1 /*
   2  * Copyright (c) 2014, Red Hat Inc.
   3  * Copyright (c) 1997, 2012, Oracle and/or its affiliates.
   4  * All rights reserved.
   5  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   6  *
   7  * This code is free software; you can redistribute it and/or modify it
   8  * under the terms of the GNU General Public License version 2 only, as
   9  * published by the Free Software Foundation.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  *
  25  */
  26 
  27 #ifndef CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
  28 #define CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP
  29 
  30 #include "asm/assembler.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39 
  40   using Assembler::mov;
  41 
  42  protected:
  43 
  44   // Support for VM calls
  45   //
  46   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  47   // may customize this version by overriding it for its purposes (e.g., to save/restore
  48   // additional registers when doing a VM call).
  49 #ifdef CC_INTERP
  50   // c++ interpreter never wants to use interp_masm version of call_VM
  51   #define VIRTUAL
  52 #else
  53   #define VIRTUAL virtual
  54 #endif
  55 
  56   VIRTUAL void call_VM_leaf_base(
  57     address entry_point,               // the entry point
  58     int     number_of_arguments,        // the number of arguments to pop after the call
  59     Label *retaddr = NULL
  60   );
  61 
  62   VIRTUAL void call_VM_leaf_base(
  63     address entry_point,               // the entry point
  64     int     number_of_arguments,        // the number of arguments to pop after the call
  65     Label &retaddr) {
  66     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  67   }
  68 
  69   // This is the base routine called by the different versions of call_VM. The interpreter
  70   // may customize this version by overriding it for its purposes (e.g., to save/restore
  71   // additional registers when doing a VM call).
  72   //
  73   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  74   // returns the register which contains the thread upon return. If a thread register has been
  75   // specified, the return value will correspond to that register. If no last_java_sp is specified
  76   // (noreg) than rsp will be used instead.
  77   VIRTUAL void call_VM_base(           // returns the register containing the thread upon return
  78     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  79     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  80     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  81     address  entry_point,              // the entry point
  82     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  83     bool     check_exceptions          // whether to check for pending exceptions after return
  84   );
  85 
  86   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  87   // The implementation is only non-empty for the InterpreterMacroAssembler,
  88   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  89   virtual void check_and_handle_popframe(Register java_thread);
  90   virtual void check_and_handle_earlyret(Register java_thread);
  91 
  92   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  93 
  94   // Maximum size of class area in Metaspace when compressed
  95   uint64_t use_XOR_for_compressed_class_base;
  96 
  97  public:
  98   MacroAssembler(CodeBuffer* code) : Assembler(code) {
  99     use_XOR_for_compressed_class_base
 100       = (operand_valid_for_logical_immediate(false /*is32*/,
 101                                              (uint64_t)Universe::narrow_klass_base())
 102          && ((uint64_t)Universe::narrow_klass_base()
 103              > (1u << log2_intptr(CompressedClassSpaceSize))));
 104   }
 105 
 106   // Biased locking support
 107   // lock_reg and obj_reg must be loaded up with the appropriate values.
 108   // swap_reg is killed.
 109   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 110   // be killed; if not supplied, push/pop will be used internally to
 111   // allocate a temporary (inefficient, avoid if possible).
 112   // Optional slow case is for implementations (interpreter and C1) which branch to
 113   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 114   // Returns offset of first potentially-faulting instruction for null
 115   // check info (currently consumed only by C1). If
 116   // swap_reg_contains_mark is true then returns -1 as it is assumed
 117   // the calling code has already passed any potential faults.
 118   int biased_locking_enter(Register lock_reg, Register obj_reg,
 119                            Register swap_reg, Register tmp_reg,
 120                            bool swap_reg_contains_mark,
 121                            Label& done, Label* slow_case = NULL,
 122                            BiasedLockingCounters* counters = NULL);
 123   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 124 
 125 
 126   // Helper functions for statistics gathering.
 127   // Unconditional atomic increment.
 128   void atomic_incw(Register counter_addr, Register tmp);
 129   void atomic_incw(Address counter_addr, Register tmp1, Register tmp2) {
 130     lea(tmp1, counter_addr);
 131     atomic_incw(tmp1, tmp2);
 132   }
 133   // Load Effective Address
 134   void lea(Register r, const Address &a) {
 135     InstructionMark im(this);
 136     code_section()->relocate(inst_mark(), a.rspec());
 137     a.lea(this, r);
 138   }
 139 
 140   void addmw(Address a, Register incr, Register scratch) {
 141     ldrw(scratch, a);
 142     addw(scratch, scratch, incr);
 143     strw(scratch, a);
 144   }
 145 
 146   // Add constant to memory word
 147   void addmw(Address a, int imm, Register scratch) {
 148     ldrw(scratch, a);
 149     if (imm > 0)
 150       addw(scratch, scratch, (unsigned)imm);
 151     else
 152       subw(scratch, scratch, (unsigned)-imm);
 153     strw(scratch, a);
 154   }
 155 
 156   // Frame creation and destruction shared between JITs.
