1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #ifndef __STDC_FORMAT_MACROS
  29 #define __STDC_FORMAT_MACROS
  30 #endif
  31 
  32 #ifdef TARGET_COMPILER_gcc
  33 # include "utilities/globalDefinitions_gcc.hpp"
  34 #endif
  35 #ifdef TARGET_COMPILER_visCPP
  36 # include "utilities/globalDefinitions_visCPP.hpp"
  37 #endif
  38 #ifdef TARGET_COMPILER_sparcWorks
  39 # include "utilities/globalDefinitions_sparcWorks.hpp"
  40 #endif
  41 #ifdef TARGET_COMPILER_xlc
  42 # include "utilities/globalDefinitions_xlc.hpp"
  43 #endif
  44 
  45 #ifndef PRAGMA_DIAG_PUSH
  46 #define PRAGMA_DIAG_PUSH
  47 #endif
  48 #ifndef PRAGMA_DIAG_POP
  49 #define PRAGMA_DIAG_POP
  50 #endif
  51 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED
  52 #define PRAGMA_FORMAT_NONLITERAL_IGNORED
  53 #endif
  54 #ifndef PRAGMA_FORMAT_IGNORED
  55 #define PRAGMA_FORMAT_IGNORED
  56 #endif
  57 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  58 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_INTERNAL
  59 #endif
  60 #ifndef PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  61 #define PRAGMA_FORMAT_NONLITERAL_IGNORED_EXTERNAL
  62 #endif
  63 #ifndef PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  64 #define PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  65 #endif
  66 #ifndef ATTRIBUTE_PRINTF
  67 #define ATTRIBUTE_PRINTF(fmt, vargs)
  68 #endif
  69 #ifndef ATTRIBUTE_SCANF
  70 #define ATTRIBUTE_SCANF(fmt, vargs)
  71 #endif
  72 
  73 
  74 #include "utilities/macros.hpp"
  75 
  76 // This file holds all globally used constants & types, class (forward)
  77 // declarations and a few frequently used utility functions.
  78 
  79 //----------------------------------------------------------------------------------------------------
  80 // Constants
  81 
  82 const int LogBytesPerShort   = 1;
  83 const int LogBytesPerInt     = 2;
  84 #ifdef _LP64
  85 const int LogBytesPerWord    = 3;
  86 #else
  87 const int LogBytesPerWord    = 2;
  88 #endif
  89 const int LogBytesPerLong    = 3;
  90 
  91 const int BytesPerShort      = 1 << LogBytesPerShort;
  92 const int BytesPerInt        = 1 << LogBytesPerInt;
  93 const int BytesPerWord       = 1 << LogBytesPerWord;
  94 const int BytesPerLong       = 1 << LogBytesPerLong;
  95 
  96 const int LogBitsPerByte     = 3;
  97 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
  98 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
  99 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 100 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 101 
 102 const int BitsPerByte        = 1 << LogBitsPerByte;
 103 const int BitsPerShort       = 1 << LogBitsPerShort;
 104 const int BitsPerInt         = 1 << LogBitsPerInt;
 105 const int BitsPerWord        = 1 << LogBitsPerWord;
 106 const int BitsPerLong        = 1 << LogBitsPerLong;
 107 
 108 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 109 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 110 
 111 const int WordsPerLong       = 2;       // Number of stack entries for longs
 112 
 113 const int oopSize            = sizeof(char*); // Full-width oop
 114 extern int heapOopSize;                       // Oop within a java object
 115 const int wordSize           = sizeof(char*);
 116 const int longSize           = sizeof(jlong);
 117 const int jintSize           = sizeof(jint);
 118 const int size_tSize         = sizeof(size_t);
 119 
 120 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 121 
 122 extern int LogBytesPerHeapOop;                // Oop within a java object
 123 extern int LogBitsPerHeapOop;
 124 extern int BytesPerHeapOop;
 125 extern int BitsPerHeapOop;
 126 
 127 // Oop encoding heap max
 128 extern uint64_t OopEncodingHeapMax;
 129 
 130 const int BitsPerJavaInteger = 32;
 131 const int BitsPerJavaLong    = 64;
 132 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 133 
 134 // Size of a char[] needed to represent a jint as a string in decimal.
 135 const int jintAsStringSize = 12;
 136 
 137 // In fact this should be
 138 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 139 // see os::set_memory_serialize_page()
 140 #ifdef _LP64
 141 const int SerializePageShiftCount = 4;
 142 #else
 143 const int SerializePageShiftCount = 3;
 144 #endif
 145 
 146 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 147 // pointer into the heap.  We require that object sizes be measured in
 148 // units of heap words, so that that
 149 //   HeapWord* hw;
 150 //   hw += oop(hw)->foo();
 151 // works, where foo is a method (like size or scavenge) that returns the
 152 // object size.
 153 class HeapWord {
 154   friend class VMStructs;
 155  private:
 156   char* i;
 157 #ifndef PRODUCT
 158  public:
 159   char* value() { return i; }
 160 #endif
 161 };
 162 
 163 // Analogous opaque struct for metadata allocated from
 164 // metaspaces.
 165 class MetaWord {
 166   friend class VMStructs;
 167  private:
 168   char* i;
 169 };
 170 
 171 // HeapWordSize must be 2^LogHeapWordSize.
 172 const int HeapWordSize        = sizeof(HeapWord);
 173 #ifdef _LP64
 174 const int LogHeapWordSize     = 3;
 175 #else
 176 const int LogHeapWordSize     = 2;
 177 #endif
 178 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 179 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 180 
 181 // The larger HeapWordSize for 64bit requires larger heaps
 182 // for the same application running in 64bit.  See bug 4967770.
 183 // The minimum alignment to a heap word size is done.  Other
 184 // parts of the memory system may require additional alignment
 185 // and are responsible for those alignments.
 186 #ifdef _LP64
 187 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 188 #else
 189 #define ScaleForWordSize(x) (x)
 190 #endif
 191 
 192 // The minimum number of native machine words necessary to contain "byte_size"
 193 // bytes.
 194 inline size_t heap_word_size(size_t byte_size) {
 195   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 196 }
 197 
 198 
 199 const size_t K                  = 1024;
 200 const size_t M                  = K*K;
 201 const size_t G                  = M*K;
 202 const size_t HWperKB            = K / sizeof(HeapWord);
 203 
 204 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 205 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 206 
 207 // Constants for converting from a base unit to milli-base units.  For
 208 // example from seconds to milliseconds and microseconds
 209 
 210 const int MILLIUNITS    = 1000;         // milli units per base unit
 211 const int MICROUNITS    = 1000000;      // micro units per base unit
 212 const int NANOUNITS     = 1000000000;   // nano units per base unit
 213 
 214 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 215 const jint  NANOSECS_PER_MILLISEC = 1000000;
 216 
 217 inline const char* proper_unit_for_byte_size(size_t s) {
 218 #ifdef _LP64
 219   if (s >= 10*G) {
 220     return "G";
 221   }
 222 #endif
 223   if (s >= 10*M) {
 224     return "M";
 225   } else if (s >= 10*K) {
 226     return "K";
 227   } else {
 228     return "B";
 229   }
 230 }
 231 
 232 template <class T>
 233 inline T byte_size_in_proper_unit(T s) {
 234 #ifdef _LP64
 235   if (s >= 10*G) {
 236     return (T)(s/G);
 237   }
 238 #endif
 239   if (s >= 10*M) {
 240     return (T)(s/M);
 241   } else if (s >= 10*K) {
 242     return (T)(s/K);
 243   } else {
 244     return s;
 245   }
 246 }
 247 
 248 //----------------------------------------------------------------------------------------------------
 249 // VM type definitions
 250 
 251 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 252 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 253 
 254 typedef intptr_t  intx;
 255 typedef uintptr_t uintx;
 256 
 257 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 258 const intx  max_intx  = (uintx)min_intx - 1;
 259 const uintx max_uintx = (uintx)-1;
 260 
 261 // Table of values:
 262 //      sizeof intx         4               8
 263 // min_intx             0x80000000      0x8000000000000000
 264 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 265 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 266 
 267 typedef unsigned int uint;   NEEDS_CLEANUP
 268 
 269 
 270 //----------------------------------------------------------------------------------------------------
 271 // Java type definitions
 272 
 273 // All kinds of 'plain' byte addresses
 274 typedef   signed char s_char;
 275 typedef unsigned char u_char;
 276 typedef u_char*       address;
 277 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 278                                     // except for some implementations of a C++
 279                                     // linkage pointer to function. Should never
 280                                     // need one of those to be placed in this
 281                                     // type anyway.
 282 
 283 //  Utility functions to "portably" (?) bit twiddle pointers
 284 //  Where portable means keep ANSI C++ compilers quiet
 285 
 286 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 287 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 288 
 289 //  Utility functions to "portably" make cast to/from function pointers.
 290 
 291 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 292 inline address_word  castable_address(address x)              { return address_word(x) ; }
 293 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 294 
 295 // Pointer subtraction.
 296 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 297 // the range we might need to find differences from one end of the heap
 298 // to the other.
 299 // A typical use might be:
 300 //     if (pointer_delta(end(), top()) >= size) {
 301 //       // enough room for an object of size
 302 //       ...
 303 // and then additions like
 304 //       ... top() + size ...
 305 // are safe because we know that top() is at least size below end().
 306 inline size_t pointer_delta(const void* left,
 307                             const void* right,
 308                             size_t element_size) {
 309   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 310 }
 311 // A version specialized for HeapWord*'s.
 312 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 313   return pointer_delta(left, right, sizeof(HeapWord));
 314 }
 315 // A version specialized for MetaWord*'s.
 316 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 317   return pointer_delta(left, right, sizeof(MetaWord));
 318 }
 319 
 320 //
 321 // ANSI C++ does not allow casting from one pointer type to a function pointer
 322 // directly without at best a warning. This macro accomplishes it silently
 323 // In every case that is present at this point the value be cast is a pointer
 324 // to a C linkage function. In somecase the type used for the cast reflects
 325 // that linkage and a picky compiler would not complain. In other cases because
 326 // there is no convenient place to place a typedef with extern C linkage (i.e
 327 // a platform dependent header file) it doesn't. At this point no compiler seems
 328 // picky enough to catch these instances (which are few). It is possible that
 329 // using templates could fix these for all cases. This use of templates is likely
 330 // so far from the middle of the road that it is likely to be problematic in
 331 // many C++ compilers.
 332 //
 333 #define CAST_TO_FN_PTR(func_type, value) ((func_type)(castable_address(value)))
 334 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 335 
 336 // Unsigned byte types for os and stream.hpp
 337 
 338 // Unsigned one, two, four and eigth byte quantities used for describing
 339 // the .class file format. See JVM book chapter 4.
 340 
 341 typedef jubyte  u1;
 342 typedef jushort u2;
 343 typedef juint   u4;
 344 typedef julong  u8;
 345 
 346 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 347 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 348 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 349 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 350 
 351 typedef jbyte  s1;
 352 typedef jshort s2;
 353 typedef jint   s4;
 354 typedef jlong  s8;
 355 
 356 //----------------------------------------------------------------------------------------------------
 357 // JVM spec restrictions
 358 
 359 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 360 
 361 // Default ProtectionDomainCacheSize values
 362 
 363 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
 364 
 365 //----------------------------------------------------------------------------------------------------
 366 // Default and minimum StringTableSize values
 367 
 368 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
 369 const int minimumStringTableSize = 1009;
 370 
 371 const int defaultSymbolTableSize = 20011;
 372 const int minimumSymbolTableSize = 1009;
 373 
 374 
 375 //----------------------------------------------------------------------------------------------------
 376 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 377 //
 378 // Determines whether on-the-fly class replacement and frame popping are enabled.
 379 
 380 #define HOTSWAP
 381 
 382 //----------------------------------------------------------------------------------------------------
 383 // Object alignment, in units of HeapWords.
 384 //
 385 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 386 // reference fields can be naturally aligned.
 387 
 388 extern int MinObjAlignment;
 389 extern int MinObjAlignmentInBytes;
 390 extern int MinObjAlignmentInBytesMask;
 391 
 392 extern int LogMinObjAlignment;
 393 extern int LogMinObjAlignmentInBytes;
 394 
 395 const int LogKlassAlignmentInBytes = 3;
 396 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 397 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 398 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 399 
 400 // Klass encoding metaspace max size
 401 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 402 
 403 // Machine dependent stuff
 404 
 405 #if defined(X86) && defined(COMPILER2) && !defined(JAVASE_EMBEDDED)
 406 // Include Restricted Transactional Memory lock eliding optimization
 407 #define INCLUDE_RTM_OPT 1
 408 #define RTM_OPT_ONLY(code) code
 409 #else
 410 #define INCLUDE_RTM_OPT 0
 411 #define RTM_OPT_ONLY(code)
 412 #endif
 413 // States of Restricted Transactional Memory usage.
 414 enum RTMState {
 415   NoRTM      = 0x2, // Don't use RTM
 416   UseRTM     = 0x1, // Use RTM
 417   ProfileRTM = 0x0  // Use RTM with abort ratio calculation
 418 };
 419 
 420 #ifdef TARGET_ARCH_x86
 421 # include "globalDefinitions_x86.hpp"
 422 #endif
 423 #ifdef TARGET_ARCH_sparc
 424 # include "globalDefinitions_sparc.hpp"
 425 #endif
 426 #ifdef TARGET_ARCH_zero
 427 # include "globalDefinitions_zero.hpp"
 428 #endif
 429 #ifdef TARGET_ARCH_arm
 430 # include "globalDefinitions_arm.hpp"
 431 #endif
 432 #ifdef TARGET_ARCH_ppc
 433 # include "globalDefinitions_ppc.hpp"
 434 #endif
 435 
 436 /*
 437  * If a platform does not support native stack walking
 438  * the platform specific globalDefinitions (above)
 439  * can set PLATFORM_NATIVE_STACK_WALKING_SUPPORTED to 0
 440  */
 441 #ifndef PLATFORM_NATIVE_STACK_WALKING_SUPPORTED
 442 #define PLATFORM_NATIVE_STACK_WALKING_SUPPORTED 1
 443 #endif
 444 
 445 // To assure the IRIW property on processors that are not multiple copy
 446 // atomic, sync instructions must be issued between volatile reads to
 447 // assure their ordering, instead of after volatile stores.
 448 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 449 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 450 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 451 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 452 #else
 453 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 454 #endif
 455 
 456 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 457 // Note: this value must be a power of 2
 458 
 459 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 460 
 461 // Signed variants of alignment helpers.  There are two versions of each, a macro
 462 // for use in places like enum definitions that require compile-time constant
 463 // expressions and a function for all other places so as to get type checking.
 464 
 465 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 466 
 467 inline bool is_size_aligned(size_t size, size_t alignment) {
 468   return align_size_up_(size, alignment) == size;
 469 }
 470 
 471 inline bool is_ptr_aligned(void* ptr, size_t alignment) {
 472   return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
 473 }
 474 
 475 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 476   return align_size_up_(size, alignment);
 477 }
 478 
 479 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 480 
 481 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 482   return align_size_down_(size, alignment);
 483 }
 484 
 485 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
 486 
 487 inline void* align_ptr_up(void* ptr, size_t alignment) {
 488   return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
 489 }
 490 
 491 inline void* align_ptr_down(void* ptr, size_t alignment) {
 492   return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
 493 }
 494 
 495 // Align objects by rounding up their size, in HeapWord units.
 496 
 497 #define align_object_size_(size) align_size_up_(size, MinObjAlignment)
 498 
 499 inline intptr_t align_object_size(intptr_t size) {
 500   return align_size_up(size, MinObjAlignment);
 501 }
 502 
 503 inline bool is_object_aligned(intptr_t addr) {
 504   return addr == align_object_size(addr);
 505 }
 506 
 507 // Pad out certain offsets to jlong alignment, in HeapWord units.
 508 
 509 inline intptr_t align_object_offset(intptr_t offset) {
 510   return align_size_up(offset, HeapWordsPerLong);
 511 }
 512 
 513 inline void* align_pointer_up(const void* addr, size_t size) {
 514   return (void*) align_size_up_((uintptr_t)addr, size);
 515 }
 516 
 517 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
 518 
 519 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
 520   size_t aligned_size = align_size_down_(size, alignment);
 521   return aligned_size > 0 ? aligned_size : alignment;
 522 }
 523 
 524 // Clamp an address to be within a specific page
 525 // 1. If addr is on the page it is returned as is
 526 // 2. If addr is above the page_address the start of the *next* page will be returned
 527 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
 528 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
 529   if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
 530     // address is in the specified page, just return it as is
 531     return addr;
 532   } else if (addr > page_address) {
 533     // address is above specified page, return start of next page
 534     return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
 535   } else {
 536     // address is below specified page, return start of page
 537     return (address)align_size_down(intptr_t(page_address), page_size);
 538   }
 539 }
 540 
 541 
 542 // The expected size in bytes of a cache line, used to pad data structures.
