1 /*
   2  * Copyright (c) 2013, Red Hat Inc.
   3  * Copyright (c) 1997, 2011, Oracle and/or its affiliates.
   4  * All rights reserved.
   5  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   6  *
   7  * This code is free software; you can redistribute it and/or modify it
   8  * under the terms of the GNU General Public License version 2 only, as
   9  * published by the Free Software Foundation.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  *
  25  */
  26 
  27 #ifndef CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP
  28 #define CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP
  29 
  30 #include "asm/register.hpp"
  31 
  32 // definitions of various symbolic names for machine registers
  33 
  34 // First intercalls between C and Java which use 8 general registers
  35 // and 8 floating registers
  36 
  37 // we also have to copy between x86 and ARM registers but that's a
  38 // secondary complication -- not all code employing C call convention
  39 // executes as x86 code though -- we generate some of it
  40 
  41 class Argument VALUE_OBJ_CLASS_SPEC {
  42  public:
  43   enum {
  44     n_int_register_parameters_c   = 8,  // r0, r1, ... r7 (c_rarg0, c_rarg1, ...)
  45     n_float_register_parameters_c = 8,  // v0, v1, ... v7 (c_farg0, c_farg1, ... )
  46 
  47     n_int_register_parameters_j   = 8, // r1, ... r7, r0 (rj_rarg0, j_rarg1, ...
  48     n_float_register_parameters_j = 8  // v0, v1, ... v7 (j_farg0, j_farg1, ...
  49   };
  50 };
  51 
  52 REGISTER_DECLARATION(Register, c_rarg0, r0);
  53 REGISTER_DECLARATION(Register, c_rarg1, r1);
  54 REGISTER_DECLARATION(Register, c_rarg2, r2);
  55 REGISTER_DECLARATION(Register, c_rarg3, r3);
  56 REGISTER_DECLARATION(Register, c_rarg4, r4);
  57 REGISTER_DECLARATION(Register, c_rarg5, r5);
  58 REGISTER_DECLARATION(Register, c_rarg6, r6);
  59 REGISTER_DECLARATION(Register, c_rarg7, r7);
  60 
  61 REGISTER_DECLARATION(FloatRegister, c_farg0, v0);
  62 REGISTER_DECLARATION(FloatRegister, c_farg1, v1);
  63 REGISTER_DECLARATION(FloatRegister, c_farg2, v2);
  64 REGISTER_DECLARATION(FloatRegister, c_farg3, v3);
  65 REGISTER_DECLARATION(FloatRegister, c_farg4, v4);
  66 REGISTER_DECLARATION(FloatRegister, c_farg5, v5);
  67 REGISTER_DECLARATION(FloatRegister, c_farg6, v6);
  68 REGISTER_DECLARATION(FloatRegister, c_farg7, v7);
  69 
  70 // Symbolically name the register arguments used by the Java calling convention.
  71 // We have control over the convention for java so we can do what we please.
  72 // What pleases us is to offset the java calling convention so that when
  73 // we call a suitable jni method the arguments are lined up and we don't
  74 // have to do much shuffling. A suitable jni method is non-static and a
  75 // small number of arguments
  76 //
  77 //  |--------------------------------------------------------------------|
  78 //  | c_rarg0  c_rarg1  c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7  |
  79 //  |--------------------------------------------------------------------|
  80 //  | r0       r1       r2      r3      r4      r5      r6      r7       |
  81 //  |--------------------------------------------------------------------|
  82 //  | j_rarg7  j_rarg0  j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6  |
  83 //  |--------------------------------------------------------------------|
  84 
  85 
  86 REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
  87 REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
  88 REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
  89 REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
  90 REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
  91 REGISTER_DECLARATION(Register, j_rarg5, c_rarg6);
  92 REGISTER_DECLARATION(Register, j_rarg6, c_rarg7);
  93 REGISTER_DECLARATION(Register, j_rarg7, c_rarg0);
  94 
  95 // Java floating args are passed as per C
  96 
  97 REGISTER_DECLARATION(FloatRegister, j_farg0, v0);
  98 REGISTER_DECLARATION(FloatRegister, j_farg1, v1);
  99 REGISTER_DECLARATION(FloatRegister, j_farg2, v2);
 100 REGISTER_DECLARATION(FloatRegister, j_farg3, v3);
 101 REGISTER_DECLARATION(FloatRegister, j_farg4, v4);
 102 REGISTER_DECLARATION(FloatRegister, j_farg5, v5);
 103 REGISTER_DECLARATION(FloatRegister, j_farg6, v6);
 104 REGISTER_DECLARATION(FloatRegister, j_farg7, v7);
 105 
 106 // registers used to hold VM data either temporarily within a method
 107 // or across method calls
 108 
 109 // volatile (caller-save) registers
 110 
 111 // r8 is used for indirect result location return
 112 // we use it and r9 as scratch registers
 113 REGISTER_DECLARATION(Register, rscratch1, r8);
 114 REGISTER_DECLARATION(Register, rscratch2, r9);
 115 
 116 // current method -- must be in a call-clobbered register
 117 REGISTER_DECLARATION(Register, rmethod,   r12);
 118 
 119 // non-volatile (callee-save) registers are r16-29
 120 // of which the following are dedicated global state
 121 
 122 // link register
 123 REGISTER_DECLARATION(Register, lr,        r30);
 124 // frame pointer
 125 REGISTER_DECLARATION(Register, rfp,       r29);
 126 // current thread
 127 REGISTER_DECLARATION(Register, rthread,   r28);
 128 // base of heap
 129 REGISTER_DECLARATION(Register, rheapbase, r27);
 130 // constant pool cache
 131 REGISTER_DECLARATION(Register, rcpool,    r26);
 132 // monitors allocated on stack
 133 REGISTER_DECLARATION(Register, rmonitors, r25);
 134 // locals on stack
 135 REGISTER_DECLARATION(Register, rlocals,   r24);
 136 // bytecode pointer
 137 REGISTER_DECLARATION(Register, rbcp,      r22);
 138 // Dispatch table base
 139 REGISTER_DECLARATION(Register, rdispatch,      r21);
 140 // Java stack pointer
 141 REGISTER_DECLARATION(Register, esp,      r20);
 142 
 143 // TODO : x86 uses rbp to save SP in method handle code
 144 // we may need to do the same with fp
 145 // JSR 292 fixed register usages:
 146 //REGISTER_DECLARATION(Register, r_mh_SP_save, r29);
 147 
 148 #define assert_cond(ARG1) assert(ARG1, #ARG1)
 149 
 150 namespace asm_util {
 151   uint32_t encode_logical_immediate(bool is32, uint64_t imm);
 152 };
 153 
 154 using namespace asm_util;
 155 
 156 
 157 class Assembler;
 158 
 159 class Instruction_aarch64 {
 160   unsigned insn;
 161 #ifdef ASSERT
 162   unsigned bits;
 163 #endif
 164   Assembler *assem;
 165 
 166 public:
 167 
 168   Instruction_aarch64(class Assembler *as) {
 169 #ifdef ASSERT
 170     bits = 0;
 171 #endif
 172     insn = 0;
 173     assem = as;
 174   }
 175 
 176   inline ~Instruction_aarch64();
 177 
 178   unsigned &get_insn() { return insn; }
 179 #ifdef ASSERT
 180   unsigned &get_bits() { return bits; }
 181 #endif
 182 
 183   static inline int32_t extend(unsigned val, int hi = 31, int lo = 0) {
 184     union {
 185       unsigned u;
 186       int n;
 187     };
 188 
 189     u = val << (31 - hi);
 190     n = n >> (31 - hi + lo);
 191     return n;
 192   }
 193 
 194   static inline uint32_t extract(uint32_t val, int msb, int lsb) {
 195     int nbits = msb - lsb + 1;
 196     assert_cond(msb >= lsb);
 197     uint32_t mask = (1U << nbits) - 1;
 198     uint32_t result = val >> lsb;
 199     result &= mask;
 200     return result;
 201   }
 202 
 203   static inline int32_t sextract(uint32_t val, int msb, int lsb) {
 204     uint32_t uval = extract(val, msb, lsb);
 205     return extend(uval, msb - lsb);
 206   }
 207 
 208   static void patch(address a, int msb, int lsb, unsigned long val) {
 209     int nbits = msb - lsb + 1;
 210     guarantee(val < (1U << nbits), "Field too big for insn");
 211     assert_cond(msb >= lsb);
 212     unsigned mask = (1U << nbits) - 1;
 213     val <<= lsb;
 214     mask <<= lsb;
 215     unsigned target = *(unsigned *)a;
 216     target &= ~mask;
 217     target |= val;
 218     *(unsigned *)a = target;
 219   }
 220 
 221   static void spatch(address a, int msb, int lsb, long val) {
 222     int nbits = msb - lsb + 1;
 223     long chk = val >> (nbits - 1);
 224     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 225     unsigned uval = val;
 226     unsigned mask = (1U << nbits) - 1;
 227     uval &= mask;
 228     uval <<= lsb;
 229     mask <<= lsb;
 230     unsigned target = *(unsigned *)a;
 231     target &= ~mask;
 232     target |= uval;
 233     *(unsigned *)a = target;
 234   }
 235 
 236   void f(unsigned val, int msb, int lsb) {
 237     int nbits = msb - lsb + 1;
 238     guarantee(val < (1U << nbits), "Field too big for insn");
 239     assert_cond(msb >= lsb);
 240     unsigned mask = (1U << nbits) - 1;
 241     val <<= lsb;
 242     mask <<= lsb;
 243     insn |= val;
 244     assert_cond((bits & mask) == 0);
 245 #ifdef ASSERT
 246     bits |= mask;
 247 #endif
 248   }
 249 
 250   void f(unsigned val, int bit) {
 251     f(val, bit, bit);
 252   }
 253 
 254   void sf(long val, int msb, int lsb) {
 255     int nbits = msb - lsb + 1;
 256     long chk = val >> (nbits - 1);
 257     guarantee (chk == -1 || chk == 0, "Field too big for insn");
 258     unsigned uval = val;
 259     unsigned mask = (1U << nbits) - 1;
 260     uval &= mask;
 261     f(uval, lsb + nbits - 1, lsb);
 262   }
 263 
 264   void rf(Register r, int lsb) {
 265     f(r->encoding_nocheck(), lsb + 4, lsb);
 266   }
 267 
 268   // reg|ZR
 269   void zrf(Register r, int lsb) {
 270     f(r->encoding_nocheck() - (r == zr), lsb + 4, lsb);
 271   }
 272 
 273   // reg|SP
 274   void srf(Register r, int lsb) {
 275     f(r == sp ? 31 : r->encoding_nocheck(), lsb + 4, lsb);
 276   }
 277 
 278   void rf(FloatRegister r, int lsb) {
 279     f(r->encoding_nocheck(), lsb + 4, lsb);
 280   }
 281 
 282   unsigned get(int msb = 31, int lsb = 0) {
 283     int nbits = msb - lsb + 1;
 284     unsigned mask = ((1U << nbits) - 1) << lsb;
 285     assert_cond(bits & mask == mask);
 286     return (insn & mask) >> lsb;
 287   }
 288 
 289   void fixed(unsigned value, unsigned mask) {
 290     assert_cond ((mask & bits) == 0);
 291 #ifdef ASSERT
 292     bits |= mask;
 293 #endif
 294     insn |= value;
 295   }
 296 };
 297 
 298 #define starti Instruction_aarch64 do_not_use(this); set_current(&do_not_use)
 299 
 300 class PrePost {
 301   int _offset;
 302   Register _r;
 303 public:
 304   PrePost(Register reg, int o) : _r(reg), _offset(o) { }
 305   int offset() { return _offset; }
 306   Register reg() { return _r; }
 307 };
 308 
 309 class Pre : public PrePost {
 310 public:
 311   Pre(Register reg, int o) : PrePost(reg, o) { }
 312 };
 313 class Post : public PrePost {
 314 public:
 315   Post(Register reg, int o) : PrePost(reg, o) { }
 316 };
 317 
 318 namespace ext
 319 {
 320   enum operation { uxtb, uxth, uxtw, uxtx, sxtb, sxth, sxtw, sxtx };
 321 };
 322 
 323 // abs methods which cannot overflow and so are well-defined across
 324 // the entire domain of integer types.
 325 static inline unsigned int uabs(unsigned int n) {
 326   union {
 327     unsigned int result;
 328     int value;
 329   };
 330   result = n;
 331   if (value < 0) result = -result;
 332   return result;
 333 }
 334 static inline unsigned long uabs(unsigned long n) {
 335   union {
 336     unsigned long result;
 337     long value;
 338   };
 339   result = n;
 340   if (value < 0) result = -result;
 341   return result;
 342 }
 343 static inline unsigned long uabs(long n) { return uabs((unsigned long)n); }
 344 static inline unsigned long uabs(int n) { return uabs((unsigned int)n); }
 345 
 346 // Addressing modes
 347 class Address VALUE_OBJ_CLASS_SPEC {
 348  public:
 349 
 350   enum mode { no_mode, base_plus_offset, pre, post, pcrel,
 351               base_plus_offset_reg, literal };
 352 
 353   // Shift and extend for base reg + reg offset addressing
 354   class extend {
 355     int _option, _shift;
 356     ext::operation _op;
 357   public:
 358     extend() { }
 359     extend(int s, int o, ext::operation op) : _shift(s), _option(o), _op(op) { }
 360     int option() const{ return _option; }
 361     int shift() const { return _shift; }
 362     ext::operation op() const { return _op; }
 363   };
 364   class uxtw : public extend {
 365   public:
 366     uxtw(int shift = -1): extend(shift, 0b010, ext::uxtw) { }
 367   };
 368   class lsl : public extend {
 369   public:
 370     lsl(int shift = -1): extend(shift, 0b011, ext::uxtx) { }
 371   };
 372   class sxtw : public extend {
 373   public:
 374     sxtw(int shift = -1): extend(shift, 0b110, ext::sxtw) { }
 375   };
 376   class sxtx : public extend {
 377   public:
 378     sxtx(int shift = -1): extend(shift, 0b111, ext::sxtx) { }
 379   };
 380 
 381  private:
 382   Register _base;
 383   Register _index;
 384   long _offset;
 385   enum mode _mode;
 386   extend _ext;
 387 
 388   RelocationHolder _rspec;
 389 
 390   // Typically we use AddressLiterals we want to use their rval
 391   // However in some situations we want the lval (effect address) of
 392   // the item.  We provide a special factory for making those lvals.
 393   bool _is_lval;
 394 
 395   // If the target is far we'll need to load the ea of this to a
 396   // register to reach it. Otherwise if near we can do PC-relative
 397   // addressing.
 398   address          _target;
 399 
 400  public:
 401   Address()
 402     : _mode(no_mode) { }
 403   Address(Register r)
 404     : _mode(base_plus_offset), _base(r), _offset(0), _index(noreg), _target(0) { }
 405   Address(Register r, int o)
 406     : _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
 407   Address(Register r, long o)
 408     : _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
 409   Address(Register r, unsigned long o)
 410     : _mode(base_plus_offset), _base(r), _offset(o), _index(noreg), _target(0) { }
 411 #ifdef ASSERT
 412   Address(Register r, ByteSize disp)
 413     : _mode(base_plus_offset), _base(r), _offset(in_bytes(disp)),
 414       _index(noreg), _target(0) { }
 415 #endif
 416   Address(Register r, Register r1, extend ext = lsl())
 417     : _mode(base_plus_offset_reg), _base(r), _index(r1),
 418     _ext(ext), _offset(0), _target(0) { }
 419   Address(Pre p)
 420     : _mode(pre), _base(p.reg()), _offset(p.offset()) { }
 421   Address(Post p)
 422     : _mode(post), _base(p.reg()), _offset(p.offset()), _target(0) { }
 423   Address(address target, RelocationHolder const& rspec)
 424     : _mode(literal),
 425       _rspec(rspec),
 426       _is_lval(false),
 427       _target(target)  { }
 428   Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type);
 429   Address(Register base, RegisterOrConstant index, extend ext = lsl())
 430     : _base (base),
 431       _ext(ext), _offset(0), _target(0) {
 432     if (index.is_register()) {
 433       _mode = base_plus_offset_reg;
 434       _index = index.as_register();
 435     } else {
 436       guarantee(ext.option() == ext::uxtx, "should be");
 437       assert(index.is_constant(), "should be");
 438       _mode = base_plus_offset;
 439       _offset = index.as_constant() << ext.shift();
 440     }
 441   }
 442 
 443   Register base() const {
 444     guarantee((_mode == base_plus_offset | _mode == base_plus_offset_reg
 445                | _mode == post),
 446               "wrong mode");
 447     return _base;
 448   }
 449   long offset() const {
 450     return _offset;
 451   }
 452   Register index() const {
 453     return _index;
 454   }
 455   mode getMode() const {
 456     return _mode;
 457   }
 458   bool uses(Register reg) const { return _base == reg || _index == reg; }
 459   address target() const { return _target; }
 460   const RelocationHolder& rspec() const { return _rspec; }
 461 
 462   void encode(Instruction_aarch64 *i) const {
 463     i->f(0b111, 29, 27);
 464     i->srf(_base, 5);
 465 
 466     switch(_mode) {
 467     case base_plus_offset:
 468       {
 469         unsigned size = i->get(31, 30);
 470         if (i->get(26, 26) && i->get(23, 23)) {
 471           // SIMD Q Type - Size = 128 bits
 472           assert(size == 0, "bad size");
 473           size = 0b100;
 474         }
 475         unsigned mask = (1 << size) - 1;
 476         if (_offset < 0 || _offset & mask)
 477           {
 478             i->f(0b00, 25, 24);
 479             i->f(0, 21), i->f(0b00, 11, 10);
 480             i->sf(_offset, 20, 12);
 481           } else {
 482             i->f(0b01, 25, 24);
 483             i->f(_offset >> size, 21, 10);
 484           }
 485       }
 486       break;
 487 
 488     case base_plus_offset_reg:
 489       {
 490         i->f(0b00, 25, 24);
 491         i->f(1, 21);
 492         i->rf(_index, 16);
 493         i->f(_ext.option(), 15, 13);
 494         unsigned size = i->get(31, 30);
 495         if (i->get(26, 26) && i->get(23, 23)) {
 496           // SIMD Q Type - Size = 128 bits
 497           assert(size == 0, "bad size");
 498           size = 0b100;
 499         }
 500         if (size == 0) // It's a byte
 501           i->f(_ext.shift() >= 0, 12);
 502         else {
 503           if (_ext.shift() > 0)
 504             assert(_ext.shift() == (int)size, "bad shift");
 505           i->f(_ext.shift() > 0, 12);
 506         }
 507         i->f(0b10, 11, 10);
 508       }
 509       break;
 510 
 511     case pre:
 512       i->f(0b00, 25, 24);
 513       i->f(0, 21), i->f(0b11, 11, 10);
 514       i->sf(_offset, 20, 12);
 515       break;
 516 
 517     case post:
 518       i->f(0b00, 25, 24);
 519       i->f(0, 21), i->f(0b01, 11, 10);
 520       i->sf(_offset, 20, 12);
 521       break;
 522 
 523     default:
 524       ShouldNotReachHere();
 525     }
 526   }
 527 
 528   void encode_pair(Instruction_aarch64 *i) const {
 529     switch(_mode) {
 530     case base_plus_offset:
 531       i->f(0b010, 25, 23);
 532       break;
 533     case pre:
 534       i->f(0b011, 25, 23);
 535       break;
 536     case post:
 537       i->f(0b001, 25, 23);
 538       break;
 539     default:
 540       ShouldNotReachHere();
 541     }
 542 
 543     unsigned size; // Operand shift in 32-bit words
 544 
 545     if (i->get(26, 26)) { // float
 546       switch(i->get(31, 30)) {
 547       case 0b10:
 548         size = 2; break;
 549       case 0b01:
 550         size = 1; break;
 551       case 0b00:
 552         size = 0; break;
 553       default:
 554         ShouldNotReachHere();
 555       }
 556     } else {
 557       size = i->get(31, 31);
 558     }
 559 
 560     size = 4 << size;
 561     guarantee(_offset % size == 0, "bad offset");
 562     i->sf(_offset / size, 21, 15);
 563     i->srf(_base, 5);
 564   }
 565 
 566   void encode_nontemporal_pair(Instruction_aarch64 *i) const {
 567     // Only base + offset is allowed
 568     i->f(0b000, 25, 23);
 569     unsigned size = i->get(31, 31);
 570     size = 4 << size;
 571     guarantee(_offset % size == 0, "bad offset");
 572     i->sf(_offset / size, 21, 15);
 573     i->srf(_base, 5);
 574     guarantee(_mode == Address::base_plus_offset,
 575               "Bad addressing mode for non-temporal op");
 576   }
 577 
 578   void lea(MacroAssembler *, Register) const;
 579 
 580   static bool offset_ok_for_immed(long offset, int shift = 0) {
 581     unsigned mask = (1 << shift) - 1;
 582     if (offset < 0 || offset & mask) {
 583       return (uabs(offset) < (1 << (20 - 12))); // Unscaled offset
 584     } else {
 585       return ((offset >> shift) < (1 << (21 - 10 + 1))); // Scaled, unsigned offset
 586     }
 587   }
 588 };
 589 
 590 // Convience classes
 591 class RuntimeAddress: public Address {
 592 
 593   public:
 594 
 595   RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {}
 596 
 597 };
 598 
 599 class OopAddress: public Address {
 600 
 601   public:
 602 
 603   OopAddress(address target) : Address(target, relocInfo::oop_type){}
 604 
 605 };
 606 
 607 class ExternalAddress: public Address {
 608  private:
 609   static relocInfo::relocType reloc_for_target(address target) {
 610     // Sometimes ExternalAddress is used for values which aren't
 611     // exactly addresses, like the card table base.
 612     // external_word_type can't be used for values in the first page
 613     // so just skip the reloc in that case.
