/* * Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "c1/c1_InstructionPrinter.hpp" #include "c1/c1_LIR.hpp" #include "c1/c1_LIRAssembler.hpp" #include "c1/c1_ValueStack.hpp" #include "ci/ciInstance.hpp" #include "runtime/sharedRuntime.hpp" Register LIR_OprDesc::as_register() const { return FrameMap::cpu_rnr2reg(cpu_regnr()); } Register LIR_OprDesc::as_register_lo() const { return FrameMap::cpu_rnr2reg(cpu_regnrLo()); } Register LIR_OprDesc::as_register_hi() const { return FrameMap::cpu_rnr2reg(cpu_regnrHi()); } #if defined(X86) XMMRegister LIR_OprDesc::as_xmm_float_reg() const { return FrameMap::nr2xmmreg(xmm_regnr()); } XMMRegister LIR_OprDesc::as_xmm_double_reg() const { assert(xmm_regnrLo() == xmm_regnrHi(), "assumed in calculation"); return FrameMap::nr2xmmreg(xmm_regnrLo()); } #endif // X86 #if defined(SPARC) || defined(PPC) FloatRegister LIR_OprDesc::as_float_reg() const { return FrameMap::nr2floatreg(fpu_regnr()); } FloatRegister LIR_OprDesc::as_double_reg() const { return FrameMap::nr2floatreg(fpu_regnrHi()); } #endif #if defined(ARM) || defined (AARCH64) FloatRegister LIR_OprDesc::as_float_reg() const { return as_FloatRegister(fpu_regnr()); } FloatRegister LIR_OprDesc::as_double_reg() const { return as_FloatRegister(fpu_regnrLo()); } #endif LIR_Opr LIR_OprFact::illegalOpr = LIR_OprFact::illegal(); LIR_Opr LIR_OprFact::value_type(ValueType* type) { ValueTag tag = type->tag(); switch (tag) { case metaDataTag : { ClassConstant* c = type->as_ClassConstant(); if (c != NULL && !c->value()->is_loaded()) { return LIR_OprFact::metadataConst(NULL); } else if (c != NULL) { return LIR_OprFact::metadataConst(c->value()->constant_encoding()); } else { MethodConstant* m = type->as_MethodConstant(); assert (m != NULL, "not a class or a method?"); return LIR_OprFact::metadataConst(m->value()->constant_encoding()); } } case objectTag : { return LIR_OprFact::oopConst(type->as_ObjectType()->encoding()); } case addressTag: return LIR_OprFact::addressConst(type->as_AddressConstant()->value()); case intTag : return LIR_OprFact::intConst(type->as_IntConstant()->value()); case floatTag : return LIR_OprFact::floatConst(type->as_FloatConstant()->value()); case longTag : return LIR_OprFact::longConst(type->as_LongConstant()->value()); case doubleTag : return LIR_OprFact::doubleConst(type->as_DoubleConstant()->value()); default: ShouldNotReachHere(); return LIR_OprFact::intConst(-1); } } LIR_Opr LIR_OprFact::dummy_value_type(ValueType* type) { switch (type->tag()) { case objectTag: return LIR_OprFact::oopConst(NULL); case addressTag:return LIR_OprFact::addressConst(0); case intTag: return LIR_OprFact::intConst(0); case floatTag: return LIR_OprFact::floatConst(0.0); case longTag: return LIR_OprFact::longConst(0); case doubleTag: return LIR_OprFact::doubleConst(0.0); default: ShouldNotReachHere(); return LIR_OprFact::intConst(-1); } return illegalOpr; } //--------------------------------------------------- LIR_Address::Scale LIR_Address::scale(BasicType type) { int elem_size = type2aelembytes(type); switch (elem_size) { case 1: return LIR_Address::times_1; case 2: return LIR_Address::times_2; case 4: return LIR_Address::times_4; case 8: return LIR_Address::times_8; } ShouldNotReachHere(); return LIR_Address::times_1; } #ifndef PRODUCT void LIR_Address::verify() const { #if defined(SPARC) || defined(PPC) assert(scale() == times_1, "Scaled addressing mode not available on SPARC/PPC and should not be used"); assert(disp() == 0 || index()->is_illegal(), "can't have both"); #endif #ifdef ARM assert(disp() == 0 || index()->is_illegal(), "can't have both"); // Note: offsets higher than 4096 must not be rejected here. They can // be handled by the back-end or will be rejected if not. #endif #ifdef _LP64 assert(base()->is_cpu_register(), "wrong base operand"); #ifndef AARCH64 assert(index()->is_illegal() || index()->is_double_cpu(), "wrong index operand"); #else assert(index()->is_illegal() || index()->is_double_cpu() || index()->is_single_cpu(), "wrong index operand"); #endif assert(base()->type() == T_OBJECT || base()->type() == T_LONG || base()->type() == T_METADATA, "wrong type for addresses"); #else assert(base()->is_single_cpu(), "wrong base operand"); assert(index()->is_illegal() || index()->is_single_cpu(), "wrong index operand"); assert(base()->type() == T_OBJECT || base()->type() == T_INT || base()->type() == T_METADATA, "wrong type for addresses"); #endif } #endif //--------------------------------------------------- char LIR_OprDesc::type_char(BasicType t) { switch (t) { case T_ARRAY: t = T_OBJECT; case T_BOOLEAN: case T_CHAR: case T_FLOAT: case T_DOUBLE: case T_BYTE: case T_SHORT: case T_INT: case T_LONG: case T_OBJECT: case T_ADDRESS: case T_VOID: return ::type2char(t); case T_METADATA: return 'M'; case T_ILLEGAL: return '?'; default: ShouldNotReachHere(); return '?'; } } #ifndef PRODUCT void LIR_OprDesc::validate_type() const { #ifdef ASSERT if (!is_pointer() && !is_illegal()) { OprKind kindfield = kind_field(); // Factored out because of compiler bug, see 8002160 switch (as_BasicType(type_field())) { case T_LONG: assert((kindfield == cpu_register || kindfield == stack_value) && size_field() == double_size, "must match"); break; case T_FLOAT: // FP return values can be also in CPU registers on ARM and PPC (softfp ABI) assert((kindfield == fpu_register || kindfield == stack_value ARM_ONLY(|| kindfield == cpu_register) PPC_ONLY(|| kindfield == cpu_register) ) && size_field() == single_size, "must match"); break; case T_DOUBLE: // FP return values can be also in CPU registers on ARM and PPC (softfp ABI) assert((kindfield == fpu_register || kindfield == stack_value ARM_ONLY(|| kindfield == cpu_register) PPC_ONLY(|| kindfield == cpu_register) ) && size_field() == double_size, "must match"); break; case T_BOOLEAN: case T_CHAR: case T_BYTE: case T_SHORT: case T_INT: case T_ADDRESS: case T_OBJECT: case T_METADATA: case T_ARRAY: assert((kindfield == cpu_register || kindfield == stack_value) && size_field() == single_size, "must match"); break; case T_ILLEGAL: // XXX TKR also means unknown right now // assert(is_illegal(), "must match"); break; default: ShouldNotReachHere(); } } #endif } #endif // PRODUCT bool LIR_OprDesc::is_oop() const { if (is_pointer()) { return pointer()->is_oop_pointer(); } else { OprType t= type_field(); assert(t != unknown_type, "not set"); return t == object_type; } } void LIR_Op2::verify() const { #ifdef ASSERT switch (code()) { case lir_cmove: case lir_xchg: break; default: assert(!result_opr()->is_register() || !result_opr()->is_oop_register(), "can't produce oops from arith"); } if (TwoOperandLIRForm) { switch (code()) { case lir_add: case lir_sub: case lir_mul: case lir_mul_strictfp: case lir_div: case lir_div_strictfp: case lir_rem: case lir_logic_and: case lir_logic_or: case lir_logic_xor: case lir_shl: case lir_shr: assert(in_opr1() == result_opr(), "opr1 and result must match"); assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid"); break; // special handling for lir_ushr because of write barriers case lir_ushr: assert(in_opr1() == result_opr() || in_opr2()->is_constant(), "opr1 and result must match or shift count is constant"); assert(in_opr1()->is_valid() && in_opr2()->is_valid(), "must be valid"); break; } } #endif } LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block) : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL) , _cond(cond) , _type(type) , _label(block->label()) , _block(block) , _ublock(NULL) , _stub(NULL) { } LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub) : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL) , _cond(cond) , _type(type) , _label(stub->entry()) , _block(NULL) , _ublock(NULL) , _stub(stub) { } LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock) : LIR_Op(lir_cond_float_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL) , _cond(cond) , _type(type) , _label(block->label()) , _block(block) , _ublock(ublock) , _stub(NULL) { } void LIR_OpBranch::change_block(BlockBegin* b) { assert(_block != NULL, "must have old block"); assert(_block->label() == label(), "must be equal"); _block = b; _label = b->label(); } void LIR_OpBranch::change_ublock(BlockBegin* b) { assert(_ublock != NULL, "must have old block"); _ublock = b; } void LIR_OpBranch::negate_cond() { switch (_cond) { case lir_cond_equal: _cond = lir_cond_notEqual; break; case lir_cond_notEqual: _cond = lir_cond_equal; break; case lir_cond_less: _cond = lir_cond_greaterEqual; break; case lir_cond_lessEqual: _cond = lir_cond_greater; break; case lir_cond_greaterEqual: _cond = lir_cond_less; break; case lir_cond_greater: _cond = lir_cond_lessEqual; break; default: ShouldNotReachHere(); } } LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub) : LIR_Op(code, result, NULL) , _object(object) , _array(LIR_OprFact::illegalOpr) , _klass(klass) , _tmp1(tmp1) , _tmp2(tmp2) , _tmp3(tmp3) , _fast_check(fast_check) , _stub(stub) , _info_for_patch(info_for_patch) , _info_for_exception(info_for_exception) , _profiled_method(NULL) , _profiled_bci(-1) , _should_profile(false) { if (code == lir_checkcast) { assert(info_for_exception != NULL, "checkcast throws exceptions"); } else if (code == lir_instanceof) { assert(info_for_exception == NULL, "instanceof throws no exceptions"); } else { ShouldNotReachHere(); } } LIR_OpTypeCheck::LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception) : LIR_Op(code, LIR_OprFact::illegalOpr, NULL) , _object(object) , _array(array) , _klass(NULL) , _tmp1(tmp1) , _tmp2(tmp2) , _tmp3(tmp3) , _fast_check(false) , _stub(NULL) , _info_for_patch(NULL) , _info_for_exception(info_for_exception) , _profiled_method(NULL) , _profiled_bci(-1) , _should_profile(false) { if (code == lir_store_check) { _stub = new ArrayStoreExceptionStub(object, info_for_exception); assert(info_for_exception != NULL, "store_check throws exceptions"); } else { ShouldNotReachHere(); } } LIR_OpArrayCopy::LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) : LIR_Op(lir_arraycopy, LIR_OprFact::illegalOpr, info) , _tmp(tmp) , _src(src) , _src_pos(src_pos) , _dst(dst) , _dst_pos(dst_pos) , _flags(flags) , _expected_type(expected_type) , _length(length) { _stub = new ArrayCopyStub(this); } LIR_OpUpdateCRC32::LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res) : LIR_Op(lir_updatecrc32, res, NULL) , _crc(crc) , _val(val) { } //-------------------verify-------------------------- void LIR_Op1::verify() const { switch(code()) { case lir_move: assert(in_opr()->is_valid() && result_opr()->is_valid(), "must be"); break; case lir_null_check: assert(in_opr()->is_register(), "must be"); break; case lir_return: assert(in_opr()->is_register() || in_opr()->is_illegal(), "must be"); break; } } void LIR_OpRTCall::verify() const { assert(strcmp(Runtime1::name_for_address(addr()), "") != 0, "unknown function"); } //-------------------visits-------------------------- // complete rework of LIR instruction visitor. // The virtual calls for each instruction type is replaced by a big // switch that adds the operands for each instruction void LIR_OpVisitState::visit(LIR_Op* op) { // copy information from the LIR_Op reset(); set_op(op); switch (op->code()) { // LIR_Op0 case lir_word_align: // result and info always invalid case lir_backwardbranch_target: // result and info always invalid case lir_build_frame: // result and info always invalid case lir_fpop_raw: // result and info always invalid case lir_24bit_FPU: // result and info always invalid case lir_reset_FPU: // result and info always invalid case lir_breakpoint: // result and info always invalid case lir_membar: // result and info always invalid case lir_membar_acquire: // result and info always invalid case lir_membar_release: // result and info always invalid case lir_membar_loadload: // result and info always invalid case lir_membar_storestore: // result and info always invalid case lir_membar_loadstore: // result and info always invalid case lir_membar_storeload: // result and info always invalid { assert(op->as_Op0() != NULL, "must be"); assert(op->_info == NULL, "info not used by this instruction"); assert(op->_result->is_illegal(), "not used"); break; } case lir_nop: // may have info, result always invalid case lir_std_entry: // may have result, info always invalid case lir_osr_entry: // may have result, info always invalid case lir_get_thread: // may have result, info always invalid { assert(op->as_Op0() != NULL, "must be"); if (op->_info != NULL) do_info(op->_info); if (op->_result->is_valid()) do_output(op->_result); break; } // LIR_OpLabel case lir_label: // result and info always invalid { assert(op->as_OpLabel() != NULL, "must be"); assert(op->_info == NULL, "info not used by this instruction"); assert(op->_result->is_illegal(), "not used"); break; } // LIR_Op1 case lir_fxch: // input always valid, result and info always invalid case lir_fld: // input always valid, result and info always invalid case lir_ffree: // input always valid, result and info always invalid case lir_push: // input always valid, result and info always invalid case lir_pop: // input always valid, result and info always invalid case lir_return: // input always valid, result and info always invalid case lir_leal: // input and result always valid, info always invalid case lir_neg: // input and result always valid, info always invalid case lir_monaddr: // input and result always valid, info always invalid case lir_null_check: // input and info always valid, result always invalid case lir_move: // input and result always valid, may have info case lir_pack64: // input and result always valid case lir_unpack64: // input and result always valid case lir_prefetchr: // input always valid, result and info always invalid case lir_prefetchw: // input always valid, result and info always invalid { assert(op->as_Op1() != NULL, "must be"); LIR_Op1* op1 = (LIR_Op1*)op; if (op1->_info) do_info(op1->_info); if (op1->_opr->is_valid()) do_input(op1->_opr); if (op1->_result->is_valid()) do_output(op1->_result); break; } case lir_safepoint: { assert(op->as_Op1() != NULL, "must be"); LIR_Op1* op1 = (LIR_Op1*)op; assert(op1->_info != NULL, ""); do_info(op1->_info); if (op1->_opr->is_valid()) do_temp(op1->_opr); // safepoints on SPARC need temporary register assert(op1->_result->is_illegal(), "safepoint does not produce value"); break; } // LIR_OpConvert; case lir_convert: // input and result always valid, info always invalid { assert(op->as_OpConvert() != NULL, "must be"); LIR_OpConvert* opConvert = (LIR_OpConvert*)op; assert(opConvert->_info == NULL, "must be"); if (opConvert->_opr->is_valid()) do_input(opConvert->_opr); if (opConvert->_result->is_valid()) do_output(opConvert->_result); #ifdef PPC if (opConvert->_tmp1->is_valid()) do_temp(opConvert->_tmp1); if (opConvert->_tmp2->is_valid()) do_temp(opConvert->_tmp2); #endif do_stub(opConvert->_stub); break; } // LIR_OpBranch; case lir_branch: // may have info, input and result register always invalid case lir_cond_float_branch: // may have info, input and result register always invalid { assert(op->as_OpBranch() != NULL, "must be"); LIR_OpBranch* opBranch = (LIR_OpBranch*)op; if (opBranch->_info != NULL) do_info(opBranch->_info); assert(opBranch->_result->is_illegal(), "not used"); if (opBranch->_stub != NULL) opBranch->stub()->visit(this); break; } // LIR_OpAllocObj case lir_alloc_object: { assert(op->as_OpAllocObj() != NULL, "must be"); LIR_OpAllocObj* opAllocObj = (LIR_OpAllocObj*)op; if (opAllocObj->_info) do_info(opAllocObj->_info); if (opAllocObj->_opr->is_valid()) { do_input(opAllocObj->_opr); do_temp(opAllocObj->_opr); } if (opAllocObj->_tmp1->is_valid()) do_temp(opAllocObj->_tmp1); if (opAllocObj->_tmp2->is_valid()) do_temp(opAllocObj->_tmp2); if (opAllocObj->_tmp3->is_valid()) do_temp(opAllocObj->_tmp3); if (opAllocObj->_tmp4->is_valid()) do_temp(opAllocObj->_tmp4); if (opAllocObj->_result->is_valid()) do_output(opAllocObj->_result); do_stub(opAllocObj->_stub); break; } // LIR_OpRoundFP; case lir_roundfp: { assert(op->as_OpRoundFP() != NULL, "must be"); LIR_OpRoundFP* opRoundFP = (LIR_OpRoundFP*)op; assert(op->_info == NULL, "info not used by this instruction"); assert(opRoundFP->_tmp->is_illegal(), "not used"); do_input(opRoundFP->_opr); do_output(opRoundFP->_result); break; } // LIR_Op2 case lir_cmp: case lir_cmp_l2i: case lir_ucmp_fd2i: case lir_cmp_fd2i: case lir_add: case lir_sub: case lir_mul: case lir_div: case lir_rem: case lir_sqrt: case lir_abs: case lir_logic_and: case lir_logic_or: case lir_logic_xor: case lir_shl: case lir_shr: case lir_ushr: case lir_xadd: case lir_xchg: case lir_assert: { assert(op->as_Op2() != NULL, "must be"); LIR_Op2* op2 = (LIR_Op2*)op; assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() && op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used"); if (op2->_info) do_info(op2->_info); if (op2->_opr1->is_valid()) do_input(op2->_opr1); if (op2->_opr2->is_valid()) do_input(op2->_opr2); if (op2->_tmp1->is_valid()) do_temp(op2->_tmp1); if (op2->_result->is_valid()) do_output(op2->_result); if (op->code() == lir_xchg || op->code() == lir_xadd) { // on ARM and PPC, return value is loaded first so could // destroy inputs. On other platforms that implement those // (x86, sparc), the extra constrainsts are harmless. if (op2->_opr1->is_valid()) do_temp(op2->_opr1); if (op2->_opr2->is_valid()) do_temp(op2->_opr2); } break; } // special handling for cmove: right input operand must not be equal // to the result operand, otherwise the backend fails case lir_cmove: { assert(op->as_Op2() != NULL, "must be"); LIR_Op2* op2 = (LIR_Op2*)op; assert(op2->_info == NULL && op2->_tmp1->is_illegal() && op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() && op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used"); assert(op2->_opr1->is_valid() && op2->_opr2->is_valid() && op2->_result->is_valid(), "used"); do_input(op2->_opr1); do_input(op2->_opr2); do_temp(op2->_opr2); do_output(op2->_result); break; } // vspecial handling for strict operations: register input operands // as temp to guarantee that they do not overlap with other // registers case lir_mul_strictfp: case lir_div_strictfp: { assert(op->as_Op2() != NULL, "must be"); LIR_Op2* op2 = (LIR_Op2*)op; assert(op2->_info == NULL, "not used"); assert(op2->_opr1->is_valid(), "used"); assert(op2->_opr2->is_valid(), "used"); assert(op2->_result->is_valid(), "used"); assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() && op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used"); do_input(op2->_opr1); do_temp(op2->_opr1); do_input(op2->_opr2); do_temp(op2->_opr2); if (op2->_tmp1->is_valid()) do_temp(op2->_tmp1); do_output(op2->_result); break; } case lir_throw: { assert(op->as_Op2() != NULL, "must be"); LIR_Op2* op2 = (LIR_Op2*)op; if (op2->_info) do_info(op2->_info); if (op2->_opr1->is_valid()) do_temp(op2->_opr1); if (op2->_opr2->is_valid()) do_input(op2->_opr2); // exception object is input parameter assert(op2->_result->is_illegal(), "no result"); assert(op2->_tmp2->is_illegal() && op2->_tmp3->is_illegal() && op2->_tmp4->is_illegal() && op2->_tmp5->is_illegal(), "not used"); break; } case lir_unwind: { assert(op->as_Op1() != NULL, "must be"); LIR_Op1* op1 = (LIR_Op1*)op; assert(op1->_info == NULL, "no info"); assert(op1->_opr->is_valid(), "exception oop"); do_input(op1->_opr); assert(op1->_result->is_illegal(), "no result"); break; } case lir_tan: case lir_sin: case lir_cos: case lir_log: case lir_log10: case lir_exp: { assert(op->as_Op2() != NULL, "must be"); LIR_Op2* op2 = (LIR_Op2*)op; // On x86 tan/sin/cos need two temporary fpu stack slots and // log/log10 need one so handle opr2 and tmp as temp inputs. // Register input operand as temp to guarantee that it doesn't // overlap with the input. assert(op2->_info == NULL, "not used"); assert(op2->_tmp5->is_illegal(), "not used"); assert(op2->_tmp2->is_valid() == (op->code() == lir_exp), "not used"); assert(op2->_tmp3->is_valid() == (op->code() == lir_exp), "not used"); assert(op2->_tmp4->is_valid() == (op->code() == lir_exp), "not used"); assert(op2->_opr1->is_valid(), "used"); do_input(op2->_opr1); do_temp(op2->_opr1); if (op2->_opr2->is_valid()) do_temp(op2->_opr2); if (op2->_tmp1->is_valid()) do_temp(op2->_tmp1); if (op2->_tmp2->is_valid()) do_temp(op2->_tmp2); if (op2->_tmp3->is_valid()) do_temp(op2->_tmp3); if (op2->_tmp4->is_valid()) do_temp(op2->_tmp4); if (op2->_result->is_valid()) do_output(op2->_result); break; } case lir_pow: { assert(op->as_Op2() != NULL, "must be"); LIR_Op2* op2 = (LIR_Op2*)op; // On x86 pow needs two temporary fpu stack slots: tmp1 and // tmp2. Register input operands as temps to guarantee that it // doesn't overlap with the temporary slots. assert(op2->_info == NULL, "not used"); assert(op2->_opr1->is_valid() && op2->_opr2->is_valid(), "used"); assert(op2->_tmp1->is_valid() && op2->_tmp2->is_valid() && op2->_tmp3->is_valid() && op2->_tmp4->is_valid() && op2->_tmp5->is_valid(), "used"); assert(op2->_result->is_valid(), "used"); do_input(op2->_opr1); do_temp(op2->_opr1); do_input(op2->_opr2); do_temp(op2->_opr2); do_temp(op2->_tmp1); do_temp(op2->_tmp2); do_temp(op2->_tmp3); do_temp(op2->_tmp4); do_temp(op2->_tmp5); do_output(op2->_result); break; } // LIR_Op3 case lir_idiv: case lir_irem: { assert(op->as_Op3() != NULL, "must be"); LIR_Op3* op3= (LIR_Op3*)op; if (op3->_info) do_info(op3->_info); if (op3->_opr1->is_valid()) do_input(op3->_opr1); // second operand is input and temp, so ensure that second operand // and third operand get not the same register if (op3->_opr2->is_valid()) do_input(op3->_opr2); if (op3->_opr2->is_valid()) do_temp(op3->_opr2); if (op3->_opr3->is_valid()) do_temp(op3->_opr3); if (op3->_result->is_valid()) do_output(op3->_result); break; } // LIR_OpJavaCall case lir_static_call: case lir_optvirtual_call: case lir_icvirtual_call: case lir_virtual_call: case lir_dynamic_call: { LIR_OpJavaCall* opJavaCall = op->as_OpJavaCall(); assert(opJavaCall != NULL, "must be"); if (opJavaCall->_receiver->is_valid()) do_input(opJavaCall->_receiver); // only visit register parameters int n = opJavaCall->_arguments->length(); for (int i = opJavaCall->_receiver->is_valid() ? 1 : 0; i < n; i++) { if (!opJavaCall->_arguments->at(i)->is_pointer()) { do_input(*opJavaCall->_arguments->adr_at(i)); } } if (opJavaCall->_info) do_info(opJavaCall->_info); if (opJavaCall->is_method_handle_invoke()) { opJavaCall->_method_handle_invoke_SP_save_opr = FrameMap::method_handle_invoke_SP_save_opr(); do_temp(opJavaCall->_method_handle_invoke_SP_save_opr); } do_call(); if (opJavaCall->_result->is_valid()) do_output(opJavaCall->_result); break; } // LIR_OpRTCall case lir_rtcall: { assert(op->as_OpRTCall() != NULL, "must be"); LIR_OpRTCall* opRTCall = (LIR_OpRTCall*)op; // only visit register parameters int n = opRTCall->_arguments->length(); for (int i = 0; i < n; i++) { if (!opRTCall->_arguments->at(i)->is_pointer()) { do_input(*opRTCall->_arguments->adr_at(i)); } } if (opRTCall->_info) do_info(opRTCall->_info); if (opRTCall->_tmp->is_valid()) do_temp(opRTCall->_tmp); do_call(); if (opRTCall->_result->is_valid()) do_output(opRTCall->_result); break; } // LIR_OpArrayCopy case lir_arraycopy: { assert(op->as_OpArrayCopy() != NULL, "must be"); LIR_OpArrayCopy* opArrayCopy = (LIR_OpArrayCopy*)op; assert(opArrayCopy->_result->is_illegal(), "unused"); assert(opArrayCopy->_src->is_valid(), "used"); do_input(opArrayCopy->_src); do_temp(opArrayCopy->_src); assert(opArrayCopy->_src_pos->is_valid(), "used"); do_input(opArrayCopy->_src_pos); do_temp(opArrayCopy->_src_pos); assert(opArrayCopy->_dst->is_valid(), "used"); do_input(opArrayCopy->_dst); do_temp(opArrayCopy->_dst); assert(opArrayCopy->_dst_pos->is_valid(), "used"); do_input(opArrayCopy->_dst_pos); do_temp(opArrayCopy->_dst_pos); assert(opArrayCopy->_length->is_valid(), "used"); do_input(opArrayCopy->_length); do_temp(opArrayCopy->_length); assert(opArrayCopy->_tmp->is_valid(), "used"); do_temp(opArrayCopy->_tmp); if (opArrayCopy->_info) do_info(opArrayCopy->_info); // the implementation of arraycopy always has a call into the runtime do_call(); break; } // LIR_OpUpdateCRC32 case lir_updatecrc32: { assert(op->as_OpUpdateCRC32() != NULL, "must be"); LIR_OpUpdateCRC32* opUp = (LIR_OpUpdateCRC32*)op; assert(opUp->_crc->is_valid(), "used"); do_input(opUp->_crc); do_temp(opUp->_crc); assert(opUp->_val->is_valid(), "used"); do_input(opUp->_val); do_temp(opUp->_val); assert(opUp->_result->is_valid(), "used"); do_output(opUp->_result); assert(opUp->_info == NULL, "no info for LIR_OpUpdateCRC32"); break; } // LIR_OpLock case lir_lock: case lir_unlock: { assert(op->as_OpLock() != NULL, "must be"); LIR_OpLock* opLock = (LIR_OpLock*)op; if (opLock->_info) do_info(opLock->_info); // TODO: check if these operands really have to be temp // (or if input is sufficient). This may have influence on the oop map! assert(opLock->_lock->is_valid(), "used"); do_temp(opLock->_lock); assert(opLock->_hdr->is_valid(), "used"); do_temp(opLock->_hdr); assert(opLock->_obj->is_valid(), "used"); do_temp(opLock->_obj); if (opLock->_scratch->is_valid()) do_temp(opLock->_scratch); assert(opLock->_result->is_illegal(), "unused"); do_stub(opLock->_stub); break; } // LIR_OpDelay case lir_delay_slot: { assert(op->as_OpDelay() != NULL, "must be"); LIR_OpDelay* opDelay = (LIR_OpDelay*)op; visit(opDelay->delay_op()); break; } // LIR_OpTypeCheck case lir_instanceof: case lir_checkcast: case lir_store_check: { assert(op->as_OpTypeCheck() != NULL, "must be"); LIR_OpTypeCheck* opTypeCheck = (LIR_OpTypeCheck*)op; if (opTypeCheck->_info_for_exception) do_info(opTypeCheck->_info_for_exception); if (opTypeCheck->_info_for_patch) do_info(opTypeCheck->_info_for_patch); if (opTypeCheck->_object->is_valid()) do_input(opTypeCheck->_object); if (op->code() == lir_store_check && opTypeCheck->_object->is_valid()) { do_temp(opTypeCheck->_object); } if (opTypeCheck->_array->is_valid()) do_input(opTypeCheck->_array); if (opTypeCheck->_tmp1->is_valid()) do_temp(opTypeCheck->_tmp1); if (opTypeCheck->_tmp2->is_valid()) do_temp(opTypeCheck->_tmp2); if (opTypeCheck->_tmp3->is_valid()) do_temp(opTypeCheck->_tmp3); if (opTypeCheck->_result->is_valid()) do_output(opTypeCheck->_result); do_stub(opTypeCheck->_stub); break; } // LIR_OpCompareAndSwap case lir_cas_long: case lir_cas_obj: case lir_cas_int: { assert(op->as_OpCompareAndSwap() != NULL, "must be"); LIR_OpCompareAndSwap* opCompareAndSwap = (LIR_OpCompareAndSwap*)op; assert(opCompareAndSwap->_addr->is_valid(), "used"); assert(opCompareAndSwap->_cmp_value->is_valid(), "used"); assert(opCompareAndSwap->_new_value->is_valid(), "used"); if (opCompareAndSwap->_info) do_info(opCompareAndSwap->_info); do_input(opCompareAndSwap->_addr); do_temp(opCompareAndSwap->_addr); do_input(opCompareAndSwap->_cmp_value); do_temp(opCompareAndSwap->_cmp_value); do_input(opCompareAndSwap->_new_value); do_temp(opCompareAndSwap->_new_value); if (opCompareAndSwap->_tmp1->is_valid()) do_temp(opCompareAndSwap->_tmp1); if (opCompareAndSwap->_tmp2->is_valid()) do_temp(opCompareAndSwap->_tmp2); if (opCompareAndSwap->_result->is_valid()) do_output(opCompareAndSwap->_result); break; } // LIR_OpAllocArray; case lir_alloc_array: { assert(op->as_OpAllocArray() != NULL, "must be"); LIR_OpAllocArray* opAllocArray = (LIR_OpAllocArray*)op; if (opAllocArray->_info) do_info(opAllocArray->_info); if (opAllocArray->_klass->is_valid()) do_input(opAllocArray->_klass); do_temp(opAllocArray->_klass); if (opAllocArray->_len->is_valid()) do_input(opAllocArray->_len); do_temp(opAllocArray->_len); if (opAllocArray->_tmp1->is_valid()) do_temp(opAllocArray->_tmp1); if (opAllocArray->_tmp2->is_valid()) do_temp(opAllocArray->_tmp2); if (opAllocArray->_tmp3->is_valid()) do_temp(opAllocArray->_tmp3); if (opAllocArray->_tmp4->is_valid()) do_temp(opAllocArray->_tmp4); if (opAllocArray->_result->is_valid()) do_output(opAllocArray->_result); do_stub(opAllocArray->_stub); break; } // LIR_OpProfileCall: case lir_profile_call: { assert(op->as_OpProfileCall() != NULL, "must be"); LIR_OpProfileCall* opProfileCall = (LIR_OpProfileCall*)op; if (opProfileCall->_recv->is_valid()) do_temp(opProfileCall->_recv); assert(opProfileCall->_mdo->is_valid(), "used"); do_temp(opProfileCall->_mdo); assert(opProfileCall->_tmp1->is_valid(), "used"); do_temp(opProfileCall->_tmp1); break; } // LIR_OpProfileType: case lir_profile_type: { assert(op->as_OpProfileType() != NULL, "must be"); LIR_OpProfileType* opProfileType = (LIR_OpProfileType*)op; do_input(opProfileType->_mdp); do_temp(opProfileType->_mdp); do_input(opProfileType->_obj); do_temp(opProfileType->_tmp); break; } default: ShouldNotReachHere(); } } void LIR_OpVisitState::do_stub(CodeStub* stub) { if (stub != NULL) { stub->visit(this); } } XHandlers* LIR_OpVisitState::all_xhandler() { XHandlers* result = NULL; int i; for (i = 0; i < info_count(); i++) { if (info_at(i)->exception_handlers() != NULL) { result = info_at(i)->exception_handlers(); break; } } #ifdef ASSERT for (i = 0; i < info_count(); i++) { assert(info_at(i)->exception_handlers() == NULL || info_at(i)->exception_handlers() == result, "only one xhandler list allowed per LIR-operation"); } #endif if (result != NULL) { return result; } else { return new XHandlers(); } return result; } #ifdef ASSERT bool LIR_OpVisitState::no_operands(LIR_Op* op) { visit(op); return opr_count(inputMode) == 0 && opr_count(outputMode) == 0 && opr_count(tempMode) == 0 && info_count() == 0 && !has_call() && !has_slow_case(); } #endif //--------------------------------------------------- void LIR_OpJavaCall::emit_code(LIR_Assembler* masm) { masm->emit_call(this); } void LIR_OpRTCall::emit_code(LIR_Assembler* masm) { masm->emit_rtcall(this); } void LIR_OpLabel::emit_code(LIR_Assembler* masm) { masm->emit_opLabel(this); } void LIR_OpArrayCopy::emit_code(LIR_Assembler* masm) { masm->emit_arraycopy(this); masm->append_code_stub(stub()); } void LIR_OpUpdateCRC32::emit_code(LIR_Assembler* masm) { masm->emit_updatecrc32(this); } void LIR_Op0::emit_code(LIR_Assembler* masm) { masm->emit_op0(this); } void LIR_Op1::emit_code(LIR_Assembler* masm) { masm->emit_op1(this); } void LIR_OpAllocObj::emit_code(LIR_Assembler* masm) { masm->emit_alloc_obj(this); masm->append_code_stub(stub()); } void LIR_OpBranch::emit_code(LIR_Assembler* masm) { masm->emit_opBranch(this); if (stub()) { masm->append_code_stub(stub()); } } void LIR_OpConvert::emit_code(LIR_Assembler* masm) { masm->emit_opConvert(this); if (stub() != NULL) { masm->append_code_stub(stub()); } } void LIR_Op2::emit_code(LIR_Assembler* masm) { masm->emit_op2(this); } void LIR_OpAllocArray::emit_code(LIR_Assembler* masm) { masm->emit_alloc_array(this); masm->append_code_stub(stub()); } void LIR_OpTypeCheck::emit_code(LIR_Assembler* masm) { masm->emit_opTypeCheck(this); if (stub()) { masm->append_code_stub(stub()); } } void LIR_OpCompareAndSwap::emit_code(LIR_Assembler* masm) { masm->emit_compare_and_swap(this); } void LIR_Op3::emit_code(LIR_Assembler* masm) { masm->emit_op3(this); } void LIR_OpLock::emit_code(LIR_Assembler* masm) { masm->emit_lock(this); if (stub()) { masm->append_code_stub(stub()); } } #ifdef ASSERT void LIR_OpAssert::emit_code(LIR_Assembler* masm) { masm->emit_assert(this); } #endif void LIR_OpDelay::emit_code(LIR_Assembler* masm) { masm->emit_delay(this); } void LIR_OpProfileCall::emit_code(LIR_Assembler* masm) { masm->emit_profile_call(this); } void LIR_OpProfileType::emit_code(LIR_Assembler* masm) { masm->emit_profile_type(this); } // LIR_List LIR_List::LIR_List(Compilation* compilation, BlockBegin* block) : _operations(8) , _compilation(compilation) #ifndef PRODUCT , _block(block) #endif #ifdef ASSERT , _file(NULL) , _line(0) #endif { } #ifdef ASSERT void LIR_List::set_file_and_line(const char * file, int line) { const char * f = strrchr(file, '/'); if (f == NULL) f = strrchr(file, '\\'); if (f == NULL) { f = file; } else { f++; } _file = f; _line = line; } #endif void LIR_List::append(LIR_InsertionBuffer* buffer) { assert(this == buffer->lir_list(), "wrong lir list"); const int n = _operations.length(); if (buffer->number_of_ops() > 0) { // increase size of instructions list _operations.at_grow(n + buffer->number_of_ops() - 1, NULL); // insert ops from buffer into instructions list int op_index = buffer->number_of_ops() - 1; int ip_index = buffer->number_of_insertion_points() - 1; int from_index = n - 1; int to_index = _operations.length() - 1; for (; ip_index >= 0; ip_index --) { int index = buffer->index_at(ip_index); // make room after insertion point while (index < from_index) { _operations.at_put(to_index --, _operations.at(from_index --)); } // insert ops from buffer for (int i = buffer->count_at(ip_index); i > 0; i --) { _operations.at_put(to_index --, buffer->op_at(op_index --)); } } } buffer->finish(); } void LIR_List::oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info) { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o), reg, T_OBJECT, lir_patch_normal, info)); } void LIR_List::klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info) { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg, T_METADATA, lir_patch_normal, info)); } void LIR_List::load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info, LIR_PatchCode patch_code) { append(new LIR_Op1( lir_move, LIR_OprFact::address(addr), src, addr->type(), patch_code, info)); } void LIR_List::volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code) { append(new LIR_Op1( lir_move, LIR_OprFact::address(address), dst, address->type(), patch_code, info, lir_move_volatile)); } void LIR_List::volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) { append(new LIR_Op1( lir_move, LIR_OprFact::address(new LIR_Address(base, offset, type)), dst, type, patch_code, info, lir_move_volatile)); } void LIR_List::prefetch(LIR_Address* addr, bool is_store) { append(new LIR_Op1( is_store ? lir_prefetchw : lir_prefetchr, LIR_OprFact::address(addr))); } void LIR_List::store_mem_int(jint v, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) { append(new LIR_Op1( lir_move, LIR_OprFact::intConst(v), LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)), type, patch_code, info)); } void LIR_List::store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) { append(new LIR_Op1( lir_move, LIR_OprFact::oopConst(o), LIR_OprFact::address(new LIR_Address(base, offset_in_bytes, type)), type, patch_code, info)); } void LIR_List::store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) { append(new LIR_Op1( lir_move, src, LIR_OprFact::address(addr), addr->type(), patch_code, info)); } void LIR_List::volatile_store_mem_reg(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info, LIR_PatchCode patch_code) { append(new LIR_Op1( lir_move, src, LIR_OprFact::address(addr), addr->type(), patch_code, info, lir_move_volatile)); } void LIR_List::volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code) { append(new LIR_Op1( lir_move, src, LIR_OprFact::address(new LIR_Address(base, offset, type)), type, patch_code, info, lir_move_volatile)); } void LIR_List::idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) { append(new LIR_Op3( lir_idiv, left, right, tmp, res, info)); } void LIR_List::idiv(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) { append(new LIR_Op3( lir_idiv, left, LIR_OprFact::intConst(right), tmp, res, info)); } void LIR_List::irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) { append(new LIR_Op3( lir_irem, left, right, tmp, res, info)); } void LIR_List::irem(LIR_Opr left, int right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info) { append(new LIR_Op3( lir_irem, left, LIR_OprFact::intConst(right), tmp, res, info)); } void LIR_List::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) { append(new LIR_Op2( lir_cmp, condition, LIR_OprFact::address(new LIR_Address(base, disp, T_INT)), LIR_OprFact::intConst(c), info)); } void LIR_List::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info) { append(new LIR_Op2( lir_cmp, condition, reg, LIR_OprFact::address(addr), info)); } void LIR_List::allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub) { append(new LIR_OpAllocObj( klass, dst, t1, t2, t3, t4, header_size, object_size, init_check, stub)); } void LIR_List::allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub) { append(new LIR_OpAllocArray( klass, len, dst, t1, t2, t3, t4, type, stub)); } void LIR_List::shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) { append(new LIR_Op2( lir_shl, value, count, dst, tmp)); } void LIR_List::shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) { append(new LIR_Op2( lir_shr, value, count, dst, tmp)); } void LIR_List::unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp) { append(new LIR_Op2( lir_ushr, value, count, dst, tmp)); } void LIR_List::fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less) { append(new LIR_Op2(is_unordered_less ? lir_ucmp_fd2i : lir_cmp_fd2i, left, right, dst)); } void LIR_List::lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info) { append(new LIR_OpLock( lir_lock, hdr, obj, lock, scratch, stub, info)); } void LIR_List::unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub) { append(new LIR_OpLock( lir_unlock, hdr, obj, lock, scratch, stub, NULL)); } void check_LIR() { // cannot do the proper checking as PRODUCT and other modes return different results // guarantee(sizeof(LIR_OprDesc) == wordSize, "may not have a v-table"); } void LIR_List::checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub, ciMethod* profiled_method, int profiled_bci) { LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_checkcast, result, object, klass, tmp1, tmp2, tmp3, fast_check, info_for_exception, info_for_patch, stub); if (profiled_method != NULL) { c->set_profiled_method(profiled_method); c->set_profiled_bci(profiled_bci); c->set_should_profile(true); } append(c); } void LIR_List::instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci) { LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_instanceof, result, object, klass, tmp1, tmp2, tmp3, fast_check, NULL, info_for_patch, NULL); if (profiled_method != NULL) { c->set_profiled_method(profiled_method); c->set_profiled_bci(profiled_bci); c->set_should_profile(true); } append(c); } void LIR_List::store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci) { LIR_OpTypeCheck* c = new LIR_OpTypeCheck(lir_store_check, object, array, tmp1, tmp2, tmp3, info_for_exception); if (profiled_method != NULL) { c->set_profiled_method(profiled_method); c->set_profiled_bci(profiled_bci); c->set_should_profile(true); } append(c); } void LIR_List::cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2, LIR_Opr result) { append(new LIR_OpCompareAndSwap(lir_cas_long, addr, cmp_value, new_value, t1, t2, result)); } void LIR_List::cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2, LIR_Opr result) { append(new LIR_OpCompareAndSwap(lir_cas_obj, addr, cmp_value, new_value, t1, t2, result)); } void LIR_List::cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value, LIR_Opr t1, LIR_Opr t2, LIR_Opr result) { append(new LIR_OpCompareAndSwap(lir_cas_int, addr, cmp_value, new_value, t1, t2, result)); } #ifdef PRODUCT void print_LIR(BlockList* blocks) { } #else // LIR_OprDesc void LIR_OprDesc::print() const { print(tty); } void LIR_OprDesc::print(outputStream* out) const { if (is_illegal()) { return; } out->print("["); if (is_pointer()) { pointer()->print_value_on(out); } else if (is_single_stack()) { out->print("stack:%d", single_stack_ix()); } else if (is_double_stack()) { out->print("dbl_stack:%d",double_stack_ix()); } else if (is_virtual()) { out->print("R%d", vreg_number()); } else if (is_single_cpu()) { out->print("%s", as_register()->name()); } else if (is_double_cpu()) { out->print("%s", as_register_hi()->name()); out->print("%s", as_register_lo()->name()); #if defined(X86) } else if (is_single_xmm()) { out->print("%s", as_xmm_float_reg()->name()); } else if (is_double_xmm()) { out->print("%s", as_xmm_double_reg()->name()); } else if (is_single_fpu()) { out->print("fpu%d", fpu_regnr()); } else if (is_double_fpu()) { out->print("fpu%d", fpu_regnrLo()); #elif defined(AARCH64) } else if (is_single_fpu()) { out->print("fpu%d", fpu_regnr()); } else if (is_double_fpu()) { out->print("fpu%d", fpu_regnrLo()); #elif defined(ARM) } else if (is_single_fpu()) { out->print("s%d", fpu_regnr()); } else if (is_double_fpu()) { out->print("d%d", fpu_regnrLo() >> 1); #else } else if (is_single_fpu()) { out->print("%s", as_float_reg()->name()); } else if (is_double_fpu()) { out->print("%s", as_double_reg()->name()); #endif } else if (is_illegal()) { out->print("-"); } else { out->print("Unknown Operand"); } if (!is_illegal()) { out->print("|%c", type_char()); } if (is_register() && is_last_use()) { out->print("(last_use)"); } out->print("]"); } // LIR_Address void LIR_Const::print_value_on(outputStream* out) const { switch (type()) { case T_ADDRESS:out->print("address:%d",as_jint()); break; case T_INT: out->print("int:%d", as_jint()); break; case T_LONG: out->print("lng:" JLONG_FORMAT, as_jlong()); break; case T_FLOAT: out->print("flt:%f", as_jfloat()); break; case T_DOUBLE: out->print("dbl:%f", as_jdouble()); break; case T_OBJECT: out->print("obj:" INTPTR_FORMAT, p2i(as_jobject())); break; case T_METADATA: out->print("metadata:" INTPTR_FORMAT, p2i(as_metadata()));break; default: out->print("%3d:0x" UINT64_FORMAT_X, type(), (uint64_t)as_jlong()); break; } } // LIR_Address void LIR_Address::print_value_on(outputStream* out) const { out->print("Base:"); _base->print(out); if (!_index->is_illegal()) { out->print(" Index:"); _index->print(out); switch (scale()) { case times_1: break; case times_2: out->print(" * 2"); break; case times_4: out->print(" * 4"); break; case times_8: out->print(" * 8"); break; } } out->print(" Disp: " INTX_FORMAT, _disp); } // debug output of block header without InstructionPrinter // (because phi functions are not necessary for LIR) static void print_block(BlockBegin* x) { // print block id BlockEnd* end = x->end(); tty->print("B%d ", x->block_id()); // print flags if (x->is_set(BlockBegin::std_entry_flag)) tty->print("std "); if (x->is_set(BlockBegin::osr_entry_flag)) tty->print("osr "); if (x->is_set(BlockBegin::exception_entry_flag)) tty->print("ex "); if (x->is_set(BlockBegin::subroutine_entry_flag)) tty->print("jsr "); if (x->is_set(BlockBegin::backward_branch_target_flag)) tty->print("bb "); if (x->is_set(BlockBegin::linear_scan_loop_header_flag)) tty->print("lh "); if (x->is_set(BlockBegin::linear_scan_loop_end_flag)) tty->print("le "); // print block bci range tty->print("[%d, %d] ", x->bci(), (end == NULL ? -1 : end->printable_bci())); // print predecessors and successors if (x->number_of_preds() > 0) { tty->print("preds: "); for (int i = 0; i < x->number_of_preds(); i ++) { tty->print("B%d ", x->pred_at(i)->block_id()); } } if (x->number_of_sux() > 0) { tty->print("sux: "); for (int i = 0; i < x->number_of_sux(); i ++) { tty->print("B%d ", x->sux_at(i)->block_id()); } } // print exception handlers if (x->number_of_exception_handlers() > 0) { tty->print("xhandler: "); for (int i = 0; i < x->number_of_exception_handlers(); i++) { tty->print("B%d ", x->exception_handler_at(i)->block_id()); } } tty->cr(); } void print_LIR(BlockList* blocks) { tty->print_cr("LIR:"); int i; for (i = 0; i < blocks->length(); i++) { BlockBegin* bb = blocks->at(i); print_block(bb); tty->print("__id_Instruction___________________________________________"); tty->cr(); bb->lir()->print_instructions(); } } void LIR_List::print_instructions() { for (int i = 0; i < _operations.length(); i++) { _operations.at(i)->print(); tty->cr(); } tty->cr(); } // LIR_Ops printing routines // LIR_Op void LIR_Op::print_on(outputStream* out) const { if (id() != -1 || PrintCFGToFile) { out->print("%4d ", id()); } else { out->print(" "); } out->print("%s ", name()); print_instr(out); if (info() != NULL) out->print(" [bci:%d]", info()->stack()->bci()); #ifdef ASSERT if (Verbose && _file != NULL) { out->print(" (%s:%d)", _file, _line); } #endif } const char * LIR_Op::name() const { const char* s = NULL; switch(code()) { // LIR_Op0 case lir_membar: s = "membar"; break; case lir_membar_acquire: s = "membar_acquire"; break; case lir_membar_release: s = "membar_release"; break; case lir_membar_loadload: s = "membar_loadload"; break; case lir_membar_storestore: s = "membar_storestore"; break; case lir_membar_loadstore: s = "membar_loadstore"; break; case lir_membar_storeload: s = "membar_storeload"; break; case lir_word_align: s = "word_align"; break; case lir_label: s = "label"; break; case lir_nop: s = "nop"; break; case lir_backwardbranch_target: s = "backbranch"; break; case lir_std_entry: s = "std_entry"; break; case lir_osr_entry: s = "osr_entry"; break; case lir_build_frame: s = "build_frm"; break; case lir_fpop_raw: s = "fpop_raw"; break; case lir_24bit_FPU: s = "24bit_FPU"; break; case lir_reset_FPU: s = "reset_FPU"; break; case lir_breakpoint: s = "breakpoint"; break; case lir_get_thread: s = "get_thread"; break; // LIR_Op1 case lir_fxch: s = "fxch"; break; case lir_fld: s = "fld"; break; case lir_ffree: s = "ffree"; break; case lir_push: s = "push"; break; case lir_pop: s = "pop"; break; case lir_null_check: s = "null_check"; break; case lir_return: s = "return"; break; case lir_safepoint: s = "safepoint"; break; case lir_neg: s = "neg"; break; case lir_leal: s = "leal"; break; case lir_branch: s = "branch"; break; case lir_cond_float_branch: s = "flt_cond_br"; break; case lir_move: s = "move"; break; case lir_roundfp: s = "roundfp"; break; case lir_rtcall: s = "rtcall"; break; case lir_throw: s = "throw"; break; case lir_unwind: s = "unwind"; break; case lir_convert: s = "convert"; break; case lir_alloc_object: s = "alloc_obj"; break; case lir_monaddr: s = "mon_addr"; break; case lir_pack64: s = "pack64"; break; case lir_unpack64: s = "unpack64"; break; // LIR_Op2 case lir_cmp: s = "cmp"; break; case lir_cmp_l2i: s = "cmp_l2i"; break; case lir_ucmp_fd2i: s = "ucomp_fd2i"; break; case lir_cmp_fd2i: s = "comp_fd2i"; break; case lir_cmove: s = "cmove"; break; case lir_add: s = "add"; break; case lir_sub: s = "sub"; break; case lir_mul: s = "mul"; break; case lir_mul_strictfp: s = "mul_strictfp"; break; case lir_div: s = "div"; break; case lir_div_strictfp: s = "div_strictfp"; break; case lir_rem: s = "rem"; break; case lir_abs: s = "abs"; break; case lir_sqrt: s = "sqrt"; break; case lir_sin: s = "sin"; break; case lir_cos: s = "cos"; break; case lir_tan: s = "tan"; break; case lir_log: s = "log"; break; case lir_log10: s = "log10"; break; case lir_exp: s = "exp"; break; case lir_pow: s = "pow"; break; case lir_logic_and: s = "logic_and"; break; case lir_logic_or: s = "logic_or"; break; case lir_logic_xor: s = "logic_xor"; break; case lir_shl: s = "shift_left"; break; case lir_shr: s = "shift_right"; break; case lir_ushr: s = "ushift_right"; break; case lir_alloc_array: s = "alloc_array"; break; case lir_xadd: s = "xadd"; break; case lir_xchg: s = "xchg"; break; // LIR_Op3 case lir_idiv: s = "idiv"; break; case lir_irem: s = "irem"; break; // LIR_OpJavaCall case lir_static_call: s = "static"; break; case lir_optvirtual_call: s = "optvirtual"; break; case lir_icvirtual_call: s = "icvirtual"; break; case lir_virtual_call: s = "virtual"; break; case lir_dynamic_call: s = "dynamic"; break; // LIR_OpArrayCopy case lir_arraycopy: s = "arraycopy"; break; // LIR_OpUpdateCRC32 case lir_updatecrc32: s = "updatecrc32"; break; // LIR_OpLock case lir_lock: s = "lock"; break; case lir_unlock: s = "unlock"; break; // LIR_OpDelay case lir_delay_slot: s = "delay"; break; // LIR_OpTypeCheck case lir_instanceof: s = "instanceof"; break; case lir_checkcast: s = "checkcast"; break; case lir_store_check: s = "store_check"; break; // LIR_OpCompareAndSwap case lir_cas_long: s = "cas_long"; break; case lir_cas_obj: s = "cas_obj"; break; case lir_cas_int: s = "cas_int"; break; // LIR_OpProfileCall case lir_profile_call: s = "profile_call"; break; // LIR_OpProfileType case lir_profile_type: s = "profile_type"; break; // LIR_OpAssert #ifdef ASSERT case lir_assert: s = "assert"; break; #endif case lir_none: ShouldNotReachHere();break; default: s = "illegal_op"; break; } return s; } // LIR_OpJavaCall void LIR_OpJavaCall::print_instr(outputStream* out) const { out->print("call: "); out->print("[addr: " INTPTR_FORMAT "]", p2i(address())); if (receiver()->is_valid()) { out->print(" [recv: "); receiver()->print(out); out->print("]"); } if (result_opr()->is_valid()) { out->print(" [result: "); result_opr()->print(out); out->print("]"); } } // LIR_OpLabel void LIR_OpLabel::print_instr(outputStream* out) const { out->print("[label:" INTPTR_FORMAT "]", p2i(_label)); } // LIR_OpArrayCopy void LIR_OpArrayCopy::print_instr(outputStream* out) const { src()->print(out); out->print(" "); src_pos()->print(out); out->print(" "); dst()->print(out); out->print(" "); dst_pos()->print(out); out->print(" "); length()->print(out); out->print(" "); tmp()->print(out); out->print(" "); } // LIR_OpUpdateCRC32 void LIR_OpUpdateCRC32::print_instr(outputStream* out) const { crc()->print(out); out->print(" "); val()->print(out); out->print(" "); result_opr()->print(out); out->print(" "); } // LIR_OpCompareAndSwap void LIR_OpCompareAndSwap::print_instr(outputStream* out) const { addr()->print(out); out->print(" "); cmp_value()->print(out); out->print(" "); new_value()->print(out); out->print(" "); tmp1()->print(out); out->print(" "); tmp2()->print(out); out->print(" "); } // LIR_Op0 void LIR_Op0::print_instr(outputStream* out) const { result_opr()->print(out); } // LIR_Op1 const char * LIR_Op1::name() const { if (code() == lir_move) { switch (move_kind()) { case lir_move_normal: return "move"; case lir_move_unaligned: return "unaligned move"; case lir_move_volatile: return "volatile_move"; case lir_move_wide: return "wide_move"; default: ShouldNotReachHere(); return "illegal_op"; } } else { return LIR_Op::name(); } } void LIR_Op1::print_instr(outputStream* out) const { _opr->print(out); out->print(" "); result_opr()->print(out); out->print(" "); print_patch_code(out, patch_code()); } // LIR_Op1 void LIR_OpRTCall::print_instr(outputStream* out) const { intx a = (intx)addr(); out->print("%s", Runtime1::name_for_address(addr())); out->print(" "); tmp()->print(out); } void LIR_Op1::print_patch_code(outputStream* out, LIR_PatchCode code) { switch(code) { case lir_patch_none: break; case lir_patch_low: out->print("[patch_low]"); break; case lir_patch_high: out->print("[patch_high]"); break; case lir_patch_normal: out->print("[patch_normal]"); break; default: ShouldNotReachHere(); } } // LIR_OpBranch void LIR_OpBranch::print_instr(outputStream* out) const { print_condition(out, cond()); out->print(" "); if (block() != NULL) { out->print("[B%d] ", block()->block_id()); } else if (stub() != NULL) { out->print("["); stub()->print_name(out); out->print(": " INTPTR_FORMAT "]", p2i(stub())); if (stub()->info() != NULL) out->print(" [bci:%d]", stub()->info()->stack()->bci()); } else { out->print("[label:" INTPTR_FORMAT "] ", p2i(label())); } if (ublock() != NULL) { out->print("unordered: [B%d] ", ublock()->block_id()); } } void LIR_Op::print_condition(outputStream* out, LIR_Condition cond) { switch(cond) { case lir_cond_equal: out->print("[EQ]"); break; case lir_cond_notEqual: out->print("[NE]"); break; case lir_cond_less: out->print("[LT]"); break; case lir_cond_lessEqual: out->print("[LE]"); break; case lir_cond_greaterEqual: out->print("[GE]"); break; case lir_cond_greater: out->print("[GT]"); break; case lir_cond_belowEqual: out->print("[BE]"); break; case lir_cond_aboveEqual: out->print("[AE]"); break; case lir_cond_always: out->print("[AL]"); break; default: out->print("[%d]",cond); break; } } // LIR_OpConvert void LIR_OpConvert::print_instr(outputStream* out) const { print_bytecode(out, bytecode()); in_opr()->print(out); out->print(" "); result_opr()->print(out); out->print(" "); #ifdef PPC if(tmp1()->is_valid()) { tmp1()->print(out); out->print(" "); tmp2()->print(out); out->print(" "); } #endif } void LIR_OpConvert::print_bytecode(outputStream* out, Bytecodes::Code code) { switch(code) { case Bytecodes::_d2f: out->print("[d2f] "); break; case Bytecodes::_d2i: out->print("[d2i] "); break; case Bytecodes::_d2l: out->print("[d2l] "); break; case Bytecodes::_f2d: out->print("[f2d] "); break; case Bytecodes::_f2i: out->print("[f2i] "); break; case Bytecodes::_f2l: out->print("[f2l] "); break; case Bytecodes::_i2b: out->print("[i2b] "); break; case Bytecodes::_i2c: out->print("[i2c] "); break; case Bytecodes::_i2d: out->print("[i2d] "); break; case Bytecodes::_i2f: out->print("[i2f] "); break; case Bytecodes::_i2l: out->print("[i2l] "); break; case Bytecodes::_i2s: out->print("[i2s] "); break; case Bytecodes::_l2i: out->print("[l2i] "); break; case Bytecodes::_l2f: out->print("[l2f] "); break; case Bytecodes::_l2d: out->print("[l2d] "); break; default: out->print("[?%d]",code); break; } } void LIR_OpAllocObj::print_instr(outputStream* out) const { klass()->print(out); out->print(" "); obj()->print(out); out->print(" "); tmp1()->print(out); out->print(" "); tmp2()->print(out); out->print(" "); tmp3()->print(out); out->print(" "); tmp4()->print(out); out->print(" "); out->print("[hdr:%d]", header_size()); out->print(" "); out->print("[obj:%d]", object_size()); out->print(" "); out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry())); } void LIR_OpRoundFP::print_instr(outputStream* out) const { _opr->print(out); out->print(" "); tmp()->print(out); out->print(" "); result_opr()->print(out); out->print(" "); } // LIR_Op2 void LIR_Op2::print_instr(outputStream* out) const { if (code() == lir_cmove) { print_condition(out, condition()); out->print(" "); } in_opr1()->print(out); out->print(" "); in_opr2()->print(out); out->print(" "); if (tmp1_opr()->is_valid()) { tmp1_opr()->print(out); out->print(" "); } if (tmp2_opr()->is_valid()) { tmp2_opr()->print(out); out->print(" "); } if (tmp3_opr()->is_valid()) { tmp3_opr()->print(out); out->print(" "); } if (tmp4_opr()->is_valid()) { tmp4_opr()->print(out); out->print(" "); } if (tmp5_opr()->is_valid()) { tmp5_opr()->print(out); out->print(" "); } result_opr()->print(out); } void LIR_OpAllocArray::print_instr(outputStream* out) const { klass()->print(out); out->print(" "); len()->print(out); out->print(" "); obj()->print(out); out->print(" "); tmp1()->print(out); out->print(" "); tmp2()->print(out); out->print(" "); tmp3()->print(out); out->print(" "); tmp4()->print(out); out->print(" "); out->print("[type:0x%x]", type()); out->print(" "); out->print("[label:" INTPTR_FORMAT "]", p2i(stub()->entry())); } void LIR_OpTypeCheck::print_instr(outputStream* out) const { object()->print(out); out->print(" "); if (code() == lir_store_check) { array()->print(out); out->print(" "); } if (code() != lir_store_check) { klass()->print_name_on(out); out->print(" "); if (fast_check()) out->print("fast_check "); } tmp1()->print(out); out->print(" "); tmp2()->print(out); out->print(" "); tmp3()->print(out); out->print(" "); result_opr()->print(out); out->print(" "); if (info_for_exception() != NULL) out->print(" [bci:%d]", info_for_exception()->stack()->bci()); } // LIR_Op3 void LIR_Op3::print_instr(outputStream* out) const { in_opr1()->print(out); out->print(" "); in_opr2()->print(out); out->print(" "); in_opr3()->print(out); out->print(" "); result_opr()->print(out); } void LIR_OpLock::print_instr(outputStream* out) const { hdr_opr()->print(out); out->print(" "); obj_opr()->print(out); out->print(" "); lock_opr()->print(out); out->print(" "); if (_scratch->is_valid()) { _scratch->print(out); out->print(" "); } out->print("[lbl:" INTPTR_FORMAT "]", p2i(stub()->entry())); } #ifdef ASSERT void LIR_OpAssert::print_instr(outputStream* out) const { print_condition(out, condition()); out->print(" "); in_opr1()->print(out); out->print(" "); in_opr2()->print(out); out->print(", \""); out->print("%s", msg()); out->print("\""); } #endif void LIR_OpDelay::print_instr(outputStream* out) const { _op->print_on(out); } // LIR_OpProfileCall void LIR_OpProfileCall::print_instr(outputStream* out) const { profiled_method()->name()->print_symbol_on(out); out->print("."); profiled_method()->holder()->name()->print_symbol_on(out); out->print(" @ %d ", profiled_bci()); mdo()->print(out); out->print(" "); recv()->print(out); out->print(" "); tmp1()->print(out); out->print(" "); } // LIR_OpProfileType void LIR_OpProfileType::print_instr(outputStream* out) const { out->print("exact = "); exact_klass()->print_name_on(out); out->print("current = "); ciTypeEntries::print_ciklass(out, current_klass()); mdp()->print(out); out->print(" "); obj()->print(out); out->print(" "); tmp()->print(out); out->print(" "); } #endif // PRODUCT // Implementation of LIR_InsertionBuffer void LIR_InsertionBuffer::append(int index, LIR_Op* op) { assert(_index_and_count.length() % 2 == 0, "must have a count for each index"); int i = number_of_insertion_points() - 1; if (i < 0 || index_at(i) < index) { append_new(index, 1); } else { assert(index_at(i) == index, "can append LIR_Ops in ascending order only"); assert(count_at(i) > 0, "check"); set_count_at(i, count_at(i) + 1); } _ops.push(op); DEBUG_ONLY(verify()); } #ifdef ASSERT void LIR_InsertionBuffer::verify() { int sum = 0; int prev_idx = -1; for (int i = 0; i < number_of_insertion_points(); i++) { assert(prev_idx < index_at(i), "index must be ordered ascending"); sum += count_at(i); } assert(sum == number_of_ops(), "wrong total sum"); } #endif