--- /dev/null 2018-05-25 15:10:15.270000000 +0100 +++ new/src/hotspot/share/asm/codeBuffer.cpp 2018-06-18 16:54:11.940334689 +0100 @@ -0,0 +1,1252 @@ +/* + * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + * + */ + +#include "precompiled.hpp" +#include "asm/codeBuffer.hpp" +#include "compiler/disassembler.hpp" +#include "oops/methodData.hpp" +#include "oops/oop.inline.hpp" +#include "runtime/icache.hpp" +#include "runtime/safepointVerifiers.hpp" +#include "utilities/align.hpp" +#include "utilities/copy.hpp" +#include "utilities/xmlstream.hpp" + +// The structure of a CodeSection: +// +// _start -> +----------------+ +// | machine code...| +// _end -> |----------------| +// | | +// | (empty) | +// | | +// | | +// +----------------+ +// _limit -> | | +// +// _locs_start -> +----------------+ +// |reloc records...| +// |----------------| +// _locs_end -> | | +// | | +// | (empty) | +// | | +// | | +// +----------------+ +// _locs_limit -> | | +// The _end (resp. _limit) pointer refers to the first +// unused (resp. unallocated) byte. + +// The structure of the CodeBuffer while code is being accumulated: +// +// _total_start -> \ +// _insts._start -> +----------------+ +// | | +// | Code | +// | | +// _stubs._start -> |----------------| +// | | +// | Stubs | (also handlers for deopt/exception) +// | | +// _consts._start -> |----------------| +// | | +// | Constants | +// | | +// +----------------+ +// + _total_size -> | | +// +// When the code and relocations are copied to the code cache, +// the empty parts of each section are removed, and everything +// is copied into contiguous locations. + +typedef CodeBuffer::csize_t csize_t; // file-local definition + +// External buffer, in a predefined CodeBlob. +// Important: The code_start must be taken exactly, and not realigned. +CodeBuffer::CodeBuffer(CodeBlob* blob) { + initialize_misc("static buffer"); + initialize(blob->content_begin(), blob->content_size()); + verify_section_allocation(); +} + +void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) { + // Compute maximal alignment. + int align = _insts.alignment(); + // Always allow for empty slop around each section. + int slop = (int) CodeSection::end_slop(); + + assert(blob() == NULL, "only once"); + set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1))); + if (blob() == NULL) { + // The assembler constructor will throw a fatal on an empty CodeBuffer. + return; // caller must test this + } + + // Set up various pointers into the blob. + initialize(_total_start, _total_size); + + assert((uintptr_t)insts_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned"); + + pd_initialize(); + + if (locs_size != 0) { + _insts.initialize_locs(locs_size / sizeof(relocInfo)); + } + + verify_section_allocation(); +} + + +CodeBuffer::~CodeBuffer() { + verify_section_allocation(); + + // If we allocate our code buffer from the CodeCache + // via a BufferBlob, and it's not permanent, then + // free the BufferBlob. + // The rest of the memory will be freed when the ResourceObj + // is released. + for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) { + // Previous incarnations of this buffer are held live, so that internal + // addresses constructed before expansions will not be confused. + cb->free_blob(); + } + + // free any overflow storage + delete _overflow_arena; + + // Claim is that stack allocation ensures resources are cleaned up. + // This is resource clean up, let's hope that all were properly copied out. + free_strings(); + +#ifdef ASSERT + // Save allocation type to execute assert in ~ResourceObj() + // which is called after this destructor. + assert(_default_oop_recorder.allocated_on_stack(), "should be embedded object"); + ResourceObj::allocation_type at = _default_oop_recorder.get_allocation_type(); + Copy::fill_to_bytes(this, sizeof(*this), badResourceValue); + ResourceObj::set_allocation_type((address)(&_default_oop_recorder), at); +#endif +} + +void CodeBuffer::initialize_oop_recorder(OopRecorder* r) { + assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once"); + DEBUG_ONLY(_default_oop_recorder.freeze()); // force unused OR to be frozen + _oop_recorder = r; +} + +void CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) { + assert(cs != &_insts, "insts is the memory provider, not the consumer"); + csize_t slop = CodeSection::end_slop(); // margin between sections + int align = cs->alignment(); + assert(is_power_of_2(align), "sanity"); + address start = _insts._start; + address limit = _insts._limit; + address middle = limit - size; + middle -= (intptr_t)middle & (align-1); // align the division point downward + guarantee(middle - slop > start, "need enough space to divide up"); + _insts._limit = middle - slop; // subtract desired space, plus slop + cs->initialize(middle, limit - middle); + assert(cs->start() == middle, "sanity"); + assert(cs->limit() == limit, "sanity"); + // give it some relocations to start with, if the main section has them + if (_insts.has_locs()) cs->initialize_locs(1); +} + +void CodeBuffer::freeze_section(CodeSection* cs) { + CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1); + csize_t frozen_size = cs->size(); + if (next_cs != NULL) { + frozen_size = next_cs->align_at_start(frozen_size); + } + address old_limit = cs->limit(); + address new_limit = cs->start() + frozen_size; + relocInfo* old_locs_limit = cs->locs_limit(); + relocInfo* new_locs_limit = cs->locs_end(); + // Patch the limits. + cs->_limit = new_limit; + cs->_locs_limit = new_locs_limit; + cs->_frozen = true; + if (!next_cs->is_allocated() && !next_cs->is_frozen()) { + // Give remaining buffer space to the following section. + next_cs->initialize(new_limit, old_limit - new_limit); + next_cs->initialize_shared_locs(new_locs_limit, + old_locs_limit - new_locs_limit); + } +} + +void CodeBuffer::set_blob(BufferBlob* blob) { + _blob = blob; + if (blob != NULL) { + address start = blob->content_begin(); + address end = blob->content_end(); + // Round up the starting address. + int align = _insts.alignment(); + start += (-(intptr_t)start) & (align-1); + _total_start = start; + _total_size = end - start; + } else { +#ifdef ASSERT + // Clean out dangling pointers. + _total_start = badAddress; + _consts._start = _consts._end = badAddress; + _insts._start = _insts._end = badAddress; + _stubs._start = _stubs._end = badAddress; +#endif //ASSERT + } +} + +void CodeBuffer::free_blob() { + if (_blob != NULL) { + BufferBlob::free(_blob); + set_blob(NULL); + } +} + +const char* CodeBuffer::code_section_name(int n) { +#ifdef PRODUCT + return NULL; +#else //PRODUCT + switch (n) { + case SECT_CONSTS: return "consts"; + case SECT_INSTS: return "insts"; + case SECT_STUBS: return "stubs"; + default: return NULL; + } +#endif //PRODUCT +} + +int CodeBuffer::section_index_of(address addr) const { + for (int n = 0; n < (int)SECT_LIMIT; n++) { + const CodeSection* cs = code_section(n); + if (cs->allocates(addr)) return n; + } + return SECT_NONE; +} + +int CodeBuffer::locator(address addr) const { + for (int n = 0; n < (int)SECT_LIMIT; n++) { + const CodeSection* cs = code_section(n); + if (cs->allocates(addr)) { + return locator(addr - cs->start(), n); + } + } + return -1; +} + +address CodeBuffer::locator_address(int locator) const { + if (locator < 0) return NULL; + address start = code_section(locator_sect(locator))->start(); + return start + locator_pos(locator); +} + +bool CodeBuffer::is_backward_branch(Label& L) { + return L.is_bound() && insts_end() <= locator_address(L.loc()); +} + +address CodeBuffer::decode_begin() { + address begin = _insts.start(); + if (_decode_begin != NULL && _decode_begin > begin) + begin = _decode_begin; + return begin; +} + + +GrowableArray* CodeBuffer::create_patch_overflow() { + if (_overflow_arena == NULL) { + _overflow_arena = new (mtCode) Arena(mtCode); + } + return new (_overflow_arena) GrowableArray(_overflow_arena, 8, 0, 0); +} + + +// Helper function for managing labels and their target addresses. +// Returns a sensible address, and if it is not the label's final +// address, notes the dependency (at 'branch_pc') on the label. +address CodeSection::target(Label& L, address branch_pc) { + if (L.is_bound()) { + int loc = L.loc(); + if (index() == CodeBuffer::locator_sect(loc)) { + return start() + CodeBuffer::locator_pos(loc); + } else { + return outer()->locator_address(loc); + } + } else { + assert(allocates2(branch_pc), "sanity"); + address base = start(); + int patch_loc = CodeBuffer::locator(branch_pc - base, index()); + L.add_patch_at(outer(), patch_loc); + + // Need to return a pc, doesn't matter what it is since it will be + // replaced during resolution later. + // Don't return NULL or badAddress, since branches shouldn't overflow. + // Don't return base either because that could overflow displacements + // for shorter branches. It will get checked when bound. + return branch_pc; + } +} + +void CodeSection::relocate(address at, relocInfo::relocType rtype, int format, jint method_index) { + RelocationHolder rh; + switch (rtype) { + case relocInfo::none: return; + case relocInfo::opt_virtual_call_type: { + rh = opt_virtual_call_Relocation::spec(method_index); + break; + } + case relocInfo::static_call_type: { + rh = static_call_Relocation::spec(method_index); + break; + } + case relocInfo::virtual_call_type: { + assert(method_index == 0, "resolved method overriding is not supported"); + rh = Relocation::spec_simple(rtype); + break; + } + default: { + rh = Relocation::spec_simple(rtype); + break; + } + } + relocate(at, rh, format); +} + +void CodeSection::relocate(address at, RelocationHolder const& spec, int format) { + // Do not relocate in scratch buffers. + if (scratch_emit()) { return; } + Relocation* reloc = spec.reloc(); + relocInfo::relocType rtype = (relocInfo::relocType) reloc->type(); + if (rtype == relocInfo::none) return; + + // The assertion below has been adjusted, to also work for + // relocation for fixup. Sometimes we want to put relocation + // information for the next instruction, since it will be patched + // with a call. + assert(start() <= at && at <= end()+1, + "cannot relocate data outside code boundaries"); + + if (!has_locs()) { + // no space for relocation information provided => code cannot be + // relocated. Make sure that relocate is only called with rtypes + // that can be ignored for this kind of code. + assert(rtype == relocInfo::none || + rtype == relocInfo::runtime_call_type || + rtype == relocInfo::internal_word_type|| + rtype == relocInfo::section_word_type || + rtype == relocInfo::external_word_type, + "code needs relocation information"); + // leave behind an indication that we attempted a relocation + DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress); + return; + } + + // Advance the point, noting the offset we'll have to record. + csize_t offset = at - locs_point(); + set_locs_point(at); + + // Test for a couple of overflow conditions; maybe expand the buffer. + relocInfo* end = locs_end(); + relocInfo* req = end + relocInfo::length_limit; + // Check for (potential) overflow + if (req >= locs_limit() || offset >= relocInfo::offset_limit()) { + req += (uint)offset / (uint)relocInfo::offset_limit(); + if (req >= locs_limit()) { + // Allocate or reallocate. + expand_locs(locs_count() + (req - end)); + // reload pointer + end = locs_end(); + } + } + + // If the offset is giant, emit filler relocs, of type 'none', but + // each carrying the largest possible offset, to advance the locs_point. + while (offset >= relocInfo::offset_limit()) { + assert(end < locs_limit(), "adjust previous paragraph of code"); + *end++ = filler_relocInfo(); + offset -= filler_relocInfo().addr_offset(); + } + + // If it's a simple reloc with no data, we'll just write (rtype | offset). + (*end) = relocInfo(rtype, offset, format); + + // If it has data, insert the prefix, as (data_prefix_tag | data1), data2. + end->initialize(this, reloc); +} + +void CodeSection::initialize_locs(int locs_capacity) { + assert(_locs_start == NULL, "only one locs init step, please"); + // Apply a priori lower limits to relocation size: + csize_t min_locs = MAX2(size() / 16, (csize_t)4); + if (locs_capacity < min_locs) locs_capacity = min_locs; + relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity); + _locs_start = locs_start; + _locs_end = locs_start; + _locs_limit = locs_start + locs_capacity; + _locs_own = true; +} + +void CodeSection::initialize_shared_locs(relocInfo* buf, int length) { + assert(_locs_start == NULL, "do this before locs are allocated"); + // Internal invariant: locs buf must be fully aligned. + // See copy_relocations_to() below. + while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) { + ++buf; --length; + } + if (length > 0) { + _locs_start = buf; + _locs_end = buf; + _locs_limit = buf + length; + _locs_own = false; + } +} + +void CodeSection::initialize_locs_from(const CodeSection* source_cs) { + int lcount = source_cs->locs_count(); + if (lcount != 0) { + initialize_shared_locs(source_cs->locs_start(), lcount); + _locs_end = _locs_limit = _locs_start + lcount; + assert(is_allocated(), "must have copied code already"); + set_locs_point(start() + source_cs->locs_point_off()); + } + assert(this->locs_count() == source_cs->locs_count(), "sanity"); +} + +void CodeSection::expand_locs(int new_capacity) { + if (_locs_start == NULL) { + initialize_locs(new_capacity); + return; + } else { + int old_count = locs_count(); + int old_capacity = locs_capacity(); + if (new_capacity < old_capacity * 2) + new_capacity = old_capacity * 2; + relocInfo* locs_start; + if (_locs_own) { + locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity); + } else { + locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity); + Copy::conjoint_jbytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo)); + _locs_own = true; + } + _locs_start = locs_start; + _locs_end = locs_start + old_count; + _locs_limit = locs_start + new_capacity; + } +} + + +/// Support for emitting the code to its final location. +/// The pattern is the same for all functions. +/// We iterate over all the sections, padding each to alignment. + +csize_t CodeBuffer::total_content_size() const { + csize_t size_so_far = 0; + for (int n = 0; n < (int)SECT_LIMIT; n++) { + const CodeSection* cs = code_section(n); + if (cs->is_empty()) continue; // skip trivial section + size_so_far = cs->align_at_start(size_so_far); + size_so_far += cs->size(); + } + return size_so_far; +} + +void CodeBuffer::compute_final_layout(CodeBuffer* dest) const { + address buf = dest->_total_start; + csize_t buf_offset = 0; + assert(dest->_total_size >= total_content_size(), "must be big enough"); + + { + // not sure why this is here, but why not... + int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment); + assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment"); + } + + const CodeSection* prev_cs = NULL; + CodeSection* prev_dest_cs = NULL; + + for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) { + // figure compact layout of each section + const CodeSection* cs = code_section(n); + csize_t csize = cs->size(); + + CodeSection* dest_cs = dest->code_section(n); + if (!cs->is_empty()) { + // Compute initial padding; assign it to the previous non-empty guy. + // Cf. figure_expanded_capacities. + csize_t padding = cs->align_at_start(buf_offset) - buf_offset; + if (padding != 0) { + buf_offset += padding; + assert(prev_dest_cs != NULL, "sanity"); + prev_dest_cs->_limit += padding; + } + #ifdef ASSERT + if (prev_cs != NULL && prev_cs->is_frozen() && n < (SECT_LIMIT - 1)) { + // Make sure the ends still match up. + // This is important because a branch in a frozen section + // might target code in a following section, via a Label, + // and without a relocation record. See Label::patch_instructions. + address dest_start = buf+buf_offset; + csize_t start2start = cs->start() - prev_cs->start(); + csize_t dest_start2start = dest_start - prev_dest_cs->start(); + assert(start2start == dest_start2start, "cannot stretch frozen sect"); + } + #endif //ASSERT + prev_dest_cs = dest_cs; + prev_cs = cs; + } + + debug_only(dest_cs->_start = NULL); // defeat double-initialization assert + dest_cs->initialize(buf+buf_offset, csize); + dest_cs->set_end(buf+buf_offset+csize); + assert(dest_cs->is_allocated(), "must always be allocated"); + assert(cs->is_empty() == dest_cs->is_empty(), "sanity"); + + buf_offset += csize; + } + + // Done calculating sections; did it come out to the right end? + assert(buf_offset == total_content_size(), "sanity"); + dest->verify_section_allocation(); +} + +// Append an oop reference that keeps the class alive. +static void append_oop_references(GrowableArray* oops, Klass* k) { + oop cl = k->klass_holder(); + if (cl != NULL && !oops->contains(cl)) { + oops->append(cl); + } +} + +void CodeBuffer::finalize_oop_references(const methodHandle& mh) { + NoSafepointVerifier nsv; + + GrowableArray oops; + + // Make sure that immediate metadata records something in the OopRecorder + for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) { + // pull code out of each section + CodeSection* cs = code_section(n); + if (cs->is_empty()) continue; // skip trivial section + RelocIterator iter(cs); + while (iter.next()) { + if (iter.type() == relocInfo::metadata_type) { + metadata_Relocation* md = iter.metadata_reloc(); + if (md->metadata_is_immediate()) { + Metadata* m = md->metadata_value(); + if (oop_recorder()->is_real(m)) { + if (m->is_methodData()) { + m = ((MethodData*)m)->method(); + } + if (m->is_method()) { + m = ((Method*)m)->method_holder(); + } + if (m->is_klass()) { + append_oop_references(&oops, (Klass*)m); + } else { + // XXX This will currently occur for MDO which don't + // have a backpointer. This has to be fixed later. + m->print(); + ShouldNotReachHere(); + } + } + } + } + } + } + + if (!oop_recorder()->is_unused()) { + for (int i = 0; i < oop_recorder()->metadata_count(); i++) { + Metadata* m = oop_recorder()->metadata_at(i); + if (oop_recorder()->is_real(m)) { + if (m->is_methodData()) { + m = ((MethodData*)m)->method(); + } + if (m->is_method()) { + m = ((Method*)m)->method_holder(); + } + if (m->is_klass()) { + append_oop_references(&oops, (Klass*)m); + } else { + m->print(); + ShouldNotReachHere(); + } + } + } + + } + + // Add the class loader of Method* for the nmethod itself + append_oop_references(&oops, mh->method_holder()); + + // Add any oops that we've found + Thread* thread = Thread::current(); + for (int i = 0; i < oops.length(); i++) { + oop_recorder()->find_index((jobject)thread->handle_area()->allocate_handle(oops.at(i))); + } +} + + + +csize_t CodeBuffer::total_offset_of(const CodeSection* cs) const { + csize_t size_so_far = 0; + for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) { + const CodeSection* cur_cs = code_section(n); + if (!cur_cs->is_empty()) { + size_so_far = cur_cs->align_at_start(size_so_far); + } + if (cur_cs->index() == cs->index()) { + return size_so_far; + } + size_so_far += cur_cs->size(); + } + ShouldNotReachHere(); + return -1; +} + +csize_t CodeBuffer::total_relocation_size() const { + csize_t total = copy_relocations_to(NULL); // dry run only + return (csize_t) align_up(total, HeapWordSize); +} + +csize_t CodeBuffer::copy_relocations_to(address buf, csize_t buf_limit, bool only_inst) const { + csize_t buf_offset = 0; + csize_t code_end_so_far = 0; + csize_t code_point_so_far = 0; + + assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned"); + assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized"); + + for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) { + if (only_inst && (n != (int)SECT_INSTS)) { + // Need only relocation info for code. + continue; + } + // pull relocs out of each section + const CodeSection* cs = code_section(n); + assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity"); + if (cs->is_empty()) continue; // skip trivial section + relocInfo* lstart = cs->locs_start(); + relocInfo* lend = cs->locs_end(); + csize_t lsize = (csize_t)( (address)lend - (address)lstart ); + csize_t csize = cs->size(); + code_end_so_far = cs->align_at_start(code_end_so_far); + + if (lsize > 0) { + // Figure out how to advance the combined relocation point + // first to the beginning of this section. + // We'll insert one or more filler relocs to span that gap. + // (Don't bother to improve this by editing the first reloc's offset.) + csize_t new_code_point = code_end_so_far; + for (csize_t jump; + code_point_so_far < new_code_point; + code_point_so_far += jump) { + jump = new_code_point - code_point_so_far; + relocInfo filler = filler_relocInfo(); + if (jump >= filler.addr_offset()) { + jump = filler.addr_offset(); + } else { // else shrink the filler to fit + filler = relocInfo(relocInfo::none, jump); + } + if (buf != NULL) { + assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds"); + *(relocInfo*)(buf+buf_offset) = filler; + } + buf_offset += sizeof(filler); + } + + // Update code point and end to skip past this section: + csize_t last_code_point = code_end_so_far + cs->locs_point_off(); + assert(code_point_so_far <= last_code_point, "sanity"); + code_point_so_far = last_code_point; // advance past this guy's relocs + } + code_end_so_far += csize; // advance past this guy's instructions too + + // Done with filler; emit the real relocations: + if (buf != NULL && lsize != 0) { + assert(buf_offset + lsize <= buf_limit, "target in bounds"); + assert((uintptr_t)lstart % HeapWordSize == 0, "sane start"); + if (buf_offset % HeapWordSize == 0) { + // Use wordwise copies if possible: + Copy::disjoint_words((HeapWord*)lstart, + (HeapWord*)(buf+buf_offset), + (lsize + HeapWordSize-1) / HeapWordSize); + } else { + Copy::conjoint_jbytes(lstart, buf+buf_offset, lsize); + } + } + buf_offset += lsize; + } + + // Align end of relocation info in target. + while (buf_offset % HeapWordSize != 0) { + if (buf != NULL) { + relocInfo padding = relocInfo(relocInfo::none, 0); + assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds"); + *(relocInfo*)(buf+buf_offset) = padding; + } + buf_offset += sizeof(relocInfo); + } + + assert(only_inst || code_end_so_far == total_content_size(), "sanity"); + + return buf_offset; +} + +csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const { + address buf = NULL; + csize_t buf_offset = 0; + csize_t buf_limit = 0; + + if (dest != NULL) { + buf = (address)dest->relocation_begin(); + buf_limit = (address)dest->relocation_end() - buf; + } + // if dest == NULL, this is just the sizing pass + // + buf_offset = copy_relocations_to(buf, buf_limit, false); + + return buf_offset; +} + +void CodeBuffer::copy_code_to(CodeBlob* dest_blob) { +#ifndef PRODUCT + if (PrintNMethods && (WizardMode || Verbose)) { + tty->print("done with CodeBuffer:"); + ((CodeBuffer*)this)->print(); + } +#endif //PRODUCT + + CodeBuffer dest(dest_blob); + assert(dest_blob->content_size() >= total_content_size(), "good sizing"); + this->compute_final_layout(&dest); + + // Set beginning of constant table before relocating. + dest_blob->set_ctable_begin(dest.consts()->start()); + + relocate_code_to(&dest); + + // transfer strings and comments from buffer to blob + dest_blob->set_strings(_code_strings); + + // Done moving code bytes; were they the right size? + assert((int)align_up(dest.total_content_size(), oopSize) == dest_blob->content_size(), "sanity"); + + // Flush generated code + ICache::invalidate_range(dest_blob->code_begin(), dest_blob->code_size()); +} + +// Move all my code into another code buffer. Consult applicable +// relocs to repair embedded addresses. The layout in the destination +// CodeBuffer is different to the source CodeBuffer: the destination +// CodeBuffer gets the final layout (consts, insts, stubs in order of +// ascending address). +void CodeBuffer::relocate_code_to(CodeBuffer* dest) const { + address dest_end = dest->_total_start + dest->_total_size; + address dest_filled = NULL; + for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) { + // pull code out of each section + const CodeSection* cs = code_section(n); + if (cs->is_empty()) continue; // skip trivial section + CodeSection* dest_cs = dest->code_section(n); + assert(cs->size() == dest_cs->size(), "sanity"); + csize_t usize = dest_cs->size(); + csize_t wsize = align_up(usize, HeapWordSize); + assert(dest_cs->start() + wsize <= dest_end, "no overflow"); + // Copy the code as aligned machine words. + // This may also include an uninitialized partial word at the end. + Copy::disjoint_words((HeapWord*)cs->start(), + (HeapWord*)dest_cs->start(), + wsize / HeapWordSize); + + if (dest->blob() == NULL) { + // Destination is a final resting place, not just another buffer. + // Normalize uninitialized bytes in the final padding. + Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(), + Assembler::code_fill_byte()); + } + // Keep track of the highest filled address + dest_filled = MAX2(dest_filled, dest_cs->end() + dest_cs->remaining()); + + assert(cs->locs_start() != (relocInfo*)badAddress, + "this section carries no reloc storage, but reloc was attempted"); + + // Make the new code copy use the old copy's relocations: + dest_cs->initialize_locs_from(cs); + } + + // Do relocation after all sections are copied. + // This is necessary if the code uses constants in stubs, which are + // relocated when the corresponding instruction in the code (e.g., a + // call) is relocated. Stubs are placed behind the main code + // section, so that section has to be copied before relocating. + for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) { + // pull code out of each section + const CodeSection* cs = code_section(n); + if (cs->is_empty()) continue; // skip trivial section + CodeSection* dest_cs = dest->code_section(n); + { // Repair the pc relative information in the code after the move + RelocIterator iter(dest_cs); + while (iter.next()) { + iter.reloc()->fix_relocation_after_move(this, dest); + } + } + } + + if (dest->blob() == NULL && dest_filled != NULL) { + // Destination is a final resting place, not just another buffer. + // Normalize uninitialized bytes in the final padding. + Copy::fill_to_bytes(dest_filled, dest_end - dest_filled, + Assembler::code_fill_byte()); + + } +} + +csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs, + csize_t amount, + csize_t* new_capacity) { + csize_t new_total_cap = 0; + + for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) { + const CodeSection* sect = code_section(n); + + if (!sect->is_empty()) { + // Compute initial padding; assign it to the previous section, + // even if it's empty (e.g. consts section can be empty). + // Cf. compute_final_layout + csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap; + if (padding != 0) { + new_total_cap += padding; + assert(n - 1 >= SECT_FIRST, "sanity"); + new_capacity[n - 1] += padding; + } + } + + csize_t exp = sect->size(); // 100% increase + if ((uint)exp < 4*K) exp = 4*K; // minimum initial increase + if (sect == which_cs) { + if (exp < amount) exp = amount; + if (StressCodeBuffers) exp = amount; // expand only slightly + } else if (n == SECT_INSTS) { + // scale down inst increases to a more modest 25% + exp = 4*K + ((exp - 4*K) >> 2); + if (StressCodeBuffers) exp = amount / 2; // expand only slightly + } else if (sect->is_empty()) { + // do not grow an empty secondary section + exp = 0; + } + // Allow for inter-section slop: + exp += CodeSection::end_slop(); + csize_t new_cap = sect->size() + exp; + if (new_cap < sect->capacity()) { + // No need to expand after all. + new_cap = sect->capacity(); + } + new_capacity[n] = new_cap; + new_total_cap += new_cap; + } + + return new_total_cap; +} + +void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) { +#ifndef PRODUCT + if (PrintNMethods && (WizardMode || Verbose)) { + tty->print("expanding CodeBuffer:"); + this->print(); + } + + if (StressCodeBuffers && blob() != NULL) { + static int expand_count = 0; + if (expand_count >= 0) expand_count += 1; + if (expand_count > 100 && is_power_of_2(expand_count)) { + tty->print_cr("StressCodeBuffers: have expanded %d times", expand_count); + // simulate an occasional allocation failure: + free_blob(); + } + } +#endif //PRODUCT + + // Resizing must be allowed + { + if (blob() == NULL) return; // caller must check for blob == NULL + for (int n = 0; n < (int)SECT_LIMIT; n++) { + guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen"); + } + } + + // Figure new capacity for each section. + csize_t new_capacity[SECT_LIMIT]; + memset(new_capacity, 0, sizeof(csize_t) * SECT_LIMIT); + csize_t new_total_cap + = figure_expanded_capacities(which_cs, amount, new_capacity); + + // Create a new (temporary) code buffer to hold all the new data + CodeBuffer cb(name(), new_total_cap, 0); + if (cb.blob() == NULL) { + // Failed to allocate in code cache. + free_blob(); + return; + } + + // Create an old code buffer to remember which addresses used to go where. + // This will be useful when we do final assembly into the code cache, + // because we will need to know how to warp any internal address that + // has been created at any time in this CodeBuffer's past. + CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size); + bxp->take_over_code_from(this); // remember the old undersized blob + DEBUG_ONLY(this->_blob = NULL); // silence a later assert + bxp->_before_expand = this->_before_expand; + this->_before_expand = bxp; + + // Give each section its required (expanded) capacity. + for (int n = (int)SECT_LIMIT-1; n >= SECT_FIRST; n--) { + CodeSection* cb_sect = cb.code_section(n); + CodeSection* this_sect = code_section(n); + if (new_capacity[n] == 0) continue; // already nulled out + if (n != SECT_INSTS) { + cb.initialize_section_size(cb_sect, new_capacity[n]); + } + assert(cb_sect->capacity() >= new_capacity[n], "big enough"); + address cb_start = cb_sect->start(); + cb_sect->set_end(cb_start + this_sect->size()); + if (this_sect->mark() == NULL) { + cb_sect->clear_mark(); + } else { + cb_sect->set_mark(cb_start + this_sect->mark_off()); + } + } + + // Needs to be initialized when calling fix_relocation_after_move. + cb.blob()->set_ctable_begin(cb.consts()->start()); + + // Move all the code and relocations to the new blob: + relocate_code_to(&cb); + + // Copy the temporary code buffer into the current code buffer. + // Basically, do {*this = cb}, except for some control information. + this->take_over_code_from(&cb); + cb.set_blob(NULL); + + // Zap the old code buffer contents, to avoid mistakenly using them. + debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size, + badCodeHeapFreeVal)); + + _decode_begin = NULL; // sanity + + // Make certain that the new sections are all snugly inside the new blob. + verify_section_allocation(); + +#ifndef PRODUCT + if (PrintNMethods && (WizardMode || Verbose)) { + tty->print("expanded CodeBuffer:"); + this->print(); + } +#endif //PRODUCT +} + +void CodeBuffer::take_over_code_from(CodeBuffer* cb) { + // Must already have disposed of the old blob somehow. + assert(blob() == NULL, "must be empty"); + // Take the new blob away from cb. + set_blob(cb->blob()); + // Take over all the section pointers. + for (int n = 0; n < (int)SECT_LIMIT; n++) { + CodeSection* cb_sect = cb->code_section(n); + CodeSection* this_sect = code_section(n); + this_sect->take_over_code_from(cb_sect); + } + _overflow_arena = cb->_overflow_arena; + // Make sure the old cb won't try to use it or free it. + DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress); +} + +void CodeBuffer::verify_section_allocation() { + address tstart = _total_start; + if (tstart == badAddress) return; // smashed by set_blob(NULL) + address tend = tstart + _total_size; + if (_blob != NULL) { + + guarantee(tstart >= _blob->content_begin(), "sanity"); + guarantee(tend <= _blob->content_end(), "sanity"); + } + // Verify disjointness. + for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) { + CodeSection* sect = code_section(n); + if (!sect->is_allocated() || sect->is_empty()) continue; + guarantee((intptr_t)sect->start() % sect->alignment() == 0 + || sect->is_empty() || _blob == NULL, + "start is aligned"); + for (int m = (int) SECT_FIRST; m < (int) SECT_LIMIT; m++) { + CodeSection* other = code_section(m); + if (!other->is_allocated() || other == sect) continue; + guarantee(!other->contains(sect->start() ), "sanity"); + // limit is an exclusive address and can be the start of another + // section. + guarantee(!other->contains(sect->limit() - 1), "sanity"); + } + guarantee(sect->end() <= tend, "sanity"); + guarantee(sect->end() <= sect->limit(), "sanity"); + } +} + +void CodeBuffer::log_section_sizes(const char* name) { + if (xtty != NULL) { + ttyLocker ttyl; + // log info about buffer usage + xtty->print_cr("", name, _total_size); + for (int n = (int) CodeBuffer::SECT_FIRST; n < (int) CodeBuffer::SECT_LIMIT; n++) { + CodeSection* sect = code_section(n); + if (!sect->is_allocated() || sect->is_empty()) continue; + xtty->print_cr("", + n, sect->limit() - sect->start(), sect->limit() - sect->end()); + } + xtty->print_cr(""); + } +} + +#ifndef PRODUCT + +void CodeSection::dump() { + address ptr = start(); + for (csize_t step; ptr < end(); ptr += step) { + step = end() - ptr; + if (step > jintSize * 4) step = jintSize * 4; + tty->print(INTPTR_FORMAT ": ", p2i(ptr)); + while (step > 0) { + tty->print(" " PTR32_FORMAT, *(jint*)ptr); + ptr += jintSize; + } + tty->cr(); + } +} + + +void CodeSection::decode() { + Disassembler::decode(start(), end()); +} + + +void CodeBuffer::block_comment(intptr_t offset, const char * comment) { + _code_strings.add_comment(offset, comment); +} + +const char* CodeBuffer::code_string(const char* str) { + return _code_strings.add_string(str); +} + +class CodeString: public CHeapObj { + private: + friend class CodeStrings; + const char * _string; + CodeString* _next; + intptr_t _offset; + + ~CodeString() { + assert(_next == NULL, "wrong interface for freeing list"); + os::free((void*)_string); + } + + bool is_comment() const { return _offset >= 0; } + + public: + CodeString(const char * string, intptr_t offset = -1) + : _next(NULL), _offset(offset) { + _string = os::strdup(string, mtCode); + } + + const char * string() const { return _string; } + intptr_t offset() const { assert(_offset >= 0, "offset for non comment?"); return _offset; } + CodeString* next() const { return _next; } + + void set_next(CodeString* next) { _next = next; } + + CodeString* first_comment() { + if (is_comment()) { + return this; + } else { + return next_comment(); + } + } + CodeString* next_comment() const { + CodeString* s = _next; + while (s != NULL && !s->is_comment()) { + s = s->_next; + } + return s; + } +}; + +CodeString* CodeStrings::find(intptr_t offset) const { + CodeString* a = _strings->first_comment(); + while (a != NULL && a->offset() != offset) { + a = a->next_comment(); + } + return a; +} + +// Convenience for add_comment. +CodeString* CodeStrings::find_last(intptr_t offset) const { + CodeString* a = find(offset); + if (a != NULL) { + CodeString* c = NULL; + while (((c = a->next_comment()) != NULL) && (c->offset() == offset)) { + a = c; + } + } + return a; +} + +void CodeStrings::add_comment(intptr_t offset, const char * comment) { + check_valid(); + CodeString* c = new CodeString(comment, offset); + CodeString* inspos = (_strings == NULL) ? NULL : find_last(offset); + + if (inspos) { + // insert after already existing comments with same offset + c->set_next(inspos->next()); + inspos->set_next(c); + } else { + // no comments with such offset, yet. Insert before anything else. + c->set_next(_strings); + _strings = c; + } +} + +void CodeStrings::assign(CodeStrings& other) { + other.check_valid(); + assert(is_null(), "Cannot assign onto non-empty CodeStrings"); + _strings = other._strings; +#ifdef ASSERT + _defunct = false; +#endif + other.set_null_and_invalidate(); +} + +// Deep copy of CodeStrings for consistent memory management. +// Only used for actual disassembly so this is cheaper than reference counting +// for the "normal" fastdebug case. +void CodeStrings::copy(CodeStrings& other) { + other.check_valid(); + check_valid(); + assert(is_null(), "Cannot copy onto non-empty CodeStrings"); + CodeString* n = other._strings; + CodeString** ps = &_strings; + while (n != NULL) { + *ps = new CodeString(n->string(),n->_offset); + ps = &((*ps)->_next); + n = n->next(); + } +} + +const char* CodeStrings::_prefix = " ;; "; // default: can be changed via set_prefix + +void CodeStrings::print_block_comment(outputStream* stream, intptr_t offset) const { + check_valid(); + if (_strings != NULL) { + CodeString* c = find(offset); + while (c && c->offset() == offset) { + stream->bol(); + stream->print("%s", _prefix); + // Don't interpret as format strings since it could contain % + stream->print_raw_cr(c->string()); + c = c->next_comment(); + } + } +} + +// Also sets isNull() +void CodeStrings::free() { + CodeString* n = _strings; + while (n) { + // unlink the node from the list saving a pointer to the next + CodeString* p = n->next(); + n->set_next(NULL); + delete n; + n = p; + } + set_null_and_invalidate(); +} + +const char* CodeStrings::add_string(const char * string) { + check_valid(); + CodeString* s = new CodeString(string); + s->set_next(_strings); + _strings = s; + assert(s->string() != NULL, "should have a string"); + return s->string(); +} + +void CodeBuffer::decode() { + ttyLocker ttyl; + Disassembler::decode(decode_begin(), insts_end()); + _decode_begin = insts_end(); +} + + +void CodeBuffer::skip_decode() { + _decode_begin = insts_end(); +} + + +void CodeBuffer::decode_all() { + ttyLocker ttyl; + for (int n = 0; n < (int)SECT_LIMIT; n++) { + // dump contents of each section + CodeSection* cs = code_section(n); + tty->print_cr("! %s:", code_section_name(n)); + if (cs != consts()) + cs->decode(); + else + cs->dump(); + } +} + + +void CodeSection::print(const char* name) { + csize_t locs_size = locs_end() - locs_start(); + tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s", + name, p2i(start()), p2i(end()), p2i(limit()), size(), capacity(), + is_frozen()? " [frozen]": ""); + tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d", + name, p2i(locs_start()), p2i(locs_end()), p2i(locs_limit()), locs_size, locs_capacity(), locs_point_off()); + if (PrintRelocations) { + RelocIterator iter(this); + iter.print(); + } +} + +void CodeBuffer::print() { + if (this == NULL) { + tty->print_cr("NULL CodeBuffer pointer"); + return; + } + + tty->print_cr("CodeBuffer:"); + for (int n = 0; n < (int)SECT_LIMIT; n++) { + // print each section + CodeSection* cs = code_section(n); + cs->print(code_section_name(n)); + } +} + +#endif // PRODUCT