1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.inline.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "services/attachListener.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "services/runtimeService.hpp"
  66 #include "utilities/decoder.hpp"
  67 #include "utilities/defaultStream.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/elfFile.hpp"
  70 #include "utilities/growableArray.hpp"
  71 #include "utilities/vmError.hpp"
  72 
  73 // put OS-includes here
  74 # include <sys/types.h>
  75 # include <sys/mman.h>
  76 # include <sys/stat.h>
  77 # include <sys/select.h>
  78 # include <pthread.h>
  79 # include <signal.h>
  80 # include <errno.h>
  81 # include <dlfcn.h>
  82 # include <stdio.h>
  83 # include <unistd.h>
  84 # include <sys/resource.h>
  85 # include <pthread.h>
  86 # include <sys/stat.h>
  87 # include <sys/time.h>
  88 # include <sys/times.h>
  89 # include <sys/utsname.h>
  90 # include <sys/socket.h>
  91 # include <sys/wait.h>
  92 # include <pwd.h>
  93 # include <poll.h>
  94 # include <semaphore.h>
  95 # include <fcntl.h>
  96 # include <string.h>
  97 # include <syscall.h>
  98 # include <sys/sysinfo.h>
  99 # include <gnu/libc-version.h>
 100 # include <sys/ipc.h>
 101 # include <sys/shm.h>
 102 # include <link.h>
 103 # include <stdint.h>
 104 # include <inttypes.h>
 105 # include <sys/ioctl.h>
 106 
 107 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 108 
 109 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 110 // getrusage() is prepared to handle the associated failure.
 111 #ifndef RUSAGE_THREAD
 112   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 113 #endif
 114 
 115 #define MAX_PATH    (2 * K)
 116 
 117 #define MAX_SECS 100000000
 118 
 119 // for timer info max values which include all bits
 120 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 121 
 122 #define LARGEPAGES_BIT (1 << 6)
 123 ////////////////////////////////////////////////////////////////////////////////
 124 // global variables
 125 julong os::Linux::_physical_memory = 0;
 126 
 127 address   os::Linux::_initial_thread_stack_bottom = NULL;
 128 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 129 
 130 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 131 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 132 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 133 Mutex* os::Linux::_createThread_lock = NULL;
 134 pthread_t os::Linux::_main_thread;
 135 int os::Linux::_page_size = -1;
 136 const int os::Linux::_vm_default_page_size = (8 * K);
 137 bool os::Linux::_is_floating_stack = false;
 138 bool os::Linux::_is_NPTL = false;
 139 bool os::Linux::_supports_fast_thread_cpu_time = false;
 140 const char * os::Linux::_glibc_version = NULL;
 141 const char * os::Linux::_libpthread_version = NULL;
 142 pthread_condattr_t os::Linux::_condattr[1];
 143 
 144 static jlong initial_time_count=0;
 145 
 146 static int clock_tics_per_sec = 100;
 147 
 148 // For diagnostics to print a message once. see run_periodic_checks
 149 static sigset_t check_signal_done;
 150 static bool check_signals = true;
 151 
 152 static pid_t _initial_pid = 0;
 153 
 154 // Signal number used to suspend/resume a thread
 155 
 156 // do not use any signal number less than SIGSEGV, see 4355769
 157 static int SR_signum = SIGUSR2;
 158 sigset_t SR_sigset;
 159 
 160 // Used to protect dlsym() calls
 161 static pthread_mutex_t dl_mutex;
 162 
 163 // Declarations
 164 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 165 
 166 #ifdef JAVASE_EMBEDDED
 167 class MemNotifyThread: public Thread {
 168   friend class VMStructs;
 169  public:
 170   virtual void run();
 171 
 172  private:
 173   static MemNotifyThread* _memnotify_thread;
 174   int _fd;
 175 
 176  public:
 177 
 178   // Constructor
 179   MemNotifyThread(int fd);
 180 
 181   // Tester
 182   bool is_memnotify_thread() const { return true; }
 183 
 184   // Printing
 185   char* name() const { return (char*)"Linux MemNotify Thread"; }
 186 
 187   // Returns the single instance of the MemNotifyThread
 188   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
 189 
 190   // Create and start the single instance of MemNotifyThread
 191   static void start();
 192 };
 193 #endif // JAVASE_EMBEDDED
 194 
 195 // utility functions
 196 
 197 static int SR_initialize();
 198 
 199 julong os::available_memory() {
 200   return Linux::available_memory();
 201 }
 202 
 203 julong os::Linux::available_memory() {
 204   // values in struct sysinfo are "unsigned long"
 205   struct sysinfo si;
 206   sysinfo(&si);
 207 
 208   return (julong)si.freeram * si.mem_unit;
 209 }
 210 
 211 julong os::physical_memory() {
 212   return Linux::physical_memory();
 213 }
 214 
 215 ////////////////////////////////////////////////////////////////////////////////
 216 // environment support
 217 
 218 bool os::getenv(const char* name, char* buf, int len) {
 219   const char* val = ::getenv(name);
 220   if (val != NULL && strlen(val) < (size_t)len) {
 221     strcpy(buf, val);
 222     return true;
 223   }
 224   if (len > 0) buf[0] = 0;  // return a null string
 225   return false;
 226 }
 227 
 228 
 229 // Return true if user is running as root.
 230 
 231 bool os::have_special_privileges() {
 232   static bool init = false;
 233   static bool privileges = false;
 234   if (!init) {
 235     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 236     init = true;
 237   }
 238   return privileges;
 239 }
 240 
 241 
 242 #ifndef SYS_gettid
 243 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 244   #ifdef __ia64__
 245     #define SYS_gettid 1105
 246   #elif __i386__
 247     #define SYS_gettid 224
 248   #elif __amd64__
 249     #define SYS_gettid 186
 250   #elif __sparc__
 251     #define SYS_gettid 143
 252   #else
 253     #error define gettid for the arch
 254   #endif
 255 #endif
 256 
 257 // Cpu architecture string
 258 #if   defined(ZERO)
 259 static char cpu_arch[] = ZERO_LIBARCH;
 260 #elif defined(IA64)
 261 static char cpu_arch[] = "ia64";
 262 #elif defined(IA32)
 263 static char cpu_arch[] = "i386";
 264 #elif defined(AMD64)
 265 static char cpu_arch[] = "amd64";
 266 #elif defined(ARM)
 267 static char cpu_arch[] = "arm";
 268 #elif defined(PPC32)
 269 static char cpu_arch[] = "ppc";
 270 #elif defined(PPC64)
 271 static char cpu_arch[] = "ppc64";
 272 #elif defined(SPARC)
 273   #ifdef _LP64
 274 static char cpu_arch[] = "sparcv9";
 275   #else
 276 static char cpu_arch[] = "sparc";
 277   #endif
 278 #elif defined(AARCH64)
 279 static char cpu_arch[] = "aarch64";
 280 #else
 281   #error Add appropriate cpu_arch setting
 282 #endif
 283 
 284 
 285 // pid_t gettid()
 286 //
 287 // Returns the kernel thread id of the currently running thread. Kernel
 288 // thread id is used to access /proc.
 289 //
 290 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 291 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 292 //
 293 pid_t os::Linux::gettid() {
 294   int rslt = syscall(SYS_gettid);
 295   if (rslt == -1) {
 296     // old kernel, no NPTL support
 297     return getpid();
 298   } else {
 299     return (pid_t)rslt;
 300   }
 301 }
 302 
 303 // Most versions of linux have a bug where the number of processors are
 304 // determined by looking at the /proc file system.  In a chroot environment,
 305 // the system call returns 1.  This causes the VM to act as if it is
 306 // a single processor and elide locking (see is_MP() call).
 307 static bool unsafe_chroot_detected = false;
 308 static const char *unstable_chroot_error = "/proc file system not found.\n"
 309                      "Java may be unstable running multithreaded in a chroot "
 310                      "environment on Linux when /proc filesystem is not mounted.";
 311 
 312 void os::Linux::initialize_system_info() {
 313   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 314   if (processor_count() == 1) {
 315     pid_t pid = os::Linux::gettid();
 316     char fname[32];
 317     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 318     FILE *fp = fopen(fname, "r");
 319     if (fp == NULL) {
 320       unsafe_chroot_detected = true;
 321     } else {
 322       fclose(fp);
 323     }
 324   }
 325   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 326   assert(processor_count() > 0, "linux error");
 327 }
 328 
 329 void os::init_system_properties_values() {
 330   // The next steps are taken in the product version:
 331   //
 332   // Obtain the JAVA_HOME value from the location of libjvm.so.
 333   // This library should be located at:
 334   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 335   //
 336   // If "/jre/lib/" appears at the right place in the path, then we
 337   // assume libjvm.so is installed in a JDK and we use this path.
 338   //
 339   // Otherwise exit with message: "Could not create the Java virtual machine."
 340   //
 341   // The following extra steps are taken in the debugging version:
 342   //
 343   // If "/jre/lib/" does NOT appear at the right place in the path
 344   // instead of exit check for $JAVA_HOME environment variable.
 345   //
 346   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 347   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 348   // it looks like libjvm.so is installed there
 349   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 350   //
 351   // Otherwise exit.
 352   //
 353   // Important note: if the location of libjvm.so changes this
 354   // code needs to be changed accordingly.
 355 
 356   // See ld(1):
 357   //      The linker uses the following search paths to locate required
 358   //      shared libraries:
 359   //        1: ...
 360   //        ...
 361   //        7: The default directories, normally /lib and /usr/lib.
 362 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 363   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 364 #else
 365   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 366 #endif
 367 
 368 // Base path of extensions installed on the system.
 369 #define SYS_EXT_DIR     "/usr/java/packages"
 370 #define EXTENSIONS_DIR  "/lib/ext"
 371 #define ENDORSED_DIR    "/lib/endorsed"
 372 
 373   // Buffer that fits several sprintfs.
 374   // Note that the space for the colon and the trailing null are provided
 375   // by the nulls included by the sizeof operator.
 376   const size_t bufsize =
 377     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 378          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
 379          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
 380   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 381 
 382   // sysclasspath, java_home, dll_dir
 383   {
 384     char *pslash;
 385     os::jvm_path(buf, bufsize);
 386 
 387     // Found the full path to libjvm.so.
 388     // Now cut the path to <java_home>/jre if we can.
 389     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 390     pslash = strrchr(buf, '/');
 391     if (pslash != NULL) {
 392       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 393     }
 394     Arguments::set_dll_dir(buf);
 395 
 396     if (pslash != NULL) {
 397       pslash = strrchr(buf, '/');
 398       if (pslash != NULL) {
 399         *pslash = '\0';          // Get rid of /<arch>.
 400         pslash = strrchr(buf, '/');
 401         if (pslash != NULL) {
 402           *pslash = '\0';        // Get rid of /lib.
 403         }
 404       }
 405     }
 406     Arguments::set_java_home(buf);
 407     set_boot_path('/', ':');
 408   }
 409 
 410   // Where to look for native libraries.
 411   //
 412   // Note: Due to a legacy implementation, most of the library path
 413   // is set in the launcher. This was to accomodate linking restrictions
 414   // on legacy Linux implementations (which are no longer supported).
 415   // Eventually, all the library path setting will be done here.
 416   //
 417   // However, to prevent the proliferation of improperly built native
 418   // libraries, the new path component /usr/java/packages is added here.
 419   // Eventually, all the library path setting will be done here.
 420   {
 421     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 422     // should always exist (until the legacy problem cited above is
 423     // addressed).
 424     const char *v = ::getenv("LD_LIBRARY_PATH");
 425     const char *v_colon = ":";
 426     if (v == NULL) { v = ""; v_colon = ""; }
 427     // That's +1 for the colon and +1 for the trailing '\0'.
 428     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 429                                                      strlen(v) + 1 +
 430                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 431                                                      mtInternal);
 432     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 433     Arguments::set_library_path(ld_library_path);
 434     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 435   }
 436 
 437   // Extensions directories.
 438   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 439   Arguments::set_ext_dirs(buf);
 440 
 441   // Endorsed standards default directory.
 442   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 443   Arguments::set_endorsed_dirs(buf);
 444 
 445   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
 446 
 447 #undef DEFAULT_LIBPATH
 448 #undef SYS_EXT_DIR
 449 #undef EXTENSIONS_DIR
 450 #undef ENDORSED_DIR
 451 }
 452 
 453 ////////////////////////////////////////////////////////////////////////////////
 454 // breakpoint support
 455 
 456 void os::breakpoint() {
 457   BREAKPOINT;
 458 }
 459 
 460 extern "C" void breakpoint() {
 461   // use debugger to set breakpoint here
 462 }
 463 
 464 ////////////////////////////////////////////////////////////////////////////////
 465 // signal support
 466 
 467 debug_only(static bool signal_sets_initialized = false);
 468 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 469 
 470 bool os::Linux::is_sig_ignored(int sig) {
 471   struct sigaction oact;
 472   sigaction(sig, (struct sigaction*)NULL, &oact);
 473   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 474                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 475   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 476     return true;
 477   } else {
 478     return false;
 479   }
 480 }
 481 
 482 void os::Linux::signal_sets_init() {
 483   // Should also have an assertion stating we are still single-threaded.
 484   assert(!signal_sets_initialized, "Already initialized");
 485   // Fill in signals that are necessarily unblocked for all threads in
 486   // the VM. Currently, we unblock the following signals:
 487   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 488   //                         by -Xrs (=ReduceSignalUsage));
 489   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 490   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 491   // the dispositions or masks wrt these signals.
 492   // Programs embedding the VM that want to use the above signals for their
 493   // own purposes must, at this time, use the "-Xrs" option to prevent
 494   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 495   // (See bug 4345157, and other related bugs).
 496   // In reality, though, unblocking these signals is really a nop, since
 497   // these signals are not blocked by default.
 498   sigemptyset(&unblocked_sigs);
 499   sigemptyset(&allowdebug_blocked_sigs);
 500   sigaddset(&unblocked_sigs, SIGILL);
 501   sigaddset(&unblocked_sigs, SIGSEGV);
 502   sigaddset(&unblocked_sigs, SIGBUS);
 503   sigaddset(&unblocked_sigs, SIGFPE);
 504 #if defined(PPC64)
 505   sigaddset(&unblocked_sigs, SIGTRAP);
 506 #endif
 507   sigaddset(&unblocked_sigs, SR_signum);
 508 
 509   if (!ReduceSignalUsage) {
 510     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 511       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 512       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 513     }
 514     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 515       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 516       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 517     }
 518     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 519       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 520       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 521     }
 522   }
 523   // Fill in signals that are blocked by all but the VM thread.
 524   sigemptyset(&vm_sigs);
 525   if (!ReduceSignalUsage) {
 526     sigaddset(&vm_sigs, BREAK_SIGNAL);
 527   }
 528   debug_only(signal_sets_initialized = true);
 529 
 530 }
 531 
 532 // These are signals that are unblocked while a thread is running Java.
 533 // (For some reason, they get blocked by default.)
 534 sigset_t* os::Linux::unblocked_signals() {
 535   assert(signal_sets_initialized, "Not initialized");
 536   return &unblocked_sigs;
 537 }
 538 
 539 // These are the signals that are blocked while a (non-VM) thread is
 540 // running Java. Only the VM thread handles these signals.
 541 sigset_t* os::Linux::vm_signals() {
 542   assert(signal_sets_initialized, "Not initialized");
 543   return &vm_sigs;
 544 }
 545 
 546 // These are signals that are blocked during cond_wait to allow debugger in
 547 sigset_t* os::Linux::allowdebug_blocked_signals() {
 548   assert(signal_sets_initialized, "Not initialized");
 549   return &allowdebug_blocked_sigs;
 550 }
 551 
 552 void os::Linux::hotspot_sigmask(Thread* thread) {
 553 
 554   //Save caller's signal mask before setting VM signal mask
 555   sigset_t caller_sigmask;
 556   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 557 
 558   OSThread* osthread = thread->osthread();
 559   osthread->set_caller_sigmask(caller_sigmask);
 560 
 561   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 562 
 563   if (!ReduceSignalUsage) {
 564     if (thread->is_VM_thread()) {
 565       // Only the VM thread handles BREAK_SIGNAL ...
 566       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 567     } else {
 568       // ... all other threads block BREAK_SIGNAL
 569       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 570     }
 571   }
 572 }
 573 
 574 //////////////////////////////////////////////////////////////////////////////
 575 // detecting pthread library
 576 
 577 void os::Linux::libpthread_init() {
 578   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 579   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 580   // generic name for earlier versions.
 581   // Define macros here so we can build HotSpot on old systems.
 582 #ifndef _CS_GNU_LIBC_VERSION
 583   #define _CS_GNU_LIBC_VERSION 2
 584 #endif
 585 #ifndef _CS_GNU_LIBPTHREAD_VERSION
 586   #define _CS_GNU_LIBPTHREAD_VERSION 3
 587 #endif
 588 
 589   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 590   if (n > 0) {
 591     char *str = (char *)malloc(n, mtInternal);
 592     confstr(_CS_GNU_LIBC_VERSION, str, n);
 593     os::Linux::set_glibc_version(str);
 594   } else {
 595     // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 596     static char _gnu_libc_version[32];
 597     jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 598                  "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 599     os::Linux::set_glibc_version(_gnu_libc_version);
 600   }
 601 
 602   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 603   if (n > 0) {
 604     char *str = (char *)malloc(n, mtInternal);
 605     confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 606     // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 607     // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 608     // is the case. LinuxThreads has a hard limit on max number of threads.
 609     // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 610     // On the other hand, NPTL does not have such a limit, sysconf()
 611     // will return -1 and errno is not changed. Check if it is really NPTL.
 612     if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 613         strstr(str, "NPTL") &&
 614         sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 615       free(str);
 616       os::Linux::set_libpthread_version("linuxthreads");
 617     } else {
 618       os::Linux::set_libpthread_version(str);
 619     }
 620   } else {
 621     // glibc before 2.3.2 only has LinuxThreads.
 622     os::Linux::set_libpthread_version("linuxthreads");
 623   }
 624 
 625   if (strstr(libpthread_version(), "NPTL")) {
 626     os::Linux::set_is_NPTL();
 627   } else {
 628     os::Linux::set_is_LinuxThreads();
 629   }
 630 
 631   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 632   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 633   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 634     os::Linux::set_is_floating_stack();
 635   }
 636 }
 637 
 638 /////////////////////////////////////////////////////////////////////////////
 639 // thread stack
 640 
 641 // Force Linux kernel to expand current thread stack. If "bottom" is close
 642 // to the stack guard, caller should block all signals.
 643 //
 644 // MAP_GROWSDOWN:
 645 //   A special mmap() flag that is used to implement thread stacks. It tells
 646 //   kernel that the memory region should extend downwards when needed. This
 647 //   allows early versions of LinuxThreads to only mmap the first few pages
 648 //   when creating a new thread. Linux kernel will automatically expand thread
 649 //   stack as needed (on page faults).
 650 //
 651 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 652 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 653 //   region, it's hard to tell if the fault is due to a legitimate stack
 654 //   access or because of reading/writing non-exist memory (e.g. buffer
 655 //   overrun). As a rule, if the fault happens below current stack pointer,
 656 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 657 //   application (see Linux kernel fault.c).
 658 //
 659 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 660 //   stack overflow detection.
 661 //
 662 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 663 //   not use this flag. However, the stack of initial thread is not created
 664 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 665 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 666 //   and then attach the thread to JVM.
 667 //
 668 // To get around the problem and allow stack banging on Linux, we need to
 669 // manually expand thread stack after receiving the SIGSEGV.
 670 //
 671 // There are two ways to expand thread stack to address "bottom", we used
 672 // both of them in JVM before 1.5:
 673 //   1. adjust stack pointer first so that it is below "bottom", and then
 674 //      touch "bottom"
 675 //   2. mmap() the page in question
 676 //
 677 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 678 // if current sp is already near the lower end of page 101, and we need to
 679 // call mmap() to map page 100, it is possible that part of the mmap() frame
 680 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 681 // That will destroy the mmap() frame and cause VM to crash.
 682 //
 683 // The following code works by adjusting sp first, then accessing the "bottom"
 684 // page to force a page fault. Linux kernel will then automatically expand the
 685 // stack mapping.
 686 //
 687 // _expand_stack_to() assumes its frame size is less than page size, which
 688 // should always be true if the function is not inlined.
 689 
 690 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 691   #define NOINLINE
 692 #else
 693   #define NOINLINE __attribute__ ((noinline))
 694 #endif
 695 
 696 static void _expand_stack_to(address bottom) NOINLINE;
 697 
 698 static void _expand_stack_to(address bottom) {
 699   address sp;
 700   size_t size;
 701   volatile char *p;
 702 
 703   // Adjust bottom to point to the largest address within the same page, it
 704   // gives us a one-page buffer if alloca() allocates slightly more memory.
 705   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 706   bottom += os::Linux::page_size() - 1;
 707 
 708   // sp might be slightly above current stack pointer; if that's the case, we
 709   // will alloca() a little more space than necessary, which is OK. Don't use
 710   // os::current_stack_pointer(), as its result can be slightly below current
 711   // stack pointer, causing us to not alloca enough to reach "bottom".
 712   sp = (address)&sp;
 713 
 714   if (sp > bottom) {
 715     size = sp - bottom;
 716     p = (volatile char *)alloca(size);
 717     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 718     p[0] = '\0';
 719   }
 720 }
 721 
 722 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 723   assert(t!=NULL, "just checking");
 724   assert(t->osthread()->expanding_stack(), "expand should be set");
 725   assert(t->stack_base() != NULL, "stack_base was not initialized");
 726 
 727   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 728     sigset_t mask_all, old_sigset;
 729     sigfillset(&mask_all);
 730     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 731     _expand_stack_to(addr);
 732     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 733     return true;
 734   }
 735   return false;
 736 }
 737 
 738 //////////////////////////////////////////////////////////////////////////////
 739 // create new thread
 740 
 741 static address highest_vm_reserved_address();
 742 
 743 // check if it's safe to start a new thread
 744 static bool _thread_safety_check(Thread* thread) {
 745   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 746     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 747     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 748     //   allocated (MAP_FIXED) from high address space. Every thread stack
 749     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 750     //   it to other values if they rebuild LinuxThreads).
 751     //
 752     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 753     // the memory region has already been mmap'ed. That means if we have too
 754     // many threads and/or very large heap, eventually thread stack will
 755     // collide with heap.
 756     //
 757     // Here we try to prevent heap/stack collision by comparing current
 758     // stack bottom with the highest address that has been mmap'ed by JVM
 759     // plus a safety margin for memory maps created by native code.
 760     //
 761     // This feature can be disabled by setting ThreadSafetyMargin to 0
 762     //
 763     if (ThreadSafetyMargin > 0) {
 764       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 765 
 766       // not safe if our stack extends below the safety margin
 767       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 768     } else {
 769       return true;
 770     }
 771   } else {
 772     // Floating stack LinuxThreads or NPTL:
 773     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 774     //   there's not enough space left, pthread_create() will fail. If we come
 775     //   here, that means enough space has been reserved for stack.
 776     return true;
 777   }
 778 }
 779 
 780 // Thread start routine for all newly created threads
 781 static void *java_start(Thread *thread) {
 782   // Try to randomize the cache line index of hot stack frames.
 783   // This helps when threads of the same stack traces evict each other's
 784   // cache lines. The threads can be either from the same JVM instance, or
 785   // from different JVM instances. The benefit is especially true for
 786   // processors with hyperthreading technology.
 787   static int counter = 0;
 788   int pid = os::current_process_id();
 789   alloca(((pid ^ counter++) & 7) * 128);
 790 
 791   ThreadLocalStorage::set_thread(thread);
 792 
 793   OSThread* osthread = thread->osthread();
 794   Monitor* sync = osthread->startThread_lock();
 795 
 796   // non floating stack LinuxThreads needs extra check, see above
 797   if (!_thread_safety_check(thread)) {
 798     // notify parent thread
 799     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 800     osthread->set_state(ZOMBIE);
 801     sync->notify_all();
 802     return NULL;
 803   }
 804 
 805   // thread_id is kernel thread id (similar to Solaris LWP id)
 806   osthread->set_thread_id(os::Linux::gettid());
 807 
 808   if (UseNUMA) {
 809     int lgrp_id = os::numa_get_group_id();
 810     if (lgrp_id != -1) {
 811       thread->set_lgrp_id(lgrp_id);
 812     }
 813   }
 814   // initialize signal mask for this thread
 815   os::Linux::hotspot_sigmask(thread);
 816 
 817   // initialize floating point control register
 818   os::Linux::init_thread_fpu_state();
 819 
 820   // handshaking with parent thread
 821   {
 822     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 823 
 824     // notify parent thread
 825     osthread->set_state(INITIALIZED);
 826     sync->notify_all();
 827 
 828     // wait until os::start_thread()
 829     while (osthread->get_state() == INITIALIZED) {
 830       sync->wait(Mutex::_no_safepoint_check_flag);
 831     }
 832   }
 833 
 834   // call one more level start routine
 835   thread->run();
 836 
 837   return 0;
 838 }
 839 
 840 bool os::create_thread(Thread* thread, ThreadType thr_type,
 841                        size_t stack_size) {
 842   assert(thread->osthread() == NULL, "caller responsible");
 843 
 844   // Allocate the OSThread object
 845   OSThread* osthread = new OSThread(NULL, NULL);
 846   if (osthread == NULL) {
 847     return false;
 848   }
 849 
 850   // set the correct thread state
 851   osthread->set_thread_type(thr_type);
 852 
 853   // Initial state is ALLOCATED but not INITIALIZED
 854   osthread->set_state(ALLOCATED);
 855 
 856   thread->set_osthread(osthread);
 857 
 858   // init thread attributes
 859   pthread_attr_t attr;
 860   pthread_attr_init(&attr);
 861   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 862 
 863   // stack size
 864   if (os::Linux::supports_variable_stack_size()) {
 865     // calculate stack size if it's not specified by caller
 866     if (stack_size == 0) {
 867       stack_size = os::Linux::default_stack_size(thr_type);
 868 
 869       switch (thr_type) {
 870       case os::java_thread:
 871         // Java threads use ThreadStackSize which default value can be
 872         // changed with the flag -Xss
 873         assert(JavaThread::stack_size_at_create() > 0, "this should be set");
 874         stack_size = JavaThread::stack_size_at_create();
 875         break;
 876       case os::compiler_thread:
 877         if (CompilerThreadStackSize > 0) {
 878           stack_size = (size_t)(CompilerThreadStackSize * K);
 879           break;
 880         } // else fall through:
 881           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 882       case os::vm_thread:
 883       case os::pgc_thread:
 884       case os::cgc_thread:
 885       case os::watcher_thread:
 886         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 887         break;
 888       }
 889     }
 890 
 891     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 892     pthread_attr_setstacksize(&attr, stack_size);
 893   } else {
 894     // let pthread_create() pick the default value.
 895   }
 896 
 897   // glibc guard page
 898   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 899 
 900   ThreadState state;
 901 
 902   {
 903     // Serialize thread creation if we are running with fixed stack LinuxThreads
 904     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 905     if (lock) {
 906       os::Linux::createThread_lock()->lock_without_safepoint_check();
 907     }
 908 
 909     pthread_t tid;
 910     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 911 
 912     pthread_attr_destroy(&attr);
 913 
 914     if (ret != 0) {
 915       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 916         perror("pthread_create()");
 917       }
 918       // Need to clean up stuff we've allocated so far
 919       thread->set_osthread(NULL);
 920       delete osthread;
 921       if (lock) os::Linux::createThread_lock()->unlock();
 922       return false;
 923     }
 924 
 925     // Store pthread info into the OSThread
 926     osthread->set_pthread_id(tid);
 927 
 928     // Wait until child thread is either initialized or aborted
 929     {
 930       Monitor* sync_with_child = osthread->startThread_lock();
 931       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 932       while ((state = osthread->get_state()) == ALLOCATED) {
 933         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 934       }
 935     }
 936 
 937     if (lock) {
 938       os::Linux::createThread_lock()->unlock();
 939     }
 940   }
 941 
 942   // Aborted due to thread limit being reached
 943   if (state == ZOMBIE) {
 944     thread->set_osthread(NULL);
 945     delete osthread;
 946     return false;
 947   }
 948 
 949   // The thread is returned suspended (in state INITIALIZED),
 950   // and is started higher up in the call chain
 951   assert(state == INITIALIZED, "race condition");
 952   return true;
 953 }
 954 
 955 /////////////////////////////////////////////////////////////////////////////
 956 // attach existing thread
 957 
 958 // bootstrap the main thread
 959 bool os::create_main_thread(JavaThread* thread) {
 960   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 961   return create_attached_thread(thread);
 962 }
 963 
 964 bool os::create_attached_thread(JavaThread* thread) {
 965 #ifdef ASSERT
 966   thread->verify_not_published();
 967 #endif
 968 
 969   // Allocate the OSThread object
 970   OSThread* osthread = new OSThread(NULL, NULL);
 971 
 972   if (osthread == NULL) {
 973     return false;
 974   }
 975 
 976   // Store pthread info into the OSThread
 977   osthread->set_thread_id(os::Linux::gettid());
 978   osthread->set_pthread_id(::pthread_self());
 979 
 980   // initialize floating point control register
 981   os::Linux::init_thread_fpu_state();
 982 
 983   // Initial thread state is RUNNABLE
 984   osthread->set_state(RUNNABLE);
 985 
 986   thread->set_osthread(osthread);
 987 
 988   if (UseNUMA) {
 989     int lgrp_id = os::numa_get_group_id();
 990     if (lgrp_id != -1) {
 991       thread->set_lgrp_id(lgrp_id);
 992     }
 993   }
 994 
 995   if (os::Linux::is_initial_thread()) {
 996     // If current thread is initial thread, its stack is mapped on demand,
 997     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 998     // the entire stack region to avoid SEGV in stack banging.
 999     // It is also useful to get around the heap-stack-gap problem on SuSE
1000     // kernel (see 4821821 for details). We first expand stack to the top
1001     // of yellow zone, then enable stack yellow zone (order is significant,
1002     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1003     // is no gap between the last two virtual memory regions.
1004 
1005     JavaThread *jt = (JavaThread *)thread;
1006     address addr = jt->stack_yellow_zone_base();
1007     assert(addr != NULL, "initialization problem?");
1008     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1009 
1010     osthread->set_expanding_stack();
1011     os::Linux::manually_expand_stack(jt, addr);
1012     osthread->clear_expanding_stack();
1013   }
1014 
1015   // initialize signal mask for this thread
1016   // and save the caller's signal mask
1017   os::Linux::hotspot_sigmask(thread);
1018 
1019   return true;
1020 }
1021 
1022 void os::pd_start_thread(Thread* thread) {
1023   OSThread * osthread = thread->osthread();
1024   assert(osthread->get_state() != INITIALIZED, "just checking");
1025   Monitor* sync_with_child = osthread->startThread_lock();
1026   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1027   sync_with_child->notify();
1028 }
1029 
1030 // Free Linux resources related to the OSThread
1031 void os::free_thread(OSThread* osthread) {
1032   assert(osthread != NULL, "osthread not set");
1033 
1034   if (Thread::current()->osthread() == osthread) {
1035     // Restore caller's signal mask
1036     sigset_t sigmask = osthread->caller_sigmask();
1037     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1038   }
1039 
1040   delete osthread;
1041 }
1042 
1043 //////////////////////////////////////////////////////////////////////////////
1044 // thread local storage
1045 
1046 // Restore the thread pointer if the destructor is called. This is in case
1047 // someone from JNI code sets up a destructor with pthread_key_create to run
1048 // detachCurrentThread on thread death. Unless we restore the thread pointer we
1049 // will hang or crash. When detachCurrentThread is called the key will be set
1050 // to null and we will not be called again. If detachCurrentThread is never
1051 // called we could loop forever depending on the pthread implementation.
1052 static void restore_thread_pointer(void* p) {
1053   Thread* thread = (Thread*) p;
1054   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1055 }
1056 
1057 int os::allocate_thread_local_storage() {
1058   pthread_key_t key;
1059   int rslt = pthread_key_create(&key, restore_thread_pointer);
1060   assert(rslt == 0, "cannot allocate thread local storage");
1061   return (int)key;
1062 }
1063 
1064 // Note: This is currently not used by VM, as we don't destroy TLS key
1065 // on VM exit.
1066 void os::free_thread_local_storage(int index) {
1067   int rslt = pthread_key_delete((pthread_key_t)index);
1068   assert(rslt == 0, "invalid index");
1069 }
1070 
1071 void os::thread_local_storage_at_put(int index, void* value) {
1072   int rslt = pthread_setspecific((pthread_key_t)index, value);
1073   assert(rslt == 0, "pthread_setspecific failed");
1074 }
1075 
1076 extern "C" Thread* get_thread() {
1077   return ThreadLocalStorage::thread();
1078 }
1079 
1080 //////////////////////////////////////////////////////////////////////////////
1081 // initial thread
1082 
1083 // Check if current thread is the initial thread, similar to Solaris thr_main.
1084 bool os::Linux::is_initial_thread(void) {
1085   char dummy;
1086   // If called before init complete, thread stack bottom will be null.
1087   // Can be called if fatal error occurs before initialization.
1088   if (initial_thread_stack_bottom() == NULL) return false;
1089   assert(initial_thread_stack_bottom() != NULL &&
1090          initial_thread_stack_size()   != 0,
1091          "os::init did not locate initial thread's stack region");
1092   if ((address)&dummy >= initial_thread_stack_bottom() &&
1093       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
1094     return true;
1095   } else {
1096     return false;
1097   }
1098 }
1099 
1100 // Find the virtual memory area that contains addr
1101 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1102   FILE *fp = fopen("/proc/self/maps", "r");
1103   if (fp) {
1104     address low, high;
1105     while (!feof(fp)) {
1106       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1107         if (low <= addr && addr < high) {
1108           if (vma_low)  *vma_low  = low;
1109           if (vma_high) *vma_high = high;
1110           fclose(fp);
1111           return true;
1112         }
1113       }
1114       for (;;) {
1115         int ch = fgetc(fp);
1116         if (ch == EOF || ch == (int)'\n') break;
1117       }
1118     }
1119     fclose(fp);
1120   }
1121   return false;
1122 }
1123 
1124 // Locate initial thread stack. This special handling of initial thread stack
1125 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1126 // bogus value for initial thread.
1127 void os::Linux::capture_initial_stack(size_t max_size) {
1128   // stack size is the easy part, get it from RLIMIT_STACK
1129   size_t stack_size;
1130   struct rlimit rlim;
1131   getrlimit(RLIMIT_STACK, &rlim);
1132   stack_size = rlim.rlim_cur;
1133 
1134   // 6308388: a bug in ld.so will relocate its own .data section to the
1135   //   lower end of primordial stack; reduce ulimit -s value a little bit
1136   //   so we won't install guard page on ld.so's data section.
1137   stack_size -= 2 * page_size();
1138 
1139   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1140   //   7.1, in both cases we will get 2G in return value.
1141   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1142   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1143   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1144   //   in case other parts in glibc still assumes 2M max stack size.
1145   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1146   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1147   if (stack_size > 2 * K * K IA64_ONLY(*2)) {
1148     stack_size = 2 * K * K IA64_ONLY(*2);
1149   }
1150   // Try to figure out where the stack base (top) is. This is harder.
1151   //
1152   // When an application is started, glibc saves the initial stack pointer in
1153   // a global variable "__libc_stack_end", which is then used by system
1154   // libraries. __libc_stack_end should be pretty close to stack top. The
1155   // variable is available since the very early days. However, because it is
1156   // a private interface, it could disappear in the future.
1157   //
1158   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1159   // to __libc_stack_end, it is very close to stack top, but isn't the real
1160   // stack top. Note that /proc may not exist if VM is running as a chroot
1161   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1162   // /proc/<pid>/stat could change in the future (though unlikely).
1163   //
1164   // We try __libc_stack_end first. If that doesn't work, look for
1165   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1166   // as a hint, which should work well in most cases.
1167 
1168   uintptr_t stack_start;
1169 
1170   // try __libc_stack_end first
1171   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1172   if (p && *p) {
1173     stack_start = *p;
1174   } else {
1175     // see if we can get the start_stack field from /proc/self/stat
1176     FILE *fp;
1177     int pid;
1178     char state;
1179     int ppid;
1180     int pgrp;
1181     int session;
1182     int nr;
1183     int tpgrp;
1184     unsigned long flags;
1185     unsigned long minflt;
1186     unsigned long cminflt;
1187     unsigned long majflt;
1188     unsigned long cmajflt;
1189     unsigned long utime;
1190     unsigned long stime;
1191     long cutime;
1192     long cstime;
1193     long prio;
1194     long nice;
1195     long junk;
1196     long it_real;
1197     uintptr_t start;
1198     uintptr_t vsize;
1199     intptr_t rss;
1200     uintptr_t rsslim;
1201     uintptr_t scodes;
1202     uintptr_t ecode;
1203     int i;
1204 
1205     // Figure what the primordial thread stack base is. Code is inspired
1206     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1207     // followed by command name surrounded by parentheses, state, etc.
1208     char stat[2048];
1209     int statlen;
1210 
1211     fp = fopen("/proc/self/stat", "r");
1212     if (fp) {
1213       statlen = fread(stat, 1, 2047, fp);
1214       stat[statlen] = '\0';
1215       fclose(fp);
1216 
1217       // Skip pid and the command string. Note that we could be dealing with
1218       // weird command names, e.g. user could decide to rename java launcher
1219       // to "java 1.4.2 :)", then the stat file would look like
1220       //                1234 (java 1.4.2 :)) R ... ...
1221       // We don't really need to know the command string, just find the last
1222       // occurrence of ")" and then start parsing from there. See bug 4726580.
1223       char * s = strrchr(stat, ')');
1224 
1225       i = 0;
1226       if (s) {
1227         // Skip blank chars
1228         do s++; while (isspace(*s));
1229 
1230 #define _UFM UINTX_FORMAT
1231 #define _DFM INTX_FORMAT
1232 
1233         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1234         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1235         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1236                    &state,          // 3  %c
1237                    &ppid,           // 4  %d
1238                    &pgrp,           // 5  %d
1239                    &session,        // 6  %d
1240                    &nr,             // 7  %d
1241                    &tpgrp,          // 8  %d
1242                    &flags,          // 9  %lu
1243                    &minflt,         // 10 %lu
1244                    &cminflt,        // 11 %lu
1245                    &majflt,         // 12 %lu
1246                    &cmajflt,        // 13 %lu
1247                    &utime,          // 14 %lu
1248                    &stime,          // 15 %lu
1249                    &cutime,         // 16 %ld
1250                    &cstime,         // 17 %ld
1251                    &prio,           // 18 %ld
1252                    &nice,           // 19 %ld
1253                    &junk,           // 20 %ld
1254                    &it_real,        // 21 %ld
1255                    &start,          // 22 UINTX_FORMAT
1256                    &vsize,          // 23 UINTX_FORMAT
1257                    &rss,            // 24 INTX_FORMAT
1258                    &rsslim,         // 25 UINTX_FORMAT
1259                    &scodes,         // 26 UINTX_FORMAT
1260                    &ecode,          // 27 UINTX_FORMAT
1261                    &stack_start);   // 28 UINTX_FORMAT
1262       }
1263 
1264 #undef _UFM
1265 #undef _DFM
1266 
1267       if (i != 28 - 2) {
1268         assert(false, "Bad conversion from /proc/self/stat");
1269         // product mode - assume we are the initial thread, good luck in the
1270         // embedded case.
1271         warning("Can't detect initial thread stack location - bad conversion");
1272         stack_start = (uintptr_t) &rlim;
1273       }
1274     } else {
1275       // For some reason we can't open /proc/self/stat (for example, running on
1276       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1277       // most cases, so don't abort:
1278       warning("Can't detect initial thread stack location - no /proc/self/stat");
1279       stack_start = (uintptr_t) &rlim;
1280     }
1281   }
1282 
1283   // Now we have a pointer (stack_start) very close to the stack top, the
1284   // next thing to do is to figure out the exact location of stack top. We
1285   // can find out the virtual memory area that contains stack_start by
1286   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1287   // and its upper limit is the real stack top. (again, this would fail if
1288   // running inside chroot, because /proc may not exist.)
1289 
1290   uintptr_t stack_top;
1291   address low, high;
1292   if (find_vma((address)stack_start, &low, &high)) {
1293     // success, "high" is the true stack top. (ignore "low", because initial
1294     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1295     stack_top = (uintptr_t)high;
1296   } else {
1297     // failed, likely because /proc/self/maps does not exist
1298     warning("Can't detect initial thread stack location - find_vma failed");
1299     // best effort: stack_start is normally within a few pages below the real
1300     // stack top, use it as stack top, and reduce stack size so we won't put
1301     // guard page outside stack.
1302     stack_top = stack_start;
1303     stack_size -= 16 * page_size();
1304   }
1305 
1306   // stack_top could be partially down the page so align it
1307   stack_top = align_size_up(stack_top, page_size());
1308 
1309   if (max_size && stack_size > max_size) {
1310     _initial_thread_stack_size = max_size;
1311   } else {
1312     _initial_thread_stack_size = stack_size;
1313   }
1314 
1315   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1316   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1317 }
1318 
1319 ////////////////////////////////////////////////////////////////////////////////
1320 // time support
1321 
1322 // Time since start-up in seconds to a fine granularity.
1323 // Used by VMSelfDestructTimer and the MemProfiler.
1324 double os::elapsedTime() {
1325 
1326   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1327 }
1328 
1329 jlong os::elapsed_counter() {
1330   return javaTimeNanos() - initial_time_count;
1331 }
1332 
1333 jlong os::elapsed_frequency() {
1334   return NANOSECS_PER_SEC; // nanosecond resolution
1335 }
1336 
1337 bool os::supports_vtime() { return true; }
1338 bool os::enable_vtime()   { return false; }
1339 bool os::vtime_enabled()  { return false; }
1340 
1341 double os::elapsedVTime() {
1342   struct rusage usage;
1343   int retval = getrusage(RUSAGE_THREAD, &usage);
1344   if (retval == 0) {
1345     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1346   } else {
1347     // better than nothing, but not much
1348     return elapsedTime();
1349   }
1350 }
1351 
1352 jlong os::javaTimeMillis() {
1353   timeval time;
1354   int status = gettimeofday(&time, NULL);
1355   assert(status != -1, "linux error");
1356   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1357 }
1358 
1359 #ifndef CLOCK_MONOTONIC
1360   #define CLOCK_MONOTONIC (1)
1361 #endif
1362 
1363 void os::Linux::clock_init() {
1364   // we do dlopen's in this particular order due to bug in linux
1365   // dynamical loader (see 6348968) leading to crash on exit
1366   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1367   if (handle == NULL) {
1368     handle = dlopen("librt.so", RTLD_LAZY);
1369   }
1370 
1371   if (handle) {
1372     int (*clock_getres_func)(clockid_t, struct timespec*) =
1373            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1374     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1375            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1376     if (clock_getres_func && clock_gettime_func) {
1377       // See if monotonic clock is supported by the kernel. Note that some
1378       // early implementations simply return kernel jiffies (updated every
1379       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1380       // for nano time (though the monotonic property is still nice to have).
1381       // It's fixed in newer kernels, however clock_getres() still returns
1382       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1383       // resolution for now. Hopefully as people move to new kernels, this
1384       // won't be a problem.
1385       struct timespec res;
1386       struct timespec tp;
1387       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1388           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1389         // yes, monotonic clock is supported
1390         _clock_gettime = clock_gettime_func;
1391         return;
1392       } else {
1393         // close librt if there is no monotonic clock
1394         dlclose(handle);
1395       }
1396     }
1397   }
1398   warning("No monotonic clock was available - timed services may " \
1399           "be adversely affected if the time-of-day clock changes");
1400 }
1401 
1402 #ifndef SYS_clock_getres
1403   #if defined(IA32) || defined(AMD64)
1404     #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1405     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1406   #else
1407     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1408     #define sys_clock_getres(x,y)  -1
1409   #endif
1410 #else
1411   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1412 #endif
1413 
1414 void os::Linux::fast_thread_clock_init() {
1415   if (!UseLinuxPosixThreadCPUClocks) {
1416     return;
1417   }
1418   clockid_t clockid;
1419   struct timespec tp;
1420   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1421       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1422 
1423   // Switch to using fast clocks for thread cpu time if
1424   // the sys_clock_getres() returns 0 error code.
1425   // Note, that some kernels may support the current thread
1426   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1427   // returned by the pthread_getcpuclockid().
1428   // If the fast Posix clocks are supported then the sys_clock_getres()
1429   // must return at least tp.tv_sec == 0 which means a resolution
1430   // better than 1 sec. This is extra check for reliability.
1431 
1432   if (pthread_getcpuclockid_func &&
1433       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1434       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1435     _supports_fast_thread_cpu_time = true;
1436     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1437   }
1438 }
1439 
1440 jlong os::javaTimeNanos() {
1441   if (os::supports_monotonic_clock()) {
1442     struct timespec tp;
1443     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1444     assert(status == 0, "gettime error");
1445     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1446     return result;
1447   } else {
1448     timeval time;
1449     int status = gettimeofday(&time, NULL);
1450     assert(status != -1, "linux error");
1451     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1452     return 1000 * usecs;
1453   }
1454 }
1455 
1456 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1457   if (os::supports_monotonic_clock()) {
1458     info_ptr->max_value = ALL_64_BITS;
1459 
1460     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1461     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1462     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1463   } else {
1464     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1465     info_ptr->max_value = ALL_64_BITS;
1466 
1467     // gettimeofday is a real time clock so it skips
1468     info_ptr->may_skip_backward = true;
1469     info_ptr->may_skip_forward = true;
1470   }
1471 
1472   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1473 }
1474 
1475 // Return the real, user, and system times in seconds from an
1476 // arbitrary fixed point in the past.
1477 bool os::getTimesSecs(double* process_real_time,
1478                       double* process_user_time,
1479                       double* process_system_time) {
1480   struct tms ticks;
1481   clock_t real_ticks = times(&ticks);
1482 
1483   if (real_ticks == (clock_t) (-1)) {
1484     return false;
1485   } else {
1486     double ticks_per_second = (double) clock_tics_per_sec;
1487     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1488     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1489     *process_real_time = ((double) real_ticks) / ticks_per_second;
1490 
1491     return true;
1492   }
1493 }
1494 
1495 
1496 char * os::local_time_string(char *buf, size_t buflen) {
1497   struct tm t;
1498   time_t long_time;
1499   time(&long_time);
1500   localtime_r(&long_time, &t);
1501   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1502                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1503                t.tm_hour, t.tm_min, t.tm_sec);
1504   return buf;
1505 }
1506 
1507 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1508   return localtime_r(clock, res);
1509 }
1510 
1511 ////////////////////////////////////////////////////////////////////////////////
1512 // runtime exit support
1513 
1514 // Note: os::shutdown() might be called very early during initialization, or
1515 // called from signal handler. Before adding something to os::shutdown(), make
1516 // sure it is async-safe and can handle partially initialized VM.
1517 void os::shutdown() {
1518 
1519   // allow PerfMemory to attempt cleanup of any persistent resources
1520   perfMemory_exit();
1521 
1522   // needs to remove object in file system
1523   AttachListener::abort();
1524 
1525   // flush buffered output, finish log files
1526   ostream_abort();
1527 
1528   // Check for abort hook
1529   abort_hook_t abort_hook = Arguments::abort_hook();
1530   if (abort_hook != NULL) {
1531     abort_hook();
1532   }
1533 
1534 }
1535 
1536 // Note: os::abort() might be called very early during initialization, or
1537 // called from signal handler. Before adding something to os::abort(), make
1538 // sure it is async-safe and can handle partially initialized VM.
1539 void os::abort(bool dump_core) {
1540   os::shutdown();
1541   if (dump_core) {
1542 #ifndef PRODUCT
1543     fdStream out(defaultStream::output_fd());
1544     out.print_raw("Current thread is ");
1545     char buf[16];
1546     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1547     out.print_raw_cr(buf);
1548     out.print_raw_cr("Dumping core ...");
1549 #endif
1550     ::abort(); // dump core
1551   }
1552 
1553   ::exit(1);
1554 }
1555 
1556 // Die immediately, no exit hook, no abort hook, no cleanup.
1557 void os::die() {
1558   // _exit() on LinuxThreads only kills current thread
1559   ::abort();
1560 }
1561 
1562 
1563 // This method is a copy of JDK's sysGetLastErrorString
1564 // from src/solaris/hpi/src/system_md.c
1565 
1566 size_t os::lasterror(char *buf, size_t len) {
1567   if (errno == 0)  return 0;
1568 
1569   const char *s = ::strerror(errno);
1570   size_t n = ::strlen(s);
1571   if (n >= len) {
1572     n = len - 1;
1573   }
1574   ::strncpy(buf, s, n);
1575   buf[n] = '\0';
1576   return n;
1577 }
1578 
1579 intx os::current_thread_id() { return (intx)pthread_self(); }
1580 int os::current_process_id() {
1581 
1582   // Under the old linux thread library, linux gives each thread
1583   // its own process id. Because of this each thread will return
1584   // a different pid if this method were to return the result
1585   // of getpid(2). Linux provides no api that returns the pid
1586   // of the launcher thread for the vm. This implementation
1587   // returns a unique pid, the pid of the launcher thread
1588   // that starts the vm 'process'.
1589 
1590   // Under the NPTL, getpid() returns the same pid as the
1591   // launcher thread rather than a unique pid per thread.
1592   // Use gettid() if you want the old pre NPTL behaviour.
1593 
1594   // if you are looking for the result of a call to getpid() that
1595   // returns a unique pid for the calling thread, then look at the
1596   // OSThread::thread_id() method in osThread_linux.hpp file
1597 
1598   return (int)(_initial_pid ? _initial_pid : getpid());
1599 }
1600 
1601 // DLL functions
1602 
1603 const char* os::dll_file_extension() { return ".so"; }
1604 
1605 // This must be hard coded because it's the system's temporary
1606 // directory not the java application's temp directory, ala java.io.tmpdir.
1607 const char* os::get_temp_directory() { return "/tmp"; }
1608 
1609 static bool file_exists(const char* filename) {
1610   struct stat statbuf;
1611   if (filename == NULL || strlen(filename) == 0) {
1612     return false;
1613   }
1614   return os::stat(filename, &statbuf) == 0;
1615 }
1616 
1617 bool os::dll_build_name(char* buffer, size_t buflen,
1618                         const char* pname, const char* fname) {
1619   bool retval = false;
1620   // Copied from libhpi
1621   const size_t pnamelen = pname ? strlen(pname) : 0;
1622 
1623   // Return error on buffer overflow.
1624   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1625     return retval;
1626   }
1627 
1628   if (pnamelen == 0) {
1629     snprintf(buffer, buflen, "lib%s.so", fname);
1630     retval = true;
1631   } else if (strchr(pname, *os::path_separator()) != NULL) {
1632     int n;
1633     char** pelements = split_path(pname, &n);
1634     if (pelements == NULL) {
1635       return false;
1636     }
1637     for (int i = 0; i < n; i++) {
1638       // Really shouldn't be NULL, but check can't hurt
1639       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1640         continue; // skip the empty path values
1641       }
1642       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1643       if (file_exists(buffer)) {
1644         retval = true;
1645         break;
1646       }
1647     }
1648     // release the storage
1649     for (int i = 0; i < n; i++) {
1650       if (pelements[i] != NULL) {
1651         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1652       }
1653     }
1654     if (pelements != NULL) {
1655       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1656     }
1657   } else {
1658     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1659     retval = true;
1660   }
1661   return retval;
1662 }
1663 
1664 // check if addr is inside libjvm.so
1665 bool os::address_is_in_vm(address addr) {
1666   static address libjvm_base_addr;
1667   Dl_info dlinfo;
1668 
1669   if (libjvm_base_addr == NULL) {
1670     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1671       libjvm_base_addr = (address)dlinfo.dli_fbase;
1672     }
1673     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1674   }
1675 
1676   if (dladdr((void *)addr, &dlinfo) != 0) {
1677     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1678   }
1679 
1680   return false;
1681 }
1682 
1683 bool os::dll_address_to_function_name(address addr, char *buf,
1684                                       int buflen, int *offset) {
1685   // buf is not optional, but offset is optional
1686   assert(buf != NULL, "sanity check");
1687 
1688   Dl_info dlinfo;
1689 
1690   if (dladdr((void*)addr, &dlinfo) != 0) {
1691     // see if we have a matching symbol
1692     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1693       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1694         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1695       }
1696       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1697       return true;
1698     }
1699     // no matching symbol so try for just file info
1700     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1701       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1702                           buf, buflen, offset, dlinfo.dli_fname)) {
1703         return true;
1704       }
1705     }
1706   }
1707 
1708   buf[0] = '\0';
1709   if (offset != NULL) *offset = -1;
1710   return false;
1711 }
1712 
1713 struct _address_to_library_name {
1714   address addr;          // input : memory address
1715   size_t  buflen;        //         size of fname
1716   char*   fname;         // output: library name
1717   address base;          //         library base addr
1718 };
1719 
1720 static int address_to_library_name_callback(struct dl_phdr_info *info,
1721                                             size_t size, void *data) {
1722   int i;
1723   bool found = false;
1724   address libbase = NULL;
1725   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1726 
1727   // iterate through all loadable segments
1728   for (i = 0; i < info->dlpi_phnum; i++) {
1729     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1730     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1731       // base address of a library is the lowest address of its loaded
1732       // segments.
1733       if (libbase == NULL || libbase > segbase) {
1734         libbase = segbase;
1735       }
1736       // see if 'addr' is within current segment
1737       if (segbase <= d->addr &&
1738           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1739         found = true;
1740       }
1741     }
1742   }
1743 
1744   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1745   // so dll_address_to_library_name() can fall through to use dladdr() which
1746   // can figure out executable name from argv[0].
1747   if (found && info->dlpi_name && info->dlpi_name[0]) {
1748     d->base = libbase;
1749     if (d->fname) {
1750       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1751     }
1752     return 1;
1753   }
1754   return 0;
1755 }
1756 
1757 bool os::dll_address_to_library_name(address addr, char* buf,
1758                                      int buflen, int* offset) {
1759   // buf is not optional, but offset is optional
1760   assert(buf != NULL, "sanity check");
1761 
1762   Dl_info dlinfo;
1763   struct _address_to_library_name data;
1764 
1765   // There is a bug in old glibc dladdr() implementation that it could resolve
1766   // to wrong library name if the .so file has a base address != NULL. Here
1767   // we iterate through the program headers of all loaded libraries to find
1768   // out which library 'addr' really belongs to. This workaround can be
1769   // removed once the minimum requirement for glibc is moved to 2.3.x.
1770   data.addr = addr;
1771   data.fname = buf;
1772   data.buflen = buflen;
1773   data.base = NULL;
1774   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1775 
1776   if (rslt) {
1777     // buf already contains library name
1778     if (offset) *offset = addr - data.base;
1779     return true;
1780   }
1781   if (dladdr((void*)addr, &dlinfo) != 0) {
1782     if (dlinfo.dli_fname != NULL) {
1783       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1784     }
1785     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1786       *offset = addr - (address)dlinfo.dli_fbase;
1787     }
1788     return true;
1789   }
1790 
1791   buf[0] = '\0';
1792   if (offset) *offset = -1;
1793   return false;
1794 }
1795 
1796 // Loads .dll/.so and
1797 // in case of error it checks if .dll/.so was built for the
1798 // same architecture as Hotspot is running on
1799 
1800 
1801 // Remember the stack's state. The Linux dynamic linker will change
1802 // the stack to 'executable' at most once, so we must safepoint only once.
1803 bool os::Linux::_stack_is_executable = false;
1804 
1805 // VM operation that loads a library.  This is necessary if stack protection
1806 // of the Java stacks can be lost during loading the library.  If we
1807 // do not stop the Java threads, they can stack overflow before the stacks
1808 // are protected again.
1809 class VM_LinuxDllLoad: public VM_Operation {
1810  private:
1811   const char *_filename;
1812   char *_ebuf;
1813   int _ebuflen;
1814   void *_lib;
1815  public:
1816   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1817     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1818   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1819   void doit() {
1820     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1821     os::Linux::_stack_is_executable = true;
1822   }
1823   void* loaded_library() { return _lib; }
1824 };
1825 
1826 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1827   void * result = NULL;
1828   bool load_attempted = false;
1829 
1830   // Check whether the library to load might change execution rights
1831   // of the stack. If they are changed, the protection of the stack
1832   // guard pages will be lost. We need a safepoint to fix this.
1833   //
1834   // See Linux man page execstack(8) for more info.
1835   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1836     ElfFile ef(filename);
1837     if (!ef.specifies_noexecstack()) {
1838       if (!is_init_completed()) {
1839         os::Linux::_stack_is_executable = true;
1840         // This is OK - No Java threads have been created yet, and hence no
1841         // stack guard pages to fix.
1842         //
1843         // This should happen only when you are building JDK7 using a very
1844         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1845         //
1846         // Dynamic loader will make all stacks executable after
1847         // this function returns, and will not do that again.
1848         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1849       } else {
1850         warning("You have loaded library %s which might have disabled stack guard. "
1851                 "The VM will try to fix the stack guard now.\n"
1852                 "It's highly recommended that you fix the library with "
1853                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1854                 filename);
1855 
1856         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1857         JavaThread *jt = JavaThread::current();
1858         if (jt->thread_state() != _thread_in_native) {
1859           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1860           // that requires ExecStack. Cannot enter safe point. Let's give up.
1861           warning("Unable to fix stack guard. Giving up.");
1862         } else {
1863           if (!LoadExecStackDllInVMThread) {
1864             // This is for the case where the DLL has an static
1865             // constructor function that executes JNI code. We cannot
1866             // load such DLLs in the VMThread.
1867             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1868           }
1869 
1870           ThreadInVMfromNative tiv(jt);
1871           debug_only(VMNativeEntryWrapper vew;)
1872 
1873           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1874           VMThread::execute(&op);
1875           if (LoadExecStackDllInVMThread) {
1876             result = op.loaded_library();
1877           }
1878           load_attempted = true;
1879         }
1880       }
1881     }
1882   }
1883 
1884   if (!load_attempted) {
1885     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1886   }
1887 
1888   if (result != NULL) {
1889     // Successful loading
1890     return result;
1891   }
1892 
1893   Elf32_Ehdr elf_head;
1894   int diag_msg_max_length=ebuflen-strlen(ebuf);
1895   char* diag_msg_buf=ebuf+strlen(ebuf);
1896 
1897   if (diag_msg_max_length==0) {
1898     // No more space in ebuf for additional diagnostics message
1899     return NULL;
1900   }
1901 
1902 
1903   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1904 
1905   if (file_descriptor < 0) {
1906     // Can't open library, report dlerror() message
1907     return NULL;
1908   }
1909 
1910   bool failed_to_read_elf_head=
1911     (sizeof(elf_head)!=
1912      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1913 
1914   ::close(file_descriptor);
1915   if (failed_to_read_elf_head) {
1916     // file i/o error - report dlerror() msg
1917     return NULL;
1918   }
1919 
1920   typedef struct {
1921     Elf32_Half  code;         // Actual value as defined in elf.h
1922     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1923     char        elf_class;    // 32 or 64 bit
1924     char        endianess;    // MSB or LSB
1925     char*       name;         // String representation
1926   } arch_t;
1927 
1928 #ifndef EM_486
1929   #define EM_486          6               /* Intel 80486 */
1930 #endif
1931 #ifndef EM_AARCH64
1932   #define EM_AARCH64    183               /* ARM AARCH64 */
1933 #endif
1934 
1935   static const arch_t arch_array[]={
1936     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1937     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1938     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1939     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1940     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1941     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1942     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1943     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1944 #if defined(VM_LITTLE_ENDIAN)
1945     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1946 #else
1947     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1948 #endif
1949     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1950     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1951     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1952     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1953     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1954     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1955     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1956     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1957   };
1958 
1959 #if  (defined IA32)
1960   static  Elf32_Half running_arch_code=EM_386;
1961 #elif   (defined AMD64)
1962   static  Elf32_Half running_arch_code=EM_X86_64;
1963 #elif  (defined IA64)
1964   static  Elf32_Half running_arch_code=EM_IA_64;
1965 #elif  (defined __sparc) && (defined _LP64)
1966   static  Elf32_Half running_arch_code=EM_SPARCV9;
1967 #elif  (defined __sparc) && (!defined _LP64)
1968   static  Elf32_Half running_arch_code=EM_SPARC;
1969 #elif  (defined __powerpc64__)
1970   static  Elf32_Half running_arch_code=EM_PPC64;
1971 #elif  (defined __powerpc__)
1972   static  Elf32_Half running_arch_code=EM_PPC;
1973 #elif  (defined ARM)
1974   static  Elf32_Half running_arch_code=EM_ARM;
1975 #elif  (defined S390)
1976   static  Elf32_Half running_arch_code=EM_S390;
1977 #elif  (defined ALPHA)
1978   static  Elf32_Half running_arch_code=EM_ALPHA;
1979 #elif  (defined MIPSEL)
1980   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1981 #elif  (defined PARISC)
1982   static  Elf32_Half running_arch_code=EM_PARISC;
1983 #elif  (defined MIPS)
1984   static  Elf32_Half running_arch_code=EM_MIPS;
1985 #elif  (defined M68K)
1986   static  Elf32_Half running_arch_code=EM_68K;
1987 #elif  (defined AARCH64)
1988   static  Elf32_Half running_arch_code=EM_AARCH64;
1989 #else
1990     #error Method os::dll_load requires that one of following is defined:\
1991          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K, AARCH64
1992 #endif
1993 
1994   // Identify compatability class for VM's architecture and library's architecture
1995   // Obtain string descriptions for architectures
1996 
1997   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1998   int running_arch_index=-1;
1999 
2000   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
2001     if (running_arch_code == arch_array[i].code) {
2002       running_arch_index    = i;
2003     }
2004     if (lib_arch.code == arch_array[i].code) {
2005       lib_arch.compat_class = arch_array[i].compat_class;
2006       lib_arch.name         = arch_array[i].name;
2007     }
2008   }
2009 
2010   assert(running_arch_index != -1,
2011          "Didn't find running architecture code (running_arch_code) in arch_array");
2012   if (running_arch_index == -1) {
2013     // Even though running architecture detection failed
2014     // we may still continue with reporting dlerror() message
2015     return NULL;
2016   }
2017 
2018   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2019     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2020     return NULL;
2021   }
2022 
2023 #ifndef S390
2024   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2025     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2026     return NULL;
2027   }
2028 #endif // !S390
2029 
2030   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2031     if (lib_arch.name!=NULL) {
2032       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2033                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2034                  lib_arch.name, arch_array[running_arch_index].name);
2035     } else {
2036       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2037                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2038                  lib_arch.code,
2039                  arch_array[running_arch_index].name);
2040     }
2041   }
2042 
2043   return NULL;
2044 }
2045 
2046 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
2047                                 int ebuflen) {
2048   void * result = ::dlopen(filename, RTLD_LAZY);
2049   if (result == NULL) {
2050     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2051     ebuf[ebuflen-1] = '\0';
2052   }
2053   return result;
2054 }
2055 
2056 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
2057                                        int ebuflen) {
2058   void * result = NULL;
2059   if (LoadExecStackDllInVMThread) {
2060     result = dlopen_helper(filename, ebuf, ebuflen);
2061   }
2062 
2063   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2064   // library that requires an executable stack, or which does not have this
2065   // stack attribute set, dlopen changes the stack attribute to executable. The
2066   // read protection of the guard pages gets lost.
2067   //
2068   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2069   // may have been queued at the same time.
2070 
2071   if (!_stack_is_executable) {
2072     JavaThread *jt = Threads::first();
2073 
2074     while (jt) {
2075       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2076           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2077         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2078                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2079           warning("Attempt to reguard stack yellow zone failed.");
2080         }
2081       }
2082       jt = jt->next();
2083     }
2084   }
2085 
2086   return result;
2087 }
2088 
2089 // glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2090 // chances are you might want to run the generated bits against glibc-2.0
2091 // libdl.so, so always use locking for any version of glibc.
2092 //
2093 void* os::dll_lookup(void* handle, const char* name) {
2094   pthread_mutex_lock(&dl_mutex);
2095   void* res = dlsym(handle, name);
2096   pthread_mutex_unlock(&dl_mutex);
2097   return res;
2098 }
2099 
2100 void* os::get_default_process_handle() {
2101   return (void*)::dlopen(NULL, RTLD_LAZY);
2102 }
2103 
2104 static bool _print_ascii_file(const char* filename, outputStream* st) {
2105   int fd = ::open(filename, O_RDONLY);
2106   if (fd == -1) {
2107     return false;
2108   }
2109 
2110   char buf[32];
2111   int bytes;
2112   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2113     st->print_raw(buf, bytes);
2114   }
2115 
2116   ::close(fd);
2117 
2118   return true;
2119 }
2120 
2121 void os::print_dll_info(outputStream *st) {
2122   st->print_cr("Dynamic libraries:");
2123 
2124   char fname[32];
2125   pid_t pid = os::Linux::gettid();
2126 
2127   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2128 
2129   if (!_print_ascii_file(fname, st)) {
2130     st->print("Can not get library information for pid = %d\n", pid);
2131   }
2132 }
2133 
2134 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2135   FILE *procmapsFile = NULL;
2136 
2137   // Open the procfs maps file for the current process
2138   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2139     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2140     char line[PATH_MAX + 100];
2141 
2142     // Read line by line from 'file'
2143     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2144       u8 base, top, offset, inode;
2145       char permissions[5];
2146       char device[6];
2147       char name[PATH_MAX + 1];
2148 
2149       // Parse fields from line
2150       sscanf(line, "%lx-%lx %4s %lx %5s %ld %s", &base, &top, permissions, &offset, device, &inode, name);
2151 
2152       // Filter by device id '00:00' so that we only get file system mapped files.
2153       if (strcmp(device, "00:00") != 0) {
2154 
2155         // Call callback with the fields of interest
2156         if(callback(name, (address)base, (address)top, param)) {
2157           // Oops abort, callback aborted
2158           fclose(procmapsFile);
2159           return 1;
2160         }
2161       }
2162     }
2163     fclose(procmapsFile);
2164   }
2165   return 0;
2166 }
2167 
2168 void os::print_os_info_brief(outputStream* st) {
2169   os::Linux::print_distro_info(st);
2170 
2171   os::Posix::print_uname_info(st);
2172 
2173   os::Linux::print_libversion_info(st);
2174 
2175 }
2176 
2177 void os::print_os_info(outputStream* st) {
2178   st->print("OS:");
2179 
2180   os::Linux::print_distro_info(st);
2181 
2182   os::Posix::print_uname_info(st);
2183 
2184   // Print warning if unsafe chroot environment detected
2185   if (unsafe_chroot_detected) {
2186     st->print("WARNING!! ");
2187     st->print_cr("%s", unstable_chroot_error);
2188   }
2189 
2190   os::Linux::print_libversion_info(st);
2191 
2192   os::Posix::print_rlimit_info(st);
2193 
2194   os::Posix::print_load_average(st);
2195 
2196   os::Linux::print_full_memory_info(st);
2197 }
2198 
2199 // Try to identify popular distros.
2200 // Most Linux distributions have a /etc/XXX-release file, which contains
2201 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2202 // file that also contains the OS version string. Some have more than one
2203 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2204 // /etc/redhat-release.), so the order is important.
2205 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2206 // their own specific XXX-release file as well as a redhat-release file.
2207 // Because of this the XXX-release file needs to be searched for before the
2208 // redhat-release file.
2209 // Since Red Hat has a lsb-release file that is not very descriptive the
2210 // search for redhat-release needs to be before lsb-release.
2211 // Since the lsb-release file is the new standard it needs to be searched
2212 // before the older style release files.
2213 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2214 // next to last resort.  The os-release file is a new standard that contains
2215 // distribution information and the system-release file seems to be an old
2216 // standard that has been replaced by the lsb-release and os-release files.
2217 // Searching for the debian_version file is the last resort.  It contains
2218 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2219 // "Debian " is printed before the contents of the debian_version file.
2220 void os::Linux::print_distro_info(outputStream* st) {
2221   if (!_print_ascii_file("/etc/oracle-release", st) &&
2222       !_print_ascii_file("/etc/mandriva-release", st) &&
2223       !_print_ascii_file("/etc/mandrake-release", st) &&
2224       !_print_ascii_file("/etc/sun-release", st) &&
2225       !_print_ascii_file("/etc/redhat-release", st) &&
2226       !_print_ascii_file("/etc/lsb-release", st) &&
2227       !_print_ascii_file("/etc/SuSE-release", st) &&
2228       !_print_ascii_file("/etc/turbolinux-release", st) &&
2229       !_print_ascii_file("/etc/gentoo-release", st) &&
2230       !_print_ascii_file("/etc/ltib-release", st) &&
2231       !_print_ascii_file("/etc/angstrom-version", st) &&
2232       !_print_ascii_file("/etc/system-release", st) &&
2233       !_print_ascii_file("/etc/os-release", st)) {
2234 
2235     if (file_exists("/etc/debian_version")) {
2236       st->print("Debian ");
2237       _print_ascii_file("/etc/debian_version", st);
2238     } else {
2239       st->print("Linux");
2240     }
2241   }
2242   st->cr();
2243 }
2244 
2245 void os::Linux::print_libversion_info(outputStream* st) {
2246   // libc, pthread
2247   st->print("libc:");
2248   st->print("%s ", os::Linux::glibc_version());
2249   st->print("%s ", os::Linux::libpthread_version());
2250   if (os::Linux::is_LinuxThreads()) {
2251     st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2252   }
2253   st->cr();
2254 }
2255 
2256 void os::Linux::print_full_memory_info(outputStream* st) {
2257   st->print("\n/proc/meminfo:\n");
2258   _print_ascii_file("/proc/meminfo", st);
2259   st->cr();
2260 }
2261 
2262 void os::print_memory_info(outputStream* st) {
2263 
2264   st->print("Memory:");
2265   st->print(" %dk page", os::vm_page_size()>>10);
2266 
2267   // values in struct sysinfo are "unsigned long"
2268   struct sysinfo si;
2269   sysinfo(&si);
2270 
2271   st->print(", physical " UINT64_FORMAT "k",
2272             os::physical_memory() >> 10);
2273   st->print("(" UINT64_FORMAT "k free)",
2274             os::available_memory() >> 10);
2275   st->print(", swap " UINT64_FORMAT "k",
2276             ((jlong)si.totalswap * si.mem_unit) >> 10);
2277   st->print("(" UINT64_FORMAT "k free)",
2278             ((jlong)si.freeswap * si.mem_unit) >> 10);
2279   st->cr();
2280 }
2281 
2282 void os::pd_print_cpu_info(outputStream* st) {
2283   st->print("\n/proc/cpuinfo:\n");
2284   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2285     st->print("  <Not Available>");
2286   }
2287   st->cr();
2288 }
2289 
2290 void os::print_siginfo(outputStream* st, void* siginfo) {
2291   const siginfo_t* si = (const siginfo_t*)siginfo;
2292 
2293   os::Posix::print_siginfo_brief(st, si);
2294 #if INCLUDE_CDS
2295   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2296       UseSharedSpaces) {
2297     FileMapInfo* mapinfo = FileMapInfo::current_info();
2298     if (mapinfo->is_in_shared_space(si->si_addr)) {
2299       st->print("\n\nError accessing class data sharing archive."   \
2300                 " Mapped file inaccessible during execution, "      \
2301                 " possible disk/network problem.");
2302     }
2303   }
2304 #endif
2305   st->cr();
2306 }
2307 
2308 
2309 static void print_signal_handler(outputStream* st, int sig,
2310                                  char* buf, size_t buflen);
2311 
2312 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2313   st->print_cr("Signal Handlers:");
2314   print_signal_handler(st, SIGSEGV, buf, buflen);
2315   print_signal_handler(st, SIGBUS , buf, buflen);
2316   print_signal_handler(st, SIGFPE , buf, buflen);
2317   print_signal_handler(st, SIGPIPE, buf, buflen);
2318   print_signal_handler(st, SIGXFSZ, buf, buflen);
2319   print_signal_handler(st, SIGILL , buf, buflen);
2320   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2321   print_signal_handler(st, SR_signum, buf, buflen);
2322   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2323   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2324   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2325   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2326 #if defined(PPC64)
2327   print_signal_handler(st, SIGTRAP, buf, buflen);
2328 #endif
2329 }
2330 
2331 static char saved_jvm_path[MAXPATHLEN] = {0};
2332 
2333 // Find the full path to the current module, libjvm.so
2334 void os::jvm_path(char *buf, jint buflen) {
2335   // Error checking.
2336   if (buflen < MAXPATHLEN) {
2337     assert(false, "must use a large-enough buffer");
2338     buf[0] = '\0';
2339     return;
2340   }
2341   // Lazy resolve the path to current module.
2342   if (saved_jvm_path[0] != 0) {
2343     strcpy(buf, saved_jvm_path);
2344     return;
2345   }
2346 
2347   char dli_fname[MAXPATHLEN];
2348   bool ret = dll_address_to_library_name(
2349                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2350                                          dli_fname, sizeof(dli_fname), NULL);
2351   assert(ret, "cannot locate libjvm");
2352   char *rp = NULL;
2353   if (ret && dli_fname[0] != '\0') {
2354     rp = realpath(dli_fname, buf);
2355   }
2356   if (rp == NULL) {
2357     return;
2358   }
2359 
2360   if (Arguments::sun_java_launcher_is_altjvm()) {
2361     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2362     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2363     // If "/jre/lib/" appears at the right place in the string, then
2364     // assume we are installed in a JDK and we're done. Otherwise, check
2365     // for a JAVA_HOME environment variable and fix up the path so it
2366     // looks like libjvm.so is installed there (append a fake suffix
2367     // hotspot/libjvm.so).
2368     const char *p = buf + strlen(buf) - 1;
2369     for (int count = 0; p > buf && count < 5; ++count) {
2370       for (--p; p > buf && *p != '/'; --p)
2371         /* empty */ ;
2372     }
2373 
2374     if (strncmp(p, "/jre/lib/", 9) != 0) {
2375       // Look for JAVA_HOME in the environment.
2376       char* java_home_var = ::getenv("JAVA_HOME");
2377       if (java_home_var != NULL && java_home_var[0] != 0) {
2378         char* jrelib_p;
2379         int len;
2380 
2381         // Check the current module name "libjvm.so".
2382         p = strrchr(buf, '/');
2383         assert(strstr(p, "/libjvm") == p, "invalid library name");
2384 
2385         rp = realpath(java_home_var, buf);
2386         if (rp == NULL) {
2387           return;
2388         }
2389 
2390         // determine if this is a legacy image or modules image
2391         // modules image doesn't have "jre" subdirectory
2392         len = strlen(buf);
2393         assert(len < buflen, "Ran out of buffer room");
2394         jrelib_p = buf + len;
2395         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2396         if (0 != access(buf, F_OK)) {
2397           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2398         }
2399 
2400         if (0 == access(buf, F_OK)) {
2401           // Use current module name "libjvm.so"
2402           len = strlen(buf);
2403           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2404         } else {
2405           // Go back to path of .so
2406           rp = realpath(dli_fname, buf);
2407           if (rp == NULL) {
2408             return;
2409           }
2410         }
2411       }
2412     }
2413   }
2414 
2415   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2416 }
2417 
2418 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2419   // no prefix required, not even "_"
2420 }
2421 
2422 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2423   // no suffix required
2424 }
2425 
2426 ////////////////////////////////////////////////////////////////////////////////
2427 // sun.misc.Signal support
2428 
2429 static volatile jint sigint_count = 0;
2430 
2431 static void UserHandler(int sig, void *siginfo, void *context) {
2432   // 4511530 - sem_post is serialized and handled by the manager thread. When
2433   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2434   // don't want to flood the manager thread with sem_post requests.
2435   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2436     return;
2437   }
2438 
2439   // Ctrl-C is pressed during error reporting, likely because the error
2440   // handler fails to abort. Let VM die immediately.
2441   if (sig == SIGINT && is_error_reported()) {
2442     os::die();
2443   }
2444 
2445   os::signal_notify(sig);
2446 }
2447 
2448 void* os::user_handler() {
2449   return CAST_FROM_FN_PTR(void*, UserHandler);
2450 }
2451 
2452 class Semaphore : public StackObj {
2453  public:
2454   Semaphore();
2455   ~Semaphore();
2456   void signal();
2457   void wait();
2458   bool trywait();
2459   bool timedwait(unsigned int sec, int nsec);
2460  private:
2461   sem_t _semaphore;
2462 };
2463 
2464 Semaphore::Semaphore() {
2465   sem_init(&_semaphore, 0, 0);
2466 }
2467 
2468 Semaphore::~Semaphore() {
2469   sem_destroy(&_semaphore);
2470 }
2471 
2472 void Semaphore::signal() {
2473   sem_post(&_semaphore);
2474 }
2475 
2476 void Semaphore::wait() {
2477   sem_wait(&_semaphore);
2478 }
2479 
2480 bool Semaphore::trywait() {
2481   return sem_trywait(&_semaphore) == 0;
2482 }
2483 
2484 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2485 
2486   struct timespec ts;
2487   // Semaphore's are always associated with CLOCK_REALTIME
2488   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2489   // see unpackTime for discussion on overflow checking
2490   if (sec >= MAX_SECS) {
2491     ts.tv_sec += MAX_SECS;
2492     ts.tv_nsec = 0;
2493   } else {
2494     ts.tv_sec += sec;
2495     ts.tv_nsec += nsec;
2496     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2497       ts.tv_nsec -= NANOSECS_PER_SEC;
2498       ++ts.tv_sec; // note: this must be <= max_secs
2499     }
2500   }
2501 
2502   while (1) {
2503     int result = sem_timedwait(&_semaphore, &ts);
2504     if (result == 0) {
2505       return true;
2506     } else if (errno == EINTR) {
2507       continue;
2508     } else if (errno == ETIMEDOUT) {
2509       return false;
2510     } else {
2511       return false;
2512     }
2513   }
2514 }
2515 
2516 extern "C" {
2517   typedef void (*sa_handler_t)(int);
2518   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2519 }
2520 
2521 void* os::signal(int signal_number, void* handler) {
2522   struct sigaction sigAct, oldSigAct;
2523 
2524   sigfillset(&(sigAct.sa_mask));
2525   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2526   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2527 
2528   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2529     // -1 means registration failed
2530     return (void *)-1;
2531   }
2532 
2533   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2534 }
2535 
2536 void os::signal_raise(int signal_number) {
2537   ::raise(signal_number);
2538 }
2539 
2540 // The following code is moved from os.cpp for making this
2541 // code platform specific, which it is by its very nature.
2542 
2543 // Will be modified when max signal is changed to be dynamic
2544 int os::sigexitnum_pd() {
2545   return NSIG;
2546 }
2547 
2548 // a counter for each possible signal value
2549 static volatile jint pending_signals[NSIG+1] = { 0 };
2550 
2551 // Linux(POSIX) specific hand shaking semaphore.
2552 static sem_t sig_sem;
2553 static Semaphore sr_semaphore;
2554 
2555 void os::signal_init_pd() {
2556   // Initialize signal structures
2557   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2558 
2559   // Initialize signal semaphore
2560   ::sem_init(&sig_sem, 0, 0);
2561 }
2562 
2563 void os::signal_notify(int sig) {
2564   Atomic::inc(&pending_signals[sig]);
2565   ::sem_post(&sig_sem);
2566 }
2567 
2568 static int check_pending_signals(bool wait) {
2569   Atomic::store(0, &sigint_count);
2570   for (;;) {
2571     for (int i = 0; i < NSIG + 1; i++) {
2572       jint n = pending_signals[i];
2573       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2574         return i;
2575       }
2576     }
2577     if (!wait) {
2578       return -1;
2579     }
2580     JavaThread *thread = JavaThread::current();
2581     ThreadBlockInVM tbivm(thread);
2582 
2583     bool threadIsSuspended;
2584     do {
2585       thread->set_suspend_equivalent();
2586       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2587       ::sem_wait(&sig_sem);
2588 
2589       // were we externally suspended while we were waiting?
2590       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2591       if (threadIsSuspended) {
2592         // The semaphore has been incremented, but while we were waiting
2593         // another thread suspended us. We don't want to continue running
2594         // while suspended because that would surprise the thread that
2595         // suspended us.
2596         ::sem_post(&sig_sem);
2597 
2598         thread->java_suspend_self();
2599       }
2600     } while (threadIsSuspended);
2601   }
2602 }
2603 
2604 int os::signal_lookup() {
2605   return check_pending_signals(false);
2606 }
2607 
2608 int os::signal_wait() {
2609   return check_pending_signals(true);
2610 }
2611 
2612 ////////////////////////////////////////////////////////////////////////////////
2613 // Virtual Memory
2614 
2615 int os::vm_page_size() {
2616   // Seems redundant as all get out
2617   assert(os::Linux::page_size() != -1, "must call os::init");
2618   return os::Linux::page_size();
2619 }
2620 
2621 // Solaris allocates memory by pages.
2622 int os::vm_allocation_granularity() {
2623   assert(os::Linux::page_size() != -1, "must call os::init");
2624   return os::Linux::page_size();
2625 }
2626 
2627 // Rationale behind this function:
2628 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2629 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2630 //  samples for JITted code. Here we create private executable mapping over the code cache
2631 //  and then we can use standard (well, almost, as mapping can change) way to provide
2632 //  info for the reporting script by storing timestamp and location of symbol
2633 void linux_wrap_code(char* base, size_t size) {
2634   static volatile jint cnt = 0;
2635 
2636   if (!UseOprofile) {
2637     return;
2638   }
2639 
2640   char buf[PATH_MAX+1];
2641   int num = Atomic::add(1, &cnt);
2642 
2643   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2644            os::get_temp_directory(), os::current_process_id(), num);
2645   unlink(buf);
2646 
2647   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2648 
2649   if (fd != -1) {
2650     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2651     if (rv != (off_t)-1) {
2652       if (::write(fd, "", 1) == 1) {
2653         mmap(base, size,
2654              PROT_READ|PROT_WRITE|PROT_EXEC,
2655              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2656       }
2657     }
2658     ::close(fd);
2659     unlink(buf);
2660   }
2661 }
2662 
2663 static bool recoverable_mmap_error(int err) {
2664   // See if the error is one we can let the caller handle. This
2665   // list of errno values comes from JBS-6843484. I can't find a
2666   // Linux man page that documents this specific set of errno
2667   // values so while this list currently matches Solaris, it may
2668   // change as we gain experience with this failure mode.
2669   switch (err) {
2670   case EBADF:
2671   case EINVAL:
2672   case ENOTSUP:
2673     // let the caller deal with these errors
2674     return true;
2675 
2676   default:
2677     // Any remaining errors on this OS can cause our reserved mapping
2678     // to be lost. That can cause confusion where different data
2679     // structures think they have the same memory mapped. The worst
2680     // scenario is if both the VM and a library think they have the
2681     // same memory mapped.
2682     return false;
2683   }
2684 }
2685 
2686 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2687                                     int err) {
2688   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2689           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2690           strerror(err), err);
2691 }
2692 
2693 static void warn_fail_commit_memory(char* addr, size_t size,
2694                                     size_t alignment_hint, bool exec,
2695                                     int err) {
2696   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2697           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2698           alignment_hint, exec, strerror(err), err);
2699 }
2700 
2701 // NOTE: Linux kernel does not really reserve the pages for us.
2702 //       All it does is to check if there are enough free pages
2703 //       left at the time of mmap(). This could be a potential
2704 //       problem.
2705 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2706   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2707   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2708                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2709   if (res != (uintptr_t) MAP_FAILED) {
2710     if (UseNUMAInterleaving) {
2711       numa_make_global(addr, size);
2712     }
2713     return 0;
2714   }
2715 
2716   int err = errno;  // save errno from mmap() call above
2717 
2718   if (!recoverable_mmap_error(err)) {
2719     warn_fail_commit_memory(addr, size, exec, err);
2720     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2721   }
2722 
2723   return err;
2724 }
2725 
2726 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2727   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2728 }
2729 
2730 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2731                                   const char* mesg) {
2732   assert(mesg != NULL, "mesg must be specified");
2733   int err = os::Linux::commit_memory_impl(addr, size, exec);
2734   if (err != 0) {
2735     // the caller wants all commit errors to exit with the specified mesg:
2736     warn_fail_commit_memory(addr, size, exec, err);
2737     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2738   }
2739 }
2740 
2741 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2742 #ifndef MAP_HUGETLB
2743   #define MAP_HUGETLB 0x40000
2744 #endif
2745 
2746 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2747 #ifndef MADV_HUGEPAGE
2748   #define MADV_HUGEPAGE 14
2749 #endif
2750 
2751 int os::Linux::commit_memory_impl(char* addr, size_t size,
2752                                   size_t alignment_hint, bool exec) {
2753   int err = os::Linux::commit_memory_impl(addr, size, exec);
2754   if (err == 0) {
2755     realign_memory(addr, size, alignment_hint);
2756   }
2757   return err;
2758 }
2759 
2760 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2761                           bool exec) {
2762   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2763 }
2764 
2765 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2766                                   size_t alignment_hint, bool exec,
2767                                   const char* mesg) {
2768   assert(mesg != NULL, "mesg must be specified");
2769   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2770   if (err != 0) {
2771     // the caller wants all commit errors to exit with the specified mesg:
2772     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2773     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2774   }
2775 }
2776 
2777 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2778   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2779     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2780     // be supported or the memory may already be backed by huge pages.
2781     ::madvise(addr, bytes, MADV_HUGEPAGE);
2782   }
2783 }
2784 
2785 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2786   // This method works by doing an mmap over an existing mmaping and effectively discarding
2787   // the existing pages. However it won't work for SHM-based large pages that cannot be
2788   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2789   // small pages on top of the SHM segment. This method always works for small pages, so we
2790   // allow that in any case.
2791   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2792     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2793   }
2794 }
2795 
2796 void os::numa_make_global(char *addr, size_t bytes) {
2797   Linux::numa_interleave_memory(addr, bytes);
2798 }
2799 
2800 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2801 // bind policy to MPOL_PREFERRED for the current thread.
2802 #define USE_MPOL_PREFERRED 0
2803 
2804 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2805   // To make NUMA and large pages more robust when both enabled, we need to ease
2806   // the requirements on where the memory should be allocated. MPOL_BIND is the
2807   // default policy and it will force memory to be allocated on the specified
2808   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2809   // the specified node, but will not force it. Using this policy will prevent
2810   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2811   // free large pages.
2812   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2813   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2814 }
2815 
2816 bool os::numa_topology_changed() { return false; }
2817 
2818 size_t os::numa_get_groups_num() {
2819   int max_node = Linux::numa_max_node();
2820   return max_node > 0 ? max_node + 1 : 1;
2821 }
2822 
2823 int os::numa_get_group_id() {
2824   int cpu_id = Linux::sched_getcpu();
2825   if (cpu_id != -1) {
2826     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2827     if (lgrp_id != -1) {
2828       return lgrp_id;
2829     }
2830   }
2831   return 0;
2832 }
2833 
2834 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2835   for (size_t i = 0; i < size; i++) {
2836     ids[i] = i;
2837   }
2838   return size;
2839 }
2840 
2841 bool os::get_page_info(char *start, page_info* info) {
2842   return false;
2843 }
2844 
2845 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2846                      page_info* page_found) {
2847   return end;
2848 }
2849 
2850 
2851 int os::Linux::sched_getcpu_syscall(void) {
2852   unsigned int cpu;
2853   int retval = -1;
2854 
2855 #if defined(IA32)
2856   #ifndef SYS_getcpu
2857     #define SYS_getcpu 318
2858   #endif
2859   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2860 #elif defined(AMD64)
2861 // Unfortunately we have to bring all these macros here from vsyscall.h
2862 // to be able to compile on old linuxes.
2863   #define __NR_vgetcpu 2
2864   #define VSYSCALL_START (-10UL << 20)
2865   #define VSYSCALL_SIZE 1024
2866   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2867   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2868   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2869   retval = vgetcpu(&cpu, NULL, NULL);
2870 #endif
2871 
2872   return (retval == -1) ? retval : cpu;
2873 }
2874 
2875 // Something to do with the numa-aware allocator needs these symbols
2876 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2877 extern "C" JNIEXPORT void numa_error(char *where) { }
2878 extern "C" JNIEXPORT int fork1() { return fork(); }
2879 
2880 
2881 // If we are running with libnuma version > 2, then we should
2882 // be trying to use symbols with versions 1.1
2883 // If we are running with earlier version, which did not have symbol versions,
2884 // we should use the base version.
2885 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2886   void *f = dlvsym(handle, name, "libnuma_1.1");
2887   if (f == NULL) {
2888     f = dlsym(handle, name);
2889   }
2890   return f;
2891 }
2892 
2893 bool os::Linux::libnuma_init() {
2894   // sched_getcpu() should be in libc.
2895   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2896                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2897 
2898   // If it's not, try a direct syscall.
2899   if (sched_getcpu() == -1) {
2900     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2901                                     (void*)&sched_getcpu_syscall));
2902   }
2903 
2904   if (sched_getcpu() != -1) { // Does it work?
2905     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2906     if (handle != NULL) {
2907       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2908                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2909       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2910                                        libnuma_dlsym(handle, "numa_max_node")));
2911       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2912                                         libnuma_dlsym(handle, "numa_available")));
2913       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2914                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2915       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2916                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2917       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2918                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2919 
2920 
2921       if (numa_available() != -1) {
2922         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2923         // Create a cpu -> node mapping
2924         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2925         rebuild_cpu_to_node_map();
2926         return true;
2927       }
2928     }
2929   }
2930   return false;
2931 }
2932 
2933 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2934 // The table is later used in get_node_by_cpu().
2935 void os::Linux::rebuild_cpu_to_node_map() {
2936   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2937                               // in libnuma (possible values are starting from 16,
2938                               // and continuing up with every other power of 2, but less
2939                               // than the maximum number of CPUs supported by kernel), and
2940                               // is a subject to change (in libnuma version 2 the requirements
2941                               // are more reasonable) we'll just hardcode the number they use
2942                               // in the library.
2943   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2944 
2945   size_t cpu_num = os::active_processor_count();
2946   size_t cpu_map_size = NCPUS / BitsPerCLong;
2947   size_t cpu_map_valid_size =
2948     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2949 
2950   cpu_to_node()->clear();
2951   cpu_to_node()->at_grow(cpu_num - 1);
2952   size_t node_num = numa_get_groups_num();
2953 
2954   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2955   for (size_t i = 0; i < node_num; i++) {
2956     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2957       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2958         if (cpu_map[j] != 0) {
2959           for (size_t k = 0; k < BitsPerCLong; k++) {
2960             if (cpu_map[j] & (1UL << k)) {
2961               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2962             }
2963           }
2964         }
2965       }
2966     }
2967   }
2968   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2969 }
2970 
2971 int os::Linux::get_node_by_cpu(int cpu_id) {
2972   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2973     return cpu_to_node()->at(cpu_id);
2974   }
2975   return -1;
2976 }
2977 
2978 GrowableArray<int>* os::Linux::_cpu_to_node;
2979 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2980 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2981 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2982 os::Linux::numa_available_func_t os::Linux::_numa_available;
2983 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2984 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2985 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2986 unsigned long* os::Linux::_numa_all_nodes;
2987 
2988 bool os::pd_uncommit_memory(char* addr, size_t size) {
2989   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2990                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2991   return res  != (uintptr_t) MAP_FAILED;
2992 }
2993 
2994 static address get_stack_commited_bottom(address bottom, size_t size) {
2995   address nbot = bottom;
2996   address ntop = bottom + size;
2997 
2998   size_t page_sz = os::vm_page_size();
2999   unsigned pages = size / page_sz;
3000 
3001   unsigned char vec[1];
3002   unsigned imin = 1, imax = pages + 1, imid;
3003   int mincore_return_value = 0;
3004 
3005   assert(imin <= imax, "Unexpected page size");
3006 
3007   while (imin < imax) {
3008     imid = (imax + imin) / 2;
3009     nbot = ntop - (imid * page_sz);
3010 
3011     // Use a trick with mincore to check whether the page is mapped or not.
3012     // mincore sets vec to 1 if page resides in memory and to 0 if page
3013     // is swapped output but if page we are asking for is unmapped
3014     // it returns -1,ENOMEM
3015     mincore_return_value = mincore(nbot, page_sz, vec);
3016 
3017     if (mincore_return_value == -1) {
3018       // Page is not mapped go up
3019       // to find first mapped page
3020       if (errno != EAGAIN) {
3021         assert(errno == ENOMEM, "Unexpected mincore errno");
3022         imax = imid;
3023       }
3024     } else {
3025       // Page is mapped go down
3026       // to find first not mapped page
3027       imin = imid + 1;
3028     }
3029   }
3030 
3031   nbot = nbot + page_sz;
3032 
3033   // Adjust stack bottom one page up if last checked page is not mapped
3034   if (mincore_return_value == -1) {
3035     nbot = nbot + page_sz;
3036   }
3037 
3038   return nbot;
3039 }
3040 
3041 
3042 // Linux uses a growable mapping for the stack, and if the mapping for
3043 // the stack guard pages is not removed when we detach a thread the
3044 // stack cannot grow beyond the pages where the stack guard was
3045 // mapped.  If at some point later in the process the stack expands to
3046 // that point, the Linux kernel cannot expand the stack any further
3047 // because the guard pages are in the way, and a segfault occurs.
3048 //
3049 // However, it's essential not to split the stack region by unmapping
3050 // a region (leaving a hole) that's already part of the stack mapping,
3051 // so if the stack mapping has already grown beyond the guard pages at
3052 // the time we create them, we have to truncate the stack mapping.
3053 // So, we need to know the extent of the stack mapping when
3054 // create_stack_guard_pages() is called.
3055 
3056 // We only need this for stacks that are growable: at the time of
3057 // writing thread stacks don't use growable mappings (i.e. those
3058 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3059 // only applies to the main thread.
3060 
3061 // If the (growable) stack mapping already extends beyond the point
3062 // where we're going to put our guard pages, truncate the mapping at
3063 // that point by munmap()ping it.  This ensures that when we later
3064 // munmap() the guard pages we don't leave a hole in the stack
3065 // mapping. This only affects the main/initial thread
3066 
3067 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3068   if (os::Linux::is_initial_thread()) {
3069     // As we manually grow stack up to bottom inside create_attached_thread(),
3070     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3071     // we don't need to do anything special.
3072     // Check it first, before calling heavy function.
3073     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3074     unsigned char vec[1];
3075 
3076     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3077       // Fallback to slow path on all errors, including EAGAIN
3078       stack_extent = (uintptr_t) get_stack_commited_bottom(
3079                                                            os::Linux::initial_thread_stack_bottom(),
3080                                                            (size_t)addr - stack_extent);
3081     }
3082 
3083     if (stack_extent < (uintptr_t)addr) {
3084       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3085     }
3086   }
3087 
3088   return os::commit_memory(addr, size, !ExecMem);
3089 }
3090 
3091 // If this is a growable mapping, remove the guard pages entirely by
3092 // munmap()ping them.  If not, just call uncommit_memory(). This only
3093 // affects the main/initial thread, but guard against future OS changes
3094 // It's safe to always unmap guard pages for initial thread because we
3095 // always place it right after end of the mapped region
3096 
3097 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3098   uintptr_t stack_extent, stack_base;
3099 
3100   if (os::Linux::is_initial_thread()) {
3101     return ::munmap(addr, size) == 0;
3102   }
3103 
3104   return os::uncommit_memory(addr, size);
3105 }
3106 
3107 static address _highest_vm_reserved_address = NULL;
3108 
3109 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3110 // at 'requested_addr'. If there are existing memory mappings at the same
3111 // location, however, they will be overwritten. If 'fixed' is false,
3112 // 'requested_addr' is only treated as a hint, the return value may or
3113 // may not start from the requested address. Unlike Linux mmap(), this
3114 // function returns NULL to indicate failure.
3115 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3116   char * addr;
3117   int flags;
3118 
3119   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3120   if (fixed) {
3121     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3122     flags |= MAP_FIXED;
3123   }
3124 
3125   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3126   // touch an uncommitted page. Otherwise, the read/write might
3127   // succeed if we have enough swap space to back the physical page.
3128   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3129                        flags, -1, 0);
3130 
3131   if (addr != MAP_FAILED) {
3132     // anon_mmap() should only get called during VM initialization,
3133     // don't need lock (actually we can skip locking even it can be called
3134     // from multiple threads, because _highest_vm_reserved_address is just a
3135     // hint about the upper limit of non-stack memory regions.)
3136     if ((address)addr + bytes > _highest_vm_reserved_address) {
3137       _highest_vm_reserved_address = (address)addr + bytes;
3138     }
3139   }
3140 
3141   return addr == MAP_FAILED ? NULL : addr;
3142 }
3143 
3144 // Don't update _highest_vm_reserved_address, because there might be memory
3145 // regions above addr + size. If so, releasing a memory region only creates
3146 // a hole in the address space, it doesn't help prevent heap-stack collision.
3147 //
3148 static int anon_munmap(char * addr, size_t size) {
3149   return ::munmap(addr, size) == 0;
3150 }
3151 
3152 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3153                             size_t alignment_hint) {
3154   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3155 }
3156 
3157 bool os::pd_release_memory(char* addr, size_t size) {
3158   return anon_munmap(addr, size);
3159 }
3160 
3161 static address highest_vm_reserved_address() {
3162   return _highest_vm_reserved_address;
3163 }
3164 
3165 static bool linux_mprotect(char* addr, size_t size, int prot) {
3166   // Linux wants the mprotect address argument to be page aligned.
3167   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3168 
3169   // According to SUSv3, mprotect() should only be used with mappings
3170   // established by mmap(), and mmap() always maps whole pages. Unaligned
3171   // 'addr' likely indicates problem in the VM (e.g. trying to change
3172   // protection of malloc'ed or statically allocated memory). Check the
3173   // caller if you hit this assert.
3174   assert(addr == bottom, "sanity check");
3175 
3176   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3177   return ::mprotect(bottom, size, prot) == 0;
3178 }
3179 
3180 // Set protections specified
3181 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3182                         bool is_committed) {
3183   unsigned int p = 0;
3184   switch (prot) {
3185   case MEM_PROT_NONE: p = PROT_NONE; break;
3186   case MEM_PROT_READ: p = PROT_READ; break;
3187   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3188   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3189   default:
3190     ShouldNotReachHere();
3191   }
3192   // is_committed is unused.
3193   return linux_mprotect(addr, bytes, p);
3194 }
3195 
3196 bool os::guard_memory(char* addr, size_t size) {
3197   return linux_mprotect(addr, size, PROT_NONE);
3198 }
3199 
3200 bool os::unguard_memory(char* addr, size_t size) {
3201   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3202 }
3203 
3204 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3205                                                     size_t page_size) {
3206   bool result = false;
3207   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3208                  MAP_ANONYMOUS|MAP_PRIVATE,
3209                  -1, 0);
3210   if (p != MAP_FAILED) {
3211     void *aligned_p = align_ptr_up(p, page_size);
3212 
3213     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3214 
3215     munmap(p, page_size * 2);
3216   }
3217 
3218   if (warn && !result) {
3219     warning("TransparentHugePages is not supported by the operating system.");
3220   }
3221 
3222   return result;
3223 }
3224 
3225 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3226   bool result = false;
3227   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3228                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3229                  -1, 0);
3230 
3231   if (p != MAP_FAILED) {
3232     // We don't know if this really is a huge page or not.
3233     FILE *fp = fopen("/proc/self/maps", "r");
3234     if (fp) {
3235       while (!feof(fp)) {
3236         char chars[257];
3237         long x = 0;
3238         if (fgets(chars, sizeof(chars), fp)) {
3239           if (sscanf(chars, "%lx-%*x", &x) == 1
3240               && x == (long)p) {
3241             if (strstr (chars, "hugepage")) {
3242               result = true;
3243               break;
3244             }
3245           }
3246         }
3247       }
3248       fclose(fp);
3249     }
3250     munmap(p, page_size);
3251   }
3252 
3253   if (warn && !result) {
3254     warning("HugeTLBFS is not supported by the operating system.");
3255   }
3256 
3257   return result;
3258 }
3259 
3260 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3261 //
3262 // From the coredump_filter documentation:
3263 //
3264 // - (bit 0) anonymous private memory
3265 // - (bit 1) anonymous shared memory
3266 // - (bit 2) file-backed private memory
3267 // - (bit 3) file-backed shared memory
3268 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3269 //           effective only if the bit 2 is cleared)
3270 // - (bit 5) hugetlb private memory
3271 // - (bit 6) hugetlb shared memory
3272 //
3273 static void set_coredump_filter(void) {
3274   FILE *f;
3275   long cdm;
3276 
3277   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3278     return;
3279   }
3280 
3281   if (fscanf(f, "%lx", &cdm) != 1) {
3282     fclose(f);
3283     return;
3284   }
3285 
3286   rewind(f);
3287 
3288   if ((cdm & LARGEPAGES_BIT) == 0) {
3289     cdm |= LARGEPAGES_BIT;
3290     fprintf(f, "%#lx", cdm);
3291   }
3292 
3293   fclose(f);
3294 }
3295 
3296 // Large page support
3297 
3298 static size_t _large_page_size = 0;
3299 
3300 size_t os::Linux::find_large_page_size() {
3301   size_t large_page_size = 0;
3302 
3303   // large_page_size on Linux is used to round up heap size. x86 uses either
3304   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3305   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3306   // page as large as 256M.
3307   //
3308   // Here we try to figure out page size by parsing /proc/meminfo and looking
3309   // for a line with the following format:
3310   //    Hugepagesize:     2048 kB
3311   //
3312   // If we can't determine the value (e.g. /proc is not mounted, or the text
3313   // format has been changed), we'll use the largest page size supported by
3314   // the processor.
3315 
3316 #ifndef ZERO
3317   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3318                      ARM_ONLY(2 * M) PPC_ONLY(4 * M) AARCH64_ONLY(2 * M);
3319 #endif // ZERO
3320 
3321   FILE *fp = fopen("/proc/meminfo", "r");
3322   if (fp) {
3323     while (!feof(fp)) {
3324       int x = 0;
3325       char buf[16];
3326       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3327         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3328           large_page_size = x * K;
3329           break;
3330         }
3331       } else {
3332         // skip to next line
3333         for (;;) {
3334           int ch = fgetc(fp);
3335           if (ch == EOF || ch == (int)'\n') break;
3336         }
3337       }
3338     }
3339     fclose(fp);
3340   }
3341 
3342   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3343     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3344             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3345             proper_unit_for_byte_size(large_page_size));
3346   }
3347 
3348   return large_page_size;
3349 }
3350 
3351 size_t os::Linux::setup_large_page_size() {
3352   _large_page_size = Linux::find_large_page_size();
3353   const size_t default_page_size = (size_t)Linux::page_size();
3354   if (_large_page_size > default_page_size) {
3355     _page_sizes[0] = _large_page_size;
3356     _page_sizes[1] = default_page_size;
3357     _page_sizes[2] = 0;
3358   }
3359 
3360   return _large_page_size;
3361 }
3362 
3363 bool os::Linux::setup_large_page_type(size_t page_size) {
3364   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3365       FLAG_IS_DEFAULT(UseSHM) &&
3366       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3367 
3368     // The type of large pages has not been specified by the user.
3369 
3370     // Try UseHugeTLBFS and then UseSHM.
3371     UseHugeTLBFS = UseSHM = true;
3372 
3373     // Don't try UseTransparentHugePages since there are known
3374     // performance issues with it turned on. This might change in the future.
3375     UseTransparentHugePages = false;
3376   }
3377 
3378   if (UseTransparentHugePages) {
3379     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3380     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3381       UseHugeTLBFS = false;
3382       UseSHM = false;
3383       return true;
3384     }
3385     UseTransparentHugePages = false;
3386   }
3387 
3388   if (UseHugeTLBFS) {
3389     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3390     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3391       UseSHM = false;
3392       return true;
3393     }
3394     UseHugeTLBFS = false;
3395   }
3396 
3397   return UseSHM;
3398 }
3399 
3400 void os::large_page_init() {
3401   if (!UseLargePages &&
3402       !UseTransparentHugePages &&
3403       !UseHugeTLBFS &&
3404       !UseSHM) {
3405     // Not using large pages.
3406     return;
3407   }
3408 
3409   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3410     // The user explicitly turned off large pages.
3411     // Ignore the rest of the large pages flags.
3412     UseTransparentHugePages = false;
3413     UseHugeTLBFS = false;
3414     UseSHM = false;
3415     return;
3416   }
3417 
3418   size_t large_page_size = Linux::setup_large_page_size();
3419   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3420 
3421   set_coredump_filter();
3422 }
3423 
3424 #ifndef SHM_HUGETLB
3425   #define SHM_HUGETLB 04000
3426 #endif
3427 
3428 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3429                                             char* req_addr, bool exec) {
3430   // "exec" is passed in but not used.  Creating the shared image for
3431   // the code cache doesn't have an SHM_X executable permission to check.
3432   assert(UseLargePages && UseSHM, "only for SHM large pages");
3433   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3434 
3435   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3436     return NULL; // Fallback to small pages.
3437   }
3438 
3439   key_t key = IPC_PRIVATE;
3440   char *addr;
3441 
3442   bool warn_on_failure = UseLargePages &&
3443                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3444                          !FLAG_IS_DEFAULT(UseSHM) ||
3445                          !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3446   char msg[128];
3447 
3448   // Create a large shared memory region to attach to based on size.
3449   // Currently, size is the total size of the heap
3450   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3451   if (shmid == -1) {
3452     // Possible reasons for shmget failure:
3453     // 1. shmmax is too small for Java heap.
3454     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3455     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3456     // 2. not enough large page memory.
3457     //    > check available large pages: cat /proc/meminfo
3458     //    > increase amount of large pages:
3459     //          echo new_value > /proc/sys/vm/nr_hugepages
3460     //      Note 1: different Linux may use different name for this property,
3461     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3462     //      Note 2: it's possible there's enough physical memory available but
3463     //            they are so fragmented after a long run that they can't
3464     //            coalesce into large pages. Try to reserve large pages when
3465     //            the system is still "fresh".
3466     if (warn_on_failure) {
3467       jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3468       warning("%s", msg);
3469     }
3470     return NULL;
3471   }
3472 
3473   // attach to the region
3474   addr = (char*)shmat(shmid, req_addr, 0);
3475   int err = errno;
3476 
3477   // Remove shmid. If shmat() is successful, the actual shared memory segment
3478   // will be deleted when it's detached by shmdt() or when the process
3479   // terminates. If shmat() is not successful this will remove the shared
3480   // segment immediately.
3481   shmctl(shmid, IPC_RMID, NULL);
3482 
3483   if ((intptr_t)addr == -1) {
3484     if (warn_on_failure) {
3485       jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3486       warning("%s", msg);
3487     }
3488     return NULL;
3489   }
3490 
3491   return addr;
3492 }
3493 
3494 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3495                                         int error) {
3496   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3497 
3498   bool warn_on_failure = UseLargePages &&
3499       (!FLAG_IS_DEFAULT(UseLargePages) ||
3500        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3501        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3502 
3503   if (warn_on_failure) {
3504     char msg[128];
3505     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3506                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3507     warning("%s", msg);
3508   }
3509 }
3510 
3511 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3512                                                         char* req_addr,
3513                                                         bool exec) {
3514   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3515   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3516   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3517 
3518   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3519   char* addr = (char*)::mmap(req_addr, bytes, prot,
3520                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3521                              -1, 0);
3522 
3523   if (addr == MAP_FAILED) {
3524     warn_on_large_pages_failure(req_addr, bytes, errno);
3525     return NULL;
3526   }
3527 
3528   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3529 
3530   return addr;
3531 }
3532 
3533 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3534                                                          size_t alignment,
3535                                                          char* req_addr,
3536                                                          bool exec) {
3537   size_t large_page_size = os::large_page_size();
3538 
3539   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3540 
3541   // Allocate small pages.
3542 
3543   char* start;
3544   if (req_addr != NULL) {
3545     assert(is_ptr_aligned(req_addr, alignment), "Must be");
3546     assert(is_size_aligned(bytes, alignment), "Must be");
3547     start = os::reserve_memory(bytes, req_addr);
3548     assert(start == NULL || start == req_addr, "Must be");
3549   } else {
3550     start = os::reserve_memory_aligned(bytes, alignment);
3551   }
3552 
3553   if (start == NULL) {
3554     return NULL;
3555   }
3556 
3557   assert(is_ptr_aligned(start, alignment), "Must be");
3558 
3559   if (MemTracker::tracking_level() > NMT_minimal) {
3560     // os::reserve_memory_special will record this memory area.
3561     // Need to release it here to prevent overlapping reservations.
3562     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3563     tkr.record((address)start, bytes);
3564   }
3565 
3566   char* end = start + bytes;
3567 
3568   // Find the regions of the allocated chunk that can be promoted to large pages.
3569   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3570   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3571 
3572   size_t lp_bytes = lp_end - lp_start;
3573 
3574   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3575 
3576   if (lp_bytes == 0) {
3577     // The mapped region doesn't even span the start and the end of a large page.
3578     // Fall back to allocate a non-special area.
3579     ::munmap(start, end - start);
3580     return NULL;
3581   }
3582 
3583   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3584 
3585 
3586   void* result;
3587 
3588   if (start != lp_start) {
3589     result = ::mmap(start, lp_start - start, prot,
3590                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3591                     -1, 0);
3592     if (result == MAP_FAILED) {
3593       ::munmap(lp_start, end - lp_start);
3594       return NULL;
3595     }
3596   }
3597 
3598   result = ::mmap(lp_start, lp_bytes, prot,
3599                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3600                   -1, 0);
3601   if (result == MAP_FAILED) {
3602     warn_on_large_pages_failure(req_addr, bytes, errno);
3603     // If the mmap above fails, the large pages region will be unmapped and we
3604     // have regions before and after with small pages. Release these regions.
3605     //
3606     // |  mapped  |  unmapped  |  mapped  |
3607     // ^          ^            ^          ^
3608     // start      lp_start     lp_end     end
3609     //
3610     ::munmap(start, lp_start - start);
3611     ::munmap(lp_end, end - lp_end);
3612     return NULL;
3613   }
3614 
3615   if (lp_end != end) {
3616     result = ::mmap(lp_end, end - lp_end, prot,
3617                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3618                     -1, 0);
3619     if (result == MAP_FAILED) {
3620       ::munmap(start, lp_end - start);
3621       return NULL;
3622     }
3623   }
3624 
3625   return start;
3626 }
3627 
3628 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3629                                                    size_t alignment,
3630                                                    char* req_addr,
3631                                                    bool exec) {
3632   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3633   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3634   assert(is_power_of_2(alignment), "Must be");
3635   assert(is_power_of_2(os::large_page_size()), "Must be");
3636   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3637 
3638   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3639     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3640   } else {
3641     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3642   }
3643 }
3644 
3645 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3646                                  char* req_addr, bool exec) {
3647   assert(UseLargePages, "only for large pages");
3648 
3649   char* addr;
3650   if (UseSHM) {
3651     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3652   } else {
3653     assert(UseHugeTLBFS, "must be");
3654     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3655   }
3656 
3657   if (addr != NULL) {
3658     if (UseNUMAInterleaving) {
3659       numa_make_global(addr, bytes);
3660     }
3661 
3662     // The memory is committed
3663     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3664   }
3665 
3666   return addr;
3667 }
3668 
3669 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3670   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3671   return shmdt(base) == 0;
3672 }
3673 
3674 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3675   return pd_release_memory(base, bytes);
3676 }
3677 
3678 bool os::release_memory_special(char* base, size_t bytes) {
3679   bool res;
3680   if (MemTracker::tracking_level() > NMT_minimal) {
3681     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3682     res = os::Linux::release_memory_special_impl(base, bytes);
3683     if (res) {
3684       tkr.record((address)base, bytes);
3685     }
3686 
3687   } else {
3688     res = os::Linux::release_memory_special_impl(base, bytes);
3689   }
3690   return res;
3691 }
3692 
3693 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3694   assert(UseLargePages, "only for large pages");
3695   bool res;
3696 
3697   if (UseSHM) {
3698     res = os::Linux::release_memory_special_shm(base, bytes);
3699   } else {
3700     assert(UseHugeTLBFS, "must be");
3701     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3702   }
3703   return res;
3704 }
3705 
3706 size_t os::large_page_size() {
3707   return _large_page_size;
3708 }
3709 
3710 // With SysV SHM the entire memory region must be allocated as shared
3711 // memory.
3712 // HugeTLBFS allows application to commit large page memory on demand.
3713 // However, when committing memory with HugeTLBFS fails, the region
3714 // that was supposed to be committed will lose the old reservation
3715 // and allow other threads to steal that memory region. Because of this
3716 // behavior we can't commit HugeTLBFS memory.
3717 bool os::can_commit_large_page_memory() {
3718   return UseTransparentHugePages;
3719 }
3720 
3721 bool os::can_execute_large_page_memory() {
3722   return UseTransparentHugePages || UseHugeTLBFS;
3723 }
3724 
3725 // Reserve memory at an arbitrary address, only if that area is
3726 // available (and not reserved for something else).
3727 
3728 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3729   const int max_tries = 10;
3730   char* base[max_tries];
3731   size_t size[max_tries];
3732   const size_t gap = 0x000000;
3733 
3734   // Assert only that the size is a multiple of the page size, since
3735   // that's all that mmap requires, and since that's all we really know
3736   // about at this low abstraction level.  If we need higher alignment,
3737   // we can either pass an alignment to this method or verify alignment
3738   // in one of the methods further up the call chain.  See bug 5044738.
3739   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3740 
3741   // Repeatedly allocate blocks until the block is allocated at the
3742   // right spot. Give up after max_tries. Note that reserve_memory() will
3743   // automatically update _highest_vm_reserved_address if the call is
3744   // successful. The variable tracks the highest memory address every reserved
3745   // by JVM. It is used to detect heap-stack collision if running with
3746   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3747   // space than needed, it could confuse the collision detecting code. To
3748   // solve the problem, save current _highest_vm_reserved_address and
3749   // calculate the correct value before return.
3750   address old_highest = _highest_vm_reserved_address;
3751 
3752   // Linux mmap allows caller to pass an address as hint; give it a try first,
3753   // if kernel honors the hint then we can return immediately.
3754   char * addr = anon_mmap(requested_addr, bytes, false);
3755   if (addr == requested_addr) {
3756     return requested_addr;
3757   }
3758 
3759   if (addr != NULL) {
3760     // mmap() is successful but it fails to reserve at the requested address
3761     anon_munmap(addr, bytes);
3762   }
3763 
3764   int i;
3765   for (i = 0; i < max_tries; ++i) {
3766     base[i] = reserve_memory(bytes);
3767 
3768     if (base[i] != NULL) {
3769       // Is this the block we wanted?
3770       if (base[i] == requested_addr) {
3771         size[i] = bytes;
3772         break;
3773       }
3774 
3775       // Does this overlap the block we wanted? Give back the overlapped
3776       // parts and try again.
3777 
3778       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3779       if (top_overlap >= 0 && top_overlap < bytes) {
3780         unmap_memory(base[i], top_overlap);
3781         base[i] += top_overlap;
3782         size[i] = bytes - top_overlap;
3783       } else {
3784         size_t bottom_overlap = base[i] + bytes - requested_addr;
3785         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3786           unmap_memory(requested_addr, bottom_overlap);
3787           size[i] = bytes - bottom_overlap;
3788         } else {
3789           size[i] = bytes;
3790         }
3791       }
3792     }
3793   }
3794 
3795   // Give back the unused reserved pieces.
3796 
3797   for (int j = 0; j < i; ++j) {
3798     if (base[j] != NULL) {
3799       unmap_memory(base[j], size[j]);
3800     }
3801   }
3802 
3803   if (i < max_tries) {
3804     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3805     return requested_addr;
3806   } else {
3807     _highest_vm_reserved_address = old_highest;
3808     return NULL;
3809   }
3810 }
3811 
3812 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3813   return ::read(fd, buf, nBytes);
3814 }
3815 
3816 // Short sleep, direct OS call.
3817 //
3818 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3819 // sched_yield(2) will actually give up the CPU:
3820 //
3821 //   * Alone on this pariticular CPU, keeps running.
3822 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3823 //     (pre 2.6.39).
3824 //
3825 // So calling this with 0 is an alternative.
3826 //
3827 void os::naked_short_sleep(jlong ms) {
3828   struct timespec req;
3829 
3830   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3831   req.tv_sec = 0;
3832   if (ms > 0) {
3833     req.tv_nsec = (ms % 1000) * 1000000;
3834   } else {
3835     req.tv_nsec = 1;
3836   }
3837 
3838   nanosleep(&req, NULL);
3839 
3840   return;
3841 }
3842 
3843 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3844 void os::infinite_sleep() {
3845   while (true) {    // sleep forever ...
3846     ::sleep(100);   // ... 100 seconds at a time
3847   }
3848 }
3849 
3850 // Used to convert frequent JVM_Yield() to nops
3851 bool os::dont_yield() {
3852   return DontYieldALot;
3853 }
3854 
3855 void os::naked_yield() {
3856   sched_yield();
3857 }
3858 
3859 ////////////////////////////////////////////////////////////////////////////////
3860 // thread priority support
3861 
3862 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3863 // only supports dynamic priority, static priority must be zero. For real-time
3864 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3865 // However, for large multi-threaded applications, SCHED_RR is not only slower
3866 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3867 // of 5 runs - Sep 2005).
3868 //
3869 // The following code actually changes the niceness of kernel-thread/LWP. It
3870 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3871 // not the entire user process, and user level threads are 1:1 mapped to kernel
3872 // threads. It has always been the case, but could change in the future. For
3873 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3874 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3875 
3876 int os::java_to_os_priority[CriticalPriority + 1] = {
3877   19,              // 0 Entry should never be used
3878 
3879    4,              // 1 MinPriority
3880    3,              // 2
3881    2,              // 3
3882 
3883    1,              // 4
3884    0,              // 5 NormPriority
3885   -1,              // 6
3886 
3887   -2,              // 7
3888   -3,              // 8
3889   -4,              // 9 NearMaxPriority
3890 
3891   -5,              // 10 MaxPriority
3892 
3893   -5               // 11 CriticalPriority
3894 };
3895 
3896 static int prio_init() {
3897   if (ThreadPriorityPolicy == 1) {
3898     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3899     // if effective uid is not root. Perhaps, a more elegant way of doing
3900     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3901     if (geteuid() != 0) {
3902       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3903         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3904       }
3905       ThreadPriorityPolicy = 0;
3906     }
3907   }
3908   if (UseCriticalJavaThreadPriority) {
3909     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3910   }
3911   return 0;
3912 }
3913 
3914 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3915   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
3916 
3917   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3918   return (ret == 0) ? OS_OK : OS_ERR;
3919 }
3920 
3921 OSReturn os::get_native_priority(const Thread* const thread,
3922                                  int *priority_ptr) {
3923   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
3924     *priority_ptr = java_to_os_priority[NormPriority];
3925     return OS_OK;
3926   }
3927 
3928   errno = 0;
3929   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3930   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3931 }
3932 
3933 // Hint to the underlying OS that a task switch would not be good.
3934 // Void return because it's a hint and can fail.
3935 void os::hint_no_preempt() {}
3936 
3937 ////////////////////////////////////////////////////////////////////////////////
3938 // suspend/resume support
3939 
3940 //  the low-level signal-based suspend/resume support is a remnant from the
3941 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3942 //  within hotspot. Now there is a single use-case for this:
3943 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3944 //      that runs in the watcher thread.
3945 //  The remaining code is greatly simplified from the more general suspension
3946 //  code that used to be used.
3947 //
3948 //  The protocol is quite simple:
3949 //  - suspend:
3950 //      - sends a signal to the target thread
3951 //      - polls the suspend state of the osthread using a yield loop
3952 //      - target thread signal handler (SR_handler) sets suspend state
3953 //        and blocks in sigsuspend until continued
3954 //  - resume:
3955 //      - sets target osthread state to continue
3956 //      - sends signal to end the sigsuspend loop in the SR_handler
3957 //
3958 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3959 
3960 static void resume_clear_context(OSThread *osthread) {
3961   osthread->set_ucontext(NULL);
3962   osthread->set_siginfo(NULL);
3963 }
3964 
3965 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
3966                                  ucontext_t* context) {
3967   osthread->set_ucontext(context);
3968   osthread->set_siginfo(siginfo);
3969 }
3970 
3971 // Handler function invoked when a thread's execution is suspended or
3972 // resumed. We have to be careful that only async-safe functions are
3973 // called here (Note: most pthread functions are not async safe and
3974 // should be avoided.)
3975 //
3976 // Note: sigwait() is a more natural fit than sigsuspend() from an
3977 // interface point of view, but sigwait() prevents the signal hander
3978 // from being run. libpthread would get very confused by not having
3979 // its signal handlers run and prevents sigwait()'s use with the
3980 // mutex granting granting signal.
3981 //
3982 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3983 //
3984 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3985   // Save and restore errno to avoid confusing native code with EINTR
3986   // after sigsuspend.
3987   int old_errno = errno;
3988 
3989   Thread* thread = Thread::current();
3990   OSThread* osthread = thread->osthread();
3991   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3992 
3993   os::SuspendResume::State current = osthread->sr.state();
3994   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3995     suspend_save_context(osthread, siginfo, context);
3996 
3997     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3998     os::SuspendResume::State state = osthread->sr.suspended();
3999     if (state == os::SuspendResume::SR_SUSPENDED) {
4000       sigset_t suspend_set;  // signals for sigsuspend()
4001 
4002       // get current set of blocked signals and unblock resume signal
4003       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4004       sigdelset(&suspend_set, SR_signum);
4005 
4006       sr_semaphore.signal();
4007       // wait here until we are resumed
4008       while (1) {
4009         sigsuspend(&suspend_set);
4010 
4011         os::SuspendResume::State result = osthread->sr.running();
4012         if (result == os::SuspendResume::SR_RUNNING) {
4013           sr_semaphore.signal();
4014           break;
4015         }
4016       }
4017 
4018     } else if (state == os::SuspendResume::SR_RUNNING) {
4019       // request was cancelled, continue
4020     } else {
4021       ShouldNotReachHere();
4022     }
4023 
4024     resume_clear_context(osthread);
4025   } else if (current == os::SuspendResume::SR_RUNNING) {
4026     // request was cancelled, continue
4027   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4028     // ignore
4029   } else {
4030     // ignore
4031   }
4032 
4033   errno = old_errno;
4034 }
4035 
4036 
4037 static int SR_initialize() {
4038   struct sigaction act;
4039   char *s;
4040   // Get signal number to use for suspend/resume
4041   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4042     int sig = ::strtol(s, 0, 10);
4043     if (sig > 0 || sig < _NSIG) {
4044       SR_signum = sig;
4045     }
4046   }
4047 
4048   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4049          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4050 
4051   sigemptyset(&SR_sigset);
4052   sigaddset(&SR_sigset, SR_signum);
4053 
4054   // Set up signal handler for suspend/resume
4055   act.sa_flags = SA_RESTART|SA_SIGINFO;
4056   act.sa_handler = (void (*)(int)) SR_handler;
4057 
4058   // SR_signum is blocked by default.
4059   // 4528190 - We also need to block pthread restart signal (32 on all
4060   // supported Linux platforms). Note that LinuxThreads need to block
4061   // this signal for all threads to work properly. So we don't have
4062   // to use hard-coded signal number when setting up the mask.
4063   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4064 
4065   if (sigaction(SR_signum, &act, 0) == -1) {
4066     return -1;
4067   }
4068 
4069   // Save signal flag
4070   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4071   return 0;
4072 }
4073 
4074 static int sr_notify(OSThread* osthread) {
4075   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4076   assert_status(status == 0, status, "pthread_kill");
4077   return status;
4078 }
4079 
4080 // "Randomly" selected value for how long we want to spin
4081 // before bailing out on suspending a thread, also how often
4082 // we send a signal to a thread we want to resume
4083 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4084 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4085 
4086 // returns true on success and false on error - really an error is fatal
4087 // but this seems the normal response to library errors
4088 static bool do_suspend(OSThread* osthread) {
4089   assert(osthread->sr.is_running(), "thread should be running");
4090   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4091 
4092   // mark as suspended and send signal
4093   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4094     // failed to switch, state wasn't running?
4095     ShouldNotReachHere();
4096     return false;
4097   }
4098 
4099   if (sr_notify(osthread) != 0) {
4100     ShouldNotReachHere();
4101   }
4102 
4103   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4104   while (true) {
4105     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4106       break;
4107     } else {
4108       // timeout
4109       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4110       if (cancelled == os::SuspendResume::SR_RUNNING) {
4111         return false;
4112       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4113         // make sure that we consume the signal on the semaphore as well
4114         sr_semaphore.wait();
4115         break;
4116       } else {
4117         ShouldNotReachHere();
4118         return false;
4119       }
4120     }
4121   }
4122 
4123   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4124   return true;
4125 }
4126 
4127 static void do_resume(OSThread* osthread) {
4128   assert(osthread->sr.is_suspended(), "thread should be suspended");
4129   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4130 
4131   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4132     // failed to switch to WAKEUP_REQUEST
4133     ShouldNotReachHere();
4134     return;
4135   }
4136 
4137   while (true) {
4138     if (sr_notify(osthread) == 0) {
4139       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4140         if (osthread->sr.is_running()) {
4141           return;
4142         }
4143       }
4144     } else {
4145       ShouldNotReachHere();
4146     }
4147   }
4148 
4149   guarantee(osthread->sr.is_running(), "Must be running!");
4150 }
4151 
4152 ///////////////////////////////////////////////////////////////////////////////////
4153 // signal handling (except suspend/resume)
4154 
4155 // This routine may be used by user applications as a "hook" to catch signals.
4156 // The user-defined signal handler must pass unrecognized signals to this
4157 // routine, and if it returns true (non-zero), then the signal handler must
4158 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4159 // routine will never retun false (zero), but instead will execute a VM panic
4160 // routine kill the process.
4161 //
4162 // If this routine returns false, it is OK to call it again.  This allows
4163 // the user-defined signal handler to perform checks either before or after
4164 // the VM performs its own checks.  Naturally, the user code would be making
4165 // a serious error if it tried to handle an exception (such as a null check
4166 // or breakpoint) that the VM was generating for its own correct operation.
4167 //
4168 // This routine may recognize any of the following kinds of signals:
4169 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4170 // It should be consulted by handlers for any of those signals.
4171 //
4172 // The caller of this routine must pass in the three arguments supplied
4173 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4174 // field of the structure passed to sigaction().  This routine assumes that
4175 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4176 //
4177 // Note that the VM will print warnings if it detects conflicting signal
4178 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4179 //
4180 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4181                                                  siginfo_t* siginfo,
4182                                                  void* ucontext,
4183                                                  int abort_if_unrecognized);
4184 
4185 void signalHandler(int sig, siginfo_t* info, void* uc) {
4186   assert(info != NULL && uc != NULL, "it must be old kernel");
4187   int orig_errno = errno;  // Preserve errno value over signal handler.
4188   JVM_handle_linux_signal(sig, info, uc, true);
4189   errno = orig_errno;
4190 }
4191 
4192 
4193 // This boolean allows users to forward their own non-matching signals
4194 // to JVM_handle_linux_signal, harmlessly.
4195 bool os::Linux::signal_handlers_are_installed = false;
4196 
4197 // For signal-chaining
4198 struct sigaction os::Linux::sigact[MAXSIGNUM];
4199 unsigned int os::Linux::sigs = 0;
4200 bool os::Linux::libjsig_is_loaded = false;
4201 typedef struct sigaction *(*get_signal_t)(int);
4202 get_signal_t os::Linux::get_signal_action = NULL;
4203 
4204 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4205   struct sigaction *actp = NULL;
4206 
4207   if (libjsig_is_loaded) {
4208     // Retrieve the old signal handler from libjsig
4209     actp = (*get_signal_action)(sig);
4210   }
4211   if (actp == NULL) {
4212     // Retrieve the preinstalled signal handler from jvm
4213     actp = get_preinstalled_handler(sig);
4214   }
4215 
4216   return actp;
4217 }
4218 
4219 static bool call_chained_handler(struct sigaction *actp, int sig,
4220                                  siginfo_t *siginfo, void *context) {
4221   // Call the old signal handler
4222   if (actp->sa_handler == SIG_DFL) {
4223     // It's more reasonable to let jvm treat it as an unexpected exception
4224     // instead of taking the default action.
4225     return false;
4226   } else if (actp->sa_handler != SIG_IGN) {
4227     if ((actp->sa_flags & SA_NODEFER) == 0) {
4228       // automaticlly block the signal
4229       sigaddset(&(actp->sa_mask), sig);
4230     }
4231 
4232     sa_handler_t hand;
4233     sa_sigaction_t sa;
4234     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4235     // retrieve the chained handler
4236     if (siginfo_flag_set) {
4237       sa = actp->sa_sigaction;
4238     } else {
4239       hand = actp->sa_handler;
4240     }
4241 
4242     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4243       actp->sa_handler = SIG_DFL;
4244     }
4245 
4246     // try to honor the signal mask
4247     sigset_t oset;
4248     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4249 
4250     // call into the chained handler
4251     if (siginfo_flag_set) {
4252       (*sa)(sig, siginfo, context);
4253     } else {
4254       (*hand)(sig);
4255     }
4256 
4257     // restore the signal mask
4258     pthread_sigmask(SIG_SETMASK, &oset, 0);
4259   }
4260   // Tell jvm's signal handler the signal is taken care of.
4261   return true;
4262 }
4263 
4264 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4265   bool chained = false;
4266   // signal-chaining
4267   if (UseSignalChaining) {
4268     struct sigaction *actp = get_chained_signal_action(sig);
4269     if (actp != NULL) {
4270       chained = call_chained_handler(actp, sig, siginfo, context);
4271     }
4272   }
4273   return chained;
4274 }
4275 
4276 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4277   if ((((unsigned int)1 << sig) & sigs) != 0) {
4278     return &sigact[sig];
4279   }
4280   return NULL;
4281 }
4282 
4283 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4284   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4285   sigact[sig] = oldAct;
4286   sigs |= (unsigned int)1 << sig;
4287 }
4288 
4289 // for diagnostic
4290 int os::Linux::sigflags[MAXSIGNUM];
4291 
4292 int os::Linux::get_our_sigflags(int sig) {
4293   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4294   return sigflags[sig];
4295 }
4296 
4297 void os::Linux::set_our_sigflags(int sig, int flags) {
4298   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4299   sigflags[sig] = flags;
4300 }
4301 
4302 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4303   // Check for overwrite.
4304   struct sigaction oldAct;
4305   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4306 
4307   void* oldhand = oldAct.sa_sigaction
4308                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4309                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4310   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4311       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4312       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4313     if (AllowUserSignalHandlers || !set_installed) {
4314       // Do not overwrite; user takes responsibility to forward to us.
4315       return;
4316     } else if (UseSignalChaining) {
4317       // save the old handler in jvm
4318       save_preinstalled_handler(sig, oldAct);
4319       // libjsig also interposes the sigaction() call below and saves the
4320       // old sigaction on it own.
4321     } else {
4322       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4323                     "%#lx for signal %d.", (long)oldhand, sig));
4324     }
4325   }
4326 
4327   struct sigaction sigAct;
4328   sigfillset(&(sigAct.sa_mask));
4329   sigAct.sa_handler = SIG_DFL;
4330   if (!set_installed) {
4331     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4332   } else {
4333     sigAct.sa_sigaction = signalHandler;
4334     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4335   }
4336   // Save flags, which are set by ours
4337   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4338   sigflags[sig] = sigAct.sa_flags;
4339 
4340   int ret = sigaction(sig, &sigAct, &oldAct);
4341   assert(ret == 0, "check");
4342 
4343   void* oldhand2  = oldAct.sa_sigaction
4344                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4345                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4346   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4347 }
4348 
4349 // install signal handlers for signals that HotSpot needs to
4350 // handle in order to support Java-level exception handling.
4351 
4352 void os::Linux::install_signal_handlers() {
4353   if (!signal_handlers_are_installed) {
4354     signal_handlers_are_installed = true;
4355 
4356     // signal-chaining
4357     typedef void (*signal_setting_t)();
4358     signal_setting_t begin_signal_setting = NULL;
4359     signal_setting_t end_signal_setting = NULL;
4360     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4361                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4362     if (begin_signal_setting != NULL) {
4363       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4364                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4365       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4366                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4367       libjsig_is_loaded = true;
4368       assert(UseSignalChaining, "should enable signal-chaining");
4369     }
4370     if (libjsig_is_loaded) {
4371       // Tell libjsig jvm is setting signal handlers
4372       (*begin_signal_setting)();
4373     }
4374 
4375     set_signal_handler(SIGSEGV, true);
4376     set_signal_handler(SIGPIPE, true);
4377     set_signal_handler(SIGBUS, true);
4378     set_signal_handler(SIGILL, true);
4379     set_signal_handler(SIGFPE, true);
4380 #if defined(PPC64)
4381     set_signal_handler(SIGTRAP, true);
4382 #endif
4383     set_signal_handler(SIGXFSZ, true);
4384 
4385     if (libjsig_is_loaded) {
4386       // Tell libjsig jvm finishes setting signal handlers
4387       (*end_signal_setting)();
4388     }
4389 
4390     // We don't activate signal checker if libjsig is in place, we trust ourselves
4391     // and if UserSignalHandler is installed all bets are off.
4392     // Log that signal checking is off only if -verbose:jni is specified.
4393     if (CheckJNICalls) {
4394       if (libjsig_is_loaded) {
4395         if (PrintJNIResolving) {
4396           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4397         }
4398         check_signals = false;
4399       }
4400       if (AllowUserSignalHandlers) {
4401         if (PrintJNIResolving) {
4402           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4403         }
4404         check_signals = false;
4405       }
4406     }
4407   }
4408 }
4409 
4410 // This is the fastest way to get thread cpu time on Linux.
4411 // Returns cpu time (user+sys) for any thread, not only for current.
4412 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4413 // It might work on 2.6.10+ with a special kernel/glibc patch.
4414 // For reference, please, see IEEE Std 1003.1-2004:
4415 //   http://www.unix.org/single_unix_specification
4416 
4417 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4418   struct timespec tp;
4419   int rc = os::Linux::clock_gettime(clockid, &tp);
4420   assert(rc == 0, "clock_gettime is expected to return 0 code");
4421 
4422   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4423 }
4424 
4425 /////
4426 // glibc on Linux platform uses non-documented flag
4427 // to indicate, that some special sort of signal
4428 // trampoline is used.
4429 // We will never set this flag, and we should
4430 // ignore this flag in our diagnostic
4431 #ifdef SIGNIFICANT_SIGNAL_MASK
4432   #undef SIGNIFICANT_SIGNAL_MASK
4433 #endif
4434 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4435 
4436 static const char* get_signal_handler_name(address handler,
4437                                            char* buf, int buflen) {
4438   int offset;
4439   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4440   if (found) {
4441     // skip directory names
4442     const char *p1, *p2;
4443     p1 = buf;
4444     size_t len = strlen(os::file_separator());
4445     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4446     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4447   } else {
4448     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4449   }
4450   return buf;
4451 }
4452 
4453 static void print_signal_handler(outputStream* st, int sig,
4454                                  char* buf, size_t buflen) {
4455   struct sigaction sa;
4456 
4457   sigaction(sig, NULL, &sa);
4458 
4459   // See comment for SIGNIFICANT_SIGNAL_MASK define
4460   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4461 
4462   st->print("%s: ", os::exception_name(sig, buf, buflen));
4463 
4464   address handler = (sa.sa_flags & SA_SIGINFO)
4465     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4466     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4467 
4468   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4469     st->print("SIG_DFL");
4470   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4471     st->print("SIG_IGN");
4472   } else {
4473     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4474   }
4475 
4476   st->print(", sa_mask[0]=");
4477   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4478 
4479   address rh = VMError::get_resetted_sighandler(sig);
4480   // May be, handler was resetted by VMError?
4481   if (rh != NULL) {
4482     handler = rh;
4483     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4484   }
4485 
4486   st->print(", sa_flags=");
4487   os::Posix::print_sa_flags(st, sa.sa_flags);
4488 
4489   // Check: is it our handler?
4490   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4491       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4492     // It is our signal handler
4493     // check for flags, reset system-used one!
4494     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4495       st->print(
4496                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4497                 os::Linux::get_our_sigflags(sig));
4498     }
4499   }
4500   st->cr();
4501 }
4502 
4503 
4504 #define DO_SIGNAL_CHECK(sig)                      \
4505   do {                                            \
4506     if (!sigismember(&check_signal_done, sig)) {  \
4507       os::Linux::check_signal_handler(sig);       \
4508     }                                             \
4509   } while (0)
4510 
4511 // This method is a periodic task to check for misbehaving JNI applications
4512 // under CheckJNI, we can add any periodic checks here
4513 
4514 void os::run_periodic_checks() {
4515   if (check_signals == false) return;
4516 
4517   // SEGV and BUS if overridden could potentially prevent
4518   // generation of hs*.log in the event of a crash, debugging
4519   // such a case can be very challenging, so we absolutely
4520   // check the following for a good measure:
4521   DO_SIGNAL_CHECK(SIGSEGV);
4522   DO_SIGNAL_CHECK(SIGILL);
4523   DO_SIGNAL_CHECK(SIGFPE);
4524   DO_SIGNAL_CHECK(SIGBUS);
4525   DO_SIGNAL_CHECK(SIGPIPE);
4526   DO_SIGNAL_CHECK(SIGXFSZ);
4527 #if defined(PPC64)
4528   DO_SIGNAL_CHECK(SIGTRAP);
4529 #endif
4530 
4531   // ReduceSignalUsage allows the user to override these handlers
4532   // see comments at the very top and jvm_solaris.h
4533   if (!ReduceSignalUsage) {
4534     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4535     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4536     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4537     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4538   }
4539 
4540   DO_SIGNAL_CHECK(SR_signum);
4541   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4542 }
4543 
4544 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4545 
4546 static os_sigaction_t os_sigaction = NULL;
4547 
4548 void os::Linux::check_signal_handler(int sig) {
4549   char buf[O_BUFLEN];
4550   address jvmHandler = NULL;
4551 
4552 
4553   struct sigaction act;
4554   if (os_sigaction == NULL) {
4555     // only trust the default sigaction, in case it has been interposed
4556     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4557     if (os_sigaction == NULL) return;
4558   }
4559 
4560   os_sigaction(sig, (struct sigaction*)NULL, &act);
4561 
4562 
4563   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4564 
4565   address thisHandler = (act.sa_flags & SA_SIGINFO)
4566     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4567     : CAST_FROM_FN_PTR(address, act.sa_handler);
4568 
4569 
4570   switch (sig) {
4571   case SIGSEGV:
4572   case SIGBUS:
4573   case SIGFPE:
4574   case SIGPIPE:
4575   case SIGILL:
4576   case SIGXFSZ:
4577     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4578     break;
4579 
4580   case SHUTDOWN1_SIGNAL:
4581   case SHUTDOWN2_SIGNAL:
4582   case SHUTDOWN3_SIGNAL:
4583   case BREAK_SIGNAL:
4584     jvmHandler = (address)user_handler();
4585     break;
4586 
4587   case INTERRUPT_SIGNAL:
4588     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4589     break;
4590 
4591   default:
4592     if (sig == SR_signum) {
4593       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4594     } else {
4595       return;
4596     }
4597     break;
4598   }
4599 
4600   if (thisHandler != jvmHandler) {
4601     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4602     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4603     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4604     // No need to check this sig any longer
4605     sigaddset(&check_signal_done, sig);
4606     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4607     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4608       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4609                     exception_name(sig, buf, O_BUFLEN));
4610     }
4611   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4612     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4613     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4614     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4615     // No need to check this sig any longer
4616     sigaddset(&check_signal_done, sig);
4617   }
4618 
4619   // Dump all the signal
4620   if (sigismember(&check_signal_done, sig)) {
4621     print_signal_handlers(tty, buf, O_BUFLEN);
4622   }
4623 }
4624 
4625 extern void report_error(char* file_name, int line_no, char* title,
4626                          char* format, ...);
4627 
4628 extern bool signal_name(int signo, char* buf, size_t len);
4629 
4630 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4631   if (0 < exception_code && exception_code <= SIGRTMAX) {
4632     // signal
4633     if (!signal_name(exception_code, buf, size)) {
4634       jio_snprintf(buf, size, "SIG%d", exception_code);
4635     }
4636     return buf;
4637   } else {
4638     return NULL;
4639   }
4640 }
4641 
4642 // this is called _before_ the most of global arguments have been parsed
4643 void os::init(void) {
4644   char dummy;   // used to get a guess on initial stack address
4645 //  first_hrtime = gethrtime();
4646 
4647   // With LinuxThreads the JavaMain thread pid (primordial thread)
4648   // is different than the pid of the java launcher thread.
4649   // So, on Linux, the launcher thread pid is passed to the VM
4650   // via the sun.java.launcher.pid property.
4651   // Use this property instead of getpid() if it was correctly passed.
4652   // See bug 6351349.
4653   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4654 
4655   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4656 
4657   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4658 
4659   init_random(1234567);
4660 
4661   ThreadCritical::initialize();
4662 
4663   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4664   if (Linux::page_size() == -1) {
4665     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4666                   strerror(errno)));
4667   }
4668   init_page_sizes((size_t) Linux::page_size());
4669 
4670   Linux::initialize_system_info();
4671 
4672   // main_thread points to the aboriginal thread
4673   Linux::_main_thread = pthread_self();
4674 
4675   Linux::clock_init();
4676   initial_time_count = javaTimeNanos();
4677 
4678   // pthread_condattr initialization for monotonic clock
4679   int status;
4680   pthread_condattr_t* _condattr = os::Linux::condAttr();
4681   if ((status = pthread_condattr_init(_condattr)) != 0) {
4682     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4683   }
4684   // Only set the clock if CLOCK_MONOTONIC is available
4685   if (os::supports_monotonic_clock()) {
4686     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4687       if (status == EINVAL) {
4688         warning("Unable to use monotonic clock with relative timed-waits" \
4689                 " - changes to the time-of-day clock may have adverse affects");
4690       } else {
4691         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4692       }
4693     }
4694   }
4695   // else it defaults to CLOCK_REALTIME
4696 
4697   pthread_mutex_init(&dl_mutex, NULL);
4698 
4699   // If the pagesize of the VM is greater than 8K determine the appropriate
4700   // number of initial guard pages.  The user can change this with the
4701   // command line arguments, if needed.
4702   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4703     StackYellowPages = 1;
4704     StackRedPages = 1;
4705     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4706   }
4707 
4708   // retrieve entry point for pthread_setname_np
4709   Linux::_pthread_setname_np =
4710     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4711 
4712 }
4713 
4714 // To install functions for atexit system call
4715 extern "C" {
4716   static void perfMemory_exit_helper() {
4717     perfMemory_exit();
4718   }
4719 }
4720 
4721 // this is called _after_ the global arguments have been parsed
4722 jint os::init_2(void) {
4723   Linux::fast_thread_clock_init();
4724 
4725   // Allocate a single page and mark it as readable for safepoint polling
4726   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4727   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4728 
4729   os::set_polling_page(polling_page);
4730 
4731 #ifndef PRODUCT
4732   if (Verbose && PrintMiscellaneous) {
4733     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4734                (intptr_t)polling_page);
4735   }
4736 #endif
4737 
4738   if (!UseMembar) {
4739     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4740     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4741     os::set_memory_serialize_page(mem_serialize_page);
4742 
4743 #ifndef PRODUCT
4744     if (Verbose && PrintMiscellaneous) {
4745       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4746                  (intptr_t)mem_serialize_page);
4747     }
4748 #endif
4749   }
4750 
4751   // initialize suspend/resume support - must do this before signal_sets_init()
4752   if (SR_initialize() != 0) {
4753     perror("SR_initialize failed");
4754     return JNI_ERR;
4755   }
4756 
4757   Linux::signal_sets_init();
4758   Linux::install_signal_handlers();
4759 
4760   // Check minimum allowable stack size for thread creation and to initialize
4761   // the java system classes, including StackOverflowError - depends on page
4762   // size.  Add a page for compiler2 recursion in main thread.
4763   // Add in 2*BytesPerWord times page size to account for VM stack during
4764   // class initialization depending on 32 or 64 bit VM.
4765   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4766                                       (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4767                                       (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4768 
4769   size_t threadStackSizeInBytes = ThreadStackSize * K;
4770   if (threadStackSizeInBytes != 0 &&
4771       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4772     tty->print_cr("\nThe stack size specified is too small, "
4773                   "Specify at least %dk",
4774                   os::Linux::min_stack_allowed/ K);
4775     return JNI_ERR;
4776   }
4777 
4778   // Make the stack size a multiple of the page size so that
4779   // the yellow/red zones can be guarded.
4780   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4781                                                 vm_page_size()));
4782 
4783   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4784 
4785 #if defined(IA32)
4786   workaround_expand_exec_shield_cs_limit();
4787 #endif
4788 
4789   Linux::libpthread_init();
4790   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4791     tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4792                   Linux::glibc_version(), Linux::libpthread_version(),
4793                   Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4794   }
4795 
4796   if (UseNUMA) {
4797     if (!Linux::libnuma_init()) {
4798       UseNUMA = false;
4799     } else {
4800       if ((Linux::numa_max_node() < 1)) {
4801         // There's only one node(they start from 0), disable NUMA.
4802         UseNUMA = false;
4803       }
4804     }
4805     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4806     // we can make the adaptive lgrp chunk resizing work. If the user specified
4807     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4808     // disable adaptive resizing.
4809     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4810       if (FLAG_IS_DEFAULT(UseNUMA)) {
4811         UseNUMA = false;
4812       } else {
4813         if (FLAG_IS_DEFAULT(UseLargePages) &&
4814             FLAG_IS_DEFAULT(UseSHM) &&
4815             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4816           UseLargePages = false;
4817         } else {
4818           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4819           UseAdaptiveSizePolicy = false;
4820           UseAdaptiveNUMAChunkSizing = false;
4821         }
4822       }
4823     }
4824     if (!UseNUMA && ForceNUMA) {
4825       UseNUMA = true;
4826     }
4827   }
4828 
4829   if (MaxFDLimit) {
4830     // set the number of file descriptors to max. print out error
4831     // if getrlimit/setrlimit fails but continue regardless.
4832     struct rlimit nbr_files;
4833     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4834     if (status != 0) {
4835       if (PrintMiscellaneous && (Verbose || WizardMode)) {
4836         perror("os::init_2 getrlimit failed");
4837       }
4838     } else {
4839       nbr_files.rlim_cur = nbr_files.rlim_max;
4840       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4841       if (status != 0) {
4842         if (PrintMiscellaneous && (Verbose || WizardMode)) {
4843           perror("os::init_2 setrlimit failed");
4844         }
4845       }
4846     }
4847   }
4848 
4849   // Initialize lock used to serialize thread creation (see os::create_thread)
4850   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4851 
4852   // at-exit methods are called in the reverse order of their registration.
4853   // atexit functions are called on return from main or as a result of a
4854   // call to exit(3C). There can be only 32 of these functions registered
4855   // and atexit() does not set errno.
4856 
4857   if (PerfAllowAtExitRegistration) {
4858     // only register atexit functions if PerfAllowAtExitRegistration is set.
4859     // atexit functions can be delayed until process exit time, which
4860     // can be problematic for embedded VM situations. Embedded VMs should
4861     // call DestroyJavaVM() to assure that VM resources are released.
4862 
4863     // note: perfMemory_exit_helper atexit function may be removed in
4864     // the future if the appropriate cleanup code can be added to the
4865     // VM_Exit VMOperation's doit method.
4866     if (atexit(perfMemory_exit_helper) != 0) {
4867       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4868     }
4869   }
4870 
4871   // initialize thread priority policy
4872   prio_init();
4873 
4874   return JNI_OK;
4875 }
4876 
4877 // this is called at the end of vm_initialization
4878 void os::init_3(void) {
4879 #ifdef JAVASE_EMBEDDED
4880   // Start the MemNotifyThread
4881   if (LowMemoryProtection) {
4882     MemNotifyThread::start();
4883   }
4884   return;
4885 #endif
4886 }
4887 
4888 // Mark the polling page as unreadable
4889 void os::make_polling_page_unreadable(void) {
4890   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4891     fatal("Could not disable polling page");
4892   }
4893 }
4894 
4895 // Mark the polling page as readable
4896 void os::make_polling_page_readable(void) {
4897   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4898     fatal("Could not enable polling page");
4899   }
4900 }
4901 
4902 int os::active_processor_count() {
4903   // Linux doesn't yet have a (official) notion of processor sets,
4904   // so just return the number of online processors.
4905   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4906   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4907   return online_cpus;
4908 }
4909 
4910 void os::set_native_thread_name(const char *name) {
4911   if (Linux::_pthread_setname_np) {
4912     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
4913     snprintf(buf, sizeof(buf), "%s", name);
4914     buf[sizeof(buf) - 1] = '\0';
4915     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
4916     // ERANGE should not happen; all other errors should just be ignored.
4917     assert(rc != ERANGE, "pthread_setname_np failed");
4918   }
4919 }
4920 
4921 bool os::distribute_processes(uint length, uint* distribution) {
4922   // Not yet implemented.
4923   return false;
4924 }
4925 
4926 bool os::bind_to_processor(uint processor_id) {
4927   // Not yet implemented.
4928   return false;
4929 }
4930 
4931 ///
4932 
4933 void os::SuspendedThreadTask::internal_do_task() {
4934   if (do_suspend(_thread->osthread())) {
4935     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4936     do_task(context);
4937     do_resume(_thread->osthread());
4938   }
4939 }
4940 
4941 class PcFetcher : public os::SuspendedThreadTask {
4942  public:
4943   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4944   ExtendedPC result();
4945  protected:
4946   void do_task(const os::SuspendedThreadTaskContext& context);
4947  private:
4948   ExtendedPC _epc;
4949 };
4950 
4951 ExtendedPC PcFetcher::result() {
4952   guarantee(is_done(), "task is not done yet.");
4953   return _epc;
4954 }
4955 
4956 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4957   Thread* thread = context.thread();
4958   OSThread* osthread = thread->osthread();
4959   if (osthread->ucontext() != NULL) {
4960     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4961   } else {
4962     // NULL context is unexpected, double-check this is the VMThread
4963     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4964   }
4965 }
4966 
4967 // Suspends the target using the signal mechanism and then grabs the PC before
4968 // resuming the target. Used by the flat-profiler only
4969 ExtendedPC os::get_thread_pc(Thread* thread) {
4970   // Make sure that it is called by the watcher for the VMThread
4971   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4972   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4973 
4974   PcFetcher fetcher(thread);
4975   fetcher.run();
4976   return fetcher.result();
4977 }
4978 
4979 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond,
4980                                    pthread_mutex_t *_mutex,
4981                                    const struct timespec *_abstime) {
4982   if (is_NPTL()) {
4983     return pthread_cond_timedwait(_cond, _mutex, _abstime);
4984   } else {
4985     // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4986     // word back to default 64bit precision if condvar is signaled. Java
4987     // wants 53bit precision.  Save and restore current value.
4988     int fpu = get_fpu_control_word();
4989     int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4990     set_fpu_control_word(fpu);
4991     return status;
4992   }
4993 }
4994 
4995 ////////////////////////////////////////////////////////////////////////////////
4996 // debug support
4997 
4998 bool os::find(address addr, outputStream* st) {
4999   Dl_info dlinfo;
5000   memset(&dlinfo, 0, sizeof(dlinfo));
5001   if (dladdr(addr, &dlinfo) != 0) {
5002     st->print(PTR_FORMAT ": ", addr);
5003     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5004       st->print("%s+%#x", dlinfo.dli_sname,
5005                 addr - (intptr_t)dlinfo.dli_saddr);
5006     } else if (dlinfo.dli_fbase != NULL) {
5007       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
5008     } else {
5009       st->print("<absolute address>");
5010     }
5011     if (dlinfo.dli_fname != NULL) {
5012       st->print(" in %s", dlinfo.dli_fname);
5013     }
5014     if (dlinfo.dli_fbase != NULL) {
5015       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5016     }
5017     st->cr();
5018 
5019     if (Verbose) {
5020       // decode some bytes around the PC
5021       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5022       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5023       address       lowest = (address) dlinfo.dli_sname;
5024       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5025       if (begin < lowest)  begin = lowest;
5026       Dl_info dlinfo2;
5027       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5028           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5029         end = (address) dlinfo2.dli_saddr;
5030       }
5031       Disassembler::decode(begin, end, st);
5032     }
5033     return true;
5034   }
5035   return false;
5036 }
5037 
5038 ////////////////////////////////////////////////////////////////////////////////
5039 // misc
5040 
5041 // This does not do anything on Linux. This is basically a hook for being
5042 // able to use structured exception handling (thread-local exception filters)
5043 // on, e.g., Win32.
5044 void
5045 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5046                          JavaCallArguments* args, Thread* thread) {
5047   f(value, method, args, thread);
5048 }
5049 
5050 void os::print_statistics() {
5051 }
5052 
5053 int os::message_box(const char* title, const char* message) {
5054   int i;
5055   fdStream err(defaultStream::error_fd());
5056   for (i = 0; i < 78; i++) err.print_raw("=");
5057   err.cr();
5058   err.print_raw_cr(title);
5059   for (i = 0; i < 78; i++) err.print_raw("-");
5060   err.cr();
5061   err.print_raw_cr(message);
5062   for (i = 0; i < 78; i++) err.print_raw("=");
5063   err.cr();
5064 
5065   char buf[16];
5066   // Prevent process from exiting upon "read error" without consuming all CPU
5067   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5068 
5069   return buf[0] == 'y' || buf[0] == 'Y';
5070 }
5071 
5072 int os::stat(const char *path, struct stat *sbuf) {
5073   char pathbuf[MAX_PATH];
5074   if (strlen(path) > MAX_PATH - 1) {
5075     errno = ENAMETOOLONG;
5076     return -1;
5077   }
5078   os::native_path(strcpy(pathbuf, path));
5079   return ::stat(pathbuf, sbuf);
5080 }
5081 
5082 bool os::check_heap(bool force) {
5083   return true;
5084 }
5085 
5086 // Is a (classpath) directory empty?
5087 bool os::dir_is_empty(const char* path) {
5088   DIR *dir = NULL;
5089   struct dirent *ptr;
5090 
5091   dir = opendir(path);
5092   if (dir == NULL) return true;
5093 
5094   // Scan the directory
5095   bool result = true;
5096   char buf[sizeof(struct dirent) + MAX_PATH];
5097   while (result && (ptr = ::readdir(dir)) != NULL) {
5098     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5099       result = false;
5100     }
5101   }
5102   closedir(dir);
5103   return result;
5104 }
5105 
5106 // This code originates from JDK's sysOpen and open64_w
5107 // from src/solaris/hpi/src/system_md.c
5108 
5109 int os::open(const char *path, int oflag, int mode) {
5110   if (strlen(path) > MAX_PATH - 1) {
5111     errno = ENAMETOOLONG;
5112     return -1;
5113   }
5114   int fd;
5115 
5116   fd = ::open64(path, oflag, mode);
5117   if (fd == -1) return -1;
5118 
5119   //If the open succeeded, the file might still be a directory
5120   {
5121     struct stat64 buf64;
5122     int ret = ::fstat64(fd, &buf64);
5123     int st_mode = buf64.st_mode;
5124 
5125     if (ret != -1) {
5126       if ((st_mode & S_IFMT) == S_IFDIR) {
5127         errno = EISDIR;
5128         ::close(fd);
5129         return -1;
5130       }
5131     } else {
5132       ::close(fd);
5133       return -1;
5134     }
5135   }
5136 
5137   // All file descriptors that are opened in the JVM and not
5138   // specifically destined for a subprocess should have the
5139   // close-on-exec flag set.  If we don't set it, then careless 3rd
5140   // party native code might fork and exec without closing all
5141   // appropriate file descriptors (e.g. as we do in closeDescriptors in
5142   // UNIXProcess.c), and this in turn might:
5143   //
5144   // - cause end-of-file to fail to be detected on some file
5145   //   descriptors, resulting in mysterious hangs, or
5146   //
5147   // - might cause an fopen in the subprocess to fail on a system
5148   //   suffering from bug 1085341.
5149   //
5150   // (Yes, the default setting of the close-on-exec flag is a Unix
5151   // design flaw)
5152   //
5153   // See:
5154   // 1085341: 32-bit stdio routines should support file descriptors >255
5155   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5156   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5157   //
5158 #ifdef FD_CLOEXEC
5159   {
5160     int flags = ::fcntl(fd, F_GETFD);
5161     if (flags != -1) {
5162       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5163     }
5164   }
5165 #endif
5166 
5167   return fd;
5168 }
5169 
5170 
5171 // create binary file, rewriting existing file if required
5172 int os::create_binary_file(const char* path, bool rewrite_existing) {
5173   int oflags = O_WRONLY | O_CREAT;
5174   if (!rewrite_existing) {
5175     oflags |= O_EXCL;
5176   }
5177   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5178 }
5179 
5180 // return current position of file pointer
5181 jlong os::current_file_offset(int fd) {
5182   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5183 }
5184 
5185 // move file pointer to the specified offset
5186 jlong os::seek_to_file_offset(int fd, jlong offset) {
5187   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5188 }
5189 
5190 // This code originates from JDK's sysAvailable
5191 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5192 
5193 int os::available(int fd, jlong *bytes) {
5194   jlong cur, end;
5195   int mode;
5196   struct stat64 buf64;
5197 
5198   if (::fstat64(fd, &buf64) >= 0) {
5199     mode = buf64.st_mode;
5200     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5201       // XXX: is the following call interruptible? If so, this might
5202       // need to go through the INTERRUPT_IO() wrapper as for other
5203       // blocking, interruptible calls in this file.
5204       int n;
5205       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5206         *bytes = n;
5207         return 1;
5208       }
5209     }
5210   }
5211   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5212     return 0;
5213   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5214     return 0;
5215   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5216     return 0;
5217   }
5218   *bytes = end - cur;
5219   return 1;
5220 }
5221 
5222 int os::socket_available(int fd, jint *pbytes) {
5223   // Linux doc says EINTR not returned, unlike Solaris
5224   int ret = ::ioctl(fd, FIONREAD, pbytes);
5225 
5226   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5227   // is expected to return 0 on failure and 1 on success to the jdk.
5228   return (ret < 0) ? 0 : 1;
5229 }
5230 
5231 // Map a block of memory.
5232 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5233                         char *addr, size_t bytes, bool read_only,
5234                         bool allow_exec) {
5235   int prot;
5236   int flags = MAP_PRIVATE;
5237 
5238   if (read_only) {
5239     prot = PROT_READ;
5240   } else {
5241     prot = PROT_READ | PROT_WRITE;
5242   }
5243 
5244   if (allow_exec) {
5245     prot |= PROT_EXEC;
5246   }
5247 
5248   if (addr != NULL) {
5249     flags |= MAP_FIXED;
5250   }
5251 
5252   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5253                                      fd, file_offset);
5254   if (mapped_address == MAP_FAILED) {
5255     return NULL;
5256   }
5257   return mapped_address;
5258 }
5259 
5260 
5261 // Remap a block of memory.
5262 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5263                           char *addr, size_t bytes, bool read_only,
5264                           bool allow_exec) {
5265   // same as map_memory() on this OS
5266   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5267                         allow_exec);
5268 }
5269 
5270 
5271 // Unmap a block of memory.
5272 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5273   return munmap(addr, bytes) == 0;
5274 }
5275 
5276 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5277 
5278 static clockid_t thread_cpu_clockid(Thread* thread) {
5279   pthread_t tid = thread->osthread()->pthread_id();
5280   clockid_t clockid;
5281 
5282   // Get thread clockid
5283   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5284   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5285   return clockid;
5286 }
5287 
5288 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5289 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5290 // of a thread.
5291 //
5292 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5293 // the fast estimate available on the platform.
5294 
5295 jlong os::current_thread_cpu_time() {
5296   if (os::Linux::supports_fast_thread_cpu_time()) {
5297     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5298   } else {
5299     // return user + sys since the cost is the same
5300     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5301   }
5302 }
5303 
5304 jlong os::thread_cpu_time(Thread* thread) {
5305   // consistent with what current_thread_cpu_time() returns
5306   if (os::Linux::supports_fast_thread_cpu_time()) {
5307     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5308   } else {
5309     return slow_thread_cpu_time(thread, true /* user + sys */);
5310   }
5311 }
5312 
5313 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5314   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5315     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5316   } else {
5317     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5318   }
5319 }
5320 
5321 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5322   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5323     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5324   } else {
5325     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5326   }
5327 }
5328 
5329 //  -1 on error.
5330 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5331   pid_t  tid = thread->osthread()->thread_id();
5332   char *s;
5333   char stat[2048];
5334   int statlen;
5335   char proc_name[64];
5336   int count;
5337   long sys_time, user_time;
5338   char cdummy;
5339   int idummy;
5340   long ldummy;
5341   FILE *fp;
5342 
5343   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5344   fp = fopen(proc_name, "r");
5345   if (fp == NULL) return -1;
5346   statlen = fread(stat, 1, 2047, fp);
5347   stat[statlen] = '\0';
5348   fclose(fp);
5349 
5350   // Skip pid and the command string. Note that we could be dealing with
5351   // weird command names, e.g. user could decide to rename java launcher
5352   // to "java 1.4.2 :)", then the stat file would look like
5353   //                1234 (java 1.4.2 :)) R ... ...
5354   // We don't really need to know the command string, just find the last
5355   // occurrence of ")" and then start parsing from there. See bug 4726580.
5356   s = strrchr(stat, ')');
5357   if (s == NULL) return -1;
5358 
5359   // Skip blank chars
5360   do s++; while (isspace(*s));
5361 
5362   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5363                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5364                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5365                  &user_time, &sys_time);
5366   if (count != 13) return -1;
5367   if (user_sys_cpu_time) {
5368     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5369   } else {
5370     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5371   }
5372 }
5373 
5374 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5375   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5376   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5377   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5378   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5379 }
5380 
5381 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5382   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5383   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5384   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5385   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5386 }
5387 
5388 bool os::is_thread_cpu_time_supported() {
5389   return true;
5390 }
5391 
5392 // System loadavg support.  Returns -1 if load average cannot be obtained.
5393 // Linux doesn't yet have a (official) notion of processor sets,
5394 // so just return the system wide load average.
5395 int os::loadavg(double loadavg[], int nelem) {
5396   return ::getloadavg(loadavg, nelem);
5397 }
5398 
5399 void os::pause() {
5400   char filename[MAX_PATH];
5401   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5402     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5403   } else {
5404     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5405   }
5406 
5407   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5408   if (fd != -1) {
5409     struct stat buf;
5410     ::close(fd);
5411     while (::stat(filename, &buf) == 0) {
5412       (void)::poll(NULL, 0, 100);
5413     }
5414   } else {
5415     jio_fprintf(stderr,
5416                 "Could not open pause file '%s', continuing immediately.\n", filename);
5417   }
5418 }
5419 
5420 
5421 // Refer to the comments in os_solaris.cpp park-unpark.
5422 //
5423 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5424 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5425 // For specifics regarding the bug see GLIBC BUGID 261237 :
5426 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5427 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5428 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5429 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5430 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5431 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5432 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5433 // of libpthread avoids the problem, but isn't practical.
5434 //
5435 // Possible remedies:
5436 //
5437 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5438 //      This is palliative and probabilistic, however.  If the thread is preempted
5439 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5440 //      than the minimum period may have passed, and the abstime may be stale (in the
5441 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5442 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5443 //
5444 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5445 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5446 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5447 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5448 //      thread.
5449 //
5450 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5451 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5452 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5453 //      This also works well.  In fact it avoids kernel-level scalability impediments
5454 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5455 //      timers in a graceful fashion.
5456 //
5457 // 4.   When the abstime value is in the past it appears that control returns
5458 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5459 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5460 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5461 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5462 //      It may be possible to avoid reinitialization by checking the return
5463 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5464 //      condvar we must establish the invariant that cond_signal() is only called
5465 //      within critical sections protected by the adjunct mutex.  This prevents
5466 //      cond_signal() from "seeing" a condvar that's in the midst of being
5467 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5468 //      desirable signal-after-unlock optimization that avoids futile context switching.
5469 //
5470 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5471 //      structure when a condvar is used or initialized.  cond_destroy()  would
5472 //      release the helper structure.  Our reinitialize-after-timedwait fix
5473 //      put excessive stress on malloc/free and locks protecting the c-heap.
5474 //
5475 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5476 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5477 // and only enabling the work-around for vulnerable environments.
5478 
5479 // utility to compute the abstime argument to timedwait:
5480 // millis is the relative timeout time
5481 // abstime will be the absolute timeout time
5482 // TODO: replace compute_abstime() with unpackTime()
5483 
5484 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5485   if (millis < 0)  millis = 0;
5486 
5487   jlong seconds = millis / 1000;
5488   millis %= 1000;
5489   if (seconds > 50000000) { // see man cond_timedwait(3T)
5490     seconds = 50000000;
5491   }
5492 
5493   if (os::supports_monotonic_clock()) {
5494     struct timespec now;
5495     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5496     assert_status(status == 0, status, "clock_gettime");
5497     abstime->tv_sec = now.tv_sec  + seconds;
5498     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5499     if (nanos >= NANOSECS_PER_SEC) {
5500       abstime->tv_sec += 1;
5501       nanos -= NANOSECS_PER_SEC;
5502     }
5503     abstime->tv_nsec = nanos;
5504   } else {
5505     struct timeval now;
5506     int status = gettimeofday(&now, NULL);
5507     assert(status == 0, "gettimeofday");
5508     abstime->tv_sec = now.tv_sec  + seconds;
5509     long usec = now.tv_usec + millis * 1000;
5510     if (usec >= 1000000) {
5511       abstime->tv_sec += 1;
5512       usec -= 1000000;
5513     }
5514     abstime->tv_nsec = usec * 1000;
5515   }
5516   return abstime;
5517 }
5518 
5519 void os::PlatformEvent::park() {       // AKA "down()"
5520   // Invariant: Only the thread associated with the Event/PlatformEvent
5521   // may call park().
5522   // TODO: assert that _Assoc != NULL or _Assoc == Self
5523   assert(_nParked == 0, "invariant");
5524 
5525   int v;
5526   for (;;) {
5527     v = _Event;
5528     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5529   }
5530   guarantee(v >= 0, "invariant");
5531   if (v == 0) {
5532     // Do this the hard way by blocking ...
5533     int status = pthread_mutex_lock(_mutex);
5534     assert_status(status == 0, status, "mutex_lock");
5535     guarantee(_nParked == 0, "invariant");
5536     ++_nParked;
5537     while (_Event < 0) {
5538       status = pthread_cond_wait(_cond, _mutex);
5539       // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5540       // Treat this the same as if the wait was interrupted
5541       if (status == ETIME) { status = EINTR; }
5542       assert_status(status == 0 || status == EINTR, status, "cond_wait");
5543     }
5544     --_nParked;
5545 
5546     _Event = 0;
5547     status = pthread_mutex_unlock(_mutex);
5548     assert_status(status == 0, status, "mutex_unlock");
5549     // Paranoia to ensure our locked and lock-free paths interact
5550     // correctly with each other.
5551     OrderAccess::fence();
5552   }
5553   guarantee(_Event >= 0, "invariant");
5554 }
5555 
5556 int os::PlatformEvent::park(jlong millis) {
5557   guarantee(_nParked == 0, "invariant");
5558 
5559   int v;
5560   for (;;) {
5561     v = _Event;
5562     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5563   }
5564   guarantee(v >= 0, "invariant");
5565   if (v != 0) return OS_OK;
5566 
5567   // We do this the hard way, by blocking the thread.
5568   // Consider enforcing a minimum timeout value.
5569   struct timespec abst;
5570   compute_abstime(&abst, millis);
5571 
5572   int ret = OS_TIMEOUT;
5573   int status = pthread_mutex_lock(_mutex);
5574   assert_status(status == 0, status, "mutex_lock");
5575   guarantee(_nParked == 0, "invariant");
5576   ++_nParked;
5577 
5578   // Object.wait(timo) will return because of
5579   // (a) notification
5580   // (b) timeout
5581   // (c) thread.interrupt
5582   //
5583   // Thread.interrupt and object.notify{All} both call Event::set.
5584   // That is, we treat thread.interrupt as a special case of notification.
5585   // We ignore spurious OS wakeups unless FilterSpuriousWakeups is false.
5586   // We assume all ETIME returns are valid.
5587   //
5588   // TODO: properly differentiate simultaneous notify+interrupt.
5589   // In that case, we should propagate the notify to another waiter.
5590 
5591   while (_Event < 0) {
5592     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5593     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5594       pthread_cond_destroy(_cond);
5595       pthread_cond_init(_cond, os::Linux::condAttr());
5596     }
5597     assert_status(status == 0 || status == EINTR ||
5598                   status == ETIME || status == ETIMEDOUT,
5599                   status, "cond_timedwait");
5600     if (!FilterSpuriousWakeups) break;                 // previous semantics
5601     if (status == ETIME || status == ETIMEDOUT) break;
5602     // We consume and ignore EINTR and spurious wakeups.
5603   }
5604   --_nParked;
5605   if (_Event >= 0) {
5606     ret = OS_OK;
5607   }
5608   _Event = 0;
5609   status = pthread_mutex_unlock(_mutex);
5610   assert_status(status == 0, status, "mutex_unlock");
5611   assert(_nParked == 0, "invariant");
5612   // Paranoia to ensure our locked and lock-free paths interact
5613   // correctly with each other.
5614   OrderAccess::fence();
5615   return ret;
5616 }
5617 
5618 void os::PlatformEvent::unpark() {
5619   // Transitions for _Event:
5620   //    0 :=> 1
5621   //    1 :=> 1
5622   //   -1 :=> either 0 or 1; must signal target thread
5623   //          That is, we can safely transition _Event from -1 to either
5624   //          0 or 1.
5625   // See also: "Semaphores in Plan 9" by Mullender & Cox
5626   //
5627   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5628   // that it will take two back-to-back park() calls for the owning
5629   // thread to block. This has the benefit of forcing a spurious return
5630   // from the first park() call after an unpark() call which will help
5631   // shake out uses of park() and unpark() without condition variables.
5632 
5633   if (Atomic::xchg(1, &_Event) >= 0) return;
5634 
5635   // Wait for the thread associated with the event to vacate
5636   int status = pthread_mutex_lock(_mutex);
5637   assert_status(status == 0, status, "mutex_lock");
5638   int AnyWaiters = _nParked;
5639   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5640   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5641     AnyWaiters = 0;
5642     pthread_cond_signal(_cond);
5643   }
5644   status = pthread_mutex_unlock(_mutex);
5645   assert_status(status == 0, status, "mutex_unlock");
5646   if (AnyWaiters != 0) {
5647     status = pthread_cond_signal(_cond);
5648     assert_status(status == 0, status, "cond_signal");
5649   }
5650 
5651   // Note that we signal() _after dropping the lock for "immortal" Events.
5652   // This is safe and avoids a common class of  futile wakeups.  In rare
5653   // circumstances this can cause a thread to return prematurely from
5654   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5655   // simply re-test the condition and re-park itself.
5656 }
5657 
5658 
5659 // JSR166
5660 // -------------------------------------------------------
5661 
5662 // The solaris and linux implementations of park/unpark are fairly
5663 // conservative for now, but can be improved. They currently use a
5664 // mutex/condvar pair, plus a a count.
5665 // Park decrements count if > 0, else does a condvar wait.  Unpark
5666 // sets count to 1 and signals condvar.  Only one thread ever waits
5667 // on the condvar. Contention seen when trying to park implies that someone
5668 // is unparking you, so don't wait. And spurious returns are fine, so there
5669 // is no need to track notifications.
5670 
5671 // This code is common to linux and solaris and will be moved to a
5672 // common place in dolphin.
5673 //
5674 // The passed in time value is either a relative time in nanoseconds
5675 // or an absolute time in milliseconds. Either way it has to be unpacked
5676 // into suitable seconds and nanoseconds components and stored in the
5677 // given timespec structure.
5678 // Given time is a 64-bit value and the time_t used in the timespec is only
5679 // a signed-32-bit value (except on 64-bit Linux) we have to watch for
5680 // overflow if times way in the future are given. Further on Solaris versions
5681 // prior to 10 there is a restriction (see cond_timedwait) that the specified
5682 // number of seconds, in abstime, is less than current_time  + 100,000,000.
5683 // As it will be 28 years before "now + 100000000" will overflow we can
5684 // ignore overflow and just impose a hard-limit on seconds using the value
5685 // of "now + 100,000,000". This places a limit on the timeout of about 3.17
5686 // years from "now".
5687 
5688 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5689   assert(time > 0, "convertTime");
5690   time_t max_secs = 0;
5691 
5692   if (!os::supports_monotonic_clock() || isAbsolute) {
5693     struct timeval now;
5694     int status = gettimeofday(&now, NULL);
5695     assert(status == 0, "gettimeofday");
5696 
5697     max_secs = now.tv_sec + MAX_SECS;
5698 
5699     if (isAbsolute) {
5700       jlong secs = time / 1000;
5701       if (secs > max_secs) {
5702         absTime->tv_sec = max_secs;
5703       } else {
5704         absTime->tv_sec = secs;
5705       }
5706       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5707     } else {
5708       jlong secs = time / NANOSECS_PER_SEC;
5709       if (secs >= MAX_SECS) {
5710         absTime->tv_sec = max_secs;
5711         absTime->tv_nsec = 0;
5712       } else {
5713         absTime->tv_sec = now.tv_sec + secs;
5714         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5715         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5716           absTime->tv_nsec -= NANOSECS_PER_SEC;
5717           ++absTime->tv_sec; // note: this must be <= max_secs
5718         }
5719       }
5720     }
5721   } else {
5722     // must be relative using monotonic clock
5723     struct timespec now;
5724     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5725     assert_status(status == 0, status, "clock_gettime");
5726     max_secs = now.tv_sec + MAX_SECS;
5727     jlong secs = time / NANOSECS_PER_SEC;
5728     if (secs >= MAX_SECS) {
5729       absTime->tv_sec = max_secs;
5730       absTime->tv_nsec = 0;
5731     } else {
5732       absTime->tv_sec = now.tv_sec + secs;
5733       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5734       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5735         absTime->tv_nsec -= NANOSECS_PER_SEC;
5736         ++absTime->tv_sec; // note: this must be <= max_secs
5737       }
5738     }
5739   }
5740   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5741   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5742   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5743   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5744 }
5745 
5746 void Parker::park(bool isAbsolute, jlong time) {
5747   // Ideally we'd do something useful while spinning, such
5748   // as calling unpackTime().
5749 
5750   // Optional fast-path check:
5751   // Return immediately if a permit is available.
5752   // We depend on Atomic::xchg() having full barrier semantics
5753   // since we are doing a lock-free update to _counter.
5754   if (Atomic::xchg(0, &_counter) > 0) return;
5755 
5756   Thread* thread = Thread::current();
5757   assert(thread->is_Java_thread(), "Must be JavaThread");
5758   JavaThread *jt = (JavaThread *)thread;
5759 
5760   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5761   // Check interrupt before trying to wait
5762   if (Thread::is_interrupted(thread, false)) {
5763     return;
5764   }
5765 
5766   // Next, demultiplex/decode time arguments
5767   timespec absTime;
5768   if (time < 0 || (isAbsolute && time == 0)) { // don't wait at all
5769     return;
5770   }
5771   if (time > 0) {
5772     unpackTime(&absTime, isAbsolute, time);
5773   }
5774 
5775 
5776   // Enter safepoint region
5777   // Beware of deadlocks such as 6317397.
5778   // The per-thread Parker:: mutex is a classic leaf-lock.
5779   // In particular a thread must never block on the Threads_lock while
5780   // holding the Parker:: mutex.  If safepoints are pending both the
5781   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5782   ThreadBlockInVM tbivm(jt);
5783 
5784   // Don't wait if cannot get lock since interference arises from
5785   // unblocking.  Also. check interrupt before trying wait
5786   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5787     return;
5788   }
5789 
5790   int status;
5791   if (_counter > 0)  { // no wait needed
5792     _counter = 0;
5793     status = pthread_mutex_unlock(_mutex);
5794     assert(status == 0, "invariant");
5795     // Paranoia to ensure our locked and lock-free paths interact
5796     // correctly with each other and Java-level accesses.
5797     OrderAccess::fence();
5798     return;
5799   }
5800 
5801 #ifdef ASSERT
5802   // Don't catch signals while blocked; let the running threads have the signals.
5803   // (This allows a debugger to break into the running thread.)
5804   sigset_t oldsigs;
5805   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5806   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5807 #endif
5808 
5809   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5810   jt->set_suspend_equivalent();
5811   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5812 
5813   assert(_cur_index == -1, "invariant");
5814   if (time == 0) {
5815     _cur_index = REL_INDEX; // arbitrary choice when not timed
5816     status = pthread_cond_wait(&_cond[_cur_index], _mutex);
5817   } else {
5818     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5819     status = os::Linux::safe_cond_timedwait(&_cond[_cur_index], _mutex, &absTime);
5820     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5821       pthread_cond_destroy(&_cond[_cur_index]);
5822       pthread_cond_init(&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5823     }
5824   }
5825   _cur_index = -1;
5826   assert_status(status == 0 || status == EINTR ||
5827                 status == ETIME || status == ETIMEDOUT,
5828                 status, "cond_timedwait");
5829 
5830 #ifdef ASSERT
5831   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5832 #endif
5833 
5834   _counter = 0;
5835   status = pthread_mutex_unlock(_mutex);
5836   assert_status(status == 0, status, "invariant");
5837   // Paranoia to ensure our locked and lock-free paths interact
5838   // correctly with each other and Java-level accesses.
5839   OrderAccess::fence();
5840 
5841   // If externally suspended while waiting, re-suspend
5842   if (jt->handle_special_suspend_equivalent_condition()) {
5843     jt->java_suspend_self();
5844   }
5845 }
5846 
5847 void Parker::unpark() {
5848   int status = pthread_mutex_lock(_mutex);
5849   assert(status == 0, "invariant");
5850   const int s = _counter;
5851   _counter = 1;
5852   if (s < 1) {
5853     // thread might be parked
5854     if (_cur_index != -1) {
5855       // thread is definitely parked
5856       if (WorkAroundNPTLTimedWaitHang) {
5857         status = pthread_cond_signal(&_cond[_cur_index]);
5858         assert(status == 0, "invariant");
5859         status = pthread_mutex_unlock(_mutex);
5860         assert(status == 0, "invariant");
5861       } else {
5862         status = pthread_mutex_unlock(_mutex);
5863         assert(status == 0, "invariant");
5864         status = pthread_cond_signal(&_cond[_cur_index]);
5865         assert(status == 0, "invariant");
5866       }
5867     } else {
5868       pthread_mutex_unlock(_mutex);
5869       assert(status == 0, "invariant");
5870     }
5871   } else {
5872     pthread_mutex_unlock(_mutex);
5873     assert(status == 0, "invariant");
5874   }
5875 }
5876 
5877 
5878 extern char** environ;
5879 
5880 #ifndef __NR_fork
5881   #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57) AARCH64_ONLY(1079)
5882 #endif
5883 
5884 #ifndef __NR_execve
5885   #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59) AARCH64_ONLY(221)
5886 #endif
5887 
5888 // Run the specified command in a separate process. Return its exit value,
5889 // or -1 on failure (e.g. can't fork a new process).
5890 // Unlike system(), this function can be called from signal handler. It
5891 // doesn't block SIGINT et al.
5892 int os::fork_and_exec(char* cmd) {
5893   const char * argv[4] = {"sh", "-c", cmd, NULL};
5894 
5895   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5896   // pthread_atfork handlers and reset pthread library. All we need is a
5897   // separate process to execve. Make a direct syscall to fork process.
5898   // On IA64 there's no fork syscall, we have to use fork() and hope for
5899   // the best...
5900   pid_t pid = NOT_IA64(syscall(__NR_fork);)
5901   IA64_ONLY(fork();)
5902 
5903   if (pid < 0) {
5904     // fork failed
5905     return -1;
5906 
5907   } else if (pid == 0) {
5908     // child process
5909 
5910     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5911     // first to kill every thread on the thread list. Because this list is
5912     // not reset by fork() (see notes above), execve() will instead kill
5913     // every thread in the parent process. We know this is the only thread
5914     // in the new process, so make a system call directly.
5915     // IA64 should use normal execve() from glibc to match the glibc fork()
5916     // above.
5917     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5918     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5919 
5920     // execve failed
5921     _exit(-1);
5922 
5923   } else  {
5924     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5925     // care about the actual exit code, for now.
5926 
5927     int status;
5928 
5929     // Wait for the child process to exit.  This returns immediately if
5930     // the child has already exited. */
5931     while (waitpid(pid, &status, 0) < 0) {
5932       switch (errno) {
5933       case ECHILD: return 0;
5934       case EINTR: break;
5935       default: return -1;
5936       }
5937     }
5938 
5939     if (WIFEXITED(status)) {
5940       // The child exited normally; get its exit code.
5941       return WEXITSTATUS(status);
5942     } else if (WIFSIGNALED(status)) {
5943       // The child exited because of a signal
5944       // The best value to return is 0x80 + signal number,
5945       // because that is what all Unix shells do, and because
5946       // it allows callers to distinguish between process exit and
5947       // process death by signal.
5948       return 0x80 + WTERMSIG(status);
5949     } else {
5950       // Unknown exit code; pass it through
5951       return status;
5952     }
5953   }
5954 }
5955 
5956 // is_headless_jre()
5957 //
5958 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5959 // in order to report if we are running in a headless jre
5960 //
5961 // Since JDK8 xawt/libmawt.so was moved into the same directory
5962 // as libawt.so, and renamed libawt_xawt.so
5963 //
5964 bool os::is_headless_jre() {
5965   struct stat statbuf;
5966   char buf[MAXPATHLEN];
5967   char libmawtpath[MAXPATHLEN];
5968   const char *xawtstr  = "/xawt/libmawt.so";
5969   const char *new_xawtstr = "/libawt_xawt.so";
5970   char *p;
5971 
5972   // Get path to libjvm.so
5973   os::jvm_path(buf, sizeof(buf));
5974 
5975   // Get rid of libjvm.so
5976   p = strrchr(buf, '/');
5977   if (p == NULL) {
5978     return false;
5979   } else {
5980     *p = '\0';
5981   }
5982 
5983   // Get rid of client or server
5984   p = strrchr(buf, '/');
5985   if (p == NULL) {
5986     return false;
5987   } else {
5988     *p = '\0';
5989   }
5990 
5991   // check xawt/libmawt.so
5992   strcpy(libmawtpath, buf);
5993   strcat(libmawtpath, xawtstr);
5994   if (::stat(libmawtpath, &statbuf) == 0) return false;
5995 
5996   // check libawt_xawt.so
5997   strcpy(libmawtpath, buf);
5998   strcat(libmawtpath, new_xawtstr);
5999   if (::stat(libmawtpath, &statbuf) == 0) return false;
6000 
6001   return true;
6002 }
6003 
6004 // Get the default path to the core file
6005 // Returns the length of the string
6006 int os::get_core_path(char* buffer, size_t bufferSize) {
6007   const char* p = get_current_directory(buffer, bufferSize);
6008 
6009   if (p == NULL) {
6010     assert(p != NULL, "failed to get current directory");
6011     return 0;
6012   }
6013 
6014   return strlen(buffer);
6015 }
6016 
6017 #ifdef JAVASE_EMBEDDED
6018 //
6019 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
6020 //
6021 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
6022 
6023 // ctor
6024 //
6025 MemNotifyThread::MemNotifyThread(int fd): Thread() {
6026   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
6027   _fd = fd;
6028 
6029   if (os::create_thread(this, os::os_thread)) {
6030     _memnotify_thread = this;
6031     os::set_priority(this, NearMaxPriority);
6032     os::start_thread(this);
6033   }
6034 }
6035 
6036 // Where all the work gets done
6037 //
6038 void MemNotifyThread::run() {
6039   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
6040 
6041   // Set up the select arguments
6042   fd_set rfds;
6043   if (_fd != -1) {
6044     FD_ZERO(&rfds);
6045     FD_SET(_fd, &rfds);
6046   }
6047 
6048   // Now wait for the mem_notify device to wake up
6049   while (1) {
6050     // Wait for the mem_notify device to signal us..
6051     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
6052     if (rc == -1) {
6053       perror("select!\n");
6054       break;
6055     } else if (rc) {
6056       //ssize_t free_before = os::available_memory();
6057       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
6058 
6059       // The kernel is telling us there is not much memory left...
6060       // try to do something about that
6061 
6062       // If we are not already in a GC, try one.
6063       if (!Universe::heap()->is_gc_active()) {
6064         Universe::heap()->collect(GCCause::_allocation_failure);
6065 
6066         //ssize_t free_after = os::available_memory();
6067         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
6068         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
6069       }
6070       // We might want to do something like the following if we find the GC's are not helping...
6071       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
6072     }
6073   }
6074 }
6075 
6076 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
6077 //
6078 void MemNotifyThread::start() {
6079   int fd;
6080   fd = open("/dev/mem_notify", O_RDONLY, 0);
6081   if (fd < 0) {
6082     return;
6083   }
6084 
6085   if (memnotify_thread() == NULL) {
6086     new MemNotifyThread(fd);
6087   }
6088 }
6089 
6090 #endif // JAVASE_EMBEDDED
6091 
6092 
6093 /////////////// Unit tests ///////////////
6094 
6095 #ifndef PRODUCT
6096 
6097 #define test_log(...)              \
6098   do {                             \
6099     if (VerboseInternalVMTests) {  \
6100       tty->print_cr(__VA_ARGS__);  \
6101       tty->flush();                \
6102     }                              \
6103   } while (false)
6104 
6105 class TestReserveMemorySpecial : AllStatic {
6106  public:
6107   static void small_page_write(void* addr, size_t size) {
6108     size_t page_size = os::vm_page_size();
6109 
6110     char* end = (char*)addr + size;
6111     for (char* p = (char*)addr; p < end; p += page_size) {
6112       *p = 1;
6113     }
6114   }
6115 
6116   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6117     if (!UseHugeTLBFS) {
6118       return;
6119     }
6120 
6121     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6122 
6123     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6124 
6125     if (addr != NULL) {
6126       small_page_write(addr, size);
6127 
6128       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6129     }
6130   }
6131 
6132   static void test_reserve_memory_special_huge_tlbfs_only() {
6133     if (!UseHugeTLBFS) {
6134       return;
6135     }
6136 
6137     size_t lp = os::large_page_size();
6138 
6139     for (size_t size = lp; size <= lp * 10; size += lp) {
6140       test_reserve_memory_special_huge_tlbfs_only(size);
6141     }
6142   }
6143 
6144   static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6145     if (!UseHugeTLBFS) {
6146       return;
6147     }
6148 
6149     test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6150              size, alignment);
6151 
6152     assert(size >= os::large_page_size(), "Incorrect input to test");
6153 
6154     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6155 
6156     if (addr != NULL) {
6157       small_page_write(addr, size);
6158 
6159       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6160     }
6161   }
6162 
6163   static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6164     size_t lp = os::large_page_size();
6165     size_t ag = os::vm_allocation_granularity();
6166 
6167     for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6168       test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6169     }
6170   }
6171 
6172   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6173     size_t lp = os::large_page_size();
6174     size_t ag = os::vm_allocation_granularity();
6175 
6176     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6177     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6178     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6179     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6180     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6181     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6182     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6183     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6184     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6185   }
6186 
6187   static void test_reserve_memory_special_huge_tlbfs() {
6188     if (!UseHugeTLBFS) {
6189       return;
6190     }
6191 
6192     test_reserve_memory_special_huge_tlbfs_only();
6193     test_reserve_memory_special_huge_tlbfs_mixed();
6194   }
6195 
6196   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6197     if (!UseSHM) {
6198       return;
6199     }
6200 
6201     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6202 
6203     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6204 
6205     if (addr != NULL) {
6206       assert(is_ptr_aligned(addr, alignment), "Check");
6207       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6208 
6209       small_page_write(addr, size);
6210 
6211       os::Linux::release_memory_special_shm(addr, size);
6212     }
6213   }
6214 
6215   static void test_reserve_memory_special_shm() {
6216     size_t lp = os::large_page_size();
6217     size_t ag = os::vm_allocation_granularity();
6218 
6219     for (size_t size = ag; size < lp * 3; size += ag) {
6220       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6221         test_reserve_memory_special_shm(size, alignment);
6222       }
6223     }
6224   }
6225 
6226   static void test() {
6227     test_reserve_memory_special_huge_tlbfs();
6228     test_reserve_memory_special_shm();
6229   }
6230 };
6231 
6232 void TestReserveMemorySpecial_test() {
6233   TestReserveMemorySpecial::test();
6234 }
6235 
6236 #endif