 157   void build_frame(int framesize);
 158   void remove_frame(int framesize);
 159 
 160   virtual void _call_Unimplemented(address call_site) {
 161     mov(rscratch2, call_site);
 162     haltsim();
 163   }
 164 
 165 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 166 
 167   virtual void notify(int type);
 168 
 169   // aliases defined in AARCH64 spec
 170 
 171 
 172   template<class T>
 173   inline void  cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 174   inline void cmp(Register Rd, unsigned imm)  { subs(zr, Rd, imm); }
 175 
 176   inline void cmnw(Register Rd, unsigned imm) { addsw(zr, Rd, imm); }
 177   inline void cmn(Register Rd, unsigned imm) { adds(zr, Rd, imm); }
 178 
 179   void cset(Register Rd, Assembler::Condition cond) {
 180     csinc(Rd, zr, zr, ~cond);
 181   }
 182   void csetw(Register Rd, Assembler::Condition cond) {
 183     csincw(Rd, zr, zr, ~cond);
 184   }
 185 
 186   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 187     csneg(Rd, Rn, Rn, ~cond);
 188   }
 189   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 190     csnegw(Rd, Rn, Rn, ~cond);
 191   }
 192 
 193   inline void movw(Register Rd, Register Rn) {
 194     if (Rd == sp || Rn == sp) {
 195       addw(Rd, Rn, 0U);
 196     } else {
 197       orrw(Rd, zr, Rn);
 198     }
 199   }
 200   inline void mov(Register Rd, Register Rn) {
 201     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 202     if (Rd == Rn) {
 203     } else if (Rd == sp || Rn == sp) {
 204       add(Rd, Rn, 0U);
 205     } else {
 206       orr(Rd, zr, Rn);
 207     }
 208   }
 209 
 210   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 211   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 212 
 213   inline void tstw(Register Rd, unsigned imm) { andsw(zr, Rd, imm); }
 214   inline void tst(Register Rd, unsigned imm) { ands(zr, Rd, imm); }
 215 
 216   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 217     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 218   }
 219   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 220     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 221   }
 222 
 223   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 224     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 225   }
 226   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 227     bfm(Rd, Rn, lsb , (lsb + width - 1));
 228   }
 229 
 230   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 231     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 232   }
 233   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 234     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 235   }
 236 
 237   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 238     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 239   }
 240   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 241     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 242   }
 243 
 244   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 245     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 246   }
 247   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 248     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 249   }
 250 
 251   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 252     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 253   }
 254   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 255     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 256   }
 257 
 258   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 259     sbfmw(Rd, Rn, imm, 31);
 260   }
 261 
 262   inline void asr(Register Rd, Register Rn, unsigned imm) {
 263     sbfm(Rd, Rn, imm, 63);
 264   }
 265 
 266   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 267     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 268   }
 269 
 270   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 271     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 272   }
 273 
 274   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 275     ubfmw(Rd, Rn, imm, 31);
 276   }
 277 
 278   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 279     ubfm(Rd, Rn, imm, 63);
 280   }
 281 
 282   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 283     extrw(Rd, Rn, Rn, imm);
 284   }
 285 
 286   inline void ror(Register Rd, Register Rn, unsigned imm) {
 287     extr(Rd, Rn, Rn, imm);
 288   }
 289 
 290   inline void sxtbw(Register Rd, Register Rn) {
 291     sbfmw(Rd, Rn, 0, 7);
 292   }
 293   inline void sxthw(Register Rd, Register Rn) {
 294     sbfmw(Rd, Rn, 0, 15);
 295   }
 296   inline void sxtb(Register Rd, Register Rn) {
 297     sbfm(Rd, Rn, 0, 7);
 298   }
 299   inline void sxth(Register Rd, Register Rn) {
 300     sbfm(Rd, Rn, 0, 15);
 301   }
 302   inline void sxtw(Register Rd, Register Rn) {
 303     sbfm(Rd, Rn, 0, 31);
 304   }
 305 
 306   inline void uxtbw(Register Rd, Register Rn) {
 307     ubfmw(Rd, Rn, 0, 7);
 308   }
 309   inline void uxthw(Register Rd, Register Rn) {
 310     ubfmw(Rd, Rn, 0, 15);
 311   }
 312   inline void uxtb(Register Rd, Register Rn) {
 313     ubfm(Rd, Rn, 0, 7);
 314   }
 315   inline void uxth(Register Rd, Register Rn) {
 316     ubfm(Rd, Rn, 0, 15);
 317   }
 318   inline void uxtw(Register Rd, Register Rn) {
 319     ubfm(Rd, Rn, 0, 31);
 320   }
 321 
 322   inline void cmnw(Register Rn, Register Rm) {
 323     addsw(zr, Rn, Rm);
 324   }
 325   inline void cmn(Register Rn, Register Rm) {
 326     adds(zr, Rn, Rm);
 327   }
 328 
 329   inline void cmpw(Register Rn, Register Rm) {
 330     subsw(zr, Rn, Rm);
 331   }
 332   inline void cmp(Register Rn, Register Rm) {
 333     subs(zr, Rn, Rm);
 334   }
 335 
 336   inline void negw(Register Rd, Register Rn) {
 337     subw(Rd, zr, Rn);
 338   }
 339 
 340   inline void neg(Register Rd, Register Rn) {
 341     sub(Rd, zr, Rn);
 342   }
 343 
 344   inline void negsw(Register Rd, Register Rn) {
 345     subsw(Rd, zr, Rn);
 346   }
 347 
 348   inline void negs(Register Rd, Register Rn) {
 349     subs(Rd, zr, Rn);
 350   }
 351 
 352   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 353     addsw(zr, Rn, Rm, kind, shift);
 354   }
 355   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 356     adds(zr, Rn, Rm, kind, shift);
 357   }
 358 
 359   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 360     subsw(zr, Rn, Rm, kind, shift);
 361   }
 362   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 363     subs(zr, Rn, Rm, kind, shift);
 364   }
 365 
 366   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 367     subw(Rd, zr, Rn, kind, shift);
 368   }
 369 
 370   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 371     sub(Rd, zr, Rn, kind, shift);
 372   }
 373 
 374   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 375     subsw(Rd, zr, Rn, kind, shift);
 376   }
 377 
 378   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 379     subs(Rd, zr, Rn, kind, shift);
 380   }
 381 
 382   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 383     msubw(Rd, Rn, Rm, zr);
 384   }
 385   inline void mneg(Register Rd, Register Rn, Register Rm) {
 386     msub(Rd, Rn, Rm, zr);
 387   }
 388 
 389   inline void mulw(Register Rd, Register Rn, Register Rm) {
 390     maddw(Rd, Rn, Rm, zr);
 391   }
 392   inline void mul(Register Rd, Register Rn, Register Rm) {
 393     madd(Rd, Rn, Rm, zr);
 394   }
 395 
 396   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 397     smsubl(Rd, Rn, Rm, zr);
 398   }
 399   inline void smull(Register Rd, Register Rn, Register Rm) {
 400     smaddl(Rd, Rn, Rm, zr);
 401   }
 402 
 403   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 404     umsubl(Rd, Rn, Rm, zr);
 405   }
 406   inline void umull(Register Rd, Register Rn, Register Rm) {
 407     umaddl(Rd, Rn, Rm, zr);
 408   }
 409 
 410   // macro assembly operations needed for aarch64
 411 
 412   // first two private routines for loading 32 bit or 64 bit constants
 413 private:
 414 
 415   void mov_immediate64(Register dst, u_int64_t imm64);
 416   void mov_immediate32(Register dst, u_int32_t imm32);
 417 
 418   int push(unsigned int bitset, Register stack);
 419   int pop(unsigned int bitset, Register stack);
 420 
 421   void mov(Register dst, Address a);
 422 
 423 public:
 424   int push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 425   int pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 426 
 427   // now mov instructions for loading absolute addresses and 32 or
 428   // 64 bit integers
 429 
 430   inline void mov(Register dst, address addr)
 431   {
 432     mov_immediate64(dst, (u_int64_t)addr);
 433   }
 434 
 435   inline void mov(Register dst, u_int64_t imm64)
 436   {
 437     mov_immediate64(dst, imm64);
 438   }
 439 
 440   inline void movw(Register dst, u_int32_t imm32)
 441   {
 442     mov_immediate32(dst, imm32);
 443   }
 444 
 445   inline void mov(Register dst, long l)
 446   {
 447     mov(dst, (u_int64_t)l);
 448   }
 449 
 450   inline void mov(Register dst, int i)
 451   {
 452     mov(dst, (long)i);
 453   }
 454 
 455   void movptr(Register r, uintptr_t imm64);
 456 
 457   // macro instructions for accessing and updating floating point
 458   // status register
 459   //
 460   // FPSR : op1 == 011
 461   //        CRn == 0100
 462   //        CRm == 0100
 463   //        op2 == 001
 464 
 465   inline void get_fpsr(Register reg)
 466   {
 467     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 468   }
 469 
 470   inline void set_fpsr(Register reg)
 471   {
 472     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 473   }
 474 
 475   inline void clear_fpsr()
 476   {
 477     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 478   }
 479 
 480   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 481   int corrected_idivl(Register result, Register ra, Register rb,
 482                       bool want_remainder, Register tmp = rscratch1);
 483   int corrected_idivq(Register result, Register ra, Register rb,
 484                       bool want_remainder, Register tmp = rscratch1);
 485 
 486   // Support for NULL-checks
 487   //
 488   // Generates code that causes a NULL OS exception if the content of reg is NULL.
 489   // If the accessed location is M[reg + offset] and the offset is known, provide the
 490   // offset. No explicit code generation is needed if the offset is within a certain
 491   // range (0 <= offset <= page_size).
 492 
 493   virtual void null_check(Register reg, int offset = -1);
 494   static bool needs_explicit_null_check(intptr_t offset);
 495 
 496   static address target_addr_for_insn(address insn_addr, unsigned insn);
 497 
 498   // Required platform-specific helpers for Label::patch_instructions.
 499   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 500   static int pd_patch_instruction_size(address branch, address target);
 501   static void pd_patch_instruction(address branch, address target) {
 502     pd_patch_instruction_size(branch, target);
 503   }
 504   static address pd_call_destination(address branch) {
 505     unsigned insn = *(unsigned*)branch;
 506     return target_addr_for_insn(branch, insn);
 507   }
 508 #ifndef PRODUCT
 509   static void pd_print_patched_instruction(address branch);
 510 #endif
 511 
 512   static int patch_oop(address insn_addr, address o);
 513 
 514   // The following 4 methods return the offset of the appropriate move instruction
 515 
 516   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 517   int load_unsigned_byte(Register dst, Address src);
 518   int load_unsigned_short(Register dst, Address src);
 519 
 520   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 521   int load_signed_byte(Register dst, Address src);
 522   int load_signed_short(Register dst, Address src);
 523 
 524   int load_signed_byte32(Register dst, Address src);
 525   int load_signed_short32(Register dst, Address src);
 526 
 527   // Support for sign-extension (hi:lo = extend_sign(lo))
 528   void extend_sign(Register hi, Register lo);
 529 
 530   // Load and store values by size and signed-ness
 531   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 532   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 533 
 534   // Support for inc/dec with optimal instruction selection depending on value
 535 
 536   // x86_64 aliases an unqualified register/address increment and
 537   // decrement to call incrementq and decrementq but also supports
 538   // explicitly sized calls to incrementq/decrementq or
 539   // incrementl/decrementl
 540 
 541   // for aarch64 the proper convention would be to use
 542   // increment/decrement for 64 bit operatons and
 543   // incrementw/decrementw for 32 bit operations. so when porting
 544   // x86_64 code we can leave calls to increment/decrement as is,
 545   // replace incrementq/decrementq with increment/decrement and
 546   // replace incrementl/decrementl with incrementw/decrementw.
 547 
 548   // n.b. increment/decrement calls with an Address destination will
 549   // need to use a scratch register to load the value to be
 550   // incremented. increment/decrement calls which add or subtract a
 551   // constant value greater than 2^12 will need to use a 2nd scratch
 552   // register to hold the constant. so, a register increment/decrement
 553   // may trash rscratch2 and an address increment/decrement trash
 554   // rscratch and rscratch2
 555 
 556   void decrementw(Address dst, int value = 1);
 557   void decrementw(Register reg, int value = 1);
 558 
 559   void decrement(Register reg, int value = 1);
 560   void decrement(Address dst, int value = 1);
 561 
 562   void incrementw(Address dst, int value = 1);
 563   void incrementw(Register reg, int value = 1);
 564 
 565   void increment(Register reg, int value = 1);
 566   void increment(Address dst, int value = 1);
 567 
 568 
 569   // Alignment
 570   void align(int modulus);
 571 
 572   // Stack frame creation/removal
 573   void enter()
 574   {
 575     stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
 576     mov(rfp, sp);
 577   }
 578   void leave()
 579   {
 580     mov(sp, rfp);
 581     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
 582   }
 583 
 584   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 585   // The pointer will be loaded into the thread register.
 586   void get_thread(Register thread);
 587 
 588 
 589   // Support for VM calls
 590   //
 591   // It is imperative that all calls into the VM are handled via the call_VM macros.