 614     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
 615   }
 616 
 617  public:
 618 
 619   ExternalAddress(address target) : Address(target, reloc_for_target(target)) {}
 620 
 621 };
 622 
 623 class InternalAddress: public Address {
 624 
 625   public:
 626 
 627   InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {}
 628 };
 629 
 630 const int FPUStateSizeInWords = 32 * 2;
 631 typedef enum {
 632   PLDL1KEEP = 0b00000, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM,
 633   PSTL1KEEP = 0b10000, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM,
 634   PLIL1KEEP = 0b01000, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM
 635 } prfop;
 636 
 637 class Assembler : public AbstractAssembler {
 638 
 639 #ifndef PRODUCT
 640   static const unsigned long asm_bp;
 641 
 642   void emit_long(jint x) {
 643     if ((unsigned long)pc() == asm_bp)
 644       asm volatile ("nop");
 645     AbstractAssembler::emit_int32(x);
 646   }
 647 #else
 648   void emit_long(jint x) {
 649     AbstractAssembler::emit_int32(x);
 650   }
 651 #endif
 652 
 653 public:
 654 
 655   enum { instruction_size = 4 };
 656 
 657   Address adjust(Register base, int offset, bool preIncrement) {
 658     if (preIncrement)
 659       return Address(Pre(base, offset));
 660     else
 661       return Address(Post(base, offset));
 662   }
 663 
 664   Address pre(Register base, int offset) {
 665     return adjust(base, offset, true);
 666   }
 667 
 668   Address post (Register base, int offset) {
 669     return adjust(base, offset, false);
 670   }
 671 
 672   Instruction_aarch64* current;
 673 
 674   void set_current(Instruction_aarch64* i) { current = i; }
 675 
 676   void f(unsigned val, int msb, int lsb) {
 677     current->f(val, msb, lsb);
 678   }
 679   void f(unsigned val, int msb) {
 680     current->f(val, msb, msb);
 681   }
 682   void sf(long val, int msb, int lsb) {
 683     current->sf(val, msb, lsb);
 684   }
 685   void rf(Register reg, int lsb) {
 686     current->rf(reg, lsb);
 687   }
 688   void srf(Register reg, int lsb) {
 689     current->srf(reg, lsb);
 690   }
 691   void zrf(Register reg, int lsb) {
 692     current->zrf(reg, lsb);
 693   }
 694   void rf(FloatRegister reg, int lsb) {
 695     current->rf(reg, lsb);
 696   }
 697   void fixed(unsigned value, unsigned mask) {
 698     current->fixed(value, mask);
 699   }
 700 
 701   void emit() {
 702     emit_long(current->get_insn());
 703     assert_cond(current->get_bits() == 0xffffffff);
 704     current = NULL;
 705   }
 706 
 707   typedef void (Assembler::* uncond_branch_insn)(address dest);
 708   typedef void (Assembler::* compare_and_branch_insn)(Register Rt, address dest);
 709   typedef void (Assembler::* test_and_branch_insn)(Register Rt, int bitpos, address dest);
 710   typedef void (Assembler::* prefetch_insn)(address target, prfop);
 711 
 712   void wrap_label(Label &L, uncond_branch_insn insn);
 713   void wrap_label(Register r, Label &L, compare_and_branch_insn insn);
 714   void wrap_label(Register r, int bitpos, Label &L, test_and_branch_insn insn);
 715   void wrap_label(Label &L, prfop, prefetch_insn insn);
 716 
 717   // PC-rel. addressing
 718 
 719   void adr(Register Rd, address dest);
 720   void _adrp(Register Rd, address dest);
 721 
 722   void adr(Register Rd, const Address &dest);
 723   void _adrp(Register Rd, const Address &dest);
 724 
 725   void adr(Register Rd, Label &L) {
 726     wrap_label(Rd, L, &Assembler::Assembler::adr);
 727   }
 728   void _adrp(Register Rd, Label &L) {
 729     wrap_label(Rd, L, &Assembler::_adrp);
 730   }
 731 
 732   void adrp(Register Rd, const Address &dest, unsigned long &offset);
 733 
 734 #undef INSN
 735 
 736   void add_sub_immediate(Register Rd, Register Rn, unsigned uimm, int op,
 737                          int negated_op);
 738 
 739   // Add/subtract (immediate)
 740 #define INSN(NAME, decode, negated)                                     \
 741   void NAME(Register Rd, Register Rn, unsigned imm, unsigned shift) {   \
 742     starti;                                                             \
 743     f(decode, 31, 29), f(0b10001, 28, 24), f(shift, 23, 22), f(imm, 21, 10); \
 744     zrf(Rd, 0), srf(Rn, 5);                                             \
 745   }                                                                     \
 746                                                                         \
 747   void NAME(Register Rd, Register Rn, unsigned imm) {                   \
 748     starti;                                                             \
 749     add_sub_immediate(Rd, Rn, imm, decode, negated);                    \
 750   }
 751 
 752   INSN(addsw, 0b001, 0b011);
 753   INSN(subsw, 0b011, 0b001);
 754   INSN(adds,  0b101, 0b111);
 755   INSN(subs,  0b111, 0b101);
 756 
 757 #undef INSN
 758 
 759 #define INSN(NAME, decode, negated)                     \
 760   void NAME(Register Rd, Register Rn, unsigned imm) {   \
 761     starti;                                             \
 762     add_sub_immediate(Rd, Rn, imm, decode, negated);    \
 763   }
 764 
 765   INSN(addw, 0b000, 0b010);
 766   INSN(subw, 0b010, 0b000);
 767   INSN(add,  0b100, 0b110);
 768   INSN(sub,  0b110, 0b100);
 769 
 770 #undef INSN
 771 
 772  // Logical (immediate)
 773 #define INSN(NAME, decode, is32)                                \
 774   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 775     starti;                                                     \
 776     uint32_t val = encode_logical_immediate(is32, imm);         \
 777     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 778     srf(Rd, 0), zrf(Rn, 5);                                     \
 779   }
 780 
 781   INSN(andw, 0b000, true);
 782   INSN(orrw, 0b001, true);
 783   INSN(eorw, 0b010, true);
 784   INSN(andr,  0b100, false);
 785   INSN(orr,  0b101, false);
 786   INSN(eor,  0b110, false);
 787 
 788 #undef INSN
 789 
 790 #define INSN(NAME, decode, is32)                                \
 791   void NAME(Register Rd, Register Rn, uint64_t imm) {           \
 792     starti;                                                     \
 793     uint32_t val = encode_logical_immediate(is32, imm);         \
 794     f(decode, 31, 29), f(0b100100, 28, 23), f(val, 22, 10);     \
 795     zrf(Rd, 0), zrf(Rn, 5);                                     \
 796   }
 797 
 798   INSN(ands, 0b111, false);
 799   INSN(andsw, 0b011, true);
 800 
 801 #undef INSN
 802 
 803   // Move wide (immediate)
 804 #define INSN(NAME, opcode)                                              \
 805   void NAME(Register Rd, unsigned imm, unsigned shift = 0) {            \
 806     assert_cond((shift/16)*16 == shift);                                \
 807     starti;                                                             \
 808     f(opcode, 31, 29), f(0b100101, 28, 23), f(shift/16, 22, 21),        \
 809       f(imm, 20, 5);                                                    \
 810     rf(Rd, 0);                                                          \
 811   }
 812 
 813   INSN(movnw, 0b000);
 814   INSN(movzw, 0b010);
 815   INSN(movkw, 0b011);
 816   INSN(movn, 0b100);
 817   INSN(movz, 0b110);
 818   INSN(movk, 0b111);
 819 
 820 #undef INSN
 821 
 822   // Bitfield
 823 #define INSN(NAME, opcode)                                              \
 824   void NAME(Register Rd, Register Rn, unsigned immr, unsigned imms) {   \
 825     starti;                                                             \
 826     f(opcode, 31, 22), f(immr, 21, 16), f(imms, 15, 10);                \
 827     rf(Rn, 5), rf(Rd, 0);                                               \
 828   }
 829 
 830   INSN(sbfmw, 0b0001001100);
 831   INSN(bfmw,  0b0011001100);
 832   INSN(ubfmw, 0b0101001100);
 833   INSN(sbfm,  0b1001001101);
 834   INSN(bfm,   0b1011001101);
 835   INSN(ubfm,  0b1101001101);
 836 
 837 #undef INSN
 838 
 839   // Extract
 840 #define INSN(NAME, opcode)                                              \
 841   void NAME(Register Rd, Register Rn, Register Rm, unsigned imms) {     \
 842     starti;                                                             \
 843     f(opcode, 31, 21), f(imms, 15, 10);                                 \
 844     rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                                   \
 845   }
 846 
 847   INSN(extrw, 0b00010011100);
 848   INSN(extr,  0b10010011110);
 849 
 850 #undef INSN
 851 
 852   // Unconditional branch (immediate)
 853 #define INSN(NAME, opcode)                                      \
 854   void NAME(address dest) {                                     \
 855     starti;                                                     \
 856     long offset = (dest - pc()) >> 2;                             \
 857     f(opcode, 31), f(0b00101, 30, 26), sf(offset, 25, 0);       \
 858   }                                                             \
 859   void NAME(Label &L) {                                             \
 860     wrap_label(L, &Assembler::NAME);                                \
 861   }                                                             \
 862   void NAME(const Address &dest);
 863 
 864   INSN(b, 0);
 865   INSN(bl, 1);
 866 
 867 #undef INSN
 868 
 869   // Compare & branch (immediate)
 870 #define INSN(NAME, opcode)                              \
 871   void NAME(Register Rt, address dest) {                \
 872     long offset = (dest - pc()) >> 2;                     \
 873     starti;                                             \
 874     f(opcode, 31, 24), sf(offset, 23, 5), rf(Rt, 0);    \
 875   }                                                     \
 876   void NAME(Register Rt, Label &L) {                        \
 877     wrap_label(Rt, L, &Assembler::NAME);            \
 878   }
 879 
 880   INSN(cbzw,  0b00110100);
 881   INSN(cbnzw, 0b00110101);
 882   INSN(cbz,   0b10110100);
 883   INSN(cbnz,  0b10110101);
 884 
 885 #undef INSN
 886 
 887   // Test & branch (immediate)
 888 #define INSN(NAME, opcode)                                              \
 889   void NAME(Register Rt, int bitpos, address dest) {                    \
 890     long offset = (dest - pc()) >> 2;                                     \
 891     int b5 = bitpos >> 5;                                         \
 892     bitpos &= 0x1f;                                                 \
 893     starti;                                                             \
 894     f(b5, 31), f(opcode, 30, 24), f(bitpos, 23, 19), sf(offset, 18, 5); \
 895     rf(Rt, 0);                                                          \
 896   }                                                                     \
 897   void NAME(Register Rt, int bitpos, Label &L) {                    \
 898     wrap_label(Rt, bitpos, L, &Assembler::NAME);                    \
 899   }
 900 
 901   INSN(tbz,  0b0110110);
 902   INSN(tbnz, 0b0110111);
 903 
 904 #undef INSN
 905 
 906   // Conditional branch (immediate)
 907   enum Condition
 908     {EQ, NE, HS, CS=HS, LO, CC=LO, MI, PL, VS, VC, HI, LS, GE, LT, GT, LE, AL, NV};
 909 
 910   void br(Condition  cond, address dest) {
 911     long offset = (dest - pc()) >> 2;
 912     starti;
 913     f(0b0101010, 31, 25), f(0, 24), sf(offset, 23, 5), f(0, 4), f(cond, 3, 0);
 914   }
 915 
 916 #define INSN(NAME, cond)                        \
 917   void NAME(address dest) {                     \
 918     br(cond, dest);                             \
 919   }
 920 
 921   INSN(beq, EQ);
 922   INSN(bne, NE);
 923   INSN(bhs, HS);
 924   INSN(bcs, CS);
 925   INSN(blo, LO);
 926   INSN(bcc, CC);
 927   INSN(bmi, MI);
 928   INSN(bpl, PL);
 929   INSN(bvs, VS);
 930   INSN(bvc, VC);
 931   INSN(bhi, HI);
 932   INSN(bls, LS);
 933   INSN(bge, GE);
 934   INSN(blt, LT);
 935   INSN(bgt, GT);
 936   INSN(ble, LE);
 937   INSN(bal, AL);
 938   INSN(bnv, NV);
 939 
 940   void br(Condition cc, Label &L);
 941 
 942 #undef INSN
 943 
 944   // Exception generation
 945   void generate_exception(int opc, int op2, int LL, unsigned imm) {
 946     starti;
 947     f(0b11010100, 31, 24);
 948     f(opc, 23, 21), f(imm, 20, 5), f(op2, 4, 2), f(LL, 1, 0);
 949   }
 950 
 951 #define INSN(NAME, opc, op2, LL)                \
 952   void NAME(unsigned imm) {                     \
 953     generate_exception(opc, op2, LL, imm);      \
 954   }
 955 
 956   INSN(svc, 0b000, 0, 0b01);
 957   INSN(hvc, 0b000, 0, 0b10);
 958   INSN(smc, 0b000, 0, 0b11);
 959   INSN(brk, 0b001, 0, 0b00);
 960   INSN(hlt, 0b010, 0, 0b00);
 961   INSN(dpcs1, 0b101, 0, 0b01);
 962   INSN(dpcs2, 0b101, 0, 0b10);
 963   INSN(dpcs3, 0b101, 0, 0b11);
 964 
 965 #undef INSN
 966 
 967   // System
 968   void system(int op0, int op1, int CRn, int CRm, int op2,
 969               Register rt = (Register)0b11111)
 970   {
 971     starti;
 972     f(0b11010101000, 31, 21);
 973     f(op0, 20, 19);
 974     f(op1, 18, 16);
 975     f(CRn, 15, 12);
 976     f(CRm, 11, 8);
 977     f(op2, 7, 5);
 978     rf(rt, 0);
 979   }
 980 
 981   void hint(int imm) {
 982     system(0b00, 0b011, 0b0010, imm, 0b000);
 983   }
 984 
 985   void nop() {
 986     hint(0);
 987   }
 988   // we only provide mrs and msr for the special purpose system
 989   // registers where op1 (instr[20:19]) == 11 and, (currently) only
 990   // use it for FPSR n.b msr has L (instr[21]) == 0 mrs has L == 1
 991 
 992   void msr(int op1, int CRn, int CRm, int op2, Register rt) {
 993     starti;
 994     f(0b1101010100011, 31, 19);
 995     f(op1, 18, 16);
 996     f(CRn, 15, 12);
 997     f(CRm, 11, 8);
 998     f(op2, 7, 5);
 999     // writing zr is ok
1000     zrf(rt, 0);
1001   }
1002 
1003   void mrs(int op1, int CRn, int CRm, int op2, Register rt) {
1004     starti;
1005     f(0b1101010100111, 31, 19);
1006     f(op1, 18, 16);
1007     f(CRn, 15, 12);
1008     f(CRm, 11, 8);
1009     f(op2, 7, 5);
1010     // reading to zr is a mistake
1011     rf(rt, 0);
1012   }
1013 
1014   enum barrier {OSHLD = 0b0001, OSHST, OSH, NSHLD=0b0101, NSHST, NSH,
1015                 ISHLD = 0b1001, ISHST, ISH, LD=0b1101, ST, SY};
1016 
1017   void dsb(barrier imm) {
1018     system(0b00, 0b011, 0b00011, imm, 0b100);
1019   }
1020 
1021   void dmb(barrier imm) {
1022     system(0b00, 0b011, 0b00011, imm, 0b101);
1023   }
1024 
1025   void isb() {
1026     system(0b00, 0b011, 0b00011, SY, 0b110);
1027   }
1028 
1029   void dc(Register Rt) {
1030     system(0b01, 0b011, 0b0111, 0b1011, 0b001, Rt);
1031   }
1032 
1033   void ic(Register Rt) {
1034     system(0b01, 0b011, 0b0111, 0b0101, 0b001, Rt);
1035   }
1036 
1037   // A more convenient access to dmb for our purposes
1038   enum Membar_mask_bits {
1039     // We can use ISH for a barrier because the ARM ARM says "This
1040     // architecture assumes that all Processing Elements that use the
1041     // same operating system or hypervisor are in the same Inner
1042     // Shareable shareability domain."
