1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.hpp"
  30 
  31 // MacroAssembler extends Assembler by frequently used macros.
  32 //
  33 // Instructions for which a 'better' code sequence exists depending
  34 // on arguments should also go in here.
  35 
  36 class MacroAssembler: public Assembler {
  37   friend class LIR_Assembler;
  38 
  39  public:
  40   using Assembler::mov;
  41   using Assembler::movi;
  42 
  43  protected:
  44 
  45   // Support for VM calls
  46   //
  47   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  48   // may customize this version by overriding it for its purposes (e.g., to save/restore
  49   // additional registers when doing a VM call).
  50   virtual void call_VM_leaf_base(
  51     address entry_point,               // the entry point
  52     int     number_of_arguments,        // the number of arguments to pop after the call
  53     Label *retaddr = NULL
  54   );
  55 
  56   virtual void call_VM_leaf_base(
  57     address entry_point,               // the entry point
  58     int     number_of_arguments,        // the number of arguments to pop after the call
  59     Label &retaddr) {
  60     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  61   }
  62 
  63   // This is the base routine called by the different versions of call_VM. The interpreter
  64   // may customize this version by overriding it for its purposes (e.g., to save/restore
  65   // additional registers when doing a VM call).
  66   //
  67   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  68   // returns the register which contains the thread upon return. If a thread register has been
  69   // specified, the return value will correspond to that register. If no last_java_sp is specified
  70   // (noreg) than rsp will be used instead.
  71   virtual void call_VM_base(           // returns the register containing the thread upon return
  72     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  73     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  74     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  75     address  entry_point,              // the entry point
  76     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  77     bool     check_exceptions          // whether to check for pending exceptions after return
  78   );
  79 
  80   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  81 
  82   // True if an XOR can be used to expand narrow klass references.
  83   bool use_XOR_for_compressed_class_base;
  84 
  85  public:
  86   MacroAssembler(CodeBuffer* code) : Assembler(code) {
  87     use_XOR_for_compressed_class_base
  88       = (operand_valid_for_logical_immediate(false /*is32*/,
  89                                              (uint64_t)Universe::narrow_klass_base())
  90          && ((uint64_t)Universe::narrow_klass_base()
  91              > (1UL << log2_intptr(Universe::narrow_klass_range()))));
  92   }
  93 
  94  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  95  // The implementation is only non-empty for the InterpreterMacroAssembler,
  96  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  97  virtual void check_and_handle_popframe(Register java_thread);
  98  virtual void check_and_handle_earlyret(Register java_thread);
  99 
 100   void safepoint_poll(Label& slow_path);
 101   void safepoint_poll_acquire(Label& slow_path);
 102 
 103   // Biased locking support
 104   // lock_reg and obj_reg must be loaded up with the appropriate values.
 105   // swap_reg is killed.
 106   // tmp_reg must be supplied and must not be rscratch1 or rscratch2
 107   // Optional slow case is for implementations (interpreter and C1) which branch to
 108   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 109   // Returns offset of first potentially-faulting instruction for null
 110   // check info (currently consumed only by C1). If
 111   // swap_reg_contains_mark is true then returns -1 as it is assumed
 112   // the calling code has already passed any potential faults.
 113   int biased_locking_enter(Register lock_reg, Register obj_reg,
 114                            Register swap_reg, Register tmp_reg,
 115                            bool swap_reg_contains_mark,
 116                            Label& done, Label* slow_case = NULL,
 117                            BiasedLockingCounters* counters = NULL);
 118   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 119 
 120 
 121   // Helper functions for statistics gathering.
 122   // Unconditional atomic increment.
 123   void atomic_incw(Register counter_addr, Register tmp, Register tmp2);
 124   void atomic_incw(Address counter_addr, Register tmp1, Register tmp2, Register tmp3) {
 125     lea(tmp1, counter_addr);
 126     atomic_incw(tmp1, tmp2, tmp3);
 127   }
 128   // Load Effective Address
 129   void lea(Register r, const Address &a) {
 130     InstructionMark im(this);
 131     code_section()->relocate(inst_mark(), a.rspec());
 132     a.lea(this, r);
 133   }
 134 
 135   void addmw(Address a, Register incr, Register scratch) {
 136     ldrw(scratch, a);
 137     addw(scratch, scratch, incr);
 138     strw(scratch, a);
 139   }
 140 
 141   // Add constant to memory word
 142   void addmw(Address a, int imm, Register scratch) {
 143     ldrw(scratch, a);
 144     if (imm > 0)
 145       addw(scratch, scratch, (unsigned)imm);
 146     else
 147       subw(scratch, scratch, (unsigned)-imm);
 148     strw(scratch, a);
 149   }
 150 
 151   void bind(Label& L) {
 152     Assembler::bind(L);
 153     code()->clear_last_insn();
 154   }
 155 
 156   void membar(Membar_mask_bits order_constraint);
 157 
 158   using Assembler::ldr;
 159   using Assembler::str;
 160 
 161   void ldr(Register Rx, const Address &adr);
 162   void ldrw(Register Rw, const Address &adr);
 163   void str(Register Rx, const Address &adr);
 164   void strw(Register Rx, const Address &adr);
 165 
 166   // Frame creation and destruction shared between JITs.
 167   void build_frame(int framesize);
 168   void remove_frame(int framesize);
 169 
 170   virtual void _call_Unimplemented(address call_site) {
 171     mov(rscratch2, call_site);
 172     haltsim();
 173   }
 174 
 175 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 176 
 177   virtual void notify(int type);
 178 
 179   // aliases defined in AARCH64 spec
 180 
 181   template<class T>
 182   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 183 
 184   inline void cmp(Register Rd, unsigned char imm8)  { subs(zr, Rd, imm8); }
 185   inline void cmp(Register Rd, unsigned imm) __attribute__ ((deprecated));
 186 
 187   inline void cmnw(Register Rd, unsigned imm) { addsw(zr, Rd, imm); }
 188   inline void cmn(Register Rd, unsigned imm) { adds(zr, Rd, imm); }
 189 
 190   void cset(Register Rd, Assembler::Condition cond) {
 191     csinc(Rd, zr, zr, ~cond);
 192   }
 193   void csetw(Register Rd, Assembler::Condition cond) {
 194     csincw(Rd, zr, zr, ~cond);
 195   }
 196 
 197   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 198     csneg(Rd, Rn, Rn, ~cond);
 199   }
 200   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 201     csnegw(Rd, Rn, Rn, ~cond);
 202   }
 203 
 204   inline void movw(Register Rd, Register Rn) {
 205     if (Rd == sp || Rn == sp) {
 206       addw(Rd, Rn, 0U);
 207     } else {
 208       orrw(Rd, zr, Rn);
 209     }
 210   }
 211   inline void mov(Register Rd, Register Rn) {
 212     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 213     if (Rd == Rn) {
 214     } else if (Rd == sp || Rn == sp) {
 215       add(Rd, Rn, 0U);
 216     } else {
 217       orr(Rd, zr, Rn);
 218     }
 219   }
 220 
 221   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 222   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 223 
 224   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 225   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 226 
 227   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 228   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 229 
 230   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 231     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 232   }
 233   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 234     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 235   }
 236 
 237   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 238     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 239   }
 240   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 241     bfm(Rd, Rn, lsb , (lsb + width - 1));
 242   }
 243 
 244   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 245     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 246   }
 247   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 248     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 249   }
 250 
 251   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 252     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 253   }
 254   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 255     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 256   }
 257 
 258   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 259     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 260   }
 261   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 262     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 263   }
 264 
 265   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 266     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 267   }
 268   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 269     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 270   }
 271 
 272   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 273     sbfmw(Rd, Rn, imm, 31);
 274   }
 275 
 276   inline void asr(Register Rd, Register Rn, unsigned imm) {
 277     sbfm(Rd, Rn, imm, 63);
 278   }
 279 
 280   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 281     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 282   }
 283 
 284   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 285     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 286   }
 287 
 288   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 289     ubfmw(Rd, Rn, imm, 31);
 290   }
 291 
 292   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 293     ubfm(Rd, Rn, imm, 63);
 294   }
 295 
 296   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 297     extrw(Rd, Rn, Rn, imm);
 298   }
 299 
 300   inline void ror(Register Rd, Register Rn, unsigned imm) {
 301     extr(Rd, Rn, Rn, imm);
 302   }
 303 
 304   inline void sxtbw(Register Rd, Register Rn) {
 305     sbfmw(Rd, Rn, 0, 7);
 306   }
 307   inline void sxthw(Register Rd, Register Rn) {
 308     sbfmw(Rd, Rn, 0, 15);
 309   }
 310   inline void sxtb(Register Rd, Register Rn) {
 311     sbfm(Rd, Rn, 0, 7);
 312   }
 313   inline void sxth(Register Rd, Register Rn) {
 314     sbfm(Rd, Rn, 0, 15);
 315   }
 316   inline void sxtw(Register Rd, Register Rn) {
 317     sbfm(Rd, Rn, 0, 31);
 318   }
 319 
 320   inline void uxtbw(Register Rd, Register Rn) {
 321     ubfmw(Rd, Rn, 0, 7);
 322   }
 323   inline void uxthw(Register Rd, Register Rn) {
 324     ubfmw(Rd, Rn, 0, 15);
 325   }
 326   inline void uxtb(Register Rd, Register Rn) {
 327     ubfm(Rd, Rn, 0, 7);
 328   }
 329   inline void uxth(Register Rd, Register Rn) {
 330     ubfm(Rd, Rn, 0, 15);
 331   }
 332   inline void uxtw(Register Rd, Register Rn) {
 333     ubfm(Rd, Rn, 0, 31);
 334   }
 335 
 336   inline void cmnw(Register Rn, Register Rm) {
 337     addsw(zr, Rn, Rm);
 338   }
 339   inline void cmn(Register Rn, Register Rm) {
 340     adds(zr, Rn, Rm);
 341   }
 342 
 343   inline void cmpw(Register Rn, Register Rm) {
 344     subsw(zr, Rn, Rm);
 345   }
 346   inline void cmp(Register Rn, Register Rm) {
 347     subs(zr, Rn, Rm);
 348   }
 349 
 350   inline void negw(Register Rd, Register Rn) {
 351     subw(Rd, zr, Rn);
 352   }
 353 
 354   inline void neg(Register Rd, Register Rn) {
 355     sub(Rd, zr, Rn);
 356   }
 357 
 358   inline void negsw(Register Rd, Register Rn) {
 359     subsw(Rd, zr, Rn);
 360   }
 361 
 362   inline void negs(Register Rd, Register Rn) {
 363     subs(Rd, zr, Rn);
 364   }
 365 
 366   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 367     addsw(zr, Rn, Rm, kind, shift);
 368   }
 369   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 370     adds(zr, Rn, Rm, kind, shift);
 371   }
 372 
 373   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 374     subsw(zr, Rn, Rm, kind, shift);
 375   }
 376   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 377     subs(zr, Rn, Rm, kind, shift);
 378   }
 379 
 380   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 381     subw(Rd, zr, Rn, kind, shift);
 382   }
 383 
 384   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 385     sub(Rd, zr, Rn, kind, shift);
 386   }
 387 
 388   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 389     subsw(Rd, zr, Rn, kind, shift);
 390   }
 391 
 392   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 393     subs(Rd, zr, Rn, kind, shift);
 394   }
 395 
 396   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 397     msubw(Rd, Rn, Rm, zr);
 398   }
 399   inline void mneg(Register Rd, Register Rn, Register Rm) {
 400     msub(Rd, Rn, Rm, zr);
 401   }
 402 
 403   inline void mulw(Register Rd, Register Rn, Register Rm) {
 404     maddw(Rd, Rn, Rm, zr);
 405   }
 406   inline void mul(Register Rd, Register Rn, Register Rm) {
 407     madd(Rd, Rn, Rm, zr);
 408   }
 409 
 410   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 411     smsubl(Rd, Rn, Rm, zr);
 412   }
 413   inline void smull(Register Rd, Register Rn, Register Rm) {
 414     smaddl(Rd, Rn, Rm, zr);
 415   }
 416 
 417   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 418     umsubl(Rd, Rn, Rm, zr);
 419   }
 420   inline void umull(Register Rd, Register Rn, Register Rm) {
 421     umaddl(Rd, Rn, Rm, zr);
 422   }
 423 
 424 #define WRAP(INSN)                                                            \
 425   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 426     if ((VM_Version::features() & VM_Version::CPU_A53MAC) && Ra != zr)        \
 427       nop();                                                                  \
 428     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 429   }
 430 
 431   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 432   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 433 #undef WRAP
 434 
 435 
 436   // macro assembly operations needed for aarch64
 437 
 438   // first two private routines for loading 32 bit or 64 bit constants
 439 private:
 440 
 441   void mov_immediate64(Register dst, u_int64_t imm64);
 442   void mov_immediate32(Register dst, u_int32_t imm32);
 443 
 444   int push(unsigned int bitset, Register stack);
 445   int pop(unsigned int bitset, Register stack);
 446 
 447   void mov(Register dst, Address a);
 448 
 449 public:
 450   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 451   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 452 
 453   // Push and pop everything that might be clobbered by a native
 454   // runtime call except rscratch1 and rscratch2.  (They are always
 455   // scratch, so we don't have to protect them.)  Only save the lower
 456   // 64 bits of each vector register.
 457   void push_call_clobbered_registers();
 458   void pop_call_clobbered_registers();
 459 
 460   // now mov instructions for loading absolute addresses and 32 or
 461   // 64 bit integers
 462 
 463   inline void mov(Register dst, address addr)
 464   {
 465     mov_immediate64(dst, (u_int64_t)addr);
 466   }
 467 
 468   inline void mov(Register dst, u_int64_t imm64)
 469   {
 470     mov_immediate64(dst, imm64);
 471   }
 472 
 473   inline void movw(Register dst, u_int32_t imm32)
 474   {
 475     mov_immediate32(dst, imm32);
 476   }
 477 
 478   inline void mov(Register dst, long l)
 479   {
 480     mov(dst, (u_int64_t)l);
 481   }
 482 
 483   inline void mov(Register dst, int i)
 484   {
 485     mov(dst, (long)i);
 486   }
 487 
 488   void mov(Register dst, RegisterOrConstant src) {
 489     if (src.is_register())
 490       mov(dst, src.as_register());
 491     else
 492       mov(dst, src.as_constant());
 493   }
 494 
 495   void movptr(Register r, uintptr_t imm64);
 496 
 497   void mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32);
 498 
 499   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 500     orr(Vd, T, Vn, Vn);
 501   }
 502 
 503 public:
 504 
 505   // Generalized Test Bit And Branch, including a "far" variety which
 506   // spans more than 32KiB.
 507   void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool far = false) {
 508     assert(cond == EQ || cond == NE, "must be");
 509 
 510     if (far)
 511       cond = ~cond;
 512 
 513     void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
 514     if (cond == Assembler::EQ)
 515       branch = &Assembler::tbz;
 516     else
 517       branch = &Assembler::tbnz;
 518 
 519     if (far) {
 520       Label L;
 521       (this->*branch)(Rt, bitpos, L);
 522       b(dest);
 523       bind(L);
 524     } else {
 525       (this->*branch)(Rt, bitpos, dest);
 526     }
 527   }
 528 
 529   // macro instructions for accessing and updating floating point
 530   // status register
 531   //
 532   // FPSR : op1 == 011
 533   //        CRn == 0100
 534   //        CRm == 0100
 535   //        op2 == 001
 536 
 537   inline void get_fpsr(Register reg)
 538   {
 539     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 540   }
 541 
 542   inline void set_fpsr(Register reg)
 543   {
 544     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 545   }
 546 
 547   inline void clear_fpsr()
 548   {
 549     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 550   }
 551 
 552   // DCZID_EL0: op1 == 011
 553   //            CRn == 0000
 554   //            CRm == 0000
 555   //            op2 == 111
 556   inline void get_dczid_el0(Register reg)
 557   {
 558     mrs(0b011, 0b0000, 0b0000, 0b111, reg);
 559   }
 560 
 561   // CTR_EL0:   op1 == 011
 562   //            CRn == 0000
 563   //            CRm == 0000
 564   //            op2 == 001
 565   inline void get_ctr_el0(Register reg)
 566   {
 567     mrs(0b011, 0b0000, 0b0000, 0b001, reg);
 568   }
 569 
 570   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 571   int corrected_idivl(Register result, Register ra, Register rb,
 572                       bool want_remainder, Register tmp = rscratch1);
 573   int corrected_idivq(Register result, Register ra, Register rb,
 574                       bool want_remainder, Register tmp = rscratch1);
 575 
 576   // Support for NULL-checks
 577   //
 578   // Generates code that causes a NULL OS exception if the content of reg is NULL.
 579   // If the accessed location is M[reg + offset] and the offset is known, provide the
 580   // offset. No explicit code generation is needed if the offset is within a certain
 581   // range (0 <= offset <= page_size).
 582 
 583   virtual void null_check(Register reg, int offset = -1);
 584   static bool needs_explicit_null_check(intptr_t offset);
 585   static bool uses_implicit_null_check(void* address);
 586 
 587   static address target_addr_for_insn(address insn_addr, unsigned insn);
 588   static address target_addr_for_insn(address insn_addr) {
 589     unsigned insn = *(unsigned*)insn_addr;
 590     return target_addr_for_insn(insn_addr, insn);
 591   }
 592 
 593   // Required platform-specific helpers for Label::patch_instructions.
 594   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 595   static int pd_patch_instruction_size(address branch, address target);
 596   static void pd_patch_instruction(address branch, address target, const char* file = NULL, int line = 0) {
 597     pd_patch_instruction_size(branch, target);
 598   }
 599   static address pd_call_destination(address branch) {
 600     return target_addr_for_insn(branch);
 601   }
 602 #ifndef PRODUCT
 603   static void pd_print_patched_instruction(address branch);
 604 #endif
 605 
 606   static int patch_oop(address insn_addr, address o);
 607   static int patch_narrow_klass(address insn_addr, narrowKlass n);
 608 
 609   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 610   void emit_static_call_stub();
 611 
 612   // The following 4 methods return the offset of the appropriate move instruction
 613 
 614   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 615   int load_unsigned_byte(Register dst, Address src);
 616   int load_unsigned_short(Register dst, Address src);
 617 
 618   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 619   int load_signed_byte(Register dst, Address src);
 620   int load_signed_short(Register dst, Address src);
 621 
 622   int load_signed_byte32(Register dst, Address src);
 623   int load_signed_short32(Register dst, Address src);
 624 
 625   // Support for sign-extension (hi:lo = extend_sign(lo))
 626   void extend_sign(Register hi, Register lo);
 627 
 628   // Load and store values by size and signed-ness
 629   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 630   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 631 
 632   // Support for inc/dec with optimal instruction selection depending on value
 633 
 634   // x86_64 aliases an unqualified register/address increment and
 635   // decrement to call incrementq and decrementq but also supports
 636   // explicitly sized calls to incrementq/decrementq or
 637   // incrementl/decrementl
 638 
 639   // for aarch64 the proper convention would be to use
 640   // increment/decrement for 64 bit operatons and
 641   // incrementw/decrementw for 32 bit operations. so when porting
 642   // x86_64 code we can leave calls to increment/decrement as is,
 643   // replace incrementq/decrementq with increment/decrement and
 644   // replace incrementl/decrementl with incrementw/decrementw.
 645 
 646   // n.b. increment/decrement calls with an Address destination will
 647   // need to use a scratch register to load the value to be
 648   // incremented. increment/decrement calls which add or subtract a
 649   // constant value greater than 2^12 will need to use a 2nd scratch
 650   // register to hold the constant. so, a register increment/decrement
 651   // may trash rscratch2 and an address increment/decrement trash
 652   // rscratch and rscratch2
 653 
 654   void decrementw(Address dst, int value = 1);
 655   void decrementw(Register reg, int value = 1);
 656 
 657   void decrement(Register reg, int value = 1);
 658   void decrement(Address dst, int value = 1);
 659 
 660   void incrementw(Address dst, int value = 1);
 661   void incrementw(Register reg, int value = 1);
 662 
 663   void increment(Register reg, int value = 1);
 664   void increment(Address dst, int value = 1);
 665 
 666 
 667   // Alignment
 668   void align(int modulus);
 669 
 670   // Stack frame creation/removal
 671   void enter()
 672   {
 673     stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
 674     mov(rfp, sp);
 675   }
 676   void leave()
 677   {
 678     mov(sp, rfp);
 679     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
 680   }
 681 
 682   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 683   // The pointer will be loaded into the thread register.
 684   void get_thread(Register thread);
 685 
 686 
 687   // Support for VM calls
 688   //
 689   // It is imperative that all calls into the VM are handled via the call_VM macros.
 690   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 691   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 692 
 693 
 694   void call_VM(Register oop_result,
 695                address entry_point,
 696                bool check_exceptions = true);
 697   void call_VM(Register oop_result,
 698                address entry_point,
 699                Register arg_1,
 700                bool check_exceptions = true);
 701   void call_VM(Register oop_result,
 702                address entry_point,
 703                Register arg_1, Register arg_2,
 704                bool check_exceptions = true);
 705   void call_VM(Register oop_result,
 706                address entry_point,
 707                Register arg_1, Register arg_2, Register arg_3,
 708                bool check_exceptions = true);
 709 
 710   // Overloadings with last_Java_sp
 711   void call_VM(Register oop_result,
 712                Register last_java_sp,
 713                address entry_point,
 714                int number_of_arguments = 0,
 715                bool check_exceptions = true);
 716   void call_VM(Register oop_result,
 717                Register last_java_sp,
 718                address entry_point,
 719                Register arg_1, bool
 720                check_exceptions = true);
 721   void call_VM(Register oop_result,
 722                Register last_java_sp,
 723                address entry_point,
 724                Register arg_1, Register arg_2,
 725                bool check_exceptions = true);
 726   void call_VM(Register oop_result,
 727                Register last_java_sp,
 728                address entry_point,
 729                Register arg_1, Register arg_2, Register arg_3,
 730                bool check_exceptions = true);
 731 
 732   void get_vm_result  (Register oop_result, Register thread);
 733   void get_vm_result_2(Register metadata_result, Register thread);
 734 
 735   // These always tightly bind to MacroAssembler::call_VM_base
 736   // bypassing the virtual implementation
 737   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 738   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 739   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 740   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 741   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 742 
 743   void call_VM_leaf(address entry_point,
 744                     int number_of_arguments = 0);
 745   void call_VM_leaf(address entry_point,
 746                     Register arg_1);
 747   void call_VM_leaf(address entry_point,
 748                     Register arg_1, Register arg_2);
 749   void call_VM_leaf(address entry_point,
 750                     Register arg_1, Register arg_2, Register arg_3);
 751 
 752   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 753   // bypassing the virtual implementation
 754   void super_call_VM_leaf(address entry_point);
 755   void super_call_VM_leaf(address entry_point, Register arg_1);
 756   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 757   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 758   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 759 
 760   // last Java Frame (fills frame anchor)
 761   void set_last_Java_frame(Register last_java_sp,
 762                            Register last_java_fp,
 763                            address last_java_pc,
 764                            Register scratch);
 765 
 766   void set_last_Java_frame(Register last_java_sp,
 767                            Register last_java_fp,
 768                            Label &last_java_pc,
 769                            Register scratch);
 770 
 771   void set_last_Java_frame(Register last_java_sp,
 772                            Register last_java_fp,
 773                            Register last_java_pc,
 774                            Register scratch);
 775 
 776   void reset_last_Java_frame(Register thread);
 777 
 778   // thread in the default location (rthread)
 779   void reset_last_Java_frame(bool clear_fp);
 780 
 781   // Stores
 782   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 783   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 784 
 785   void resolve_jobject(Register value, Register thread, Register tmp);
 786 
 787   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 788   void c2bool(Register x);
 789 
 790   // oop manipulations
 791   void load_klass(Register dst, Register src);
 792   void store_klass(Register dst, Register src);
 793   void cmp_klass(Register oop, Register trial_klass, Register tmp);
 794 
 795   void resolve_oop_handle(Register result, Register tmp = r5);
 796   void load_mirror(Register dst, Register method, Register tmp = r5);
 797 
 798   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 799                       Register tmp1, Register tmp_thread);
 800 
 801   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 802                        Register tmp1, Register tmp_thread);
 803 
 804   // Resolves obj for access. Result is placed in the same register.
 805   // All other registers are preserved.
 806   void resolve(DecoratorSet decorators, Register obj);
 807 
 808   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 809                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 810 
 811   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 812                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 813   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 814                       Register tmp_thread = noreg, DecoratorSet decorators = 0);
 815 
 816   // currently unimplemented
 817   // Used for storing NULL. All other oop constants should be
 818   // stored using routines that take a jobject.
 819   void store_heap_oop_null(Address dst);
 820 
 821   void load_prototype_header(Register dst, Register src);
 822 
 823   void store_klass_gap(Register dst, Register src);
 824 
 825   // This dummy is to prevent a call to store_heap_oop from
 826   // converting a zero (like NULL) into a Register by giving
 827   // the compiler two choices it can't resolve
 828 
 829   void store_heap_oop(Address dst, void* dummy);
 830 
 831   void encode_heap_oop(Register d, Register s);
 832   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 833   void decode_heap_oop(Register d, Register s);
 834   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 835   void encode_heap_oop_not_null(Register r);
 836   void decode_heap_oop_not_null(Register r);
 837   void encode_heap_oop_not_null(Register dst, Register src);
 838   void decode_heap_oop_not_null(Register dst, Register src);
 839 
 840   void set_narrow_oop(Register dst, jobject obj);
 841 
 842   void encode_klass_not_null(Register r);
 843   void decode_klass_not_null(Register r);
 844   void encode_klass_not_null(Register dst, Register src);
 845   void decode_klass_not_null(Register dst, Register src);
 846 
 847   void set_narrow_klass(Register dst, Klass* k);
 848 
 849   // if heap base register is used - reinit it with the correct value
 850   void reinit_heapbase();
 851 
 852   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 853 
 854   void push_CPU_state(bool save_vectors = false);
 855   void pop_CPU_state(bool restore_vectors = false) ;
 856 
 857   // Round up to a power of two
 858   void round_to(Register reg, int modulus);
 859 
 860   // allocation
 861   void eden_allocate(
 862     Register obj,                      // result: pointer to object after successful allocation
 863     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 864     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 865     Register t1,                       // temp register
 866     Label&   slow_case                 // continuation point if fast allocation fails
 867   );
 868   void tlab_allocate(
 869     Register obj,                      // result: pointer to object after successful allocation
 870     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 871     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 872     Register t1,                       // temp register
 873     Register t2,                       // temp register
 874     Label&   slow_case                 // continuation point if fast allocation fails
 875   );
 876   void zero_memory(Register addr, Register len, Register t1);
 877   void verify_tlab();
 878 
 879   // interface method calling
 880   void lookup_interface_method(Register recv_klass,
 881                                Register intf_klass,
 882                                RegisterOrConstant itable_index,
 883                                Register method_result,
 884                                Register scan_temp,
 885                                Label& no_such_interface,
 886                    bool return_method = true);
 887 
 888   // virtual method calling
 889   // n.b. x86 allows RegisterOrConstant for vtable_index
 890   void lookup_virtual_method(Register recv_klass,
 891                              RegisterOrConstant vtable_index,
 892                              Register method_result);
 893 
 894   // Test sub_klass against super_klass, with fast and slow paths.
 895 
 896   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 897   // One of the three labels can be NULL, meaning take the fall-through.
 898   // If super_check_offset is -1, the value is loaded up from super_klass.
 899   // No registers are killed, except temp_reg.
 900   void check_klass_subtype_fast_path(Register sub_klass,
 901                                      Register super_klass,
 902                                      Register temp_reg,
 903                                      Label* L_success,
 904                                      Label* L_failure,
 905                                      Label* L_slow_path,
 906                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 907 
 908   // The rest of the type check; must be wired to a corresponding fast path.
 909   // It does not repeat the fast path logic, so don't use it standalone.
 910   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 911   // Updates the sub's secondary super cache as necessary.
 912   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 913   void check_klass_subtype_slow_path(Register sub_klass,
 914                                      Register super_klass,
 915                                      Register temp_reg,
 916                                      Register temp2_reg,
 917                                      Label* L_success,
 918                                      Label* L_failure,
 919                                      bool set_cond_codes = false);
 920 
 921   // Simplified, combined version, good for typical uses.
 922   // Falls through on failure.
 923   void check_klass_subtype(Register sub_klass,
 924                            Register super_klass,
 925                            Register temp_reg,
 926                            Label& L_success);
 927 
 928   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 929 
 930 
 931   // Debugging
 932 
 933   // only if +VerifyOops
 934   void verify_oop(Register reg, const char* s = "broken oop");
 935   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 936 
 937 // TODO: verify method and klass metadata (compare against vptr?)
 938   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 939   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 940 
 941 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 942 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 943 
 944   // only if +VerifyFPU
 945   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 946 
 947   // prints msg, dumps registers and stops execution
 948   void stop(const char* msg);
 949 
 950   // prints msg and continues
 951   void warn(const char* msg);
 952 
 953   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 954 
 955   void untested()                                { stop("untested"); }
 956 
 957   void unimplemented(const char* what = "");
 958 
 959   void should_not_reach_here()                   { stop("should not reach here"); }
 960 
 961   // Stack overflow checking
 962   void bang_stack_with_offset(int offset) {
 963     // stack grows down, caller passes positive offset
 964     assert(offset > 0, "must bang with negative offset");
 965     sub(rscratch2, sp, offset);
 966     str(zr, Address(rscratch2));
 967   }
 968 
 969   // Writes to stack successive pages until offset reached to check for
 970   // stack overflow + shadow pages.  Also, clobbers tmp
 971   void bang_stack_size(Register size, Register tmp);
 972 
 973   // Check for reserved stack access in method being exited (for JIT)
 974   void reserved_stack_check();
 975 
 976   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 977                                                 Register tmp,
 978                                                 int offset);
 979 
 980   // Arithmetics
 981 
 982   void addptr(const Address &dst, int32_t src);
 983   void cmpptr(Register src1, Address src2);
 984 
 985   void cmpoop(Register obj1, Register obj2);
 986 
 987   // Various forms of CAS
 988 
 989   void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
 990                           Label &suceed, Label *fail);
 991   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
 992                   Label &suceed, Label *fail);
 993 
 994   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
 995                   Label &suceed, Label *fail);
 996 
 997   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
 998   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
 999   void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
1000   void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
1001 
1002   void atomic_xchg(Register prev, Register newv, Register addr);
1003   void atomic_xchgw(Register prev, Register newv, Register addr);
1004   void atomic_xchgal(Register prev, Register newv, Register addr);
1005   void atomic_xchgalw(Register prev, Register newv, Register addr);
1006 
1007   void orptr(Address adr, RegisterOrConstant src) {
1008     ldr(rscratch1, adr);
1009     if (src.is_register())
1010       orr(rscratch1, rscratch1, src.as_register());
1011     else
1012       orr(rscratch1, rscratch1, src.as_constant());
1013     str(rscratch1, adr);
1014   }
1015 
1016   // A generic CAS; success or failure is in the EQ flag.
1017   // Clobbers rscratch1
1018   void cmpxchg(Register addr, Register expected, Register new_val,
1019                enum operand_size size,
1020                bool acquire, bool release, bool weak,
1021                Register result);
1022 private:
1023   void compare_eq(Register rn, Register rm, enum operand_size size);
1024 
1025 public:
1026   // Calls
1027 
1028   address trampoline_call(Address entry, CodeBuffer *cbuf = NULL);
1029 
1030   static bool far_branches() {
1031     return ReservedCodeCacheSize > branch_range || UseAOT;
1032   }
1033 
1034   // Jumps that can reach anywhere in the code cache.
1035   // Trashes tmp.
1036   void far_call(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1037   void far_jump(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1038 
1039   static int far_branch_size() {
1040     if (far_branches()) {
1041       return 3 * 4;  // adrp, add, br
1042     } else {
1043       return 4;
1044     }
1045   }
1046 
1047   // Emit the CompiledIC call idiom
1048   address ic_call(address entry, jint method_index = 0);
1049 
1050 public:
1051 
1052   // Data
1053 
1054   void mov_metadata(Register dst, Metadata* obj);
1055   Address allocate_metadata_address(Metadata* obj);
1056   Address constant_oop_address(jobject obj);
1057 
1058   void movoop(Register dst, jobject obj, bool immediate = false);
1059 
1060   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1061   void kernel_crc32(Register crc, Register buf, Register len,
1062         Register table0, Register table1, Register table2, Register table3,
1063         Register tmp, Register tmp2, Register tmp3);
1064   // CRC32 code for java.util.zip.CRC32C::updateBytes() instrinsic.
1065   void kernel_crc32c(Register crc, Register buf, Register len,
1066         Register table0, Register table1, Register table2, Register table3,
1067         Register tmp, Register tmp2, Register tmp3);
1068 
1069   // Stack push and pop individual 64 bit registers
1070   void push(Register src);
1071   void pop(Register dst);
1072 
1073   // push all registers onto the stack
1074   void pusha();
1075   void popa();
1076 
1077   void repne_scan(Register addr, Register value, Register count,
1078                   Register scratch);
1079   void repne_scanw(Register addr, Register value, Register count,
1080                    Register scratch);
1081 
1082   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1083   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1084 
1085   // If a constant does not fit in an immediate field, generate some
1086   // number of MOV instructions and then perform the operation
1087   void wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
1088                              add_sub_imm_insn insn1,
1089                              add_sub_reg_insn insn2);
1090   // Seperate vsn which sets the flags
1091   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
1092                              add_sub_imm_insn insn1,
1093                              add_sub_reg_insn insn2);
1094 
1095 #define WRAP(INSN)                                                      \
1096   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1097     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1098   }                                                                     \
1099                                                                         \
1100   void INSN(Register Rd, Register Rn, Register Rm,                      \
1101              enum shift_kind kind, unsigned shift = 0) {                \
1102     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1103   }                                                                     \
1104                                                                         \
1105   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1106     Assembler::INSN(Rd, Rn, Rm);                                        \
1107   }                                                                     \
1108                                                                         \
1109   void INSN(Register Rd, Register Rn, Register Rm,                      \
1110            ext::operation option, int amount = 0) {                     \
1111     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1112   }
1113 
1114   WRAP(add) WRAP(addw) WRAP(sub) WRAP(subw)
1115 
1116 #undef WRAP
1117 #define WRAP(INSN)                                                      \
1118   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1119     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1120   }                                                                     \
1121                                                                         \
1122   void INSN(Register Rd, Register Rn, Register Rm,                      \
1123              enum shift_kind kind, unsigned shift = 0) {                \
1124     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1125   }                                                                     \
1126                                                                         \
1127   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1128     Assembler::INSN(Rd, Rn, Rm);                                        \
1129   }                                                                     \
1130                                                                         \
1131   void INSN(Register Rd, Register Rn, Register Rm,                      \
1132            ext::operation option, int amount = 0) {                     \
1133     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1134   }
1135 
1136   WRAP(adds) WRAP(addsw) WRAP(subs) WRAP(subsw)
1137 
1138   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1139   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1140   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1141   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1142 
1143   void adrp(Register reg1, const Address &dest, unsigned long &byte_offset);
1144 
1145   void tableswitch(Register index, jint lowbound, jint highbound,
1146                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1147     adr(rscratch1, jumptable);
1148     subsw(rscratch2, index, lowbound);
1149     subsw(zr, rscratch2, highbound - lowbound);
1150     br(Assembler::HS, jumptable_end);
1151     add(rscratch1, rscratch1, rscratch2,
1152         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1153     br(rscratch1);
1154   }
1155 
1156   // Form an address from base + offset in Rd.  Rd may or may not
1157   // actually be used: you must use the Address that is returned.  It
1158   // is up to you to ensure that the shift provided matches the size
1159   // of your data.
1160   Address form_address(Register Rd, Register base, long byte_offset, int shift);
1161 
1162   // Return true iff an address is within the 48-bit AArch64 address
1163   // space.
1164   bool is_valid_AArch64_address(address a) {
1165     return ((uint64_t)a >> 48) == 0;
1166   }
1167 
1168   // Load the base of the cardtable byte map into reg.
1169   void load_byte_map_base(Register reg);
1170 
1171   // Prolog generator routines to support switch between x86 code and
1172   // generated ARM code
1173 
1174   // routine to generate an x86 prolog for a stub function which
1175   // bootstraps into the generated ARM code which directly follows the
1176   // stub
1177   //
1178 
1179   public:
1180   // enum used for aarch64--x86 linkage to define return type of x86 function
1181   enum ret_type { ret_type_void, ret_type_integral, ret_type_float, ret_type_double};
1182 
1183 #ifdef BUILTIN_SIM
1184   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type, address *prolog_ptr = NULL);
1185 #else
1186   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type) { }
1187 #endif
1188 
1189   // special version of call_VM_leaf_base needed for aarch64 simulator
1190   // where we need to specify both the gp and fp arg counts and the
1191   // return type so that the linkage routine from aarch64 to x86 and
1192   // back knows which aarch64 registers to copy to x86 registers and
1193   // which x86 result register to copy back to an aarch64 register
1194 
1195   void call_VM_leaf_base1(
1196     address  entry_point,             // the entry point
1197     int      number_of_gp_arguments,  // the number of gp reg arguments to pass
1198     int      number_of_fp_arguments,  // the number of fp reg arguments to pass
1199     ret_type type,                    // the return type for the call
1200     Label*   retaddr = NULL
1201   );
1202 
1203   void ldr_constant(Register dest, const Address &const_addr) {
1204     if (NearCpool) {
1205       ldr(dest, const_addr);
1206     } else {
1207       unsigned long offset;
1208       adrp(dest, InternalAddress(const_addr.target()), offset);
1209       ldr(dest, Address(dest, offset));
1210     }
1211   }
1212 
1213   address read_polling_page(Register r, address page, relocInfo::relocType rtype);
1214   address read_polling_page(Register r, relocInfo::relocType rtype);
1215   void get_polling_page(Register dest, address page, relocInfo::relocType rtype);
1216 
1217   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1218   void update_byte_crc32(Register crc, Register val, Register table);
1219   void update_word_crc32(Register crc, Register v, Register tmp,
1220         Register table0, Register table1, Register table2, Register table3,
1221         bool upper = false);
1222 
1223   void string_compare(Register str1, Register str2,
1224                       Register cnt1, Register cnt2, Register result,
1225                       Register tmp1, Register tmp2, FloatRegister vtmp1,
1226                       FloatRegister vtmp2, FloatRegister vtmp3, int ae);
1227 
1228   void has_negatives(Register ary1, Register len, Register result);
1229 
1230   void arrays_equals(Register a1, Register a2, Register result, Register cnt1,
1231                      Register tmp1, Register tmp2, Register tmp3, int elem_size);
1232 
1233   void string_equals(Register a1, Register a2, Register result, Register cnt1,
1234                      int elem_size);
1235 
1236   void fill_words(Register base, Register cnt, Register value);
1237   void zero_words(Register base, u_int64_t cnt);
1238   void zero_words(Register ptr, Register cnt);
1239   void zero_dcache_blocks(Register base, Register cnt);
1240 
1241   static const int zero_words_block_size;
1242 
1243   void byte_array_inflate(Register src, Register dst, Register len,
1244                           FloatRegister vtmp1, FloatRegister vtmp2,
1245                           FloatRegister vtmp3, Register tmp4);
1246 
1247   void char_array_compress(Register src, Register dst, Register len,
1248                            FloatRegister tmp1Reg, FloatRegister tmp2Reg,
1249                            FloatRegister tmp3Reg, FloatRegister tmp4Reg,
1250                            Register result);
1251 
1252   void encode_iso_array(Register src, Register dst,
1253                         Register len, Register result,
1254                         FloatRegister Vtmp1, FloatRegister Vtmp2,
1255                         FloatRegister Vtmp3, FloatRegister Vtmp4);
1256   void string_indexof(Register str1, Register str2,
1257                       Register cnt1, Register cnt2,
1258                       Register tmp1, Register tmp2,
1259                       Register tmp3, Register tmp4,
1260                       Register tmp5, Register tmp6,
1261                       int int_cnt1, Register result, int ae);
1262   void string_indexof_char(Register str1, Register cnt1,
1263                            Register ch, Register result,
1264                            Register tmp1, Register tmp2, Register tmp3);
1265   void fast_log(FloatRegister vtmp0, FloatRegister vtmp1, FloatRegister vtmp2,
1266                 FloatRegister vtmp3, FloatRegister vtmp4, FloatRegister vtmp5,
1267                 FloatRegister tmpC1, FloatRegister tmpC2, FloatRegister tmpC3,
1268                 FloatRegister tmpC4, Register tmp1, Register tmp2,
1269                 Register tmp3, Register tmp4, Register tmp5);
1270   void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi,
1271       address pio2, address dsin_coef, address dcos_coef);
1272  private:
1273   // begin trigonometric functions support block
1274   void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2);
1275   void generate__kernel_rem_pio2(address two_over_pi, address pio2);
1276   void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef);
1277   void generate_kernel_cos(FloatRegister x, address dcos_coef);
1278   // end trigonometric functions support block
1279   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1280                        Register src1, Register src2);
1281   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1282     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1283   }
1284   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1285                              Register y, Register y_idx, Register z,
1286                              Register carry, Register product,
1287                              Register idx, Register kdx);
1288   void multiply_128_x_128_loop(Register y, Register z,
1289                                Register carry, Register carry2,
1290                                Register idx, Register jdx,
1291                                Register yz_idx1, Register yz_idx2,
1292                                Register tmp, Register tmp3, Register tmp4,
1293                                Register tmp7, Register product_hi);
1294   void kernel_crc32_using_crc32(Register crc, Register buf,
1295         Register len, Register tmp0, Register tmp1, Register tmp2,
1296         Register tmp3);
1297   void kernel_crc32c_using_crc32c(Register crc, Register buf,
1298         Register len, Register tmp0, Register tmp1, Register tmp2,
1299         Register tmp3);
1300 public:
1301   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1302                        Register zlen, Register tmp1, Register tmp2, Register tmp3,
1303                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1304   void mul_add(Register out, Register in, Register offs, Register len, Register k);
1305   // ISB may be needed because of a safepoint
1306   void maybe_isb() { isb(); }
1307 
1308 private:
1309   // Return the effective address r + (r1 << ext) + offset.
1310   // Uses rscratch2.
1311   Address offsetted_address(Register r, Register r1, Address::extend ext,
1312                             int offset, int size);
1313 
1314 private:
1315   // Returns an address on the stack which is reachable with a ldr/str of size
1316   // Uses rscratch2 if the address is not directly reachable
1317   Address spill_address(int size, int offset, Register tmp=rscratch2);
1318 
1319   bool merge_alignment_check(Register base, size_t size, long cur_offset, long prev_offset) const;
1320 
1321   // Check whether two loads/stores can be merged into ldp/stp.
1322   bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const;
1323 
1324   // Merge current load/store with previous load/store into ldp/stp.
1325   void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1326 
1327   // Try to merge two loads/stores into ldp/stp. If success, returns true else false.
1328   bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1329 
1330 public:
1331   void spill(Register Rx, bool is64, int offset) {
1332     if (is64) {
1333       str(Rx, spill_address(8, offset));
1334     } else {
1335       strw(Rx, spill_address(4, offset));
1336     }
1337   }
1338   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1339     str(Vx, T, spill_address(1 << (int)T, offset));
1340   }
1341   void unspill(Register Rx, bool is64, int offset) {
1342     if (is64) {
1343       ldr(Rx, spill_address(8, offset));
1344     } else {
1345       ldrw(Rx, spill_address(4, offset));
1346     }
1347   }
1348   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1349     ldr(Vx, T, spill_address(1 << (int)T, offset));
1350   }
1351   void spill_copy128(int src_offset, int dst_offset,
1352                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1353     if (src_offset < 512 && (src_offset & 7) == 0 &&
1354         dst_offset < 512 && (dst_offset & 7) == 0) {
1355       ldp(tmp1, tmp2, Address(sp, src_offset));
1356       stp(tmp1, tmp2, Address(sp, dst_offset));
1357     } else {
1358       unspill(tmp1, true, src_offset);
1359       spill(tmp1, true, dst_offset);
1360       unspill(tmp1, true, src_offset+8);
1361       spill(tmp1, true, dst_offset+8);
1362     }
1363   }
1364 };
1365 
1366 #ifdef ASSERT
1367 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1368 #endif
1369 
1370 /**
1371  * class SkipIfEqual:
1372  *
1373  * Instantiating this class will result in assembly code being output that will
1374  * jump around any code emitted between the creation of the instance and it's
1375  * automatic destruction at the end of a scope block, depending on the value of
1376  * the flag passed to the constructor, which will be checked at run-time.
1377  */
1378 class SkipIfEqual {
1379  private:
1380   MacroAssembler* _masm;
1381   Label _label;
1382 
1383  public:
1384    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1385    ~SkipIfEqual();
1386 };
1387 
1388 struct tableswitch {
1389   Register _reg;
1390   int _insn_index; jint _first_key; jint _last_key;
1391   Label _after;
1392   Label _branches;
1393 };
1394 
1395 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP