_info() {
3166   SYSTEM_INFO si;
3167   GetSystemInfo(&si);
3168   _vm_page_size    = si.dwPageSize;
3169   _vm_allocation_granularity = si.dwAllocationGranularity;
3170   _processor_type  = si.dwProcessorType;
3171   _processor_level = si.wProcessorLevel;
3172   set_processor_count(si.dwNumberOfProcessors);
3173 
3174   MEMORYSTATUSEX ms;
3175   ms.dwLength = sizeof(ms);
3176 
3177   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3178   // dwMemoryLoad (% of memory in use)
3179   GlobalMemoryStatusEx(&ms);
3180   _physical_memory = ms.ullTotalPhys;
3181 
3182   OSVERSIONINFO oi;
3183   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFO);
3184   GetVersionEx(&oi);
3185   switch(oi.dwPlatformId) {
3186     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3187     case VER_PLATFORM_WIN32_NT:
3188       _is_nt = true;
3189       {
3190         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3191         if (os_vers == 5002) {
3192           _is_windows_2003 = true;
3193         }
3194       }
3195       break;
3196     default: fatal("Unknown platform");
3197   }
3198 
3199   _default_stack_size = os::current_stack_size();
3200   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3201   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3202     "stack size not a multiple of page size");
3203 
3204   initialize_performance_counter();
3205 
3206   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3207   // known to deadlock the system, if the VM issues to thread operations with
3208   // a too high frequency, e.g., such as changing the priorities.
3209   // The 6000 seems to work well - no deadlocks has been notices on the test
3210   // programs that we have seen experience this problem.
3211   if (!os::win32::is_nt()) {
3212     StarvationMonitorInterval = 6000;
3213   }
3214 }
3215 
3216 
3217 void os::win32::setmode_streams() {
3218   _setmode(_fileno(stdin), _O_BINARY);
3219   _setmode(_fileno(stdout), _O_BINARY);
3220   _setmode(_fileno(stderr), _O_BINARY);
3221 }
3222 
3223 
3224 int os::message_box(const char* title, const char* message) {
3225   int result = MessageBox(NULL, message, title,
3226                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3227   return result == IDYES;
3228 }
3229 
3230 int os::allocate_thread_local_storage() {
3231   return TlsAlloc();
3232 }
3233 
3234 
3235 void os::free_thread_local_storage(int index) {
3236   TlsFree(index);
3237 }
3238 
3239 
3240 void os::thread_local_storage_at_put(int index, void* value) {
3241   TlsSetValue(index, value);
3242   assert(thread_local_storage_at(index) == value, "Just checking");
3243 }
3244 
3245 
3246 void* os::thread_local_storage_at(int index) {
3247   return TlsGetValue(index);
3248 }
3249 
3250 
3251 #ifndef PRODUCT
3252 #ifndef _WIN64
3253 // Helpers to check whether NX protection is enabled
3254 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3255   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3256       pex->ExceptionRecord->NumberParameters > 0 &&
3257       pex->ExceptionRecord->ExceptionInformation[0] ==
3258       EXCEPTION_INFO_EXEC_VIOLATION) {
3259     return EXCEPTION_EXECUTE_HANDLER;
3260   }
3261   return EXCEPTION_CONTINUE_SEARCH;
3262 }
3263 
3264 void nx_check_protection() {
3265   // If NX is enabled we'll get an exception calling into code on the stack
3266   char code[] = { (char)0xC3 }; // ret
3267   void *code_ptr = (void *)code;
3268   __try {
3269     __asm call code_ptr
3270   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3271     tty->print_raw_cr("NX protection detected.");
3272   }
3273 }
3274 #endif // _WIN64
3275 #endif // PRODUCT
3276 
3277 // this is called _before_ the global arguments have been parsed
3278 void os::init(void) {
3279   _initial_pid = _getpid();
3280 
3281   init_random(1234567);
3282 
3283   win32::initialize_system_info();
3284   win32::setmode_streams();
3285   init_page_sizes((size_t) win32::vm_page_size());
3286 
3287   // For better scalability on MP systems (must be called after initialize_system_info)
3288 #ifndef PRODUCT
3289   if (is_MP()) {
3290     NoYieldsInMicrolock = true;
3291   }
3292 #endif
3293   // This may be overridden later when argument processing is done.
3294   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3295     os::win32::is_windows_2003());
3296 
3297   // Initialize main_process and main_thread
3298   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3299  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3300                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3301     fatal("DuplicateHandle failed\n");
3302   }
3303   main_thread_id = (int) GetCurrentThreadId();
3304 }
3305 
3306 // To install functions for atexit processing
3307 extern "C" {
3308   static void perfMemory_exit_helper() {
3309     perfMemory_exit();
3310   }
3311 }
3312 
3313 
3314 // this is called _after_ the global arguments have been parsed
3315 jint os::init_2(void) {
3316   // Allocate a single page and mark it as readable for safepoint polling
3317   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3318   guarantee( polling_page != NULL, "Reserve Failed for polling page");
3319 
3320   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3321   guarantee( return_page != NULL, "Commit Failed for polling page");
3322 
3323   os::set_polling_page( polling_page );
3324 
3325 #ifndef PRODUCT
3326   if( Verbose && PrintMiscellaneous )
3327     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3328 #endif
3329 
3330   if (!UseMembar) {
3331     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3332     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3333 
3334     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3335     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3336 
3337     os::set_memory_serialize_page( mem_serialize_page );
3338 
3339 #ifndef PRODUCT
3340     if(Verbose && PrintMiscellaneous)
3341       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3342 #endif
3343 }
3344 
3345   FLAG_SET_DEFAULT(UseLargePages, os::large_page_init());
3346 
3347   // Setup Windows Exceptions
3348 
3349   // On Itanium systems, Structured Exception Handling does not
3350   // work since stack frames must be walkable by the OS.  Since
3351   // much of our code is dynamically generated, and we do not have
3352   // proper unwind .xdata sections, the system simply exits
3353   // rather than delivering the exception.  To work around
3354   // this we use VectorExceptions instead.
3355 #ifdef _WIN64
3356   if (UseVectoredExceptions) {
3357     topLevelVectoredExceptionHandler = AddVectoredExceptionHandler( 1, topLevelExceptionFilter);
3358   }
3359 #endif
3360 
3361   // for debugging float code generation bugs
3362   if (ForceFloatExceptions) {
3363 #ifndef  _WIN64
3364     static long fp_control_word = 0;
3365     __asm { fstcw fp_control_word }
3366     // see Intel PPro Manual, Vol. 2, p 7-16
3367     const long precision = 0x20;
3368     const long underflow = 0x10;
3369     const long overflow  = 0x08;
3370     const long zero_div  = 0x04;
3371     const long denorm    = 0x02;
3372     const long invalid   = 0x01;
3373     fp_control_word |= invalid;
3374     __asm { fldcw fp_control_word }
3375 #endif
3376   }
3377 
3378   // Initialize HPI.
3379   jint hpi_result = hpi::initialize();
3380   if (hpi_result != JNI_OK) { return hpi_result; }
3381 
3382   // If stack_commit_size is 0, windows will reserve the default size,
3383   // but only commit a small portion of it.
3384   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3385   size_t default_reserve_size = os::win32::default_stack_size();
3386   size_t actual_reserve_size = stack_commit_size;
3387   if (stack_commit_size < default_reserve_size) {
3388     // If stack_commit_size == 0, we want this too
3389     actual_reserve_size = default_reserve_size;
3390   }
3391 
3392   JavaThread::set_stack_size_at_create(stack_commit_size);
3393 
3394   // Calculate theoretical max. size of Threads to guard gainst artifical
3395   // out-of-memory situations, where all available address-space has been
3396   // reserved by thread stacks.
3397   assert(actual_reserve_size != 0, "Must have a stack");
3398 
3399   // Calculate the thread limit when we should start doing Virtual Memory
3400   // banging. Currently when the threads will have used all but 200Mb of space.
3401   //
3402   // TODO: consider performing a similar calculation for commit size instead
3403   // as reserve size, since on a 64-bit platform we'll run into that more
3404   // often than running out of virtual memory space.  We can use the
3405   // lower value of the two calculations as the os_thread_limit.
3406   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3407   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3408 
3409   // at exit methods are called in the reverse order of their registration.
3410   // there is no limit to the number of functions registered. atexit does
3411   // not set errno.
3412 
3413   if (PerfAllowAtExitRegistration) {
3414     // only register atexit functions if PerfAllowAtExitRegistration is set.
3415     // atexit functions can be delayed until process exit time, which
3416     // can be problematic for embedded VM situations. Embedded VMs should
3417     // call DestroyJavaVM() to assure that VM resources are released.
3418 
3419     // note: perfMemory_exit_helper atexit function may be removed in
3420     // the future if the appropriate cleanup code can be added to the
3421     // VM_Exit VMOperation's doit method.
3422     if (atexit(perfMemory_exit_helper) != 0) {
3423       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3424     }
3425   }
3426 
3427   // initialize PSAPI or ToolHelp for fatal error handler
3428   if (win32::is_nt()) _init_psapi();
3429   else _init_toolhelp();
3430 
3431 #ifndef _WIN64
3432   // Print something if NX is enabled (win32 on AMD64)
3433   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
3434 #endif
3435 
3436   // initialize thread priority policy
3437   prio_init();
3438 
3439   if (UseNUMA && !ForceNUMA) {
3440     UseNUMA = false; // Currently unsupported.
3441   }
3442 
3443   return JNI_OK;
3444 }
3445 
3446 
3447 // Mark the polling page as unreadable
3448 void os::make_polling_page_unreadable(void) {
3449   DWORD old_status;
3450   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
3451     fatal("Could not disable polling page");
3452 };
3453 
3454 // Mark the polling page as readable
3455 void os::make_polling_page_readable(void) {
3456   DWORD old_status;
3457   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
3458     fatal("Could not enable polling page");
3459 };
3460 
3461 
3462 int os::stat(const char *path, struct stat *sbuf) {
3463   char pathbuf[MAX_PATH];
3464   if (strlen(path) > MAX_PATH - 1) {
3465     errno = ENAMETOOLONG;
3466     return -1;
3467   }
3468   hpi::native_path(strcpy(pathbuf, path));
3469   int ret = ::stat(pathbuf, sbuf);
3470   if (sbuf != NULL && UseUTCFileTimestamp) {
3471     // Fix for 6539723.  st_mtime returned from stat() is dependent on
3472     // the system timezone and so can return different values for the
3473     // same file if/when daylight savings time changes.  This adjustment
3474     // makes sure the same timestamp is returned regardless of the TZ.
3475     //
3476     // See:
3477     // http://msdn.microsoft.com/library/
3478     //   default.asp?url=/library/en-us/sysinfo/base/
3479     //   time_zone_information_str.asp
3480     // and
3481     // http://msdn.microsoft.com/library/default.asp?url=
3482     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
3483     //
3484     // NOTE: there is a insidious bug here:  If the timezone is changed
3485     // after the call to stat() but before 'GetTimeZoneInformation()', then
3486     // the adjustment we do here will be wrong and we'll return the wrong
3487     // value (which will likely end up creating an invalid class data
3488     // archive).  Absent a better API for this, or some time zone locking
3489     // mechanism, we'll have to live with this risk.
3490     TIME_ZONE_INFORMATION tz;
3491     DWORD tzid = GetTimeZoneInformation(&tz);
3492     int daylightBias =
3493       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
3494     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
3495   }
3496   return ret;
3497 }
3498 
3499 
3500 #define FT2INT64(ft) \
3501   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
3502 
3503 
3504 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3505 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3506 // of a thread.
3507 //
3508 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3509 // the fast estimate available on the platform.
3510 
3511 // current_thread_cpu_time() is not optimized for Windows yet
3512 jlong os::current_thread_cpu_time() {
3513   // return user + sys since the cost is the same
3514   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
3515 }
3516 
3517 jlong os::thread_cpu_time(Thread* thread) {
3518   // consistent with what current_thread_cpu_time() returns.
3519   return os::thread_cpu_time(thread, true /* user+sys */);
3520 }
3521 
3522 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3523   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3524 }
3525 
3526 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
3527   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
3528   // If this function changes, os::is_thread_cpu_time_supported() should too
3529   if (os::win32::is_nt()) {
3530     FILETIME CreationTime;
3531     FILETIME ExitTime;
3532     FILETIME KernelTime;
3533     FILETIME UserTime;
3534 
3535     if ( GetThreadTimes(thread->osthread()->thread_handle(),
3536                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3537       return -1;
3538     else
3539       if (user_sys_cpu_time) {
3540         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
3541       } else {
3542         return FT2INT64(UserTime) * 100;
3543       }
3544   } else {
3545     return (jlong) timeGetTime() * 1000000;
3546   }
3547 }
3548 
3549 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3550   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3551   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3552   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3553   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3554 }
3555 
3556 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3557   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
3558   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
3559   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
3560   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
3561 }
3562 
3563 bool os::is_thread_cpu_time_supported() {
3564   // see os::thread_cpu_time
3565   if (os::win32::is_nt()) {
3566     FILETIME CreationTime;
3567     FILETIME ExitTime;
3568     FILETIME KernelTime;
3569     FILETIME UserTime;
3570 
3571     if ( GetThreadTimes(GetCurrentThread(),
3572                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
3573       return false;
3574     else
3575       return true;
3576   } else {
3577     return false;
3578   }
3579 }
3580 
3581 // Windows does't provide a loadavg primitive so this is stubbed out for now.
3582 // It does have primitives (PDH API) to get CPU usage and run queue length.
3583 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
3584 // If we wanted to implement loadavg on Windows, we have a few options:
3585 //
3586 // a) Query CPU usage and run queue length and "fake" an answer by
3587 //    returning the CPU usage if it's under 100%, and the run queue
3588 //    length otherwise.  It turns out that querying is pretty slow
3589 //    on Windows, on the order of 200 microseconds on a fast machine.
3590 //    Note that on the Windows the CPU usage value is the % usage
3591 //    since the last time the API was called (and the first call
3592 //    returns 100%), so we'd have to deal with that as well.
3593 //
3594 // b) Sample the "fake" answer using a sampling thread and store
3595 //    the answer in a global variable.  The call to loadavg would
3596 //    just return the value of the global, avoiding the slow query.
3597 //
3598 // c) Sample a better answer using exponential decay to smooth the
3599 //    value.  This is basically the algorithm used by UNIX kernels.
3600 //
3601 // Note that sampling thread starvation could affect both (b) and (c).
3602 int os::loadavg(double loadavg[], int nelem) {
3603   return -1;
3604 }
3605 
3606 
3607 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
3608 bool os::dont_yield() {
3609   return DontYieldALot;
3610 }
3611 
3612 // Is a (classpath) directory empty?
3613 bool os::dir_is_empty(const char* path) {
3614   WIN32_FIND_DATA fd;
3615   HANDLE f = FindFirstFile(path, &fd);
3616   if (f == INVALID_HANDLE_VALUE) {
3617     return true;
3618   }
3619   FindClose(f);
3620   return false;
3621 }
3622 
3623 // create binary file, rewriting existing file if required
3624 int os::create_binary_file(const char* path, bool rewrite_existing) {
3625   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
3626   if (!rewrite_existing) {
3627     oflags |= _O_EXCL;
3628   }
3629   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
3630 }
3631 
3632 // return current position of file pointer
3633 jlong os::current_file_offset(int fd) {
3634   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
3635 }
3636 
3637 // move file pointer to the specified offset
3638 jlong os::seek_to_file_offset(int fd, jlong offset) {
3639   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
3640 }
3641 
3642 
3643 // Map a block of memory.
3644 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
3645                      char *addr, size_t bytes, bool read_only,
3646                      bool allow_exec) {
3647   HANDLE hFile;
3648   char* base;
3649 
3650   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
3651                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
3652   if (hFile == NULL) {
3653     if (PrintMiscellaneous && Verbose) {
3654       DWORD err = GetLastError();
3655       tty->print_cr("CreateFile() failed: GetLastError->%ld.");
3656     }
3657     return NULL;
3658   }
3659 
3660   if (allow_exec) {
3661     // CreateFileMapping/MapViewOfFileEx can't map executable memory
3662     // unless it comes from a PE image (which the shared archive is not.)
3663     // Even VirtualProtect refuses to give execute access to mapped memory
3664     // that was not previously executable.
3665     //
3666     // Instead, stick the executable region in anonymous memory.  Yuck.
3667     // Penalty is that ~4 pages will not be shareable - in the future
3668     // we might consider DLLizing the shared archive with a proper PE
3669     // header so that mapping executable + sharing is possible.
3670 
3671     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
3672                                 PAGE_READWRITE);
3673     if (base == NULL) {
3674       if (PrintMiscellaneous && Verbose) {
3675         DWORD err = GetLastError();
3676         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
3677       }
3678       CloseHandle(hFile);
3679       return NULL;
3680     }
3681 
3682     DWORD bytes_read;
3683     OVERLAPPED overlapped;
3684     overlapped.Offset = (DWORD)file_offset;
3685     overlapped.OffsetHigh = 0;
3686     overlapped.hEvent = NULL;
3687     // ReadFile guarantees that if the return value is true, the requested
3688     // number of bytes were read before returning.
3689     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
3690     if (!res) {
3691       if (PrintMiscellaneous && Verbose) {
3692         DWORD err = GetLastError();
3693         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
3694       }
3695       release_memory(base, bytes);
3696       CloseHandle(hFile);
3697       return NULL;
3698     }
3699   } else {
3700     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
3701                                     NULL /*file_name*/);
3702     if (hMap == NULL) {
3703       if (PrintMiscellaneous && Verbose) {
3704         DWORD err = GetLastError();
3705         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.");
3706       }
3707       CloseHandle(hFile);
3708       return NULL;
3709     }
3710 
3711     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
3712     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
3713                                   (DWORD)bytes, addr);
3714     if (base == NULL) {
3715       if (PrintMiscellaneous && Verbose) {
3716         DWORD err = GetLastError();
3717         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
3718       }
3719       CloseHandle(hMap);
3720       CloseHandle(hFile);
3721       return NULL;
3722     }
3723 
3724     if (CloseHandle(hMap) == 0) {
3725       if (PrintMiscellaneous && Verbose) {
3726         DWORD err = GetLastError();
3727         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
3728       }
3729       CloseHandle(hFile);
3730       return base;
3731     }
3732   }
3733 
3734   if (allow_exec) {
3735     DWORD old_protect;
3736     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
3737     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
3738 
3739     if (!res) {
3740       if (PrintMiscellaneous && Verbose) {
3741         DWORD err = GetLastError();
3742         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
3743       }
3744       // Don't consider this a hard error, on IA32 even if the
3745       // VirtualProtect fails, we should still be able to execute
3746       CloseHandle(hFile);
3747       return base;
3748     }
3749   }
3750 
3751   if (CloseHandle(hFile) == 0) {
3752     if (PrintMiscellaneous && Verbose) {
3753       DWORD err = GetLastError();
3754       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
3755     }
3756     return base;
3757   }
3758 
3759   return base;
3760 }
3761 
3762 
3763 // Remap a block of memory.
3764 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
3765                        char *addr, size_t bytes, bool read_only,
3766                        bool allow_exec) {
3767   // This OS does not allow existing memory maps to be remapped so we
3768   // have to unmap the memory before we remap it.
3769   if (!os::unmap_memory(addr, bytes)) {
3770     return NULL;
3771   }
3772 
3773   // There is a very small theoretical window between the unmap_memory()
3774   // call above and the map_memory() call below where a thread in native
3775   // code may be able to access an address that is no longer mapped.
3776 
3777   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3778                         allow_exec);
3779 }
3780 
3781 
3782 // Unmap a block of memory.
3783 // Returns true=success, otherwise false.
3784 
3785 bool os::unmap_memory(char* addr, size_t bytes) {
3786   BOOL result = UnmapViewOfFile(addr);
3787   if (result == 0) {
3788     if (PrintMiscellaneous && Verbose) {
3789       DWORD err = GetLastError();
3790       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
3791     }
3792     return false;
3793   }
3794   return true;
3795 }
3796 
3797 void os::pause() {
3798   char filename[MAX_PATH];
3799   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
3800     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
3801   } else {
3802     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
3803   }
3804 
3805   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
3806   if (fd != -1) {
3807     struct stat buf;
3808     close(fd);
3809     while (::stat(filename, &buf) == 0) {
3810       Sleep(100);
3811     }
3812   } else {
3813     jio_fprintf(stderr,
3814       "Could not open pause file '%s', continuing immediately.\n", filename);
3815   }
3816 }
3817 
3818 // An Event wraps a win32 "CreateEvent" kernel handle.
3819 //
3820 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
3821 //
3822 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
3823 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
3824 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
3825 //     In addition, an unpark() operation might fetch the handle field, but the
3826 //     event could recycle between the fetch and the SetEvent() operation.
3827 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
3828 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
3829 //     on an stale but recycled handle would be harmless, but in practice this might
3830 //     confuse other non-Sun code, so it's not a viable approach.
3831 //
3832 // 2:  Once a win32 event handle is associated with an Event, it remains associated
3833 //     with the Event.  The event handle is never closed.  This could be construed
3834 //     as handle leakage, but only up to the maximum # of threads that have been extant
3835 //     at any one time.  This shouldn't be an issue, as windows platforms typically
3836 //     permit a process to have hundreds of thousands of open handles.
3837 //
3838 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
3839 //     and release unused handles.
3840 //
3841 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
3842 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
3843 //
3844 // 5.  Use an RCU-like mechanism (Read-Copy Update).
3845 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
3846 //
3847 // We use (2).
3848 //
3849 // TODO-FIXME:
3850 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
3851 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
3852 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
3853 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
3854 //     into a single win32 CreateEvent() handle.
3855 //
3856 // _Event transitions in park()
3857 //   -1 => -1 : illegal
3858 //    1 =>  0 : pass - return immediately
3859 //    0 => -1 : block
3860 //
3861 // _Event serves as a restricted-range semaphore :
3862 //    -1 : thread is blocked
3863 //     0 : neutral  - thread is running or ready
3864 //     1 : signaled - thread is running or ready
3865 //
3866 // Another possible encoding of _Event would be
3867 // with explicit "PARKED" and "SIGNALED" bits.
3868 
3869 int os::PlatformEvent::park (jlong Millis) {
3870     guarantee (_ParkHandle != NULL , "Invariant") ;
3871     guarantee (Millis > 0          , "Invariant") ;
3872     int v ;
3873 
3874     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
3875     // the initial park() operation.
3876 
3877     for (;;) {
3878         v = _Event ;
3879         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
3880     }
3881     guarantee ((v == 0) || (v == 1), "invariant") ;
3882     if (v != 0) return OS_OK ;
3883 
3884     // Do this the hard way by blocking ...
3885     // TODO: consider a brief spin here, gated on the success of recent
3886     // spin attempts by this thread.
3887     //
3888     // We decompose long timeouts into series of shorter timed waits.
3889     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
3890     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
3891     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
3892     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
3893     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
3894     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
3895     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
3896     // for the already waited time.  This policy does not admit any new outcomes.
3897     // In the future, however, we might want to track the accumulated wait time and
3898     // adjust Millis accordingly if we encounter a spurious wakeup.
3899 
3900     const int MAXTIMEOUT = 0x10000000 ;
3901     DWORD rv = WAIT_TIMEOUT ;
3902     while (_Event < 0 && Millis > 0) {
3903        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
3904        if (Millis > MAXTIMEOUT) {
3905           prd = MAXTIMEOUT ;
3906        }
3907        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
3908        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
3909        if (rv == WAIT_TIMEOUT) {
3910            Millis -= prd ;
3911        }
3912     }
3913     v = _Event ;
3914     _Event = 0 ;
3915     OrderAccess::fence() ;
3916     // If we encounter a nearly simultanous timeout expiry and unpark()
3917     // we return OS_OK indicating we awoke via unpark().
3918     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
3919     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
3920 }
3921 
3922 void os::PlatformEvent::park () {
3923     guarantee (_ParkHandle != NULL, "Invariant") ;
3924     // Invariant: Only the thread associated with the Event/PlatformEvent
3925     // may call park().
3926     int v ;
3927     for (;;) {
3928         v = _Event ;
3929         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
3930     }
3931     guarantee ((v == 0) || (v == 1), "invariant") ;
3932     if (v != 0) return ;
3933 
3934     // Do this the hard way by blocking ...
3935     // TODO: consider a brief spin here, gated on the success of recent
3936     // spin attempts by this thread.
3937     while (_Event < 0) {
3938        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
3939        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
3940     }
3941 
3942     // Usually we'll find _Event == 0 at this point, but as
3943     // an optional optimization we clear it, just in case can
3944     // multiple unpark() operations drove _Event up to 1.
3945     _Event = 0 ;
3946     OrderAccess::fence() ;
3947     guarantee (_Event >= 0, "invariant") ;
3948 }
3949 
3950 void os::PlatformEvent::unpark() {
3951   guarantee (_ParkHandle != NULL, "Invariant") ;
3952   int v ;
3953   for (;;) {
3954       v = _Event ;      // Increment _Event if it's < 1.
3955       if (v > 0) {
3956          // If it's already signaled just return.
3957          // The LD of _Event could have reordered or be satisfied
3958          // by a read-aside from this processor's write buffer.
3959          // To avoid problems execute a barrier and then
3960          // ratify the value.  A degenerate CAS() would also work.
3961          // Viz., CAS (v+0, &_Event, v) == v).
3962          OrderAccess::fence() ;
3963          if (_Event == v) return ;
3964          continue ;
3965       }
3966       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
3967   }
3968   if (v < 0) {
3969      ::SetEvent (_ParkHandle) ;
3970   }
3971 }
3972 
3973 
3974 // JSR166
3975 // -------------------------------------------------------
3976 
3977 /*
3978  * The Windows implementation of Park is very straightforward: Basic
3979  * operations on Win32 Events turn out to have the right semantics to
3980  * use them directly. We opportunistically resuse the event inherited
3981  * from Monitor.
3982  */
3983 
3984 
3985 void Parker::park(bool isAbsolute, jlong time) {
3986   guarantee (_ParkEvent != NULL, "invariant") ;
3987   // First, demultiplex/decode time arguments
3988   if (time < 0) { // don't wait
3989     return;
3990   }
3991   else if (time == 0) {
3992     time = INFINITE;
3993   }
3994   else if  (isAbsolute) {
3995     time -= os::javaTimeMillis(); // convert to relative time
3996     if (time <= 0) // already elapsed
3997       return;
3998   }
3999   else { // relative
4000     time /= 1000000; // Must coarsen from nanos to millis
4001     if (time == 0)   // Wait for the minimal time unit if zero
4002       time = 1;
4003   }
4004 
4005   JavaThread* thread = (JavaThread*)(Thread::current());
4006   assert(thread->is_Java_thread(), "Must be JavaThread");
4007   JavaThread *jt = (JavaThread *)thread;
4008 
4009   // Don't wait if interrupted or already triggered
4010   if (Thread::is_interrupted(thread, false) ||
4011     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4012     ResetEvent(_ParkEvent);
4013     return;
4014   }
4015   else {
4016     ThreadBlockInVM tbivm(jt);
4017     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4018     jt->set_suspend_equivalent();
4019 
4020     WaitForSingleObject(_ParkEvent,  time);
4021     ResetEvent(_ParkEvent);
4022 
4023     // If externally suspended while waiting, re-suspend
4024     if (jt->handle_special_suspend_equivalent_condition()) {
4025       jt->java_suspend_self();
4026     }
4027   }
4028 }
4029 
4030 void Parker::unpark() {
4031   guarantee (_ParkEvent != NULL, "invariant") ;
4032   SetEvent(_ParkEvent);
4033 }
4034 
4035 // Run the specified command in a separate process. Return its exit value,
4036 // or -1 on failure (e.g. can't create a new process).
4037 int os::fork_and_exec(char* cmd) {
4038   STARTUPINFO si;
4039   PROCESS_INFORMATION pi;
4040 
4041   memset(&si, 0, sizeof(si));
4042   si.cb = sizeof(si);
4043   memset(&pi, 0, sizeof(pi));
4044   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
4045                             cmd,    // command line
4046                             NULL,   // process security attribute
4047                             NULL,   // thread security attribute
4048                             TRUE,   // inherits system handles
4049                             0,      // no creation flags
4050                             NULL,   // use parent's environment block
4051                             NULL,   // use parent's starting directory
4052                             &si,    // (in) startup information
4053                             &pi);   // (out) process information
4054 
4055   if (rslt) {
4056     // Wait until child process exits.
4057     WaitForSingleObject(pi.hProcess, INFINITE);
4058 
4059     DWORD exit_code;
4060     GetExitCodeProcess(pi.hProcess, &exit_code);
4061 
4062     // Close process and thread handles.
4063     CloseHandle(pi.hProcess);
4064     CloseHandle(pi.hThread);
4065 
4066     return (int)exit_code;
4067   } else {
4068     return -1;
4069   }
4070 }
4071 
4072 //--------------------------------------------------------------------------------------------------
4073 // Non-product code
4074 
4075 static int mallocDebugIntervalCounter = 0;
4076 static int mallocDebugCounter = 0;
4077 bool os::check_heap(bool force) {
4078   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
4079   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
4080     // Note: HeapValidate executes two hardware breakpoints when it finds something
4081     // wrong; at these points, eax contains the address of the offending block (I think).
4082     // To get to the exlicit error message(s) below, just continue twice.
4083     HANDLE heap = GetProcessHeap();
4084     { HeapLock(heap);
4085       PROCESS_HEAP_ENTRY phe;
4086       phe.lpData = NULL;
4087       while (HeapWalk(heap, &phe) != 0) {
4088         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
4089             !HeapValidate(heap, 0, phe.lpData)) {
4090           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
4091           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
4092           fatal("corrupted C heap");
4093         }
4094       }
4095       int err = GetLastError();
4096       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
4097         fatal1("heap walk aborted with error %d", err);
4098       }
4099       HeapUnlock(heap);
4100     }
4101     mallocDebugIntervalCounter = 0;
4102   }
4103   return true;
4104 }
4105 
4106 
4107 #ifndef PRODUCT
4108 bool os::find(address addr) {
4109   // Nothing yet
4110   return false;
4111 }
4112 #endif
4113 
4114 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
4115   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
4116 
4117   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
4118     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
4119     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
4120     address addr = (address) exceptionRecord->ExceptionInformation[1];
4121 
4122     if (os::is_memory_serialize_page(thread, addr))
4123       return EXCEPTION_CONTINUE_EXECUTION;
4124   }
4125 
4126   return EXCEPTION_CONTINUE_SEARCH;
4127 }
4128 
4129 static int getLastErrorString(char *buf, size_t len)
4130 {
4131     long errval;
4132 
4133     if ((errval = GetLastError()) != 0)
4134     {
4135       /* DOS error */
4136       size_t n = (size_t)FormatMessage(
4137             FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
4138             NULL,
4139             errval,
4140             0,
4141             buf,
4142             (DWORD)len,
4143             NULL);
4144       if (n > 3) {
4145         /* Drop final '.', CR, LF */
4146         if (buf[n - 1] == '\n') n--;
4147         if (buf[n - 1] == '\r') n--;
4148         if (buf[n - 1] == '.') n--;
4149         buf[n] = '\0';
4150       }
4151       return (int)n;
4152     }
4153 
4154     if (errno != 0)
4155     {
4156       /* C runtime error that has no corresponding DOS error code */
4157       const char *s = strerror(errno);
4158       size_t n = strlen(s);
4159       if (n >= len) n = len - 1;
4160       strncpy(buf, s, n);
4161       buf[n] = '\0';
4162       return (int)n;
4163     }
4164     return 0;
4165 }