/* * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_VM_CODE_VMREG_HPP #define SHARE_VM_CODE_VMREG_HPP #include "asm/register.hpp" #include "memory/allocation.hpp" #include "utilities/globalDefinitions.hpp" #ifdef COMPILER2 #include "opto/adlcVMDeps.hpp" #include "utilities/ostream.hpp" #endif //------------------------------VMReg------------------------------------------ // The VM uses 'unwarped' stack slots; the compiler uses 'warped' stack slots. // Register numbers below VMRegImpl::stack0 are the same for both. Register // numbers above stack0 are either warped (in the compiler) or unwarped // (in the VM). Unwarped numbers represent stack indices, offsets from // the current stack pointer. Warped numbers are required during compilation // when we do not yet know how big the frame will be. class VMRegImpl; typedef VMRegImpl* VMReg; class VMRegImpl { // friend class OopMap; friend class VMStructs; friend class OptoReg; // friend class Location; private: enum { BAD_REG = -1 }; static VMReg stack0; // Names for registers static const char *regName[]; static const int register_count; public: static VMReg as_VMReg(int val, bool bad_ok = false) { assert(val > BAD_REG || bad_ok, "invalid"); return (VMReg) (intptr_t) val; } const char* name() { if (is_reg()) { return regName[value()]; } else if (!is_valid()) { return "BAD"; } else { // shouldn't really be called with stack return "STACKED REG"; } } static VMReg Bad() { return (VMReg) (intptr_t) BAD_REG; } bool is_valid() const { return ((intptr_t) this) != BAD_REG; } bool is_stack() const { return (intptr_t) this >= (intptr_t) stack0; } bool is_reg() const { return is_valid() && !is_stack(); } // A concrete register is a value that returns true for is_reg() and is // also a register you could use in the assembler. On machines with // 64bit registers only one half of the VMReg (and OptoReg) is considered // concrete. // bool is_concrete(); // VMRegs are 4 bytes wide on all platforms static const int stack_slot_size; static const int slots_per_word; // This really ought to check that the register is "real" in the sense that // we don't try and get the VMReg number of a physical register that doesn't // have an expressible part. That would be pd specific code VMReg next() { assert((is_reg() && value() < stack0->value() - 1) || is_stack(), "must be"); return (VMReg)(intptr_t)(value() + 1); } VMReg next(int i) { assert((is_reg() && value() < stack0->value() - i) || is_stack(), "must be"); return (VMReg)(intptr_t)(value() + i); } VMReg prev() { assert((is_stack() && value() > stack0->value()) || (is_reg() && value() != 0), "must be"); return (VMReg)(intptr_t)(value() - 1); } intptr_t value() const {return (intptr_t) this; } void print_on(outputStream* st) const; void print() const { print_on(tty); } // bias a stack slot. // Typically used to adjust a virtual frame slots by amounts that are offset by // amounts that are part of the native abi. The VMReg must be a stack slot // and the result must be also. VMReg bias(int offset) { assert(is_stack(), "must be"); // VMReg res = VMRegImpl::as_VMReg(value() + offset); VMReg res = stack2reg(reg2stack() + offset); assert(res->is_stack(), "must be"); return res; } // Convert register numbers to stack slots and vice versa static VMReg stack2reg( int idx ) { return (VMReg) (intptr_t) (stack0->value() + idx); } uintptr_t reg2stack() { assert( is_stack(), "Not a stack-based register" ); return value() - stack0->value(); } static void set_regName(); #ifdef TARGET_ARCH_x86 # include "vmreg_x86.hpp" #endif #ifdef TARGET_ARCH_sparc # include "vmreg_sparc.hpp" #endif #ifdef TARGET_ARCH_zero # include "vmreg_zero.hpp" #endif #ifdef TARGET_ARCH_arm # include "vmreg_arm.hpp" #endif #ifdef TARGET_ARCH_ppc # include "vmreg_ppc.hpp" #endif #ifdef TARGET_ARCH_aarch64 # include "vmreg_aarch64.hpp" #endif }; //---------------------------VMRegPair------------------------------------------- // Pairs of 32-bit registers for arguments. // SharedRuntime::java_calling_convention will overwrite the structs with // the calling convention's registers. VMRegImpl::Bad is returned for any // unused 32-bit register. This happens for the unused high half of Int // arguments, or for 32-bit pointers or for longs in the 32-bit sparc build // (which are passed to natives in low 32-bits of e.g. O0/O1 and the high // 32-bits of O0/O1 are set to VMRegImpl::Bad). Longs in one register & doubles // always return a high and a low register, as do 64-bit pointers. // class VMRegPair { private: VMReg _second; VMReg _first; public: void set_bad ( ) { _second=VMRegImpl::Bad(); _first=VMRegImpl::Bad(); } void set1 ( VMReg v ) { _second=VMRegImpl::Bad(); _first=v; } void set2 ( VMReg v ) { _second=v->next(); _first=v; } void set_pair( VMReg second, VMReg first ) { _second= second; _first= first; } void set_ptr ( VMReg ptr ) { #ifdef _LP64 _second = ptr->next(); #else _second = VMRegImpl::Bad(); #endif _first = ptr; } // Return true if single register, even if the pair is really just adjacent stack slots bool is_single_reg() const { return (_first->is_valid()) && (_first->value() + 1 == _second->value()); } // Return true if single stack based "register" where the slot alignment matches input alignment bool is_adjacent_on_stack(int alignment) const { return (_first->is_stack() && (_first->value() + 1 == _second->value()) && ((_first->value() & (alignment-1)) == 0)); } // Return true if single stack based "register" where the slot alignment matches input alignment bool is_adjacent_aligned_on_stack(int alignment) const { return (_first->is_stack() && (_first->value() + 1 == _second->value()) && ((_first->value() & (alignment-1)) == 0)); } // Return true if single register but adjacent stack slots do not count bool is_single_phys_reg() const { return (_first->is_reg() && (_first->value() + 1 == _second->value())); } VMReg second() const { return _second; } VMReg first() const { return _first; } VMRegPair(VMReg s, VMReg f) { _second = s; _first = f; } VMRegPair(VMReg f) { _second = VMRegImpl::Bad(); _first = f; } VMRegPair() { _second = VMRegImpl::Bad(); _first = VMRegImpl::Bad(); } }; #endif // SHARE_VM_CODE_VMREG_HPP