1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "compiler/disassembler.hpp"
  28 #include "oops/methodData.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "runtime/icache.hpp"
  31 #include "runtime/safepointVerifiers.hpp"
  32 #include "utilities/align.hpp"
  33 #include "utilities/copy.hpp"
  34 #include "utilities/xmlstream.hpp"
  35 
  36 // The structure of a CodeSection:
  37 //
  38 //    _start ->           +----------------+
  39 //                        | machine code...|
  40 //    _end ->             |----------------|
  41 //                        |                |
  42 //                        |    (empty)     |
  43 //                        |                |
  44 //                        |                |
  45 //                        +----------------+
  46 //    _limit ->           |                |
  47 //
  48 //    _locs_start ->      +----------------+
  49 //                        |reloc records...|
  50 //                        |----------------|
  51 //    _locs_end ->        |                |
  52 //                        |                |
  53 //                        |    (empty)     |
  54 //                        |                |
  55 //                        |                |
  56 //                        +----------------+
  57 //    _locs_limit ->      |                |
  58 // The _end (resp. _limit) pointer refers to the first
  59 // unused (resp. unallocated) byte.
  60 
  61 // The structure of the CodeBuffer while code is being accumulated:
  62 //
  63 //    _total_start ->    \
  64 //    _insts._start ->              +----------------+
  65 //                                  |                |
  66 //                                  |     Code       |
  67 //                                  |                |
  68 //    _stubs._start ->              |----------------|
  69 //                                  |                |
  70 //                                  |    Stubs       | (also handlers for deopt/exception)
  71 //                                  |                |
  72 //    _consts._start ->             |----------------|
  73 //                                  |                |
  74 //                                  |   Constants    |
  75 //                                  |                |
  76 //                                  +----------------+
  77 //    + _total_size ->              |                |
  78 //
  79 // When the code and relocations are copied to the code cache,
  80 // the empty parts of each section are removed, and everything
  81 // is copied into contiguous locations.
  82 
  83 typedef CodeBuffer::csize_t csize_t;  // file-local definition
  84 
  85 // External buffer, in a predefined CodeBlob.
  86 // Important: The code_start must be taken exactly, and not realigned.
  87 CodeBuffer::CodeBuffer(CodeBlob* blob) {
  88   initialize_misc("static buffer");
  89   initialize(blob->content_begin(), blob->content_size());
  90   verify_section_allocation();
  91 }
  92 
  93 void CodeBuffer::initialize(csize_t code_size, csize_t locs_size) {
  94   // Compute maximal alignment.
  95   int align = _insts.alignment();
  96   // Always allow for empty slop around each section.
  97   int slop = (int) CodeSection::end_slop();
  98 
  99   assert(blob() == NULL, "only once");
 100   set_blob(BufferBlob::create(_name, code_size + (align+slop) * (SECT_LIMIT+1)));
 101   if (blob() == NULL) {
 102     // The assembler constructor will throw a fatal on an empty CodeBuffer.
 103     return;  // caller must test this
 104   }
 105 
 106   // Set up various pointers into the blob.
 107   initialize(_total_start, _total_size);
 108 
 109   assert((uintptr_t)insts_begin() % CodeEntryAlignment == 0, "instruction start not code entry aligned");
 110 
 111   pd_initialize();
 112 
 113   if (locs_size != 0) {
 114     _insts.initialize_locs(locs_size / sizeof(relocInfo));
 115   }
 116 
 117   verify_section_allocation();
 118 }
 119 
 120 
 121 CodeBuffer::~CodeBuffer() {
 122   verify_section_allocation();
 123 
 124   // If we allocate our code buffer from the CodeCache
 125   // via a BufferBlob, and it's not permanent, then
 126   // free the BufferBlob.
 127   // The rest of the memory will be freed when the ResourceObj
 128   // is released.
 129   for (CodeBuffer* cb = this; cb != NULL; cb = cb->before_expand()) {
 130     // Previous incarnations of this buffer are held live, so that internal
 131     // addresses constructed before expansions will not be confused.
 132     cb->free_blob();
 133   }
 134 
 135   // free any overflow storage
 136   delete _overflow_arena;
 137 
 138   // Claim is that stack allocation ensures resources are cleaned up.
 139   // This is resource clean up, let's hope that all were properly copied out.
 140   free_strings();
 141 
 142 #ifdef ASSERT
 143   // Save allocation type to execute assert in ~ResourceObj()
 144   // which is called after this destructor.
 145   assert(_default_oop_recorder.allocated_on_stack(), "should be embedded object");
 146   ResourceObj::allocation_type at = _default_oop_recorder.get_allocation_type();
 147   Copy::fill_to_bytes(this, sizeof(*this), badResourceValue);
 148   ResourceObj::set_allocation_type((address)(&_default_oop_recorder), at);
 149 #endif
 150 }
 151 
 152 void CodeBuffer::initialize_oop_recorder(OopRecorder* r) {
 153   assert(_oop_recorder == &_default_oop_recorder && _default_oop_recorder.is_unused(), "do this once");
 154   DEBUG_ONLY(_default_oop_recorder.freeze());  // force unused OR to be frozen
 155   _oop_recorder = r;
 156 }
 157 
 158 void CodeBuffer::initialize_section_size(CodeSection* cs, csize_t size) {
 159   assert(cs != &_insts, "insts is the memory provider, not the consumer");
 160   csize_t slop = CodeSection::end_slop();  // margin between sections
 161   int align = cs->alignment();
 162   assert(is_power_of_2(align), "sanity");
 163   address start  = _insts._start;
 164   address limit  = _insts._limit;
 165   address middle = limit - size;
 166   middle -= (intptr_t)middle & (align-1);  // align the division point downward
 167   guarantee(middle - slop > start, "need enough space to divide up");
 168   _insts._limit = middle - slop;  // subtract desired space, plus slop
 169   cs->initialize(middle, limit - middle);
 170   assert(cs->start() == middle, "sanity");
 171   assert(cs->limit() == limit,  "sanity");
 172   // give it some relocations to start with, if the main section has them
 173   if (_insts.has_locs())  cs->initialize_locs(1);
 174 }
 175 
 176 void CodeBuffer::freeze_section(CodeSection* cs) {
 177   CodeSection* next_cs = (cs == consts())? NULL: code_section(cs->index()+1);
 178   csize_t frozen_size = cs->size();
 179   if (next_cs != NULL) {
 180     frozen_size = next_cs->align_at_start(frozen_size);
 181   }
 182   address old_limit = cs->limit();
 183   address new_limit = cs->start() + frozen_size;
 184   relocInfo* old_locs_limit = cs->locs_limit();
 185   relocInfo* new_locs_limit = cs->locs_end();
 186   // Patch the limits.
 187   cs->_limit = new_limit;
 188   cs->_locs_limit = new_locs_limit;
 189   cs->_frozen = true;
 190   if (!next_cs->is_allocated() && !next_cs->is_frozen()) {
 191     // Give remaining buffer space to the following section.
 192     next_cs->initialize(new_limit, old_limit - new_limit);
 193     next_cs->initialize_shared_locs(new_locs_limit,
 194                                     old_locs_limit - new_locs_limit);
 195   }
 196 }
 197 
 198 void CodeBuffer::set_blob(BufferBlob* blob) {
 199   _blob = blob;
 200   if (blob != NULL) {
 201     address start = blob->content_begin();
 202     address end   = blob->content_end();
 203     // Round up the starting address.
 204     int align = _insts.alignment();
 205     start += (-(intptr_t)start) & (align-1);
 206     _total_start = start;
 207     _total_size  = end - start;
 208   } else {
 209 #ifdef ASSERT
 210     // Clean out dangling pointers.
 211     _total_start    = badAddress;
 212     _consts._start  = _consts._end  = badAddress;
 213     _insts._start   = _insts._end   = badAddress;
 214     _stubs._start   = _stubs._end   = badAddress;
 215 #endif //ASSERT
 216   }
 217 }
 218 
 219 void CodeBuffer::free_blob() {
 220   if (_blob != NULL) {
 221     BufferBlob::free(_blob);
 222     set_blob(NULL);
 223   }
 224 }
 225 
 226 const char* CodeBuffer::code_section_name(int n) {
 227 #ifdef PRODUCT
 228   return NULL;
 229 #else //PRODUCT
 230   switch (n) {
 231   case SECT_CONSTS:            return "consts";
 232   case SECT_INSTS:             return "insts";
 233   case SECT_STUBS:             return "stubs";
 234   default:                     return NULL;
 235   }
 236 #endif //PRODUCT
 237 }
 238 
 239 int CodeBuffer::section_index_of(address addr) const {
 240   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 241     const CodeSection* cs = code_section(n);
 242     if (cs->allocates(addr))  return n;
 243   }
 244   return SECT_NONE;
 245 }
 246 
 247 int CodeBuffer::locator(address addr) const {
 248   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 249     const CodeSection* cs = code_section(n);
 250     if (cs->allocates(addr)) {
 251       return locator(addr - cs->start(), n);
 252     }
 253   }
 254   return -1;
 255 }
 256 
 257 address CodeBuffer::locator_address(int locator) const {
 258   if (locator < 0)  return NULL;
 259   address start = code_section(locator_sect(locator))->start();
 260   return start + locator_pos(locator);
 261 }
 262 
 263 bool CodeBuffer::is_backward_branch(Label& L) {
 264   return L.is_bound() && insts_end() <= locator_address(L.loc());
 265 }
 266 
 267 address CodeBuffer::decode_begin() {
 268   address begin = _insts.start();
 269   if (_decode_begin != NULL && _decode_begin > begin)
 270     begin = _decode_begin;
 271   return begin;
 272 }
 273 
 274 
 275 GrowableArray<int>* CodeBuffer::create_patch_overflow() {
 276   if (_overflow_arena == NULL) {
 277     _overflow_arena = new (mtCode) Arena(mtCode);
 278   }
 279   return new (_overflow_arena) GrowableArray<int>(_overflow_arena, 8, 0, 0);
 280 }
 281 
 282 
 283 // Helper function for managing labels and their target addresses.
 284 // Returns a sensible address, and if it is not the label's final
 285 // address, notes the dependency (at 'branch_pc') on the label.
 286 address CodeSection::target(Label& L, address branch_pc) {
 287   if (L.is_bound()) {
 288     int loc = L.loc();
 289     if (index() == CodeBuffer::locator_sect(loc)) {
 290       return start() + CodeBuffer::locator_pos(loc);
 291     } else {
 292       return outer()->locator_address(loc);
 293     }
 294   } else {
 295     assert(allocates2(branch_pc), "sanity");
 296     address base = start();
 297     int patch_loc = CodeBuffer::locator(branch_pc - base, index());
 298     L.add_patch_at(outer(), patch_loc);
 299 
 300     // Need to return a pc, doesn't matter what it is since it will be
 301     // replaced during resolution later.
 302     // Don't return NULL or badAddress, since branches shouldn't overflow.
 303     // Don't return base either because that could overflow displacements
 304     // for shorter branches.  It will get checked when bound.
 305     return branch_pc;
 306   }
 307 }
 308 
 309 void CodeSection::relocate(address at, relocInfo::relocType rtype, int format, jint method_index) {
 310   RelocationHolder rh;
 311   switch (rtype) {
 312     case relocInfo::none: return;
 313     case relocInfo::opt_virtual_call_type: {
 314       rh = opt_virtual_call_Relocation::spec(method_index);
 315       break;
 316     }
 317     case relocInfo::static_call_type: {
 318       rh = static_call_Relocation::spec(method_index);
 319       break;
 320     }
 321     case relocInfo::virtual_call_type: {
 322       assert(method_index == 0, "resolved method overriding is not supported");
 323       rh = Relocation::spec_simple(rtype);
 324       break;
 325     }
 326     default: {
 327       rh = Relocation::spec_simple(rtype);
 328       break;
 329     }
 330   }
 331   relocate(at, rh, format);
 332 }
 333 
 334 void CodeSection::relocate(address at, RelocationHolder const& spec, int format) {
 335   // Do not relocate in scratch buffers.
 336   if (scratch_emit()) { return; }
 337   Relocation* reloc = spec.reloc();
 338   relocInfo::relocType rtype = (relocInfo::relocType) reloc->type();
 339   if (rtype == relocInfo::none)  return;
 340 
 341   // The assertion below has been adjusted, to also work for
 342   // relocation for fixup.  Sometimes we want to put relocation
 343   // information for the next instruction, since it will be patched
 344   // with a call.
 345   assert(start() <= at && at <= end()+1,
 346          "cannot relocate data outside code boundaries");
 347 
 348   if (!has_locs()) {
 349     // no space for relocation information provided => code cannot be
 350     // relocated.  Make sure that relocate is only called with rtypes
 351     // that can be ignored for this kind of code.
 352     assert(rtype == relocInfo::none              ||
 353            rtype == relocInfo::runtime_call_type ||
 354            rtype == relocInfo::internal_word_type||
 355            rtype == relocInfo::section_word_type ||
 356            rtype == relocInfo::external_word_type,
 357            "code needs relocation information");
 358     // leave behind an indication that we attempted a relocation
 359     DEBUG_ONLY(_locs_start = _locs_limit = (relocInfo*)badAddress);
 360     return;
 361   }
 362 
 363   // Advance the point, noting the offset we'll have to record.
 364   csize_t offset = at - locs_point();
 365   set_locs_point(at);
 366 
 367   // Test for a couple of overflow conditions; maybe expand the buffer.
 368   relocInfo* end = locs_end();
 369   relocInfo* req = end + relocInfo::length_limit;
 370   // Check for (potential) overflow
 371   if (req >= locs_limit() || offset >= relocInfo::offset_limit()) {
 372     req += (uint)offset / (uint)relocInfo::offset_limit();
 373     if (req >= locs_limit()) {
 374       // Allocate or reallocate.
 375       expand_locs(locs_count() + (req - end));
 376       // reload pointer
 377       end = locs_end();
 378     }
 379   }
 380 
 381   // If the offset is giant, emit filler relocs, of type 'none', but
 382   // each carrying the largest possible offset, to advance the locs_point.
 383   while (offset >= relocInfo::offset_limit()) {
 384     assert(end < locs_limit(), "adjust previous paragraph of code");
 385     *end++ = filler_relocInfo();
 386     offset -= filler_relocInfo().addr_offset();
 387   }
 388 
 389   // If it's a simple reloc with no data, we'll just write (rtype | offset).
 390   (*end) = relocInfo(rtype, offset, format);
 391 
 392   // If it has data, insert the prefix, as (data_prefix_tag | data1), data2.
 393   end->initialize(this, reloc);
 394 }
 395 
 396 void CodeSection::initialize_locs(int locs_capacity) {
 397   assert(_locs_start == NULL, "only one locs init step, please");
 398   // Apply a priori lower limits to relocation size:
 399   csize_t min_locs = MAX2(size() / 16, (csize_t)4);
 400   if (locs_capacity < min_locs)  locs_capacity = min_locs;
 401   relocInfo* locs_start = NEW_RESOURCE_ARRAY(relocInfo, locs_capacity);
 402   _locs_start    = locs_start;
 403   _locs_end      = locs_start;
 404   _locs_limit    = locs_start + locs_capacity;
 405   _locs_own      = true;
 406 }
 407 
 408 void CodeSection::initialize_shared_locs(relocInfo* buf, int length) {
 409   assert(_locs_start == NULL, "do this before locs are allocated");
 410   // Internal invariant:  locs buf must be fully aligned.
 411   // See copy_relocations_to() below.
 412   while ((uintptr_t)buf % HeapWordSize != 0 && length > 0) {
 413     ++buf; --length;
 414   }
 415   if (length > 0) {
 416     _locs_start = buf;
 417     _locs_end   = buf;
 418     _locs_limit = buf + length;
 419     _locs_own   = false;
 420   }
 421 }
 422 
 423 void CodeSection::initialize_locs_from(const CodeSection* source_cs) {
 424   int lcount = source_cs->locs_count();
 425   if (lcount != 0) {
 426     initialize_shared_locs(source_cs->locs_start(), lcount);
 427     _locs_end = _locs_limit = _locs_start + lcount;
 428     assert(is_allocated(), "must have copied code already");
 429     set_locs_point(start() + source_cs->locs_point_off());
 430   }
 431   assert(this->locs_count() == source_cs->locs_count(), "sanity");
 432 }
 433 
 434 void CodeSection::expand_locs(int new_capacity) {
 435   if (_locs_start == NULL) {
 436     initialize_locs(new_capacity);
 437     return;
 438   } else {
 439     int old_count    = locs_count();
 440     int old_capacity = locs_capacity();
 441     if (new_capacity < old_capacity * 2)
 442       new_capacity = old_capacity * 2;
 443     relocInfo* locs_start;
 444     if (_locs_own) {
 445       locs_start = REALLOC_RESOURCE_ARRAY(relocInfo, _locs_start, old_capacity, new_capacity);
 446     } else {
 447       locs_start = NEW_RESOURCE_ARRAY(relocInfo, new_capacity);
 448       Copy::conjoint_jbytes(_locs_start, locs_start, old_capacity * sizeof(relocInfo));
 449       _locs_own = true;
 450     }
 451     _locs_start    = locs_start;
 452     _locs_end      = locs_start + old_count;
 453     _locs_limit    = locs_start + new_capacity;
 454   }
 455 }
 456 
 457 
 458 /// Support for emitting the code to its final location.
 459 /// The pattern is the same for all functions.
 460 /// We iterate over all the sections, padding each to alignment.
 461 
 462 csize_t CodeBuffer::total_content_size() const {
 463   csize_t size_so_far = 0;
 464   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 465     const CodeSection* cs = code_section(n);
 466     if (cs->is_empty())  continue;  // skip trivial section
 467     size_so_far = cs->align_at_start(size_so_far);
 468     size_so_far += cs->size();
 469   }
 470   return size_so_far;
 471 }
 472 
 473 void CodeBuffer::compute_final_layout(CodeBuffer* dest) const {
 474   address buf = dest->_total_start;
 475   csize_t buf_offset = 0;
 476   assert(dest->_total_size >= total_content_size(), "must be big enough");
 477 
 478   {
 479     // not sure why this is here, but why not...
 480     int alignSize = MAX2((intx) sizeof(jdouble), CodeEntryAlignment);
 481     assert( (dest->_total_start - _insts.start()) % alignSize == 0, "copy must preserve alignment");
 482   }
 483 
 484   const CodeSection* prev_cs      = NULL;
 485   CodeSection*       prev_dest_cs = NULL;
 486 
 487   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 488     // figure compact layout of each section
 489     const CodeSection* cs = code_section(n);
 490     csize_t csize = cs->size();
 491 
 492     CodeSection* dest_cs = dest->code_section(n);
 493     if (!cs->is_empty()) {
 494       // Compute initial padding; assign it to the previous non-empty guy.
 495       // Cf. figure_expanded_capacities.
 496       csize_t padding = cs->align_at_start(buf_offset) - buf_offset;
 497       if (padding != 0) {
 498         buf_offset += padding;
 499         assert(prev_dest_cs != NULL, "sanity");
 500         prev_dest_cs->_limit += padding;
 501       }
 502       #ifdef ASSERT
 503       if (prev_cs != NULL && prev_cs->is_frozen() && n < (SECT_LIMIT - 1)) {
 504         // Make sure the ends still match up.
 505         // This is important because a branch in a frozen section
 506         // might target code in a following section, via a Label,
 507         // and without a relocation record.  See Label::patch_instructions.
 508         address dest_start = buf+buf_offset;
 509         csize_t start2start = cs->start() - prev_cs->start();
 510         csize_t dest_start2start = dest_start - prev_dest_cs->start();
 511         assert(start2start == dest_start2start, "cannot stretch frozen sect");
 512       }
 513       #endif //ASSERT
 514       prev_dest_cs = dest_cs;
 515       prev_cs      = cs;
 516     }
 517 
 518     debug_only(dest_cs->_start = NULL);  // defeat double-initialization assert
 519     dest_cs->initialize(buf+buf_offset, csize);
 520     dest_cs->set_end(buf+buf_offset+csize);
 521     assert(dest_cs->is_allocated(), "must always be allocated");
 522     assert(cs->is_empty() == dest_cs->is_empty(), "sanity");
 523 
 524     buf_offset += csize;
 525   }
 526 
 527   // Done calculating sections; did it come out to the right end?
 528   assert(buf_offset == total_content_size(), "sanity");
 529   dest->verify_section_allocation();
 530 }
 531 
 532 // Append an oop reference that keeps the class alive.
 533 static void append_oop_references(GrowableArray<oop>* oops, Klass* k) {
 534   oop cl = k->klass_holder();
 535   if (cl != NULL && !oops->contains(cl)) {
 536     oops->append(cl);
 537   }
 538 }
 539 
 540 void CodeBuffer::finalize_oop_references(const methodHandle& mh) {
 541   NoSafepointVerifier nsv;
 542 
 543   GrowableArray<oop> oops;
 544 
 545   // Make sure that immediate metadata records something in the OopRecorder
 546   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 547     // pull code out of each section
 548     CodeSection* cs = code_section(n);
 549     if (cs->is_empty())  continue;  // skip trivial section
 550     RelocIterator iter(cs);
 551     while (iter.next()) {
 552       if (iter.type() == relocInfo::metadata_type) {
 553         metadata_Relocation* md = iter.metadata_reloc();
 554         if (md->metadata_is_immediate()) {
 555           Metadata* m = md->metadata_value();
 556           if (oop_recorder()->is_real(m)) {
 557             if (m->is_methodData()) {
 558               m = ((MethodData*)m)->method();
 559             }
 560             if (m->is_method()) {
 561               m = ((Method*)m)->method_holder();
 562             }
 563             if (m->is_klass()) {
 564               append_oop_references(&oops, (Klass*)m);
 565             } else {
 566               // XXX This will currently occur for MDO which don't
 567               // have a backpointer.  This has to be fixed later.
 568               m->print();
 569               ShouldNotReachHere();
 570             }
 571           }
 572         }
 573       }
 574     }
 575   }
 576 
 577   if (!oop_recorder()->is_unused()) {
 578     for (int i = 0; i < oop_recorder()->metadata_count(); i++) {
 579       Metadata* m = oop_recorder()->metadata_at(i);
 580       if (oop_recorder()->is_real(m)) {
 581         if (m->is_methodData()) {
 582           m = ((MethodData*)m)->method();
 583         }
 584         if (m->is_method()) {
 585           m = ((Method*)m)->method_holder();
 586         }
 587         if (m->is_klass()) {
 588           append_oop_references(&oops, (Klass*)m);
 589         } else {
 590           m->print();
 591           ShouldNotReachHere();
 592         }
 593       }
 594     }
 595 
 596   }
 597 
 598   // Add the class loader of Method* for the nmethod itself
 599   append_oop_references(&oops, mh->method_holder());
 600 
 601   // Add any oops that we've found
 602   Thread* thread = Thread::current();
 603   for (int i = 0; i < oops.length(); i++) {
 604     oop_recorder()->find_index((jobject)thread->handle_area()->allocate_handle(oops.at(i)));
 605   }
 606 }
 607 
 608 
 609 
 610 csize_t CodeBuffer::total_offset_of(const CodeSection* cs) const {
 611   csize_t size_so_far = 0;
 612   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 613     const CodeSection* cur_cs = code_section(n);
 614     if (!cur_cs->is_empty()) {
 615       size_so_far = cur_cs->align_at_start(size_so_far);
 616     }
 617     if (cur_cs->index() == cs->index()) {
 618       return size_so_far;
 619     }
 620     size_so_far += cur_cs->size();
 621   }
 622   ShouldNotReachHere();
 623   return -1;
 624 }
 625 
 626 csize_t CodeBuffer::total_relocation_size() const {
 627   csize_t total = copy_relocations_to(NULL);  // dry run only
 628   return (csize_t) align_up(total, HeapWordSize);
 629 }
 630 
 631 csize_t CodeBuffer::copy_relocations_to(address buf, csize_t buf_limit, bool only_inst) const {
 632   csize_t buf_offset = 0;
 633   csize_t code_end_so_far = 0;
 634   csize_t code_point_so_far = 0;
 635 
 636   assert((uintptr_t)buf % HeapWordSize == 0, "buf must be fully aligned");
 637   assert(buf_limit % HeapWordSize == 0, "buf must be evenly sized");
 638 
 639   for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
 640     if (only_inst && (n != (int)SECT_INSTS)) {
 641       // Need only relocation info for code.
 642       continue;
 643     }
 644     // pull relocs out of each section
 645     const CodeSection* cs = code_section(n);
 646     assert(!(cs->is_empty() && cs->locs_count() > 0), "sanity");
 647     if (cs->is_empty())  continue;  // skip trivial section
 648     relocInfo* lstart = cs->locs_start();
 649     relocInfo* lend   = cs->locs_end();
 650     csize_t    lsize  = (csize_t)( (address)lend - (address)lstart );
 651     csize_t    csize  = cs->size();
 652     code_end_so_far = cs->align_at_start(code_end_so_far);
 653 
 654     if (lsize > 0) {
 655       // Figure out how to advance the combined relocation point
 656       // first to the beginning of this section.
 657       // We'll insert one or more filler relocs to span that gap.
 658       // (Don't bother to improve this by editing the first reloc's offset.)
 659       csize_t new_code_point = code_end_so_far;
 660       for (csize_t jump;
 661            code_point_so_far < new_code_point;
 662            code_point_so_far += jump) {
 663         jump = new_code_point - code_point_so_far;
 664         relocInfo filler = filler_relocInfo();
 665         if (jump >= filler.addr_offset()) {
 666           jump = filler.addr_offset();
 667         } else {  // else shrink the filler to fit
 668           filler = relocInfo(relocInfo::none, jump);
 669         }
 670         if (buf != NULL) {
 671           assert(buf_offset + (csize_t)sizeof(filler) <= buf_limit, "filler in bounds");
 672           *(relocInfo*)(buf+buf_offset) = filler;
 673         }
 674         buf_offset += sizeof(filler);
 675       }
 676 
 677       // Update code point and end to skip past this section:
 678       csize_t last_code_point = code_end_so_far + cs->locs_point_off();
 679       assert(code_point_so_far <= last_code_point, "sanity");
 680       code_point_so_far = last_code_point; // advance past this guy's relocs
 681     }
 682     code_end_so_far += csize;  // advance past this guy's instructions too
 683 
 684     // Done with filler; emit the real relocations:
 685     if (buf != NULL && lsize != 0) {
 686       assert(buf_offset + lsize <= buf_limit, "target in bounds");
 687       assert((uintptr_t)lstart % HeapWordSize == 0, "sane start");
 688       if (buf_offset % HeapWordSize == 0) {
 689         // Use wordwise copies if possible:
 690         Copy::disjoint_words((HeapWord*)lstart,
 691                              (HeapWord*)(buf+buf_offset),
 692                              (lsize + HeapWordSize-1) / HeapWordSize);
 693       } else {
 694         Copy::conjoint_jbytes(lstart, buf+buf_offset, lsize);
 695       }
 696     }
 697     buf_offset += lsize;
 698   }
 699 
 700   // Align end of relocation info in target.
 701   while (buf_offset % HeapWordSize != 0) {
 702     if (buf != NULL) {
 703       relocInfo padding = relocInfo(relocInfo::none, 0);
 704       assert(buf_offset + (csize_t)sizeof(padding) <= buf_limit, "padding in bounds");
 705       *(relocInfo*)(buf+buf_offset) = padding;
 706     }
 707     buf_offset += sizeof(relocInfo);
 708   }
 709 
 710   assert(only_inst || code_end_so_far == total_content_size(), "sanity");
 711 
 712   return buf_offset;
 713 }
 714 
 715 csize_t CodeBuffer::copy_relocations_to(CodeBlob* dest) const {
 716   address buf = NULL;
 717   csize_t buf_offset = 0;
 718   csize_t buf_limit = 0;
 719 
 720   if (dest != NULL) {
 721     buf = (address)dest->relocation_begin();
 722     buf_limit = (address)dest->relocation_end() - buf;
 723   }
 724   // if dest == NULL, this is just the sizing pass
 725   //
 726   buf_offset = copy_relocations_to(buf, buf_limit, false);
 727 
 728   return buf_offset;
 729 }
 730 
 731 void CodeBuffer::copy_code_to(CodeBlob* dest_blob) {
 732 #ifndef PRODUCT
 733   if (PrintNMethods && (WizardMode || Verbose)) {
 734     tty->print("done with CodeBuffer:");
 735     ((CodeBuffer*)this)->print();
 736   }
 737 #endif //PRODUCT
 738 
 739   CodeBuffer dest(dest_blob);
 740   assert(dest_blob->content_size() >= total_content_size(), "good sizing");
 741   this->compute_final_layout(&dest);
 742 
 743   // Set beginning of constant table before relocating.
 744   dest_blob->set_ctable_begin(dest.consts()->start());
 745 
 746   relocate_code_to(&dest);
 747 
 748   // transfer strings and comments from buffer to blob
 749   dest_blob->set_strings(_code_strings);
 750 
 751   // Done moving code bytes; were they the right size?
 752   assert((int)align_up(dest.total_content_size(), oopSize) == dest_blob->content_size(), "sanity");
 753 
 754   // Flush generated code
 755   ICache::invalidate_range(dest_blob->code_begin(), dest_blob->code_size());
 756 }
 757 
 758 // Move all my code into another code buffer.  Consult applicable
 759 // relocs to repair embedded addresses.  The layout in the destination
 760 // CodeBuffer is different to the source CodeBuffer: the destination
 761 // CodeBuffer gets the final layout (consts, insts, stubs in order of
 762 // ascending address).
 763 void CodeBuffer::relocate_code_to(CodeBuffer* dest) const {
 764   address dest_end = dest->_total_start + dest->_total_size;
 765   address dest_filled = NULL;
 766   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 767     // pull code out of each section
 768     const CodeSection* cs = code_section(n);
 769     if (cs->is_empty())  continue;  // skip trivial section
 770     CodeSection* dest_cs = dest->code_section(n);
 771     assert(cs->size() == dest_cs->size(), "sanity");
 772     csize_t usize = dest_cs->size();
 773     csize_t wsize = align_up(usize, HeapWordSize);
 774     assert(dest_cs->start() + wsize <= dest_end, "no overflow");
 775     // Copy the code as aligned machine words.
 776     // This may also include an uninitialized partial word at the end.
 777     Copy::disjoint_words((HeapWord*)cs->start(),
 778                          (HeapWord*)dest_cs->start(),
 779                          wsize / HeapWordSize);
 780 
 781     if (dest->blob() == NULL) {
 782       // Destination is a final resting place, not just another buffer.
 783       // Normalize uninitialized bytes in the final padding.
 784       Copy::fill_to_bytes(dest_cs->end(), dest_cs->remaining(),
 785                           Assembler::code_fill_byte());
 786     }
 787     // Keep track of the highest filled address
 788     dest_filled = MAX2(dest_filled, dest_cs->end() + dest_cs->remaining());
 789 
 790     assert(cs->locs_start() != (relocInfo*)badAddress,
 791            "this section carries no reloc storage, but reloc was attempted");
 792 
 793     // Make the new code copy use the old copy's relocations:
 794     dest_cs->initialize_locs_from(cs);
 795   }
 796 
 797   // Do relocation after all sections are copied.
 798   // This is necessary if the code uses constants in stubs, which are
 799   // relocated when the corresponding instruction in the code (e.g., a
 800   // call) is relocated. Stubs are placed behind the main code
 801   // section, so that section has to be copied before relocating.
 802   for (int n = (int) SECT_FIRST; n < (int)SECT_LIMIT; n++) {
 803     // pull code out of each section
 804     const CodeSection* cs = code_section(n);
 805     if (cs->is_empty()) continue;  // skip trivial section
 806     CodeSection* dest_cs = dest->code_section(n);
 807     { // Repair the pc relative information in the code after the move
 808       RelocIterator iter(dest_cs);
 809       while (iter.next()) {
 810         iter.reloc()->fix_relocation_after_move(this, dest);
 811       }
 812     }
 813   }
 814 
 815   if (dest->blob() == NULL && dest_filled != NULL) {
 816     // Destination is a final resting place, not just another buffer.
 817     // Normalize uninitialized bytes in the final padding.
 818     Copy::fill_to_bytes(dest_filled, dest_end - dest_filled,
 819                         Assembler::code_fill_byte());
 820 
 821   }
 822 }
 823 
 824 csize_t CodeBuffer::figure_expanded_capacities(CodeSection* which_cs,
 825                                                csize_t amount,
 826                                                csize_t* new_capacity) {
 827   csize_t new_total_cap = 0;
 828 
 829   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 830     const CodeSection* sect = code_section(n);
 831 
 832     if (!sect->is_empty()) {
 833       // Compute initial padding; assign it to the previous section,
 834       // even if it's empty (e.g. consts section can be empty).
 835       // Cf. compute_final_layout
 836       csize_t padding = sect->align_at_start(new_total_cap) - new_total_cap;
 837       if (padding != 0) {
 838         new_total_cap += padding;
 839         assert(n - 1 >= SECT_FIRST, "sanity");
 840         new_capacity[n - 1] += padding;
 841       }
 842     }
 843 
 844     csize_t exp = sect->size();  // 100% increase
 845     if ((uint)exp < 4*K)  exp = 4*K;       // minimum initial increase
 846     if (sect == which_cs) {
 847       if (exp < amount)  exp = amount;
 848       if (StressCodeBuffers)  exp = amount;  // expand only slightly
 849     } else if (n == SECT_INSTS) {
 850       // scale down inst increases to a more modest 25%
 851       exp = 4*K + ((exp - 4*K) >> 2);
 852       if (StressCodeBuffers)  exp = amount / 2;  // expand only slightly
 853     } else if (sect->is_empty()) {
 854       // do not grow an empty secondary section
 855       exp = 0;
 856     }
 857     // Allow for inter-section slop:
 858     exp += CodeSection::end_slop();
 859     csize_t new_cap = sect->size() + exp;
 860     if (new_cap < sect->capacity()) {
 861       // No need to expand after all.
 862       new_cap = sect->capacity();
 863     }
 864     new_capacity[n] = new_cap;
 865     new_total_cap += new_cap;
 866   }
 867 
 868   return new_total_cap;
 869 }
 870 
 871 void CodeBuffer::expand(CodeSection* which_cs, csize_t amount) {
 872 #ifndef PRODUCT
 873   if (PrintNMethods && (WizardMode || Verbose)) {
 874     tty->print("expanding CodeBuffer:");
 875     this->print();
 876   }
 877 
 878   if (StressCodeBuffers && blob() != NULL) {
 879     static int expand_count = 0;
 880     if (expand_count >= 0)  expand_count += 1;
 881     if (expand_count > 100 && is_power_of_2(expand_count)) {
 882       tty->print_cr("StressCodeBuffers: have expanded %d times", expand_count);
 883       // simulate an occasional allocation failure:
 884       free_blob();
 885     }
 886   }
 887 #endif //PRODUCT
 888 
 889   // Resizing must be allowed
 890   {
 891     if (blob() == NULL)  return;  // caller must check for blob == NULL
 892     for (int n = 0; n < (int)SECT_LIMIT; n++) {
 893       guarantee(!code_section(n)->is_frozen(), "resizing not allowed when frozen");
 894     }
 895   }
 896 
 897   // Figure new capacity for each section.
 898   csize_t new_capacity[SECT_LIMIT];
 899   memset(new_capacity, 0, sizeof(csize_t) * SECT_LIMIT);
 900   csize_t new_total_cap
 901     = figure_expanded_capacities(which_cs, amount, new_capacity);
 902 
 903   // Create a new (temporary) code buffer to hold all the new data
 904   CodeBuffer cb(name(), new_total_cap, 0);
 905   if (cb.blob() == NULL) {
 906     // Failed to allocate in code cache.
 907     free_blob();
 908     return;
 909   }
 910 
 911   // Create an old code buffer to remember which addresses used to go where.
 912   // This will be useful when we do final assembly into the code cache,
 913   // because we will need to know how to warp any internal address that
 914   // has been created at any time in this CodeBuffer's past.
 915   CodeBuffer* bxp = new CodeBuffer(_total_start, _total_size);
 916   bxp->take_over_code_from(this);  // remember the old undersized blob
 917   DEBUG_ONLY(this->_blob = NULL);  // silence a later assert
 918   bxp->_before_expand = this->_before_expand;
 919   this->_before_expand = bxp;
 920 
 921   // Give each section its required (expanded) capacity.
 922   for (int n = (int)SECT_LIMIT-1; n >= SECT_FIRST; n--) {
 923     CodeSection* cb_sect   = cb.code_section(n);
 924     CodeSection* this_sect = code_section(n);
 925     if (new_capacity[n] == 0)  continue;  // already nulled out
 926     if (n != SECT_INSTS) {
 927       cb.initialize_section_size(cb_sect, new_capacity[n]);
 928     }
 929     assert(cb_sect->capacity() >= new_capacity[n], "big enough");
 930     address cb_start = cb_sect->start();
 931     cb_sect->set_end(cb_start + this_sect->size());
 932     if (this_sect->mark() == NULL) {
 933       cb_sect->clear_mark();
 934     } else {
 935       cb_sect->set_mark(cb_start + this_sect->mark_off());
 936     }
 937   }
 938 
 939   // Needs to be initialized when calling fix_relocation_after_move.
 940   cb.blob()->set_ctable_begin(cb.consts()->start());
 941 
 942   // Move all the code and relocations to the new blob:
 943   relocate_code_to(&cb);
 944 
 945   // Copy the temporary code buffer into the current code buffer.
 946   // Basically, do {*this = cb}, except for some control information.
 947   this->take_over_code_from(&cb);
 948   cb.set_blob(NULL);
 949 
 950   // Zap the old code buffer contents, to avoid mistakenly using them.
 951   debug_only(Copy::fill_to_bytes(bxp->_total_start, bxp->_total_size,
 952                                  badCodeHeapFreeVal));
 953 
 954   _decode_begin = NULL;  // sanity
 955 
 956   // Make certain that the new sections are all snugly inside the new blob.
 957   verify_section_allocation();
 958 
 959 #ifndef PRODUCT
 960   if (PrintNMethods && (WizardMode || Verbose)) {
 961     tty->print("expanded CodeBuffer:");
 962     this->print();
 963   }
 964 #endif //PRODUCT
 965 }
 966 
 967 void CodeBuffer::take_over_code_from(CodeBuffer* cb) {
 968   // Must already have disposed of the old blob somehow.
 969   assert(blob() == NULL, "must be empty");
 970   // Take the new blob away from cb.
 971   set_blob(cb->blob());
 972   // Take over all the section pointers.
 973   for (int n = 0; n < (int)SECT_LIMIT; n++) {
 974     CodeSection* cb_sect   = cb->code_section(n);
 975     CodeSection* this_sect = code_section(n);
 976     this_sect->take_over_code_from(cb_sect);
 977   }
 978   _overflow_arena = cb->_overflow_arena;
 979   // Make sure the old cb won't try to use it or free it.
 980   DEBUG_ONLY(cb->_blob = (BufferBlob*)badAddress);
 981 }
 982 
 983 void CodeBuffer::verify_section_allocation() {
 984   address tstart = _total_start;
 985   if (tstart == badAddress)  return;  // smashed by set_blob(NULL)
 986   address tend   = tstart + _total_size;
 987   if (_blob != NULL) {
 988 
 989     guarantee(tstart >= _blob->content_begin(), "sanity");
 990     guarantee(tend   <= _blob->content_end(),   "sanity");
 991   }
 992   // Verify disjointness.
 993   for (int n = (int) SECT_FIRST; n < (int) SECT_LIMIT; n++) {
 994     CodeSection* sect = code_section(n);
 995     if (!sect->is_allocated() || sect->is_empty())  continue;
 996     guarantee((intptr_t)sect->start() % sect->alignment() == 0
 997            || sect->is_empty() || _blob == NULL,
 998            "start is aligned");
 999     for (int m = (int) SECT_FIRST; m < (int) SECT_LIMIT; m++) {
1000       CodeSection* other = code_section(m);
1001       if (!other->is_allocated() || other == sect)  continue;
1002       guarantee(!other->contains(sect->start()    ), "sanity");
1003       // limit is an exclusive address and can be the start of another
1004       // section.
1005       guarantee(!other->contains(sect->limit() - 1), "sanity");
1006     }
1007     guarantee(sect->end() <= tend, "sanity");
1008     guarantee(sect->end() <= sect->limit(), "sanity");
1009   }
1010 }
1011 
1012 void CodeBuffer::log_section_sizes(const char* name) {
1013   if (xtty != NULL) {
1014     ttyLocker ttyl;
1015     // log info about buffer usage
1016     xtty->print_cr("<blob name='%s' size='%d'>", name, _total_size);
1017     for (int n = (int) CodeBuffer::SECT_FIRST; n < (int) CodeBuffer::SECT_LIMIT; n++) {
1018       CodeSection* sect = code_section(n);
1019       if (!sect->is_allocated() || sect->is_empty())  continue;
1020       xtty->print_cr("<sect index='%d' size='" SIZE_FORMAT "' free='" SIZE_FORMAT "'/>",
1021                      n, sect->limit() - sect->start(), sect->limit() - sect->end());
1022     }
1023     xtty->print_cr("</blob>");
1024   }
1025 }
1026 
1027 #ifndef PRODUCT
1028 
1029 void CodeSection::dump() {
1030   address ptr = start();
1031   for (csize_t step; ptr < end(); ptr += step) {
1032     step = end() - ptr;
1033     if (step > jintSize * 4)  step = jintSize * 4;
1034     tty->print(INTPTR_FORMAT ": ", p2i(ptr));
1035     while (step > 0) {
1036       tty->print(" " PTR32_FORMAT, *(jint*)ptr);
1037       ptr += jintSize;
1038     }
1039     tty->cr();
1040   }
1041 }
1042 
1043 
1044 void CodeSection::decode() {
1045   Disassembler::decode(start(), end());
1046 }
1047 
1048 
1049 void CodeBuffer::block_comment(intptr_t offset, const char * comment) {
1050   _code_strings.add_comment(offset, comment);
1051 }
1052 
1053 const char* CodeBuffer::code_string(const char* str) {
1054   return _code_strings.add_string(str);
1055 }
1056 
1057 class CodeString: public CHeapObj<mtCode> {
1058  private:
1059   friend class CodeStrings;
1060   const char * _string;
1061   CodeString*  _next;
1062   intptr_t     _offset;
1063 
1064   ~CodeString() {
1065     assert(_next == NULL, "wrong interface for freeing list");
1066     os::free((void*)_string);
1067   }
1068 
1069   bool is_comment() const { return _offset >= 0; }
1070 
1071  public:
1072   CodeString(const char * string, intptr_t offset = -1)
1073     : _next(NULL), _offset(offset) {
1074     _string = os::strdup(string, mtCode);
1075   }
1076 
1077   const char * string() const { return _string; }
1078   intptr_t     offset() const {
1079     assert(_offset >= 0, "offset for non comment?");
1080     return offset_raw();
1081   }
1082   intptr_t offset_raw() const { return _offset; }
1083   CodeString* next()    const { return _next; }
1084 
1085   void set_next(CodeString* next) { _next = next; }
1086 
1087   CodeString* first_comment() {
1088     if (is_comment()) {
1089       return this;
1090     } else {
1091       return next_comment();
1092     }
1093   }
1094   CodeString* next_comment() const {
1095     CodeString* s = _next;
1096     while (s != NULL && !s->is_comment()) {
1097       s = s->_next;
1098     }
1099     return s;
1100   }
1101 };
1102 
1103 CodeString* CodeStrings::find(intptr_t offset) const {
1104   CodeString* a = _strings->first_comment();
1105   while (a != NULL && a->offset() != offset) {
1106     a = a->next_comment();
1107   }
1108   return a;
1109 }
1110 
1111 // Convenience for add_comment.
1112 CodeString* CodeStrings::find_last(intptr_t offset) const {
1113   CodeString* a = find(offset);
1114   if (a != NULL) {
1115     CodeString* c = NULL;
1116     while (((c = a->next_comment()) != NULL) && (c->offset() == offset)) {
1117       a = c;
1118     }
1119   }
1120   return a;
1121 }
1122 
1123 void CodeStrings::add_comment(intptr_t offset, const char * comment) {
1124   check_valid();
1125   CodeString* c      = new CodeString(comment, offset);
1126   CodeString* inspos = (_strings == NULL) ? NULL : find_last(offset);
1127 
1128   if (inspos) {
1129     // insert after already existing comments with same offset
1130     c->set_next(inspos->next());
1131     inspos->set_next(c);
1132   } else {
1133     // no comments with such offset, yet. Insert before anything else.
1134     c->set_next(_strings);
1135     _strings = c;
1136   }
1137 }
1138 
1139 void CodeStrings::assign(CodeStrings& other) {
1140   other.check_valid();
1141   assert(is_null(), "Cannot assign onto non-empty CodeStrings");
1142   _strings = other._strings;
1143 #ifdef ASSERT
1144   _defunct = false;
1145 #endif
1146   other.set_null_and_invalidate();
1147 }
1148 
1149 // Deep copy of CodeStrings for consistent memory management.
1150 // Only used for actual disassembly so this is cheaper than reference counting
1151 // for the "normal" fastdebug case.
1152 void CodeStrings::copy(CodeStrings& other) {
1153   other.check_valid();
1154   check_valid();
1155   assert(is_null(), "Cannot copy onto non-empty CodeStrings");
1156   CodeString* n = other._strings;
1157   CodeString** ps = &_strings;
1158   while (n != NULL) {
1159     *ps = new CodeString(n->string(), n->offset_raw());
1160     ps = &((*ps)->_next);
1161     n = n->next();
1162   }
1163 }
1164 
1165 const char* CodeStrings::_prefix = " ;; ";  // default: can be changed via set_prefix
1166 
1167 void CodeStrings::print_block_comment(outputStream* stream, intptr_t offset) const {
1168     check_valid();
1169     if (_strings != NULL) {
1170     CodeString* c = find(offset);
1171     while (c && c->offset() == offset) {
1172       stream->bol();
1173       stream->print("%s", _prefix);
1174       // Don't interpret as format strings since it could contain %
1175       stream->print_raw_cr(c->string());
1176       c = c->next_comment();
1177     }
1178   }
1179 }
1180 
1181 // Also sets isNull()
1182 void CodeStrings::free() {
1183   CodeString* n = _strings;
1184   while (n) {
1185     // unlink the node from the list saving a pointer to the next
1186     CodeString* p = n->next();
1187     n->set_next(NULL);
1188     delete n;
1189     n = p;
1190   }
1191   set_null_and_invalidate();
1192 }
1193 
1194 const char* CodeStrings::add_string(const char * string) {
1195   check_valid();
1196   CodeString* s = new CodeString(string);
1197   s->set_next(_strings);
1198   _strings = s;
1199   assert(s->string() != NULL, "should have a string");
1200   return s->string();
1201 }
1202 
1203 void CodeBuffer::decode() {
1204   ttyLocker ttyl;
1205   Disassembler::decode(decode_begin(), insts_end());
1206   _decode_begin = insts_end();
1207 }
1208 
1209 
1210 void CodeBuffer::skip_decode() {
1211   _decode_begin = insts_end();
1212 }
1213 
1214 
1215 void CodeBuffer::decode_all() {
1216   ttyLocker ttyl;
1217   for (int n = 0; n < (int)SECT_LIMIT; n++) {
1218     // dump contents of each section
1219     CodeSection* cs = code_section(n);
1220     tty->print_cr("! %s:", code_section_name(n));
1221     if (cs != consts())
1222       cs->decode();
1223     else
1224       cs->dump();
1225   }
1226 }
1227 
1228 
1229 void CodeSection::print(const char* name) {
1230   csize_t locs_size = locs_end() - locs_start();
1231   tty->print_cr(" %7s.code = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d)%s",
1232                 name, p2i(start()), p2i(end()), p2i(limit()), size(), capacity(),
1233                 is_frozen()? " [frozen]": "");
1234   tty->print_cr(" %7s.locs = " PTR_FORMAT " : " PTR_FORMAT " : " PTR_FORMAT " (%d of %d) point=%d",
1235                 name, p2i(locs_start()), p2i(locs_end()), p2i(locs_limit()), locs_size, locs_capacity(), locs_point_off());
1236   if (PrintRelocations) {
1237     RelocIterator iter(this);
1238     iter.print();
1239   }
1240 }
1241 
1242 void CodeBuffer::print() {
1243   if (this == NULL) {
1244     tty->print_cr("NULL CodeBuffer pointer");
1245     return;
1246   }
1247 
1248   tty->print_cr("CodeBuffer:");
1249   for (int n = 0; n < (int)SECT_LIMIT; n++) {
1250     // print each section
1251     CodeSection* cs = code_section(n);
1252     cs->print(code_section_name(n));
1253   }
1254 }
1255 
1256 #endif // PRODUCT