1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "memory/universe.inline.hpp"
  29 #include "oops/objArrayKlass.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/castnode.hpp"
  32 #include "opto/memnode.hpp"
  33 #include "opto/parse.hpp"
  34 #include "opto/rootnode.hpp"
  35 #include "opto/runtime.hpp"
  36 #include "opto/subnode.hpp"
  37 #include "runtime/deoptimization.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 
  40 //=============================================================================
  41 // Helper methods for _get* and _put* bytecodes
  42 //=============================================================================
  43 bool Parse::static_field_ok_in_clinit(ciField *field, ciMethod *method) {
  44   // Could be the field_holder's <clinit> method, or <clinit> for a subklass.
  45   // Better to check now than to Deoptimize as soon as we execute
  46   assert( field->is_static(), "Only check if field is static");
  47   // is_being_initialized() is too generous.  It allows access to statics
  48   // by threads that are not running the <clinit> before the <clinit> finishes.
  49   // return field->holder()->is_being_initialized();
  50 
  51   // The following restriction is correct but conservative.
  52   // It is also desirable to allow compilation of methods called from <clinit>
  53   // but this generated code will need to be made safe for execution by
  54   // other threads, or the transition from interpreted to compiled code would
  55   // need to be guarded.
  56   ciInstanceKlass *field_holder = field->holder();
  57 
  58   bool access_OK = false;
  59   if (method->holder()->is_subclass_of(field_holder)) {
  60     if (method->is_static()) {
  61       if (method->name() == ciSymbol::class_initializer_name()) {
  62         // OK to access static fields inside initializer
  63         access_OK = true;
  64       }
  65     } else {
  66       if (method->name() == ciSymbol::object_initializer_name()) {
  67         // It's also OK to access static fields inside a constructor,
  68         // because any thread calling the constructor must first have
  69         // synchronized on the class by executing a '_new' bytecode.
  70         access_OK = true;
  71       }
  72     }
  73   }
  74 
  75   return access_OK;
  76 
  77 }
  78 
  79 
  80 void Parse::do_field_access(bool is_get, bool is_field) {
  81   bool will_link;
  82   ciField* field = iter().get_field(will_link);
  83   assert(will_link, "getfield: typeflow responsibility");
  84 
  85   ciInstanceKlass* field_holder = field->holder();
  86 
  87   if (is_field == field->is_static()) {
  88     // Interpreter will throw java_lang_IncompatibleClassChangeError
  89     // Check this before allowing <clinit> methods to access static fields
  90     uncommon_trap(Deoptimization::Reason_unhandled,
  91                   Deoptimization::Action_none);
  92     return;
  93   }
  94 
  95   if (!is_field && !field_holder->is_initialized()) {
  96     if (!static_field_ok_in_clinit(field, method())) {
  97       uncommon_trap(Deoptimization::Reason_uninitialized,
  98                     Deoptimization::Action_reinterpret,
  99                     NULL, "!static_field_ok_in_clinit");
 100       return;
 101     }
 102   }
 103 
 104   // Deoptimize on putfield writes to call site target field.
 105   if (!is_get && field->is_call_site_target()) {
 106     uncommon_trap(Deoptimization::Reason_unhandled,
 107                   Deoptimization::Action_reinterpret,
 108                   NULL, "put to call site target field");
 109     return;
 110   }
 111 
 112   assert(field->will_link(method()->holder(), bc()), "getfield: typeflow responsibility");
 113 
 114   // Note:  We do not check for an unloaded field type here any more.
 115 
 116   // Generate code for the object pointer.
 117   Node* obj;
 118   if (is_field) {
 119     int obj_depth = is_get ? 0 : field->type()->size();
 120     obj = null_check(peek(obj_depth));
 121     // Compile-time detect of null-exception?
 122     if (stopped())  return;
 123 
 124 #ifdef ASSERT
 125     const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder());
 126     assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed");
 127 #endif
 128 
 129     if (is_get) {
 130       (void) pop();  // pop receiver before getting
 131       do_get_xxx(obj, field, is_field);
 132     } else {
 133       do_put_xxx(obj, field, is_field);
 134       (void) pop();  // pop receiver after putting
 135     }
 136   } else {
 137     const TypeInstPtr* tip = TypeInstPtr::make(field_holder->java_mirror());
 138     obj = _gvn.makecon(tip);
 139     if (is_get) {
 140       do_get_xxx(obj, field, is_field);
 141     } else {
 142       do_put_xxx(obj, field, is_field);
 143     }
 144   }
 145 }
 146 
 147 
 148 void Parse::do_get_xxx(Node* obj, ciField* field, bool is_field) {
 149   // Does this field have a constant value?  If so, just push the value.
 150   if (field->is_constant()) {
 151     // final or stable field
 152     const Type* stable_type = NULL;
 153     if (FoldStableValues && field->is_stable()) {
 154       stable_type = Type::get_const_type(field->type());
 155       if (field->type()->is_array_klass()) {
 156         int stable_dimension = field->type()->as_array_klass()->dimension();
 157         stable_type = stable_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 158       }
 159     }
 160     if (field->is_static()) {
 161       // final static field
 162       if (C->eliminate_boxing()) {
 163         // The pointers in the autobox arrays are always non-null.
 164         ciSymbol* klass_name = field->holder()->name();
 165         if (field->name() == ciSymbol::cache_field_name() &&
 166             field->holder()->uses_default_loader() &&
 167             (klass_name == ciSymbol::java_lang_Character_CharacterCache() ||
 168              klass_name == ciSymbol::java_lang_Byte_ByteCache() ||
 169              klass_name == ciSymbol::java_lang_Short_ShortCache() ||
 170              klass_name == ciSymbol::java_lang_Integer_IntegerCache() ||
 171              klass_name == ciSymbol::java_lang_Long_LongCache())) {
 172           bool require_const = true;
 173           bool autobox_cache = true;
 174           if (push_constant(field->constant_value(), require_const, autobox_cache)) {
 175             return;
 176           }
 177         }
 178       }
 179       if (push_constant(field->constant_value(), false, false, stable_type))
 180         return;
 181     } else {
 182       // final or stable non-static field
 183       // Treat final non-static fields of trusted classes (classes in
 184       // java.lang.invoke and sun.invoke packages and subpackages) as
 185       // compile time constants.
 186       if (obj->is_Con()) {
 187         const TypeOopPtr* oop_ptr = obj->bottom_type()->isa_oopptr();
 188         ciObject* constant_oop = oop_ptr->const_oop();
 189         ciConstant constant = field->constant_value_of(constant_oop);
 190         if (FoldStableValues && field->is_stable() && constant.is_null_or_zero()) {
 191           // fall through to field load; the field is not yet initialized
 192         } else {
 193           if (push_constant(constant, true, false, stable_type))
 194             return;
 195         }
 196       }
 197     }
 198   }
 199 
 200   ciType* field_klass = field->type();
 201   bool is_vol = field->is_volatile();
 202 
 203   // Compute address and memory type.
 204   int offset = field->offset_in_bytes();
 205   const TypePtr* adr_type = C->alias_type(field)->adr_type();
 206   Node *adr = basic_plus_adr(obj, obj, offset);
 207   BasicType bt = field->layout_type();
 208 
 209   // Build the resultant type of the load
 210   const Type *type;
 211 
 212   bool must_assert_null = false;
 213 
 214   if( bt == T_OBJECT ) {
 215     if (!field->type()->is_loaded()) {
 216       type = TypeInstPtr::BOTTOM;
 217       must_assert_null = true;
 218     } else if (field->is_constant() && field->is_static()) {
 219       // This can happen if the constant oop is non-perm.
 220       ciObject* con = field->constant_value().as_object();
 221       // Do not "join" in the previous type; it doesn't add value,
 222       // and may yield a vacuous result if the field is of interface type.
 223       type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 224       assert(type != NULL, "field singleton type must be consistent");
 225     } else {
 226       type = TypeOopPtr::make_from_klass(field_klass->as_klass());
 227     }
 228   } else {
 229     type = Type::get_const_basic_type(bt);
 230   }
 231   if (support_IRIW_for_not_multiple_copy_atomic_cpu && field->is_volatile()) {
 232     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
 233   }
 234   // Build the load.
 235   //
 236   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
 237   bool needs_atomic_access = is_vol || AlwaysAtomicAccesses;
 238   Node* ld = make_load(NULL, adr, type, bt, adr_type, mo, needs_atomic_access);
 239 
 240   // Adjust Java stack
 241   if (type2size[bt] == 1)
 242     push(ld);
 243   else
 244     push_pair(ld);
 245 
 246   if (must_assert_null) {
 247     // Do not take a trap here.  It's possible that the program
 248     // will never load the field's class, and will happily see
 249     // null values in this field forever.  Don't stumble into a
 250     // trap for such a program, or we might get a long series
 251     // of useless recompilations.  (Or, we might load a class
 252     // which should not be loaded.)  If we ever see a non-null
 253     // value, we will then trap and recompile.  (The trap will
 254     // not need to mention the class index, since the class will
 255     // already have been loaded if we ever see a non-null value.)
 256     // uncommon_trap(iter().get_field_signature_index());
 257 #ifndef PRODUCT
 258     if (PrintOpto && (Verbose || WizardMode)) {
 259       method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci());
 260     }
 261 #endif
 262     if (C->log() != NULL) {
 263       C->log()->elem("assert_null reason='field' klass='%d'",
 264                      C->log()->identify(field->type()));
 265     }
 266     // If there is going to be a trap, put it at the next bytecode:
 267     set_bci(iter().next_bci());
 268     null_assert(peek());
 269     set_bci(iter().cur_bci()); // put it back
 270   }
 271 
 272   // If reference is volatile, prevent following memory ops from
 273   // floating up past the volatile read.  Also prevents commoning
 274   // another volatile read.
 275   if (field->is_volatile()) {
 276     // Memory barrier includes bogus read of value to force load BEFORE membar
 277     insert_mem_bar(Op_MemBarAcquire, ld);
 278   }
 279 }
 280 
 281 void Parse::do_put_xxx(Node* obj, ciField* field, bool is_field) {
 282   bool is_vol = field->is_volatile();
 283   // If reference is volatile, prevent following memory ops from
 284   // floating down past the volatile write.  Also prevents commoning
 285   // another volatile read.
 286   // AArch64 uses store release (which does everything we need to keep
 287   // the machine in order) but we still need a compiler barrier here.
 288   if (is_vol) {
 289     insert_mem_bar(NOT_AARCH64(Op_MemBarRelease) AARCH64_ONLY(Op_MemBarCPUOrder));
 290   }
 291 
 292   // Compute address and memory type.
 293   int offset = field->offset_in_bytes();
 294   const TypePtr* adr_type = C->alias_type(field)->adr_type();
 295   Node* adr = basic_plus_adr(obj, obj, offset);
 296   BasicType bt = field->layout_type();
 297   // Value to be stored
 298   Node* val = type2size[bt] == 1 ? pop() : pop_pair();
 299   // Round doubles before storing
 300   if (bt == T_DOUBLE)  val = dstore_rounding(val);
 301 
 302   // Conservatively release stores of object references.
 303   const MemNode::MemOrd mo =
 304     is_vol ?
 305     // Volatile fields need releasing stores.
 306     MemNode::release :
 307     // Non-volatile fields also need releasing stores if they hold an
 308     // object reference, because the object reference might point to
 309     // a freshly created object.
 310     StoreNode::release_if_reference(bt);
 311 
 312   // Store the value.
 313   Node* store;
 314   if (bt == T_OBJECT) {
 315     const TypeOopPtr* field_type;
 316     if (!field->type()->is_loaded()) {
 317       field_type = TypeInstPtr::BOTTOM;
 318     } else {
 319       field_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
 320     }
 321     store = store_oop_to_object(control(), obj, adr, adr_type, val, field_type, bt, mo);
 322   } else {
 323     bool needs_atomic_access = is_vol || AlwaysAtomicAccesses;
 324     store = store_to_memory(control(), adr, val, bt, adr_type, mo, needs_atomic_access);
 325   }
 326 
 327   // If reference is volatile, prevent following volatiles ops from
 328   // floating up before the volatile write.
 329   if (is_vol) {
 330     // If not multiple copy atomic, we do the MemBarVolatile before the load.
 331     if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
 332       insert_mem_bar(NOT_AARCH64(Op_MemBarVolatile) AARCH64_ONLY(Op_MemBarCPUOrder)); // Use fat membar
 333     }
 334     // Remember we wrote a volatile field.
 335     // For not multiple copy atomic cpu (ppc64) a barrier should be issued
 336     // in constructors which have such stores. See do_exits() in parse1.cpp.
 337     if (is_field) {
 338       set_wrote_volatile(true);
 339     }
 340   }
 341 
 342   if (is_field) {
 343     set_wrote_fields(true);
 344   }
 345 
 346   // If the field is final, the rules of Java say we are in <init> or <clinit>.
 347   // Note the presence of writes to final non-static fields, so that we
 348   // can insert a memory barrier later on to keep the writes from floating
 349   // out of the constructor.
 350   // Any method can write a @Stable field; insert memory barriers after those also.
 351   if (is_field && (field->is_final() || field->is_stable())) {
 352     if (field->is_final()) {
 353         set_wrote_final(true);
 354     }
 355     if (field->is_stable()) {
 356         set_wrote_stable(true);
 357     }
 358 
 359     // Preserve allocation ptr to create precedent edge to it in membar
 360     // generated on exit from constructor.
 361     if (C->eliminate_boxing() &&
 362         adr_type->isa_oopptr() && adr_type->is_oopptr()->is_ptr_to_boxed_value() &&
 363         AllocateNode::Ideal_allocation(obj, &_gvn) != NULL) {
 364       set_alloc_with_final(obj);
 365     }
 366   }
 367 }
 368 
 369 
 370 
 371 bool Parse::push_constant(ciConstant constant, bool require_constant, bool is_autobox_cache, const Type* stable_type) {
 372   const Type* con_type = Type::make_from_constant(constant, require_constant, is_autobox_cache);
 373   switch (constant.basic_type()) {
 374   case T_ARRAY:
 375   case T_OBJECT:
 376     // cases:
 377     //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 378     //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 379     // An oop is not scavengable if it is in the perm gen.
 380     if (stable_type != NULL && con_type != NULL && con_type->isa_oopptr())
 381       con_type = con_type->join_speculative(stable_type);
 382     break;
 383 
 384   case T_ILLEGAL:
 385     // Invalid ciConstant returned due to OutOfMemoryError in the CI
 386     assert(C->env()->failing(), "otherwise should not see this");
 387     // These always occur because of object types; we are going to
 388     // bail out anyway, so make the stack depths match up
 389     push( zerocon(T_OBJECT) );
 390     return false;
 391   }
 392 
 393   if (con_type == NULL)
 394     // we cannot inline the oop, but we can use it later to narrow a type
 395     return false;
 396 
 397   push_node(constant.basic_type(), makecon(con_type));
 398   return true;
 399 }
 400 
 401 
 402 //=============================================================================
 403 void Parse::do_anewarray() {
 404   bool will_link;
 405   ciKlass* klass = iter().get_klass(will_link);
 406 
 407   // Uncommon Trap when class that array contains is not loaded
 408   // we need the loaded class for the rest of graph; do not
 409   // initialize the container class (see Java spec)!!!
 410   assert(will_link, "anewarray: typeflow responsibility");
 411 
 412   ciObjArrayKlass* array_klass = ciObjArrayKlass::make(klass);
 413   // Check that array_klass object is loaded
 414   if (!array_klass->is_loaded()) {
 415     // Generate uncommon_trap for unloaded array_class
 416     uncommon_trap(Deoptimization::Reason_unloaded,
 417                   Deoptimization::Action_reinterpret,
 418                   array_klass);
 419     return;
 420   }
 421 
 422   kill_dead_locals();
 423 
 424   const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass);
 425   Node* count_val = pop();
 426   Node* obj = new_array(makecon(array_klass_type), count_val, 1);
 427   push(obj);
 428 }
 429 
 430 
 431 void Parse::do_newarray(BasicType elem_type) {
 432   kill_dead_locals();
 433 
 434   Node*   count_val = pop();
 435   const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type));
 436   Node*   obj = new_array(makecon(array_klass), count_val, 1);
 437   // Push resultant oop onto stack
 438   push(obj);
 439 }
 440 
 441 // Expand simple expressions like new int[3][5] and new Object[2][nonConLen].
 442 // Also handle the degenerate 1-dimensional case of anewarray.
 443 Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) {
 444   Node* length = lengths[0];
 445   assert(length != NULL, "");
 446   Node* array = new_array(makecon(TypeKlassPtr::make(array_klass)), length, nargs);
 447   if (ndimensions > 1) {
 448     jint length_con = find_int_con(length, -1);
 449     guarantee(length_con >= 0, "non-constant multianewarray");
 450     ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass();
 451     const TypePtr* adr_type = TypeAryPtr::OOPS;
 452     const TypeOopPtr*    elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
 453     const intptr_t header   = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
 454     for (jint i = 0; i < length_con; i++) {
 455       Node*    elem   = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs);
 456       intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop);
 457       Node*    eaddr  = basic_plus_adr(array, offset);
 458       store_oop_to_array(control(), array, eaddr, adr_type, elem, elemtype, T_OBJECT, MemNode::unordered);
 459     }
 460   }
 461   return array;
 462 }
 463 
 464 void Parse::do_multianewarray() {
 465   int ndimensions = iter().get_dimensions();
 466 
 467   // the m-dimensional array
 468   bool will_link;
 469   ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass();
 470   assert(will_link, "multianewarray: typeflow responsibility");
 471 
 472   // Note:  Array classes are always initialized; no is_initialized check.
 473 
 474   kill_dead_locals();
 475 
 476   // get the lengths from the stack (first dimension is on top)
 477   Node** length = NEW_RESOURCE_ARRAY(Node*, ndimensions + 1);
 478   length[ndimensions] = NULL;  // terminating null for make_runtime_call
 479   int j;
 480   for (j = ndimensions-1; j >= 0 ; j--) length[j] = pop();
 481 
 482   // The original expression was of this form: new T[length0][length1]...
 483   // It is often the case that the lengths are small (except the last).
 484   // If that happens, use the fast 1-d creator a constant number of times.
 485   const jint expand_limit = MIN2((juint)MultiArrayExpandLimit, (juint)100);
 486   jint expand_count = 1;        // count of allocations in the expansion
 487   jint expand_fanout = 1;       // running total fanout
 488   for (j = 0; j < ndimensions-1; j++) {
 489     jint dim_con = find_int_con(length[j], -1);
 490     expand_fanout *= dim_con;
 491     expand_count  += expand_fanout; // count the level-J sub-arrays
 492     if (dim_con <= 0
 493         || dim_con > expand_limit
 494         || expand_count > expand_limit) {
 495       expand_count = 0;
 496       break;
 497     }
 498   }
 499 
 500   // Can use multianewarray instead of [a]newarray if only one dimension,
 501   // or if all non-final dimensions are small constants.
 502   if (ndimensions == 1 || (1 <= expand_count && expand_count <= expand_limit)) {
 503     Node* obj = NULL;
 504     // Set the original stack and the reexecute bit for the interpreter
 505     // to reexecute the multianewarray bytecode if deoptimization happens.
 506     // Do it unconditionally even for one dimension multianewarray.
 507     // Note: the reexecute bit will be set in GraphKit::add_safepoint_edges()
 508     // when AllocateArray node for newarray is created.
 509     { PreserveReexecuteState preexecs(this);
 510       inc_sp(ndimensions);
 511       // Pass 0 as nargs since uncommon trap code does not need to restore stack.
 512       obj = expand_multianewarray(array_klass, &length[0], ndimensions, 0);
 513     } //original reexecute and sp are set back here
 514     push(obj);
 515     return;
 516   }
 517 
 518   address fun = NULL;
 519   switch (ndimensions) {
 520   case 1: ShouldNotReachHere(); break;
 521   case 2: fun = OptoRuntime::multianewarray2_Java(); break;
 522   case 3: fun = OptoRuntime::multianewarray3_Java(); break;
 523   case 4: fun = OptoRuntime::multianewarray4_Java(); break;
 524   case 5: fun = OptoRuntime::multianewarray5_Java(); break;
 525   };
 526   Node* c = NULL;
 527 
 528   if (fun != NULL) {
 529     c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
 530                           OptoRuntime::multianewarray_Type(ndimensions),
 531                           fun, NULL, TypeRawPtr::BOTTOM,
 532                           makecon(TypeKlassPtr::make(array_klass)),
 533                           length[0], length[1], length[2],
 534                           (ndimensions > 2) ? length[3] : NULL,
 535                           (ndimensions > 3) ? length[4] : NULL);
 536   } else {
 537     // Create a java array for dimension sizes
 538     Node* dims = NULL;
 539     { PreserveReexecuteState preexecs(this);
 540       inc_sp(ndimensions);
 541       Node* dims_array_klass = makecon(TypeKlassPtr::make(ciArrayKlass::make(ciType::make(T_INT))));
 542       dims = new_array(dims_array_klass, intcon(ndimensions), 0);
 543 
 544       // Fill-in it with values
 545       for (j = 0; j < ndimensions; j++) {
 546         Node *dims_elem = array_element_address(dims, intcon(j), T_INT);
 547         store_to_memory(control(), dims_elem, length[j], T_INT, TypeAryPtr::INTS, MemNode::unordered);
 548       }
 549     }
 550 
 551     c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
 552                           OptoRuntime::multianewarrayN_Type(),
 553                           OptoRuntime::multianewarrayN_Java(), NULL, TypeRawPtr::BOTTOM,
 554                           makecon(TypeKlassPtr::make(array_klass)),
 555                           dims);
 556   }
 557   make_slow_call_ex(c, env()->Throwable_klass(), false);
 558 
 559   Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms));
 560 
 561   const Type* type = TypeOopPtr::make_from_klass_raw(array_klass);
 562 
 563   // Improve the type:  We know it's not null, exact, and of a given length.
 564   type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull);
 565   type = type->is_aryptr()->cast_to_exactness(true);
 566 
 567   const TypeInt* ltype = _gvn.find_int_type(length[0]);
 568   if (ltype != NULL)
 569     type = type->is_aryptr()->cast_to_size(ltype);
 570 
 571     // We cannot sharpen the nested sub-arrays, since the top level is mutable.
 572 
 573   Node* cast = _gvn.transform( new CheckCastPPNode(control(), res, type) );
 574   push(cast);
 575 
 576   // Possible improvements:
 577   // - Make a fast path for small multi-arrays.  (W/ implicit init. loops.)
 578   // - Issue CastII against length[*] values, to TypeInt::POS.
 579 }