 592   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 593   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 594 
 595 
 596   void call_VM(Register oop_result,
 597                address entry_point,
 598                bool check_exceptions = true);
 599   void call_VM(Register oop_result,
 600                address entry_point,
 601                Register arg_1,
 602                bool check_exceptions = true);
 603   void call_VM(Register oop_result,
 604                address entry_point,
 605                Register arg_1, Register arg_2,
 606                bool check_exceptions = true);
 607   void call_VM(Register oop_result,
 608                address entry_point,
 609                Register arg_1, Register arg_2, Register arg_3,
 610                bool check_exceptions = true);
 611 
 612   // Overloadings with last_Java_sp
 613   void call_VM(Register oop_result,
 614                Register last_java_sp,
 615                address entry_point,
 616                int number_of_arguments = 0,
 617                bool check_exceptions = true);
 618   void call_VM(Register oop_result,
 619                Register last_java_sp,
 620                address entry_point,
 621                Register arg_1, bool
 622                check_exceptions = true);
 623   void call_VM(Register oop_result,
 624                Register last_java_sp,
 625                address entry_point,
 626                Register arg_1, Register arg_2,
 627                bool check_exceptions = true);
 628   void call_VM(Register oop_result,
 629                Register last_java_sp,
 630                address entry_point,
 631                Register arg_1, Register arg_2, Register arg_3,
 632                bool check_exceptions = true);
 633 
 634   void get_vm_result  (Register oop_result, Register thread);
 635   void get_vm_result_2(Register metadata_result, Register thread);
 636 
 637   // These always tightly bind to MacroAssembler::call_VM_base
 638   // bypassing the virtual implementation
 639   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 640   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 641   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 642   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 643   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 644 
 645   void call_VM_leaf(address entry_point,
 646                     int number_of_arguments = 0);
 647   void call_VM_leaf(address entry_point,
 648                     Register arg_1);
 649   void call_VM_leaf(address entry_point,
 650                     Register arg_1, Register arg_2);
 651   void call_VM_leaf(address entry_point,
 652                     Register arg_1, Register arg_2, Register arg_3);
 653 
 654   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 655   // bypassing the virtual implementation
 656   void super_call_VM_leaf(address entry_point);
 657   void super_call_VM_leaf(address entry_point, Register arg_1);
 658   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 659   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 660   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 661 
 662   // last Java Frame (fills frame anchor)
 663   void set_last_Java_frame(Register last_java_sp,
 664                            Register last_java_fp,
 665                            address last_java_pc,
 666                            Register scratch);
 667 
 668   void set_last_Java_frame(Register last_java_sp,
 669                            Register last_java_fp,
 670                            Label &last_java_pc,
 671                            Register scratch);
 672 
 673   void set_last_Java_frame(Register last_java_sp,
 674                            Register last_java_fp,
 675                            Register last_java_pc,
 676                            Register scratch);
 677 
 678   void reset_last_Java_frame(Register thread, bool clearfp, bool clear_pc);
 679 
 680   // thread in the default location (r15_thread on 64bit)
 681   void reset_last_Java_frame(bool clear_fp, bool clear_pc);
 682 
 683   // Stores
 684   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 685   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 686 
 687 #if INCLUDE_ALL_GCS
 688 
 689   void g1_write_barrier_pre(Register obj,
 690                             Register pre_val,
 691                             Register thread,
 692                             Register tmp,
 693                             bool tosca_live,
 694                             bool expand_call);
 695 
 696   void g1_write_barrier_post(Register store_addr,
 697                              Register new_val,
 698                              Register thread,
 699                              Register tmp,
 700                              Register tmp2);
 701 
 702 #endif // INCLUDE_ALL_GCS
 703 
 704   // split store_check(Register obj) to enhance instruction interleaving
 705   void store_check_part_1(Register obj);
 706   void store_check_part_2(Register obj);
 707 
 708   // oop manipulations
 709   void load_klass(Register dst, Register src);
 710   void store_klass(Register dst, Register src);
 711   void cmp_klass(Register oop, Register trial_klass, Register tmp);
 712 
 713   void load_heap_oop(Register dst, Address src);
 714 
 715   void load_heap_oop_not_null(Register dst, Address src);
 716   void store_heap_oop(Address dst, Register src);
 717 
 718   // currently unimplemented
 719   // Used for storing NULL. All other oop constants should be
 720   // stored using routines that take a jobject.
 721   void store_heap_oop_null(Address dst);
 722 
 723   void load_prototype_header(Register dst, Register src);
 724 
 725   void store_klass_gap(Register dst, Register src);
 726 
 727   // This dummy is to prevent a call to store_heap_oop from
 728   // converting a zero (like NULL) into a Register by giving
 729   // the compiler two choices it can't resolve
 730 
 731   void store_heap_oop(Address dst, void* dummy);
 732 
 733   void encode_heap_oop(Register d, Register s);
 734   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 735   void decode_heap_oop(Register d, Register s);
 736   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 737   void encode_heap_oop_not_null(Register r);
 738   void decode_heap_oop_not_null(Register r);
 739   void encode_heap_oop_not_null(Register dst, Register src);
 740   void decode_heap_oop_not_null(Register dst, Register src);
 741 
 742   void set_narrow_oop(Register dst, jobject obj);
 743 
 744   void encode_klass_not_null(Register r);
 745   void decode_klass_not_null(Register r);
 746   void encode_klass_not_null(Register dst, Register src);
 747   void decode_klass_not_null(Register dst, Register src);
 748 
 749   void set_narrow_klass(Register dst, Klass* k);
 750 
 751   // if heap base register is used - reinit it with the correct value
 752   void reinit_heapbase();
 753 
 754   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 755 
 756   void push_CPU_state();
 757   void pop_CPU_state() ;
 758 
 759   // Round up to a power of two
 760   void round_to(Register reg, int modulus);
 761 
 762   // allocation
 763   void eden_allocate(
 764     Register obj,                      // result: pointer to object after successful allocation
 765     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 766     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 767     Register t1,                       // temp register
 768     Label&   slow_case                 // continuation point if fast allocation fails
 769   );
 770   void tlab_allocate(
 771     Register obj,                      // result: pointer to object after successful allocation
 772     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 773     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 774     Register t1,                       // temp register
 775     Register t2,                       // temp register
 776     Label&   slow_case                 // continuation point if fast allocation fails
 777   );
 778   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 779   void verify_tlab();
 780 
 781   void incr_allocated_bytes(Register thread,
 782                             Register var_size_in_bytes, int con_size_in_bytes,
 783                             Register t1 = noreg);
 784 
 785   // interface method calling
 786   void lookup_interface_method(Register recv_klass,
 787                                Register intf_klass,
 788                                RegisterOrConstant itable_index,
 789                                Register method_result,
 790                                Register scan_temp,
 791                                Label& no_such_interface);
 792 
 793   // virtual method calling
 794   // n.b. x86 allows RegisterOrConstant for vtable_index
 795   void lookup_virtual_method(Register recv_klass,
 796                              RegisterOrConstant vtable_index,
 797                              Register method_result);
 798 
 799   // Test sub_klass against super_klass, with fast and slow paths.
 800 
 801   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 802   // One of the three labels can be NULL, meaning take the fall-through.
 803   // If super_check_offset is -1, the value is loaded up from super_klass.
 804   // No registers are killed, except temp_reg.
 805   void check_klass_subtype_fast_path(Register sub_klass,
 806                                      Register super_klass,
 807                                      Register temp_reg,
 808                                      Label* L_success,
 809                                      Label* L_failure,
 810                                      Label* L_slow_path,
 811                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 812 
 813   // The rest of the type check; must be wired to a corresponding fast path.
 814   // It does not repeat the fast path logic, so don't use it standalone.
 815   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 816   // Updates the sub's secondary super cache as necessary.
 817   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 818   void check_klass_subtype_slow_path(Register sub_klass,
 819                                      Register super_klass,
 820                                      Register temp_reg,
 821                                      Register temp2_reg,
 822                                      Label* L_success,
 823                                      Label* L_failure,
 824                                      bool set_cond_codes = false);
 825 
 826   // Simplified, combined version, good for typical uses.
 827   // Falls through on failure.
 828   void check_klass_subtype(Register sub_klass,
 829                            Register super_klass,
 830                            Register temp_reg,
 831                            Label& L_success);
 832 
 833   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 834 
 835 
 836   // Debugging
 837 
 838   // only if +VerifyOops
 839   void verify_oop(Register reg, const char* s = "broken oop");
 840   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 841 
 842 // TODO: verify method and klass metadata (compare against vptr?)
 843   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 844   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 845 
 846 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 847 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 848 
 849   // only if +VerifyFPU
 850   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 851 
 852   // prints msg, dumps registers and stops execution
 853   void stop(const char* msg);
 854 
 855   // prints msg and continues
 856   void warn(const char* msg);
 857 
 858   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 859 
 860   void untested()                                { stop("untested"); }
 861 
 862   void unimplemented(const char* what = "")      { char* b = new char[1024];  jio_snprintf(b, 1024, "unimplemented: %s", what);  stop(b); }
 863 
 864   void should_not_reach_here()                   { stop("should not reach here"); }
 865 
 866   // Stack overflow checking
 867   void bang_stack_with_offset(int offset) {
 868     // stack grows down, caller passes positive offset
 869     assert(offset > 0, "must bang with negative offset");
 870     mov(rscratch2, -offset);
 871     ldr(zr, Address(sp, rscratch2));
 872   }
 873 
 874   // Writes to stack successive pages until offset reached to check for
 875   // stack overflow + shadow pages.  Also, clobbers tmp
 876   void bang_stack_size(Register size, Register tmp);
 877 
 878   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 879                                                 Register tmp,
 880                                                 int offset);
 881 
 882   // Support for serializing memory accesses between threads
 883   void serialize_memory(Register thread, Register tmp);
 884 
 885   // Arithmetics
 886 
 887   void addptr(Address dst, int32_t src) {
 888     lea(rscratch2, dst);
 889     ldr(rscratch1, Address(rscratch2));
 890     add(rscratch1, rscratch1, src);
 891     str(rscratch1, Address(rscratch2));
 892   }
 893 
 894   void cmpptr(Register src1, Address src2);
 895 
 896   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
 897                   Label &suceed, Label *fail);
 898 
 899   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
 900                   Label &suceed, Label *fail);
 901 
 902   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
 903   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
 904 
 905   void atomic_xchg(Register prev, Register newv, Register addr);
 906   void atomic_xchgw(Register prev, Register newv, Register addr);
 907 
 908   void orptr(Address adr, RegisterOrConstant src) {
 909     ldr(rscratch2, adr);
 910     if (src.is_register())
 911       orr(rscratch2, rscratch2, src.as_register());
 912     else
 913       orr(rscratch2, rscratch2, src.as_constant());
 914     str(rscratch2, adr);
 915   }
 916 
 917   // Calls
 918 
 919   // void call(Label& L, relocInfo::relocType rtype);
 920 
 921   // NOTE: this call tranfers to the effective address of entry NOT
 922   // the address contained by entry. This is because this is more natural
 923   // for jumps/calls.
 924   void call(Address entry);
 925 
 926   // Emit the CompiledIC call idiom
 927   void ic_call(address entry);
 928 
 929 public:
 930 
 931   // Data
 932 
 933   void mov_metadata(Register dst, Metadata* obj);
 934   Address allocate_metadata_address(Metadata* obj);
 935   Address constant_oop_address(jobject obj);
 936 
 937   void movoop(Register dst, jobject obj, bool immediate = false);
 938 
 939   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
 940   void kernel_crc32(Register crc, Register buf, Register len,
 941         Register table0, Register table1, Register table2, Register table3,
 942         Register tmp, Register tmp2, Register tmp3);
 943 
 944 #undef VIRTUAL
 945 
 946   // Stack push and pop individual 64 bit registers
 947   void push(Register src);
 948   void pop(Register dst);
 949 
 950   // push all registers onto the stack
 951   void pusha();
 952   void popa();
 953 
 954   void repne_scan(Register addr, Register value, Register count,
 955                   Register scratch);
 956   void repne_scanw(Register addr, Register value, Register count,
 957                    Register scratch);
 958 
 959   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
 960   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
 961 
 962   // If a constant does not fit in an immediate field, generate some
 963   // number of MOV instructions and then perform the operation
 964   void wrap_add_sub_imm_insn(Register Rd, Register Rn, unsigned imm,
 965                              add_sub_imm_insn insn1,
 966                              add_sub_reg_insn insn2);
 967   // Seperate vsn which sets the flags
 968   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, unsigned imm,
 969                              add_sub_imm_insn insn1,
 970                              add_sub_reg_insn insn2);
 971 
 972 #define WRAP(INSN)                                                      \
 973   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
 974     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
 975   }                                                                     \
 976                                                                         \
 977   void INSN(Register Rd, Register Rn, Register Rm,                      \
 978              enum shift_kind kind, unsigned shift = 0) {                \
 979     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
 980   }                                                                     \
 981                                                                         \
 982   void INSN(Register Rd, Register Rn, Register Rm) {                    \
 983     Assembler::INSN(Rd, Rn, Rm);                                        \
 984   }                                                                     \
 985                                                                         \
 986   void INSN(Register Rd, Register Rn, Register Rm,                      \
 987            ext::operation option, int amount = 0) {                     \
 988     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
 989   }
 990 
 991   WRAP(add) WRAP(addw) WRAP(sub) WRAP(subw)
 992 
 993 #undef WRAP
 994 #define WRAP(INSN)                                                      \
 995   void INSN(Register Rd, Register Rn, unsigned imm) {                   \
 996     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN); \
 997   }                                                                     \
 998                                                                         \
 999   void INSN(Register Rd, Register Rn, Register Rm,                      \
1000              enum shift_kind kind, unsigned shift = 0) {                \
1001     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1002   }                                                                     \
1003                                                                         \
1004   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1005     Assembler::INSN(Rd, Rn, Rm);                                        \
1006   }                                                                     \
1007                                                                         \
1008   void INSN(Register Rd, Register Rn, Register Rm,                      \
1009            ext::operation option, int amount = 0) {                     \
1010     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1011   }
1012 
1013   WRAP(adds) WRAP(addsw) WRAP(subs) WRAP(subsw)
1014 
1015   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1016   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1017 
1018   void adrp(Register reg1, const Address &dest, unsigned long &byte_offset);
1019 
1020   void tableswitch(Register index, jint lowbound, jint highbound,
1021                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1022     adr(rscratch1, jumptable);
1023     subsw(rscratch2, index, lowbound);
1024     subsw(zr, rscratch2, highbound - lowbound);
1025     br(Assembler::HS, jumptable_end);
1026     add(rscratch1, rscratch1, rscratch2,
1027         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1028     br(rscratch1);
1029   }
1030 
1031   // Form an address from base + offset in Rd.  Rd may or may not
1032   // actually be used: you must use the Address that is returned.  It
1033   // is up to you to ensure that the shift provided matches the size
1034   // of your data.
1035   Address form_address(Register Rd, Register base, long byte_offset, int shift);
1036 
1037   // Prolog generator routines to support switch between x86 code and
1038   // generated ARM code
1039 
1040   // routine to generate an x86 prolog for a stub function which
1041   // bootstraps into the generated ARM code which directly follows the
1042   // stub
1043   //
1044 
1045   public:
1046   // enum used for aarch64--x86 linkage to define return type of x86 function
1047   enum ret_type { ret_type_void, ret_type_integral, ret_type_float, ret_type_double};
1048 
1049 #ifdef BUILTIN_SIM
1050   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type, address *prolog_ptr = NULL);
1051 #else
1052   void c_stub_prolog(int gp_arg_count, int fp_arg_count, int ret_type) { }
1053 #endif
1054 
1055   // special version of call_VM_leaf_base needed for aarch64 simulator
1056   // where we need to specify both the gp and fp arg counts and the
1057   // return type so that the linkage routine from aarch64 to x86 and
1058   // back knows which aarch64 registers to copy to x86 registers and
1059   // which x86 result register to copy back to an aarch64 register
1060 
1061   void call_VM_leaf_base1(
1062     address  entry_point,             // the entry point
1063     int      number_of_gp_arguments,  // the number of gp reg arguments to pass
1064     int      number_of_fp_arguments,  // the number of fp reg arguments to pass
1065     ret_type type,                    // the return type for the call
1066     Label*   retaddr = NULL
1067   );
1068 
1069   void ldr_constant(Register dest, const Address &const_addr) {
1070     if (NearCpool) {
1071       ldr(dest, const_addr);
1072     } else {
1073       unsigned long offset;
1074       adrp(dest, InternalAddress(const_addr.target()), offset);
1075       ldr(dest, Address(dest, offset));
1076     }
1077   }
1078 
1079   address read_polling_page(Register r, address page, relocInfo::relocType rtype);
1080   address read_polling_page(Register r, relocInfo::relocType rtype);
1081 
1082   // Used by aarch64.ad to control code generation
1083   static bool use_acq_rel_for_volatile_fields();
1084 
1085   // CRC32 code for java.util.zip.CRC32::updateBytes() instrinsic.
1086   void update_byte_crc32(Register crc, Register val, Register table);
1087   void update_word_crc32(Register crc, Register v, Register tmp,
1088         Register table0, Register table1, Register table2, Register table3,
1089         bool upper = false);
1090 
1091   void string_compare(Register str1, Register str2,
1092                       Register cnt1, Register cnt2, Register result,
1093                       Register tmp1);
1094   void string_equals(Register str1, Register str2,
1095                      Register cnt, Register result,
1096                      Register tmp1);
1097   void char_arrays_equals(Register ary1, Register ary2,
1098                           Register result, Register tmp1);
1099   void encode_iso_array(Register src, Register dst,
1100                         Register len, Register result,
1101                         FloatRegister Vtmp1, FloatRegister Vtmp2,
1102                         FloatRegister Vtmp3, FloatRegister Vtmp4);
1103   void string_indexof(Register str1, Register str2,
1104                       Register cnt1, Register cnt2,
1105                       Register tmp1, Register tmp2,
1106                       Register tmp3, Register tmp4,
1107                       int int_cnt1, Register result);
1108 
1109   // ISB may be needed because of a safepoint
1110   void maybe_isb() { isb(); }
1111 };
1112 
1113 // Used by aarch64.ad to control code generation
1114 #define treat_as_volatile(MEM_NODE)                                     \
1115   (MacroAssembler::use_acq_rel_for_volatile_fields() ? (MEM_NODE)->is_volatile() : false)
1116 
1117 #ifdef ASSERT
1118 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1119 #endif
1120 
1121 /**
1122  * class SkipIfEqual:
1123  *
1124  * Instantiating this class will result in assembly code being output that will
1125  * jump around any code emitted between the creation of the instance and it's
1126  * automatic destruction at the end of a scope block, depending on the value of
1127  * the flag passed to the constructor, which will be checked at run-time.
1128  */
1129 class SkipIfEqual {
1130  private:
1131   MacroAssembler* _masm;
1132   Label _label;
1133 
1134  public:
1135    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1136    ~SkipIfEqual();
1137 };
1138 
1139 struct tableswitch {
1140   Register _reg;
1141   int _insn_index; jint _first_key; jint _last_key;
1142   Label _after;
1143   Label _branches;
1144 };
1145 
1146 #endif // CPU_AARCH64_VM_MACROASSEMBLER_AARCH64_HPP