1043     StoreStore = ISHST,
1044     LoadStore  = ISHLD,
1045     LoadLoad   = ISHLD,
1046     StoreLoad  = ISH,
1047     AnyAny     = ISH
1048   };
1049 
1050   void membar(Membar_mask_bits order_constraint) {
1051     dmb(Assembler::barrier(order_constraint));
1052   }
1053 
1054   // Unconditional branch (register)
1055   void branch_reg(Register R, int opc) {
1056     starti;
1057     f(0b1101011, 31, 25);
1058     f(opc, 24, 21);
1059     f(0b11111000000, 20, 10);
1060     rf(R, 5);
1061     f(0b00000, 4, 0);
1062   }
1063 
1064 #define INSN(NAME, opc)                         \
1065   void NAME(Register R) {                       \
1066     branch_reg(R, opc);                         \
1067   }
1068 
1069   INSN(br, 0b0000);
1070   INSN(blr, 0b0001);
1071   INSN(ret, 0b0010);
1072 
1073   void ret(void *p); // This forces a compile-time error for ret(0)
1074 
1075 #undef INSN
1076 
1077 #define INSN(NAME, opc)                         \
1078   void NAME() {                 \
1079     branch_reg((Register)0b11111, opc);         \
1080   }
1081 
1082   INSN(eret, 0b0100);
1083   INSN(drps, 0b0101);
1084 
1085 #undef INSN
1086 
1087   // Load/store exclusive
1088   enum operand_size { byte, halfword, word, xword };
1089 
1090   void load_store_exclusive(Register Rs, Register Rt1, Register Rt2,
1091     Register Rn, enum operand_size sz, int op, int o0) {
1092     starti;
1093     f(sz, 31, 30), f(0b001000, 29, 24), f(op, 23, 21);
1094     rf(Rs, 16), f(o0, 15), rf(Rt2, 10), rf(Rn, 5), rf(Rt1, 0);
1095   }
1096 
1097 #define INSN4(NAME, sz, op, o0) /* Four registers */                    \
1098   void NAME(Register Rs, Register Rt1, Register Rt2, Register Rn) {     \
1099     load_store_exclusive(Rs, Rt1, Rt2, Rn, sz, op, o0);                 \
1100   }
1101 
1102 #define INSN3(NAME, sz, op, o0) /* Three registers */                   \
1103   void NAME(Register Rs, Register Rt, Register Rn) {                    \
1104     load_store_exclusive(Rs, Rt, (Register)0b11111, Rn, sz, op, o0);    \
1105   }
1106 
1107 #define INSN2(NAME, sz, op, o0) /* Two registers */                     \
1108   void NAME(Register Rt, Register Rn) {                                 \
1109     load_store_exclusive((Register)0b11111, Rt, (Register)0b11111,      \
1110                          Rn, sz, op, o0);                               \
1111   }
1112 
1113 #define INSN_FOO(NAME, sz, op, o0) /* Three registers, encoded differently */ \
1114   void NAME(Register Rt1, Register Rt2, Register Rn) {                  \
1115     load_store_exclusive((Register)0b11111, Rt1, Rt2, Rn, sz, op, o0);  \
1116   }
1117 
1118   // bytes
1119   INSN3(stxrb, byte, 0b000, 0);
1120   INSN3(stlxrb, byte, 0b000, 1);
1121   INSN2(ldxrb, byte, 0b010, 0);
1122   INSN2(ldaxrb, byte, 0b010, 1);
1123   INSN2(stlrb, byte, 0b100, 1);
1124   INSN2(ldarb, byte, 0b110, 1);
1125 
1126   // halfwords
1127   INSN3(stxrh, halfword, 0b000, 0);
1128   INSN3(stlxrh, halfword, 0b000, 1);
1129   INSN2(ldxrh, halfword, 0b010, 0);
1130   INSN2(ldaxrh, halfword, 0b010, 1);
1131   INSN2(stlrh, halfword, 0b100, 1);
1132   INSN2(ldarh, halfword, 0b110, 1);
1133 
1134   // words
1135   INSN3(stxrw, word, 0b000, 0);
1136   INSN3(stlxrw, word, 0b000, 1);
1137   INSN4(stxpw, word, 0b001, 0);
1138   INSN4(stlxpw, word, 0b001, 1);
1139   INSN2(ldxrw, word, 0b010, 0);
1140   INSN2(ldaxrw, word, 0b010, 1);
1141   INSN_FOO(ldxpw, word, 0b011, 0);
1142   INSN_FOO(ldaxpw, word, 0b011, 1);
1143   INSN2(stlrw, word, 0b100, 1);
1144   INSN2(ldarw, word, 0b110, 1);
1145 
1146   // xwords
1147   INSN3(stxr, xword, 0b000, 0);
1148   INSN3(stlxr, xword, 0b000, 1);
1149   INSN4(stxp, xword, 0b001, 0);
1150   INSN4(stlxp, xword, 0b001, 1);
1151   INSN2(ldxr, xword, 0b010, 0);
1152   INSN2(ldaxr, xword, 0b010, 1);
1153   INSN_FOO(ldxp, xword, 0b011, 0);
1154   INSN_FOO(ldaxp, xword, 0b011, 1);
1155   INSN2(stlr, xword, 0b100, 1);
1156   INSN2(ldar, xword, 0b110, 1);
1157 
1158 #undef INSN2
1159 #undef INSN3
1160 #undef INSN4
1161 #undef INSN_FOO
1162 
1163   // Load register (literal)
1164 #define INSN(NAME, opc, V)                                              \
1165   void NAME(Register Rt, address dest) {                                \
1166     long offset = (dest - pc()) >> 2;                                     \
1167     starti;                                                             \
1168     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1169       sf(offset, 23, 5);                                                \
1170     rf(Rt, 0);                                                          \
1171   }                                                                     \
1172   void NAME(Register Rt, address dest, relocInfo::relocType rtype) {    \
1173     InstructionMark im(this);                                           \
1174     guarantee(rtype == relocInfo::internal_word_type,                   \
1175               "only internal_word_type relocs make sense here");        \
1176     code_section()->relocate(inst_mark(), InternalAddress(dest).rspec()); \
1177     NAME(Rt, dest);                                                     \
1178   }                                                                     \
1179   void NAME(Register Rt, Label &L) {                                        \
1180     wrap_label(Rt, L, &Assembler::NAME);                            \
1181   }
1182 
1183   INSN(ldrw, 0b00, 0);
1184   INSN(ldr, 0b01, 0);
1185   INSN(ldrsw, 0b10, 0);
1186 
1187 #undef INSN
1188 
1189 #define INSN(NAME, opc, V)                                              \
1190   void NAME(FloatRegister Rt, address dest) {                           \
1191     long offset = (dest - pc()) >> 2;                                     \
1192     starti;                                                             \
1193     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1194       sf(offset, 23, 5);                                                \
1195     rf((Register)Rt, 0);                                                \
1196   }
1197 
1198   INSN(ldrs, 0b00, 1);
1199   INSN(ldrd, 0b01, 1);
1200   INSN(ldrq, 0x10, 1);
1201 
1202 #undef INSN
1203 
1204 #define INSN(NAME, opc, V)                                              \
1205   void NAME(address dest, prfop op = PLDL1KEEP) {                       \
1206     long offset = (dest - pc()) >> 2;                                     \
1207     starti;                                                             \
1208     f(opc, 31, 30), f(0b011, 29, 27), f(V, 26), f(0b00, 25, 24),        \
1209       sf(offset, 23, 5);                                                \
1210     f(op, 4, 0);                                                        \
1211   }                                                                     \
1212   void NAME(Label &L, prfop op = PLDL1KEEP) {                               \
1213     wrap_label(L, op, &Assembler::NAME);                            \
1214   }
1215 
1216   INSN(prfm, 0b11, 0);
1217 
1218 #undef INSN
1219 
1220   // Load/store
1221   void ld_st1(int opc, int p1, int V, int L,
1222               Register Rt1, Register Rt2, Address adr, bool no_allocate) {
1223     starti;
1224     f(opc, 31, 30), f(p1, 29, 27), f(V, 26), f(L, 22);
1225     zrf(Rt2, 10), zrf(Rt1, 0);
1226     if (no_allocate) {
1227       adr.encode_nontemporal_pair(current);
1228     } else {
1229       adr.encode_pair(current);
1230     }
1231   }
1232 
1233   // Load/store register pair (offset)
1234 #define INSN(NAME, size, p1, V, L, no_allocate)         \
1235   void NAME(Register Rt1, Register Rt2, Address adr) {  \
1236     ld_st1(size, p1, V, L, Rt1, Rt2, adr, no_allocate); \
1237    }
1238 
1239   INSN(stpw, 0b00, 0b101, 0, 0, false);
1240   INSN(ldpw, 0b00, 0b101, 0, 1, false);
1241   INSN(ldpsw, 0b01, 0b101, 0, 1, false);
1242   INSN(stp, 0b10, 0b101, 0, 0, false);
1243   INSN(ldp, 0b10, 0b101, 0, 1, false);
1244 
1245   // Load/store no-allocate pair (offset)
1246   INSN(stnpw, 0b00, 0b101, 0, 0, true);
1247   INSN(ldnpw, 0b00, 0b101, 0, 1, true);
1248   INSN(stnp, 0b10, 0b101, 0, 0, true);
1249   INSN(ldnp, 0b10, 0b101, 0, 1, true);
1250 
1251 #undef INSN
1252 
1253 #define INSN(NAME, size, p1, V, L, no_allocate)                         \
1254   void NAME(FloatRegister Rt1, FloatRegister Rt2, Address adr) {        \
1255     ld_st1(size, p1, V, L, (Register)Rt1, (Register)Rt2, adr, no_allocate); \
1256    }
1257 
1258   INSN(stps, 0b00, 0b101, 1, 0, false);
1259   INSN(ldps, 0b00, 0b101, 1, 1, false);
1260   INSN(stpd, 0b01, 0b101, 1, 0, false);
1261   INSN(ldpd, 0b01, 0b101, 1, 1, false);
1262   INSN(stpq, 0b10, 0b101, 1, 0, false);
1263   INSN(ldpq, 0b10, 0b101, 1, 1, false);
1264 
1265 #undef INSN
1266 
1267   // Load/store register (all modes)
1268   void ld_st2(Register Rt, const Address &adr, int size, int op, int V = 0) {
1269     starti;
1270 
1271     f(V, 26); // general reg?
1272     zrf(Rt, 0);
1273 
1274     // Encoding for literal loads is done here (rather than pushed
1275     // down into Address::encode) because the encoding of this
1276     // instruction is too different from all of the other forms to
1277     // make it worth sharing.
1278     if (adr.getMode() == Address::literal) {
1279       assert(size == 0b10 || size == 0b11, "bad operand size in ldr");
1280       assert(op == 0b01, "literal form can only be used with loads");
1281       f(size & 0b01, 31, 30), f(0b011, 29, 27), f(0b00, 25, 24);
1282       long offset = (adr.target() - pc()) >> 2;
1283       sf(offset, 23, 5);
1284       code_section()->relocate(pc(), adr.rspec());
1285       return;
1286     }
1287 
1288     f(size, 31, 30);
1289     f(op, 23, 22); // str
1290     adr.encode(current);
1291   }
1292 
1293 #define INSN(NAME, size, op)                            \
1294   void NAME(Register Rt, const Address &adr) {              \
1295     ld_st2(Rt, adr, size, op);                          \
1296   }                                                     \
1297 
1298   INSN(str, 0b11, 0b00);
1299   INSN(strw, 0b10, 0b00);
1300   INSN(strb, 0b00, 0b00);
1301   INSN(strh, 0b01, 0b00);
1302 
1303   INSN(ldr, 0b11, 0b01);
1304   INSN(ldrw, 0b10, 0b01);
1305   INSN(ldrb, 0b00, 0b01);
1306   INSN(ldrh, 0b01, 0b01);
1307 
1308   INSN(ldrsb, 0b00, 0b10);
1309   INSN(ldrsbw, 0b00, 0b11);
1310   INSN(ldrsh, 0b01, 0b10);
1311   INSN(ldrshw, 0b01, 0b11);
1312   INSN(ldrsw, 0b10, 0b10);
1313 
1314 #undef INSN
1315 
1316 #define INSN(NAME, size, op)                                    \
1317   void NAME(const Address &adr, prfop pfop = PLDL1KEEP) {   \
1318     ld_st2((Register)pfop, adr, size, op);                      \
1319   }
1320 
1321   INSN(prfm, 0b11, 0b10); // FIXME: PRFM should not be used with
1322                           // writeback modes, but the assembler
1323                           // doesn't enfore that.
1324 
1325 #undef INSN
1326 
1327 #define INSN(NAME, size, op)                            \
1328   void NAME(FloatRegister Rt, const Address &adr) { \
1329     ld_st2((Register)Rt, adr, size, op, 1);             \
1330   }
1331 
1332   INSN(strd, 0b11, 0b00);
1333   INSN(strs, 0b10, 0b00);
1334   INSN(ldrd, 0b11, 0b01);
1335   INSN(ldrs, 0b10, 0b01);
1336   INSN(strq, 0b00, 0b10);
1337   INSN(ldrq, 0x00, 0b11);
1338 
1339 #undef INSN
1340 
1341   enum shift_kind { LSL, LSR, ASR, ROR };
1342 
1343   void op_shifted_reg(unsigned decode,
1344                       enum shift_kind kind, unsigned shift,
1345                       unsigned size, unsigned op) {
1346     f(size, 31);
1347     f(op, 30, 29);
1348     f(decode, 28, 24);
1349     f(shift, 15, 10);
1350     f(kind, 23, 22);
1351   }
1352 
1353   // Logical (shifted register)
1354 #define INSN(NAME, size, op, N)                                 \
1355   void NAME(Register Rd, Register Rn, Register Rm,              \
1356             enum shift_kind kind = LSL, unsigned shift = 0) {   \
1357     starti;                                                     \
1358     f(N, 21);                                                   \
1359     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);                        \
1360     op_shifted_reg(0b01010, kind, shift, size, op);             \
1361   }
1362 
1363   INSN(andr, 1, 0b00, 0);
1364   INSN(orr, 1, 0b01, 0);
1365   INSN(eor, 1, 0b10, 0);
1366   INSN(ands, 1, 0b11, 0);
1367   INSN(andw, 0, 0b00, 0);
1368   INSN(orrw, 0, 0b01, 0);
1369   INSN(eorw, 0, 0b10, 0);
1370   INSN(andsw, 0, 0b11, 0);
1371 
1372   INSN(bic, 1, 0b00, 1);
1373   INSN(orn, 1, 0b01, 1);
1374   INSN(eon, 1, 0b10, 1);
1375   INSN(bics, 1, 0b11, 1);
1376   INSN(bicw, 0, 0b00, 1);
1377   INSN(ornw, 0, 0b01, 1);
1378   INSN(eonw, 0, 0b10, 1);
1379   INSN(bicsw, 0, 0b11, 1);
1380 
1381 #undef INSN
1382 
1383   // Add/subtract (shifted register)
1384 #define INSN(NAME, size, op)                            \
1385   void NAME(Register Rd, Register Rn, Register Rm,      \
1386             enum shift_kind kind, unsigned shift = 0) { \
1387     starti;                                             \
1388     f(0, 21);                                           \
1389     assert_cond(kind != ROR);                           \
1390     zrf(Rd, 0), zrf(Rn, 5), zrf(Rm, 16);                \
1391     op_shifted_reg(0b01011, kind, shift, size, op);     \
1392   }
1393 
1394   INSN(add, 1, 0b000);
1395   INSN(sub, 1, 0b10);
1396   INSN(addw, 0, 0b000);
1397   INSN(subw, 0, 0b10);
1398 
1399   INSN(adds, 1, 0b001);
1400   INSN(subs, 1, 0b11);
1401   INSN(addsw, 0, 0b001);
1402   INSN(subsw, 0, 0b11);
1403 
1404 #undef INSN
1405 
1406   // Add/subtract (extended register)
1407 #define INSN(NAME, op)                                                  \
1408   void NAME(Register Rd, Register Rn, Register Rm,                      \
1409            ext::operation option, int amount = 0) {                     \
1410     starti;                                                             \
1411     zrf(Rm, 16), srf(Rn, 5), srf(Rd, 0);                                \
1412     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1413   }
1414 
1415   void add_sub_extended_reg(unsigned op, unsigned decode,
1416     Register Rd, Register Rn, Register Rm,
1417     unsigned opt, ext::operation option, unsigned imm) {
1418     guarantee(imm <= 4, "shift amount must be < 4");
1419     f(op, 31, 29), f(decode, 28, 24), f(opt, 23, 22), f(1, 21);
1420     f(option, 15, 13), f(imm, 12, 10);
1421   }
1422 
1423   INSN(addw, 0b000);
1424   INSN(subw, 0b010);
1425   INSN(add, 0b100);
1426   INSN(sub, 0b110);
1427 
1428 #undef INSN
1429 
1430 #define INSN(NAME, op)                                                  \
1431   void NAME(Register Rd, Register Rn, Register Rm,                      \
1432            ext::operation option, int amount = 0) {                     \
1433     starti;                                                             \
1434     zrf(Rm, 16), srf(Rn, 5), zrf(Rd, 0);                                \
1435     add_sub_extended_reg(op, 0b01011, Rd, Rn, Rm, 0b00, option, amount); \
1436   }
1437 
1438   INSN(addsw, 0b001);
1439   INSN(subsw, 0b011);
1440   INSN(adds, 0b101);
1441   INSN(subs, 0b111);
1442 
1443 #undef INSN
1444 
1445   // Aliases for short forms of add and sub
1446 #define INSN(NAME)                                      \
1447   void NAME(Register Rd, Register Rn, Register Rm) {    \
1448     if (Rd == sp || Rn == sp)                           \
1449       NAME(Rd, Rn, Rm, ext::uxtx);                      \
1450     else                                                \
1451       NAME(Rd, Rn, Rm, LSL);                            \
1452   }
1453 
1454   INSN(addw);
1455   INSN(subw);
1456   INSN(add);
1457   INSN(sub);
1458 
1459   INSN(addsw);
1460   INSN(subsw);
1461   INSN(adds);
1462   INSN(subs);
1463 
1464 #undef INSN
1465 
1466   // Add/subtract (with carry)
1467   void add_sub_carry(unsigned op, Register Rd, Register Rn, Register Rm) {
1468     starti;
1469     f(op, 31, 29);
1470     f(0b11010000, 28, 21);
1471     f(0b000000, 15, 10);
1472     zrf(Rm, 16), zrf(Rn, 5), zrf(Rd, 0);
1473   }
1474 
1475   #define INSN(NAME, op)                                \
1476     void NAME(Register Rd, Register Rn, Register Rm) {  \
1477       add_sub_carry(op, Rd, Rn, Rm);                    \
1478     }
1479 
1480   INSN(adcw, 0b000);
1481   INSN(adcsw, 0b001);
1482   INSN(sbcw, 0b010);
1483   INSN(sbcsw, 0b011);
1484   INSN(adc, 0b100);
1485   INSN(adcs, 0b101);
1486   INSN(sbc,0b110);
1487   INSN(sbcs, 0b111);
1488 
1489 #undef INSN
1490 
1491   // Conditional compare (both kinds)
1492   void conditional_compare(unsigned op, int o2, int o3,
1493                            Register Rn, unsigned imm5, unsigned nzcv,
1494                            unsigned cond) {
1495     f(op, 31, 29);
1496     f(0b11010010, 28, 21);
1497     f(cond, 15, 12);
1498     f(o2, 10);
1499     f(o3, 4);
1500     f(nzcv, 3, 0);
1501     f(imm5, 20, 16), rf(Rn, 5);
1502   }
1503 
1504 #define INSN(NAME, op)                                                  \
1505   void NAME(Register Rn, Register Rm, int imm, Condition cond) {        \
1506     starti;                                                             \
1507     f(0, 11);                                                           \
1508     conditional_compare(op, 0, 0, Rn, (uintptr_t)Rm, imm, cond);        \
1509   }                                                                     \
1510                                                                         \
1511   void NAME(Register Rn, int imm5, int imm, Condition cond) {   \
1512     starti;                                                             \
1513     f(1, 11);                                                           \
1514     conditional_compare(op, 0, 0, Rn, imm5, imm, cond);                 \
1515   }
1516 
1517   INSN(ccmnw, 0b001);
1518   INSN(ccmpw, 0b011);
1519   INSN(ccmn, 0b101);
1520   INSN(ccmp, 0b111);
1521 
1522 #undef INSN
1523 
1524   // Conditional select
1525   void conditional_select(unsigned op, unsigned op2,
1526                           Register Rd, Register Rn, Register Rm,
1527                           unsigned cond) {
1528     starti;
1529     f(op, 31, 29);
1530     f(0b11010100, 28, 21);
1531     f(cond, 15, 12);
1532     f(op2, 11, 10);
1533     zrf(Rm, 16), zrf(Rn, 5), rf(Rd, 0);
1534   }
1535 
1536 #define INSN(NAME, op, op2)                                             \
1537   void NAME(Register Rd, Register Rn, Register Rm, Condition cond) { \
1538     conditional_select(op, op2, Rd, Rn, Rm, cond);                      \
1539   }
1540 
1541   INSN(cselw, 0b000, 0b00);
1542   INSN(csincw, 0b000, 0b01);
1543   INSN(csinvw, 0b010, 0b00);
1544   INSN(csnegw, 0b010, 0b01);
1545   INSN(csel, 0b100, 0b00);
1546   INSN(csinc, 0b100, 0b01);
1547   INSN(csinv, 0b110, 0b00);
1548   INSN(csneg, 0b110, 0b01);
1549 
1550 #undef INSN
1551 
1552   // Data processing
1553   void data_processing(unsigned op29, unsigned opcode,
1554                        Register Rd, Register Rn) {
1555     f(op29, 31, 29), f(0b11010110, 28, 21);
1556     f(opcode, 15, 10);
1557     rf(Rn, 5), rf(Rd, 0);
1558   }
1559 
1560   // (1 source)
1561 #define INSN(NAME, op29, opcode2, opcode)       \
1562   void NAME(Register Rd, Register Rn) {         \
1563     starti;                                     \
1564     f(opcode2, 20, 16);                         \
1565     data_processing(op29, opcode, Rd, Rn);      \
1566   }
1567 
1568   INSN(rbitw,  0b010, 0b00000, 0b00000);
1569   INSN(rev16w, 0b010, 0b00000, 0b00001);
1570   INSN(revw,   0b010, 0b00000, 0b00010);
1571   INSN(clzw,   0b010, 0b00000, 0b00100);
1572   INSN(clsw,   0b010, 0b00000, 0b00101);
1573 
1574   INSN(rbit,   0b110, 0b00000, 0b00000);
1575   INSN(rev16,  0b110, 0b00000, 0b00001);
1576   INSN(rev32,  0b110, 0b00000, 0b00010);
1577   INSN(rev,    0b110, 0b00000, 0b00011);
1578   INSN(clz,    0b110, 0b00000, 0b00100);
1579   INSN(cls,    0b110, 0b00000, 0b00101);
1580 
1581 #undef INSN
1582 
1583   // (2 sources)
1584 #define INSN(NAME, op29, opcode)                        \
1585   void NAME(Register Rd, Register Rn, Register Rm) {    \
1586     starti;                                             \
1587     rf(Rm, 16);                                         \
1588     data_processing(op29, opcode, Rd, Rn);              \
1589   }
1590 
1591   INSN(udivw, 0b000, 0b000010);
1592   INSN(sdivw, 0b000, 0b000011);
1593   INSN(lslvw, 0b000, 0b001000);
1594   INSN(lsrvw, 0b000, 0b001001);
1595   INSN(asrvw, 0b000, 0b001010);
1596   INSN(rorvw, 0b000, 0b001011);
1597 
1598   INSN(udiv, 0b100, 0b000010);
1599   INSN(sdiv, 0b100, 0b000011);
1600   INSN(lslv, 0b100, 0b001000);
1601   INSN(lsrv, 0b100, 0b001001);
1602   INSN(asrv, 0b100, 0b001010);
1603   INSN(rorv, 0b100, 0b001011);
1604 
1605 #undef INSN
1606 
1607   // (3 sources)
1608   void data_processing(unsigned op54, unsigned op31, unsigned o0,
1609                        Register Rd, Register Rn, Register Rm,
1610                        Register Ra) {
1611     starti;
1612     f(op54, 31, 29), f(0b11011, 28, 24);
1613     f(op31, 23, 21), f(o0, 15);
1614     zrf(Rm, 16), zrf(Ra, 10), zrf(Rn, 5), zrf(Rd, 0);
1615   }
1616 
1617 #define INSN(NAME, op54, op31, o0)                                      \
1618   void NAME(Register Rd, Register Rn, Register Rm, Register Ra) {       \
1619     data_processing(op54, op31, o0, Rd, Rn, Rm, Ra);                    \
1620   }
1621 
1622   INSN(maddw, 0b000, 0b000, 0);
1623   INSN(msubw, 0b000, 0b000, 1);
1624   INSN(madd, 0b100, 0b000, 0);
1625   INSN(msub, 0b100, 0b000, 1);
1626   INSN(smaddl, 0b100, 0b001, 0);
1627   INSN(smsubl, 0b100, 0b001, 1);
1628   INSN(umaddl, 0b100, 0b101, 0);
1629   INSN(umsubl, 0b100, 0b101, 1);
1630 
1631 #undef INSN
1632 
1633 #define INSN(NAME, op54, op31, o0)                      \
1634   void NAME(Register Rd, Register Rn, Register Rm) {    \
1635     data_processing(op54, op31, o0, Rd, Rn, Rm, (Register)31);  \
1636   }
1637 
1638   INSN(smulh, 0b100, 0b010, 0);
1639   INSN(umulh, 0b100, 0b110, 0);
1640 
1641 #undef INSN
1642 
1643   // Floating-point data-processing (1 source)
1644   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1645                        FloatRegister Vd, FloatRegister Vn) {
1646     starti;
1647     f(op31, 31, 29);
1648     f(0b11110, 28, 24);
1649     f(type, 23, 22), f(1, 21), f(opcode, 20, 15), f(0b10000, 14, 10);
1650     rf(Vn, 5), rf(Vd, 0);
1651   }
1652 
1653 #define INSN(NAME, op31, type, opcode)                  \
1654   void NAME(FloatRegister Vd, FloatRegister Vn) {       \
1655     data_processing(op31, type, opcode, Vd, Vn);        \
1656   }
1657 
1658 private:
1659   INSN(i_fmovs, 0b000, 0b00, 0b000000);
1660 public:
1661   INSN(fabss, 0b000, 0b00, 0b000001);
1662   INSN(fnegs, 0b000, 0b00, 0b000010);
1663   INSN(fsqrts, 0b000, 0b00, 0b000011);
1664   INSN(fcvts, 0b000, 0b00, 0b000101);   // Single-precision to double-precision
1665 
1666 private:
1667   INSN(i_fmovd, 0b000, 0b01, 0b000000);
1668 public:
1669   INSN(fabsd, 0b000, 0b01, 0b000001);
1670   INSN(fnegd, 0b000, 0b01, 0b000010);
1671   INSN(fsqrtd, 0b000, 0b01, 0b000011);
1672   INSN(fcvtd, 0b000, 0b01, 0b000100);   // Double-precision to single-precision
1673 
1674   void fmovd(FloatRegister Vd, FloatRegister Vn) {
1675     assert(Vd != Vn, "should be");
1676     i_fmovd(Vd, Vn);
1677   }
1678 
1679   void fmovs(FloatRegister Vd, FloatRegister Vn) {
1680     assert(Vd != Vn, "should be");
1681     i_fmovs(Vd, Vn);
1682   }
1683 
1684 #undef INSN
1685 
1686   // Floating-point data-processing (2 source)
1687   void data_processing(unsigned op31, unsigned type, unsigned opcode,
1688                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {
1689     starti;
1690     f(op31, 31, 29);
1691     f(0b11110, 28, 24);
1692     f(type, 23, 22), f(1, 21), f(opcode, 15, 12), f(0b10, 11, 10);
1693     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1694   }
1695 
1696 #define INSN(NAME, op31, type, opcode)                  \
1697   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm) {     \
1698     data_processing(op31, type, opcode, Vd, Vn, Vm);    \
1699   }
1700 
1701   INSN(fmuls, 0b000, 0b00, 0b0000);
1702   INSN(fdivs, 0b000, 0b00, 0b0001);
1703   INSN(fadds, 0b000, 0b00, 0b0010);
1704   INSN(fsubs, 0b000, 0b00, 0b0011);
1705   INSN(fnmuls, 0b000, 0b00, 0b1000);
1706 
1707   INSN(fmuld, 0b000, 0b01, 0b0000);
1708   INSN(fdivd, 0b000, 0b01, 0b0001);
1709   INSN(faddd, 0b000, 0b01, 0b0010);
1710   INSN(fsubd, 0b000, 0b01, 0b0011);
1711   INSN(fnmuld, 0b000, 0b01, 0b1000);
1712 
1713 #undef INSN
1714 
1715    // Floating-point data-processing (3 source)
1716   void data_processing(unsigned op31, unsigned type, unsigned o1, unsigned o0,
1717                        FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,
1718                        FloatRegister Va) {
1719     starti;
1720     f(op31, 31, 29);
1721     f(0b11111, 28, 24);
1722     f(type, 23, 22), f(o1, 21), f(o0, 15);
1723     rf(Vm, 16), rf(Va, 10), rf(Vn, 5), rf(Vd, 0);
1724   }
1725 
1726 #define INSN(NAME, op31, type, o1, o0)                                  \
1727   void NAME(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,       \
1728             FloatRegister Va) {                                         \
1729     data_processing(op31, type, o1, o0, Vd, Vn, Vm, Va);                \
1730   }
1731 
1732   INSN(fmadds, 0b000, 0b00, 0, 0);
1733   INSN(fmsubs, 0b000, 0b00, 0, 1);
1734   INSN(fnmadds, 0b000, 0b00, 1, 0);
1735   INSN(fnmsubs, 0b000, 0b00, 1, 1);
1736 
1737   INSN(fmaddd, 0b000, 0b01, 0, 0);
1738   INSN(fmsubd, 0b000, 0b01, 0, 1);
1739   INSN(fnmaddd, 0b000, 0b01, 1, 0);
1740   INSN(fnmsub, 0b000, 0b01, 1, 1);
1741 
1742 #undef INSN
1743 
1744    // Floating-point conditional select
1745   void fp_conditional_select(unsigned op31, unsigned type,
1746                              unsigned op1, unsigned op2,
1747                              Condition cond, FloatRegister Vd,
1748                              FloatRegister Vn, FloatRegister Vm) {
1749     starti;
1750     f(op31, 31, 29);
1751     f(0b11110, 28, 24);
1752     f(type, 23, 22);
1753     f(op1, 21, 21);
1754     f(op2, 11, 10);
1755     f(cond, 15, 12);
1756     rf(Vm, 16), rf(Vn, 5), rf(Vd, 0);
1757   }
1758 
1759 #define INSN(NAME, op31, type, op1, op2)                                \
1760   void NAME(FloatRegister Vd, FloatRegister Vn,                         \
1761             FloatRegister Vm, Condition cond) {                         \
1762     fp_conditional_select(op31, type, op1, op2, cond, Vd, Vn, Vm);      \
1763   }
1764 
1765   INSN(fcsels, 0b000, 0b00, 0b1, 0b11);
1766   INSN(fcseld, 0b000, 0b01, 0b1, 0b11);
1767 
1768 #undef INSN
1769 
1770    // Floating-point<->integer conversions
1771   void float_int_convert(unsigned op31, unsigned type,
1772                          unsigned rmode, unsigned opcode,
1773                          Register Rd, Register Rn) {
1774     starti;
1775     f(op31, 31, 29);
1776     f(0b11110, 28, 24);
1777     f(type, 23, 22), f(1, 21), f(rmode, 20, 19);
1778     f(opcode, 18, 16), f(0b000000, 15, 10);
1779     zrf(Rn, 5), zrf(Rd, 0);
1780   }
1781 
1782 #define INSN(NAME, op31, type, rmode, opcode)                           \
1783   void NAME(Register Rd, FloatRegister Vn) {                            \
1784     float_int_convert(op31, type, rmode, opcode, Rd, (Register)Vn);     \
1785   }
1786 
1787   INSN(fcvtzsw, 0b000, 0b00, 0b11, 0b000);
1788   INSN(fcvtzs,  0b100, 0b00, 0b11, 0b000);
1789   INSN(fcvtzdw, 0b000, 0b01, 0b11, 0b000);
1790   INSN(fcvtzd,  0b100, 0b01, 0b11, 0b000);
1791 
1792   INSN(fmovs, 0b000, 0b00, 0b00, 0b110);
1793   INSN(fmovd, 0b100, 0b01, 0b00, 0b110);
1794 
1795   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b110);
1796 
1797 #undef INSN
1798 
1799 #define INSN(NAME, op31, type, rmode, opcode)                           \
1800   void NAME(FloatRegister Vd, Register Rn) {                            \
1801     float_int_convert(op31, type, rmode, opcode, (Register)Vd, Rn);     \
1802   }
1803 
1804   INSN(fmovs, 0b000, 0b00, 0b00, 0b111);
1805   INSN(fmovd, 0b100, 0b01, 0b00, 0b111);
1806 
1807   INSN(scvtfws, 0b000, 0b00, 0b00, 0b010);
1808   INSN(scvtfs,  0b100, 0b00, 0b00, 0b010);
1809   INSN(scvtfwd, 0b000, 0b01, 0b00, 0b010);
1810   INSN(scvtfd,  0b100, 0b01, 0b00, 0b010);
1811 
1812   // INSN(fmovhid, 0b100, 0b10, 0b01, 0b111);
1813 
1814 #undef INSN
1815 
1816   // Floating-point compare
1817   void float_compare(unsigned op31, unsigned type,
1818                      unsigned op, unsigned op2,
1819                      FloatRegister Vn, FloatRegister Vm = (FloatRegister)0) {
1820     starti;
1821     f(op31, 31, 29);
1822     f(0b11110, 28, 24);
1823     f(type, 23, 22), f(1, 21);
1824     f(op, 15, 14), f(0b1000, 13, 10), f(op2, 4, 0);
1825     rf(Vn, 5), rf(Vm, 16);
1826   }
1827 
1828 
1829 #define INSN(NAME, op31, type, op, op2)                 \
1830   void NAME(FloatRegister Vn, FloatRegister Vm) {       \
1831     float_compare(op31, type, op, op2, Vn, Vm);         \
1832   }
1833 
1834 #define INSN1(NAME, op31, type, op, op2)        \
1835   void NAME(FloatRegister Vn, double d) {       \
1836     assert_cond(d == 0.0);                      \
1837     float_compare(op31, type, op, op2, Vn);     \
1838   }
1839 
1840   INSN(fcmps, 0b000, 0b00, 0b00, 0b00000);
1841   INSN1(fcmps, 0b000, 0b00, 0b00, 0b01000);
1842   // INSN(fcmpes, 0b000, 0b00, 0b00, 0b10000);
1843   // INSN1(fcmpes, 0b000, 0b00, 0b00, 0b11000);
1844 
1845   INSN(fcmpd, 0b000,   0b01, 0b00, 0b00000);
1846   INSN1(fcmpd, 0b000,  0b01, 0b00, 0b01000);
1847   // INSN(fcmped, 0b000,  0b01, 0b00, 0b10000);
1848   // INSN1(fcmped, 0b000, 0b01, 0b00, 0b11000);
1849 
1850 #undef INSN
1851 #undef INSN1
1852 
1853   // Floating-point Move (immediate)
1854 private:
1855   unsigned pack(double value);
1856 
1857   void fmov_imm(FloatRegister Vn, double value, unsigned size) {
1858     starti;
1859     f(0b00011110, 31, 24), f(size, 23, 22), f(1, 21);
1860     f(pack(value), 20, 13), f(0b10000000, 12, 5);
1861     rf(Vn, 0);
1862   }
1863 
1864 public:
1865 
1866   void fmovs(FloatRegister Vn, double value) {
1867     if (value)
1868       fmov_imm(Vn, value, 0b00);
1869     else
1870       fmovs(Vn, zr);
1871   }
1872   void fmovd(FloatRegister Vn, double value) {
1873     if (value)
1874       fmov_imm(Vn, value, 0b01);
1875     else
1876       fmovd(Vn, zr);
1877   }
1878 
1879 /* SIMD extensions
1880  *
1881  * We just use FloatRegister in the following. They are exactly the same
1882  * as SIMD registers.
1883  */
1884  public:
1885 
1886   enum SIMD_Arrangement {
1887        T8B, T16B, T4H, T8H, T2S, T4S, T1D, T2D
1888   };
1889 
1890   enum SIMD_RegVariant {
1891        B, H, S, D, Q
1892   };
1893 
1894 #define INSN(NAME, op)                                            \
1895   void NAME(FloatRegister Rt, SIMD_RegVariant T, const Address &adr) {   \
1896     ld_st2((Register)Rt, adr, (int)T & 3, op + ((T==Q) ? 0b10:0b00), 1); \
1897   }                                                                      \
1898 
1899   INSN(ldr, 1);
1900   INSN(str, 0);
1901 
1902 #undef INSN
1903 
1904  private:
1905 
1906   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn, int op1, int op2) {
1907     starti;
1908     f(0,31), f((int)T & 1, 30);
1909     f(op1, 29, 21), f(0, 20, 16), f(op2, 15, 12);
1910     f((int)T >> 1, 11, 10), rf(Xn, 5), rf(Vt, 0);
1911   }
1912   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
1913              int imm, int op1, int op2) {
1914     starti;
1915     f(0,31), f((int)T & 1, 30);
1916     f(op1 | 0b100, 29, 21), f(0b11111, 20, 16), f(op2, 15, 12);
1917     f((int)T >> 1, 11, 10), rf(Xn, 5), rf(Vt, 0);
1918   }
1919   void ld_st(FloatRegister Vt, SIMD_Arrangement T, Register Xn,
1920              Register Xm, int op1, int op2) {
1921     starti;
1922     f(0,31), f((int)T & 1, 30);
1923     f(op1 | 0b100, 29, 21), rf(Xm, 16), f(op2, 15, 12);
1924     f((int)T >> 1, 11, 10), rf(Xn, 5), rf(Vt, 0);
1925   }
1926 
1927  void ld_st(FloatRegister Vt, SIMD_Arrangement T, Address a, int op1, int op2) {
1928    switch (a.getMode()) {
1929    case Address::base_plus_offset:
1930      guarantee(a.offset() == 0, "no offset allowed here");
1931      ld_st(Vt, T, a.base(), op1, op2);
1932      break;
1933    case Address::post:
1934      ld_st(Vt, T, a.base(), a.offset(), op1, op2);
1935      break;
1936    case Address::base_plus_offset_reg:
1937      ld_st(Vt, T, a.base(), a.index(), op1, op2);
1938      break;
1939    default:
1940      ShouldNotReachHere();
1941    }
1942  }
1943 
1944  public:
1945 
1946 #define INSN1(NAME, op1, op2)                                   \
1947   void NAME(FloatRegister Vt, SIMD_Arrangement T, const Address &a) {       \
1948    ld_st(Vt, T, a, op1, op2);                                           \
1949  }
1950 
1951 #define INSN2(NAME, op1, op2)                                           \
1952   void NAME(FloatRegister Vt, FloatRegister Vt2, SIMD_Arrangement T, const Address &a) { \
1953     assert(Vt->successor() == Vt2, "Registers must be ordered");     \
1954     ld_st(Vt, T, a, op1, op2);                                          \
1955   }
1956 
1957 #define INSN3(NAME, op1, op2)                                           \
1958   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
1959             SIMD_Arrangement T, const Address &a) {                 \
1960     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3,             \
1961            "Registers must be ordered");                                \
1962     ld_st(Vt, T, a, op1, op2);                                          \
1963   }
1964 
1965 #define INSN4(NAME, op1, op2)                                           \
1966   void NAME(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3,     \
1967             FloatRegister Vt4, SIMD_Arrangement T, const Address &a) {      \
1968     assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 &&           \
1969            Vt3->successor() == Vt4, "Registers must be ordered");    \
1970     ld_st(Vt, T, a, op1, op2);                                          \
1971   }
1972 
1973   INSN1(ld1,  0b001100010, 0b0111);
1974   INSN2(ld1,  0b001100010, 0b1010);
1975   INSN3(ld1,  0b001100010, 0b0110);
1976   INSN4(ld1,  0b001100010, 0b0010);
1977 
1978   INSN2(ld2,  0b001100010, 0b1000);
1979   INSN3(ld3,  0b001100010, 0b0100);
1980   INSN4(ld4,  0b001100010, 0b0000);
1981 
1982   INSN1(st1,  0b001100000, 0b0111);
1983   INSN2(st1,  0b001100000, 0b1010);
1984   INSN3(st1,  0b001100000, 0b0110);
1985   INSN4(st1,  0b001100000, 0b0010);
1986 
1987   INSN2(st2,  0b001100000, 0b1000);
1988   INSN3(st3,  0b001100000, 0b0100);
1989   INSN4(st4,  0b001100000, 0b0000);
1990 
1991   INSN1(ld1r, 0b001101010, 0b1100);
1992   INSN2(ld2r, 0b001101011, 0b1100);
1993   INSN3(ld3r, 0b001101010, 0b1110);
1994   INSN4(ld4r, 0b001101011, 0b1110);
1995 
1996 #undef INSN1
1997 #undef INSN2
1998 #undef INSN3
1999 #undef INSN4
2000 
2001 #define INSN(NAME, opc)                                                                 \
2002   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2003     starti;                                                                             \
2004     assert(T == T8B || T == T16B, "must be T8B or T16B");                               \
2005     f(0, 31), f((int)T & 1, 30), f(opc, 29, 21);                                        \
2006     rf(Vm, 16), f(0b000111, 15, 10), rf(Vn, 5), rf(Vd, 0);                              \
2007   }
2008 
2009   INSN(eor,  0b101110001);
2010   INSN(orr,  0b001110101);
2011   INSN(andr, 0b001110001);
2012   INSN(bic,  0b001110011);
2013   INSN(bif,  0b101110111);
2014   INSN(bit,  0b101110101);
2015   INSN(bsl,  0b101110011);
2016   INSN(orn,  0b001110111);
2017 
2018 #undef INSN
2019 
2020 #define INSN(NAME, opc, opc2)                                                                 \
2021   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2022     starti;                                                                             \
2023     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2024     f((int)T >> 1, 23, 22), f(1, 21), rf(Vm, 16), f(opc2, 15, 10);                      \
2025     rf(Vn, 5), rf(Vd, 0);                                                               \
2026   }
2027 
2028   INSN(addv, 0, 0b100001);
2029   INSN(subv, 1, 0b100001);
2030   INSN(mulv, 0, 0b100111);
2031   INSN(sshl, 0, 0b010001);
2032   INSN(ushl, 1, 0b010001);
2033 
2034 #undef INSN
2035 
2036 #define INSN(NAME, opc, opc2) \
2037   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2038     starti;                                                                             \
2039     f(0, 31), f((int)T & 1, 30), f(opc, 29), f(0b01110, 28, 24);                        \
2040     f((int)T >> 1, 23, 22), f(opc2, 21, 10);                                            \
2041     rf(Vn, 5), rf(Vd, 0);                                                               \
2042   }
2043 
2044   INSN(absr,  0, 0b100000101110);
2045   INSN(negr,  1, 0b100000101110);
2046   INSN(notr,  1, 0b100000010110);
2047   INSN(addv,  0, 0b110001101110);
2048   INSN(cls,   0, 0b100000010010);
2049   INSN(clz,   1, 0b100000010010);
2050   INSN(cnt,   0, 0b100000010110);
2051 
2052 #undef INSN
2053 
2054 #define INSN(NAME, op0, cmode0) \
2055   void NAME(FloatRegister Vd, SIMD_Arrangement T, unsigned imm8, unsigned lsl = 0) {   \
2056     unsigned cmode = cmode0;                                                           \
2057     unsigned op = op0;                                                                 \
2058     starti;                                                                            \
2059     assert(lsl == 0 ||                                                                 \
2060            ((T == T4H || T == T8H) && lsl == 8) ||                                     \
2061            ((T == T2S || T == T4S) && ((lsl >> 3) < 4)), "invalid shift");             \
2062     cmode |= lsl >> 2;                                                                 \
2063     if (T == T4H || T == T8H) cmode |= 0b1000;                                         \
2064     if (!(T == T4H || T == T8H || T == T2S || T == T4S)) {                             \
2065       assert(op == 0 && cmode0 == 0, "must be MOVI");                                  \
2066       cmode = 0b1110;                                                                  \
2067       if (T == T1D || T == T2D) op = 1;                                                \
2068     }                                                                                  \
2069     f(0, 31), f((int)T & 1, 30), f(op, 29), f(0b0111100000, 28, 19);                   \
2070     f(imm8 >> 5, 18, 16), f(cmode, 15, 12), f(0x01, 11, 10), f(imm8 & 0b11111, 9, 5);  \
2071     rf(Vd, 0);                                                                         \
2072   }
2073 
2074   INSN(movi, 0, 0);
2075   INSN(orri, 0, 1);
2076   INSN(mvni, 1, 0);
2077   INSN(bici, 1, 1);
2078 
2079 #undef INSN
2080 
2081 #define INSN(NAME, op1, op2, op3) \
2082   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2083     starti;                                                                             \
2084     assert(T == T2S || T == T4S || T == T2D, "invalid arrangement");                    \
2085     f(0, 31), f((int)T & 1, 30), f(op1, 29), f(0b01110, 28, 24), f(op2, 23);            \
2086     f(T==T2D ? 1:0, 22); f(1, 21), rf(Vm, 16), f(op3, 15, 10), rf(Vn, 5), rf(Vd, 0);    \
2087   }
2088 
2089   INSN(fadd, 0, 0, 0b110101);
2090   INSN(fdiv, 1, 0, 0b111111);
2091   INSN(fmul, 1, 0, 0b110111);
2092   INSN(fsub, 0, 1, 0b110101);
2093 
2094 #undef INSN
2095 
2096 #define INSN(NAME, opc)                                                                 \
2097   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, FloatRegister Vm) { \
2098     starti;                                                                             \
2099     assert(T == T4S, "arrangement must be T4S");                                        \
2100     f(0b01011110000, 31, 21), rf(Vm, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);         \
2101   }
2102 
2103   INSN(sha1c,     0b000000);
2104   INSN(sha1m,     0b001000);
2105   INSN(sha1p,     0b000100);
2106   INSN(sha1su0,   0b001100);
2107   INSN(sha256h2,  0b010100);
2108   INSN(sha256h,   0b010000);
2109   INSN(sha256su1, 0b011000);
2110 
2111 #undef INSN
2112 
2113 #define INSN(NAME, opc)                                                                 \
2114   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {                   \
2115     starti;                                                                             \
2116     assert(T == T4S, "arrangement must be T4S");                                        \
2117     f(0b0101111000101000, 31, 16), f(opc, 15, 10), rf(Vn, 5), rf(Vd, 0);                \
2118   }
2119 
2120   INSN(sha1h,     0b000010);
2121   INSN(sha1su1,   0b000110);
2122   INSN(sha256su0, 0b001010);
2123 
2124 #undef INSN
2125 
2126 #define INSN(NAME, opc)                           \
2127   void NAME(FloatRegister Vd, FloatRegister Vn) { \
2128     starti;                                       \
2129     f(opc, 31, 10), rf(Vn, 5), rf(Vd, 0);         \
2130   }
2131 
2132   INSN(aese, 0b0100111000101000010010);
2133   INSN(aesd, 0b0100111000101000010110);
2134   INSN(aesmc, 0b0100111000101000011010);
2135   INSN(aesimc, 0b0100111000101000011110);
2136 
2137 #undef INSN
2138 
2139   void ins(FloatRegister Vd, SIMD_RegVariant T, FloatRegister Vn, int didx, int sidx) {
2140     starti;
2141     assert(T != Q, "invalid register variant");
2142     f(0b01101110000, 31, 21), f(((didx<<1)|1)<<(int)T, 20, 16), f(0, 15);
2143     f(sidx<<(int)T, 14, 11), f(1, 10), rf(Vn, 5), rf(Vd, 0);
2144   }
2145 
2146   void umov(Register Rd, FloatRegister Vn, SIMD_RegVariant T, int idx) {
2147     starti;
2148     f(0, 31), f(T==D ? 1:0, 30), f(0b001110000, 29, 21);
2149     f(((idx<<1)|1)<<(int)T, 20, 16), f(0b001111, 15, 10);
2150     rf(Vn, 5), rf(Rd, 0);
2151   }
2152 
2153 #define INSN(NAME, opc, opc2) \
2154   void NAME(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int shift){         \
2155     starti;                                                                             \
2156     /* The encodings for the immh:immb fields (bits 22:16) are                          \
2157      *   0001 xxx       8B/16B, shift = xxx                                             \
2158      *   001x xxx       4H/8H,  shift = xxxx                                            \
2159      *   01xx xxx       2S/4S,  shift = xxxxx                                           \
2160      *   1xxx xxx       1D/2D,  shift = xxxxxx (1D is RESERVED)                         \
2161      */                                                                                 \
2162     assert((1 << ((T>>1)+3)) > shift, "Invalid Shift value");                           \
2163     f(0, 31), f(T & 1, 30), f(opc, 29), f(0b011110, 28, 23),                            \
2164     f((1 << ((T>>1)+3))|shift, 22, 16); f(opc2, 15, 10), rf(Vn, 5), rf(Vd, 0);          \
2165   }
2166 
2167   INSN(shl,  0, 0b010101);
2168   INSN(sshr, 0, 0b000001);
2169   INSN(ushr, 1, 0b000001);
2170 
2171 #undef INSN
2172 
2173   void ushll(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, SIMD_Arrangement Tb, int shift) {
2174     starti;
2175     /* The encodings for the immh:immb fields (bits 22:16) are
2176      *   0001 xxx       8H, 8B/16b shift = xxx
2177      *   001x xxx       4S, 4H/8H  shift = xxxx
2178      *   01xx xxx       2D, 2S/4S  shift = xxxxx
2179      *   1xxx xxx       RESERVED
2180      */
2181     assert((Tb >> 1) + 1 == (Ta >> 1), "Incompatible arrangement");
2182     assert((1 << ((Tb>>1)+3)) > shift, "Invalid shift value");
2183     f(0, 31), f(Tb & 1, 30), f(0b1011110, 29, 23), f((1 << ((Tb>>1)+3))|shift, 22, 16);
2184     f(0b101001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2185   }
2186   void ushll2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn,  SIMD_Arrangement Tb, int shift) {
2187     ushll(Vd, Ta, Vn, Tb, shift);
2188   }
2189 
2190   void uzp1(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,  SIMD_Arrangement T, int op = 0){
2191     starti;
2192     f(0, 31), f((T & 0x1), 30), f(0b001110, 29, 24), f((T >> 1), 23, 22), f(0, 21);
2193     rf(Vm, 16), f(0, 15), f(op, 14), f(0b0110, 13, 10), rf(Vn, 5), rf(Vd, 0);
2194   }
2195   void uzp2(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm,  SIMD_Arrangement T){
2196     uzp1(Vd, Vn, Vm, T, 1);
2197   }
2198  
2199   // Move from general purpose register
2200   //   mov  Vd.T[index], Rn
2201   void mov(FloatRegister Vd, SIMD_Arrangement T, int index, Register Xn) {
2202     starti;
2203     f(0b01001110000, 31, 21), f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16); 
2204     f(0b000111, 15, 10), rf(Xn, 5), rf(Vd, 0);
2205   }
2206 
2207   // Move to general purpose register
2208   //   mov  Rd, Vn.T[index]
2209   void mov(Register Xd, FloatRegister Vn, SIMD_Arrangement T, int index) {
2210     starti;
2211     f(0, 31), f((T >= T1D) ? 1:0, 30), f(0b001110000, 29, 21);
2212     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2213     f(0b001111, 15, 10), rf(Vn, 5), rf(Xd, 0);
2214   }
2215 
2216   // We do not handle the 1Q arrangement.
2217   void pmull(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2218     starti;
2219     assert(Ta == T8H && (Tb == T8B || Tb == T16B), "Invalid Size specifier");
2220     f(0, 31), f(Tb & 1, 30), f(0b001110001, 29, 21), rf(Vm, 16), f(0b111000, 15, 10);
2221     rf(Vn, 5), rf(Vd, 0);
2222   }
2223   void pmull2(FloatRegister Vd, SIMD_Arrangement Ta, FloatRegister Vn, FloatRegister Vm, SIMD_Arrangement Tb) {
2224     pmull(Vd, Ta, Vn, Vm, Tb);
2225   }
2226 
2227   void uqxtn(FloatRegister Vd, SIMD_Arrangement Tb, FloatRegister Vn, SIMD_Arrangement Ta) {
2228     starti;
2229     int size_b = (int)Tb >> 1;
2230     int size_a = (int)Ta >> 1;
2231     assert(size_b < 3 && size_b == size_a - 1, "Invalid size specifier");
2232     f(0, 31), f(Tb & 1, 30), f(0b101110, 29, 24), f(size_b, 23, 22);
2233     f(0b100001010010, 21, 10), rf(Vn, 5), rf(Vd, 0);
2234   }
2235 
2236   void rev32(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn)
2237   {
2238     starti;
2239     assert(T <= T8H, "must be one of T8B, T16B, T4H, T8H");
2240     f(0, 31), f((int)T & 1, 30), f(0b101110, 29, 24);
2241     f(T <= T16B ? 0b00 : 0b01, 23, 22), f(0b100000000010, 21, 10);
2242     rf(Vn, 5), rf(Vd, 0);
2243   }
2244 
2245   void dup(FloatRegister Vd, SIMD_Arrangement T, Register Xs)
2246   {
2247     starti;
2248     assert(T != T1D, "reserved encoding");
2249     f(0,31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2250     f((1 << (T >> 1)), 20, 16), f(0b000011, 15, 10), rf(Xs, 5), rf(Vd, 0);
2251   }
2252 
2253   void dup(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn, int index = 0)
2254   {
2255     starti;
2256     assert(T != T1D, "reserved encoding");
2257     f(0, 31), f((int)T & 1, 30), f(0b001110000, 29, 21);
2258     f(((1 << (T >> 1)) | (index << ((T >> 1) + 1))), 20, 16);
2259     f(0b000001, 15, 10), rf(Vn, 5), rf(Vd, 0);
2260   }
2261 
2262   // CRC32 instructions
2263 #define INSN(NAME, sf, sz)                                                \
2264   void NAME(Register Rd, Register Rn, Register Rm) {                      \
2265     starti;                                                               \
2266     f(sf, 31), f(0b0011010110, 30, 21), f(0b0100, 15, 12), f(sz, 11, 10); \
2267     rf(Rm, 16), rf(Rn, 5), rf(Rd, 0);                                     \
2268   }
2269 
2270   INSN(crc32b, 0, 0b00);
2271   INSN(crc32h, 0, 0b01);
2272   INSN(crc32w, 0, 0b10);
2273   INSN(crc32x, 1, 0b11);
2274 
2275 #undef INSN
2276 
2277 
2278 /* Simulator extensions to the ISA
2279 
2280    haltsim
2281 
2282    takes no arguments, causes the sim to enter a debug break and then
2283    return from the simulator run() call with STATUS_HALT? The linking
2284    code will call fatal() when it sees STATUS_HALT.
2285 
2286    blrt Xn, Wm
2287    blrt Xn, #gpargs, #fpargs, #type
2288    Xn holds the 64 bit x86 branch_address
2289    call format is encoded either as immediate data in the call
2290    or in register Wm. In the latter case
2291      Wm[13..6] = #gpargs,
2292      Wm[5..2] = #fpargs,
2293      Wm[1,0] = #type
2294 
2295    calls the x86 code address 'branch_address' supplied in Xn passing
2296    arguments taken from the general and floating point registers according
2297    to the supplied counts 'gpargs' and 'fpargs'. may return a result in r0
2298    or v0 according to the the return type #type' where
2299 
2300    address branch_address;
2301    uimm4 gpargs;
2302    uimm4 fpargs;
2303    enum ReturnType type;
2304 
2305    enum ReturnType
2306      {
2307        void_ret = 0,
2308        int_ret = 1,
2309        long_ret = 1,
2310        obj_ret = 1, // i.e. same as long
2311        float_ret = 2,
2312        double_ret = 3
2313      }
2314 
2315    notify
2316 
2317    notifies the simulator of a transfer of control. instr[14:0]
2318    identifies the type of change of control.
2319 
2320    0 ==> initial entry to a method.
2321 
2322    1 ==> return into a method from a submethod call.
2323 
2324    2 ==> exit out of Java method code.
2325 
2326    3 ==> start execution for a new bytecode.
2327 
2328    in cases 1 and 2 the simulator is expected to use a JVM callback to
2329    identify the name of the specific method being executed. in case 4
2330    the simulator is expected to use a JVM callback to identify the
2331    bytecode index.
2332 
2333    Instruction encodings
2334    ---------------------
2335 
2336    These are encoded in the space with instr[28:25] = 00 which is
2337    unallocated. Encodings are
2338 
2339                      10987654321098765432109876543210
2340    PSEUDO_HALT   = 0x11100000000000000000000000000000
2341    PSEUDO_BLRT  = 0x11000000000000000_______________
2342    PSEUDO_BLRTR = 0x1100000000000000100000__________
2343    PSEUDO_NOTIFY = 0x10100000000000000_______________
2344 
2345    instr[31,29] = op1 : 111 ==> HALT, 110 ==> BLRT/BLRTR, 101 ==> NOTIFY
2346 
2347    for BLRT
2348      instr[14,11] = #gpargs, instr[10,7] = #fpargs
2349      instr[6,5] = #type, instr[4,0] = Rn
2350    for BLRTR
2351      instr[9,5] = Rm, instr[4,0] = Rn
2352    for NOTIFY
2353      instr[14:0] = type : 0 ==> entry, 1 ==> reentry, 2 ==> exit, 3 ==> bcstart
2354 */
2355 
2356   enum NotifyType { method_entry, method_reentry, method_exit, bytecode_start };
2357 
2358   virtual void notify(int type) {
2359     if (UseBuiltinSim) {
2360       starti;
2361       //  109
2362       f(0b101, 31, 29);
2363       //  87654321098765
2364       f(0b00000000000000, 28, 15);
2365       f(type, 14, 0);
2366     }
2367   }
2368 
2369   void blrt(Register Rn, int gpargs, int fpargs, int type) {
2370     if (UseBuiltinSim) {
2371       starti;
2372       f(0b110, 31 ,29);
2373       f(0b00, 28, 25);
2374       //  4321098765
2375       f(0b0000000000, 24, 15);
2376       f(gpargs, 14, 11);
2377       f(fpargs, 10, 7);
2378       f(type, 6, 5);
2379       rf(Rn, 0);
2380     } else {
2381       blr(Rn);
2382     }
2383   }
2384 
2385   void blrt(Register Rn, Register Rm) {
2386     if (UseBuiltinSim) {
2387       starti;
2388       f(0b110, 31 ,29);
2389       f(0b00, 28, 25);
2390       //  4321098765
2391       f(0b0000000001, 24, 15);
2392       //  43210
2393       f(0b00000, 14, 10);
2394       rf(Rm, 5);
2395       rf(Rn, 0);
2396     } else {
2397       blr(Rn);
2398     }
2399   }
2400 
2401   void haltsim() {
2402     starti;
2403     f(0b111, 31 ,29);
2404     f(0b00, 28, 27);
2405     //  654321098765432109876543210
2406     f(0b000000000000000000000000000, 26, 0);
2407   }
2408 
2409   Assembler(CodeBuffer* code) : AbstractAssembler(code) {
2410   }
2411 
2412   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
2413                                                 Register tmp,
2414                                                 int offset) {
2415   }
2416 
2417   // Stack overflow checking
2418   virtual void bang_stack_with_offset(int offset);
2419 
2420   static bool operand_valid_for_logical_immediate(bool is32, uint64_t imm);
2421   static bool operand_valid_for_add_sub_immediate(long imm);
2422   static bool operand_valid_for_float_immediate(double imm);
2423 
2424   void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0);
2425   void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0);
2426 };
2427 
2428 inline Assembler::Membar_mask_bits operator|(Assembler::Membar_mask_bits a,
2429                                              Assembler::Membar_mask_bits b) {
2430   return Assembler::Membar_mask_bits(unsigned(a)|unsigned(b));
2431 }
2432 
2433 Instruction_aarch64::~Instruction_aarch64() {
2434   assem->emit();
2435 }
2436 
2437 #undef starti
2438 
2439 // Invert a condition
2440 inline const Assembler::Condition operator~(const Assembler::Condition cond) {
2441   return Assembler::Condition(int(cond) ^ 1);
2442 }
2443 
2444 class BiasedLockingCounters;
2445 
2446 extern "C" void das(uint64_t start, int len);
2447 
2448 #endif // CPU_AARCH64_VM_ASSEMBLER_AARCH64_HPP