 543 #ifndef DEFAULT_CACHE_LINE_SIZE
 544   #define DEFAULT_CACHE_LINE_SIZE 64
 545 #endif
 546 
 547 
 548 //----------------------------------------------------------------------------------------------------
 549 // Utility macros for compilers
 550 // used to silence compiler warnings
 551 
 552 #define Unused_Variable(var) var
 553 
 554 
 555 //----------------------------------------------------------------------------------------------------
 556 // Miscellaneous
 557 
 558 // 6302670 Eliminate Hotspot __fabsf dependency
 559 // All fabs() callers should call this function instead, which will implicitly
 560 // convert the operand to double, avoiding a dependency on __fabsf which
 561 // doesn't exist in early versions of Solaris 8.
 562 inline double fabsd(double value) {
 563   return fabs(value);
 564 }
 565 
 566 //----------------------------------------------------------------------------------------------------
 567 // Special casts
 568 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 569 typedef union {
 570   jfloat f;
 571   jint i;
 572 } FloatIntConv;
 573 
 574 typedef union {
 575   jdouble d;
 576   jlong l;
 577   julong ul;
 578 } DoubleLongConv;
 579 
 580 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 581 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 582 
 583 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 584 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 585 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 586 
 587 inline jint low (jlong value)                    { return jint(value); }
 588 inline jint high(jlong value)                    { return jint(value >> 32); }
 589 
 590 // the fancy casts are a hopefully portable way
 591 // to do unsigned 32 to 64 bit type conversion
 592 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 593                                                    *value |= (jlong)(julong)(juint)low; }
 594 
 595 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 596                                                    *value |= (jlong)high       << 32; }
 597 
 598 inline jlong jlong_from(jint h, jint l) {
 599   jlong result = 0; // initialization to avoid warning
 600   set_high(&result, h);
 601   set_low(&result,  l);
 602   return result;
 603 }
 604 
 605 union jlong_accessor {
 606   jint  words[2];
 607   jlong long_value;
 608 };
 609 
 610 void basic_types_init(); // cannot define here; uses assert
 611 
 612 
 613 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 614 enum BasicType {
 615   T_BOOLEAN     =  4,
 616   T_CHAR        =  5,
 617   T_FLOAT       =  6,
 618   T_DOUBLE      =  7,
 619   T_BYTE        =  8,
 620   T_SHORT       =  9,
 621   T_INT         = 10,
 622   T_LONG        = 11,
 623   T_OBJECT      = 12,
 624   T_ARRAY       = 13,
 625   T_VOID        = 14,
 626   T_ADDRESS     = 15,
 627   T_NARROWOOP   = 16,
 628   T_METADATA    = 17,
 629   T_NARROWKLASS = 18,
 630   T_CONFLICT    = 19, // for stack value type with conflicting contents
 631   T_ILLEGAL     = 99
 632 };
 633 
 634 inline bool is_java_primitive(BasicType t) {
 635   return T_BOOLEAN <= t && t <= T_LONG;
 636 }
 637 
 638 inline bool is_subword_type(BasicType t) {
 639   // these guys are processed exactly like T_INT in calling sequences:
 640   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 641 }
 642 
 643 inline bool is_signed_subword_type(BasicType t) {
 644   return (t == T_BYTE || t == T_SHORT);
 645 }
 646 
 647 // Convert a char from a classfile signature to a BasicType
 648 inline BasicType char2type(char c) {
 649   switch( c ) {
 650   case 'B': return T_BYTE;
 651   case 'C': return T_CHAR;
 652   case 'D': return T_DOUBLE;
 653   case 'F': return T_FLOAT;
 654   case 'I': return T_INT;
 655   case 'J': return T_LONG;
 656   case 'S': return T_SHORT;
 657   case 'Z': return T_BOOLEAN;
 658   case 'V': return T_VOID;
 659   case 'L': return T_OBJECT;
 660   case '[': return T_ARRAY;
 661   }
 662   return T_ILLEGAL;
 663 }
 664 
 665 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 666 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 667 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 668 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 669 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 670 extern BasicType name2type(const char* name);
 671 
 672 // Auxilary math routines
 673 // least common multiple
 674 extern size_t lcm(size_t a, size_t b);
 675 
 676 
 677 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 678 enum BasicTypeSize {
 679   T_BOOLEAN_size     = 1,
 680   T_CHAR_size        = 1,
 681   T_FLOAT_size       = 1,
 682   T_DOUBLE_size      = 2,
 683   T_BYTE_size        = 1,
 684   T_SHORT_size       = 1,
 685   T_INT_size         = 1,
 686   T_LONG_size        = 2,
 687   T_OBJECT_size      = 1,
 688   T_ARRAY_size       = 1,
 689   T_NARROWOOP_size   = 1,
 690   T_NARROWKLASS_size = 1,
 691   T_VOID_size        = 0
 692 };
 693 
 694 
 695 // maps a BasicType to its instance field storage type:
 696 // all sub-word integral types are widened to T_INT
 697 extern BasicType type2field[T_CONFLICT+1];
 698 extern BasicType type2wfield[T_CONFLICT+1];
 699 
 700 
 701 // size in bytes
 702 enum ArrayElementSize {
 703   T_BOOLEAN_aelem_bytes     = 1,
 704   T_CHAR_aelem_bytes        = 2,
 705   T_FLOAT_aelem_bytes       = 4,
 706   T_DOUBLE_aelem_bytes      = 8,
 707   T_BYTE_aelem_bytes        = 1,
 708   T_SHORT_aelem_bytes       = 2,
 709   T_INT_aelem_bytes         = 4,
 710   T_LONG_aelem_bytes        = 8,
 711 #ifdef _LP64
 712   T_OBJECT_aelem_bytes      = 8,
 713   T_ARRAY_aelem_bytes       = 8,
 714 #else
 715   T_OBJECT_aelem_bytes      = 4,
 716   T_ARRAY_aelem_bytes       = 4,
 717 #endif
 718   T_NARROWOOP_aelem_bytes   = 4,
 719   T_NARROWKLASS_aelem_bytes = 4,
 720   T_VOID_aelem_bytes        = 0
 721 };
 722 
 723 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 724 #ifdef ASSERT
 725 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 726 #else
 727 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 728 #endif
 729 
 730 
 731 // JavaValue serves as a container for arbitrary Java values.
 732 
 733 class JavaValue {
 734 
 735  public:
 736   typedef union JavaCallValue {
 737     jfloat   f;
 738     jdouble  d;
 739     jint     i;
 740     jlong    l;
 741     jobject  h;
 742   } JavaCallValue;
 743 
 744  private:
 745   BasicType _type;
 746   JavaCallValue _value;
 747 
 748  public:
 749   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 750 
 751   JavaValue(jfloat value) {
 752     _type    = T_FLOAT;
 753     _value.f = value;
 754   }
 755 
 756   JavaValue(jdouble value) {
 757     _type    = T_DOUBLE;
 758     _value.d = value;
 759   }
 760 
 761  jfloat get_jfloat() const { return _value.f; }
 762  jdouble get_jdouble() const { return _value.d; }
 763  jint get_jint() const { return _value.i; }
 764  jlong get_jlong() const { return _value.l; }
 765  jobject get_jobject() const { return _value.h; }
 766  JavaCallValue* get_value_addr() { return &_value; }
 767  BasicType get_type() const { return _type; }
 768 
 769  void set_jfloat(jfloat f) { _value.f = f;}
 770  void set_jdouble(jdouble d) { _value.d = d;}
 771  void set_jint(jint i) { _value.i = i;}
 772  void set_jlong(jlong l) { _value.l = l;}
 773  void set_jobject(jobject h) { _value.h = h;}
 774  void set_type(BasicType t) { _type = t; }
 775 
 776  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 777  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 778  jchar get_jchar() const { return (jchar) (_value.i);}
 779  jshort get_jshort() const { return (jshort) (_value.i);}
 780 
 781 };
 782 
 783 
 784 #define STACK_BIAS      0
 785 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 786 // in order to extend the reach of the stack pointer.
 787 #if defined(SPARC) && defined(_LP64)
 788 #undef STACK_BIAS
 789 #define STACK_BIAS      0x7ff
 790 #endif
 791 
 792 
 793 // TosState describes the top-of-stack state before and after the execution of
 794 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 795 // registers. The TosState corresponds to the 'machine represention' of this cached
 796 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 797 // as well as a 5th state in case the top-of-stack value is actually on the top
 798 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 799 // state when it comes to machine representation but is used separately for (oop)
 800 // type specific operations (e.g. verification code).
 801 
 802 enum TosState {         // describes the tos cache contents
 803   btos = 0,             // byte, bool tos cached
 804   ctos = 1,             // char tos cached
 805   stos = 2,             // short tos cached
 806   itos = 3,             // int tos cached
 807   ltos = 4,             // long tos cached
 808   ftos = 5,             // float tos cached
 809   dtos = 6,             // double tos cached
 810   atos = 7,             // object cached
 811   vtos = 8,             // tos not cached
 812   number_of_states,
 813   ilgl                  // illegal state: should not occur
 814 };
 815 
 816 
 817 inline TosState as_TosState(BasicType type) {
 818   switch (type) {
 819     case T_BYTE   : return btos;
 820     case T_BOOLEAN: return btos; // FIXME: Add ztos
 821     case T_CHAR   : return ctos;
 822     case T_SHORT  : return stos;
 823     case T_INT    : return itos;
 824     case T_LONG   : return ltos;
 825     case T_FLOAT  : return ftos;
 826     case T_DOUBLE : return dtos;
 827     case T_VOID   : return vtos;
 828     case T_ARRAY  : // fall through
 829     case T_OBJECT : return atos;
 830   }
 831   return ilgl;
 832 }
 833 
 834 inline BasicType as_BasicType(TosState state) {
 835   switch (state) {
 836     //case ztos: return T_BOOLEAN;//FIXME
 837     case btos : return T_BYTE;
 838     case ctos : return T_CHAR;
 839     case stos : return T_SHORT;
 840     case itos : return T_INT;
 841     case ltos : return T_LONG;
 842     case ftos : return T_FLOAT;
 843     case dtos : return T_DOUBLE;
 844     case atos : return T_OBJECT;
 845     case vtos : return T_VOID;
 846   }
 847   return T_ILLEGAL;
 848 }
 849 
 850 
 851 // Helper function to convert BasicType info into TosState
 852 // Note: Cannot define here as it uses global constant at the time being.
 853 TosState as_TosState(BasicType type);
 854 
 855 
 856 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 857 // information is needed by the safepoint code.
 858 //
 859 // There are 4 essential states:
 860 //
 861 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 862 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 863 //  _thread_in_vm       : Executing in the vm
 864 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 865 //
 866 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 867 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 868 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 869 //
 870 // Given a state, the xxx_trans state can always be found by adding 1.
 871 //
 872 enum JavaThreadState {
 873   _thread_uninitialized     =  0, // should never happen (missing initialization)
 874   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 875   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 876   _thread_in_native         =  4, // running in native code
 877   _thread_in_native_trans   =  5, // corresponding transition state
 878   _thread_in_vm             =  6, // running in VM
 879   _thread_in_vm_trans       =  7, // corresponding transition state
 880   _thread_in_Java           =  8, // running in Java or in stub code
 881   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 882   _thread_blocked           = 10, // blocked in vm
 883   _thread_blocked_trans     = 11, // corresponding transition state
 884   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 885 };
 886 
 887 
 888 // Handy constants for deciding which compiler mode to use.
 889 enum MethodCompilation {
 890   InvocationEntryBci = -1     // i.e., not a on-stack replacement compilation
 891 };
 892 
 893 // Enumeration to distinguish tiers of compilation
 894 enum CompLevel {
 895   CompLevel_any               = -1,
 896   CompLevel_all               = -1,
 897   CompLevel_none              = 0,         // Interpreter
 898   CompLevel_simple            = 1,         // C1
 899   CompLevel_limited_profile   = 2,         // C1, invocation & backedge counters
 900   CompLevel_full_profile      = 3,         // C1, invocation & backedge counters + mdo
 901   CompLevel_full_optimization = 4,         // C2 or Shark
 902 
 903 #if defined(COMPILER2) || defined(SHARK)
 904   CompLevel_highest_tier      = CompLevel_full_optimization,  // pure C2 and tiered
 905 #elif defined(COMPILER1)
 906   CompLevel_highest_tier      = CompLevel_simple,             // pure C1
 907 #else
 908   CompLevel_highest_tier      = CompLevel_none,
 909 #endif
 910 
 911 #if defined(TIERED)
 912   CompLevel_initial_compile   = CompLevel_full_profile        // tiered
 913 #elif defined(COMPILER1)
 914   CompLevel_initial_compile   = CompLevel_simple              // pure C1
 915 #elif defined(COMPILER2) || defined(SHARK)
 916   CompLevel_initial_compile   = CompLevel_full_optimization   // pure C2
 917 #else
 918   CompLevel_initial_compile   = CompLevel_none
 919 #endif
 920 };
 921 
 922 inline bool is_c1_compile(int comp_level) {
 923   return comp_level > CompLevel_none && comp_level < CompLevel_full_optimization;
 924 }
 925 
 926 inline bool is_c2_compile(int comp_level) {
 927   return comp_level == CompLevel_full_optimization;
 928 }
 929 
 930 inline bool is_highest_tier_compile(int comp_level) {
 931   return comp_level == CompLevel_highest_tier;
 932 }
 933 
 934 inline bool is_compile(int comp_level) {
 935   return is_c1_compile(comp_level) || is_c2_compile(comp_level);
 936 }
 937 
 938 //----------------------------------------------------------------------------------------------------
 939 // 'Forward' declarations of frequently used classes
 940 // (in order to reduce interface dependencies & reduce
 941 // number of unnecessary compilations after changes)
 942 
 943 class symbolTable;
 944 class ClassFileStream;
 945 
 946 class Event;
 947 
 948 class Thread;
 949 class  VMThread;
 950 class  JavaThread;
 951 class Threads;
 952 
 953 class VM_Operation;
 954 class VMOperationQueue;
 955 
 956 class CodeBlob;
 957 class  nmethod;
 958 class  OSRAdapter;
 959 class  I2CAdapter;
 960 class  C2IAdapter;
 961 class CompiledIC;
 962 class relocInfo;
 963 class ScopeDesc;
 964 class PcDesc;
 965 
 966 class Recompiler;
 967 class Recompilee;
 968 class RecompilationPolicy;
 969 class RFrame;
 970 class  CompiledRFrame;
 971 class  InterpretedRFrame;
 972 
 973 class frame;
 974 
 975 class vframe;
 976 class   javaVFrame;
 977 class     interpretedVFrame;
 978 class     compiledVFrame;
 979 class     deoptimizedVFrame;
 980 class   externalVFrame;
 981 class     entryVFrame;
 982 
 983 class RegisterMap;
 984 
 985 class Mutex;
 986 class Monitor;
 987 class BasicLock;
 988 class BasicObjectLock;
 989 
 990 class PeriodicTask;
 991 
 992 class JavaCallWrapper;
 993 
 994 class   oopDesc;
 995 class   metaDataOopDesc;
 996 
 997 class NativeCall;
 998 
 999 class zone;
1000 
1001 class StubQueue;
1002 
1003 class outputStream;
1004 
1005 class ResourceArea;
1006 
1007 class DebugInformationRecorder;
1008 class ScopeValue;
1009 class CompressedStream;
1010 class   DebugInfoReadStream;
1011 class   DebugInfoWriteStream;
1012 class LocationValue;
1013 class ConstantValue;
1014 class IllegalValue;
1015 
1016 class PrivilegedElement;
1017 class MonitorArray;
1018 
1019 class MonitorInfo;
1020 
1021 class OffsetClosure;
1022 class OopMapCache;
1023 class InterpreterOopMap;
1024 class OopMapCacheEntry;
1025 class OSThread;
1026 
1027 typedef int (*OSThreadStartFunc)(void*);
1028 
1029 class Space;
1030 
1031 class JavaValue;
1032 class methodHandle;
1033 class JavaCallArguments;
1034 
1035 // Basic support for errors (general debug facilities not defined at this point fo the include phase)
1036 
1037 extern void basic_fatal(const char* msg);
1038 
1039 
1040 //----------------------------------------------------------------------------------------------------
1041 // Special constants for debugging
1042 
1043 const jint     badInt           = -3;                       // generic "bad int" value
1044 const long     badAddressVal    = -2;                       // generic "bad address" value
1045 const long     badOopVal        = -1;                       // generic "bad oop" value
1046 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1047 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
1048 const int      badResourceValue = 0xAB;                     // value used to zap resource area
1049 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
1050 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
1051 const intptr_t badJNIHandleVal  = (intptr_t) CONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
1052 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
1053 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
1054 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
1055 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1056 
1057 
1058 // (These must be implemented as #defines because C++ compilers are
1059 // not obligated to inline non-integral constants!)
1060 #define       badAddress        ((address)::badAddressVal)
1061 #define       badOop            (cast_to_oop(::badOopVal))
1062 #define       badHeapWord       (::badHeapWordVal)
1063 #define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
1064 
1065 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1066 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1067 
1068 //----------------------------------------------------------------------------------------------------
1069 // Utility functions for bitfield manipulations
1070 
1071 const intptr_t AllBits    = ~0; // all bits set in a word
1072 const intptr_t NoBits     =  0; // no bits set in a word
1073 const jlong    NoLongBits =  0; // no bits set in a long
1074 const intptr_t OneBit     =  1; // only right_most bit set in a word
1075 
1076 // get a word with the n.th or the right-most or left-most n bits set
1077 // (note: #define used only so that they can be used in enum constant definitions)
1078 #define nth_bit(n)        (n >= BitsPerWord ? 0 : OneBit << (n))
1079 #define right_n_bits(n)   (nth_bit(n) - 1)
1080 #define left_n_bits(n)    (right_n_bits(n) << (n >= BitsPerWord ? 0 : (BitsPerWord - n)))
1081 
1082 // bit-operations using a mask m
1083 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1084 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1085 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1086 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1087 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1088 
1089 // bit-operations using the n.th bit
1090 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1091 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1092 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1093 
1094 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1095 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1096   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1097 }
1098 
1099 
1100 //----------------------------------------------------------------------------------------------------
1101 // Utility functions for integers
1102 
1103 // Avoid use of global min/max macros which may cause unwanted double
1104 // evaluation of arguments.
1105 #ifdef max
1106 #undef max
1107 #endif
1108 
1109 #ifdef min
1110 #undef min
1111 #endif
1112 
1113 #define max(a,b) Do_not_use_max_use_MAX2_instead
1114 #define min(a,b) Do_not_use_min_use_MIN2_instead
1115 
1116 // It is necessary to use templates here. Having normal overloaded
1117 // functions does not work because it is necessary to provide both 32-
1118 // and 64-bit overloaded functions, which does not work, and having
1119 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1120 // will be even more error-prone than macros.
1121 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1122 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1123 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1124 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1125 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1126 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1127 
1128 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1129 
1130 // true if x is a power of 2, false otherwise
1131 inline bool is_power_of_2(intptr_t x) {
1132   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1133 }
1134 
1135 // long version of is_power_of_2
1136 inline bool is_power_of_2_long(jlong x) {
1137   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1138 }
1139 
1140 //* largest i such that 2^i <= x
1141 //  A negative value of 'x' will return '31'
1142 inline int log2_intptr(intptr_t x) {
1143   int i = -1;
1144   uintptr_t p =  1;
1145   while (p != 0 && p <= (uintptr_t)x) {
1146     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1147     i++; p *= 2;
1148   }
1149   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1150   // (if p = 0 then overflow occurred and i = 31)
1151   return i;
1152 }
1153 
1154 //* largest i such that 2^i <= x
1155 //  A negative value of 'x' will return '63'
1156 inline int log2_long(jlong x) {
1157   int i = -1;
1158   julong p =  1;
1159   while (p != 0 && p <= (julong)x) {
1160     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1161     i++; p *= 2;
1162   }
1163   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1164   // (if p = 0 then overflow occurred and i = 63)
1165   return i;
1166 }
1167 
1168 //* the argument must be exactly a power of 2
1169 inline int exact_log2(intptr_t x) {
1170   #ifdef ASSERT
1171     if (!is_power_of_2(x)) basic_fatal("x must be a power of 2");
1172   #endif
1173   return log2_intptr(x);
1174 }
1175 
1176 //* the argument must be exactly a power of 2
1177 inline int exact_log2_long(jlong x) {
1178   #ifdef ASSERT
1179     if (!is_power_of_2_long(x)) basic_fatal("x must be a power of 2");
1180   #endif
1181   return log2_long(x);
1182 }
1183 
1184 
1185 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1186 inline intptr_t round_to(intptr_t x, uintx s) {
1187   #ifdef ASSERT
1188     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1189   #endif
1190   const uintx m = s - 1;
1191   return mask_bits(x + m, ~m);
1192 }
1193 
1194 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1195 inline intptr_t round_down(intptr_t x, uintx s) {
1196   #ifdef ASSERT
1197     if (!is_power_of_2(s)) basic_fatal("s must be a power of 2");
1198   #endif
1199   const uintx m = s - 1;
1200   return mask_bits(x, ~m);
1201 }
1202 
1203 
1204 inline bool is_odd (intx x) { return x & 1;      }
1205 inline bool is_even(intx x) { return !is_odd(x); }
1206 
1207 // "to" should be greater than "from."
1208 inline intx byte_size(void* from, void* to) {
1209   return (address)to - (address)from;
1210 }
1211 
1212 //----------------------------------------------------------------------------------------------------
1213 // Avoid non-portable casts with these routines (DEPRECATED)
1214 
1215 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1216 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1217 
1218 // Given sequence of four bytes, build into a 32-bit word
1219 // following the conventions used in class files.
1220 // On the 386, this could be realized with a simple address cast.
1221 //
1222 
1223 // This routine takes eight bytes:
1224 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1225   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1226        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1227        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1228        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1229        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1230        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1231        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1232        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1233 }
1234 
1235 // This routine takes four bytes:
1236 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1237   return  (( u4(c1) << 24 )  &  0xff000000)
1238        |  (( u4(c2) << 16 )  &  0x00ff0000)
1239        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1240        |  (( u4(c4) <<  0 )  &  0x000000ff);
1241 }
1242 
1243 // And this one works if the four bytes are contiguous in memory:
1244 inline u4 build_u4_from( u1* p ) {
1245   return  build_u4_from( p[0], p[1], p[2], p[3] );
1246 }
1247 
1248 // Ditto for two-byte ints:
1249 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1250   return  u2((( u2(c1) <<  8 )  &  0xff00)
1251           |  (( u2(c2) <<  0 )  &  0x00ff));
1252 }
1253 
1254 // And this one works if the two bytes are contiguous in memory:
1255 inline u2 build_u2_from( u1* p ) {
1256   return  build_u2_from( p[0], p[1] );
1257 }
1258 
1259 // Ditto for floats:
1260 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1261   u4 u = build_u4_from( c1, c2, c3, c4 );
1262   return  *(jfloat*)&u;
1263 }
1264 
1265 inline jfloat build_float_from( u1* p ) {
1266   u4 u = build_u4_from( p );
1267   return  *(jfloat*)&u;
1268 }
1269 
1270 
1271 // now (64-bit) longs
1272 
1273 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1274   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1275        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1276        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1277        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1278        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1279        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1280        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1281        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1282 }
1283 
1284 inline jlong build_long_from( u1* p ) {
1285   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1286 }
1287 
1288 
1289 // Doubles, too!
1290 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1291   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1292   return  *(jdouble*)&u;
1293 }
1294 
1295 inline jdouble build_double_from( u1* p ) {
1296   jlong u = build_long_from( p );
1297   return  *(jdouble*)&u;
1298 }
1299 
1300 
1301 // Portable routines to go the other way:
1302 
1303 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1304   c1 = u1(x >> 8);
1305   c2 = u1(x);
1306 }
1307 
1308 inline void explode_short_to( u2 x, u1* p ) {
1309   explode_short_to( x, p[0], p[1]);
1310 }
1311 
1312 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1313   c1 = u1(x >> 24);
1314   c2 = u1(x >> 16);
1315   c3 = u1(x >>  8);
1316   c4 = u1(x);
1317 }
1318 
1319 inline void explode_int_to( u4 x, u1* p ) {
1320   explode_int_to( x, p[0], p[1], p[2], p[3]);
1321 }
1322 
1323 
1324 // Pack and extract shorts to/from ints:
1325 
1326 inline int extract_low_short_from_int(jint x) {
1327   return x & 0xffff;
1328 }
1329 
1330 inline int extract_high_short_from_int(jint x) {
1331   return (x >> 16) & 0xffff;
1332 }
1333 
1334 inline int build_int_from_shorts( jushort low, jushort high ) {
1335   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1336 }
1337 
1338 // Convert pointer to intptr_t, for use in printing pointers.
1339 inline intptr_t p2i(const void * p) {
1340   return (intptr_t) p;
1341 }
1342 
1343 // Printf-style formatters for fixed- and variable-width types as pointers and
1344 // integers.  These are derived from the definitions in inttypes.h.  If the platform
1345 // doesn't provide appropriate definitions, they should be provided in
1346 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
1347 
1348 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
1349 
1350 // Format 32-bit quantities.
1351 #define INT32_FORMAT           "%" PRId32
1352 #define UINT32_FORMAT          "%" PRIu32
1353 #define INT32_FORMAT_W(width)  "%" #width PRId32
1354 #define UINT32_FORMAT_W(width) "%" #width PRIu32
1355 
1356 #define PTR32_FORMAT           "0x%08" PRIx32
1357 
1358 // Format 64-bit quantities.
1359 #define INT64_FORMAT           "%" PRId64
1360 #define UINT64_FORMAT          "%" PRIu64
1361 #define UINT64_FORMAT_X        "%" PRIx64
1362 #define INT64_FORMAT_W(width)  "%" #width PRId64
1363 #define UINT64_FORMAT_W(width) "%" #width PRIu64
1364 
1365 #define PTR64_FORMAT           "0x%016" PRIx64
1366 
1367 // Format jlong, if necessary
1368 #ifndef JLONG_FORMAT
1369 #define JLONG_FORMAT           INT64_FORMAT
1370 #endif
1371 #ifndef JULONG_FORMAT
1372 #define JULONG_FORMAT          UINT64_FORMAT
1373 #endif
1374 #ifndef JULONG_FORMAT_X
1375 #define JULONG_FORMAT_X        UINT64_FORMAT_X
1376 #endif
1377 
1378 // Format pointers which change size between 32- and 64-bit.
1379 #ifdef  _LP64
1380 #define INTPTR_FORMAT "0x%016" PRIxPTR
1381 #define PTR_FORMAT    "0x%016" PRIxPTR
1382 #else   // !_LP64
1383 #define INTPTR_FORMAT "0x%08"  PRIxPTR
1384 #define PTR_FORMAT    "0x%08"  PRIxPTR
1385 #endif  // _LP64
1386 
1387 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
1388 
1389 #define SSIZE_FORMAT             "%"   PRIdPTR
1390 #define SIZE_FORMAT              "%"   PRIuPTR
1391 #define SIZE_FORMAT_HEX          "0x%" PRIxPTR
1392 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
1393 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
1394 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
1395 
1396 #define INTX_FORMAT           "%" PRIdPTR
1397 #define UINTX_FORMAT          "%" PRIuPTR
1398 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
1399 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
1400 
1401 
1402 // Enable zap-a-lot if in debug version.
1403 
1404 # ifdef ASSERT
1405 # ifdef COMPILER2
1406 #   define ENABLE_ZAP_DEAD_LOCALS
1407 #endif /* COMPILER2 */
1408 # endif /* ASSERT */
1409 
1410 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1411 
1412 // Dereference vptr
1413 // All C++ compilers that we know of have the vtbl pointer in the first
1414 // word.  If there are exceptions, this function needs to be made compiler
1415 // specific.
1416 static inline void* dereference_vptr(const void* addr) {
1417   return *(void**)addr;
1418 }
1419 
1420 #ifndef PRODUCT
1421 
1422 // For unit testing only
1423 class GlobalDefinitions {
1424 public:
1425   static void test_globals();
1426 };
1427 
1428 #endif // PRODUCT
1429 
1430 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP