1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.hpp"
  30 #include "oops/compressedOops.hpp"
  31 #include "utilities/powerOfTwo.hpp"
  32 
  33 // MacroAssembler extends Assembler by frequently used macros.
  34 //
  35 // Instructions for which a 'better' code sequence exists depending
  36 // on arguments should also go in here.
  37 
  38 class MacroAssembler: public Assembler {
  39   friend class LIR_Assembler;
  40 
  41  public:
  42   using Assembler::mov;
  43   using Assembler::movi;
  44 
  45  protected:
  46 
  47   // Support for VM calls
  48   //
  49   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  50   // may customize this version by overriding it for its purposes (e.g., to save/restore
  51   // additional registers when doing a VM call).
  52   virtual void call_VM_leaf_base(
  53     address entry_point,               // the entry point
  54     int     number_of_arguments,        // the number of arguments to pop after the call
  55     Label *retaddr = NULL
  56   );
  57 
  58   virtual void call_VM_leaf_base(
  59     address entry_point,               // the entry point
  60     int     number_of_arguments,        // the number of arguments to pop after the call
  61     Label &retaddr) {
  62     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  63   }
  64 
  65   // This is the base routine called by the different versions of call_VM. The interpreter
  66   // may customize this version by overriding it for its purposes (e.g., to save/restore
  67   // additional registers when doing a VM call).
  68   //
  69   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  70   // returns the register which contains the thread upon return. If a thread register has been
  71   // specified, the return value will correspond to that register. If no last_java_sp is specified
  72   // (noreg) than rsp will be used instead.
  73   virtual void call_VM_base(           // returns the register containing the thread upon return
  74     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  75     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  76     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  77     address  entry_point,              // the entry point
  78     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  79     bool     check_exceptions          // whether to check for pending exceptions after return
  80   );
  81 
  82   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  83 
  84   enum KlassDecodeMode {
  85     KlassDecodeNone,
  86     KlassDecodeZero,
  87     KlassDecodeXor,
  88     KlassDecodeMovk
  89   };
  90 
  91   KlassDecodeMode klass_decode_mode();
  92 
  93  private:
  94   static KlassDecodeMode _klass_decode_mode;
  95 
  96  public:
  97   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  98 
  99  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
 100  // The implementation is only non-empty for the InterpreterMacroAssembler,
 101  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
 102  virtual void check_and_handle_popframe(Register java_thread);
 103  virtual void check_and_handle_earlyret(Register java_thread);
 104 
 105   void safepoint_poll(Label& slow_path);
 106   void safepoint_poll_acquire(Label& slow_path);
 107 
 108   // Biased locking support
 109   // lock_reg and obj_reg must be loaded up with the appropriate values.
 110   // swap_reg is killed.
 111   // tmp_reg must be supplied and must not be rscratch1 or rscratch2
 112   // Optional slow case is for implementations (interpreter and C1) which branch to
 113   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 114   // Returns offset of first potentially-faulting instruction for null
 115   // check info (currently consumed only by C1). If
 116   // swap_reg_contains_mark is true then returns -1 as it is assumed
 117   // the calling code has already passed any potential faults.
 118   int biased_locking_enter(Register lock_reg, Register obj_reg,
 119                            Register swap_reg, Register tmp_reg,
 120                            bool swap_reg_contains_mark,
 121                            Label& done, Label* slow_case = NULL,
 122                            BiasedLockingCounters* counters = NULL);
 123   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 124 
 125 
 126   // Helper functions for statistics gathering.
 127   // Unconditional atomic increment.
 128   void atomic_incw(Register counter_addr, Register tmp, Register tmp2);
 129   void atomic_incw(Address counter_addr, Register tmp1, Register tmp2, Register tmp3) {
 130     lea(tmp1, counter_addr);
 131     atomic_incw(tmp1, tmp2, tmp3);
 132   }
 133   // Load Effective Address
 134   void lea(Register r, const Address &a) {
 135     InstructionMark im(this);
 136     code_section()->relocate(inst_mark(), a.rspec());
 137     a.lea(this, r);
 138   }
 139 
 140   /* Sometimes we get misaligned loads and stores, usually from Unsafe
 141      accesses, and these can exceed the offset range. */
 142   Address legitimize_address(const Address &a, int size, Register scratch) {
 143     if (a.getMode() == Address::base_plus_offset) {
 144       if (! Address::offset_ok_for_immed(a.offset(), exact_log2(size))) {
 145         block_comment("legitimize_address {");
 146         lea(scratch, a);
 147         block_comment("} legitimize_address");
 148         return Address(scratch);
 149       }
 150     }
 151     return a;
 152   }
 153 
 154   void addmw(Address a, Register incr, Register scratch) {
 155     ldrw(scratch, a);
 156     addw(scratch, scratch, incr);
 157     strw(scratch, a);
 158   }
 159 
 160   // Add constant to memory word
 161   void addmw(Address a, int imm, Register scratch) {
 162     ldrw(scratch, a);
 163     if (imm > 0)
 164       addw(scratch, scratch, (unsigned)imm);
 165     else
 166       subw(scratch, scratch, (unsigned)-imm);
 167     strw(scratch, a);
 168   }
 169 
 170   void bind(Label& L) {
 171     Assembler::bind(L);
 172     code()->clear_last_insn();
 173   }
 174 
 175   void membar(Membar_mask_bits order_constraint);
 176 
 177   using Assembler::ldr;
 178   using Assembler::str;
 179   using Assembler::ldrw;
 180   using Assembler::strw;
 181 
 182   void ldr(Register Rx, const Address &adr);
 183   void ldrw(Register Rw, const Address &adr);
 184   void str(Register Rx, const Address &adr);
 185   void strw(Register Rx, const Address &adr);
 186 
 187   // Frame creation and destruction shared between JITs.
 188   void build_frame(int framesize);
 189   void remove_frame(int framesize);
 190 
 191   virtual void _call_Unimplemented(address call_site) {
 192     mov(rscratch2, call_site);
 193   }
 194 
 195 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 196 
 197   // aliases defined in AARCH64 spec
 198 
 199   template<class T>
 200   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 201 
 202   inline void cmp(Register Rd, unsigned char imm8)  { subs(zr, Rd, imm8); }
 203   inline void cmp(Register Rd, unsigned imm) __attribute__ ((deprecated));
 204 
 205   inline void cmnw(Register Rd, unsigned imm) { addsw(zr, Rd, imm); }
 206   inline void cmn(Register Rd, unsigned imm) { adds(zr, Rd, imm); }
 207 
 208   void cset(Register Rd, Assembler::Condition cond) {
 209     csinc(Rd, zr, zr, ~cond);
 210   }
 211   void csetw(Register Rd, Assembler::Condition cond) {
 212     csincw(Rd, zr, zr, ~cond);
 213   }
 214 
 215   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 216     csneg(Rd, Rn, Rn, ~cond);
 217   }
 218   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 219     csnegw(Rd, Rn, Rn, ~cond);
 220   }
 221 
 222   inline void movw(Register Rd, Register Rn) {
 223     if (Rd == sp || Rn == sp) {
 224       addw(Rd, Rn, 0U);
 225     } else {
 226       orrw(Rd, zr, Rn);
 227     }
 228   }
 229   inline void mov(Register Rd, Register Rn) {
 230     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 231     if (Rd == Rn) {
 232     } else if (Rd == sp || Rn == sp) {
 233       add(Rd, Rn, 0U);
 234     } else {
 235       orr(Rd, zr, Rn);
 236     }
 237   }
 238 
 239   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 240   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 241 
 242   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 243   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 244 
 245   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 246   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 247 
 248   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 249     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 250   }
 251   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 252     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 253   }
 254 
 255   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 256     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 257   }
 258   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 259     bfm(Rd, Rn, lsb , (lsb + width - 1));
 260   }
 261 
 262   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 263     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 264   }
 265   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 266     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 267   }
 268 
 269   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 270     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 271   }
 272   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 273     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 274   }
 275 
 276   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 277     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 278   }
 279   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 280     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 281   }
 282 
 283   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 284     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 285   }
 286   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 287     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 288   }
 289 
 290   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 291     sbfmw(Rd, Rn, imm, 31);
 292   }
 293 
 294   inline void asr(Register Rd, Register Rn, unsigned imm) {
 295     sbfm(Rd, Rn, imm, 63);
 296   }
 297 
 298   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 299     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 300   }
 301 
 302   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 303     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 304   }
 305 
 306   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 307     ubfmw(Rd, Rn, imm, 31);
 308   }
 309 
 310   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 311     ubfm(Rd, Rn, imm, 63);
 312   }
 313 
 314   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 315     extrw(Rd, Rn, Rn, imm);
 316   }
 317 
 318   inline void ror(Register Rd, Register Rn, unsigned imm) {
 319     extr(Rd, Rn, Rn, imm);
 320   }
 321 
 322   inline void sxtbw(Register Rd, Register Rn) {
 323     sbfmw(Rd, Rn, 0, 7);
 324   }
 325   inline void sxthw(Register Rd, Register Rn) {
 326     sbfmw(Rd, Rn, 0, 15);
 327   }
 328   inline void sxtb(Register Rd, Register Rn) {
 329     sbfm(Rd, Rn, 0, 7);
 330   }
 331   inline void sxth(Register Rd, Register Rn) {
 332     sbfm(Rd, Rn, 0, 15);
 333   }
 334   inline void sxtw(Register Rd, Register Rn) {
 335     sbfm(Rd, Rn, 0, 31);
 336   }
 337 
 338   inline void uxtbw(Register Rd, Register Rn) {
 339     ubfmw(Rd, Rn, 0, 7);
 340   }
 341   inline void uxthw(Register Rd, Register Rn) {
 342     ubfmw(Rd, Rn, 0, 15);
 343   }
 344   inline void uxtb(Register Rd, Register Rn) {
 345     ubfm(Rd, Rn, 0, 7);
 346   }
 347   inline void uxth(Register Rd, Register Rn) {
 348     ubfm(Rd, Rn, 0, 15);
 349   }
 350   inline void uxtw(Register Rd, Register Rn) {
 351     ubfm(Rd, Rn, 0, 31);
 352   }
 353 
 354   inline void cmnw(Register Rn, Register Rm) {
 355     addsw(zr, Rn, Rm);
 356   }
 357   inline void cmn(Register Rn, Register Rm) {
 358     adds(zr, Rn, Rm);
 359   }
 360 
 361   inline void cmpw(Register Rn, Register Rm) {
 362     subsw(zr, Rn, Rm);
 363   }
 364   inline void cmp(Register Rn, Register Rm) {
 365     subs(zr, Rn, Rm);
 366   }
 367 
 368   inline void negw(Register Rd, Register Rn) {
 369     subw(Rd, zr, Rn);
 370   }
 371 
 372   inline void neg(Register Rd, Register Rn) {
 373     sub(Rd, zr, Rn);
 374   }
 375 
 376   inline void negsw(Register Rd, Register Rn) {
 377     subsw(Rd, zr, Rn);
 378   }
 379 
 380   inline void negs(Register Rd, Register Rn) {
 381     subs(Rd, zr, Rn);
 382   }
 383 
 384   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 385     addsw(zr, Rn, Rm, kind, shift);
 386   }
 387   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 388     adds(zr, Rn, Rm, kind, shift);
 389   }
 390 
 391   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 392     subsw(zr, Rn, Rm, kind, shift);
 393   }
 394   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 395     subs(zr, Rn, Rm, kind, shift);
 396   }
 397 
 398   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 399     subw(Rd, zr, Rn, kind, shift);
 400   }
 401 
 402   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 403     sub(Rd, zr, Rn, kind, shift);
 404   }
 405 
 406   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 407     subsw(Rd, zr, Rn, kind, shift);
 408   }
 409 
 410   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 411     subs(Rd, zr, Rn, kind, shift);
 412   }
 413 
 414   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 415     msubw(Rd, Rn, Rm, zr);
 416   }
 417   inline void mneg(Register Rd, Register Rn, Register Rm) {
 418     msub(Rd, Rn, Rm, zr);
 419   }
 420 
 421   inline void mulw(Register Rd, Register Rn, Register Rm) {
 422     maddw(Rd, Rn, Rm, zr);
 423   }
 424   inline void mul(Register Rd, Register Rn, Register Rm) {
 425     madd(Rd, Rn, Rm, zr);
 426   }
 427 
 428   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 429     smsubl(Rd, Rn, Rm, zr);
 430   }
 431   inline void smull(Register Rd, Register Rn, Register Rm) {
 432     smaddl(Rd, Rn, Rm, zr);
 433   }
 434 
 435   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 436     umsubl(Rd, Rn, Rm, zr);
 437   }
 438   inline void umull(Register Rd, Register Rn, Register Rm) {
 439     umaddl(Rd, Rn, Rm, zr);
 440   }
 441 
 442 #define WRAP(INSN)                                                            \
 443   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 444     if ((VM_Version::features() & VM_Version::CPU_A53MAC) && Ra != zr)        \
 445       nop();                                                                  \
 446     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 447   }
 448 
 449   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 450   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 451 #undef WRAP
 452 
 453 
 454   // macro assembly operations needed for aarch64
 455 
 456   // first two private routines for loading 32 bit or 64 bit constants
 457 private:
 458 
 459   void mov_immediate64(Register dst, u_int64_t imm64);
 460   void mov_immediate32(Register dst, u_int32_t imm32);
 461 
 462   int push(unsigned int bitset, Register stack);
 463   int pop(unsigned int bitset, Register stack);
 464 
 465   int push_fp(unsigned int bitset, Register stack);
 466   int pop_fp(unsigned int bitset, Register stack);
 467 
 468   void mov(Register dst, Address a);
 469 
 470 public:
 471   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 472   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 473 
 474   void push_fp(RegSet regs, Register stack) { if (regs.bits()) push_fp(regs.bits(), stack); }
 475   void pop_fp(RegSet regs, Register stack) { if (regs.bits()) pop_fp(regs.bits(), stack); }
 476 
 477   // Push and pop everything that might be clobbered by a native
 478   // runtime call except rscratch1 and rscratch2.  (They are always
 479   // scratch, so we don't have to protect them.)  Only save the lower
 480   // 64 bits of each vector register.
 481   void push_call_clobbered_registers();
 482   void pop_call_clobbered_registers();
 483 
 484   // now mov instructions for loading absolute addresses and 32 or
 485   // 64 bit integers
 486 
 487   inline void mov(Register dst, address addr)
 488   {
 489     mov_immediate64(dst, (u_int64_t)addr);
 490   }
 491 
 492   inline void mov(Register dst, u_int64_t imm64)
 493   {
 494     mov_immediate64(dst, imm64);
 495   }
 496 
 497   inline void movw(Register dst, u_int32_t imm32)
 498   {
 499     mov_immediate32(dst, imm32);
 500   }
 501 
 502   inline void mov(Register dst, long l)
 503   {
 504     mov(dst, (u_int64_t)l);
 505   }
 506 
 507   inline void mov(Register dst, int i)
 508   {
 509     mov(dst, (long)i);
 510   }
 511 
 512   void mov(Register dst, RegisterOrConstant src) {
 513     if (src.is_register())
 514       mov(dst, src.as_register());
 515     else
 516       mov(dst, src.as_constant());
 517   }
 518 
 519   void movptr(Register r, uintptr_t imm64);
 520 
 521   void mov(FloatRegister Vd, SIMD_Arrangement T, u_int32_t imm32);
 522 
 523   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 524     orr(Vd, T, Vn, Vn);
 525   }
 526 
 527 public:
 528 
 529   // Generalized Test Bit And Branch, including a "far" variety which
 530   // spans more than 32KiB.
 531   void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool far = false) {
 532     assert(cond == EQ || cond == NE, "must be");
 533 
 534     if (far)
 535       cond = ~cond;
 536 
 537     void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
 538     if (cond == Assembler::EQ)
 539       branch = &Assembler::tbz;
 540     else
 541       branch = &Assembler::tbnz;
 542 
 543     if (far) {
 544       Label L;
 545       (this->*branch)(Rt, bitpos, L);
 546       b(dest);
 547       bind(L);
 548     } else {
 549       (this->*branch)(Rt, bitpos, dest);
 550     }
 551   }
 552 
 553   // macro instructions for accessing and updating floating point
 554   // status register
 555   //
 556   // FPSR : op1 == 011
 557   //        CRn == 0100
 558   //        CRm == 0100
 559   //        op2 == 001
 560 
 561   inline void get_fpsr(Register reg)
 562   {
 563     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 564   }
 565 
 566   inline void set_fpsr(Register reg)
 567   {
 568     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 569   }
 570 
 571   inline void clear_fpsr()
 572   {
 573     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 574   }
 575 
 576   // DCZID_EL0: op1 == 011
 577   //            CRn == 0000
 578   //            CRm == 0000
 579   //            op2 == 111
 580   inline void get_dczid_el0(Register reg)
 581   {
 582     mrs(0b011, 0b0000, 0b0000, 0b111, reg);
 583   }
 584 
 585   // CTR_EL0:   op1 == 011
 586   //            CRn == 0000
 587   //            CRm == 0000
 588   //            op2 == 001
 589   inline void get_ctr_el0(Register reg)
 590   {
 591     mrs(0b011, 0b0000, 0b0000, 0b001, reg);
 592   }
 593 
 594   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 595   int corrected_idivl(Register result, Register ra, Register rb,
 596                       bool want_remainder, Register tmp = rscratch1);
 597   int corrected_idivq(Register result, Register ra, Register rb,
 598                       bool want_remainder, Register tmp = rscratch1);
 599 
 600   // Support for NULL-checks
 601   //
 602   // Generates code that causes a NULL OS exception if the content of reg is NULL.
 603   // If the accessed location is M[reg + offset] and the offset is known, provide the
 604   // offset. No explicit code generation is needed if the offset is within a certain
 605   // range (0 <= offset <= page_size).
 606 
 607   virtual void null_check(Register reg, int offset = -1);
 608   static bool needs_explicit_null_check(intptr_t offset);
 609   static bool uses_implicit_null_check(void* address);
 610 
 611   static address target_addr_for_insn(address insn_addr, unsigned insn);
 612   static address target_addr_for_insn(address insn_addr) {
 613     unsigned insn = *(unsigned*)insn_addr;
 614     return target_addr_for_insn(insn_addr, insn);
 615   }
 616 
 617   // Required platform-specific helpers for Label::patch_instructions.
 618   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 619   static int pd_patch_instruction_size(address branch, address target);
 620   static void pd_patch_instruction(address branch, address target, const char* file = NULL, int line = 0) {
 621     pd_patch_instruction_size(branch, target);
 622   }
 623   static address pd_call_destination(address branch) {
 624     return target_addr_for_insn(branch);
 625   }
 626 #ifndef PRODUCT
 627   static void pd_print_patched_instruction(address branch);
 628 #endif
 629 
 630   static int patch_oop(address insn_addr, address o);
 631   static int patch_narrow_klass(address insn_addr, narrowKlass n);
 632 
 633   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 634   void emit_static_call_stub();
 635 
 636   // The following 4 methods return the offset of the appropriate move instruction
 637 
 638   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 639   int load_unsigned_byte(Register dst, Address src);
 640   int load_unsigned_short(Register dst, Address src);
 641 
 642   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 643   int load_signed_byte(Register dst, Address src);
 644   int load_signed_short(Register dst, Address src);
 645 
 646   int load_signed_byte32(Register dst, Address src);
 647   int load_signed_short32(Register dst, Address src);
 648 
 649   // Support for sign-extension (hi:lo = extend_sign(lo))
 650   void extend_sign(Register hi, Register lo);
 651 
 652   // Load and store values by size and signed-ness
 653   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 654   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 655 
 656   // Support for inc/dec with optimal instruction selection depending on value
 657 
 658   // x86_64 aliases an unqualified register/address increment and
 659   // decrement to call incrementq and decrementq but also supports
 660   // explicitly sized calls to incrementq/decrementq or
 661   // incrementl/decrementl
 662 
 663   // for aarch64 the proper convention would be to use
 664   // increment/decrement for 64 bit operatons and
 665   // incrementw/decrementw for 32 bit operations. so when porting
 666   // x86_64 code we can leave calls to increment/decrement as is,
 667   // replace incrementq/decrementq with increment/decrement and
 668   // replace incrementl/decrementl with incrementw/decrementw.
 669 
 670   // n.b. increment/decrement calls with an Address destination will
 671   // need to use a scratch register to load the value to be
 672   // incremented. increment/decrement calls which add or subtract a
 673   // constant value greater than 2^12 will need to use a 2nd scratch
 674   // register to hold the constant. so, a register increment/decrement
 675   // may trash rscratch2 and an address increment/decrement trash
 676   // rscratch and rscratch2
 677 
 678   void decrementw(Address dst, int value = 1);
 679   void decrementw(Register reg, int value = 1);
 680 
 681   void decrement(Register reg, int value = 1);
 682   void decrement(Address dst, int value = 1);
 683 
 684   void incrementw(Address dst, int value = 1);
 685   void incrementw(Register reg, int value = 1);
 686 
 687   void increment(Register reg, int value = 1);
 688   void increment(Address dst, int value = 1);
 689 
 690 
 691   // Alignment
 692   void align(int modulus);
 693 
 694   // Stack frame creation/removal
 695   void enter()
 696   {
 697     stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
 698     mov(rfp, sp);
 699   }
 700   void leave()
 701   {
 702     mov(sp, rfp);
 703     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
 704   }
 705 
 706   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 707   // The pointer will be loaded into the thread register.
 708   void get_thread(Register thread);
 709 
 710 
 711   // Support for VM calls
 712   //
 713   // It is imperative that all calls into the VM are handled via the call_VM macros.
 714   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 715   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 716 
 717 
 718   void call_VM(Register oop_result,
 719                address entry_point,
 720                bool check_exceptions = true);
 721   void call_VM(Register oop_result,
 722                address entry_point,
 723                Register arg_1,
 724                bool check_exceptions = true);
 725   void call_VM(Register oop_result,
 726                address entry_point,
 727                Register arg_1, Register arg_2,
 728                bool check_exceptions = true);
 729   void call_VM(Register oop_result,
 730                address entry_point,
 731                Register arg_1, Register arg_2, Register arg_3,
 732                bool check_exceptions = true);
 733 
 734   // Overloadings with last_Java_sp
 735   void call_VM(Register oop_result,
 736                Register last_java_sp,
 737                address entry_point,
 738                int number_of_arguments = 0,
 739                bool check_exceptions = true);
 740   void call_VM(Register oop_result,
 741                Register last_java_sp,
 742                address entry_point,
 743                Register arg_1, bool
 744                check_exceptions = true);
 745   void call_VM(Register oop_result,
 746                Register last_java_sp,
 747                address entry_point,
 748                Register arg_1, Register arg_2,
 749                bool check_exceptions = true);
 750   void call_VM(Register oop_result,
 751                Register last_java_sp,
 752                address entry_point,
 753                Register arg_1, Register arg_2, Register arg_3,
 754                bool check_exceptions = true);
 755 
 756   void get_vm_result  (Register oop_result, Register thread);
 757   void get_vm_result_2(Register metadata_result, Register thread);
 758 
 759   // These always tightly bind to MacroAssembler::call_VM_base
 760   // bypassing the virtual implementation
 761   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 762   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 763   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 764   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 765   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 766 
 767   void call_VM_leaf(address entry_point,
 768                     int number_of_arguments = 0);
 769   void call_VM_leaf(address entry_point,
 770                     Register arg_1);
 771   void call_VM_leaf(address entry_point,
 772                     Register arg_1, Register arg_2);
 773   void call_VM_leaf(address entry_point,
 774                     Register arg_1, Register arg_2, Register arg_3);
 775 
 776   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 777   // bypassing the virtual implementation
 778   void super_call_VM_leaf(address entry_point);
 779   void super_call_VM_leaf(address entry_point, Register arg_1);
 780   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 781   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 782   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 783 
 784   // last Java Frame (fills frame anchor)
 785   void set_last_Java_frame(Register last_java_sp,
 786                            Register last_java_fp,
 787                            address last_java_pc,
 788                            Register scratch);
 789 
 790   void set_last_Java_frame(Register last_java_sp,
 791                            Register last_java_fp,
 792                            Label &last_java_pc,
 793                            Register scratch);
 794 
 795   void set_last_Java_frame(Register last_java_sp,
 796                            Register last_java_fp,
 797                            Register last_java_pc,
 798                            Register scratch);
 799 
 800   void reset_last_Java_frame(Register thread);
 801 
 802   // thread in the default location (rthread)
 803   void reset_last_Java_frame(bool clear_fp);
 804 
 805   // Stores
 806   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 807   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 808 
 809   void resolve_jobject(Register value, Register thread, Register tmp);
 810 
 811   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 812   void c2bool(Register x);
 813 
 814   void load_method_holder_cld(Register rresult, Register rmethod);
 815   void load_method_holder(Register holder, Register method);
 816 
 817   // oop manipulations
 818   void load_klass(Register dst, Register src);
 819   void store_klass(Register dst, Register src);
 820   void cmp_klass(Register oop, Register trial_klass, Register tmp);
 821 
 822   void resolve_weak_handle(Register result, Register tmp);
 823   void resolve_oop_handle(Register result, Register tmp = r5);
 824   void load_mirror(Register dst, Register method, Register tmp = r5);
 825 
 826   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 827                       Register tmp1, Register tmp_thread);
 828 
 829   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 830                        Register tmp1, Register tmp_thread);
 831 
 832   // Resolves obj for access. Result is placed in the same register.
 833   // All other registers are preserved.
 834   void resolve(DecoratorSet decorators, Register obj);
 835 
 836   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 837                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 838 
 839   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 840                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 841   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 842                       Register tmp_thread = noreg, DecoratorSet decorators = 0);
 843 
 844   // currently unimplemented
 845   // Used for storing NULL. All other oop constants should be
 846   // stored using routines that take a jobject.
 847   void store_heap_oop_null(Address dst);
 848 
 849   void load_prototype_header(Register dst, Register src);
 850 
 851   void store_klass_gap(Register dst, Register src);
 852 
 853   // This dummy is to prevent a call to store_heap_oop from
 854   // converting a zero (like NULL) into a Register by giving
 855   // the compiler two choices it can't resolve
 856 
 857   void store_heap_oop(Address dst, void* dummy);
 858 
 859   void encode_heap_oop(Register d, Register s);
 860   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 861   void decode_heap_oop(Register d, Register s);
 862   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 863   void encode_heap_oop_not_null(Register r);
 864   void decode_heap_oop_not_null(Register r);
 865   void encode_heap_oop_not_null(Register dst, Register src);
 866   void decode_heap_oop_not_null(Register dst, Register src);
 867 
 868   void set_narrow_oop(Register dst, jobject obj);
 869 
 870   void encode_klass_not_null(Register r);
 871   void decode_klass_not_null(Register r);
 872   void encode_klass_not_null(Register dst, Register src);
 873   void decode_klass_not_null(Register dst, Register src);
 874 
 875   void set_narrow_klass(Register dst, Klass* k);
 876 
 877   // if heap base register is used - reinit it with the correct value
 878   void reinit_heapbase();
 879 
 880   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 881 
 882   void push_CPU_state(bool save_vectors = false);
 883   void pop_CPU_state(bool restore_vectors = false) ;
 884 
 885   // Round up to a power of two
 886   void round_to(Register reg, int modulus);
 887 
 888   // allocation
 889   void eden_allocate(
 890     Register obj,                      // result: pointer to object after successful allocation
 891     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 892     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 893     Register t1,                       // temp register
 894     Label&   slow_case                 // continuation point if fast allocation fails
 895   );
 896   void tlab_allocate(
 897     Register obj,                      // result: pointer to object after successful allocation
 898     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 899     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 900     Register t1,                       // temp register
 901     Register t2,                       // temp register
 902     Label&   slow_case                 // continuation point if fast allocation fails
 903   );
 904   void zero_memory(Register addr, Register len, Register t1);
 905   void verify_tlab();
 906 
 907   // interface method calling
 908   void lookup_interface_method(Register recv_klass,
 909                                Register intf_klass,
 910                                RegisterOrConstant itable_index,
 911                                Register method_result,
 912                                Register scan_temp,
 913                                Label& no_such_interface,
 914                    bool return_method = true);
 915 
 916   // virtual method calling
 917   // n.b. x86 allows RegisterOrConstant for vtable_index
 918   void lookup_virtual_method(Register recv_klass,
 919                              RegisterOrConstant vtable_index,
 920                              Register method_result);
 921 
 922   // Test sub_klass against super_klass, with fast and slow paths.
 923 
 924   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 925   // One of the three labels can be NULL, meaning take the fall-through.
 926   // If super_check_offset is -1, the value is loaded up from super_klass.
 927   // No registers are killed, except temp_reg.
 928   void check_klass_subtype_fast_path(Register sub_klass,
 929                                      Register super_klass,
 930                                      Register temp_reg,
 931                                      Label* L_success,
 932                                      Label* L_failure,
 933                                      Label* L_slow_path,
 934                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 935 
 936   // The rest of the type check; must be wired to a corresponding fast path.
 937   // It does not repeat the fast path logic, so don't use it standalone.
 938   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 939   // Updates the sub's secondary super cache as necessary.
 940   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 941   void check_klass_subtype_slow_path(Register sub_klass,
 942                                      Register super_klass,
 943                                      Register temp_reg,
 944                                      Register temp2_reg,
 945                                      Label* L_success,
 946                                      Label* L_failure,
 947                                      bool set_cond_codes = false);
 948 
 949   // Simplified, combined version, good for typical uses.
 950   // Falls through on failure.
 951   void check_klass_subtype(Register sub_klass,
 952                            Register super_klass,
 953                            Register temp_reg,
 954                            Label& L_success);
 955 
 956   void clinit_barrier(Register klass,
 957                       Register thread,
 958                       Label* L_fast_path = NULL,
 959                       Label* L_slow_path = NULL);
 960 
 961   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 962 
 963 
 964   // Debugging
 965 
 966   // only if +VerifyOops
 967   void verify_oop(Register reg, const char* s = "broken oop");
 968   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 969 
 970 // TODO: verify method and klass metadata (compare against vptr?)
 971   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 972   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 973 
 974 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 975 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 976 
 977   // only if +VerifyFPU
 978   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 979 
 980   // prints msg, dumps registers and stops execution
 981   void stop(const char* msg);
 982 
 983   // prints msg and continues
 984   void warn(const char* msg);
 985 
 986   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 987 
 988   void untested()                                { stop("untested"); }
 989 
 990   void unimplemented(const char* what = "");
 991 
 992   void should_not_reach_here()                   { stop("should not reach here"); }
 993 
 994   // Stack overflow checking
 995   void bang_stack_with_offset(int offset) {
 996     // stack grows down, caller passes positive offset
 997     assert(offset > 0, "must bang with negative offset");
 998     sub(rscratch2, sp, offset);
 999     str(zr, Address(rscratch2));
1000   }
1001 
1002   // Writes to stack successive pages until offset reached to check for
1003   // stack overflow + shadow pages.  Also, clobbers tmp
1004   void bang_stack_size(Register size, Register tmp);
1005 
1006   // Check for reserved stack access in method being exited (for JIT)
1007   void reserved_stack_check();
1008 
1009   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
1010                                                 Register tmp,
1011                                                 int offset);
1012 
1013   // Arithmetics
1014 
1015   void addptr(const Address &dst, int32_t src);
1016   void cmpptr(Register src1, Address src2);
1017 
1018   void cmpoop(Register obj1, Register obj2);
1019 
1020   // Various forms of CAS
1021 
1022   void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
1023                           Label &suceed, Label *fail);
1024   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
1025                   Label &suceed, Label *fail);
1026 
1027   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
1028                   Label &suceed, Label *fail);
1029 
1030   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
1031   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
1032   void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
1033   void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
1034 
1035   void atomic_xchg(Register prev, Register newv, Register addr);
1036   void atomic_xchgw(Register prev, Register newv, Register addr);
1037   void atomic_xchgal(Register prev, Register newv, Register addr);
1038   void atomic_xchgalw(Register prev, Register newv, Register addr);
1039 
1040   void orptr(Address adr, RegisterOrConstant src) {
1041     ldr(rscratch1, adr);
1042     if (src.is_register())
1043       orr(rscratch1, rscratch1, src.as_register());
1044     else
1045       orr(rscratch1, rscratch1, src.as_constant());
1046     str(rscratch1, adr);
1047   }
1048 
1049   // A generic CAS; success or failure is in the EQ flag.
1050   // Clobbers rscratch1
1051   void cmpxchg(Register addr, Register expected, Register new_val,
1052                enum operand_size size,
1053                bool acquire, bool release, bool weak,
1054                Register result);
1055 private:
1056   void compare_eq(Register rn, Register rm, enum operand_size size);
1057 
1058 public:
1059   // Calls
1060 
1061   address trampoline_call(Address entry, CodeBuffer *cbuf = NULL);
1062 
1063   static bool far_branches() {
1064     return ReservedCodeCacheSize > branch_range || UseAOT;
1065   }
1066 
1067   // Jumps that can reach anywhere in the code cache.
1068   // Trashes tmp.
1069   void far_call(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1070   void far_jump(Address entry, CodeBuffer *cbuf = NULL, Register tmp = rscratch1);
1071 
1072   static int far_branch_size() {
1073     if (far_branches()) {
1074       return 3 * 4;  // adrp, add, br
1075     } else {
1076       return 4;
1077     }
1078   }
1079 
1080   // Emit the CompiledIC call idiom
1081   address ic_call(address entry, jint method_index = 0);
1082 
1083 public:
1084 
1085   // Data
1086 
1087   void mov_metadata(Register dst, Metadata* obj);
1088   Address allocate_metadata_address(Metadata* obj);
1089   Address constant_oop_address(jobject obj);
1090 
1091   void movoop(Register dst, jobject obj, bool immediate = false);
1092 
1093   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1094   void kernel_crc32(Register crc, Register buf, Register len,
1095         Register table0, Register table1, Register table2, Register table3,
1096         Register tmp, Register tmp2, Register tmp3);
1097   // CRC32 code for java.util.zip.CRC32C::updateBytes() instrinsic.
1098   void kernel_crc32c(Register crc, Register buf, Register len,
1099         Register table0, Register table1, Register table2, Register table3,
1100         Register tmp, Register tmp2, Register tmp3);
1101 
1102   // Stack push and pop individual 64 bit registers
1103   void push(Register src);
1104   void pop(Register dst);
1105 
1106   // push all registers onto the stack
1107   void pusha();
1108   void popa();
1109 
1110   void repne_scan(Register addr, Register value, Register count,
1111                   Register scratch);
1112   void repne_scanw(Register addr, Register value, Register count,
1113                    Register scratch);
1114 
1115   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1116   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1117 
1118   // If a constant does not fit in an immediate field, generate some
1119   // number of MOV instructions and then perform the operation
1120   void wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
1121                              add_sub_imm_insn insn1,
1122                              add_sub_reg_insn insn2);
1123   // Seperate vsn which sets the flags
1124   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
1125                              add_sub_imm_insn insn1,
1126                              add_sub_reg_insn insn2);
1127 
1128 #define WRAP(INSN)                                                      \
1129   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1130     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1131   }                                                                     \
1132                                                                         \
1133   void INSN(Register Rd, Register Rn, Register Rm,                      \
1134              enum shift_kind kind, unsigned shift = 0) {                \
1135     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1136   }                                                                     \
1137                                                                         \
1138   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1139     Assembler::INSN(Rd, Rn, Rm);                                        \
1140   }                                                                     \
1141                                                                         \
1142   void INSN(Register Rd, Register Rn, Register Rm,                      \
1143            ext::operation option, int amount = 0) {                     \
1144     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1145   }
1146 
1147   WRAP(add) WRAP(addw) WRAP(sub) WRAP(subw)
1148 
1149 #undef WRAP
1150 #define WRAP(INSN)                                                      \
1151   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
1152     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
1153   }                                                                     \
1154                                                                         \
1155   void INSN(Register Rd, Register Rn, Register Rm,                      \
1156              enum shift_kind kind, unsigned shift = 0) {                \
1157     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1158   }                                                                     \
1159                                                                         \
1160   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1161     Assembler::INSN(Rd, Rn, Rm);                                        \
1162   }                                                                     \
1163                                                                         \
1164   void INSN(Register Rd, Register Rn, Register Rm,                      \
1165            ext::operation option, int amount = 0) {                     \
1166     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1167   }
1168 
1169   WRAP(adds) WRAP(addsw) WRAP(subs) WRAP(subsw)
1170 
1171   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1172   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1173   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1174   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1175 
1176   void adrp(Register reg1, const Address &dest, unsigned long &byte_offset);
1177 
1178   void tableswitch(Register index, jint lowbound, jint highbound,
1179                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1180     adr(rscratch1, jumptable);
1181     subsw(rscratch2, index, lowbound);
1182     subsw(zr, rscratch2, highbound - lowbound);
1183     br(Assembler::HS, jumptable_end);
1184     add(rscratch1, rscratch1, rscratch2,
1185         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1186     br(rscratch1);
1187   }
1188 
1189   // Form an address from base + offset in Rd.  Rd may or may not
1190   // actually be used: you must use the Address that is returned.  It
1191   // is up to you to ensure that the shift provided matches the size
1192   // of your data.
1193   Address form_address(Register Rd, Register base, long byte_offset, int shift);
1194 
1195   // Return true iff an address is within the 48-bit AArch64 address
1196   // space.
1197   bool is_valid_AArch64_address(address a) {
1198     return ((uint64_t)a >> 48) == 0;
1199   }
1200 
1201   // Load the base of the cardtable byte map into reg.
1202   void load_byte_map_base(Register reg);
1203 
1204   // Prolog generator routines to support switch between x86 code and
1205   // generated ARM code
1206 
1207   // routine to generate an x86 prolog for a stub function which
1208   // bootstraps into the generated ARM code which directly follows the
1209   // stub
1210   //
1211 
1212   public:
1213 
1214   void ldr_constant(Register dest, const Address &const_addr) {
1215     if (NearCpool) {
1216       ldr(dest, const_addr);
1217     } else {
1218       unsigned long offset;
1219       adrp(dest, InternalAddress(const_addr.target()), offset);
1220       ldr(dest, Address(dest, offset));
1221     }
1222   }
1223 
1224   address read_polling_page(Register r, relocInfo::relocType rtype);
1225   void get_polling_page(Register dest, relocInfo::relocType rtype);
1226   address fetch_and_read_polling_page(Register r, relocInfo::relocType rtype);
1227 
1228   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1229   void update_byte_crc32(Register crc, Register val, Register table);
1230   void update_word_crc32(Register crc, Register v, Register tmp,
1231         Register table0, Register table1, Register table2, Register table3,
1232         bool upper = false);
1233 
1234   void has_negatives(Register ary1, Register len, Register result);
1235 
1236   void arrays_equals(Register a1, Register a2, Register result, Register cnt1,
1237                      Register tmp1, Register tmp2, Register tmp3, int elem_size);
1238 
1239   void string_equals(Register a1, Register a2, Register result, Register cnt1,
1240                      int elem_size);
1241 
1242   void fill_words(Register base, Register cnt, Register value);
1243   void zero_words(Register base, u_int64_t cnt);
1244   void zero_words(Register ptr, Register cnt);
1245   void zero_dcache_blocks(Register base, Register cnt);
1246 
1247   static const int zero_words_block_size;
1248 
1249   void byte_array_inflate(Register src, Register dst, Register len,
1250                           FloatRegister vtmp1, FloatRegister vtmp2,
1251                           FloatRegister vtmp3, Register tmp4);
1252 
1253   void char_array_compress(Register src, Register dst, Register len,
1254                            FloatRegister tmp1Reg, FloatRegister tmp2Reg,
1255                            FloatRegister tmp3Reg, FloatRegister tmp4Reg,
1256                            Register result);
1257 
1258   void encode_iso_array(Register src, Register dst,
1259                         Register len, Register result,
1260                         FloatRegister Vtmp1, FloatRegister Vtmp2,
1261                         FloatRegister Vtmp3, FloatRegister Vtmp4);
1262   void fast_log(FloatRegister vtmp0, FloatRegister vtmp1, FloatRegister vtmp2,
1263                 FloatRegister vtmp3, FloatRegister vtmp4, FloatRegister vtmp5,
1264                 FloatRegister tmpC1, FloatRegister tmpC2, FloatRegister tmpC3,
1265                 FloatRegister tmpC4, Register tmp1, Register tmp2,
1266                 Register tmp3, Register tmp4, Register tmp5);
1267   void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi,
1268       address pio2, address dsin_coef, address dcos_coef);
1269  private:
1270   // begin trigonometric functions support block
1271   void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2);
1272   void generate__kernel_rem_pio2(address two_over_pi, address pio2);
1273   void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef);
1274   void generate_kernel_cos(FloatRegister x, address dcos_coef);
1275   // end trigonometric functions support block
1276   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1277                        Register src1, Register src2);
1278   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1279     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1280   }
1281   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1282                              Register y, Register y_idx, Register z,
1283                              Register carry, Register product,
1284                              Register idx, Register kdx);
1285   void multiply_128_x_128_loop(Register y, Register z,
1286                                Register carry, Register carry2,
1287                                Register idx, Register jdx,
1288                                Register yz_idx1, Register yz_idx2,
1289                                Register tmp, Register tmp3, Register tmp4,
1290                                Register tmp7, Register product_hi);
1291   void kernel_crc32_using_crc32(Register crc, Register buf,
1292         Register len, Register tmp0, Register tmp1, Register tmp2,
1293         Register tmp3);
1294   void kernel_crc32c_using_crc32c(Register crc, Register buf,
1295         Register len, Register tmp0, Register tmp1, Register tmp2,
1296         Register tmp3);
1297 public:
1298   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1299                        Register zlen, Register tmp1, Register tmp2, Register tmp3,
1300                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1301   void mul_add(Register out, Register in, Register offs, Register len, Register k);
1302   // ISB may be needed because of a safepoint
1303   void maybe_isb() { isb(); }
1304 
1305 private:
1306   // Return the effective address r + (r1 << ext) + offset.
1307   // Uses rscratch2.
1308   Address offsetted_address(Register r, Register r1, Address::extend ext,
1309                             int offset, int size);
1310 
1311 private:
1312   // Returns an address on the stack which is reachable with a ldr/str of size
1313   // Uses rscratch2 if the address is not directly reachable
1314   Address spill_address(int size, int offset, Register tmp=rscratch2);
1315 
1316   bool merge_alignment_check(Register base, size_t size, long cur_offset, long prev_offset) const;
1317 
1318   // Check whether two loads/stores can be merged into ldp/stp.
1319   bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const;
1320 
1321   // Merge current load/store with previous load/store into ldp/stp.
1322   void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1323 
1324   // Try to merge two loads/stores into ldp/stp. If success, returns true else false.
1325   bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1326 
1327 public:
1328   void spill(Register Rx, bool is64, int offset) {
1329     if (is64) {
1330       str(Rx, spill_address(8, offset));
1331     } else {
1332       strw(Rx, spill_address(4, offset));
1333     }
1334   }
1335   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1336     str(Vx, T, spill_address(1 << (int)T, offset));
1337   }
1338   void unspill(Register Rx, bool is64, int offset) {
1339     if (is64) {
1340       ldr(Rx, spill_address(8, offset));
1341     } else {
1342       ldrw(Rx, spill_address(4, offset));
1343     }
1344   }
1345   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1346     ldr(Vx, T, spill_address(1 << (int)T, offset));
1347   }
1348   void spill_copy128(int src_offset, int dst_offset,
1349                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1350     if (src_offset < 512 && (src_offset & 7) == 0 &&
1351         dst_offset < 512 && (dst_offset & 7) == 0) {
1352       ldp(tmp1, tmp2, Address(sp, src_offset));
1353       stp(tmp1, tmp2, Address(sp, dst_offset));
1354     } else {
1355       unspill(tmp1, true, src_offset);
1356       spill(tmp1, true, dst_offset);
1357       unspill(tmp1, true, src_offset+8);
1358       spill(tmp1, true, dst_offset+8);
1359     }
1360   }
1361 
1362   void cache_wb(Address line);
1363   void cache_wbsync(bool is_pre);
1364 };
1365 
1366 #ifdef ASSERT
1367 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1368 #endif
1369 
1370 /**
1371  * class SkipIfEqual:
1372  *
1373  * Instantiating this class will result in assembly code being output that will
1374  * jump around any code emitted between the creation of the instance and it's
1375  * automatic destruction at the end of a scope block, depending on the value of
1376  * the flag passed to the constructor, which will be checked at run-time.
1377  */
1378 class SkipIfEqual {
1379  private:
1380   MacroAssembler* _masm;
1381   Label _label;
1382 
1383  public:
1384    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1385    ~SkipIfEqual();
1386 };
1387 
1388 struct tableswitch {
1389   Register _reg;
1390   int _insn_index; jint _first_key; jint _last_key;
1391   Label _after;
1392   Label _branches;
1393 };
1394 
1395 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP