1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/cardTableModRefBS.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/biasedLocking.hpp"
  36 #include "runtime/interfaceSupport.hpp"
  37 #include "runtime/objectMonitor.hpp"
  38 #include "runtime/os.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/stubRoutines.hpp"
  41 #include "utilities/macros.hpp"
  42 #if INCLUDE_ALL_GCS
  43 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  44 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  45 #include "gc_implementation/g1/heapRegion.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 #ifdef PRODUCT
  49 #define BLOCK_COMMENT(str) /* nothing */
  50 #define STOP(error) stop(error)
  51 #else
  52 #define BLOCK_COMMENT(str) block_comment(str)
  53 #define STOP(error) block_comment(error); stop(error)
  54 #endif
  55 
  56 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  57 
  58 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  59 
  60 #ifdef ASSERT
  61 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  62 #endif
  63 
  64 static Assembler::Condition reverse[] = {
  65     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  66     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  67     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  68     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  69     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  70     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  71     Assembler::above          /* belowEqual    = 0x6 */ ,
  72     Assembler::belowEqual     /* above         = 0x7 */ ,
  73     Assembler::positive       /* negative      = 0x8 */ ,
  74     Assembler::negative       /* positive      = 0x9 */ ,
  75     Assembler::noParity       /* parity        = 0xa */ ,
  76     Assembler::parity         /* noParity      = 0xb */ ,
  77     Assembler::greaterEqual   /* less          = 0xc */ ,
  78     Assembler::less           /* greaterEqual  = 0xd */ ,
  79     Assembler::greater        /* lessEqual     = 0xe */ ,
  80     Assembler::lessEqual      /* greater       = 0xf, */
  81 
  82 };
  83 
  84 
  85 // Implementation of MacroAssembler
  86 
  87 // First all the versions that have distinct versions depending on 32/64 bit
  88 // Unless the difference is trivial (1 line or so).
  89 
  90 #ifndef _LP64
  91 
  92 // 32bit versions
  93 
  94 Address MacroAssembler::as_Address(AddressLiteral adr) {
  95   return Address(adr.target(), adr.rspec());
  96 }
  97 
  98 Address MacroAssembler::as_Address(ArrayAddress adr) {
  99   return Address::make_array(adr);
 100 }
 101 
 102 void MacroAssembler::call_VM_leaf_base(address entry_point,
 103                                        int number_of_arguments) {
 104   call(RuntimeAddress(entry_point));
 105   increment(rsp, number_of_arguments * wordSize);
 106 }
 107 
 108 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 109   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 110 }
 111 
 112 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 113   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 114 }
 115 
 116 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 117   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 118 }
 119 
 120 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 121   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 122 }
 123 
 124 void MacroAssembler::extend_sign(Register hi, Register lo) {
 125   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 126   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 127     cdql();
 128   } else {
 129     movl(hi, lo);
 130     sarl(hi, 31);
 131   }
 132 }
 133 
 134 void MacroAssembler::jC2(Register tmp, Label& L) {
 135   // set parity bit if FPU flag C2 is set (via rax)
 136   save_rax(tmp);
 137   fwait(); fnstsw_ax();
 138   sahf();
 139   restore_rax(tmp);
 140   // branch
 141   jcc(Assembler::parity, L);
 142 }
 143 
 144 void MacroAssembler::jnC2(Register tmp, Label& L) {
 145   // set parity bit if FPU flag C2 is set (via rax)
 146   save_rax(tmp);
 147   fwait(); fnstsw_ax();
 148   sahf();
 149   restore_rax(tmp);
 150   // branch
 151   jcc(Assembler::noParity, L);
 152 }
 153 
 154 // 32bit can do a case table jump in one instruction but we no longer allow the base
 155 // to be installed in the Address class
 156 void MacroAssembler::jump(ArrayAddress entry) {
 157   jmp(as_Address(entry));
 158 }
 159 
 160 // Note: y_lo will be destroyed
 161 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 162   // Long compare for Java (semantics as described in JVM spec.)
 163   Label high, low, done;
 164 
 165   cmpl(x_hi, y_hi);
 166   jcc(Assembler::less, low);
 167   jcc(Assembler::greater, high);
 168   // x_hi is the return register
 169   xorl(x_hi, x_hi);
 170   cmpl(x_lo, y_lo);
 171   jcc(Assembler::below, low);
 172   jcc(Assembler::equal, done);
 173 
 174   bind(high);
 175   xorl(x_hi, x_hi);
 176   increment(x_hi);
 177   jmp(done);
 178 
 179   bind(low);
 180   xorl(x_hi, x_hi);
 181   decrementl(x_hi);
 182 
 183   bind(done);
 184 }
 185 
 186 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 187     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 188 }
 189 
 190 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 191   // leal(dst, as_Address(adr));
 192   // see note in movl as to why we must use a move
 193   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 194 }
 195 
 196 void MacroAssembler::leave() {
 197   mov(rsp, rbp);
 198   pop(rbp);
 199 }
 200 
 201 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 202   // Multiplication of two Java long values stored on the stack
 203   // as illustrated below. Result is in rdx:rax.
 204   //
 205   // rsp ---> [  ??  ] \               \
 206   //            ....    | y_rsp_offset  |
 207   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 208   //          [ y_hi ]                  | (in bytes)
 209   //            ....                    |
 210   //          [ x_lo ]                 /
 211   //          [ x_hi ]
 212   //            ....
 213   //
 214   // Basic idea: lo(result) = lo(x_lo * y_lo)
 215   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 216   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 217   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 218   Label quick;
 219   // load x_hi, y_hi and check if quick
 220   // multiplication is possible
 221   movl(rbx, x_hi);
 222   movl(rcx, y_hi);
 223   movl(rax, rbx);
 224   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 225   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 226   // do full multiplication
 227   // 1st step
 228   mull(y_lo);                                    // x_hi * y_lo
 229   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 230   // 2nd step
 231   movl(rax, x_lo);
 232   mull(rcx);                                     // x_lo * y_hi
 233   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 234   // 3rd step
 235   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 236   movl(rax, x_lo);
 237   mull(y_lo);                                    // x_lo * y_lo
 238   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 239 }
 240 
 241 void MacroAssembler::lneg(Register hi, Register lo) {
 242   negl(lo);
 243   adcl(hi, 0);
 244   negl(hi);
 245 }
 246 
 247 void MacroAssembler::lshl(Register hi, Register lo) {
 248   // Java shift left long support (semantics as described in JVM spec., p.305)
 249   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 250   // shift value is in rcx !
 251   assert(hi != rcx, "must not use rcx");
 252   assert(lo != rcx, "must not use rcx");
 253   const Register s = rcx;                        // shift count
 254   const int      n = BitsPerWord;
 255   Label L;
 256   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 257   cmpl(s, n);                                    // if (s < n)
 258   jcc(Assembler::less, L);                       // else (s >= n)
 259   movl(hi, lo);                                  // x := x << n
 260   xorl(lo, lo);
 261   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 262   bind(L);                                       // s (mod n) < n
 263   shldl(hi, lo);                                 // x := x << s
 264   shll(lo);
 265 }
 266 
 267 
 268 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 269   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 270   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 271   assert(hi != rcx, "must not use rcx");
 272   assert(lo != rcx, "must not use rcx");
 273   const Register s = rcx;                        // shift count
 274   const int      n = BitsPerWord;
 275   Label L;
 276   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 277   cmpl(s, n);                                    // if (s < n)
 278   jcc(Assembler::less, L);                       // else (s >= n)
 279   movl(lo, hi);                                  // x := x >> n
 280   if (sign_extension) sarl(hi, 31);
 281   else                xorl(hi, hi);
 282   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 283   bind(L);                                       // s (mod n) < n
 284   shrdl(lo, hi);                                 // x := x >> s
 285   if (sign_extension) sarl(hi);
 286   else                shrl(hi);
 287 }
 288 
 289 void MacroAssembler::movoop(Register dst, jobject obj) {
 290   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 291 }
 292 
 293 void MacroAssembler::movoop(Address dst, jobject obj) {
 294   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 295 }
 296 
 297 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 298   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 299 }
 300 
 301 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 302   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 303 }
 304 
 305 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 306   // scratch register is not used,
 307   // it is defined to match parameters of 64-bit version of this method.
 308   if (src.is_lval()) {
 309     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 310   } else {
 311     movl(dst, as_Address(src));
 312   }
 313 }
 314 
 315 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 316   movl(as_Address(dst), src);
 317 }
 318 
 319 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 320   movl(dst, as_Address(src));
 321 }
 322 
 323 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 324 void MacroAssembler::movptr(Address dst, intptr_t src) {
 325   movl(dst, src);
 326 }
 327 
 328 
 329 void MacroAssembler::pop_callee_saved_registers() {
 330   pop(rcx);
 331   pop(rdx);
 332   pop(rdi);
 333   pop(rsi);
 334 }
 335 
 336 void MacroAssembler::pop_fTOS() {
 337   fld_d(Address(rsp, 0));
 338   addl(rsp, 2 * wordSize);
 339 }
 340 
 341 void MacroAssembler::push_callee_saved_registers() {
 342   push(rsi);
 343   push(rdi);
 344   push(rdx);
 345   push(rcx);
 346 }
 347 
 348 void MacroAssembler::push_fTOS() {
 349   subl(rsp, 2 * wordSize);
 350   fstp_d(Address(rsp, 0));
 351 }
 352 
 353 
 354 void MacroAssembler::pushoop(jobject obj) {
 355   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 356 }
 357 
 358 void MacroAssembler::pushklass(Metadata* obj) {
 359   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 360 }
 361 
 362 void MacroAssembler::pushptr(AddressLiteral src) {
 363   if (src.is_lval()) {
 364     push_literal32((int32_t)src.target(), src.rspec());
 365   } else {
 366     pushl(as_Address(src));
 367   }
 368 }
 369 
 370 void MacroAssembler::set_word_if_not_zero(Register dst) {
 371   xorl(dst, dst);
 372   set_byte_if_not_zero(dst);
 373 }
 374 
 375 static void pass_arg0(MacroAssembler* masm, Register arg) {
 376   masm->push(arg);
 377 }
 378 
 379 static void pass_arg1(MacroAssembler* masm, Register arg) {
 380   masm->push(arg);
 381 }
 382 
 383 static void pass_arg2(MacroAssembler* masm, Register arg) {
 384   masm->push(arg);
 385 }
 386 
 387 static void pass_arg3(MacroAssembler* masm, Register arg) {
 388   masm->push(arg);
 389 }
 390 
 391 #ifndef PRODUCT
 392 extern "C" void findpc(intptr_t x);
 393 #endif
 394 
 395 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 396   // In order to get locks to work, we need to fake a in_VM state
 397   JavaThread* thread = JavaThread::current();
 398   JavaThreadState saved_state = thread->thread_state();
 399   thread->set_thread_state(_thread_in_vm);
 400   if (ShowMessageBoxOnError) {
 401     JavaThread* thread = JavaThread::current();
 402     JavaThreadState saved_state = thread->thread_state();
 403     thread->set_thread_state(_thread_in_vm);
 404     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 405       ttyLocker ttyl;
 406       BytecodeCounter::print();
 407     }
 408     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 409     // This is the value of eip which points to where verify_oop will return.
 410     if (os::message_box(msg, "Execution stopped, print registers?")) {
 411       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 412       BREAKPOINT;
 413     }
 414   } else {
 415     ttyLocker ttyl;
 416     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 417   }
 418   // Don't assert holding the ttyLock
 419     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 420   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 421 }
 422 
 423 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 424   ttyLocker ttyl;
 425   FlagSetting fs(Debugging, true);
 426   tty->print_cr("eip = 0x%08x", eip);
 427 #ifndef PRODUCT
 428   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 429     tty->cr();
 430     findpc(eip);
 431     tty->cr();
 432   }
 433 #endif
 434 #define PRINT_REG(rax) \
 435   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 436   PRINT_REG(rax);
 437   PRINT_REG(rbx);
 438   PRINT_REG(rcx);
 439   PRINT_REG(rdx);
 440   PRINT_REG(rdi);
 441   PRINT_REG(rsi);
 442   PRINT_REG(rbp);
 443   PRINT_REG(rsp);
 444 #undef PRINT_REG
 445   // Print some words near top of staack.
 446   int* dump_sp = (int*) rsp;
 447   for (int col1 = 0; col1 < 8; col1++) {
 448     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 449     os::print_location(tty, *dump_sp++);
 450   }
 451   for (int row = 0; row < 16; row++) {
 452     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 453     for (int col = 0; col < 8; col++) {
 454       tty->print(" 0x%08x", *dump_sp++);
 455     }
 456     tty->cr();
 457   }
 458   // Print some instructions around pc:
 459   Disassembler::decode((address)eip-64, (address)eip);
 460   tty->print_cr("--------");
 461   Disassembler::decode((address)eip, (address)eip+32);
 462 }
 463 
 464 void MacroAssembler::stop(const char* msg) {
 465   ExternalAddress message((address)msg);
 466   // push address of message
 467   pushptr(message.addr());
 468   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 469   pusha();                                            // push registers
 470   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 471   hlt();
 472 }
 473 
 474 void MacroAssembler::warn(const char* msg) {
 475   push_CPU_state();
 476 
 477   ExternalAddress message((address) msg);
 478   // push address of message
 479   pushptr(message.addr());
 480 
 481   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 482   addl(rsp, wordSize);       // discard argument
 483   pop_CPU_state();
 484 }
 485 
 486 void MacroAssembler::print_state() {
 487   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 488   pusha();                                            // push registers
 489 
 490   push_CPU_state();
 491   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 492   pop_CPU_state();
 493 
 494   popa();
 495   addl(rsp, wordSize);
 496 }
 497 
 498 #else // _LP64
 499 
 500 // 64 bit versions
 501 
 502 Address MacroAssembler::as_Address(AddressLiteral adr) {
 503   // amd64 always does this as a pc-rel
 504   // we can be absolute or disp based on the instruction type
 505   // jmp/call are displacements others are absolute
 506   assert(!adr.is_lval(), "must be rval");
 507   assert(reachable(adr), "must be");
 508   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 509 
 510 }
 511 
 512 Address MacroAssembler::as_Address(ArrayAddress adr) {
 513   AddressLiteral base = adr.base();
 514   lea(rscratch1, base);
 515   Address index = adr.index();
 516   assert(index._disp == 0, "must not have disp"); // maybe it can?
 517   Address array(rscratch1, index._index, index._scale, index._disp);
 518   return array;
 519 }
 520 
 521 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 522   Label L, E;
 523 
 524 #ifdef _WIN64
 525   // Windows always allocates space for it's register args
 526   assert(num_args <= 4, "only register arguments supported");
 527   subq(rsp,  frame::arg_reg_save_area_bytes);
 528 #endif
 529 
 530   // Align stack if necessary
 531   testl(rsp, 15);
 532   jcc(Assembler::zero, L);
 533 
 534   subq(rsp, 8);
 535   {
 536     call(RuntimeAddress(entry_point));
 537   }
 538   addq(rsp, 8);
 539   jmp(E);
 540 
 541   bind(L);
 542   {
 543     call(RuntimeAddress(entry_point));
 544   }
 545 
 546   bind(E);
 547 
 548 #ifdef _WIN64
 549   // restore stack pointer
 550   addq(rsp, frame::arg_reg_save_area_bytes);
 551 #endif
 552 
 553 }
 554 
 555 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 556   assert(!src2.is_lval(), "should use cmpptr");
 557 
 558   if (reachable(src2)) {
 559     cmpq(src1, as_Address(src2));
 560   } else {
 561     lea(rscratch1, src2);
 562     Assembler::cmpq(src1, Address(rscratch1, 0));
 563   }
 564 }
 565 
 566 int MacroAssembler::corrected_idivq(Register reg) {
 567   // Full implementation of Java ldiv and lrem; checks for special
 568   // case as described in JVM spec., p.243 & p.271.  The function
 569   // returns the (pc) offset of the idivl instruction - may be needed
 570   // for implicit exceptions.
 571   //
 572   //         normal case                           special case
 573   //
 574   // input : rax: dividend                         min_long
 575   //         reg: divisor   (may not be eax/edx)   -1
 576   //
 577   // output: rax: quotient  (= rax idiv reg)       min_long
 578   //         rdx: remainder (= rax irem reg)       0
 579   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 580   static const int64_t min_long = 0x8000000000000000;
 581   Label normal_case, special_case;
 582 
 583   // check for special case
 584   cmp64(rax, ExternalAddress((address) &min_long));
 585   jcc(Assembler::notEqual, normal_case);
 586   xorl(rdx, rdx); // prepare rdx for possible special case (where
 587                   // remainder = 0)
 588   cmpq(reg, -1);
 589   jcc(Assembler::equal, special_case);
 590 
 591   // handle normal case
 592   bind(normal_case);
 593   cdqq();
 594   int idivq_offset = offset();
 595   idivq(reg);
 596 
 597   // normal and special case exit
 598   bind(special_case);
 599 
 600   return idivq_offset;
 601 }
 602 
 603 void MacroAssembler::decrementq(Register reg, int value) {
 604   if (value == min_jint) { subq(reg, value); return; }
 605   if (value <  0) { incrementq(reg, -value); return; }
 606   if (value == 0) {                        ; return; }
 607   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 608   /* else */      { subq(reg, value)       ; return; }
 609 }
 610 
 611 void MacroAssembler::decrementq(Address dst, int value) {
 612   if (value == min_jint) { subq(dst, value); return; }
 613   if (value <  0) { incrementq(dst, -value); return; }
 614   if (value == 0) {                        ; return; }
 615   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 616   /* else */      { subq(dst, value)       ; return; }
 617 }
 618 
 619 void MacroAssembler::incrementq(AddressLiteral dst) {
 620   if (reachable(dst)) {
 621     incrementq(as_Address(dst));
 622   } else {
 623     lea(rscratch1, dst);
 624     incrementq(Address(rscratch1, 0));
 625   }
 626 }
 627 
 628 void MacroAssembler::incrementq(Register reg, int value) {
 629   if (value == min_jint) { addq(reg, value); return; }
 630   if (value <  0) { decrementq(reg, -value); return; }
 631   if (value == 0) {                        ; return; }
 632   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 633   /* else */      { addq(reg, value)       ; return; }
 634 }
 635 
 636 void MacroAssembler::incrementq(Address dst, int value) {
 637   if (value == min_jint) { addq(dst, value); return; }
 638   if (value <  0) { decrementq(dst, -value); return; }
 639   if (value == 0) {                        ; return; }
 640   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 641   /* else */      { addq(dst, value)       ; return; }
 642 }
 643 
 644 // 32bit can do a case table jump in one instruction but we no longer allow the base
 645 // to be installed in the Address class
 646 void MacroAssembler::jump(ArrayAddress entry) {
 647   lea(rscratch1, entry.base());
 648   Address dispatch = entry.index();
 649   assert(dispatch._base == noreg, "must be");
 650   dispatch._base = rscratch1;
 651   jmp(dispatch);
 652 }
 653 
 654 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 655   ShouldNotReachHere(); // 64bit doesn't use two regs
 656   cmpq(x_lo, y_lo);
 657 }
 658 
 659 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 660     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 661 }
 662 
 663 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 664   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 665   movptr(dst, rscratch1);
 666 }
 667 
 668 void MacroAssembler::leave() {
 669   // %%% is this really better? Why not on 32bit too?
 670   emit_int8((unsigned char)0xC9); // LEAVE
 671 }
 672 
 673 void MacroAssembler::lneg(Register hi, Register lo) {
 674   ShouldNotReachHere(); // 64bit doesn't use two regs
 675   negq(lo);
 676 }
 677 
 678 void MacroAssembler::movoop(Register dst, jobject obj) {
 679   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 680 }
 681 
 682 void MacroAssembler::movoop(Address dst, jobject obj) {
 683   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 684   movq(dst, rscratch1);
 685 }
 686 
 687 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 688   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 689 }
 690 
 691 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 692   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 693   movq(dst, rscratch1);
 694 }
 695 
 696 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 697   if (src.is_lval()) {
 698     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 699   } else {
 700     if (reachable(src)) {
 701       movq(dst, as_Address(src));
 702     } else {
 703       lea(scratch, src);
 704       movq(dst, Address(scratch, 0));
 705     }
 706   }
 707 }
 708 
 709 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 710   movq(as_Address(dst), src);
 711 }
 712 
 713 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 714   movq(dst, as_Address(src));
 715 }
 716 
 717 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 718 void MacroAssembler::movptr(Address dst, intptr_t src) {
 719   mov64(rscratch1, src);
 720   movq(dst, rscratch1);
 721 }
 722 
 723 // These are mostly for initializing NULL
 724 void MacroAssembler::movptr(Address dst, int32_t src) {
 725   movslq(dst, src);
 726 }
 727 
 728 void MacroAssembler::movptr(Register dst, int32_t src) {
 729   mov64(dst, (intptr_t)src);
 730 }
 731 
 732 void MacroAssembler::pushoop(jobject obj) {
 733   movoop(rscratch1, obj);
 734   push(rscratch1);
 735 }
 736 
 737 void MacroAssembler::pushklass(Metadata* obj) {
 738   mov_metadata(rscratch1, obj);
 739   push(rscratch1);
 740 }
 741 
 742 void MacroAssembler::pushptr(AddressLiteral src) {
 743   lea(rscratch1, src);
 744   if (src.is_lval()) {
 745     push(rscratch1);
 746   } else {
 747     pushq(Address(rscratch1, 0));
 748   }
 749 }
 750 
 751 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
 752                                            bool clear_pc) {
 753   // we must set sp to zero to clear frame
 754   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 755   // must clear fp, so that compiled frames are not confused; it is
 756   // possible that we need it only for debugging
 757   if (clear_fp) {
 758     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 759   }
 760 
 761   if (clear_pc) {
 762     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 763   }
 764 }
 765 
 766 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 767                                          Register last_java_fp,
 768                                          address  last_java_pc) {
 769   // determine last_java_sp register
 770   if (!last_java_sp->is_valid()) {
 771     last_java_sp = rsp;
 772   }
 773 
 774   // last_java_fp is optional
 775   if (last_java_fp->is_valid()) {
 776     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 777            last_java_fp);
 778   }
 779 
 780   // last_java_pc is optional
 781   if (last_java_pc != NULL) {
 782     Address java_pc(r15_thread,
 783                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 784     lea(rscratch1, InternalAddress(last_java_pc));
 785     movptr(java_pc, rscratch1);
 786   }
 787 
 788   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 789 }
 790 
 791 static void pass_arg0(MacroAssembler* masm, Register arg) {
 792   if (c_rarg0 != arg ) {
 793     masm->mov(c_rarg0, arg);
 794   }
 795 }
 796 
 797 static void pass_arg1(MacroAssembler* masm, Register arg) {
 798   if (c_rarg1 != arg ) {
 799     masm->mov(c_rarg1, arg);
 800   }
 801 }
 802 
 803 static void pass_arg2(MacroAssembler* masm, Register arg) {
 804   if (c_rarg2 != arg ) {
 805     masm->mov(c_rarg2, arg);
 806   }
 807 }
 808 
 809 static void pass_arg3(MacroAssembler* masm, Register arg) {
 810   if (c_rarg3 != arg ) {
 811     masm->mov(c_rarg3, arg);
 812   }
 813 }
 814 
 815 void MacroAssembler::stop(const char* msg) {
 816   address rip = pc();
 817   pusha(); // get regs on stack
 818   lea(c_rarg0, ExternalAddress((address) msg));
 819   lea(c_rarg1, InternalAddress(rip));
 820   movq(c_rarg2, rsp); // pass pointer to regs array
 821   andq(rsp, -16); // align stack as required by ABI
 822   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 823   hlt();
 824 }
 825 
 826 void MacroAssembler::warn(const char* msg) {
 827   push(rbp);
 828   movq(rbp, rsp);
 829   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 830   push_CPU_state();   // keeps alignment at 16 bytes
 831   lea(c_rarg0, ExternalAddress((address) msg));
 832   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
 833   pop_CPU_state();
 834   mov(rsp, rbp);
 835   pop(rbp);
 836 }
 837 
 838 void MacroAssembler::print_state() {
 839   address rip = pc();
 840   pusha();            // get regs on stack
 841   push(rbp);
 842   movq(rbp, rsp);
 843   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 844   push_CPU_state();   // keeps alignment at 16 bytes
 845 
 846   lea(c_rarg0, InternalAddress(rip));
 847   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 848   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 849 
 850   pop_CPU_state();
 851   mov(rsp, rbp);
 852   pop(rbp);
 853   popa();
 854 }
 855 
 856 #ifndef PRODUCT
 857 extern "C" void findpc(intptr_t x);
 858 #endif
 859 
 860 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 861   // In order to get locks to work, we need to fake a in_VM state
 862   if (ShowMessageBoxOnError) {
 863     JavaThread* thread = JavaThread::current();
 864     JavaThreadState saved_state = thread->thread_state();
 865     thread->set_thread_state(_thread_in_vm);
 866 #ifndef PRODUCT
 867     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 868       ttyLocker ttyl;
 869       BytecodeCounter::print();
 870     }
 871 #endif
 872     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 873     // XXX correct this offset for amd64
 874     // This is the value of eip which points to where verify_oop will return.
 875     if (os::message_box(msg, "Execution stopped, print registers?")) {
 876       print_state64(pc, regs);
 877       BREAKPOINT;
 878       assert(false, "start up GDB");
 879     }
 880     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 881   } else {
 882     ttyLocker ttyl;
 883     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 884                     msg);
 885     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 886   }
 887 }
 888 
 889 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 890   ttyLocker ttyl;
 891   FlagSetting fs(Debugging, true);
 892   tty->print_cr("rip = 0x%016lx", pc);
 893 #ifndef PRODUCT
 894   tty->cr();
 895   findpc(pc);
 896   tty->cr();
 897 #endif
 898 #define PRINT_REG(rax, value) \
 899   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 900   PRINT_REG(rax, regs[15]);
 901   PRINT_REG(rbx, regs[12]);
 902   PRINT_REG(rcx, regs[14]);
 903   PRINT_REG(rdx, regs[13]);
 904   PRINT_REG(rdi, regs[8]);
 905   PRINT_REG(rsi, regs[9]);
 906   PRINT_REG(rbp, regs[10]);
 907   PRINT_REG(rsp, regs[11]);
 908   PRINT_REG(r8 , regs[7]);
 909   PRINT_REG(r9 , regs[6]);
 910   PRINT_REG(r10, regs[5]);
 911   PRINT_REG(r11, regs[4]);
 912   PRINT_REG(r12, regs[3]);
 913   PRINT_REG(r13, regs[2]);
 914   PRINT_REG(r14, regs[1]);
 915   PRINT_REG(r15, regs[0]);
 916 #undef PRINT_REG
 917   // Print some words near top of staack.
 918   int64_t* rsp = (int64_t*) regs[11];
 919   int64_t* dump_sp = rsp;
 920   for (int col1 = 0; col1 < 8; col1++) {
 921     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 922     os::print_location(tty, *dump_sp++);
 923   }
 924   for (int row = 0; row < 25; row++) {
 925     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 926     for (int col = 0; col < 4; col++) {
 927       tty->print(" 0x%016lx", *dump_sp++);
 928     }
 929     tty->cr();
 930   }
 931   // Print some instructions around pc:
 932   Disassembler::decode((address)pc-64, (address)pc);
 933   tty->print_cr("--------");
 934   Disassembler::decode((address)pc, (address)pc+32);
 935 }
 936 
 937 #endif // _LP64
 938 
 939 // Now versions that are common to 32/64 bit
 940 
 941 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 942   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 943 }
 944 
 945 void MacroAssembler::addptr(Register dst, Register src) {
 946   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 947 }
 948 
 949 void MacroAssembler::addptr(Address dst, Register src) {
 950   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 951 }
 952 
 953 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 954   if (reachable(src)) {
 955     Assembler::addsd(dst, as_Address(src));
 956   } else {
 957     lea(rscratch1, src);
 958     Assembler::addsd(dst, Address(rscratch1, 0));
 959   }
 960 }
 961 
 962 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 963   if (reachable(src)) {
 964     addss(dst, as_Address(src));
 965   } else {
 966     lea(rscratch1, src);
 967     addss(dst, Address(rscratch1, 0));
 968   }
 969 }
 970 
 971 void MacroAssembler::align(int modulus) {
 972   if (offset() % modulus != 0) {
 973     nop(modulus - (offset() % modulus));
 974   }
 975 }
 976 
 977 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 978   // Used in sign-masking with aligned address.
 979   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 980   if (reachable(src)) {
 981     Assembler::andpd(dst, as_Address(src));
 982   } else {
 983     lea(rscratch1, src);
 984     Assembler::andpd(dst, Address(rscratch1, 0));
 985   }
 986 }
 987 
 988 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
 989   // Used in sign-masking with aligned address.
 990   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 991   if (reachable(src)) {
 992     Assembler::andps(dst, as_Address(src));
 993   } else {
 994     lea(rscratch1, src);
 995     Assembler::andps(dst, Address(rscratch1, 0));
 996   }
 997 }
 998 
 999 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1000   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1001 }
1002 
1003 void MacroAssembler::atomic_incl(Address counter_addr) {
1004   if (os::is_MP())
1005     lock();
1006   incrementl(counter_addr);
1007 }
1008 
1009 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1010   if (reachable(counter_addr)) {
1011     atomic_incl(as_Address(counter_addr));
1012   } else {
1013     lea(scr, counter_addr);
1014     atomic_incl(Address(scr, 0));
1015   }
1016 }
1017 
1018 #ifdef _LP64
1019 void MacroAssembler::atomic_incq(Address counter_addr) {
1020   if (os::is_MP())
1021     lock();
1022   incrementq(counter_addr);
1023 }
1024 
1025 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1026   if (reachable(counter_addr)) {
1027     atomic_incq(as_Address(counter_addr));
1028   } else {
1029     lea(scr, counter_addr);
1030     atomic_incq(Address(scr, 0));
1031   }
1032 }
1033 #endif
1034 
1035 // Writes to stack successive pages until offset reached to check for
1036 // stack overflow + shadow pages.  This clobbers tmp.
1037 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1038   movptr(tmp, rsp);
1039   // Bang stack for total size given plus shadow page size.
1040   // Bang one page at a time because large size can bang beyond yellow and
1041   // red zones.
1042   Label loop;
1043   bind(loop);
1044   movl(Address(tmp, (-os::vm_page_size())), size );
1045   subptr(tmp, os::vm_page_size());
1046   subl(size, os::vm_page_size());
1047   jcc(Assembler::greater, loop);
1048 
1049   // Bang down shadow pages too.
1050   // At this point, (tmp-0) is the last address touched, so don't
1051   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1052   // was post-decremented.)  Skip this address by starting at i=1, and
1053   // touch a few more pages below.  N.B.  It is important to touch all
1054   // the way down to and including i=StackShadowPages.
1055   for (int i = 1; i < StackShadowPages; i++) {
1056     // this could be any sized move but this is can be a debugging crumb
1057     // so the bigger the better.
1058     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1059   }
1060 }
1061 
1062 int MacroAssembler::biased_locking_enter(Register lock_reg,
1063                                          Register obj_reg,
1064                                          Register swap_reg,
1065                                          Register tmp_reg,
1066                                          bool swap_reg_contains_mark,
1067                                          Label& done,
1068                                          Label* slow_case,
1069                                          BiasedLockingCounters* counters) {
1070   assert(UseBiasedLocking, "why call this otherwise?");
1071   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1072   LP64_ONLY( assert(tmp_reg != noreg, "tmp_reg must be supplied"); )
1073   bool need_tmp_reg = false;
1074   if (tmp_reg == noreg) {
1075     need_tmp_reg = true;
1076     tmp_reg = lock_reg;
1077     assert_different_registers(lock_reg, obj_reg, swap_reg);
1078   } else {
1079     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1080   }
1081   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1082   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1083   Address saved_mark_addr(lock_reg, 0);
1084 
1085   if (PrintBiasedLockingStatistics && counters == NULL) {
1086     counters = BiasedLocking::counters();
1087   }
1088   // Biased locking
1089   // See whether the lock is currently biased toward our thread and
1090   // whether the epoch is still valid
1091   // Note that the runtime guarantees sufficient alignment of JavaThread
1092   // pointers to allow age to be placed into low bits
1093   // First check to see whether biasing is even enabled for this object
1094   Label cas_label;
1095   int null_check_offset = -1;
1096   if (!swap_reg_contains_mark) {
1097     null_check_offset = offset();
1098     movptr(swap_reg, mark_addr);
1099   }
1100   if (need_tmp_reg) {
1101     push(tmp_reg);
1102   }
1103   movptr(tmp_reg, swap_reg);
1104   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1105   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1106   if (need_tmp_reg) {
1107     pop(tmp_reg);
1108   }
1109   jcc(Assembler::notEqual, cas_label);
1110   // The bias pattern is present in the object's header. Need to check
1111   // whether the bias owner and the epoch are both still current.
1112 #ifndef _LP64
1113   // Note that because there is no current thread register on x86_32 we
1114   // need to store off the mark word we read out of the object to
1115   // avoid reloading it and needing to recheck invariants below. This
1116   // store is unfortunate but it makes the overall code shorter and
1117   // simpler.
1118   movptr(saved_mark_addr, swap_reg);
1119 #endif
1120   if (need_tmp_reg) {
1121     push(tmp_reg);
1122   }
1123   if (swap_reg_contains_mark) {
1124     null_check_offset = offset();
1125   }
1126   load_prototype_header(tmp_reg, obj_reg);
1127 #ifdef _LP64
1128   orptr(tmp_reg, r15_thread);
1129   xorptr(tmp_reg, swap_reg);
1130   Register header_reg = tmp_reg;
1131 #else
1132   xorptr(tmp_reg, swap_reg);
1133   get_thread(swap_reg);
1134   xorptr(swap_reg, tmp_reg);
1135   Register header_reg = swap_reg;
1136 #endif
1137   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1138   if (need_tmp_reg) {
1139     pop(tmp_reg);
1140   }
1141   if (counters != NULL) {
1142     cond_inc32(Assembler::zero,
1143                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1144   }
1145   jcc(Assembler::equal, done);
1146 
1147   Label try_revoke_bias;
1148   Label try_rebias;
1149 
1150   // At this point we know that the header has the bias pattern and
1151   // that we are not the bias owner in the current epoch. We need to
1152   // figure out more details about the state of the header in order to
1153   // know what operations can be legally performed on the object's
1154   // header.
1155 
1156   // If the low three bits in the xor result aren't clear, that means
1157   // the prototype header is no longer biased and we have to revoke
1158   // the bias on this object.
1159   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1160   jccb(Assembler::notZero, try_revoke_bias);
1161 
1162   // Biasing is still enabled for this data type. See whether the
1163   // epoch of the current bias is still valid, meaning that the epoch
1164   // bits of the mark word are equal to the epoch bits of the
1165   // prototype header. (Note that the prototype header's epoch bits
1166   // only change at a safepoint.) If not, attempt to rebias the object
1167   // toward the current thread. Note that we must be absolutely sure
1168   // that the current epoch is invalid in order to do this because
1169   // otherwise the manipulations it performs on the mark word are
1170   // illegal.
1171   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1172   jccb(Assembler::notZero, try_rebias);
1173 
1174   // The epoch of the current bias is still valid but we know nothing
1175   // about the owner; it might be set or it might be clear. Try to
1176   // acquire the bias of the object using an atomic operation. If this
1177   // fails we will go in to the runtime to revoke the object's bias.
1178   // Note that we first construct the presumed unbiased header so we
1179   // don't accidentally blow away another thread's valid bias.
1180   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1181   andptr(swap_reg,
1182          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1183   if (need_tmp_reg) {
1184     push(tmp_reg);
1185   }
1186 #ifdef _LP64
1187   movptr(tmp_reg, swap_reg);
1188   orptr(tmp_reg, r15_thread);
1189 #else
1190   get_thread(tmp_reg);
1191   orptr(tmp_reg, swap_reg);
1192 #endif
1193   if (os::is_MP()) {
1194     lock();
1195   }
1196   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1197   if (need_tmp_reg) {
1198     pop(tmp_reg);
1199   }
1200   // If the biasing toward our thread failed, this means that
1201   // another thread succeeded in biasing it toward itself and we
1202   // need to revoke that bias. The revocation will occur in the
1203   // interpreter runtime in the slow case.
1204   if (counters != NULL) {
1205     cond_inc32(Assembler::zero,
1206                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1207   }
1208   if (slow_case != NULL) {
1209     jcc(Assembler::notZero, *slow_case);
1210   }
1211   jmp(done);
1212 
1213   bind(try_rebias);
1214   // At this point we know the epoch has expired, meaning that the
1215   // current "bias owner", if any, is actually invalid. Under these
1216   // circumstances _only_, we are allowed to use the current header's
1217   // value as the comparison value when doing the cas to acquire the
1218   // bias in the current epoch. In other words, we allow transfer of
1219   // the bias from one thread to another directly in this situation.
1220   //
1221   // FIXME: due to a lack of registers we currently blow away the age
1222   // bits in this situation. Should attempt to preserve them.
1223   if (need_tmp_reg) {
1224     push(tmp_reg);
1225   }
1226   load_prototype_header(tmp_reg, obj_reg);
1227 #ifdef _LP64
1228   orptr(tmp_reg, r15_thread);
1229 #else
1230   get_thread(swap_reg);
1231   orptr(tmp_reg, swap_reg);
1232   movptr(swap_reg, saved_mark_addr);
1233 #endif
1234   if (os::is_MP()) {
1235     lock();
1236   }
1237   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1238   if (need_tmp_reg) {
1239     pop(tmp_reg);
1240   }
1241   // If the biasing toward our thread failed, then another thread
1242   // succeeded in biasing it toward itself and we need to revoke that
1243   // bias. The revocation will occur in the runtime in the slow case.
1244   if (counters != NULL) {
1245     cond_inc32(Assembler::zero,
1246                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1247   }
1248   if (slow_case != NULL) {
1249     jcc(Assembler::notZero, *slow_case);
1250   }
1251   jmp(done);
1252 
1253   bind(try_revoke_bias);
1254   // The prototype mark in the klass doesn't have the bias bit set any
1255   // more, indicating that objects of this data type are not supposed
1256   // to be biased any more. We are going to try to reset the mark of
1257   // this object to the prototype value and fall through to the
1258   // CAS-based locking scheme. Note that if our CAS fails, it means
1259   // that another thread raced us for the privilege of revoking the
1260   // bias of this particular object, so it's okay to continue in the
1261   // normal locking code.
1262   //
1263   // FIXME: due to a lack of registers we currently blow away the age
1264   // bits in this situation. Should attempt to preserve them.
1265   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1266   if (need_tmp_reg) {
1267     push(tmp_reg);
1268   }
1269   load_prototype_header(tmp_reg, obj_reg);
1270   if (os::is_MP()) {
1271     lock();
1272   }
1273   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1274   if (need_tmp_reg) {
1275     pop(tmp_reg);
1276   }
1277   // Fall through to the normal CAS-based lock, because no matter what
1278   // the result of the above CAS, some thread must have succeeded in
1279   // removing the bias bit from the object's header.
1280   if (counters != NULL) {
1281     cond_inc32(Assembler::zero,
1282                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1283   }
1284 
1285   bind(cas_label);
1286 
1287   return null_check_offset;
1288 }
1289 
1290 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1291   assert(UseBiasedLocking, "why call this otherwise?");
1292 
1293   // Check for biased locking unlock case, which is a no-op
1294   // Note: we do not have to check the thread ID for two reasons.
1295   // First, the interpreter checks for IllegalMonitorStateException at
1296   // a higher level. Second, if the bias was revoked while we held the
1297   // lock, the object could not be rebiased toward another thread, so
1298   // the bias bit would be clear.
1299   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1300   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1301   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1302   jcc(Assembler::equal, done);
1303 }
1304 
1305 #ifdef COMPILER2
1306 
1307 #if INCLUDE_RTM_OPT
1308 
1309 // Update rtm_counters based on abort status
1310 // input: abort_status
1311 //        rtm_counters (RTMLockingCounters*)
1312 // flags are killed
1313 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1314 
1315   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1316   if (PrintPreciseRTMLockingStatistics) {
1317     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1318       Label check_abort;
1319       testl(abort_status, (1<<i));
1320       jccb(Assembler::equal, check_abort);
1321       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1322       bind(check_abort);
1323     }
1324   }
1325 }
1326 
1327 // Branch if (random & (count-1) != 0), count is 2^n
1328 // tmp, scr and flags are killed
1329 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1330   assert(tmp == rax, "");
1331   assert(scr == rdx, "");
1332   rdtsc(); // modifies EDX:EAX
1333   andptr(tmp, count-1);
1334   jccb(Assembler::notZero, brLabel);
1335 }
1336 
1337 // Perform abort ratio calculation, set no_rtm bit if high ratio
1338 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1339 // tmpReg, rtm_counters_Reg and flags are killed
1340 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1341                                                  Register rtm_counters_Reg,
1342                                                  RTMLockingCounters* rtm_counters,
1343                                                  Metadata* method_data) {
1344   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1345 
1346   if (RTMLockingCalculationDelay > 0) {
1347     // Delay calculation
1348     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1349     testptr(tmpReg, tmpReg);
1350     jccb(Assembler::equal, L_done);
1351   }
1352   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1353   //   Aborted transactions = abort_count * 100
1354   //   All transactions = total_count *  RTMTotalCountIncrRate
1355   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1356 
1357   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1358   cmpptr(tmpReg, RTMAbortThreshold);
1359   jccb(Assembler::below, L_check_always_rtm2);
1360   imulptr(tmpReg, tmpReg, 100);
1361 
1362   Register scrReg = rtm_counters_Reg;
1363   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1364   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1365   imulptr(scrReg, scrReg, RTMAbortRatio);
1366   cmpptr(tmpReg, scrReg);
1367   jccb(Assembler::below, L_check_always_rtm1);
1368   if (method_data != NULL) {
1369     // set rtm_state to "no rtm" in MDO
1370     mov_metadata(tmpReg, method_data);
1371     if (os::is_MP()) {
1372       lock();
1373     }
1374     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1375   }
1376   jmpb(L_done);
1377   bind(L_check_always_rtm1);
1378   // Reload RTMLockingCounters* address
1379   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1380   bind(L_check_always_rtm2);
1381   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1382   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1383   jccb(Assembler::below, L_done);
1384   if (method_data != NULL) {
1385     // set rtm_state to "always rtm" in MDO
1386     mov_metadata(tmpReg, method_data);
1387     if (os::is_MP()) {
1388       lock();
1389     }
1390     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1391   }
1392   bind(L_done);
1393 }
1394 
1395 // Update counters and perform abort ratio calculation
1396 // input:  abort_status_Reg
1397 // rtm_counters_Reg, flags are killed
1398 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1399                                    Register rtm_counters_Reg,
1400                                    RTMLockingCounters* rtm_counters,
1401                                    Metadata* method_data,
1402                                    bool profile_rtm) {
1403 
1404   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1405   // update rtm counters based on rax value at abort
1406   // reads abort_status_Reg, updates flags
1407   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1408   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1409   if (profile_rtm) {
1410     // Save abort status because abort_status_Reg is used by following code.
1411     if (RTMRetryCount > 0) {
1412       push(abort_status_Reg);
1413     }
1414     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1415     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1416     // restore abort status
1417     if (RTMRetryCount > 0) {
1418       pop(abort_status_Reg);
1419     }
1420   }
1421 }
1422 
1423 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1424 // inputs: retry_count_Reg
1425 //       : abort_status_Reg
1426 // output: retry_count_Reg decremented by 1
1427 // flags are killed
1428 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1429   Label doneRetry;
1430   assert(abort_status_Reg == rax, "");
1431   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1432   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1433   // if reason is in 0x6 and retry count != 0 then retry
1434   andptr(abort_status_Reg, 0x6);
1435   jccb(Assembler::zero, doneRetry);
1436   testl(retry_count_Reg, retry_count_Reg);
1437   jccb(Assembler::zero, doneRetry);
1438   pause();
1439   decrementl(retry_count_Reg);
1440   jmp(retryLabel);
1441   bind(doneRetry);
1442 }
1443 
1444 // Spin and retry if lock is busy,
1445 // inputs: box_Reg (monitor address)
1446 //       : retry_count_Reg
1447 // output: retry_count_Reg decremented by 1
1448 //       : clear z flag if retry count exceeded
1449 // tmp_Reg, scr_Reg, flags are killed
1450 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1451                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1452   Label SpinLoop, SpinExit, doneRetry;
1453   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1454 
1455   testl(retry_count_Reg, retry_count_Reg);
1456   jccb(Assembler::zero, doneRetry);
1457   decrementl(retry_count_Reg);
1458   movptr(scr_Reg, RTMSpinLoopCount);
1459 
1460   bind(SpinLoop);
1461   pause();
1462   decrementl(scr_Reg);
1463   jccb(Assembler::lessEqual, SpinExit);
1464   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1465   testptr(tmp_Reg, tmp_Reg);
1466   jccb(Assembler::notZero, SpinLoop);
1467 
1468   bind(SpinExit);
1469   jmp(retryLabel);
1470   bind(doneRetry);
1471   incrementl(retry_count_Reg); // clear z flag
1472 }
1473 
1474 // Use RTM for normal stack locks
1475 // Input: objReg (object to lock)
1476 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1477                                        Register retry_on_abort_count_Reg,
1478                                        RTMLockingCounters* stack_rtm_counters,
1479                                        Metadata* method_data, bool profile_rtm,
1480                                        Label& DONE_LABEL, Label& IsInflated) {
1481   assert(UseRTMForStackLocks, "why call this otherwise?");
1482   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1483   assert(tmpReg == rax, "");
1484   assert(scrReg == rdx, "");
1485   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1486 
1487   if (RTMRetryCount > 0) {
1488     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1489     bind(L_rtm_retry);
1490   }
1491   movptr(tmpReg, Address(objReg, 0));
1492   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1493   jcc(Assembler::notZero, IsInflated);
1494 
1495   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1496     Label L_noincrement;
1497     if (RTMTotalCountIncrRate > 1) {
1498       // tmpReg, scrReg and flags are killed
1499       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1500     }
1501     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1502     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1503     bind(L_noincrement);
1504   }
1505   xbegin(L_on_abort);
1506   movptr(tmpReg, Address(objReg, 0));       // fetch markword
1507   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1508   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1509   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1510 
1511   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1512   if (UseRTMXendForLockBusy) {
1513     xend();
1514     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1515     jmp(L_decrement_retry);
1516   }
1517   else {
1518     xabort(0);
1519   }
1520   bind(L_on_abort);
1521   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1522     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1523   }
1524   bind(L_decrement_retry);
1525   if (RTMRetryCount > 0) {
1526     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1527     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1528   }
1529 }
1530 
1531 // Use RTM for inflating locks
1532 // inputs: objReg (object to lock)
1533 //         boxReg (on-stack box address (displaced header location) - KILLED)
1534 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1535 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1536                                           Register scrReg, Register retry_on_busy_count_Reg,
1537                                           Register retry_on_abort_count_Reg,
1538                                           RTMLockingCounters* rtm_counters,
1539                                           Metadata* method_data, bool profile_rtm,
1540                                           Label& DONE_LABEL) {
1541   assert(UseRTMLocking, "why call this otherwise?");
1542   assert(tmpReg == rax, "");
1543   assert(scrReg == rdx, "");
1544   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1545   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1546 
1547   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1548   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1549   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1550 
1551   if (RTMRetryCount > 0) {
1552     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1553     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1554     bind(L_rtm_retry);
1555   }
1556   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1557     Label L_noincrement;
1558     if (RTMTotalCountIncrRate > 1) {
1559       // tmpReg, scrReg and flags are killed
1560       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1561     }
1562     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1563     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1564     bind(L_noincrement);
1565   }
1566   xbegin(L_on_abort);
1567   movptr(tmpReg, Address(objReg, 0));
1568   movptr(tmpReg, Address(tmpReg, owner_offset));
1569   testptr(tmpReg, tmpReg);
1570   jcc(Assembler::zero, DONE_LABEL);
1571   if (UseRTMXendForLockBusy) {
1572     xend();
1573     jmp(L_decrement_retry);
1574   }
1575   else {
1576     xabort(0);
1577   }
1578   bind(L_on_abort);
1579   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1580   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1581     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1582   }
1583   if (RTMRetryCount > 0) {
1584     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1585     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1586   }
1587 
1588   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1589   testptr(tmpReg, tmpReg) ;
1590   jccb(Assembler::notZero, L_decrement_retry) ;
1591 
1592   // Appears unlocked - try to swing _owner from null to non-null.
1593   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1594 #ifdef _LP64
1595   Register threadReg = r15_thread;
1596 #else
1597   get_thread(scrReg);
1598   Register threadReg = scrReg;
1599 #endif
1600   if (os::is_MP()) {
1601     lock();
1602   }
1603   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1604 
1605   if (RTMRetryCount > 0) {
1606     // success done else retry
1607     jccb(Assembler::equal, DONE_LABEL) ;
1608     bind(L_decrement_retry);
1609     // Spin and retry if lock is busy.
1610     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1611   }
1612   else {
1613     bind(L_decrement_retry);
1614   }
1615 }
1616 
1617 #endif //  INCLUDE_RTM_OPT
1618 
1619 // Fast_Lock and Fast_Unlock used by C2
1620 
1621 // Because the transitions from emitted code to the runtime
1622 // monitorenter/exit helper stubs are so slow it's critical that
1623 // we inline both the stack-locking fast-path and the inflated fast path.
1624 //
1625 // See also: cmpFastLock and cmpFastUnlock.
1626 //
1627 // What follows is a specialized inline transliteration of the code
1628 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1629 // another option would be to emit TrySlowEnter and TrySlowExit methods
1630 // at startup-time.  These methods would accept arguments as
1631 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1632 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1633 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1634 // In practice, however, the # of lock sites is bounded and is usually small.
1635 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1636 // if the processor uses simple bimodal branch predictors keyed by EIP
1637 // Since the helper routines would be called from multiple synchronization
1638 // sites.
1639 //
1640 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1641 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1642 // to those specialized methods.  That'd give us a mostly platform-independent
1643 // implementation that the JITs could optimize and inline at their pleasure.
1644 // Done correctly, the only time we'd need to cross to native could would be
1645 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1646 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1647 // (b) explicit barriers or fence operations.
1648 //
1649 // TODO:
1650 //
1651 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1652 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1653 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1654 //    the lock operators would typically be faster than reifying Self.
1655 //
1656 // *  Ideally I'd define the primitives as:
1657 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1658 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1659 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1660 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1661 //    Furthermore the register assignments are overconstrained, possibly resulting in
1662 //    sub-optimal code near the synchronization site.
1663 //
1664 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1665 //    Alternately, use a better sp-proximity test.
1666 //
1667 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1668 //    Either one is sufficient to uniquely identify a thread.
1669 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1670 //
1671 // *  Intrinsify notify() and notifyAll() for the common cases where the
1672 //    object is locked by the calling thread but the waitlist is empty.
1673 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1674 //
1675 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1676 //    But beware of excessive branch density on AMD Opterons.
1677 //
1678 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1679 //    or failure of the fast-path.  If the fast-path fails then we pass
1680 //    control to the slow-path, typically in C.  In Fast_Lock and
1681 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1682 //    will emit a conditional branch immediately after the node.
1683 //    So we have branches to branches and lots of ICC.ZF games.
1684 //    Instead, it might be better to have C2 pass a "FailureLabel"
1685 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1686 //    will drop through the node.  ICC.ZF is undefined at exit.
1687 //    In the case of failure, the node will branch directly to the
1688 //    FailureLabel
1689 
1690 
1691 // obj: object to lock
1692 // box: on-stack box address (displaced header location) - KILLED
1693 // rax,: tmp -- KILLED
1694 // scr: tmp -- KILLED
1695 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1696                                Register scrReg, Register cx1Reg, Register cx2Reg,
1697                                BiasedLockingCounters* counters,
1698                                RTMLockingCounters* rtm_counters,
1699                                RTMLockingCounters* stack_rtm_counters,
1700                                Metadata* method_data,
1701                                bool use_rtm, bool profile_rtm) {
1702   // Ensure the register assignents are disjoint
1703   assert(tmpReg == rax, "");
1704 
1705   if (use_rtm) {
1706     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1707   } else {
1708     assert(cx1Reg == noreg, "");
1709     assert(cx2Reg == noreg, "");
1710     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1711   }
1712 
1713   if (counters != NULL) {
1714     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1715   }
1716   if (EmitSync & 1) {
1717       // set box->dhw = markOopDesc::unused_mark()
1718       // Force all sync thru slow-path: slow_enter() and slow_exit()
1719       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1720       cmpptr (rsp, (int32_t)NULL_WORD);
1721   } else {
1722     // Possible cases that we'll encounter in fast_lock
1723     // ------------------------------------------------
1724     // * Inflated
1725     //    -- unlocked
1726     //    -- Locked
1727     //       = by self
1728     //       = by other
1729     // * biased
1730     //    -- by Self
1731     //    -- by other
1732     // * neutral
1733     // * stack-locked
1734     //    -- by self
1735     //       = sp-proximity test hits
1736     //       = sp-proximity test generates false-negative
1737     //    -- by other
1738     //
1739 
1740     Label IsInflated, DONE_LABEL;
1741 
1742     // it's stack-locked, biased or neutral
1743     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1744     // order to reduce the number of conditional branches in the most common cases.
1745     // Beware -- there's a subtle invariant that fetch of the markword
1746     // at [FETCH], below, will never observe a biased encoding (*101b).
1747     // If this invariant is not held we risk exclusion (safety) failure.
1748     if (UseBiasedLocking && !UseOptoBiasInlining) {
1749       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1750     }
1751 
1752 #if INCLUDE_RTM_OPT
1753     if (UseRTMForStackLocks && use_rtm) {
1754       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1755                         stack_rtm_counters, method_data, profile_rtm,
1756                         DONE_LABEL, IsInflated);
1757     }
1758 #endif // INCLUDE_RTM_OPT
1759 
1760     movptr(tmpReg, Address(objReg, 0));          // [FETCH]
1761     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1762     jccb(Assembler::notZero, IsInflated);
1763 
1764     // Attempt stack-locking ...
1765     orptr (tmpReg, markOopDesc::unlocked_value);
1766     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1767     if (os::is_MP()) {
1768       lock();
1769     }
1770     cmpxchgptr(boxReg, Address(objReg, 0));      // Updates tmpReg
1771     if (counters != NULL) {
1772       cond_inc32(Assembler::equal,
1773                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1774     }
1775     jcc(Assembler::equal, DONE_LABEL);           // Success
1776 
1777     // Recursive locking.
1778     // The object is stack-locked: markword contains stack pointer to BasicLock.
1779     // Locked by current thread if difference with current SP is less than one page.
1780     subptr(tmpReg, rsp);
1781     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1782     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1783     movptr(Address(boxReg, 0), tmpReg);
1784     if (counters != NULL) {
1785       cond_inc32(Assembler::equal,
1786                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1787     }
1788     jmp(DONE_LABEL);
1789 
1790     bind(IsInflated);
1791     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1792 
1793 #if INCLUDE_RTM_OPT
1794     // Use the same RTM locking code in 32- and 64-bit VM.
1795     if (use_rtm) {
1796       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1797                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1798     } else {
1799 #endif // INCLUDE_RTM_OPT
1800 
1801 #ifndef _LP64
1802     // The object is inflated.
1803 
1804     // boxReg refers to the on-stack BasicLock in the current frame.
1805     // We'd like to write:
1806     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1807     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1808     // additional latency as we have another ST in the store buffer that must drain.
1809 
1810     if (EmitSync & 8192) {
1811        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1812        get_thread (scrReg);
1813        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1814        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1815        if (os::is_MP()) {
1816          lock();
1817        }
1818        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1819     } else
1820     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1821        movptr(scrReg, boxReg);
1822        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1823 
1824        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1825        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1826           // prefetchw [eax + Offset(_owner)-2]
1827           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1828        }
1829 
1830        if ((EmitSync & 64) == 0) {
1831          // Optimistic form: consider XORL tmpReg,tmpReg
1832          movptr(tmpReg, NULL_WORD);
1833        } else {
1834          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1835          // Test-And-CAS instead of CAS
1836          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1837          testptr(tmpReg, tmpReg);                   // Locked ?
1838          jccb  (Assembler::notZero, DONE_LABEL);
1839        }
1840 
1841        // Appears unlocked - try to swing _owner from null to non-null.
1842        // Ideally, I'd manifest "Self" with get_thread and then attempt
1843        // to CAS the register containing Self into m->Owner.
1844        // But we don't have enough registers, so instead we can either try to CAS
1845        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1846        // we later store "Self" into m->Owner.  Transiently storing a stack address
1847        // (rsp or the address of the box) into  m->owner is harmless.
1848        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1849        if (os::is_MP()) {
1850          lock();
1851        }
1852        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1853        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1854        jccb  (Assembler::notZero, DONE_LABEL);
1855        get_thread (scrReg);                    // beware: clobbers ICCs
1856        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1857        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1858 
1859        // If the CAS fails we can either retry or pass control to the slow-path.
1860        // We use the latter tactic.
1861        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1862        // If the CAS was successful ...
1863        //   Self has acquired the lock
1864        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1865        // Intentional fall-through into DONE_LABEL ...
1866     } else {
1867        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1868        movptr(boxReg, tmpReg);
1869 
1870        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1871        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1872           // prefetchw [eax + Offset(_owner)-2]
1873           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1874        }
1875 
1876        if ((EmitSync & 64) == 0) {
1877          // Optimistic form
1878          xorptr  (tmpReg, tmpReg);
1879        } else {
1880          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1881          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1882          testptr(tmpReg, tmpReg);                   // Locked ?
1883          jccb  (Assembler::notZero, DONE_LABEL);
1884        }
1885 
1886        // Appears unlocked - try to swing _owner from null to non-null.
1887        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1888        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1889        get_thread (scrReg);
1890        if (os::is_MP()) {
1891          lock();
1892        }
1893        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1894 
1895        // If the CAS fails we can either retry or pass control to the slow-path.
1896        // We use the latter tactic.
1897        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1898        // If the CAS was successful ...
1899        //   Self has acquired the lock
1900        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1901        // Intentional fall-through into DONE_LABEL ...
1902     }
1903 #else // _LP64
1904     // It's inflated
1905     movq(scrReg, tmpReg);
1906     xorq(tmpReg, tmpReg);
1907 
1908     if (os::is_MP()) {
1909       lock();
1910     }
1911     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1912     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1913     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1914     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1915     // Intentional fall-through into DONE_LABEL ...
1916     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1917 #endif // _LP64
1918 #if INCLUDE_RTM_OPT
1919     } // use_rtm()
1920 #endif
1921     // DONE_LABEL is a hot target - we'd really like to place it at the
1922     // start of cache line by padding with NOPs.
1923     // See the AMD and Intel software optimization manuals for the
1924     // most efficient "long" NOP encodings.
1925     // Unfortunately none of our alignment mechanisms suffice.
1926     bind(DONE_LABEL);
1927 
1928     // At DONE_LABEL the icc ZFlag is set as follows ...
1929     // Fast_Unlock uses the same protocol.
1930     // ZFlag == 1 -> Success
1931     // ZFlag == 0 -> Failure - force control through the slow-path
1932   }
1933 }
1934 
1935 // obj: object to unlock
1936 // box: box address (displaced header location), killed.  Must be EAX.
1937 // tmp: killed, cannot be obj nor box.
1938 //
1939 // Some commentary on balanced locking:
1940 //
1941 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1942 // Methods that don't have provably balanced locking are forced to run in the
1943 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1944 // The interpreter provides two properties:
1945 // I1:  At return-time the interpreter automatically and quietly unlocks any
1946 //      objects acquired the current activation (frame).  Recall that the
1947 //      interpreter maintains an on-stack list of locks currently held by
1948 //      a frame.
1949 // I2:  If a method attempts to unlock an object that is not held by the
1950 //      the frame the interpreter throws IMSX.
1951 //
1952 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1953 // B() doesn't have provably balanced locking so it runs in the interpreter.
1954 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1955 // is still locked by A().
1956 //
1957 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1958 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1959 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1960 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1961 // Arguably given that the spec legislates the JNI case as undefined our implementation
1962 // could reasonably *avoid* checking owner in Fast_Unlock().
1963 // In the interest of performance we elide m->Owner==Self check in unlock.
1964 // A perfectly viable alternative is to elide the owner check except when
1965 // Xcheck:jni is enabled.
1966 
1967 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1968   assert(boxReg == rax, "");
1969   assert_different_registers(objReg, boxReg, tmpReg);
1970 
1971   if (EmitSync & 4) {
1972     // Disable - inhibit all inlining.  Force control through the slow-path
1973     cmpptr (rsp, 0);
1974   } else {
1975     Label DONE_LABEL, Stacked, CheckSucc;
1976 
1977     // Critically, the biased locking test must have precedence over
1978     // and appear before the (box->dhw == 0) recursive stack-lock test.
1979     if (UseBiasedLocking && !UseOptoBiasInlining) {
1980        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1981     }
1982 
1983 #if INCLUDE_RTM_OPT
1984     if (UseRTMForStackLocks && use_rtm) {
1985       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1986       Label L_regular_unlock;
1987       movptr(tmpReg, Address(objReg, 0));           // fetch markword
1988       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1989       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1990       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
1991       xend();                                       // otherwise end...
1992       jmp(DONE_LABEL);                              // ... and we're done
1993       bind(L_regular_unlock);
1994     }
1995 #endif
1996 
1997     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
1998     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
1999     movptr(tmpReg, Address(objReg, 0));             // Examine the object's markword
2000     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2001     jccb  (Assembler::zero, Stacked);
2002 
2003     // It's inflated.
2004 #if INCLUDE_RTM_OPT
2005     if (use_rtm) {
2006       Label L_regular_inflated_unlock;
2007       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
2008       movptr(boxReg, Address(tmpReg, owner_offset));
2009       testptr(boxReg, boxReg);
2010       jccb(Assembler::notZero, L_regular_inflated_unlock);
2011       xend();
2012       jmpb(DONE_LABEL);
2013       bind(L_regular_inflated_unlock);
2014     }
2015 #endif
2016 
2017     // Despite our balanced locking property we still check that m->_owner == Self
2018     // as java routines or native JNI code called by this thread might
2019     // have released the lock.
2020     // Refer to the comments in synchronizer.cpp for how we might encode extra
2021     // state in _succ so we can avoid fetching EntryList|cxq.
2022     //
2023     // I'd like to add more cases in fast_lock() and fast_unlock() --
2024     // such as recursive enter and exit -- but we have to be wary of
2025     // I$ bloat, T$ effects and BP$ effects.
2026     //
2027     // If there's no contention try a 1-0 exit.  That is, exit without
2028     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2029     // we detect and recover from the race that the 1-0 exit admits.
2030     //
2031     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2032     // before it STs null into _owner, releasing the lock.  Updates
2033     // to data protected by the critical section must be visible before
2034     // we drop the lock (and thus before any other thread could acquire
2035     // the lock and observe the fields protected by the lock).
2036     // IA32's memory-model is SPO, so STs are ordered with respect to
2037     // each other and there's no need for an explicit barrier (fence).
2038     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2039 #ifndef _LP64
2040     get_thread (boxReg);
2041     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2042       // prefetchw [ebx + Offset(_owner)-2]
2043       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2044     }
2045 
2046     // Note that we could employ various encoding schemes to reduce
2047     // the number of loads below (currently 4) to just 2 or 3.
2048     // Refer to the comments in synchronizer.cpp.
2049     // In practice the chain of fetches doesn't seem to impact performance, however.
2050     xorptr(boxReg, boxReg);
2051     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2052        // Attempt to reduce branch density - AMD's branch predictor.
2053        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2054        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2055        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2056        jccb  (Assembler::notZero, DONE_LABEL);
2057        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2058        jmpb  (DONE_LABEL);
2059     } else {
2060        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2061        jccb  (Assembler::notZero, DONE_LABEL);
2062        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2063        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2064        jccb  (Assembler::notZero, CheckSucc);
2065        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2066        jmpb  (DONE_LABEL);
2067     }
2068 
2069     // The Following code fragment (EmitSync & 65536) improves the performance of
2070     // contended applications and contended synchronization microbenchmarks.
2071     // Unfortunately the emission of the code - even though not executed - causes regressions
2072     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2073     // with an equal number of never-executed NOPs results in the same regression.
2074     // We leave it off by default.
2075 
2076     if ((EmitSync & 65536) != 0) {
2077        Label LSuccess, LGoSlowPath ;
2078 
2079        bind  (CheckSucc);
2080 
2081        // Optional pre-test ... it's safe to elide this
2082        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2083        jccb(Assembler::zero, LGoSlowPath);
2084 
2085        // We have a classic Dekker-style idiom:
2086        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2087        // There are a number of ways to implement the barrier:
2088        // (1) lock:andl &m->_owner, 0
2089        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2090        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2091        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2092        // (2) If supported, an explicit MFENCE is appealing.
2093        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2094        //     particularly if the write-buffer is full as might be the case if
2095        //     if stores closely precede the fence or fence-equivalent instruction.
2096        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2097        //     as the situation has changed with Nehalem and Shanghai.
2098        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2099        //     The $lines underlying the top-of-stack should be in M-state.
2100        //     The locked add instruction is serializing, of course.
2101        // (4) Use xchg, which is serializing
2102        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2103        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2104        //     The integer condition codes will tell us if succ was 0.
2105        //     Since _succ and _owner should reside in the same $line and
2106        //     we just stored into _owner, it's likely that the $line
2107        //     remains in M-state for the lock:orl.
2108        //
2109        // We currently use (3), although it's likely that switching to (2)
2110        // is correct for the future.
2111 
2112        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2113        if (os::is_MP()) {
2114          lock(); addptr(Address(rsp, 0), 0);
2115        }
2116        // Ratify _succ remains non-null
2117        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2118        jccb  (Assembler::notZero, LSuccess);
2119 
2120        xorptr(boxReg, boxReg);                  // box is really EAX
2121        if (os::is_MP()) { lock(); }
2122        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2123        jccb  (Assembler::notEqual, LSuccess);
2124        // Since we're low on registers we installed rsp as a placeholding in _owner.
2125        // Now install Self over rsp.  This is safe as we're transitioning from
2126        // non-null to non=null
2127        get_thread (boxReg);
2128        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2129        // Intentional fall-through into LGoSlowPath ...
2130 
2131        bind  (LGoSlowPath);
2132        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2133        jmpb  (DONE_LABEL);
2134 
2135        bind  (LSuccess);
2136        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2137        jmpb  (DONE_LABEL);
2138     }
2139 
2140     bind (Stacked);
2141     // It's not inflated and it's not recursively stack-locked and it's not biased.
2142     // It must be stack-locked.
2143     // Try to reset the header to displaced header.
2144     // The "box" value on the stack is stable, so we can reload
2145     // and be assured we observe the same value as above.
2146     movptr(tmpReg, Address(boxReg, 0));
2147     if (os::is_MP()) {
2148       lock();
2149     }
2150     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2151     // Intention fall-thru into DONE_LABEL
2152 
2153     // DONE_LABEL is a hot target - we'd really like to place it at the
2154     // start of cache line by padding with NOPs.
2155     // See the AMD and Intel software optimization manuals for the
2156     // most efficient "long" NOP encodings.
2157     // Unfortunately none of our alignment mechanisms suffice.
2158     if ((EmitSync & 65536) == 0) {
2159        bind (CheckSucc);
2160     }
2161 #else // _LP64
2162     // It's inflated
2163     if (EmitSync & 1024) {
2164       // Emit code to check that _owner == Self
2165       // We could fold the _owner test into subsequent code more efficiently
2166       // than using a stand-alone check, but since _owner checking is off by
2167       // default we don't bother. We also might consider predicating the
2168       // _owner==Self check on Xcheck:jni or running on a debug build.
2169       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2170       xorptr(boxReg, r15_thread);
2171     } else {
2172       xorptr(boxReg, boxReg);
2173     }
2174     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2175     jccb  (Assembler::notZero, DONE_LABEL);
2176     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2177     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2178     jccb  (Assembler::notZero, CheckSucc);
2179     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2180     jmpb  (DONE_LABEL);
2181 
2182     if ((EmitSync & 65536) == 0) {
2183       // Try to avoid passing control into the slow_path ...
2184       Label LSuccess, LGoSlowPath ;
2185       bind  (CheckSucc);
2186 
2187       // The following optional optimization can be elided if necessary
2188       // Effectively: if (succ == null) goto SlowPath
2189       // The code reduces the window for a race, however,
2190       // and thus benefits performance.
2191       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2192       jccb  (Assembler::zero, LGoSlowPath);
2193 
2194       if ((EmitSync & 16) && os::is_MP()) {
2195         orptr(boxReg, boxReg);
2196         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2197       } else {
2198         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2199         if (os::is_MP()) {
2200           // Memory barrier/fence
2201           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2202           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2203           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2204           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2205           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2206           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2207           lock(); addl(Address(rsp, 0), 0);
2208         }
2209       }
2210       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2211       jccb  (Assembler::notZero, LSuccess);
2212 
2213       // Rare inopportune interleaving - race.
2214       // The successor vanished in the small window above.
2215       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2216       // We need to ensure progress and succession.
2217       // Try to reacquire the lock.
2218       // If that fails then the new owner is responsible for succession and this
2219       // thread needs to take no further action and can exit via the fast path (success).
2220       // If the re-acquire succeeds then pass control into the slow path.
2221       // As implemented, this latter mode is horrible because we generated more
2222       // coherence traffic on the lock *and* artifically extended the critical section
2223       // length while by virtue of passing control into the slow path.
2224 
2225       // box is really RAX -- the following CMPXCHG depends on that binding
2226       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2227       movptr(boxReg, (int32_t)NULL_WORD);
2228       if (os::is_MP()) { lock(); }
2229       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2230       jccb  (Assembler::notEqual, LSuccess);
2231       // Intentional fall-through into slow-path
2232 
2233       bind  (LGoSlowPath);
2234       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2235       jmpb  (DONE_LABEL);
2236 
2237       bind  (LSuccess);
2238       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2239       jmpb  (DONE_LABEL);
2240     }
2241 
2242     bind  (Stacked);
2243     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2244     if (os::is_MP()) { lock(); }
2245     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2246 
2247     if (EmitSync & 65536) {
2248        bind (CheckSucc);
2249     }
2250 #endif
2251     bind(DONE_LABEL);
2252   }
2253 }
2254 #endif // COMPILER2
2255 
2256 void MacroAssembler::c2bool(Register x) {
2257   // implements x == 0 ? 0 : 1
2258   // note: must only look at least-significant byte of x
2259   //       since C-style booleans are stored in one byte
2260   //       only! (was bug)
2261   andl(x, 0xFF);
2262   setb(Assembler::notZero, x);
2263 }
2264 
2265 // Wouldn't need if AddressLiteral version had new name
2266 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2267   Assembler::call(L, rtype);
2268 }
2269 
2270 void MacroAssembler::call(Register entry) {
2271   Assembler::call(entry);
2272 }
2273 
2274 void MacroAssembler::call(AddressLiteral entry) {
2275   if (reachable(entry)) {
2276     Assembler::call_literal(entry.target(), entry.rspec());
2277   } else {
2278     lea(rscratch1, entry);
2279     Assembler::call(rscratch1);
2280   }
2281 }
2282 
2283 void MacroAssembler::ic_call(address entry) {
2284   RelocationHolder rh = virtual_call_Relocation::spec(pc());
2285   movptr(rax, (intptr_t)Universe::non_oop_word());
2286   call(AddressLiteral(entry, rh));
2287 }
2288 
2289 // Implementation of call_VM versions
2290 
2291 void MacroAssembler::call_VM(Register oop_result,
2292                              address entry_point,
2293                              bool check_exceptions) {
2294   Label C, E;
2295   call(C, relocInfo::none);
2296   jmp(E);
2297 
2298   bind(C);
2299   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2300   ret(0);
2301 
2302   bind(E);
2303 }
2304 
2305 void MacroAssembler::call_VM(Register oop_result,
2306                              address entry_point,
2307                              Register arg_1,
2308                              bool check_exceptions) {
2309   Label C, E;
2310   call(C, relocInfo::none);
2311   jmp(E);
2312 
2313   bind(C);
2314   pass_arg1(this, arg_1);
2315   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2316   ret(0);
2317 
2318   bind(E);
2319 }
2320 
2321 void MacroAssembler::call_VM(Register oop_result,
2322                              address entry_point,
2323                              Register arg_1,
2324                              Register arg_2,
2325                              bool check_exceptions) {
2326   Label C, E;
2327   call(C, relocInfo::none);
2328   jmp(E);
2329 
2330   bind(C);
2331 
2332   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2333 
2334   pass_arg2(this, arg_2);
2335   pass_arg1(this, arg_1);
2336   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2337   ret(0);
2338 
2339   bind(E);
2340 }
2341 
2342 void MacroAssembler::call_VM(Register oop_result,
2343                              address entry_point,
2344                              Register arg_1,
2345                              Register arg_2,
2346                              Register arg_3,
2347                              bool check_exceptions) {
2348   Label C, E;
2349   call(C, relocInfo::none);
2350   jmp(E);
2351 
2352   bind(C);
2353 
2354   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2355   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2356   pass_arg3(this, arg_3);
2357 
2358   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2359   pass_arg2(this, arg_2);
2360 
2361   pass_arg1(this, arg_1);
2362   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2363   ret(0);
2364 
2365   bind(E);
2366 }
2367 
2368 void MacroAssembler::call_VM(Register oop_result,
2369                              Register last_java_sp,
2370                              address entry_point,
2371                              int number_of_arguments,
2372                              bool check_exceptions) {
2373   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2374   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2375 }
2376 
2377 void MacroAssembler::call_VM(Register oop_result,
2378                              Register last_java_sp,
2379                              address entry_point,
2380                              Register arg_1,
2381                              bool check_exceptions) {
2382   pass_arg1(this, arg_1);
2383   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2384 }
2385 
2386 void MacroAssembler::call_VM(Register oop_result,
2387                              Register last_java_sp,
2388                              address entry_point,
2389                              Register arg_1,
2390                              Register arg_2,
2391                              bool check_exceptions) {
2392 
2393   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2394   pass_arg2(this, arg_2);
2395   pass_arg1(this, arg_1);
2396   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2397 }
2398 
2399 void MacroAssembler::call_VM(Register oop_result,
2400                              Register last_java_sp,
2401                              address entry_point,
2402                              Register arg_1,
2403                              Register arg_2,
2404                              Register arg_3,
2405                              bool check_exceptions) {
2406   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2407   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2408   pass_arg3(this, arg_3);
2409   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2410   pass_arg2(this, arg_2);
2411   pass_arg1(this, arg_1);
2412   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2413 }
2414 
2415 void MacroAssembler::super_call_VM(Register oop_result,
2416                                    Register last_java_sp,
2417                                    address entry_point,
2418                                    int number_of_arguments,
2419                                    bool check_exceptions) {
2420   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2421   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2422 }
2423 
2424 void MacroAssembler::super_call_VM(Register oop_result,
2425                                    Register last_java_sp,
2426                                    address entry_point,
2427                                    Register arg_1,
2428                                    bool check_exceptions) {
2429   pass_arg1(this, arg_1);
2430   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2431 }
2432 
2433 void MacroAssembler::super_call_VM(Register oop_result,
2434                                    Register last_java_sp,
2435                                    address entry_point,
2436                                    Register arg_1,
2437                                    Register arg_2,
2438                                    bool check_exceptions) {
2439 
2440   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2441   pass_arg2(this, arg_2);
2442   pass_arg1(this, arg_1);
2443   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2444 }
2445 
2446 void MacroAssembler::super_call_VM(Register oop_result,
2447                                    Register last_java_sp,
2448                                    address entry_point,
2449                                    Register arg_1,
2450                                    Register arg_2,
2451                                    Register arg_3,
2452                                    bool check_exceptions) {
2453   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2454   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2455   pass_arg3(this, arg_3);
2456   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2457   pass_arg2(this, arg_2);
2458   pass_arg1(this, arg_1);
2459   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2460 }
2461 
2462 void MacroAssembler::call_VM_base(Register oop_result,
2463                                   Register java_thread,
2464                                   Register last_java_sp,
2465                                   address  entry_point,
2466                                   int      number_of_arguments,
2467                                   bool     check_exceptions) {
2468   // determine java_thread register
2469   if (!java_thread->is_valid()) {
2470 #ifdef _LP64
2471     java_thread = r15_thread;
2472 #else
2473     java_thread = rdi;
2474     get_thread(java_thread);
2475 #endif // LP64
2476   }
2477   // determine last_java_sp register
2478   if (!last_java_sp->is_valid()) {
2479     last_java_sp = rsp;
2480   }
2481   // debugging support
2482   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2483   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2484 #ifdef ASSERT
2485   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2486   // r12 is the heapbase.
2487   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2488 #endif // ASSERT
2489 
2490   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2491   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2492 
2493   // push java thread (becomes first argument of C function)
2494 
2495   NOT_LP64(push(java_thread); number_of_arguments++);
2496   LP64_ONLY(mov(c_rarg0, r15_thread));
2497 
2498   // set last Java frame before call
2499   assert(last_java_sp != rbp, "can't use ebp/rbp");
2500 
2501   // Only interpreter should have to set fp
2502   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2503 
2504   // do the call, remove parameters
2505   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2506 
2507   // restore the thread (cannot use the pushed argument since arguments
2508   // may be overwritten by C code generated by an optimizing compiler);
2509   // however can use the register value directly if it is callee saved.
2510   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2511     // rdi & rsi (also r15) are callee saved -> nothing to do
2512 #ifdef ASSERT
2513     guarantee(java_thread != rax, "change this code");
2514     push(rax);
2515     { Label L;
2516       get_thread(rax);
2517       cmpptr(java_thread, rax);
2518       jcc(Assembler::equal, L);
2519       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2520       bind(L);
2521     }
2522     pop(rax);
2523 #endif
2524   } else {
2525     get_thread(java_thread);
2526   }
2527   // reset last Java frame
2528   // Only interpreter should have to clear fp
2529   reset_last_Java_frame(java_thread, true, false);
2530 
2531 #ifndef CC_INTERP
2532    // C++ interp handles this in the interpreter
2533   check_and_handle_popframe(java_thread);
2534   check_and_handle_earlyret(java_thread);
2535 #endif /* CC_INTERP */
2536 
2537   if (check_exceptions) {
2538     // check for pending exceptions (java_thread is set upon return)
2539     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2540 #ifndef _LP64
2541     jump_cc(Assembler::notEqual,
2542             RuntimeAddress(StubRoutines::forward_exception_entry()));
2543 #else
2544     // This used to conditionally jump to forward_exception however it is
2545     // possible if we relocate that the branch will not reach. So we must jump
2546     // around so we can always reach
2547 
2548     Label ok;
2549     jcc(Assembler::equal, ok);
2550     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2551     bind(ok);
2552 #endif // LP64
2553   }
2554 
2555   // get oop result if there is one and reset the value in the thread
2556   if (oop_result->is_valid()) {
2557     get_vm_result(oop_result, java_thread);
2558   }
2559 }
2560 
2561 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2562 
2563   // Calculate the value for last_Java_sp
2564   // somewhat subtle. call_VM does an intermediate call
2565   // which places a return address on the stack just under the
2566   // stack pointer as the user finsihed with it. This allows
2567   // use to retrieve last_Java_pc from last_Java_sp[-1].
2568   // On 32bit we then have to push additional args on the stack to accomplish
2569   // the actual requested call. On 64bit call_VM only can use register args
2570   // so the only extra space is the return address that call_VM created.
2571   // This hopefully explains the calculations here.
2572 
2573 #ifdef _LP64
2574   // We've pushed one address, correct last_Java_sp
2575   lea(rax, Address(rsp, wordSize));
2576 #else
2577   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2578 #endif // LP64
2579 
2580   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2581 
2582 }
2583 
2584 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2585   call_VM_leaf_base(entry_point, number_of_arguments);
2586 }
2587 
2588 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2589   pass_arg0(this, arg_0);
2590   call_VM_leaf(entry_point, 1);
2591 }
2592 
2593 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2594 
2595   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2596   pass_arg1(this, arg_1);
2597   pass_arg0(this, arg_0);
2598   call_VM_leaf(entry_point, 2);
2599 }
2600 
2601 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2602   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2603   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2604   pass_arg2(this, arg_2);
2605   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2606   pass_arg1(this, arg_1);
2607   pass_arg0(this, arg_0);
2608   call_VM_leaf(entry_point, 3);
2609 }
2610 
2611 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2612   pass_arg0(this, arg_0);
2613   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2614 }
2615 
2616 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2617 
2618   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2619   pass_arg1(this, arg_1);
2620   pass_arg0(this, arg_0);
2621   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2622 }
2623 
2624 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2625   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2626   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2627   pass_arg2(this, arg_2);
2628   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2629   pass_arg1(this, arg_1);
2630   pass_arg0(this, arg_0);
2631   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2632 }
2633 
2634 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2635   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2636   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2637   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2638   pass_arg3(this, arg_3);
2639   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2640   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2641   pass_arg2(this, arg_2);
2642   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2643   pass_arg1(this, arg_1);
2644   pass_arg0(this, arg_0);
2645   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2646 }
2647 
2648 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2649   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2650   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2651   verify_oop(oop_result, "broken oop in call_VM_base");
2652 }
2653 
2654 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2655   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2656   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2657 }
2658 
2659 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2660 }
2661 
2662 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2663 }
2664 
2665 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2666   if (reachable(src1)) {
2667     cmpl(as_Address(src1), imm);
2668   } else {
2669     lea(rscratch1, src1);
2670     cmpl(Address(rscratch1, 0), imm);
2671   }
2672 }
2673 
2674 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2675   assert(!src2.is_lval(), "use cmpptr");
2676   if (reachable(src2)) {
2677     cmpl(src1, as_Address(src2));
2678   } else {
2679     lea(rscratch1, src2);
2680     cmpl(src1, Address(rscratch1, 0));
2681   }
2682 }
2683 
2684 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2685   Assembler::cmpl(src1, imm);
2686 }
2687 
2688 void MacroAssembler::cmp32(Register src1, Address src2) {
2689   Assembler::cmpl(src1, src2);
2690 }
2691 
2692 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2693   ucomisd(opr1, opr2);
2694 
2695   Label L;
2696   if (unordered_is_less) {
2697     movl(dst, -1);
2698     jcc(Assembler::parity, L);
2699     jcc(Assembler::below , L);
2700     movl(dst, 0);
2701     jcc(Assembler::equal , L);
2702     increment(dst);
2703   } else { // unordered is greater
2704     movl(dst, 1);
2705     jcc(Assembler::parity, L);
2706     jcc(Assembler::above , L);
2707     movl(dst, 0);
2708     jcc(Assembler::equal , L);
2709     decrementl(dst);
2710   }
2711   bind(L);
2712 }
2713 
2714 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2715   ucomiss(opr1, opr2);
2716 
2717   Label L;
2718   if (unordered_is_less) {
2719     movl(dst, -1);
2720     jcc(Assembler::parity, L);
2721     jcc(Assembler::below , L);
2722     movl(dst, 0);
2723     jcc(Assembler::equal , L);
2724     increment(dst);
2725   } else { // unordered is greater
2726     movl(dst, 1);
2727     jcc(Assembler::parity, L);
2728     jcc(Assembler::above , L);
2729     movl(dst, 0);
2730     jcc(Assembler::equal , L);
2731     decrementl(dst);
2732   }
2733   bind(L);
2734 }
2735 
2736 
2737 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2738   if (reachable(src1)) {
2739     cmpb(as_Address(src1), imm);
2740   } else {
2741     lea(rscratch1, src1);
2742     cmpb(Address(rscratch1, 0), imm);
2743   }
2744 }
2745 
2746 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2747 #ifdef _LP64
2748   if (src2.is_lval()) {
2749     movptr(rscratch1, src2);
2750     Assembler::cmpq(src1, rscratch1);
2751   } else if (reachable(src2)) {
2752     cmpq(src1, as_Address(src2));
2753   } else {
2754     lea(rscratch1, src2);
2755     Assembler::cmpq(src1, Address(rscratch1, 0));
2756   }
2757 #else
2758   if (src2.is_lval()) {
2759     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2760   } else {
2761     cmpl(src1, as_Address(src2));
2762   }
2763 #endif // _LP64
2764 }
2765 
2766 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2767   assert(src2.is_lval(), "not a mem-mem compare");
2768 #ifdef _LP64
2769   // moves src2's literal address
2770   movptr(rscratch1, src2);
2771   Assembler::cmpq(src1, rscratch1);
2772 #else
2773   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2774 #endif // _LP64
2775 }
2776 
2777 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2778   if (reachable(adr)) {
2779     if (os::is_MP())
2780       lock();
2781     cmpxchgptr(reg, as_Address(adr));
2782   } else {
2783     lea(rscratch1, adr);
2784     if (os::is_MP())
2785       lock();
2786     cmpxchgptr(reg, Address(rscratch1, 0));
2787   }
2788 }
2789 
2790 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2791   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2792 }
2793 
2794 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2795   if (reachable(src)) {
2796     Assembler::comisd(dst, as_Address(src));
2797   } else {
2798     lea(rscratch1, src);
2799     Assembler::comisd(dst, Address(rscratch1, 0));
2800   }
2801 }
2802 
2803 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2804   if (reachable(src)) {
2805     Assembler::comiss(dst, as_Address(src));
2806   } else {
2807     lea(rscratch1, src);
2808     Assembler::comiss(dst, Address(rscratch1, 0));
2809   }
2810 }
2811 
2812 
2813 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2814   Condition negated_cond = negate_condition(cond);
2815   Label L;
2816   jcc(negated_cond, L);
2817   pushf(); // Preserve flags
2818   atomic_incl(counter_addr);
2819   popf();
2820   bind(L);
2821 }
2822 
2823 int MacroAssembler::corrected_idivl(Register reg) {
2824   // Full implementation of Java idiv and irem; checks for
2825   // special case as described in JVM spec., p.243 & p.271.
2826   // The function returns the (pc) offset of the idivl
2827   // instruction - may be needed for implicit exceptions.
2828   //
2829   //         normal case                           special case
2830   //
2831   // input : rax,: dividend                         min_int
2832   //         reg: divisor   (may not be rax,/rdx)   -1
2833   //
2834   // output: rax,: quotient  (= rax, idiv reg)       min_int
2835   //         rdx: remainder (= rax, irem reg)       0
2836   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2837   const int min_int = 0x80000000;
2838   Label normal_case, special_case;
2839 
2840   // check for special case
2841   cmpl(rax, min_int);
2842   jcc(Assembler::notEqual, normal_case);
2843   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2844   cmpl(reg, -1);
2845   jcc(Assembler::equal, special_case);
2846 
2847   // handle normal case
2848   bind(normal_case);
2849   cdql();
2850   int idivl_offset = offset();
2851   idivl(reg);
2852 
2853   // normal and special case exit
2854   bind(special_case);
2855 
2856   return idivl_offset;
2857 }
2858 
2859 
2860 
2861 void MacroAssembler::decrementl(Register reg, int value) {
2862   if (value == min_jint) {subl(reg, value) ; return; }
2863   if (value <  0) { incrementl(reg, -value); return; }
2864   if (value == 0) {                        ; return; }
2865   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2866   /* else */      { subl(reg, value)       ; return; }
2867 }
2868 
2869 void MacroAssembler::decrementl(Address dst, int value) {
2870   if (value == min_jint) {subl(dst, value) ; return; }
2871   if (value <  0) { incrementl(dst, -value); return; }
2872   if (value == 0) {                        ; return; }
2873   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2874   /* else */      { subl(dst, value)       ; return; }
2875 }
2876 
2877 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2878   assert (shift_value > 0, "illegal shift value");
2879   Label _is_positive;
2880   testl (reg, reg);
2881   jcc (Assembler::positive, _is_positive);
2882   int offset = (1 << shift_value) - 1 ;
2883 
2884   if (offset == 1) {
2885     incrementl(reg);
2886   } else {
2887     addl(reg, offset);
2888   }
2889 
2890   bind (_is_positive);
2891   sarl(reg, shift_value);
2892 }
2893 
2894 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2895   if (reachable(src)) {
2896     Assembler::divsd(dst, as_Address(src));
2897   } else {
2898     lea(rscratch1, src);
2899     Assembler::divsd(dst, Address(rscratch1, 0));
2900   }
2901 }
2902 
2903 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2904   if (reachable(src)) {
2905     Assembler::divss(dst, as_Address(src));
2906   } else {
2907     lea(rscratch1, src);
2908     Assembler::divss(dst, Address(rscratch1, 0));
2909   }
2910 }
2911 
2912 // !defined(COMPILER2) is because of stupid core builds
2913 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
2914 void MacroAssembler::empty_FPU_stack() {
2915   if (VM_Version::supports_mmx()) {
2916     emms();
2917   } else {
2918     for (int i = 8; i-- > 0; ) ffree(i);
2919   }
2920 }
2921 #endif // !LP64 || C1 || !C2
2922 
2923 
2924 // Defines obj, preserves var_size_in_bytes
2925 void MacroAssembler::eden_allocate(Register obj,
2926                                    Register var_size_in_bytes,
2927                                    int con_size_in_bytes,
2928                                    Register t1,
2929                                    Label& slow_case) {
2930   assert(obj == rax, "obj must be in rax, for cmpxchg");
2931   assert_different_registers(obj, var_size_in_bytes, t1);
2932   if (!Universe::heap()->supports_inline_contig_alloc()) {
2933     jmp(slow_case);
2934   } else {
2935     Register end = t1;
2936     Label retry;
2937     bind(retry);
2938     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2939     movptr(obj, heap_top);
2940     if (var_size_in_bytes == noreg) {
2941       lea(end, Address(obj, con_size_in_bytes));
2942     } else {
2943       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2944     }
2945     // if end < obj then we wrapped around => object too long => slow case
2946     cmpptr(end, obj);
2947     jcc(Assembler::below, slow_case);
2948     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2949     jcc(Assembler::above, slow_case);
2950     // Compare obj with the top addr, and if still equal, store the new top addr in
2951     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2952     // it otherwise. Use lock prefix for atomicity on MPs.
2953     locked_cmpxchgptr(end, heap_top);
2954     jcc(Assembler::notEqual, retry);
2955   }
2956 }
2957 
2958 void MacroAssembler::enter() {
2959   push(rbp);
2960   mov(rbp, rsp);
2961 }
2962 
2963 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2964 void MacroAssembler::fat_nop() {
2965   if (UseAddressNop) {
2966     addr_nop_5();
2967   } else {
2968     emit_int8(0x26); // es:
2969     emit_int8(0x2e); // cs:
2970     emit_int8(0x64); // fs:
2971     emit_int8(0x65); // gs:
2972     emit_int8((unsigned char)0x90);
2973   }
2974 }
2975 
2976 void MacroAssembler::fcmp(Register tmp) {
2977   fcmp(tmp, 1, true, true);
2978 }
2979 
2980 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2981   assert(!pop_right || pop_left, "usage error");
2982   if (VM_Version::supports_cmov()) {
2983     assert(tmp == noreg, "unneeded temp");
2984     if (pop_left) {
2985       fucomip(index);
2986     } else {
2987       fucomi(index);
2988     }
2989     if (pop_right) {
2990       fpop();
2991     }
2992   } else {
2993     assert(tmp != noreg, "need temp");
2994     if (pop_left) {
2995       if (pop_right) {
2996         fcompp();
2997       } else {
2998         fcomp(index);
2999       }
3000     } else {
3001       fcom(index);
3002     }
3003     // convert FPU condition into eflags condition via rax,
3004     save_rax(tmp);
3005     fwait(); fnstsw_ax();
3006     sahf();
3007     restore_rax(tmp);
3008   }
3009   // condition codes set as follows:
3010   //
3011   // CF (corresponds to C0) if x < y
3012   // PF (corresponds to C2) if unordered
3013   // ZF (corresponds to C3) if x = y
3014 }
3015 
3016 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3017   fcmp2int(dst, unordered_is_less, 1, true, true);
3018 }
3019 
3020 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3021   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3022   Label L;
3023   if (unordered_is_less) {
3024     movl(dst, -1);
3025     jcc(Assembler::parity, L);
3026     jcc(Assembler::below , L);
3027     movl(dst, 0);
3028     jcc(Assembler::equal , L);
3029     increment(dst);
3030   } else { // unordered is greater
3031     movl(dst, 1);
3032     jcc(Assembler::parity, L);
3033     jcc(Assembler::above , L);
3034     movl(dst, 0);
3035     jcc(Assembler::equal , L);
3036     decrementl(dst);
3037   }
3038   bind(L);
3039 }
3040 
3041 void MacroAssembler::fld_d(AddressLiteral src) {
3042   fld_d(as_Address(src));
3043 }
3044 
3045 void MacroAssembler::fld_s(AddressLiteral src) {
3046   fld_s(as_Address(src));
3047 }
3048 
3049 void MacroAssembler::fld_x(AddressLiteral src) {
3050   Assembler::fld_x(as_Address(src));
3051 }
3052 
3053 void MacroAssembler::fldcw(AddressLiteral src) {
3054   Assembler::fldcw(as_Address(src));
3055 }
3056 
3057 void MacroAssembler::pow_exp_core_encoding() {
3058   // kills rax, rcx, rdx
3059   subptr(rsp,sizeof(jdouble));
3060   // computes 2^X. Stack: X ...
3061   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
3062   // keep it on the thread's stack to compute 2^int(X) later
3063   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
3064   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
3065   fld_s(0);                 // Stack: X X ...
3066   frndint();                // Stack: int(X) X ...
3067   fsuba(1);                 // Stack: int(X) X-int(X) ...
3068   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
3069   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
3070   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
3071   faddp(1);                 // Stack: 2^(X-int(X))
3072   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
3073   // shift int(X)+1023 to exponent position.
3074   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
3075   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
3076   // values so detect them and set result to NaN.
3077   movl(rax,Address(rsp,0));
3078   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
3079   addl(rax, 1023);
3080   movl(rdx,rax);
3081   shll(rax,20);
3082   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
3083   addl(rdx,1);
3084   // Check that 1 < int(X)+1023+1 < 2048
3085   // in 3 steps:
3086   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
3087   // 2- (int(X)+1023+1)&-2048 != 0
3088   // 3- (int(X)+1023+1)&-2048 != 1
3089   // Do 2- first because addl just updated the flags.
3090   cmov32(Assembler::equal,rax,rcx);
3091   cmpl(rdx,1);
3092   cmov32(Assembler::equal,rax,rcx);
3093   testl(rdx,rcx);
3094   cmov32(Assembler::notEqual,rax,rcx);
3095   movl(Address(rsp,4),rax);
3096   movl(Address(rsp,0),0);
3097   fmul_d(Address(rsp,0));   // Stack: 2^X ...
3098   addptr(rsp,sizeof(jdouble));
3099 }
3100 
3101 void MacroAssembler::increase_precision() {
3102   subptr(rsp, BytesPerWord);
3103   fnstcw(Address(rsp, 0));
3104   movl(rax, Address(rsp, 0));
3105   orl(rax, 0x300);
3106   push(rax);
3107   fldcw(Address(rsp, 0));
3108   pop(rax);
3109 }
3110 
3111 void MacroAssembler::restore_precision() {
3112   fldcw(Address(rsp, 0));
3113   addptr(rsp, BytesPerWord);
3114 }
3115 
3116 void MacroAssembler::fast_pow() {
3117   // computes X^Y = 2^(Y * log2(X))
3118   // if fast computation is not possible, result is NaN. Requires
3119   // fallback from user of this macro.
3120   // increase precision for intermediate steps of the computation
3121   BLOCK_COMMENT("fast_pow {");
3122   increase_precision();
3123   fyl2x();                 // Stack: (Y*log2(X)) ...
3124   pow_exp_core_encoding(); // Stack: exp(X) ...
3125   restore_precision();
3126   BLOCK_COMMENT("} fast_pow");
3127 }
3128 
3129 void MacroAssembler::fast_exp() {
3130   // computes exp(X) = 2^(X * log2(e))
3131   // if fast computation is not possible, result is NaN. Requires
3132   // fallback from user of this macro.
3133   // increase precision for intermediate steps of the computation
3134   increase_precision();
3135   fldl2e();                // Stack: log2(e) X ...
3136   fmulp(1);                // Stack: (X*log2(e)) ...
3137   pow_exp_core_encoding(); // Stack: exp(X) ...
3138   restore_precision();
3139 }
3140 
3141 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
3142   // kills rax, rcx, rdx
3143   // pow and exp needs 2 extra registers on the fpu stack.
3144   Label slow_case, done;
3145   Register tmp = noreg;
3146   if (!VM_Version::supports_cmov()) {
3147     // fcmp needs a temporary so preserve rdx,
3148     tmp = rdx;
3149   }
3150   Register tmp2 = rax;
3151   Register tmp3 = rcx;
3152 
3153   if (is_exp) {
3154     // Stack: X
3155     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
3156     fast_exp();                 // Stack: exp(X) X
3157     fcmp(tmp, 0, false, false); // Stack: exp(X) X
3158     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
3159     jcc(Assembler::parity, slow_case);
3160     // get rid of duplicate argument. Stack: exp(X)
3161     if (num_fpu_regs_in_use > 0) {
3162       fxch();
3163       fpop();
3164     } else {
3165       ffree(1);
3166     }
3167     jmp(done);
3168   } else {
3169     // Stack: X Y
3170     Label x_negative, y_not_2;
3171 
3172     static double two = 2.0;
3173     ExternalAddress two_addr((address)&two);
3174 
3175     // constant maybe too far on 64 bit
3176     lea(tmp2, two_addr);
3177     fld_d(Address(tmp2, 0));    // Stack: 2 X Y
3178     fcmp(tmp, 2, true, false);  // Stack: X Y
3179     jcc(Assembler::parity, y_not_2);
3180     jcc(Assembler::notEqual, y_not_2);
3181 
3182     fxch(); fpop();             // Stack: X
3183     fmul(0);                    // Stack: X*X
3184 
3185     jmp(done);
3186 
3187     bind(y_not_2);
3188 
3189     fldz();                     // Stack: 0 X Y
3190     fcmp(tmp, 1, true, false);  // Stack: X Y
3191     jcc(Assembler::above, x_negative);
3192 
3193     // X >= 0
3194 
3195     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3196     fld_s(1);                   // Stack: X Y X Y
3197     fast_pow();                 // Stack: X^Y X Y
3198     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
3199     // X^Y not equal to itself: X^Y is NaN go to slow case.
3200     jcc(Assembler::parity, slow_case);
3201     // get rid of duplicate arguments. Stack: X^Y
3202     if (num_fpu_regs_in_use > 0) {
3203       fxch(); fpop();
3204       fxch(); fpop();
3205     } else {
3206       ffree(2);
3207       ffree(1);
3208     }
3209     jmp(done);
3210 
3211     // X <= 0
3212     bind(x_negative);
3213 
3214     fld_s(1);                   // Stack: Y X Y
3215     frndint();                  // Stack: int(Y) X Y
3216     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
3217     jcc(Assembler::notEqual, slow_case);
3218 
3219     subptr(rsp, 8);
3220 
3221     // For X^Y, when X < 0, Y has to be an integer and the final
3222     // result depends on whether it's odd or even. We just checked
3223     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
3224     // integer to test its parity. If int(Y) is huge and doesn't fit
3225     // in the 64 bit integer range, the integer indefinite value will
3226     // end up in the gp registers. Huge numbers are all even, the
3227     // integer indefinite number is even so it's fine.
3228 
3229 #ifdef ASSERT
3230     // Let's check we don't end up with an integer indefinite number
3231     // when not expected. First test for huge numbers: check whether
3232     // int(Y)+1 == int(Y) which is true for very large numbers and
3233     // those are all even. A 64 bit integer is guaranteed to not
3234     // overflow for numbers where y+1 != y (when precision is set to
3235     // double precision).
3236     Label y_not_huge;
3237 
3238     fld1();                     // Stack: 1 int(Y) X Y
3239     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
3240 
3241 #ifdef _LP64
3242     // trip to memory to force the precision down from double extended
3243     // precision
3244     fstp_d(Address(rsp, 0));
3245     fld_d(Address(rsp, 0));
3246 #endif
3247 
3248     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
3249 #endif
3250 
3251     // move int(Y) as 64 bit integer to thread's stack
3252     fistp_d(Address(rsp,0));    // Stack: X Y
3253 
3254 #ifdef ASSERT
3255     jcc(Assembler::notEqual, y_not_huge);
3256 
3257     // Y is huge so we know it's even. It may not fit in a 64 bit
3258     // integer and we don't want the debug code below to see the
3259     // integer indefinite value so overwrite int(Y) on the thread's
3260     // stack with 0.
3261     movl(Address(rsp, 0), 0);
3262     movl(Address(rsp, 4), 0);
3263 
3264     bind(y_not_huge);
3265 #endif
3266 
3267     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3268     fld_s(1);                   // Stack: X Y X Y
3269     fabs();                     // Stack: abs(X) Y X Y
3270     fast_pow();                 // Stack: abs(X)^Y X Y
3271     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
3272     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
3273 
3274     pop(tmp2);
3275     NOT_LP64(pop(tmp3));
3276     jcc(Assembler::parity, slow_case);
3277 
3278 #ifdef ASSERT
3279     // Check that int(Y) is not integer indefinite value (int
3280     // overflow). Shouldn't happen because for values that would
3281     // overflow, 1+int(Y)==Y which was tested earlier.
3282 #ifndef _LP64
3283     {
3284       Label integer;
3285       testl(tmp2, tmp2);
3286       jcc(Assembler::notZero, integer);
3287       cmpl(tmp3, 0x80000000);
3288       jcc(Assembler::notZero, integer);
3289       STOP("integer indefinite value shouldn't be seen here");
3290       bind(integer);
3291     }
3292 #else
3293     {
3294       Label integer;
3295       mov(tmp3, tmp2); // preserve tmp2 for parity check below
3296       shlq(tmp3, 1);
3297       jcc(Assembler::carryClear, integer);
3298       jcc(Assembler::notZero, integer);
3299       STOP("integer indefinite value shouldn't be seen here");
3300       bind(integer);
3301     }
3302 #endif
3303 #endif
3304 
3305     // get rid of duplicate arguments. Stack: X^Y
3306     if (num_fpu_regs_in_use > 0) {
3307       fxch(); fpop();
3308       fxch(); fpop();
3309     } else {
3310       ffree(2);
3311       ffree(1);
3312     }
3313 
3314     testl(tmp2, 1);
3315     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
3316     // X <= 0, Y even: X^Y = -abs(X)^Y
3317 
3318     fchs();                     // Stack: -abs(X)^Y Y
3319     jmp(done);
3320   }
3321 
3322   // slow case: runtime call
3323   bind(slow_case);
3324 
3325   fpop();                       // pop incorrect result or int(Y)
3326 
3327   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
3328                       is_exp ? 1 : 2, num_fpu_regs_in_use);
3329 
3330   // Come here with result in F-TOS
3331   bind(done);
3332 }
3333 
3334 void MacroAssembler::fpop() {
3335   ffree();
3336   fincstp();
3337 }
3338 
3339 void MacroAssembler::fremr(Register tmp) {
3340   save_rax(tmp);
3341   { Label L;
3342     bind(L);
3343     fprem();
3344     fwait(); fnstsw_ax();
3345 #ifdef _LP64
3346     testl(rax, 0x400);
3347     jcc(Assembler::notEqual, L);
3348 #else
3349     sahf();
3350     jcc(Assembler::parity, L);
3351 #endif // _LP64
3352   }
3353   restore_rax(tmp);
3354   // Result is in ST0.
3355   // Note: fxch & fpop to get rid of ST1
3356   // (otherwise FPU stack could overflow eventually)
3357   fxch(1);
3358   fpop();
3359 }
3360 
3361 
3362 void MacroAssembler::incrementl(AddressLiteral dst) {
3363   if (reachable(dst)) {
3364     incrementl(as_Address(dst));
3365   } else {
3366     lea(rscratch1, dst);
3367     incrementl(Address(rscratch1, 0));
3368   }
3369 }
3370 
3371 void MacroAssembler::incrementl(ArrayAddress dst) {
3372   incrementl(as_Address(dst));
3373 }
3374 
3375 void MacroAssembler::incrementl(Register reg, int value) {
3376   if (value == min_jint) {addl(reg, value) ; return; }
3377   if (value <  0) { decrementl(reg, -value); return; }
3378   if (value == 0) {                        ; return; }
3379   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3380   /* else */      { addl(reg, value)       ; return; }
3381 }
3382 
3383 void MacroAssembler::incrementl(Address dst, int value) {
3384   if (value == min_jint) {addl(dst, value) ; return; }
3385   if (value <  0) { decrementl(dst, -value); return; }
3386   if (value == 0) {                        ; return; }
3387   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3388   /* else */      { addl(dst, value)       ; return; }
3389 }
3390 
3391 void MacroAssembler::jump(AddressLiteral dst) {
3392   if (reachable(dst)) {
3393     jmp_literal(dst.target(), dst.rspec());
3394   } else {
3395     lea(rscratch1, dst);
3396     jmp(rscratch1);
3397   }
3398 }
3399 
3400 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3401   if (reachable(dst)) {
3402     InstructionMark im(this);
3403     relocate(dst.reloc());
3404     const int short_size = 2;
3405     const int long_size = 6;
3406     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3407     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3408       // 0111 tttn #8-bit disp
3409       emit_int8(0x70 | cc);
3410       emit_int8((offs - short_size) & 0xFF);
3411     } else {
3412       // 0000 1111 1000 tttn #32-bit disp
3413       emit_int8(0x0F);
3414       emit_int8((unsigned char)(0x80 | cc));
3415       emit_int32(offs - long_size);
3416     }
3417   } else {
3418 #ifdef ASSERT
3419     warning("reversing conditional branch");
3420 #endif /* ASSERT */
3421     Label skip;
3422     jccb(reverse[cc], skip);
3423     lea(rscratch1, dst);
3424     Assembler::jmp(rscratch1);
3425     bind(skip);
3426   }
3427 }
3428 
3429 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3430   if (reachable(src)) {
3431     Assembler::ldmxcsr(as_Address(src));
3432   } else {
3433     lea(rscratch1, src);
3434     Assembler::ldmxcsr(Address(rscratch1, 0));
3435   }
3436 }
3437 
3438 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3439   int off;
3440   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3441     off = offset();
3442     movsbl(dst, src); // movsxb
3443   } else {
3444     off = load_unsigned_byte(dst, src);
3445     shll(dst, 24);
3446     sarl(dst, 24);
3447   }
3448   return off;
3449 }
3450 
3451 // Note: load_signed_short used to be called load_signed_word.
3452 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3453 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3454 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3455 int MacroAssembler::load_signed_short(Register dst, Address src) {
3456   int off;
3457   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3458     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3459     // version but this is what 64bit has always done. This seems to imply
3460     // that users are only using 32bits worth.
3461     off = offset();
3462     movswl(dst, src); // movsxw
3463   } else {
3464     off = load_unsigned_short(dst, src);
3465     shll(dst, 16);
3466     sarl(dst, 16);
3467   }
3468   return off;
3469 }
3470 
3471 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3472   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3473   // and "3.9 Partial Register Penalties", p. 22).
3474   int off;
3475   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3476     off = offset();
3477     movzbl(dst, src); // movzxb
3478   } else {
3479     xorl(dst, dst);
3480     off = offset();
3481     movb(dst, src);
3482   }
3483   return off;
3484 }
3485 
3486 // Note: load_unsigned_short used to be called load_unsigned_word.
3487 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3488   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3489   // and "3.9 Partial Register Penalties", p. 22).
3490   int off;
3491   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3492     off = offset();
3493     movzwl(dst, src); // movzxw
3494   } else {
3495     xorl(dst, dst);
3496     off = offset();
3497     movw(dst, src);
3498   }
3499   return off;
3500 }
3501 
3502 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3503   switch (size_in_bytes) {
3504 #ifndef _LP64
3505   case  8:
3506     assert(dst2 != noreg, "second dest register required");
3507     movl(dst,  src);
3508     movl(dst2, src.plus_disp(BytesPerInt));
3509     break;
3510 #else
3511   case  8:  movq(dst, src); break;
3512 #endif
3513   case  4:  movl(dst, src); break;
3514   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3515   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3516   default:  ShouldNotReachHere();
3517   }
3518 }
3519 
3520 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3521   switch (size_in_bytes) {
3522 #ifndef _LP64
3523   case  8:
3524     assert(src2 != noreg, "second source register required");
3525     movl(dst,                        src);
3526     movl(dst.plus_disp(BytesPerInt), src2);
3527     break;
3528 #else
3529   case  8:  movq(dst, src); break;
3530 #endif
3531   case  4:  movl(dst, src); break;
3532   case  2:  movw(dst, src); break;
3533   case  1:  movb(dst, src); break;
3534   default:  ShouldNotReachHere();
3535   }
3536 }
3537 
3538 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3539   if (reachable(dst)) {
3540     movl(as_Address(dst), src);
3541   } else {
3542     lea(rscratch1, dst);
3543     movl(Address(rscratch1, 0), src);
3544   }
3545 }
3546 
3547 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3548   if (reachable(src)) {
3549     movl(dst, as_Address(src));
3550   } else {
3551     lea(rscratch1, src);
3552     movl(dst, Address(rscratch1, 0));
3553   }
3554 }
3555 
3556 // C++ bool manipulation
3557 
3558 void MacroAssembler::movbool(Register dst, Address src) {
3559   if(sizeof(bool) == 1)
3560     movb(dst, src);
3561   else if(sizeof(bool) == 2)
3562     movw(dst, src);
3563   else if(sizeof(bool) == 4)
3564     movl(dst, src);
3565   else
3566     // unsupported
3567     ShouldNotReachHere();
3568 }
3569 
3570 void MacroAssembler::movbool(Address dst, bool boolconst) {
3571   if(sizeof(bool) == 1)
3572     movb(dst, (int) boolconst);
3573   else if(sizeof(bool) == 2)
3574     movw(dst, (int) boolconst);
3575   else if(sizeof(bool) == 4)
3576     movl(dst, (int) boolconst);
3577   else
3578     // unsupported
3579     ShouldNotReachHere();
3580 }
3581 
3582 void MacroAssembler::movbool(Address dst, Register src) {
3583   if(sizeof(bool) == 1)
3584     movb(dst, src);
3585   else if(sizeof(bool) == 2)
3586     movw(dst, src);
3587   else if(sizeof(bool) == 4)
3588     movl(dst, src);
3589   else
3590     // unsupported
3591     ShouldNotReachHere();
3592 }
3593 
3594 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3595   movb(as_Address(dst), src);
3596 }
3597 
3598 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3599   if (reachable(src)) {
3600     movdl(dst, as_Address(src));
3601   } else {
3602     lea(rscratch1, src);
3603     movdl(dst, Address(rscratch1, 0));
3604   }
3605 }
3606 
3607 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3608   if (reachable(src)) {
3609     movq(dst, as_Address(src));
3610   } else {
3611     lea(rscratch1, src);
3612     movq(dst, Address(rscratch1, 0));
3613   }
3614 }
3615 
3616 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3617   if (reachable(src)) {
3618     if (UseXmmLoadAndClearUpper) {
3619       movsd (dst, as_Address(src));
3620     } else {
3621       movlpd(dst, as_Address(src));
3622     }
3623   } else {
3624     lea(rscratch1, src);
3625     if (UseXmmLoadAndClearUpper) {
3626       movsd (dst, Address(rscratch1, 0));
3627     } else {
3628       movlpd(dst, Address(rscratch1, 0));
3629     }
3630   }
3631 }
3632 
3633 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3634   if (reachable(src)) {
3635     movss(dst, as_Address(src));
3636   } else {
3637     lea(rscratch1, src);
3638     movss(dst, Address(rscratch1, 0));
3639   }
3640 }
3641 
3642 void MacroAssembler::movptr(Register dst, Register src) {
3643   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3644 }
3645 
3646 void MacroAssembler::movptr(Register dst, Address src) {
3647   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3648 }
3649 
3650 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3651 void MacroAssembler::movptr(Register dst, intptr_t src) {
3652   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3653 }
3654 
3655 void MacroAssembler::movptr(Address dst, Register src) {
3656   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3657 }
3658 
3659 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
3660   if (reachable(src)) {
3661     Assembler::movdqu(dst, as_Address(src));
3662   } else {
3663     lea(rscratch1, src);
3664     Assembler::movdqu(dst, Address(rscratch1, 0));
3665   }
3666 }
3667 
3668 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3669   if (reachable(src)) {
3670     Assembler::movdqa(dst, as_Address(src));
3671   } else {
3672     lea(rscratch1, src);
3673     Assembler::movdqa(dst, Address(rscratch1, 0));
3674   }
3675 }
3676 
3677 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3678   if (reachable(src)) {
3679     Assembler::movsd(dst, as_Address(src));
3680   } else {
3681     lea(rscratch1, src);
3682     Assembler::movsd(dst, Address(rscratch1, 0));
3683   }
3684 }
3685 
3686 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3687   if (reachable(src)) {
3688     Assembler::movss(dst, as_Address(src));
3689   } else {
3690     lea(rscratch1, src);
3691     Assembler::movss(dst, Address(rscratch1, 0));
3692   }
3693 }
3694 
3695 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3696   if (reachable(src)) {
3697     Assembler::mulsd(dst, as_Address(src));
3698   } else {
3699     lea(rscratch1, src);
3700     Assembler::mulsd(dst, Address(rscratch1, 0));
3701   }
3702 }
3703 
3704 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3705   if (reachable(src)) {
3706     Assembler::mulss(dst, as_Address(src));
3707   } else {
3708     lea(rscratch1, src);
3709     Assembler::mulss(dst, Address(rscratch1, 0));
3710   }
3711 }
3712 
3713 void MacroAssembler::null_check(Register reg, int offset) {
3714   if (needs_explicit_null_check(offset)) {
3715     // provoke OS NULL exception if reg = NULL by
3716     // accessing M[reg] w/o changing any (non-CC) registers
3717     // NOTE: cmpl is plenty here to provoke a segv
3718     cmpptr(rax, Address(reg, 0));
3719     // Note: should probably use testl(rax, Address(reg, 0));
3720     //       may be shorter code (however, this version of
3721     //       testl needs to be implemented first)
3722   } else {
3723     // nothing to do, (later) access of M[reg + offset]
3724     // will provoke OS NULL exception if reg = NULL
3725   }
3726 }
3727 
3728 void MacroAssembler::os_breakpoint() {
3729   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3730   // (e.g., MSVC can't call ps() otherwise)
3731   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3732 }
3733 
3734 void MacroAssembler::pop_CPU_state() {
3735   pop_FPU_state();
3736   pop_IU_state();
3737 }
3738 
3739 void MacroAssembler::pop_FPU_state() {
3740   NOT_LP64(frstor(Address(rsp, 0));)
3741   LP64_ONLY(fxrstor(Address(rsp, 0));)
3742   addptr(rsp, FPUStateSizeInWords * wordSize);
3743 }
3744 
3745 void MacroAssembler::pop_IU_state() {
3746   popa();
3747   LP64_ONLY(addq(rsp, 8));
3748   popf();
3749 }
3750 
3751 // Save Integer and Float state
3752 // Warning: Stack must be 16 byte aligned (64bit)
3753 void MacroAssembler::push_CPU_state() {
3754   push_IU_state();
3755   push_FPU_state();
3756 }
3757 
3758 void MacroAssembler::push_FPU_state() {
3759   subptr(rsp, FPUStateSizeInWords * wordSize);
3760 #ifndef _LP64
3761   fnsave(Address(rsp, 0));
3762   fwait();
3763 #else
3764   fxsave(Address(rsp, 0));
3765 #endif // LP64
3766 }
3767 
3768 void MacroAssembler::push_IU_state() {
3769   // Push flags first because pusha kills them
3770   pushf();
3771   // Make sure rsp stays 16-byte aligned
3772   LP64_ONLY(subq(rsp, 8));
3773   pusha();
3774 }
3775 
3776 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
3777   // determine java_thread register
3778   if (!java_thread->is_valid()) {
3779     java_thread = rdi;
3780     get_thread(java_thread);
3781   }
3782   // we must set sp to zero to clear frame
3783   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3784   if (clear_fp) {
3785     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3786   }
3787 
3788   if (clear_pc)
3789     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3790 
3791 }
3792 
3793 void MacroAssembler::restore_rax(Register tmp) {
3794   if (tmp == noreg) pop(rax);
3795   else if (tmp != rax) mov(rax, tmp);
3796 }
3797 
3798 void MacroAssembler::round_to(Register reg, int modulus) {
3799   addptr(reg, modulus - 1);
3800   andptr(reg, -modulus);
3801 }
3802 
3803 void MacroAssembler::save_rax(Register tmp) {
3804   if (tmp == noreg) push(rax);
3805   else if (tmp != rax) mov(tmp, rax);
3806 }
3807 
3808 // Write serialization page so VM thread can do a pseudo remote membar.
3809 // We use the current thread pointer to calculate a thread specific
3810 // offset to write to within the page. This minimizes bus traffic
3811 // due to cache line collision.
3812 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3813   movl(tmp, thread);
3814   shrl(tmp, os::get_serialize_page_shift_count());
3815   andl(tmp, (os::vm_page_size() - sizeof(int)));
3816 
3817   Address index(noreg, tmp, Address::times_1);
3818   ExternalAddress page(os::get_memory_serialize_page());
3819 
3820   // Size of store must match masking code above
3821   movl(as_Address(ArrayAddress(page, index)), tmp);
3822 }
3823 
3824 // Calls to C land
3825 //
3826 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3827 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3828 // has to be reset to 0. This is required to allow proper stack traversal.
3829 void MacroAssembler::set_last_Java_frame(Register java_thread,
3830                                          Register last_java_sp,
3831                                          Register last_java_fp,
3832                                          address  last_java_pc) {
3833   // determine java_thread register
3834   if (!java_thread->is_valid()) {
3835     java_thread = rdi;
3836     get_thread(java_thread);
3837   }
3838   // determine last_java_sp register
3839   if (!last_java_sp->is_valid()) {
3840     last_java_sp = rsp;
3841   }
3842 
3843   // last_java_fp is optional
3844 
3845   if (last_java_fp->is_valid()) {
3846     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3847   }
3848 
3849   // last_java_pc is optional
3850 
3851   if (last_java_pc != NULL) {
3852     lea(Address(java_thread,
3853                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3854         InternalAddress(last_java_pc));
3855 
3856   }
3857   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3858 }
3859 
3860 void MacroAssembler::shlptr(Register dst, int imm8) {
3861   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3862 }
3863 
3864 void MacroAssembler::shrptr(Register dst, int imm8) {
3865   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3866 }
3867 
3868 void MacroAssembler::sign_extend_byte(Register reg) {
3869   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3870     movsbl(reg, reg); // movsxb
3871   } else {
3872     shll(reg, 24);
3873     sarl(reg, 24);
3874   }
3875 }
3876 
3877 void MacroAssembler::sign_extend_short(Register reg) {
3878   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3879     movswl(reg, reg); // movsxw
3880   } else {
3881     shll(reg, 16);
3882     sarl(reg, 16);
3883   }
3884 }
3885 
3886 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3887   assert(reachable(src), "Address should be reachable");
3888   testl(dst, as_Address(src));
3889 }
3890 
3891 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3892   if (reachable(src)) {
3893     Assembler::sqrtsd(dst, as_Address(src));
3894   } else {
3895     lea(rscratch1, src);
3896     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3897   }
3898 }
3899 
3900 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3901   if (reachable(src)) {
3902     Assembler::sqrtss(dst, as_Address(src));
3903   } else {
3904     lea(rscratch1, src);
3905     Assembler::sqrtss(dst, Address(rscratch1, 0));
3906   }
3907 }
3908 
3909 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3910   if (reachable(src)) {
3911     Assembler::subsd(dst, as_Address(src));
3912   } else {
3913     lea(rscratch1, src);
3914     Assembler::subsd(dst, Address(rscratch1, 0));
3915   }
3916 }
3917 
3918 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
3919   if (reachable(src)) {
3920     Assembler::subss(dst, as_Address(src));
3921   } else {
3922     lea(rscratch1, src);
3923     Assembler::subss(dst, Address(rscratch1, 0));
3924   }
3925 }
3926 
3927 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
3928   if (reachable(src)) {
3929     Assembler::ucomisd(dst, as_Address(src));
3930   } else {
3931     lea(rscratch1, src);
3932     Assembler::ucomisd(dst, Address(rscratch1, 0));
3933   }
3934 }
3935 
3936 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
3937   if (reachable(src)) {
3938     Assembler::ucomiss(dst, as_Address(src));
3939   } else {
3940     lea(rscratch1, src);
3941     Assembler::ucomiss(dst, Address(rscratch1, 0));
3942   }
3943 }
3944 
3945 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
3946   // Used in sign-bit flipping with aligned address.
3947   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3948   if (reachable(src)) {
3949     Assembler::xorpd(dst, as_Address(src));
3950   } else {
3951     lea(rscratch1, src);
3952     Assembler::xorpd(dst, Address(rscratch1, 0));
3953   }
3954 }
3955 
3956 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
3957   // Used in sign-bit flipping with aligned address.
3958   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3959   if (reachable(src)) {
3960     Assembler::xorps(dst, as_Address(src));
3961   } else {
3962     lea(rscratch1, src);
3963     Assembler::xorps(dst, Address(rscratch1, 0));
3964   }
3965 }
3966 
3967 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
3968   // Used in sign-bit flipping with aligned address.
3969   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
3970   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
3971   if (reachable(src)) {
3972     Assembler::pshufb(dst, as_Address(src));
3973   } else {
3974     lea(rscratch1, src);
3975     Assembler::pshufb(dst, Address(rscratch1, 0));
3976   }
3977 }
3978 
3979 // AVX 3-operands instructions
3980 
3981 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3982   if (reachable(src)) {
3983     vaddsd(dst, nds, as_Address(src));
3984   } else {
3985     lea(rscratch1, src);
3986     vaddsd(dst, nds, Address(rscratch1, 0));
3987   }
3988 }
3989 
3990 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3991   if (reachable(src)) {
3992     vaddss(dst, nds, as_Address(src));
3993   } else {
3994     lea(rscratch1, src);
3995     vaddss(dst, nds, Address(rscratch1, 0));
3996   }
3997 }
3998 
3999 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4000   if (reachable(src)) {
4001     vandpd(dst, nds, as_Address(src), vector256);
4002   } else {
4003     lea(rscratch1, src);
4004     vandpd(dst, nds, Address(rscratch1, 0), vector256);
4005   }
4006 }
4007 
4008 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4009   if (reachable(src)) {
4010     vandps(dst, nds, as_Address(src), vector256);
4011   } else {
4012     lea(rscratch1, src);
4013     vandps(dst, nds, Address(rscratch1, 0), vector256);
4014   }
4015 }
4016 
4017 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4018   if (reachable(src)) {
4019     vdivsd(dst, nds, as_Address(src));
4020   } else {
4021     lea(rscratch1, src);
4022     vdivsd(dst, nds, Address(rscratch1, 0));
4023   }
4024 }
4025 
4026 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4027   if (reachable(src)) {
4028     vdivss(dst, nds, as_Address(src));
4029   } else {
4030     lea(rscratch1, src);
4031     vdivss(dst, nds, Address(rscratch1, 0));
4032   }
4033 }
4034 
4035 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4036   if (reachable(src)) {
4037     vmulsd(dst, nds, as_Address(src));
4038   } else {
4039     lea(rscratch1, src);
4040     vmulsd(dst, nds, Address(rscratch1, 0));
4041   }
4042 }
4043 
4044 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4045   if (reachable(src)) {
4046     vmulss(dst, nds, as_Address(src));
4047   } else {
4048     lea(rscratch1, src);
4049     vmulss(dst, nds, Address(rscratch1, 0));
4050   }
4051 }
4052 
4053 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4054   if (reachable(src)) {
4055     vsubsd(dst, nds, as_Address(src));
4056   } else {
4057     lea(rscratch1, src);
4058     vsubsd(dst, nds, Address(rscratch1, 0));
4059   }
4060 }
4061 
4062 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4063   if (reachable(src)) {
4064     vsubss(dst, nds, as_Address(src));
4065   } else {
4066     lea(rscratch1, src);
4067     vsubss(dst, nds, Address(rscratch1, 0));
4068   }
4069 }
4070 
4071 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4072   if (reachable(src)) {
4073     vxorpd(dst, nds, as_Address(src), vector256);
4074   } else {
4075     lea(rscratch1, src);
4076     vxorpd(dst, nds, Address(rscratch1, 0), vector256);
4077   }
4078 }
4079 
4080 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4081   if (reachable(src)) {
4082     vxorps(dst, nds, as_Address(src), vector256);
4083   } else {
4084     lea(rscratch1, src);
4085     vxorps(dst, nds, Address(rscratch1, 0), vector256);
4086   }
4087 }
4088 
4089 
4090 //////////////////////////////////////////////////////////////////////////////////
4091 #if INCLUDE_ALL_GCS
4092 
4093 void MacroAssembler::g1_write_barrier_pre(Register obj,
4094                                           Register pre_val,
4095                                           Register thread,
4096                                           Register tmp,
4097                                           bool tosca_live,
4098                                           bool expand_call) {
4099 
4100   // If expand_call is true then we expand the call_VM_leaf macro
4101   // directly to skip generating the check by
4102   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
4103 
4104 #ifdef _LP64
4105   assert(thread == r15_thread, "must be");
4106 #endif // _LP64
4107 
4108   Label done;
4109   Label runtime;
4110 
4111   assert(pre_val != noreg, "check this code");
4112 
4113   if (obj != noreg) {
4114     assert_different_registers(obj, pre_val, tmp);
4115     assert(pre_val != rax, "check this code");
4116   }
4117 
4118   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4119                                        PtrQueue::byte_offset_of_active()));
4120   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4121                                        PtrQueue::byte_offset_of_index()));
4122   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4123                                        PtrQueue::byte_offset_of_buf()));
4124 
4125 
4126   // Is marking active?
4127   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
4128     cmpl(in_progress, 0);
4129   } else {
4130     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
4131     cmpb(in_progress, 0);
4132   }
4133   jcc(Assembler::equal, done);
4134 
4135   // Do we need to load the previous value?
4136   if (obj != noreg) {
4137     load_heap_oop(pre_val, Address(obj, 0));
4138   }
4139 
4140   // Is the previous value null?
4141   cmpptr(pre_val, (int32_t) NULL_WORD);
4142   jcc(Assembler::equal, done);
4143 
4144   // Can we store original value in the thread's buffer?
4145   // Is index == 0?
4146   // (The index field is typed as size_t.)
4147 
4148   movptr(tmp, index);                   // tmp := *index_adr
4149   cmpptr(tmp, 0);                       // tmp == 0?
4150   jcc(Assembler::equal, runtime);       // If yes, goto runtime
4151 
4152   subptr(tmp, wordSize);                // tmp := tmp - wordSize
4153   movptr(index, tmp);                   // *index_adr := tmp
4154   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
4155 
4156   // Record the previous value
4157   movptr(Address(tmp, 0), pre_val);
4158   jmp(done);
4159 
4160   bind(runtime);
4161   // save the live input values
4162   if(tosca_live) push(rax);
4163 
4164   if (obj != noreg && obj != rax)
4165     push(obj);
4166 
4167   if (pre_val != rax)
4168     push(pre_val);
4169 
4170   // Calling the runtime using the regular call_VM_leaf mechanism generates
4171   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
4172   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
4173   //
4174   // If we care generating the pre-barrier without a frame (e.g. in the
4175   // intrinsified Reference.get() routine) then ebp might be pointing to
4176   // the caller frame and so this check will most likely fail at runtime.
4177   //
4178   // Expanding the call directly bypasses the generation of the check.
4179   // So when we do not have have a full interpreter frame on the stack
4180   // expand_call should be passed true.
4181 
4182   NOT_LP64( push(thread); )
4183 
4184   if (expand_call) {
4185     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
4186     pass_arg1(this, thread);
4187     pass_arg0(this, pre_val);
4188     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
4189   } else {
4190     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
4191   }
4192 
4193   NOT_LP64( pop(thread); )
4194 
4195   // save the live input values
4196   if (pre_val != rax)
4197     pop(pre_val);
4198 
4199   if (obj != noreg && obj != rax)
4200     pop(obj);
4201 
4202   if(tosca_live) pop(rax);
4203 
4204   bind(done);
4205 }
4206 
4207 void MacroAssembler::g1_write_barrier_post(Register store_addr,
4208                                            Register new_val,
4209                                            Register thread,
4210                                            Register tmp,
4211                                            Register tmp2) {
4212 #ifdef _LP64
4213   assert(thread == r15_thread, "must be");
4214 #endif // _LP64
4215 
4216   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4217                                        PtrQueue::byte_offset_of_index()));
4218   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4219                                        PtrQueue::byte_offset_of_buf()));
4220 
4221   CardTableModRefBS* ct =
4222     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
4223   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4224 
4225   Label done;
4226   Label runtime;
4227 
4228   // Does store cross heap regions?
4229 
4230   movptr(tmp, store_addr);
4231   xorptr(tmp, new_val);
4232   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
4233   jcc(Assembler::equal, done);
4234 
4235   // crosses regions, storing NULL?
4236 
4237   cmpptr(new_val, (int32_t) NULL_WORD);
4238   jcc(Assembler::equal, done);
4239 
4240   // storing region crossing non-NULL, is card already dirty?
4241 
4242   const Register card_addr = tmp;
4243   const Register cardtable = tmp2;
4244 
4245   movptr(card_addr, store_addr);
4246   shrptr(card_addr, CardTableModRefBS::card_shift);
4247   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
4248   // a valid address and therefore is not properly handled by the relocation code.
4249   movptr(cardtable, (intptr_t)ct->byte_map_base);
4250   addptr(card_addr, cardtable);
4251 
4252   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
4253   jcc(Assembler::equal, done);
4254 
4255   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
4256   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4257   jcc(Assembler::equal, done);
4258 
4259 
4260   // storing a region crossing, non-NULL oop, card is clean.
4261   // dirty card and log.
4262 
4263   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4264 
4265   cmpl(queue_index, 0);
4266   jcc(Assembler::equal, runtime);
4267   subl(queue_index, wordSize);
4268   movptr(tmp2, buffer);
4269 #ifdef _LP64
4270   movslq(rscratch1, queue_index);
4271   addq(tmp2, rscratch1);
4272   movq(Address(tmp2, 0), card_addr);
4273 #else
4274   addl(tmp2, queue_index);
4275   movl(Address(tmp2, 0), card_addr);
4276 #endif
4277   jmp(done);
4278 
4279   bind(runtime);
4280   // save the live input values
4281   push(store_addr);
4282   push(new_val);
4283 #ifdef _LP64
4284   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
4285 #else
4286   push(thread);
4287   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
4288   pop(thread);
4289 #endif
4290   pop(new_val);
4291   pop(store_addr);
4292 
4293   bind(done);
4294 }
4295 
4296 #endif // INCLUDE_ALL_GCS
4297 //////////////////////////////////////////////////////////////////////////////////
4298 
4299 
4300 void MacroAssembler::store_check(Register obj, Address dst) {
4301   store_check(obj);
4302 }
4303 
4304 void MacroAssembler::store_check(Register obj) {
4305   // Does a store check for the oop in register obj. The content of
4306   // register obj is destroyed afterwards.
4307 
4308   BarrierSet* bs = Universe::heap()->barrier_set();
4309   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
4310 
4311   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
4312   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4313 
4314   shrptr(obj, CardTableModRefBS::card_shift);
4315 
4316   Address card_addr;
4317 
4318   // The calculation for byte_map_base is as follows:
4319   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
4320   // So this essentially converts an address to a displacement and it will
4321   // never need to be relocated. On 64bit however the value may be too
4322   // large for a 32bit displacement.
4323   intptr_t disp = (intptr_t) ct->byte_map_base;
4324   if (is_simm32(disp)) {
4325     card_addr = Address(noreg, obj, Address::times_1, disp);
4326   } else {
4327     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
4328     // displacement and done in a single instruction given favorable mapping and a
4329     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
4330     // entry and that entry is not properly handled by the relocation code.
4331     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
4332     Address index(noreg, obj, Address::times_1);
4333     card_addr = as_Address(ArrayAddress(cardtable, index));
4334   }
4335 
4336   assert(card_addr != null, "sanity");
4337 
4338   int dirty = CardTableModRefBS::dirty_card_val();
4339   if (UseCondCardMark) {
4340     Label L_already_dirty;
4341     cmpb(card_addr, dirty);
4342     jcc(Assembler::equal, L_already_dirty);
4343     movb(card_addr, dirty);
4344     bind(L_already_dirty);
4345   } else {
4346     movb(card_addr, dirty);
4347   }
4348 }
4349 
4350 void MacroAssembler::subptr(Register dst, int32_t imm32) {
4351   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
4352 }
4353 
4354 // Force generation of a 4 byte immediate value even if it fits into 8bit
4355 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
4356   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
4357 }
4358 
4359 void MacroAssembler::subptr(Register dst, Register src) {
4360   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
4361 }
4362 
4363 // C++ bool manipulation
4364 void MacroAssembler::testbool(Register dst) {
4365   if(sizeof(bool) == 1)
4366     testb(dst, 0xff);
4367   else if(sizeof(bool) == 2) {
4368     // testw implementation needed for two byte bools
4369     ShouldNotReachHere();
4370   } else if(sizeof(bool) == 4)
4371     testl(dst, dst);
4372   else
4373     // unsupported
4374     ShouldNotReachHere();
4375 }
4376 
4377 void MacroAssembler::testptr(Register dst, Register src) {
4378   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
4379 }
4380 
4381 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4382 void MacroAssembler::tlab_allocate(Register obj,
4383                                    Register var_size_in_bytes,
4384                                    int con_size_in_bytes,
4385                                    Register t1,
4386                                    Register t2,
4387                                    Label& slow_case) {
4388   assert_different_registers(obj, t1, t2);
4389   assert_different_registers(obj, var_size_in_bytes, t1);
4390   Register end = t2;
4391   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
4392 
4393   verify_tlab();
4394 
4395   NOT_LP64(get_thread(thread));
4396 
4397   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
4398   if (var_size_in_bytes == noreg) {
4399     lea(end, Address(obj, con_size_in_bytes));
4400   } else {
4401     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
4402   }
4403   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
4404   jcc(Assembler::above, slow_case);
4405 
4406   // update the tlab top pointer
4407   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
4408 
4409   // recover var_size_in_bytes if necessary
4410   if (var_size_in_bytes == end) {
4411     subptr(var_size_in_bytes, obj);
4412   }
4413   verify_tlab();
4414 }
4415 
4416 // Preserves rbx, and rdx.
4417 Register MacroAssembler::tlab_refill(Label& retry,
4418                                      Label& try_eden,
4419                                      Label& slow_case) {
4420   Register top = rax;
4421   Register t1  = rcx;
4422   Register t2  = rsi;
4423   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
4424   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
4425   Label do_refill, discard_tlab;
4426 
4427   if (!Universe::heap()->supports_inline_contig_alloc()) {
4428     // No allocation in the shared eden.
4429     jmp(slow_case);
4430   }
4431 
4432   NOT_LP64(get_thread(thread_reg));
4433 
4434   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4435   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
4436 
4437   // calculate amount of free space
4438   subptr(t1, top);
4439   shrptr(t1, LogHeapWordSize);
4440 
4441   // Retain tlab and allocate object in shared space if
4442   // the amount free in the tlab is too large to discard.
4443   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
4444   jcc(Assembler::lessEqual, discard_tlab);
4445 
4446   // Retain
4447   // %%% yuck as movptr...
4448   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
4449   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
4450   if (TLABStats) {
4451     // increment number of slow_allocations
4452     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
4453   }
4454   jmp(try_eden);
4455 
4456   bind(discard_tlab);
4457   if (TLABStats) {
4458     // increment number of refills
4459     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
4460     // accumulate wastage -- t1 is amount free in tlab
4461     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
4462   }
4463 
4464   // if tlab is currently allocated (top or end != null) then
4465   // fill [top, end + alignment_reserve) with array object
4466   testptr(top, top);
4467   jcc(Assembler::zero, do_refill);
4468 
4469   // set up the mark word
4470   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
4471   // set the length to the remaining space
4472   subptr(t1, typeArrayOopDesc::header_size(T_INT));
4473   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
4474   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
4475   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
4476   // set klass to intArrayKlass
4477   // dubious reloc why not an oop reloc?
4478   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
4479   // store klass last.  concurrent gcs assumes klass length is valid if
4480   // klass field is not null.
4481   store_klass(top, t1);
4482 
4483   movptr(t1, top);
4484   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
4485   incr_allocated_bytes(thread_reg, t1, 0);
4486 
4487   // refill the tlab with an eden allocation
4488   bind(do_refill);
4489   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4490   shlptr(t1, LogHeapWordSize);
4491   // allocate new tlab, address returned in top
4492   eden_allocate(top, t1, 0, t2, slow_case);
4493 
4494   // Check that t1 was preserved in eden_allocate.
4495 #ifdef ASSERT
4496   if (UseTLAB) {
4497     Label ok;
4498     Register tsize = rsi;
4499     assert_different_registers(tsize, thread_reg, t1);
4500     push(tsize);
4501     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4502     shlptr(tsize, LogHeapWordSize);
4503     cmpptr(t1, tsize);
4504     jcc(Assembler::equal, ok);
4505     STOP("assert(t1 != tlab size)");
4506     should_not_reach_here();
4507 
4508     bind(ok);
4509     pop(tsize);
4510   }
4511 #endif
4512   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
4513   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
4514   addptr(top, t1);
4515   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
4516   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
4517   verify_tlab();
4518   jmp(retry);
4519 
4520   return thread_reg; // for use by caller
4521 }
4522 
4523 void MacroAssembler::incr_allocated_bytes(Register thread,
4524                                           Register var_size_in_bytes,
4525                                           int con_size_in_bytes,
4526                                           Register t1) {
4527   if (!thread->is_valid()) {
4528 #ifdef _LP64
4529     thread = r15_thread;
4530 #else
4531     assert(t1->is_valid(), "need temp reg");
4532     thread = t1;
4533     get_thread(thread);
4534 #endif
4535   }
4536 
4537 #ifdef _LP64
4538   if (var_size_in_bytes->is_valid()) {
4539     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4540   } else {
4541     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4542   }
4543 #else
4544   if (var_size_in_bytes->is_valid()) {
4545     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4546   } else {
4547     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4548   }
4549   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
4550 #endif
4551 }
4552 
4553 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
4554   pusha();
4555 
4556   // if we are coming from c1, xmm registers may be live
4557   int off = 0;
4558   if (UseSSE == 1)  {
4559     subptr(rsp, sizeof(jdouble)*8);
4560     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
4561     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
4562     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
4563     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
4564     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
4565     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
4566     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
4567     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
4568   } else if (UseSSE >= 2)  {
4569 #ifdef COMPILER2
4570     if (MaxVectorSize > 16) {
4571       assert(UseAVX > 0, "256bit vectors are supported only with AVX");
4572       // Save upper half of YMM registes
4573       subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4574       vextractf128h(Address(rsp,  0),xmm0);
4575       vextractf128h(Address(rsp, 16),xmm1);
4576       vextractf128h(Address(rsp, 32),xmm2);
4577       vextractf128h(Address(rsp, 48),xmm3);
4578       vextractf128h(Address(rsp, 64),xmm4);
4579       vextractf128h(Address(rsp, 80),xmm5);
4580       vextractf128h(Address(rsp, 96),xmm6);
4581       vextractf128h(Address(rsp,112),xmm7);
4582 #ifdef _LP64
4583       vextractf128h(Address(rsp,128),xmm8);
4584       vextractf128h(Address(rsp,144),xmm9);
4585       vextractf128h(Address(rsp,160),xmm10);
4586       vextractf128h(Address(rsp,176),xmm11);
4587       vextractf128h(Address(rsp,192),xmm12);
4588       vextractf128h(Address(rsp,208),xmm13);
4589       vextractf128h(Address(rsp,224),xmm14);
4590       vextractf128h(Address(rsp,240),xmm15);
4591 #endif
4592     }
4593 #endif
4594     // Save whole 128bit (16 bytes) XMM regiters
4595     subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4596     movdqu(Address(rsp,off++*16),xmm0);
4597     movdqu(Address(rsp,off++*16),xmm1);
4598     movdqu(Address(rsp,off++*16),xmm2);
4599     movdqu(Address(rsp,off++*16),xmm3);
4600     movdqu(Address(rsp,off++*16),xmm4);
4601     movdqu(Address(rsp,off++*16),xmm5);
4602     movdqu(Address(rsp,off++*16),xmm6);
4603     movdqu(Address(rsp,off++*16),xmm7);
4604 #ifdef _LP64
4605     movdqu(Address(rsp,off++*16),xmm8);
4606     movdqu(Address(rsp,off++*16),xmm9);
4607     movdqu(Address(rsp,off++*16),xmm10);
4608     movdqu(Address(rsp,off++*16),xmm11);
4609     movdqu(Address(rsp,off++*16),xmm12);
4610     movdqu(Address(rsp,off++*16),xmm13);
4611     movdqu(Address(rsp,off++*16),xmm14);
4612     movdqu(Address(rsp,off++*16),xmm15);
4613 #endif
4614   }
4615 
4616   // Preserve registers across runtime call
4617   int incoming_argument_and_return_value_offset = -1;
4618   if (num_fpu_regs_in_use > 1) {
4619     // Must preserve all other FPU regs (could alternatively convert
4620     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
4621     // FPU state, but can not trust C compiler)
4622     NEEDS_CLEANUP;
4623     // NOTE that in this case we also push the incoming argument(s) to
4624     // the stack and restore it later; we also use this stack slot to
4625     // hold the return value from dsin, dcos etc.
4626     for (int i = 0; i < num_fpu_regs_in_use; i++) {
4627       subptr(rsp, sizeof(jdouble));
4628       fstp_d(Address(rsp, 0));
4629     }
4630     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
4631     for (int i = nb_args-1; i >= 0; i--) {
4632       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
4633     }
4634   }
4635 
4636   subptr(rsp, nb_args*sizeof(jdouble));
4637   for (int i = 0; i < nb_args; i++) {
4638     fstp_d(Address(rsp, i*sizeof(jdouble)));
4639   }
4640 
4641 #ifdef _LP64
4642   if (nb_args > 0) {
4643     movdbl(xmm0, Address(rsp, 0));
4644   }
4645   if (nb_args > 1) {
4646     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
4647   }
4648   assert(nb_args <= 2, "unsupported number of args");
4649 #endif // _LP64
4650 
4651   // NOTE: we must not use call_VM_leaf here because that requires a
4652   // complete interpreter frame in debug mode -- same bug as 4387334
4653   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
4654   // do proper 64bit abi
4655 
4656   NEEDS_CLEANUP;
4657   // Need to add stack banging before this runtime call if it needs to
4658   // be taken; however, there is no generic stack banging routine at
4659   // the MacroAssembler level
4660 
4661   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
4662 
4663 #ifdef _LP64
4664   movsd(Address(rsp, 0), xmm0);
4665   fld_d(Address(rsp, 0));
4666 #endif // _LP64
4667   addptr(rsp, sizeof(jdouble) * nb_args);
4668   if (num_fpu_regs_in_use > 1) {
4669     // Must save return value to stack and then restore entire FPU
4670     // stack except incoming arguments
4671     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
4672     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
4673       fld_d(Address(rsp, 0));
4674       addptr(rsp, sizeof(jdouble));
4675     }
4676     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
4677     addptr(rsp, sizeof(jdouble) * nb_args);
4678   }
4679 
4680   off = 0;
4681   if (UseSSE == 1)  {
4682     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
4683     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
4684     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
4685     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
4686     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
4687     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
4688     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
4689     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
4690     addptr(rsp, sizeof(jdouble)*8);
4691   } else if (UseSSE >= 2)  {
4692     // Restore whole 128bit (16 bytes) XMM regiters
4693     movdqu(xmm0, Address(rsp,off++*16));
4694     movdqu(xmm1, Address(rsp,off++*16));
4695     movdqu(xmm2, Address(rsp,off++*16));
4696     movdqu(xmm3, Address(rsp,off++*16));
4697     movdqu(xmm4, Address(rsp,off++*16));
4698     movdqu(xmm5, Address(rsp,off++*16));
4699     movdqu(xmm6, Address(rsp,off++*16));
4700     movdqu(xmm7, Address(rsp,off++*16));
4701 #ifdef _LP64
4702     movdqu(xmm8, Address(rsp,off++*16));
4703     movdqu(xmm9, Address(rsp,off++*16));
4704     movdqu(xmm10, Address(rsp,off++*16));
4705     movdqu(xmm11, Address(rsp,off++*16));
4706     movdqu(xmm12, Address(rsp,off++*16));
4707     movdqu(xmm13, Address(rsp,off++*16));
4708     movdqu(xmm14, Address(rsp,off++*16));
4709     movdqu(xmm15, Address(rsp,off++*16));
4710 #endif
4711     addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4712 #ifdef COMPILER2
4713     if (MaxVectorSize > 16) {
4714       // Restore upper half of YMM registes.
4715       vinsertf128h(xmm0, Address(rsp,  0));
4716       vinsertf128h(xmm1, Address(rsp, 16));
4717       vinsertf128h(xmm2, Address(rsp, 32));
4718       vinsertf128h(xmm3, Address(rsp, 48));
4719       vinsertf128h(xmm4, Address(rsp, 64));
4720       vinsertf128h(xmm5, Address(rsp, 80));
4721       vinsertf128h(xmm6, Address(rsp, 96));
4722       vinsertf128h(xmm7, Address(rsp,112));
4723 #ifdef _LP64
4724       vinsertf128h(xmm8, Address(rsp,128));
4725       vinsertf128h(xmm9, Address(rsp,144));
4726       vinsertf128h(xmm10, Address(rsp,160));
4727       vinsertf128h(xmm11, Address(rsp,176));
4728       vinsertf128h(xmm12, Address(rsp,192));
4729       vinsertf128h(xmm13, Address(rsp,208));
4730       vinsertf128h(xmm14, Address(rsp,224));
4731       vinsertf128h(xmm15, Address(rsp,240));
4732 #endif
4733       addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4734     }
4735 #endif
4736   }
4737   popa();
4738 }
4739 
4740 static const double     pi_4 =  0.7853981633974483;
4741 
4742 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
4743   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
4744   // was attempted in this code; unfortunately it appears that the
4745   // switch to 80-bit precision and back causes this to be
4746   // unprofitable compared with simply performing a runtime call if
4747   // the argument is out of the (-pi/4, pi/4) range.
4748 
4749   Register tmp = noreg;
4750   if (!VM_Version::supports_cmov()) {
4751     // fcmp needs a temporary so preserve rbx,
4752     tmp = rbx;
4753     push(tmp);
4754   }
4755 
4756   Label slow_case, done;
4757 
4758   ExternalAddress pi4_adr = (address)&pi_4;
4759   if (reachable(pi4_adr)) {
4760     // x ?<= pi/4
4761     fld_d(pi4_adr);
4762     fld_s(1);                // Stack:  X  PI/4  X
4763     fabs();                  // Stack: |X| PI/4  X
4764     fcmp(tmp);
4765     jcc(Assembler::above, slow_case);
4766 
4767     // fastest case: -pi/4 <= x <= pi/4
4768     switch(trig) {
4769     case 's':
4770       fsin();
4771       break;
4772     case 'c':
4773       fcos();
4774       break;
4775     case 't':
4776       ftan();
4777       break;
4778     default:
4779       assert(false, "bad intrinsic");
4780       break;
4781     }
4782     jmp(done);
4783   }
4784 
4785   // slow case: runtime call
4786   bind(slow_case);
4787 
4788   switch(trig) {
4789   case 's':
4790     {
4791       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
4792     }
4793     break;
4794   case 'c':
4795     {
4796       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
4797     }
4798     break;
4799   case 't':
4800     {
4801       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
4802     }
4803     break;
4804   default:
4805     assert(false, "bad intrinsic");
4806     break;
4807   }
4808 
4809   // Come here with result in F-TOS
4810   bind(done);
4811 
4812   if (tmp != noreg) {
4813     pop(tmp);
4814   }
4815 }
4816 
4817 
4818 // Look up the method for a megamorphic invokeinterface call.
4819 // The target method is determined by <intf_klass, itable_index>.
4820 // The receiver klass is in recv_klass.
4821 // On success, the result will be in method_result, and execution falls through.
4822 // On failure, execution transfers to the given label.
4823 void MacroAssembler::lookup_interface_method(Register recv_klass,
4824                                              Register intf_klass,
4825                                              RegisterOrConstant itable_index,
4826                                              Register method_result,
4827                                              Register scan_temp,
4828                                              Label& L_no_such_interface) {
4829   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
4830   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
4831          "caller must use same register for non-constant itable index as for method");
4832 
4833   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
4834   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
4835   int itentry_off = itableMethodEntry::method_offset_in_bytes();
4836   int scan_step   = itableOffsetEntry::size() * wordSize;
4837   int vte_size    = vtableEntry::size() * wordSize;
4838   Address::ScaleFactor times_vte_scale = Address::times_ptr;
4839   assert(vte_size == wordSize, "else adjust times_vte_scale");
4840 
4841   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
4842 
4843   // %%% Could store the aligned, prescaled offset in the klassoop.
4844   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
4845   if (HeapWordsPerLong > 1) {
4846     // Round up to align_object_offset boundary
4847     // see code for InstanceKlass::start_of_itable!
4848     round_to(scan_temp, BytesPerLong);
4849   }
4850 
4851   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
4852   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
4853   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
4854 
4855   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
4856   //   if (scan->interface() == intf) {
4857   //     result = (klass + scan->offset() + itable_index);
4858   //   }
4859   // }
4860   Label search, found_method;
4861 
4862   for (int peel = 1; peel >= 0; peel--) {
4863     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
4864     cmpptr(intf_klass, method_result);
4865 
4866     if (peel) {
4867       jccb(Assembler::equal, found_method);
4868     } else {
4869       jccb(Assembler::notEqual, search);
4870       // (invert the test to fall through to found_method...)
4871     }
4872 
4873     if (!peel)  break;
4874 
4875     bind(search);
4876 
4877     // Check that the previous entry is non-null.  A null entry means that
4878     // the receiver class doesn't implement the interface, and wasn't the
4879     // same as when the caller was compiled.
4880     testptr(method_result, method_result);
4881     jcc(Assembler::zero, L_no_such_interface);
4882     addptr(scan_temp, scan_step);
4883   }
4884 
4885   bind(found_method);
4886 
4887   // Got a hit.
4888   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
4889   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
4890 }
4891 
4892 
4893 // virtual method calling
4894 void MacroAssembler::lookup_virtual_method(Register recv_klass,
4895                                            RegisterOrConstant vtable_index,
4896                                            Register method_result) {
4897   const int base = InstanceKlass::vtable_start_offset() * wordSize;
4898   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
4899   Address vtable_entry_addr(recv_klass,
4900                             vtable_index, Address::times_ptr,
4901                             base + vtableEntry::method_offset_in_bytes());
4902   movptr(method_result, vtable_entry_addr);
4903 }
4904 
4905 
4906 void MacroAssembler::check_klass_subtype(Register sub_klass,
4907                            Register super_klass,
4908                            Register temp_reg,
4909                            Label& L_success) {
4910   Label L_failure;
4911   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
4912   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
4913   bind(L_failure);
4914 }
4915 
4916 
4917 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
4918                                                    Register super_klass,
4919                                                    Register temp_reg,
4920                                                    Label* L_success,
4921                                                    Label* L_failure,
4922                                                    Label* L_slow_path,
4923                                         RegisterOrConstant super_check_offset) {
4924   assert_different_registers(sub_klass, super_klass, temp_reg);
4925   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
4926   if (super_check_offset.is_register()) {
4927     assert_different_registers(sub_klass, super_klass,
4928                                super_check_offset.as_register());
4929   } else if (must_load_sco) {
4930     assert(temp_reg != noreg, "supply either a temp or a register offset");
4931   }
4932 
4933   Label L_fallthrough;
4934   int label_nulls = 0;
4935   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4936   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4937   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
4938   assert(label_nulls <= 1, "at most one NULL in the batch");
4939 
4940   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4941   int sco_offset = in_bytes(Klass::super_check_offset_offset());
4942   Address super_check_offset_addr(super_klass, sco_offset);
4943 
4944   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
4945   // range of a jccb.  If this routine grows larger, reconsider at
4946   // least some of these.
4947 #define local_jcc(assembler_cond, label)                                \
4948   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
4949   else                             jcc( assembler_cond, label) /*omit semi*/
4950 
4951   // Hacked jmp, which may only be used just before L_fallthrough.
4952 #define final_jmp(label)                                                \
4953   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
4954   else                            jmp(label)                /*omit semi*/
4955 
4956   // If the pointers are equal, we are done (e.g., String[] elements).
4957   // This self-check enables sharing of secondary supertype arrays among
4958   // non-primary types such as array-of-interface.  Otherwise, each such
4959   // type would need its own customized SSA.
4960   // We move this check to the front of the fast path because many
4961   // type checks are in fact trivially successful in this manner,
4962   // so we get a nicely predicted branch right at the start of the check.
4963   cmpptr(sub_klass, super_klass);
4964   local_jcc(Assembler::equal, *L_success);
4965 
4966   // Check the supertype display:
4967   if (must_load_sco) {
4968     // Positive movl does right thing on LP64.
4969     movl(temp_reg, super_check_offset_addr);
4970     super_check_offset = RegisterOrConstant(temp_reg);
4971   }
4972   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
4973   cmpptr(super_klass, super_check_addr); // load displayed supertype
4974 
4975   // This check has worked decisively for primary supers.
4976   // Secondary supers are sought in the super_cache ('super_cache_addr').
4977   // (Secondary supers are interfaces and very deeply nested subtypes.)
4978   // This works in the same check above because of a tricky aliasing
4979   // between the super_cache and the primary super display elements.
4980   // (The 'super_check_addr' can address either, as the case requires.)
4981   // Note that the cache is updated below if it does not help us find
4982   // what we need immediately.
4983   // So if it was a primary super, we can just fail immediately.
4984   // Otherwise, it's the slow path for us (no success at this point).
4985 
4986   if (super_check_offset.is_register()) {
4987     local_jcc(Assembler::equal, *L_success);
4988     cmpl(super_check_offset.as_register(), sc_offset);
4989     if (L_failure == &L_fallthrough) {
4990       local_jcc(Assembler::equal, *L_slow_path);
4991     } else {
4992       local_jcc(Assembler::notEqual, *L_failure);
4993       final_jmp(*L_slow_path);
4994     }
4995   } else if (super_check_offset.as_constant() == sc_offset) {
4996     // Need a slow path; fast failure is impossible.
4997     if (L_slow_path == &L_fallthrough) {
4998       local_jcc(Assembler::equal, *L_success);
4999     } else {
5000       local_jcc(Assembler::notEqual, *L_slow_path);
5001       final_jmp(*L_success);
5002     }
5003   } else {
5004     // No slow path; it's a fast decision.
5005     if (L_failure == &L_fallthrough) {
5006       local_jcc(Assembler::equal, *L_success);
5007     } else {
5008       local_jcc(Assembler::notEqual, *L_failure);
5009       final_jmp(*L_success);
5010     }
5011   }
5012 
5013   bind(L_fallthrough);
5014 
5015 #undef local_jcc
5016 #undef final_jmp
5017 }
5018 
5019 
5020 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5021                                                    Register super_klass,
5022                                                    Register temp_reg,
5023                                                    Register temp2_reg,
5024                                                    Label* L_success,
5025                                                    Label* L_failure,
5026                                                    bool set_cond_codes) {
5027   assert_different_registers(sub_klass, super_klass, temp_reg);
5028   if (temp2_reg != noreg)
5029     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5030 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5031 
5032   Label L_fallthrough;
5033   int label_nulls = 0;
5034   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5035   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5036   assert(label_nulls <= 1, "at most one NULL in the batch");
5037 
5038   // a couple of useful fields in sub_klass:
5039   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5040   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5041   Address secondary_supers_addr(sub_klass, ss_offset);
5042   Address super_cache_addr(     sub_klass, sc_offset);
5043 
5044   // Do a linear scan of the secondary super-klass chain.
5045   // This code is rarely used, so simplicity is a virtue here.
5046   // The repne_scan instruction uses fixed registers, which we must spill.
5047   // Don't worry too much about pre-existing connections with the input regs.
5048 
5049   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5050   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5051 
5052   // Get super_klass value into rax (even if it was in rdi or rcx).
5053   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5054   if (super_klass != rax || UseCompressedOops) {
5055     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5056     mov(rax, super_klass);
5057   }
5058   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5059   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5060 
5061 #ifndef PRODUCT
5062   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5063   ExternalAddress pst_counter_addr((address) pst_counter);
5064   NOT_LP64(  incrementl(pst_counter_addr) );
5065   LP64_ONLY( lea(rcx, pst_counter_addr) );
5066   LP64_ONLY( incrementl(Address(rcx, 0)) );
5067 #endif //PRODUCT
5068 
5069   // We will consult the secondary-super array.
5070   movptr(rdi, secondary_supers_addr);
5071   // Load the array length.  (Positive movl does right thing on LP64.)
5072   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5073   // Skip to start of data.
5074   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5075 
5076   // Scan RCX words at [RDI] for an occurrence of RAX.
5077   // Set NZ/Z based on last compare.
5078   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5079   // not change flags (only scas instruction which is repeated sets flags).
5080   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5081 
5082     testptr(rax,rax); // Set Z = 0
5083     repne_scan();
5084 
5085   // Unspill the temp. registers:
5086   if (pushed_rdi)  pop(rdi);
5087   if (pushed_rcx)  pop(rcx);
5088   if (pushed_rax)  pop(rax);
5089 
5090   if (set_cond_codes) {
5091     // Special hack for the AD files:  rdi is guaranteed non-zero.
5092     assert(!pushed_rdi, "rdi must be left non-NULL");
5093     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5094   }
5095 
5096   if (L_failure == &L_fallthrough)
5097         jccb(Assembler::notEqual, *L_failure);
5098   else  jcc(Assembler::notEqual, *L_failure);
5099 
5100   // Success.  Cache the super we found and proceed in triumph.
5101   movptr(super_cache_addr, super_klass);
5102 
5103   if (L_success != &L_fallthrough) {
5104     jmp(*L_success);
5105   }
5106 
5107 #undef IS_A_TEMP
5108 
5109   bind(L_fallthrough);
5110 }
5111 
5112 
5113 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
5114   if (VM_Version::supports_cmov()) {
5115     cmovl(cc, dst, src);
5116   } else {
5117     Label L;
5118     jccb(negate_condition(cc), L);
5119     movl(dst, src);
5120     bind(L);
5121   }
5122 }
5123 
5124 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
5125   if (VM_Version::supports_cmov()) {
5126     cmovl(cc, dst, src);
5127   } else {
5128     Label L;
5129     jccb(negate_condition(cc), L);
5130     movl(dst, src);
5131     bind(L);
5132   }
5133 }
5134 
5135 void MacroAssembler::verify_oop(Register reg, const char* s) {
5136   if (!VerifyOops) return;
5137 
5138   // Pass register number to verify_oop_subroutine
5139   const char* b = NULL;
5140   {
5141     ResourceMark rm;
5142     stringStream ss;
5143     ss.print("verify_oop: %s: %s", reg->name(), s);
5144     b = code_string(ss.as_string());
5145   }
5146   BLOCK_COMMENT("verify_oop {");
5147 #ifdef _LP64
5148   push(rscratch1);                    // save r10, trashed by movptr()
5149 #endif
5150   push(rax);                          // save rax,
5151   push(reg);                          // pass register argument
5152   ExternalAddress buffer((address) b);
5153   // avoid using pushptr, as it modifies scratch registers
5154   // and our contract is not to modify anything
5155   movptr(rax, buffer.addr());
5156   push(rax);
5157   // call indirectly to solve generation ordering problem
5158   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5159   call(rax);
5160   // Caller pops the arguments (oop, message) and restores rax, r10
5161   BLOCK_COMMENT("} verify_oop");
5162 }
5163 
5164 
5165 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
5166                                                       Register tmp,
5167                                                       int offset) {
5168   intptr_t value = *delayed_value_addr;
5169   if (value != 0)
5170     return RegisterOrConstant(value + offset);
5171 
5172   // load indirectly to solve generation ordering problem
5173   movptr(tmp, ExternalAddress((address) delayed_value_addr));
5174 
5175 #ifdef ASSERT
5176   { Label L;
5177     testptr(tmp, tmp);
5178     if (WizardMode) {
5179       const char* buf = NULL;
5180       {
5181         ResourceMark rm;
5182         stringStream ss;
5183         ss.print("DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
5184         buf = code_string(ss.as_string());
5185       }
5186       jcc(Assembler::notZero, L);
5187       STOP(buf);
5188     } else {
5189       jccb(Assembler::notZero, L);
5190       hlt();
5191     }
5192     bind(L);
5193   }
5194 #endif
5195 
5196   if (offset != 0)
5197     addptr(tmp, offset);
5198 
5199   return RegisterOrConstant(tmp);
5200 }
5201 
5202 
5203 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
5204                                          int extra_slot_offset) {
5205   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
5206   int stackElementSize = Interpreter::stackElementSize;
5207   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
5208 #ifdef ASSERT
5209   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
5210   assert(offset1 - offset == stackElementSize, "correct arithmetic");
5211 #endif
5212   Register             scale_reg    = noreg;
5213   Address::ScaleFactor scale_factor = Address::no_scale;
5214   if (arg_slot.is_constant()) {
5215     offset += arg_slot.as_constant() * stackElementSize;
5216   } else {
5217     scale_reg    = arg_slot.as_register();
5218     scale_factor = Address::times(stackElementSize);
5219   }
5220   offset += wordSize;           // return PC is on stack
5221   return Address(rsp, scale_reg, scale_factor, offset);
5222 }
5223 
5224 
5225 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
5226   if (!VerifyOops) return;
5227 
5228   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
5229   // Pass register number to verify_oop_subroutine
5230   const char* b = NULL;
5231   {
5232     ResourceMark rm;
5233     stringStream ss;
5234     ss.print("verify_oop_addr: %s", s);
5235     b = code_string(ss.as_string());
5236   }
5237 #ifdef _LP64
5238   push(rscratch1);                    // save r10, trashed by movptr()
5239 #endif
5240   push(rax);                          // save rax,
5241   // addr may contain rsp so we will have to adjust it based on the push
5242   // we just did (and on 64 bit we do two pushes)
5243   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
5244   // stores rax into addr which is backwards of what was intended.
5245   if (addr.uses(rsp)) {
5246     lea(rax, addr);
5247     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
5248   } else {
5249     pushptr(addr);
5250   }
5251 
5252   ExternalAddress buffer((address) b);
5253   // pass msg argument
5254   // avoid using pushptr, as it modifies scratch registers
5255   // and our contract is not to modify anything
5256   movptr(rax, buffer.addr());
5257   push(rax);
5258 
5259   // call indirectly to solve generation ordering problem
5260   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5261   call(rax);
5262   // Caller pops the arguments (addr, message) and restores rax, r10.
5263 }
5264 
5265 void MacroAssembler::verify_tlab() {
5266 #ifdef ASSERT
5267   if (UseTLAB && VerifyOops) {
5268     Label next, ok;
5269     Register t1 = rsi;
5270     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
5271 
5272     push(t1);
5273     NOT_LP64(push(thread_reg));
5274     NOT_LP64(get_thread(thread_reg));
5275 
5276     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5277     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5278     jcc(Assembler::aboveEqual, next);
5279     STOP("assert(top >= start)");
5280     should_not_reach_here();
5281 
5282     bind(next);
5283     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5284     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5285     jcc(Assembler::aboveEqual, ok);
5286     STOP("assert(top <= end)");
5287     should_not_reach_here();
5288 
5289     bind(ok);
5290     NOT_LP64(pop(thread_reg));
5291     pop(t1);
5292   }
5293 #endif
5294 }
5295 
5296 class ControlWord {
5297  public:
5298   int32_t _value;
5299 
5300   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
5301   int  precision_control() const       { return  (_value >>  8) & 3      ; }
5302   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5303   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5304   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5305   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5306   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5307   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5308 
5309   void print() const {
5310     // rounding control
5311     const char* rc;
5312     switch (rounding_control()) {
5313       case 0: rc = "round near"; break;
5314       case 1: rc = "round down"; break;
5315       case 2: rc = "round up  "; break;
5316       case 3: rc = "chop      "; break;
5317     };
5318     // precision control
5319     const char* pc;
5320     switch (precision_control()) {
5321       case 0: pc = "24 bits "; break;
5322       case 1: pc = "reserved"; break;
5323       case 2: pc = "53 bits "; break;
5324       case 3: pc = "64 bits "; break;
5325     };
5326     // flags
5327     char f[9];
5328     f[0] = ' ';
5329     f[1] = ' ';
5330     f[2] = (precision   ()) ? 'P' : 'p';
5331     f[3] = (underflow   ()) ? 'U' : 'u';
5332     f[4] = (overflow    ()) ? 'O' : 'o';
5333     f[5] = (zero_divide ()) ? 'Z' : 'z';
5334     f[6] = (denormalized()) ? 'D' : 'd';
5335     f[7] = (invalid     ()) ? 'I' : 'i';
5336     f[8] = '\x0';
5337     // output
5338     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
5339   }
5340 
5341 };
5342 
5343 class StatusWord {
5344  public:
5345   int32_t _value;
5346 
5347   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
5348   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
5349   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
5350   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
5351   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
5352   int  top() const                     { return  (_value >> 11) & 7      ; }
5353   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
5354   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
5355   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5356   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5357   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5358   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5359   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5360   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5361 
5362   void print() const {
5363     // condition codes
5364     char c[5];
5365     c[0] = (C3()) ? '3' : '-';
5366     c[1] = (C2()) ? '2' : '-';
5367     c[2] = (C1()) ? '1' : '-';
5368     c[3] = (C0()) ? '0' : '-';
5369     c[4] = '\x0';
5370     // flags
5371     char f[9];
5372     f[0] = (error_status()) ? 'E' : '-';
5373     f[1] = (stack_fault ()) ? 'S' : '-';
5374     f[2] = (precision   ()) ? 'P' : '-';
5375     f[3] = (underflow   ()) ? 'U' : '-';
5376     f[4] = (overflow    ()) ? 'O' : '-';
5377     f[5] = (zero_divide ()) ? 'Z' : '-';
5378     f[6] = (denormalized()) ? 'D' : '-';
5379     f[7] = (invalid     ()) ? 'I' : '-';
5380     f[8] = '\x0';
5381     // output
5382     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
5383   }
5384 
5385 };
5386 
5387 class TagWord {
5388  public:
5389   int32_t _value;
5390 
5391   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
5392 
5393   void print() const {
5394     printf("%04x", _value & 0xFFFF);
5395   }
5396 
5397 };
5398 
5399 class FPU_Register {
5400  public:
5401   int32_t _m0;
5402   int32_t _m1;
5403   int16_t _ex;
5404 
5405   bool is_indefinite() const           {
5406     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
5407   }
5408 
5409   void print() const {
5410     char  sign = (_ex < 0) ? '-' : '+';
5411     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
5412     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
5413   };
5414 
5415 };
5416 
5417 class FPU_State {
5418  public:
5419   enum {
5420     register_size       = 10,
5421     number_of_registers =  8,
5422     register_mask       =  7
5423   };
5424 
5425   ControlWord  _control_word;
5426   StatusWord   _status_word;
5427   TagWord      _tag_word;
5428   int32_t      _error_offset;
5429   int32_t      _error_selector;
5430   int32_t      _data_offset;
5431   int32_t      _data_selector;
5432   int8_t       _register[register_size * number_of_registers];
5433 
5434   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
5435   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
5436 
5437   const char* tag_as_string(int tag) const {
5438     switch (tag) {
5439       case 0: return "valid";
5440       case 1: return "zero";
5441       case 2: return "special";
5442       case 3: return "empty";
5443     }
5444     ShouldNotReachHere();
5445     return NULL;
5446   }
5447 
5448   void print() const {
5449     // print computation registers
5450     { int t = _status_word.top();
5451       for (int i = 0; i < number_of_registers; i++) {
5452         int j = (i - t) & register_mask;
5453         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
5454         st(j)->print();
5455         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
5456       }
5457     }
5458     printf("\n");
5459     // print control registers
5460     printf("ctrl = "); _control_word.print(); printf("\n");
5461     printf("stat = "); _status_word .print(); printf("\n");
5462     printf("tags = "); _tag_word    .print(); printf("\n");
5463   }
5464 
5465 };
5466 
5467 class Flag_Register {
5468  public:
5469   int32_t _value;
5470 
5471   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
5472   bool direction() const               { return ((_value >> 10) & 1) != 0; }
5473   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
5474   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
5475   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
5476   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
5477   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
5478 
5479   void print() const {
5480     // flags
5481     char f[8];
5482     f[0] = (overflow       ()) ? 'O' : '-';
5483     f[1] = (direction      ()) ? 'D' : '-';
5484     f[2] = (sign           ()) ? 'S' : '-';
5485     f[3] = (zero           ()) ? 'Z' : '-';
5486     f[4] = (auxiliary_carry()) ? 'A' : '-';
5487     f[5] = (parity         ()) ? 'P' : '-';
5488     f[6] = (carry          ()) ? 'C' : '-';
5489     f[7] = '\x0';
5490     // output
5491     printf("%08x  flags = %s", _value, f);
5492   }
5493 
5494 };
5495 
5496 class IU_Register {
5497  public:
5498   int32_t _value;
5499 
5500   void print() const {
5501     printf("%08x  %11d", _value, _value);
5502   }
5503 
5504 };
5505 
5506 class IU_State {
5507  public:
5508   Flag_Register _eflags;
5509   IU_Register   _rdi;
5510   IU_Register   _rsi;
5511   IU_Register   _rbp;
5512   IU_Register   _rsp;
5513   IU_Register   _rbx;
5514   IU_Register   _rdx;
5515   IU_Register   _rcx;
5516   IU_Register   _rax;
5517 
5518   void print() const {
5519     // computation registers
5520     printf("rax,  = "); _rax.print(); printf("\n");
5521     printf("rbx,  = "); _rbx.print(); printf("\n");
5522     printf("rcx  = "); _rcx.print(); printf("\n");
5523     printf("rdx  = "); _rdx.print(); printf("\n");
5524     printf("rdi  = "); _rdi.print(); printf("\n");
5525     printf("rsi  = "); _rsi.print(); printf("\n");
5526     printf("rbp,  = "); _rbp.print(); printf("\n");
5527     printf("rsp  = "); _rsp.print(); printf("\n");
5528     printf("\n");
5529     // control registers
5530     printf("flgs = "); _eflags.print(); printf("\n");
5531   }
5532 };
5533 
5534 
5535 class CPU_State {
5536  public:
5537   FPU_State _fpu_state;
5538   IU_State  _iu_state;
5539 
5540   void print() const {
5541     printf("--------------------------------------------------\n");
5542     _iu_state .print();
5543     printf("\n");
5544     _fpu_state.print();
5545     printf("--------------------------------------------------\n");
5546   }
5547 
5548 };
5549 
5550 
5551 static void _print_CPU_state(CPU_State* state) {
5552   state->print();
5553 };
5554 
5555 
5556 void MacroAssembler::print_CPU_state() {
5557   push_CPU_state();
5558   push(rsp);                // pass CPU state
5559   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
5560   addptr(rsp, wordSize);       // discard argument
5561   pop_CPU_state();
5562 }
5563 
5564 
5565 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
5566   static int counter = 0;
5567   FPU_State* fs = &state->_fpu_state;
5568   counter++;
5569   // For leaf calls, only verify that the top few elements remain empty.
5570   // We only need 1 empty at the top for C2 code.
5571   if( stack_depth < 0 ) {
5572     if( fs->tag_for_st(7) != 3 ) {
5573       printf("FPR7 not empty\n");
5574       state->print();
5575       assert(false, "error");
5576       return false;
5577     }
5578     return true;                // All other stack states do not matter
5579   }
5580 
5581   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
5582          "bad FPU control word");
5583 
5584   // compute stack depth
5585   int i = 0;
5586   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
5587   int d = i;
5588   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
5589   // verify findings
5590   if (i != FPU_State::number_of_registers) {
5591     // stack not contiguous
5592     printf("%s: stack not contiguous at ST%d\n", s, i);
5593     state->print();
5594     assert(false, "error");
5595     return false;
5596   }
5597   // check if computed stack depth corresponds to expected stack depth
5598   if (stack_depth < 0) {
5599     // expected stack depth is -stack_depth or less
5600     if (d > -stack_depth) {
5601       // too many elements on the stack
5602       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
5603       state->print();
5604       assert(false, "error");
5605       return false;
5606     }
5607   } else {
5608     // expected stack depth is stack_depth
5609     if (d != stack_depth) {
5610       // wrong stack depth
5611       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
5612       state->print();
5613       assert(false, "error");
5614       return false;
5615     }
5616   }
5617   // everything is cool
5618   return true;
5619 }
5620 
5621 
5622 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
5623   if (!VerifyFPU) return;
5624   push_CPU_state();
5625   push(rsp);                // pass CPU state
5626   ExternalAddress msg((address) s);
5627   // pass message string s
5628   pushptr(msg.addr());
5629   push(stack_depth);        // pass stack depth
5630   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
5631   addptr(rsp, 3 * wordSize);   // discard arguments
5632   // check for error
5633   { Label L;
5634     testl(rax, rax);
5635     jcc(Assembler::notZero, L);
5636     int3();                  // break if error condition
5637     bind(L);
5638   }
5639   pop_CPU_state();
5640 }
5641 
5642 void MacroAssembler::restore_cpu_control_state_after_jni() {
5643   // Either restore the MXCSR register after returning from the JNI Call
5644   // or verify that it wasn't changed (with -Xcheck:jni flag).
5645   if (VM_Version::supports_sse()) {
5646     if (RestoreMXCSROnJNICalls) {
5647       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
5648     } else if (CheckJNICalls) {
5649       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
5650     }
5651   }
5652   if (VM_Version::supports_avx()) {
5653     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
5654     vzeroupper();
5655   }
5656 
5657 #ifndef _LP64
5658   // Either restore the x87 floating pointer control word after returning
5659   // from the JNI call or verify that it wasn't changed.
5660   if (CheckJNICalls) {
5661     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
5662   }
5663 #endif // _LP64
5664 }
5665 
5666 
5667 void MacroAssembler::load_klass(Register dst, Register src) {
5668 #ifdef _LP64
5669   if (UseCompressedClassPointers) {
5670     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5671     decode_klass_not_null(dst);
5672   } else
5673 #endif
5674     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5675 }
5676 
5677 void MacroAssembler::load_prototype_header(Register dst, Register src) {
5678   load_klass(dst, src);
5679   movptr(dst, Address(dst, Klass::prototype_header_offset()));
5680 }
5681 
5682 void MacroAssembler::store_klass(Register dst, Register src) {
5683 #ifdef _LP64
5684   if (UseCompressedClassPointers) {
5685     encode_klass_not_null(src);
5686     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5687   } else
5688 #endif
5689     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5690 }
5691 
5692 void MacroAssembler::load_heap_oop(Register dst, Address src) {
5693 #ifdef _LP64
5694   // FIXME: Must change all places where we try to load the klass.
5695   if (UseCompressedOops) {
5696     movl(dst, src);
5697     decode_heap_oop(dst);
5698   } else
5699 #endif
5700     movptr(dst, src);
5701 }
5702 
5703 // Doesn't do verfication, generates fixed size code
5704 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
5705 #ifdef _LP64
5706   if (UseCompressedOops) {
5707     movl(dst, src);
5708     decode_heap_oop_not_null(dst);
5709   } else
5710 #endif
5711     movptr(dst, src);
5712 }
5713 
5714 void MacroAssembler::store_heap_oop(Address dst, Register src) {
5715 #ifdef _LP64
5716   if (UseCompressedOops) {
5717     assert(!dst.uses(src), "not enough registers");
5718     encode_heap_oop(src);
5719     movl(dst, src);
5720   } else
5721 #endif
5722     movptr(dst, src);
5723 }
5724 
5725 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
5726   assert_different_registers(src1, tmp);
5727 #ifdef _LP64
5728   if (UseCompressedOops) {
5729     bool did_push = false;
5730     if (tmp == noreg) {
5731       tmp = rax;
5732       push(tmp);
5733       did_push = true;
5734       assert(!src2.uses(rsp), "can't push");
5735     }
5736     load_heap_oop(tmp, src2);
5737     cmpptr(src1, tmp);
5738     if (did_push)  pop(tmp);
5739   } else
5740 #endif
5741     cmpptr(src1, src2);
5742 }
5743 
5744 // Used for storing NULLs.
5745 void MacroAssembler::store_heap_oop_null(Address dst) {
5746 #ifdef _LP64
5747   if (UseCompressedOops) {
5748     movl(dst, (int32_t)NULL_WORD);
5749   } else {
5750     movslq(dst, (int32_t)NULL_WORD);
5751   }
5752 #else
5753   movl(dst, (int32_t)NULL_WORD);
5754 #endif
5755 }
5756 
5757 #ifdef _LP64
5758 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5759   if (UseCompressedClassPointers) {
5760     // Store to klass gap in destination
5761     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
5762   }
5763 }
5764 
5765 #ifdef ASSERT
5766 void MacroAssembler::verify_heapbase(const char* msg) {
5767   assert (UseCompressedOops, "should be compressed");
5768   assert (Universe::heap() != NULL, "java heap should be initialized");
5769   if (CheckCompressedOops) {
5770     Label ok;
5771     push(rscratch1); // cmpptr trashes rscratch1
5772     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
5773     jcc(Assembler::equal, ok);
5774     STOP(msg);
5775     bind(ok);
5776     pop(rscratch1);
5777   }
5778 }
5779 #endif
5780 
5781 // Algorithm must match oop.inline.hpp encode_heap_oop.
5782 void MacroAssembler::encode_heap_oop(Register r) {
5783 #ifdef ASSERT
5784   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
5785 #endif
5786   verify_oop(r, "broken oop in encode_heap_oop");
5787   if (Universe::narrow_oop_base() == NULL) {
5788     if (Universe::narrow_oop_shift() != 0) {
5789       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5790       shrq(r, LogMinObjAlignmentInBytes);
5791     }
5792     return;
5793   }
5794   testq(r, r);
5795   cmovq(Assembler::equal, r, r12_heapbase);
5796   subq(r, r12_heapbase);
5797   shrq(r, LogMinObjAlignmentInBytes);
5798 }
5799 
5800 void MacroAssembler::encode_heap_oop_not_null(Register r) {
5801 #ifdef ASSERT
5802   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
5803   if (CheckCompressedOops) {
5804     Label ok;
5805     testq(r, r);
5806     jcc(Assembler::notEqual, ok);
5807     STOP("null oop passed to encode_heap_oop_not_null");
5808     bind(ok);
5809   }
5810 #endif
5811   verify_oop(r, "broken oop in encode_heap_oop_not_null");
5812   if (Universe::narrow_oop_base() != NULL) {
5813     subq(r, r12_heapbase);
5814   }
5815   if (Universe::narrow_oop_shift() != 0) {
5816     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5817     shrq(r, LogMinObjAlignmentInBytes);
5818   }
5819 }
5820 
5821 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
5822 #ifdef ASSERT
5823   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
5824   if (CheckCompressedOops) {
5825     Label ok;
5826     testq(src, src);
5827     jcc(Assembler::notEqual, ok);
5828     STOP("null oop passed to encode_heap_oop_not_null2");
5829     bind(ok);
5830   }
5831 #endif
5832   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
5833   if (dst != src) {
5834     movq(dst, src);
5835   }
5836   if (Universe::narrow_oop_base() != NULL) {
5837     subq(dst, r12_heapbase);
5838   }
5839   if (Universe::narrow_oop_shift() != 0) {
5840     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5841     shrq(dst, LogMinObjAlignmentInBytes);
5842   }
5843 }
5844 
5845 void  MacroAssembler::decode_heap_oop(Register r) {
5846 #ifdef ASSERT
5847   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5848 #endif
5849   if (Universe::narrow_oop_base() == NULL) {
5850     if (Universe::narrow_oop_shift() != 0) {
5851       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5852       shlq(r, LogMinObjAlignmentInBytes);
5853     }
5854   } else {
5855     Label done;
5856     shlq(r, LogMinObjAlignmentInBytes);
5857     jccb(Assembler::equal, done);
5858     addq(r, r12_heapbase);
5859     bind(done);
5860   }
5861   verify_oop(r, "broken oop in decode_heap_oop");
5862 }
5863 
5864 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
5865   // Note: it will change flags
5866   assert (UseCompressedOops, "should only be used for compressed headers");
5867   assert (Universe::heap() != NULL, "java heap should be initialized");
5868   // Cannot assert, unverified entry point counts instructions (see .ad file)
5869   // vtableStubs also counts instructions in pd_code_size_limit.
5870   // Also do not verify_oop as this is called by verify_oop.
5871   if (Universe::narrow_oop_shift() != 0) {
5872     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5873     shlq(r, LogMinObjAlignmentInBytes);
5874     if (Universe::narrow_oop_base() != NULL) {
5875       addq(r, r12_heapbase);
5876     }
5877   } else {
5878     assert (Universe::narrow_oop_base() == NULL, "sanity");
5879   }
5880 }
5881 
5882 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5883   // Note: it will change flags
5884   assert (UseCompressedOops, "should only be used for compressed headers");
5885   assert (Universe::heap() != NULL, "java heap should be initialized");
5886   // Cannot assert, unverified entry point counts instructions (see .ad file)
5887   // vtableStubs also counts instructions in pd_code_size_limit.
5888   // Also do not verify_oop as this is called by verify_oop.
5889   if (Universe::narrow_oop_shift() != 0) {
5890     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5891     if (LogMinObjAlignmentInBytes == Address::times_8) {
5892       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
5893     } else {
5894       if (dst != src) {
5895         movq(dst, src);
5896       }
5897       shlq(dst, LogMinObjAlignmentInBytes);
5898       if (Universe::narrow_oop_base() != NULL) {
5899         addq(dst, r12_heapbase);
5900       }
5901     }
5902   } else {
5903     assert (Universe::narrow_oop_base() == NULL, "sanity");
5904     if (dst != src) {
5905       movq(dst, src);
5906     }
5907   }
5908 }
5909 
5910 void MacroAssembler::encode_klass_not_null(Register r) {
5911   if (Universe::narrow_klass_base() != NULL) {
5912     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5913     assert(r != r12_heapbase, "Encoding a klass in r12");
5914     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
5915     subq(r, r12_heapbase);
5916   }
5917   if (Universe::narrow_klass_shift() != 0) {
5918     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5919     shrq(r, LogKlassAlignmentInBytes);
5920   }
5921   if (Universe::narrow_klass_base() != NULL) {
5922     reinit_heapbase();
5923   }
5924 }
5925 
5926 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
5927   if (dst == src) {
5928     encode_klass_not_null(src);
5929   } else {
5930     if (Universe::narrow_klass_base() != NULL) {
5931       mov64(dst, (int64_t)Universe::narrow_klass_base());
5932       negq(dst);
5933       addq(dst, src);
5934     } else {
5935       movptr(dst, src);
5936     }
5937     if (Universe::narrow_klass_shift() != 0) {
5938       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5939       shrq(dst, LogKlassAlignmentInBytes);
5940     }
5941   }
5942 }
5943 
5944 // Function instr_size_for_decode_klass_not_null() counts the instructions
5945 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
5946 // when (Universe::heap() != NULL).  Hence, if the instructions they
5947 // generate change, then this method needs to be updated.
5948 int MacroAssembler::instr_size_for_decode_klass_not_null() {
5949   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
5950   if (Universe::narrow_klass_base() != NULL) {
5951     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
5952     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
5953   } else {
5954     // longest load decode klass function, mov64, leaq
5955     return 16;
5956   }
5957 }
5958 
5959 // !!! If the instructions that get generated here change then function
5960 // instr_size_for_decode_klass_not_null() needs to get updated.
5961 void  MacroAssembler::decode_klass_not_null(Register r) {
5962   // Note: it will change flags
5963   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5964   assert(r != r12_heapbase, "Decoding a klass in r12");
5965   // Cannot assert, unverified entry point counts instructions (see .ad file)
5966   // vtableStubs also counts instructions in pd_code_size_limit.
5967   // Also do not verify_oop as this is called by verify_oop.
5968   if (Universe::narrow_klass_shift() != 0) {
5969     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5970     shlq(r, LogKlassAlignmentInBytes);
5971   }
5972   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5973   if (Universe::narrow_klass_base() != NULL) {
5974     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
5975     addq(r, r12_heapbase);
5976     reinit_heapbase();
5977   }
5978 }
5979 
5980 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
5981   // Note: it will change flags
5982   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5983   if (dst == src) {
5984     decode_klass_not_null(dst);
5985   } else {
5986     // Cannot assert, unverified entry point counts instructions (see .ad file)
5987     // vtableStubs also counts instructions in pd_code_size_limit.
5988     // Also do not verify_oop as this is called by verify_oop.
5989     mov64(dst, (int64_t)Universe::narrow_klass_base());
5990     if (Universe::narrow_klass_shift() != 0) {
5991       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5992       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
5993       leaq(dst, Address(dst, src, Address::times_8, 0));
5994     } else {
5995       addq(dst, src);
5996     }
5997   }
5998 }
5999 
6000 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
6001   assert (UseCompressedOops, "should only be used for compressed headers");
6002   assert (Universe::heap() != NULL, "java heap should be initialized");
6003   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6004   int oop_index = oop_recorder()->find_index(obj);
6005   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6006   mov_narrow_oop(dst, oop_index, rspec);
6007 }
6008 
6009 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
6010   assert (UseCompressedOops, "should only be used for compressed headers");
6011   assert (Universe::heap() != NULL, "java heap should be initialized");
6012   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6013   int oop_index = oop_recorder()->find_index(obj);
6014   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6015   mov_narrow_oop(dst, oop_index, rspec);
6016 }
6017 
6018 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6019   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6020   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6021   int klass_index = oop_recorder()->find_index(k);
6022   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6023   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6024 }
6025 
6026 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
6027   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6028   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6029   int klass_index = oop_recorder()->find_index(k);
6030   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6031   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6032 }
6033 
6034 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
6035   assert (UseCompressedOops, "should only be used for compressed headers");
6036   assert (Universe::heap() != NULL, "java heap should be initialized");
6037   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6038   int oop_index = oop_recorder()->find_index(obj);
6039   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6040   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6041 }
6042 
6043 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
6044   assert (UseCompressedOops, "should only be used for compressed headers");
6045   assert (Universe::heap() != NULL, "java heap should be initialized");
6046   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6047   int oop_index = oop_recorder()->find_index(obj);
6048   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6049   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6050 }
6051 
6052 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6053   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6054   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6055   int klass_index = oop_recorder()->find_index(k);
6056   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6057   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6058 }
6059 
6060 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6061   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6062   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6063   int klass_index = oop_recorder()->find_index(k);
6064   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6065   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6066 }
6067 
6068 void MacroAssembler::reinit_heapbase() {
6069   if (UseCompressedOops || UseCompressedClassPointers) {
6070     if (Universe::heap() != NULL) {
6071       if (Universe::narrow_oop_base() == NULL) {
6072         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
6073       } else {
6074         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
6075       }
6076     } else {
6077       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6078     }
6079   }
6080 }
6081 
6082 #endif // _LP64
6083 
6084 
6085 // C2 compiled method's prolog code.
6086 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
6087 
6088   // WARNING: Initial instruction MUST be 5 bytes or longer so that
6089   // NativeJump::patch_verified_entry will be able to patch out the entry
6090   // code safely. The push to verify stack depth is ok at 5 bytes,
6091   // the frame allocation can be either 3 or 6 bytes. So if we don't do
6092   // stack bang then we must use the 6 byte frame allocation even if
6093   // we have no frame. :-(
6094   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
6095 
6096   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
6097   // Remove word for return addr
6098   framesize -= wordSize;
6099   stack_bang_size -= wordSize;
6100 
6101   // Calls to C2R adapters often do not accept exceptional returns.
6102   // We require that their callers must bang for them.  But be careful, because
6103   // some VM calls (such as call site linkage) can use several kilobytes of
6104   // stack.  But the stack safety zone should account for that.
6105   // See bugs 4446381, 4468289, 4497237.
6106   if (stack_bang_size > 0) {
6107     generate_stack_overflow_check(stack_bang_size);
6108 
6109     // We always push rbp, so that on return to interpreter rbp, will be
6110     // restored correctly and we can correct the stack.
6111     push(rbp);
6112     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6113     if (PreserveFramePointer) {
6114       mov(rbp, rsp);
6115     }
6116     // Remove word for ebp
6117     framesize -= wordSize;
6118 
6119     // Create frame
6120     if (framesize) {
6121       subptr(rsp, framesize);
6122     }
6123   } else {
6124     // Create frame (force generation of a 4 byte immediate value)
6125     subptr_imm32(rsp, framesize);
6126 
6127     // Save RBP register now.
6128     framesize -= wordSize;
6129     movptr(Address(rsp, framesize), rbp);
6130     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6131     if (PreserveFramePointer) {
6132       movptr(rbp, rsp);
6133       addptr(rbp, framesize + wordSize);
6134     }
6135   }
6136 
6137   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
6138     framesize -= wordSize;
6139     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
6140   }
6141 
6142 #ifndef _LP64
6143   // If method sets FPU control word do it now
6144   if (fp_mode_24b) {
6145     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
6146   }
6147   if (UseSSE >= 2 && VerifyFPU) {
6148     verify_FPU(0, "FPU stack must be clean on entry");
6149   }
6150 #endif
6151 
6152 #ifdef ASSERT
6153   if (VerifyStackAtCalls) {
6154     Label L;
6155     push(rax);
6156     mov(rax, rsp);
6157     andptr(rax, StackAlignmentInBytes-1);
6158     cmpptr(rax, StackAlignmentInBytes-wordSize);
6159     pop(rax);
6160     jcc(Assembler::equal, L);
6161     STOP("Stack is not properly aligned!");
6162     bind(L);
6163   }
6164 #endif
6165 
6166 }
6167 
6168 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp) {
6169   // cnt - number of qwords (8-byte words).
6170   // base - start address, qword aligned.
6171   assert(base==rdi, "base register must be edi for rep stos");
6172   assert(tmp==rax,   "tmp register must be eax for rep stos");
6173   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
6174 
6175   xorptr(tmp, tmp);
6176   if (UseFastStosb) {
6177     shlptr(cnt,3); // convert to number of bytes
6178     rep_stosb();
6179   } else {
6180     NOT_LP64(shlptr(cnt,1);) // convert to number of dwords for 32-bit VM
6181     rep_stos();
6182   }
6183 }
6184 
6185 // IndexOf for constant substrings with size >= 8 chars
6186 // which don't need to be loaded through stack.
6187 void MacroAssembler::string_indexofC8(Register str1, Register str2,
6188                                       Register cnt1, Register cnt2,
6189                                       int int_cnt2,  Register result,
6190                                       XMMRegister vec, Register tmp) {
6191   ShortBranchVerifier sbv(this);
6192   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6193 
6194   // This method uses pcmpestri instruction with bound registers
6195   //   inputs:
6196   //     xmm - substring
6197   //     rax - substring length (elements count)
6198   //     mem - scanned string
6199   //     rdx - string length (elements count)
6200   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6201   //   outputs:
6202   //     rcx - matched index in string
6203   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6204 
6205   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
6206         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
6207         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
6208 
6209   // Note, inline_string_indexOf() generates checks:
6210   // if (substr.count > string.count) return -1;
6211   // if (substr.count == 0) return 0;
6212   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
6213 
6214   // Load substring.
6215   movdqu(vec, Address(str2, 0));
6216   movl(cnt2, int_cnt2);
6217   movptr(result, str1); // string addr
6218 
6219   if (int_cnt2 > 8) {
6220     jmpb(SCAN_TO_SUBSTR);
6221 
6222     // Reload substr for rescan, this code
6223     // is executed only for large substrings (> 8 chars)
6224     bind(RELOAD_SUBSTR);
6225     movdqu(vec, Address(str2, 0));
6226     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
6227 
6228     bind(RELOAD_STR);
6229     // We came here after the beginning of the substring was
6230     // matched but the rest of it was not so we need to search
6231     // again. Start from the next element after the previous match.
6232 
6233     // cnt2 is number of substring reminding elements and
6234     // cnt1 is number of string reminding elements when cmp failed.
6235     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
6236     subl(cnt1, cnt2);
6237     addl(cnt1, int_cnt2);
6238     movl(cnt2, int_cnt2); // Now restore cnt2
6239 
6240     decrementl(cnt1);     // Shift to next element
6241     cmpl(cnt1, cnt2);
6242     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6243 
6244     addptr(result, 2);
6245 
6246   } // (int_cnt2 > 8)
6247 
6248   // Scan string for start of substr in 16-byte vectors
6249   bind(SCAN_TO_SUBSTR);
6250   pcmpestri(vec, Address(result, 0), 0x0d);
6251   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6252   subl(cnt1, 8);
6253   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6254   cmpl(cnt1, cnt2);
6255   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6256   addptr(result, 16);
6257   jmpb(SCAN_TO_SUBSTR);
6258 
6259   // Found a potential substr
6260   bind(FOUND_CANDIDATE);
6261   // Matched whole vector if first element matched (tmp(rcx) == 0).
6262   if (int_cnt2 == 8) {
6263     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
6264   } else { // int_cnt2 > 8
6265     jccb(Assembler::overflow, FOUND_SUBSTR);
6266   }
6267   // After pcmpestri tmp(rcx) contains matched element index
6268   // Compute start addr of substr
6269   lea(result, Address(result, tmp, Address::times_2));
6270 
6271   // Make sure string is still long enough
6272   subl(cnt1, tmp);
6273   cmpl(cnt1, cnt2);
6274   if (int_cnt2 == 8) {
6275     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6276   } else { // int_cnt2 > 8
6277     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
6278   }
6279   // Left less then substring.
6280 
6281   bind(RET_NOT_FOUND);
6282   movl(result, -1);
6283   jmpb(EXIT);
6284 
6285   if (int_cnt2 > 8) {
6286     // This code is optimized for the case when whole substring
6287     // is matched if its head is matched.
6288     bind(MATCH_SUBSTR_HEAD);
6289     pcmpestri(vec, Address(result, 0), 0x0d);
6290     // Reload only string if does not match
6291     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
6292 
6293     Label CONT_SCAN_SUBSTR;
6294     // Compare the rest of substring (> 8 chars).
6295     bind(FOUND_SUBSTR);
6296     // First 8 chars are already matched.
6297     negptr(cnt2);
6298     addptr(cnt2, 8);
6299 
6300     bind(SCAN_SUBSTR);
6301     subl(cnt1, 8);
6302     cmpl(cnt2, -8); // Do not read beyond substring
6303     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
6304     // Back-up strings to avoid reading beyond substring:
6305     // cnt1 = cnt1 - cnt2 + 8
6306     addl(cnt1, cnt2); // cnt2 is negative
6307     addl(cnt1, 8);
6308     movl(cnt2, 8); negptr(cnt2);
6309     bind(CONT_SCAN_SUBSTR);
6310     if (int_cnt2 < (int)G) {
6311       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
6312       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
6313     } else {
6314       // calculate index in register to avoid integer overflow (int_cnt2*2)
6315       movl(tmp, int_cnt2);
6316       addptr(tmp, cnt2);
6317       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
6318       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
6319     }
6320     // Need to reload strings pointers if not matched whole vector
6321     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6322     addptr(cnt2, 8);
6323     jcc(Assembler::negative, SCAN_SUBSTR);
6324     // Fall through if found full substring
6325 
6326   } // (int_cnt2 > 8)
6327 
6328   bind(RET_FOUND);
6329   // Found result if we matched full small substring.
6330   // Compute substr offset
6331   subptr(result, str1);
6332   shrl(result, 1); // index
6333   bind(EXIT);
6334 
6335 } // string_indexofC8
6336 
6337 // Small strings are loaded through stack if they cross page boundary.
6338 void MacroAssembler::string_indexof(Register str1, Register str2,
6339                                     Register cnt1, Register cnt2,
6340                                     int int_cnt2,  Register result,
6341                                     XMMRegister vec, Register tmp) {
6342   ShortBranchVerifier sbv(this);
6343   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6344   //
6345   // int_cnt2 is length of small (< 8 chars) constant substring
6346   // or (-1) for non constant substring in which case its length
6347   // is in cnt2 register.
6348   //
6349   // Note, inline_string_indexOf() generates checks:
6350   // if (substr.count > string.count) return -1;
6351   // if (substr.count == 0) return 0;
6352   //
6353   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
6354 
6355   // This method uses pcmpestri instruction with bound registers
6356   //   inputs:
6357   //     xmm - substring
6358   //     rax - substring length (elements count)
6359   //     mem - scanned string
6360   //     rdx - string length (elements count)
6361   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6362   //   outputs:
6363   //     rcx - matched index in string
6364   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6365 
6366   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
6367         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
6368         FOUND_CANDIDATE;
6369 
6370   { //========================================================
6371     // We don't know where these strings are located
6372     // and we can't read beyond them. Load them through stack.
6373     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
6374 
6375     movptr(tmp, rsp); // save old SP
6376 
6377     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
6378       if (int_cnt2 == 1) {  // One char
6379         load_unsigned_short(result, Address(str2, 0));
6380         movdl(vec, result); // move 32 bits
6381       } else if (int_cnt2 == 2) { // Two chars
6382         movdl(vec, Address(str2, 0)); // move 32 bits
6383       } else if (int_cnt2 == 4) { // Four chars
6384         movq(vec, Address(str2, 0));  // move 64 bits
6385       } else { // cnt2 = { 3, 5, 6, 7 }
6386         // Array header size is 12 bytes in 32-bit VM
6387         // + 6 bytes for 3 chars == 18 bytes,
6388         // enough space to load vec and shift.
6389         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
6390         movdqu(vec, Address(str2, (int_cnt2*2)-16));
6391         psrldq(vec, 16-(int_cnt2*2));
6392       }
6393     } else { // not constant substring
6394       cmpl(cnt2, 8);
6395       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
6396 
6397       // We can read beyond string if srt+16 does not cross page boundary
6398       // since heaps are aligned and mapped by pages.
6399       assert(os::vm_page_size() < (int)G, "default page should be small");
6400       movl(result, str2); // We need only low 32 bits
6401       andl(result, (os::vm_page_size()-1));
6402       cmpl(result, (os::vm_page_size()-16));
6403       jccb(Assembler::belowEqual, CHECK_STR);
6404 
6405       // Move small strings to stack to allow load 16 bytes into vec.
6406       subptr(rsp, 16);
6407       int stk_offset = wordSize-2;
6408       push(cnt2);
6409 
6410       bind(COPY_SUBSTR);
6411       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
6412       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6413       decrement(cnt2);
6414       jccb(Assembler::notZero, COPY_SUBSTR);
6415 
6416       pop(cnt2);
6417       movptr(str2, rsp);  // New substring address
6418     } // non constant
6419 
6420     bind(CHECK_STR);
6421     cmpl(cnt1, 8);
6422     jccb(Assembler::aboveEqual, BIG_STRINGS);
6423 
6424     // Check cross page boundary.
6425     movl(result, str1); // We need only low 32 bits
6426     andl(result, (os::vm_page_size()-1));
6427     cmpl(result, (os::vm_page_size()-16));
6428     jccb(Assembler::belowEqual, BIG_STRINGS);
6429 
6430     subptr(rsp, 16);
6431     int stk_offset = -2;
6432     if (int_cnt2 < 0) { // not constant
6433       push(cnt2);
6434       stk_offset += wordSize;
6435     }
6436     movl(cnt2, cnt1);
6437 
6438     bind(COPY_STR);
6439     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
6440     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6441     decrement(cnt2);
6442     jccb(Assembler::notZero, COPY_STR);
6443 
6444     if (int_cnt2 < 0) { // not constant
6445       pop(cnt2);
6446     }
6447     movptr(str1, rsp);  // New string address
6448 
6449     bind(BIG_STRINGS);
6450     // Load substring.
6451     if (int_cnt2 < 0) { // -1
6452       movdqu(vec, Address(str2, 0));
6453       push(cnt2);       // substr count
6454       push(str2);       // substr addr
6455       push(str1);       // string addr
6456     } else {
6457       // Small (< 8 chars) constant substrings are loaded already.
6458       movl(cnt2, int_cnt2);
6459     }
6460     push(tmp);  // original SP
6461 
6462   } // Finished loading
6463 
6464   //========================================================
6465   // Start search
6466   //
6467 
6468   movptr(result, str1); // string addr
6469 
6470   if (int_cnt2  < 0) {  // Only for non constant substring
6471     jmpb(SCAN_TO_SUBSTR);
6472 
6473     // SP saved at sp+0
6474     // String saved at sp+1*wordSize
6475     // Substr saved at sp+2*wordSize
6476     // Substr count saved at sp+3*wordSize
6477 
6478     // Reload substr for rescan, this code
6479     // is executed only for large substrings (> 8 chars)
6480     bind(RELOAD_SUBSTR);
6481     movptr(str2, Address(rsp, 2*wordSize));
6482     movl(cnt2, Address(rsp, 3*wordSize));
6483     movdqu(vec, Address(str2, 0));
6484     // We came here after the beginning of the substring was
6485     // matched but the rest of it was not so we need to search
6486     // again. Start from the next element after the previous match.
6487     subptr(str1, result); // Restore counter
6488     shrl(str1, 1);
6489     addl(cnt1, str1);
6490     decrementl(cnt1);   // Shift to next element
6491     cmpl(cnt1, cnt2);
6492     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6493 
6494     addptr(result, 2);
6495   } // non constant
6496 
6497   // Scan string for start of substr in 16-byte vectors
6498   bind(SCAN_TO_SUBSTR);
6499   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6500   pcmpestri(vec, Address(result, 0), 0x0d);
6501   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6502   subl(cnt1, 8);
6503   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6504   cmpl(cnt1, cnt2);
6505   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6506   addptr(result, 16);
6507 
6508   bind(ADJUST_STR);
6509   cmpl(cnt1, 8); // Do not read beyond string
6510   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6511   // Back-up string to avoid reading beyond string.
6512   lea(result, Address(result, cnt1, Address::times_2, -16));
6513   movl(cnt1, 8);
6514   jmpb(SCAN_TO_SUBSTR);
6515 
6516   // Found a potential substr
6517   bind(FOUND_CANDIDATE);
6518   // After pcmpestri tmp(rcx) contains matched element index
6519 
6520   // Make sure string is still long enough
6521   subl(cnt1, tmp);
6522   cmpl(cnt1, cnt2);
6523   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
6524   // Left less then substring.
6525 
6526   bind(RET_NOT_FOUND);
6527   movl(result, -1);
6528   jmpb(CLEANUP);
6529 
6530   bind(FOUND_SUBSTR);
6531   // Compute start addr of substr
6532   lea(result, Address(result, tmp, Address::times_2));
6533 
6534   if (int_cnt2 > 0) { // Constant substring
6535     // Repeat search for small substring (< 8 chars)
6536     // from new point without reloading substring.
6537     // Have to check that we don't read beyond string.
6538     cmpl(tmp, 8-int_cnt2);
6539     jccb(Assembler::greater, ADJUST_STR);
6540     // Fall through if matched whole substring.
6541   } else { // non constant
6542     assert(int_cnt2 == -1, "should be != 0");
6543 
6544     addl(tmp, cnt2);
6545     // Found result if we matched whole substring.
6546     cmpl(tmp, 8);
6547     jccb(Assembler::lessEqual, RET_FOUND);
6548 
6549     // Repeat search for small substring (<= 8 chars)
6550     // from new point 'str1' without reloading substring.
6551     cmpl(cnt2, 8);
6552     // Have to check that we don't read beyond string.
6553     jccb(Assembler::lessEqual, ADJUST_STR);
6554 
6555     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
6556     // Compare the rest of substring (> 8 chars).
6557     movptr(str1, result);
6558 
6559     cmpl(tmp, cnt2);
6560     // First 8 chars are already matched.
6561     jccb(Assembler::equal, CHECK_NEXT);
6562 
6563     bind(SCAN_SUBSTR);
6564     pcmpestri(vec, Address(str1, 0), 0x0d);
6565     // Need to reload strings pointers if not matched whole vector
6566     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6567 
6568     bind(CHECK_NEXT);
6569     subl(cnt2, 8);
6570     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
6571     addptr(str1, 16);
6572     addptr(str2, 16);
6573     subl(cnt1, 8);
6574     cmpl(cnt2, 8); // Do not read beyond substring
6575     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
6576     // Back-up strings to avoid reading beyond substring.
6577     lea(str2, Address(str2, cnt2, Address::times_2, -16));
6578     lea(str1, Address(str1, cnt2, Address::times_2, -16));
6579     subl(cnt1, cnt2);
6580     movl(cnt2, 8);
6581     addl(cnt1, 8);
6582     bind(CONT_SCAN_SUBSTR);
6583     movdqu(vec, Address(str2, 0));
6584     jmpb(SCAN_SUBSTR);
6585 
6586     bind(RET_FOUND_LONG);
6587     movptr(str1, Address(rsp, wordSize));
6588   } // non constant
6589 
6590   bind(RET_FOUND);
6591   // Compute substr offset
6592   subptr(result, str1);
6593   shrl(result, 1); // index
6594 
6595   bind(CLEANUP);
6596   pop(rsp); // restore SP
6597 
6598 } // string_indexof
6599 
6600 // Compare strings.
6601 void MacroAssembler::string_compare(Register str1, Register str2,
6602                                     Register cnt1, Register cnt2, Register result,
6603                                     XMMRegister vec1) {
6604   ShortBranchVerifier sbv(this);
6605   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
6606 
6607   // Compute the minimum of the string lengths and the
6608   // difference of the string lengths (stack).
6609   // Do the conditional move stuff
6610   movl(result, cnt1);
6611   subl(cnt1, cnt2);
6612   push(cnt1);
6613   cmov32(Assembler::lessEqual, cnt2, result);
6614 
6615   // Is the minimum length zero?
6616   testl(cnt2, cnt2);
6617   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6618 
6619   // Compare first characters
6620   load_unsigned_short(result, Address(str1, 0));
6621   load_unsigned_short(cnt1, Address(str2, 0));
6622   subl(result, cnt1);
6623   jcc(Assembler::notZero,  POP_LABEL);
6624   cmpl(cnt2, 1);
6625   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6626 
6627   // Check if the strings start at the same location.
6628   cmpptr(str1, str2);
6629   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6630 
6631   Address::ScaleFactor scale = Address::times_2;
6632   int stride = 8;
6633 
6634   if (UseAVX >= 2 && UseSSE42Intrinsics) {
6635     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
6636     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
6637     Label COMPARE_TAIL_LONG;
6638     int pcmpmask = 0x19;
6639 
6640     // Setup to compare 16-chars (32-bytes) vectors,
6641     // start from first character again because it has aligned address.
6642     int stride2 = 16;
6643     int adr_stride  = stride  << scale;
6644 
6645     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6646     // rax and rdx are used by pcmpestri as elements counters
6647     movl(result, cnt2);
6648     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
6649     jcc(Assembler::zero, COMPARE_TAIL_LONG);
6650 
6651     // fast path : compare first 2 8-char vectors.
6652     bind(COMPARE_16_CHARS);
6653     movdqu(vec1, Address(str1, 0));
6654     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6655     jccb(Assembler::below, COMPARE_INDEX_CHAR);
6656 
6657     movdqu(vec1, Address(str1, adr_stride));
6658     pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
6659     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
6660     addl(cnt1, stride);
6661 
6662     // Compare the characters at index in cnt1
6663     bind(COMPARE_INDEX_CHAR); //cnt1 has the offset of the mismatching character
6664     load_unsigned_short(result, Address(str1, cnt1, scale));
6665     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6666     subl(result, cnt2);
6667     jmp(POP_LABEL);
6668 
6669     // Setup the registers to start vector comparison loop
6670     bind(COMPARE_WIDE_VECTORS);
6671     lea(str1, Address(str1, result, scale));
6672     lea(str2, Address(str2, result, scale));
6673     subl(result, stride2);
6674     subl(cnt2, stride2);
6675     jccb(Assembler::zero, COMPARE_WIDE_TAIL);
6676     negptr(result);
6677 
6678     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
6679     bind(COMPARE_WIDE_VECTORS_LOOP);
6680     vmovdqu(vec1, Address(str1, result, scale));
6681     vpxor(vec1, Address(str2, result, scale));
6682     vptest(vec1, vec1);
6683     jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
6684     addptr(result, stride2);
6685     subl(cnt2, stride2);
6686     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
6687     // clean upper bits of YMM registers
6688     vpxor(vec1, vec1);
6689 
6690     // compare wide vectors tail
6691     bind(COMPARE_WIDE_TAIL);
6692     testptr(result, result);
6693     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6694 
6695     movl(result, stride2);
6696     movl(cnt2, result);
6697     negptr(result);
6698     jmpb(COMPARE_WIDE_VECTORS_LOOP);
6699 
6700     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
6701     bind(VECTOR_NOT_EQUAL);
6702     // clean upper bits of YMM registers
6703     vpxor(vec1, vec1);
6704     lea(str1, Address(str1, result, scale));
6705     lea(str2, Address(str2, result, scale));
6706     jmp(COMPARE_16_CHARS);
6707 
6708     // Compare tail chars, length between 1 to 15 chars
6709     bind(COMPARE_TAIL_LONG);
6710     movl(cnt2, result);
6711     cmpl(cnt2, stride);
6712     jccb(Assembler::less, COMPARE_SMALL_STR);
6713 
6714     movdqu(vec1, Address(str1, 0));
6715     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6716     jcc(Assembler::below, COMPARE_INDEX_CHAR);
6717     subptr(cnt2, stride);
6718     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6719     lea(str1, Address(str1, result, scale));
6720     lea(str2, Address(str2, result, scale));
6721     negptr(cnt2);
6722     jmpb(WHILE_HEAD_LABEL);
6723 
6724     bind(COMPARE_SMALL_STR);
6725   } else if (UseSSE42Intrinsics) {
6726     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
6727     int pcmpmask = 0x19;
6728     // Setup to compare 8-char (16-byte) vectors,
6729     // start from first character again because it has aligned address.
6730     movl(result, cnt2);
6731     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
6732     jccb(Assembler::zero, COMPARE_TAIL);
6733 
6734     lea(str1, Address(str1, result, scale));
6735     lea(str2, Address(str2, result, scale));
6736     negptr(result);
6737 
6738     // pcmpestri
6739     //   inputs:
6740     //     vec1- substring
6741     //     rax - negative string length (elements count)
6742     //     mem - scanned string
6743     //     rdx - string length (elements count)
6744     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
6745     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
6746     //   outputs:
6747     //     rcx - first mismatched element index
6748     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6749 
6750     bind(COMPARE_WIDE_VECTORS);
6751     movdqu(vec1, Address(str1, result, scale));
6752     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6753     // After pcmpestri cnt1(rcx) contains mismatched element index
6754 
6755     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
6756     addptr(result, stride);
6757     subptr(cnt2, stride);
6758     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
6759 
6760     // compare wide vectors tail
6761     testptr(result, result);
6762     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6763 
6764     movl(cnt2, stride);
6765     movl(result, stride);
6766     negptr(result);
6767     movdqu(vec1, Address(str1, result, scale));
6768     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6769     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
6770 
6771     // Mismatched characters in the vectors
6772     bind(VECTOR_NOT_EQUAL);
6773     addptr(cnt1, result);
6774     load_unsigned_short(result, Address(str1, cnt1, scale));
6775     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6776     subl(result, cnt2);
6777     jmpb(POP_LABEL);
6778 
6779     bind(COMPARE_TAIL); // limit is zero
6780     movl(cnt2, result);
6781     // Fallthru to tail compare
6782   }
6783   // Shift str2 and str1 to the end of the arrays, negate min
6784   lea(str1, Address(str1, cnt2, scale));
6785   lea(str2, Address(str2, cnt2, scale));
6786   decrementl(cnt2);  // first character was compared already
6787   negptr(cnt2);
6788 
6789   // Compare the rest of the elements
6790   bind(WHILE_HEAD_LABEL);
6791   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
6792   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
6793   subl(result, cnt1);
6794   jccb(Assembler::notZero, POP_LABEL);
6795   increment(cnt2);
6796   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
6797 
6798   // Strings are equal up to min length.  Return the length difference.
6799   bind(LENGTH_DIFF_LABEL);
6800   pop(result);
6801   jmpb(DONE_LABEL);
6802 
6803   // Discard the stored length difference
6804   bind(POP_LABEL);
6805   pop(cnt1);
6806 
6807   // That's it
6808   bind(DONE_LABEL);
6809 }
6810 
6811 // Compare char[] arrays aligned to 4 bytes or substrings.
6812 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
6813                                         Register limit, Register result, Register chr,
6814                                         XMMRegister vec1, XMMRegister vec2) {
6815   ShortBranchVerifier sbv(this);
6816   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
6817 
6818   int length_offset  = arrayOopDesc::length_offset_in_bytes();
6819   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
6820 
6821   // Check the input args
6822   cmpptr(ary1, ary2);
6823   jcc(Assembler::equal, TRUE_LABEL);
6824 
6825   if (is_array_equ) {
6826     // Need additional checks for arrays_equals.
6827     testptr(ary1, ary1);
6828     jcc(Assembler::zero, FALSE_LABEL);
6829     testptr(ary2, ary2);
6830     jcc(Assembler::zero, FALSE_LABEL);
6831 
6832     // Check the lengths
6833     movl(limit, Address(ary1, length_offset));
6834     cmpl(limit, Address(ary2, length_offset));
6835     jcc(Assembler::notEqual, FALSE_LABEL);
6836   }
6837 
6838   // count == 0
6839   testl(limit, limit);
6840   jcc(Assembler::zero, TRUE_LABEL);
6841 
6842   if (is_array_equ) {
6843     // Load array address
6844     lea(ary1, Address(ary1, base_offset));
6845     lea(ary2, Address(ary2, base_offset));
6846   }
6847 
6848   shll(limit, 1);      // byte count != 0
6849   movl(result, limit); // copy
6850 
6851   if (UseAVX >= 2) {
6852     // With AVX2, use 32-byte vector compare
6853     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6854 
6855     // Compare 32-byte vectors
6856     andl(result, 0x0000001e);  //   tail count (in bytes)
6857     andl(limit, 0xffffffe0);   // vector count (in bytes)
6858     jccb(Assembler::zero, COMPARE_TAIL);
6859 
6860     lea(ary1, Address(ary1, limit, Address::times_1));
6861     lea(ary2, Address(ary2, limit, Address::times_1));
6862     negptr(limit);
6863 
6864     bind(COMPARE_WIDE_VECTORS);
6865     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
6866     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
6867     vpxor(vec1, vec2);
6868 
6869     vptest(vec1, vec1);
6870     jccb(Assembler::notZero, FALSE_LABEL);
6871     addptr(limit, 32);
6872     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6873 
6874     testl(result, result);
6875     jccb(Assembler::zero, TRUE_LABEL);
6876 
6877     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
6878     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
6879     vpxor(vec1, vec2);
6880 
6881     vptest(vec1, vec1);
6882     jccb(Assembler::notZero, FALSE_LABEL);
6883     jmpb(TRUE_LABEL);
6884 
6885     bind(COMPARE_TAIL); // limit is zero
6886     movl(limit, result);
6887     // Fallthru to tail compare
6888   } else if (UseSSE42Intrinsics) {
6889     // With SSE4.2, use double quad vector compare
6890     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6891 
6892     // Compare 16-byte vectors
6893     andl(result, 0x0000000e);  //   tail count (in bytes)
6894     andl(limit, 0xfffffff0);   // vector count (in bytes)
6895     jccb(Assembler::zero, COMPARE_TAIL);
6896 
6897     lea(ary1, Address(ary1, limit, Address::times_1));
6898     lea(ary2, Address(ary2, limit, Address::times_1));
6899     negptr(limit);
6900 
6901     bind(COMPARE_WIDE_VECTORS);
6902     movdqu(vec1, Address(ary1, limit, Address::times_1));
6903     movdqu(vec2, Address(ary2, limit, Address::times_1));
6904     pxor(vec1, vec2);
6905 
6906     ptest(vec1, vec1);
6907     jccb(Assembler::notZero, FALSE_LABEL);
6908     addptr(limit, 16);
6909     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6910 
6911     testl(result, result);
6912     jccb(Assembler::zero, TRUE_LABEL);
6913 
6914     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
6915     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
6916     pxor(vec1, vec2);
6917 
6918     ptest(vec1, vec1);
6919     jccb(Assembler::notZero, FALSE_LABEL);
6920     jmpb(TRUE_LABEL);
6921 
6922     bind(COMPARE_TAIL); // limit is zero
6923     movl(limit, result);
6924     // Fallthru to tail compare
6925   }
6926 
6927   // Compare 4-byte vectors
6928   andl(limit, 0xfffffffc); // vector count (in bytes)
6929   jccb(Assembler::zero, COMPARE_CHAR);
6930 
6931   lea(ary1, Address(ary1, limit, Address::times_1));
6932   lea(ary2, Address(ary2, limit, Address::times_1));
6933   negptr(limit);
6934 
6935   bind(COMPARE_VECTORS);
6936   movl(chr, Address(ary1, limit, Address::times_1));
6937   cmpl(chr, Address(ary2, limit, Address::times_1));
6938   jccb(Assembler::notEqual, FALSE_LABEL);
6939   addptr(limit, 4);
6940   jcc(Assembler::notZero, COMPARE_VECTORS);
6941 
6942   // Compare trailing char (final 2 bytes), if any
6943   bind(COMPARE_CHAR);
6944   testl(result, 0x2);   // tail  char
6945   jccb(Assembler::zero, TRUE_LABEL);
6946   load_unsigned_short(chr, Address(ary1, 0));
6947   load_unsigned_short(limit, Address(ary2, 0));
6948   cmpl(chr, limit);
6949   jccb(Assembler::notEqual, FALSE_LABEL);
6950 
6951   bind(TRUE_LABEL);
6952   movl(result, 1);   // return true
6953   jmpb(DONE);
6954 
6955   bind(FALSE_LABEL);
6956   xorl(result, result); // return false
6957 
6958   // That's it
6959   bind(DONE);
6960   if (UseAVX >= 2) {
6961     // clean upper bits of YMM registers
6962     vpxor(vec1, vec1);
6963     vpxor(vec2, vec2);
6964   }
6965 }
6966 
6967 void MacroAssembler::generate_fill(BasicType t, bool aligned,
6968                                    Register to, Register value, Register count,
6969                                    Register rtmp, XMMRegister xtmp) {
6970   ShortBranchVerifier sbv(this);
6971   assert_different_registers(to, value, count, rtmp);
6972   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
6973   Label L_fill_2_bytes, L_fill_4_bytes;
6974 
6975   int shift = -1;
6976   switch (t) {
6977     case T_BYTE:
6978       shift = 2;
6979       break;
6980     case T_SHORT:
6981       shift = 1;
6982       break;
6983     case T_INT:
6984       shift = 0;
6985       break;
6986     default: ShouldNotReachHere();
6987   }
6988 
6989   if (t == T_BYTE) {
6990     andl(value, 0xff);
6991     movl(rtmp, value);
6992     shll(rtmp, 8);
6993     orl(value, rtmp);
6994   }
6995   if (t == T_SHORT) {
6996     andl(value, 0xffff);
6997   }
6998   if (t == T_BYTE || t == T_SHORT) {
6999     movl(rtmp, value);
7000     shll(rtmp, 16);
7001     orl(value, rtmp);
7002   }
7003 
7004   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
7005   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
7006   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
7007     // align source address at 4 bytes address boundary
7008     if (t == T_BYTE) {
7009       // One byte misalignment happens only for byte arrays
7010       testptr(to, 1);
7011       jccb(Assembler::zero, L_skip_align1);
7012       movb(Address(to, 0), value);
7013       increment(to);
7014       decrement(count);
7015       BIND(L_skip_align1);
7016     }
7017     // Two bytes misalignment happens only for byte and short (char) arrays
7018     testptr(to, 2);
7019     jccb(Assembler::zero, L_skip_align2);
7020     movw(Address(to, 0), value);
7021     addptr(to, 2);
7022     subl(count, 1<<(shift-1));
7023     BIND(L_skip_align2);
7024   }
7025   if (UseSSE < 2) {
7026     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7027     // Fill 32-byte chunks
7028     subl(count, 8 << shift);
7029     jcc(Assembler::less, L_check_fill_8_bytes);
7030     align(16);
7031 
7032     BIND(L_fill_32_bytes_loop);
7033 
7034     for (int i = 0; i < 32; i += 4) {
7035       movl(Address(to, i), value);
7036     }
7037 
7038     addptr(to, 32);
7039     subl(count, 8 << shift);
7040     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7041     BIND(L_check_fill_8_bytes);
7042     addl(count, 8 << shift);
7043     jccb(Assembler::zero, L_exit);
7044     jmpb(L_fill_8_bytes);
7045 
7046     //
7047     // length is too short, just fill qwords
7048     //
7049     BIND(L_fill_8_bytes_loop);
7050     movl(Address(to, 0), value);
7051     movl(Address(to, 4), value);
7052     addptr(to, 8);
7053     BIND(L_fill_8_bytes);
7054     subl(count, 1 << (shift + 1));
7055     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7056     // fall through to fill 4 bytes
7057   } else {
7058     Label L_fill_32_bytes;
7059     if (!UseUnalignedLoadStores) {
7060       // align to 8 bytes, we know we are 4 byte aligned to start
7061       testptr(to, 4);
7062       jccb(Assembler::zero, L_fill_32_bytes);
7063       movl(Address(to, 0), value);
7064       addptr(to, 4);
7065       subl(count, 1<<shift);
7066     }
7067     BIND(L_fill_32_bytes);
7068     {
7069       assert( UseSSE >= 2, "supported cpu only" );
7070       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7071       movdl(xtmp, value);
7072       if (UseAVX >= 2 && UseUnalignedLoadStores) {
7073         // Fill 64-byte chunks
7074         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7075         vpbroadcastd(xtmp, xtmp);
7076 
7077         subl(count, 16 << shift);
7078         jcc(Assembler::less, L_check_fill_32_bytes);
7079         align(16);
7080 
7081         BIND(L_fill_64_bytes_loop);
7082         vmovdqu(Address(to, 0), xtmp);
7083         vmovdqu(Address(to, 32), xtmp);
7084         addptr(to, 64);
7085         subl(count, 16 << shift);
7086         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7087 
7088         BIND(L_check_fill_32_bytes);
7089         addl(count, 8 << shift);
7090         jccb(Assembler::less, L_check_fill_8_bytes);
7091         vmovdqu(Address(to, 0), xtmp);
7092         addptr(to, 32);
7093         subl(count, 8 << shift);
7094 
7095         BIND(L_check_fill_8_bytes);
7096         // clean upper bits of YMM registers
7097         movdl(xtmp, value);
7098         pshufd(xtmp, xtmp, 0);
7099       } else {
7100         // Fill 32-byte chunks
7101         pshufd(xtmp, xtmp, 0);
7102 
7103         subl(count, 8 << shift);
7104         jcc(Assembler::less, L_check_fill_8_bytes);
7105         align(16);
7106 
7107         BIND(L_fill_32_bytes_loop);
7108 
7109         if (UseUnalignedLoadStores) {
7110           movdqu(Address(to, 0), xtmp);
7111           movdqu(Address(to, 16), xtmp);
7112         } else {
7113           movq(Address(to, 0), xtmp);
7114           movq(Address(to, 8), xtmp);
7115           movq(Address(to, 16), xtmp);
7116           movq(Address(to, 24), xtmp);
7117         }
7118 
7119         addptr(to, 32);
7120         subl(count, 8 << shift);
7121         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7122 
7123         BIND(L_check_fill_8_bytes);
7124       }
7125       addl(count, 8 << shift);
7126       jccb(Assembler::zero, L_exit);
7127       jmpb(L_fill_8_bytes);
7128 
7129       //
7130       // length is too short, just fill qwords
7131       //
7132       BIND(L_fill_8_bytes_loop);
7133       movq(Address(to, 0), xtmp);
7134       addptr(to, 8);
7135       BIND(L_fill_8_bytes);
7136       subl(count, 1 << (shift + 1));
7137       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7138     }
7139   }
7140   // fill trailing 4 bytes
7141   BIND(L_fill_4_bytes);
7142   testl(count, 1<<shift);
7143   jccb(Assembler::zero, L_fill_2_bytes);
7144   movl(Address(to, 0), value);
7145   if (t == T_BYTE || t == T_SHORT) {
7146     addptr(to, 4);
7147     BIND(L_fill_2_bytes);
7148     // fill trailing 2 bytes
7149     testl(count, 1<<(shift-1));
7150     jccb(Assembler::zero, L_fill_byte);
7151     movw(Address(to, 0), value);
7152     if (t == T_BYTE) {
7153       addptr(to, 2);
7154       BIND(L_fill_byte);
7155       // fill trailing byte
7156       testl(count, 1);
7157       jccb(Assembler::zero, L_exit);
7158       movb(Address(to, 0), value);
7159     } else {
7160       BIND(L_fill_byte);
7161     }
7162   } else {
7163     BIND(L_fill_2_bytes);
7164   }
7165   BIND(L_exit);
7166 }
7167 
7168 // encode char[] to byte[] in ISO_8859_1
7169 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
7170                                       XMMRegister tmp1Reg, XMMRegister tmp2Reg,
7171                                       XMMRegister tmp3Reg, XMMRegister tmp4Reg,
7172                                       Register tmp5, Register result) {
7173   // rsi: src
7174   // rdi: dst
7175   // rdx: len
7176   // rcx: tmp5
7177   // rax: result
7178   ShortBranchVerifier sbv(this);
7179   assert_different_registers(src, dst, len, tmp5, result);
7180   Label L_done, L_copy_1_char, L_copy_1_char_exit;
7181 
7182   // set result
7183   xorl(result, result);
7184   // check for zero length
7185   testl(len, len);
7186   jcc(Assembler::zero, L_done);
7187   movl(result, len);
7188 
7189   // Setup pointers
7190   lea(src, Address(src, len, Address::times_2)); // char[]
7191   lea(dst, Address(dst, len, Address::times_1)); // byte[]
7192   negptr(len);
7193 
7194   if (UseSSE42Intrinsics || UseAVX >= 2) {
7195     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
7196     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
7197 
7198     if (UseAVX >= 2) {
7199       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
7200       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7201       movdl(tmp1Reg, tmp5);
7202       vpbroadcastd(tmp1Reg, tmp1Reg);
7203       jmpb(L_chars_32_check);
7204 
7205       bind(L_copy_32_chars);
7206       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
7207       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
7208       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
7209       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7210       jccb(Assembler::notZero, L_copy_32_chars_exit);
7211       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
7212       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector256 */ true);
7213       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
7214 
7215       bind(L_chars_32_check);
7216       addptr(len, 32);
7217       jccb(Assembler::lessEqual, L_copy_32_chars);
7218 
7219       bind(L_copy_32_chars_exit);
7220       subptr(len, 16);
7221       jccb(Assembler::greater, L_copy_16_chars_exit);
7222 
7223     } else if (UseSSE42Intrinsics) {
7224       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7225       movdl(tmp1Reg, tmp5);
7226       pshufd(tmp1Reg, tmp1Reg, 0);
7227       jmpb(L_chars_16_check);
7228     }
7229 
7230     bind(L_copy_16_chars);
7231     if (UseAVX >= 2) {
7232       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
7233       vptest(tmp2Reg, tmp1Reg);
7234       jccb(Assembler::notZero, L_copy_16_chars_exit);
7235       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector256 */ true);
7236       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector256 */ true);
7237     } else {
7238       if (UseAVX > 0) {
7239         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7240         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7241         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ false);
7242       } else {
7243         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7244         por(tmp2Reg, tmp3Reg);
7245         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7246         por(tmp2Reg, tmp4Reg);
7247       }
7248       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7249       jccb(Assembler::notZero, L_copy_16_chars_exit);
7250       packuswb(tmp3Reg, tmp4Reg);
7251     }
7252     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
7253 
7254     bind(L_chars_16_check);
7255     addptr(len, 16);
7256     jccb(Assembler::lessEqual, L_copy_16_chars);
7257 
7258     bind(L_copy_16_chars_exit);
7259     if (UseAVX >= 2) {
7260       // clean upper bits of YMM registers
7261       vpxor(tmp2Reg, tmp2Reg);
7262       vpxor(tmp3Reg, tmp3Reg);
7263       vpxor(tmp4Reg, tmp4Reg);
7264       movdl(tmp1Reg, tmp5);
7265       pshufd(tmp1Reg, tmp1Reg, 0);
7266     }
7267     subptr(len, 8);
7268     jccb(Assembler::greater, L_copy_8_chars_exit);
7269 
7270     bind(L_copy_8_chars);
7271     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
7272     ptest(tmp3Reg, tmp1Reg);
7273     jccb(Assembler::notZero, L_copy_8_chars_exit);
7274     packuswb(tmp3Reg, tmp1Reg);
7275     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
7276     addptr(len, 8);
7277     jccb(Assembler::lessEqual, L_copy_8_chars);
7278 
7279     bind(L_copy_8_chars_exit);
7280     subptr(len, 8);
7281     jccb(Assembler::zero, L_done);
7282   }
7283 
7284   bind(L_copy_1_char);
7285   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
7286   testl(tmp5, 0xff00);      // check if Unicode char
7287   jccb(Assembler::notZero, L_copy_1_char_exit);
7288   movb(Address(dst, len, Address::times_1, 0), tmp5);
7289   addptr(len, 1);
7290   jccb(Assembler::less, L_copy_1_char);
7291 
7292   bind(L_copy_1_char_exit);
7293   addptr(result, len); // len is negative count of not processed elements
7294   bind(L_done);
7295 }
7296 
7297 #ifdef _LP64
7298 /**
7299  * Helper for multiply_to_len().
7300  */
7301 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
7302   addq(dest_lo, src1);
7303   adcq(dest_hi, 0);
7304   addq(dest_lo, src2);
7305   adcq(dest_hi, 0);
7306 }
7307 
7308 /**
7309  * Multiply 64 bit by 64 bit first loop.
7310  */
7311 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
7312                                            Register y, Register y_idx, Register z,
7313                                            Register carry, Register product,
7314                                            Register idx, Register kdx) {
7315   //
7316   //  jlong carry, x[], y[], z[];
7317   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7318   //    huge_128 product = y[idx] * x[xstart] + carry;
7319   //    z[kdx] = (jlong)product;
7320   //    carry  = (jlong)(product >>> 64);
7321   //  }
7322   //  z[xstart] = carry;
7323   //
7324 
7325   Label L_first_loop, L_first_loop_exit;
7326   Label L_one_x, L_one_y, L_multiply;
7327 
7328   decrementl(xstart);
7329   jcc(Assembler::negative, L_one_x);
7330 
7331   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7332   rorq(x_xstart, 32); // convert big-endian to little-endian
7333 
7334   bind(L_first_loop);
7335   decrementl(idx);
7336   jcc(Assembler::negative, L_first_loop_exit);
7337   decrementl(idx);
7338   jcc(Assembler::negative, L_one_y);
7339   movq(y_idx, Address(y, idx, Address::times_4,  0));
7340   rorq(y_idx, 32); // convert big-endian to little-endian
7341   bind(L_multiply);
7342   movq(product, x_xstart);
7343   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
7344   addq(product, carry);
7345   adcq(rdx, 0);
7346   subl(kdx, 2);
7347   movl(Address(z, kdx, Address::times_4,  4), product);
7348   shrq(product, 32);
7349   movl(Address(z, kdx, Address::times_4,  0), product);
7350   movq(carry, rdx);
7351   jmp(L_first_loop);
7352 
7353   bind(L_one_y);
7354   movl(y_idx, Address(y,  0));
7355   jmp(L_multiply);
7356 
7357   bind(L_one_x);
7358   movl(x_xstart, Address(x,  0));
7359   jmp(L_first_loop);
7360 
7361   bind(L_first_loop_exit);
7362 }
7363 
7364 /**
7365  * Multiply 64 bit by 64 bit and add 128 bit.
7366  */
7367 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
7368                                             Register yz_idx, Register idx,
7369                                             Register carry, Register product, int offset) {
7370   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
7371   //     z[kdx] = (jlong)product;
7372 
7373   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
7374   rorq(yz_idx, 32); // convert big-endian to little-endian
7375   movq(product, x_xstart);
7376   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
7377   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
7378   rorq(yz_idx, 32); // convert big-endian to little-endian
7379 
7380   add2_with_carry(rdx, product, carry, yz_idx);
7381 
7382   movl(Address(z, idx, Address::times_4,  offset+4), product);
7383   shrq(product, 32);
7384   movl(Address(z, idx, Address::times_4,  offset), product);
7385 
7386 }
7387 
7388 /**
7389  * Multiply 128 bit by 128 bit. Unrolled inner loop.
7390  */
7391 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
7392                                              Register yz_idx, Register idx, Register jdx,
7393                                              Register carry, Register product,
7394                                              Register carry2) {
7395   //   jlong carry, x[], y[], z[];
7396   //   int kdx = ystart+1;
7397   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7398   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
7399   //     z[kdx+idx+1] = (jlong)product;
7400   //     jlong carry2  = (jlong)(product >>> 64);
7401   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
7402   //     z[kdx+idx] = (jlong)product;
7403   //     carry  = (jlong)(product >>> 64);
7404   //   }
7405   //   idx += 2;
7406   //   if (idx > 0) {
7407   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
7408   //     z[kdx+idx] = (jlong)product;
7409   //     carry  = (jlong)(product >>> 64);
7410   //   }
7411   //
7412 
7413   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7414 
7415   movl(jdx, idx);
7416   andl(jdx, 0xFFFFFFFC);
7417   shrl(jdx, 2);
7418 
7419   bind(L_third_loop);
7420   subl(jdx, 1);
7421   jcc(Assembler::negative, L_third_loop_exit);
7422   subl(idx, 4);
7423 
7424   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
7425   movq(carry2, rdx);
7426 
7427   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
7428   movq(carry, rdx);
7429   jmp(L_third_loop);
7430 
7431   bind (L_third_loop_exit);
7432 
7433   andl (idx, 0x3);
7434   jcc(Assembler::zero, L_post_third_loop_done);
7435 
7436   Label L_check_1;
7437   subl(idx, 2);
7438   jcc(Assembler::negative, L_check_1);
7439 
7440   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
7441   movq(carry, rdx);
7442 
7443   bind (L_check_1);
7444   addl (idx, 0x2);
7445   andl (idx, 0x1);
7446   subl(idx, 1);
7447   jcc(Assembler::negative, L_post_third_loop_done);
7448 
7449   movl(yz_idx, Address(y, idx, Address::times_4,  0));
7450   movq(product, x_xstart);
7451   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
7452   movl(yz_idx, Address(z, idx, Address::times_4,  0));
7453 
7454   add2_with_carry(rdx, product, yz_idx, carry);
7455 
7456   movl(Address(z, idx, Address::times_4,  0), product);
7457   shrq(product, 32);
7458 
7459   shlq(rdx, 32);
7460   orq(product, rdx);
7461   movq(carry, product);
7462 
7463   bind(L_post_third_loop_done);
7464 }
7465 
7466 /**
7467  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
7468  *
7469  */
7470 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
7471                                                   Register carry, Register carry2,
7472                                                   Register idx, Register jdx,
7473                                                   Register yz_idx1, Register yz_idx2,
7474                                                   Register tmp, Register tmp3, Register tmp4) {
7475   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
7476 
7477   //   jlong carry, x[], y[], z[];
7478   //   int kdx = ystart+1;
7479   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7480   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
7481   //     jlong carry2  = (jlong)(tmp3 >>> 64);
7482   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
7483   //     carry  = (jlong)(tmp4 >>> 64);
7484   //     z[kdx+idx+1] = (jlong)tmp3;
7485   //     z[kdx+idx] = (jlong)tmp4;
7486   //   }
7487   //   idx += 2;
7488   //   if (idx > 0) {
7489   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
7490   //     z[kdx+idx] = (jlong)yz_idx1;
7491   //     carry  = (jlong)(yz_idx1 >>> 64);
7492   //   }
7493   //
7494 
7495   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7496 
7497   movl(jdx, idx);
7498   andl(jdx, 0xFFFFFFFC);
7499   shrl(jdx, 2);
7500 
7501   bind(L_third_loop);
7502   subl(jdx, 1);
7503   jcc(Assembler::negative, L_third_loop_exit);
7504   subl(idx, 4);
7505 
7506   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
7507   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
7508   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
7509   rorxq(yz_idx2, yz_idx2, 32);
7510 
7511   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
7512   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
7513 
7514   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
7515   rorxq(yz_idx1, yz_idx1, 32);
7516   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7517   rorxq(yz_idx2, yz_idx2, 32);
7518 
7519   if (VM_Version::supports_adx()) {
7520     adcxq(tmp3, carry);
7521     adoxq(tmp3, yz_idx1);
7522 
7523     adcxq(tmp4, tmp);
7524     adoxq(tmp4, yz_idx2);
7525 
7526     movl(carry, 0); // does not affect flags
7527     adcxq(carry2, carry);
7528     adoxq(carry2, carry);
7529   } else {
7530     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
7531     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
7532   }
7533   movq(carry, carry2);
7534 
7535   movl(Address(z, idx, Address::times_4, 12), tmp3);
7536   shrq(tmp3, 32);
7537   movl(Address(z, idx, Address::times_4,  8), tmp3);
7538 
7539   movl(Address(z, idx, Address::times_4,  4), tmp4);
7540   shrq(tmp4, 32);
7541   movl(Address(z, idx, Address::times_4,  0), tmp4);
7542 
7543   jmp(L_third_loop);
7544 
7545   bind (L_third_loop_exit);
7546 
7547   andl (idx, 0x3);
7548   jcc(Assembler::zero, L_post_third_loop_done);
7549 
7550   Label L_check_1;
7551   subl(idx, 2);
7552   jcc(Assembler::negative, L_check_1);
7553 
7554   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
7555   rorxq(yz_idx1, yz_idx1, 32);
7556   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
7557   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7558   rorxq(yz_idx2, yz_idx2, 32);
7559 
7560   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
7561 
7562   movl(Address(z, idx, Address::times_4,  4), tmp3);
7563   shrq(tmp3, 32);
7564   movl(Address(z, idx, Address::times_4,  0), tmp3);
7565   movq(carry, tmp4);
7566 
7567   bind (L_check_1);
7568   addl (idx, 0x2);
7569   andl (idx, 0x1);
7570   subl(idx, 1);
7571   jcc(Assembler::negative, L_post_third_loop_done);
7572   movl(tmp4, Address(y, idx, Address::times_4,  0));
7573   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
7574   movl(tmp4, Address(z, idx, Address::times_4,  0));
7575 
7576   add2_with_carry(carry2, tmp3, tmp4, carry);
7577 
7578   movl(Address(z, idx, Address::times_4,  0), tmp3);
7579   shrq(tmp3, 32);
7580 
7581   shlq(carry2, 32);
7582   orq(tmp3, carry2);
7583   movq(carry, tmp3);
7584 
7585   bind(L_post_third_loop_done);
7586 }
7587 
7588 /**
7589  * Code for BigInteger::multiplyToLen() instrinsic.
7590  *
7591  * rdi: x
7592  * rax: xlen
7593  * rsi: y
7594  * rcx: ylen
7595  * r8:  z
7596  * r11: zlen
7597  * r12: tmp1
7598  * r13: tmp2
7599  * r14: tmp3
7600  * r15: tmp4
7601  * rbx: tmp5
7602  *
7603  */
7604 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
7605                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
7606   ShortBranchVerifier sbv(this);
7607   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
7608 
7609   push(tmp1);
7610   push(tmp2);
7611   push(tmp3);
7612   push(tmp4);
7613   push(tmp5);
7614 
7615   push(xlen);
7616   push(zlen);
7617 
7618   const Register idx = tmp1;
7619   const Register kdx = tmp2;
7620   const Register xstart = tmp3;
7621 
7622   const Register y_idx = tmp4;
7623   const Register carry = tmp5;
7624   const Register product  = xlen;
7625   const Register x_xstart = zlen;  // reuse register
7626 
7627   // First Loop.
7628   //
7629   //  final static long LONG_MASK = 0xffffffffL;
7630   //  int xstart = xlen - 1;
7631   //  int ystart = ylen - 1;
7632   //  long carry = 0;
7633   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7634   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
7635   //    z[kdx] = (int)product;
7636   //    carry = product >>> 32;
7637   //  }
7638   //  z[xstart] = (int)carry;
7639   //
7640 
7641   movl(idx, ylen);      // idx = ylen;
7642   movl(kdx, zlen);      // kdx = xlen+ylen;
7643   xorq(carry, carry);   // carry = 0;
7644 
7645   Label L_done;
7646 
7647   movl(xstart, xlen);
7648   decrementl(xstart);
7649   jcc(Assembler::negative, L_done);
7650 
7651   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
7652 
7653   Label L_second_loop;
7654   testl(kdx, kdx);
7655   jcc(Assembler::zero, L_second_loop);
7656 
7657   Label L_carry;
7658   subl(kdx, 1);
7659   jcc(Assembler::zero, L_carry);
7660 
7661   movl(Address(z, kdx, Address::times_4,  0), carry);
7662   shrq(carry, 32);
7663   subl(kdx, 1);
7664 
7665   bind(L_carry);
7666   movl(Address(z, kdx, Address::times_4,  0), carry);
7667 
7668   // Second and third (nested) loops.
7669   //
7670   // for (int i = xstart-1; i >= 0; i--) { // Second loop
7671   //   carry = 0;
7672   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
7673   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
7674   //                    (z[k] & LONG_MASK) + carry;
7675   //     z[k] = (int)product;
7676   //     carry = product >>> 32;
7677   //   }
7678   //   z[i] = (int)carry;
7679   // }
7680   //
7681   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
7682 
7683   const Register jdx = tmp1;
7684 
7685   bind(L_second_loop);
7686   xorl(carry, carry);    // carry = 0;
7687   movl(jdx, ylen);       // j = ystart+1
7688 
7689   subl(xstart, 1);       // i = xstart-1;
7690   jcc(Assembler::negative, L_done);
7691 
7692   push (z);
7693 
7694   Label L_last_x;
7695   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
7696   subl(xstart, 1);       // i = xstart-1;
7697   jcc(Assembler::negative, L_last_x);
7698 
7699   if (UseBMI2Instructions) {
7700     movq(rdx,  Address(x, xstart, Address::times_4,  0));
7701     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
7702   } else {
7703     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7704     rorq(x_xstart, 32);  // convert big-endian to little-endian
7705   }
7706 
7707   Label L_third_loop_prologue;
7708   bind(L_third_loop_prologue);
7709 
7710   push (x);
7711   push (xstart);
7712   push (ylen);
7713 
7714 
7715   if (UseBMI2Instructions) {
7716     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
7717   } else { // !UseBMI2Instructions
7718     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
7719   }
7720 
7721   pop(ylen);
7722   pop(xlen);
7723   pop(x);
7724   pop(z);
7725 
7726   movl(tmp3, xlen);
7727   addl(tmp3, 1);
7728   movl(Address(z, tmp3, Address::times_4,  0), carry);
7729   subl(tmp3, 1);
7730   jccb(Assembler::negative, L_done);
7731 
7732   shrq(carry, 32);
7733   movl(Address(z, tmp3, Address::times_4,  0), carry);
7734   jmp(L_second_loop);
7735 
7736   // Next infrequent code is moved outside loops.
7737   bind(L_last_x);
7738   if (UseBMI2Instructions) {
7739     movl(rdx, Address(x,  0));
7740   } else {
7741     movl(x_xstart, Address(x,  0));
7742   }
7743   jmp(L_third_loop_prologue);
7744 
7745   bind(L_done);
7746 
7747   pop(zlen);
7748   pop(xlen);
7749 
7750   pop(tmp5);
7751   pop(tmp4);
7752   pop(tmp3);
7753   pop(tmp2);
7754   pop(tmp1);
7755 }
7756 #endif
7757 
7758 /**
7759  * Emits code to update CRC-32 with a byte value according to constants in table
7760  *
7761  * @param [in,out]crc   Register containing the crc.
7762  * @param [in]val       Register containing the byte to fold into the CRC.
7763  * @param [in]table     Register containing the table of crc constants.
7764  *
7765  * uint32_t crc;
7766  * val = crc_table[(val ^ crc) & 0xFF];
7767  * crc = val ^ (crc >> 8);
7768  *
7769  */
7770 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
7771   xorl(val, crc);
7772   andl(val, 0xFF);
7773   shrl(crc, 8); // unsigned shift
7774   xorl(crc, Address(table, val, Address::times_4, 0));
7775 }
7776 
7777 /**
7778  * Fold 128-bit data chunk
7779  */
7780 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
7781   if (UseAVX > 0) {
7782     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
7783     vpclmulldq(xcrc, xK, xcrc); // [63:0]
7784     vpxor(xcrc, xcrc, Address(buf, offset), false /* vector256 */);
7785     pxor(xcrc, xtmp);
7786   } else {
7787     movdqa(xtmp, xcrc);
7788     pclmulhdq(xtmp, xK);   // [123:64]
7789     pclmulldq(xcrc, xK);   // [63:0]
7790     pxor(xcrc, xtmp);
7791     movdqu(xtmp, Address(buf, offset));
7792     pxor(xcrc, xtmp);
7793   }
7794 }
7795 
7796 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
7797   if (UseAVX > 0) {
7798     vpclmulhdq(xtmp, xK, xcrc);
7799     vpclmulldq(xcrc, xK, xcrc);
7800     pxor(xcrc, xbuf);
7801     pxor(xcrc, xtmp);
7802   } else {
7803     movdqa(xtmp, xcrc);
7804     pclmulhdq(xtmp, xK);
7805     pclmulldq(xcrc, xK);
7806     pxor(xcrc, xbuf);
7807     pxor(xcrc, xtmp);
7808   }
7809 }
7810 
7811 /**
7812  * 8-bit folds to compute 32-bit CRC
7813  *
7814  * uint64_t xcrc;
7815  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
7816  */
7817 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
7818   movdl(tmp, xcrc);
7819   andl(tmp, 0xFF);
7820   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
7821   psrldq(xcrc, 1); // unsigned shift one byte
7822   pxor(xcrc, xtmp);
7823 }
7824 
7825 /**
7826  * uint32_t crc;
7827  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
7828  */
7829 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
7830   movl(tmp, crc);
7831   andl(tmp, 0xFF);
7832   shrl(crc, 8);
7833   xorl(crc, Address(table, tmp, Address::times_4, 0));
7834 }
7835 
7836 /**
7837  * @param crc   register containing existing CRC (32-bit)
7838  * @param buf   register pointing to input byte buffer (byte*)
7839  * @param len   register containing number of bytes
7840  * @param table register that will contain address of CRC table
7841  * @param tmp   scratch register
7842  */
7843 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
7844   assert_different_registers(crc, buf, len, table, tmp, rax);
7845 
7846   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
7847   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
7848 
7849   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
7850   notl(crc); // ~crc
7851   cmpl(len, 16);
7852   jcc(Assembler::less, L_tail);
7853 
7854   // Align buffer to 16 bytes
7855   movl(tmp, buf);
7856   andl(tmp, 0xF);
7857   jccb(Assembler::zero, L_aligned);
7858   subl(tmp,  16);
7859   addl(len, tmp);
7860 
7861   align(4);
7862   BIND(L_align_loop);
7863   movsbl(rax, Address(buf, 0)); // load byte with sign extension
7864   update_byte_crc32(crc, rax, table);
7865   increment(buf);
7866   incrementl(tmp);
7867   jccb(Assembler::less, L_align_loop);
7868 
7869   BIND(L_aligned);
7870   movl(tmp, len); // save
7871   shrl(len, 4);
7872   jcc(Assembler::zero, L_tail_restore);
7873 
7874   // Fold crc into first bytes of vector
7875   movdqa(xmm1, Address(buf, 0));
7876   movdl(rax, xmm1);
7877   xorl(crc, rax);
7878   pinsrd(xmm1, crc, 0);
7879   addptr(buf, 16);
7880   subl(len, 4); // len > 0
7881   jcc(Assembler::less, L_fold_tail);
7882 
7883   movdqa(xmm2, Address(buf,  0));
7884   movdqa(xmm3, Address(buf, 16));
7885   movdqa(xmm4, Address(buf, 32));
7886   addptr(buf, 48);
7887   subl(len, 3);
7888   jcc(Assembler::lessEqual, L_fold_512b);
7889 
7890   // Fold total 512 bits of polynomial on each iteration,
7891   // 128 bits per each of 4 parallel streams.
7892   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
7893 
7894   align(32);
7895   BIND(L_fold_512b_loop);
7896   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
7897   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
7898   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
7899   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
7900   addptr(buf, 64);
7901   subl(len, 4);
7902   jcc(Assembler::greater, L_fold_512b_loop);
7903 
7904   // Fold 512 bits to 128 bits.
7905   BIND(L_fold_512b);
7906   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
7907   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
7908   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
7909   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
7910 
7911   // Fold the rest of 128 bits data chunks
7912   BIND(L_fold_tail);
7913   addl(len, 3);
7914   jccb(Assembler::lessEqual, L_fold_128b);
7915   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
7916 
7917   BIND(L_fold_tail_loop);
7918   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
7919   addptr(buf, 16);
7920   decrementl(len);
7921   jccb(Assembler::greater, L_fold_tail_loop);
7922 
7923   // Fold 128 bits in xmm1 down into 32 bits in crc register.
7924   BIND(L_fold_128b);
7925   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
7926   if (UseAVX > 0) {
7927     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
7928     vpand(xmm3, xmm0, xmm2, false /* vector256 */);
7929     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
7930   } else {
7931     movdqa(xmm2, xmm0);
7932     pclmulqdq(xmm2, xmm1, 0x1);
7933     movdqa(xmm3, xmm0);
7934     pand(xmm3, xmm2);
7935     pclmulqdq(xmm0, xmm3, 0x1);
7936   }
7937   psrldq(xmm1, 8);
7938   psrldq(xmm2, 4);
7939   pxor(xmm0, xmm1);
7940   pxor(xmm0, xmm2);
7941 
7942   // 8 8-bit folds to compute 32-bit CRC.
7943   for (int j = 0; j < 4; j++) {
7944     fold_8bit_crc32(xmm0, table, xmm1, rax);
7945   }
7946   movdl(crc, xmm0); // mov 32 bits to general register
7947   for (int j = 0; j < 4; j++) {
7948     fold_8bit_crc32(crc, table, rax);
7949   }
7950 
7951   BIND(L_tail_restore);
7952   movl(len, tmp); // restore
7953   BIND(L_tail);
7954   andl(len, 0xf);
7955   jccb(Assembler::zero, L_exit);
7956 
7957   // Fold the rest of bytes
7958   align(4);
7959   BIND(L_tail_loop);
7960   movsbl(rax, Address(buf, 0)); // load byte with sign extension
7961   update_byte_crc32(crc, rax, table);
7962   increment(buf);
7963   decrementl(len);
7964   jccb(Assembler::greater, L_tail_loop);
7965 
7966   BIND(L_exit);
7967   notl(crc); // ~c
7968 }
7969 
7970 #undef BIND
7971 #undef BLOCK_COMMENT
7972 
7973 
7974 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
7975   switch (cond) {
7976     // Note some conditions are synonyms for others
7977     case Assembler::zero:         return Assembler::notZero;
7978     case Assembler::notZero:      return Assembler::zero;
7979     case Assembler::less:         return Assembler::greaterEqual;
7980     case Assembler::lessEqual:    return Assembler::greater;
7981     case Assembler::greater:      return Assembler::lessEqual;
7982     case Assembler::greaterEqual: return Assembler::less;
7983     case Assembler::below:        return Assembler::aboveEqual;
7984     case Assembler::belowEqual:   return Assembler::above;
7985     case Assembler::above:        return Assembler::belowEqual;
7986     case Assembler::aboveEqual:   return Assembler::below;
7987     case Assembler::overflow:     return Assembler::noOverflow;
7988     case Assembler::noOverflow:   return Assembler::overflow;
7989     case Assembler::negative:     return Assembler::positive;
7990     case Assembler::positive:     return Assembler::negative;
7991     case Assembler::parity:       return Assembler::noParity;
7992     case Assembler::noParity:     return Assembler::parity;
7993   }
7994   ShouldNotReachHere(); return Assembler::overflow;
7995 }
7996 
7997 SkipIfEqual::SkipIfEqual(
7998     MacroAssembler* masm, const bool* flag_addr, bool value) {
7999   _masm = masm;
8000   _masm->cmp8(ExternalAddress((address)flag_addr), value);
8001   _masm->jcc(Assembler::equal, _label);
8002 }
8003 
8004 SkipIfEqual::~SkipIfEqual() {
8005   _masm->bind(_label);
8006 }