1 /*
   2  * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciInstance.hpp"
  34 #include "ci/ciObjArray.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 #include "runtime/stubRoutines.hpp"
  37 #include "utilities/bitMap.inline.hpp"
  38 #include "utilities/macros.hpp"
  39 #if INCLUDE_ALL_GCS
  40 #include "gc_implementation/g1/heapRegion.hpp"
  41 #endif // INCLUDE_ALL_GCS
  42 
  43 #ifdef ASSERT
  44 #define __ gen()->lir(__FILE__, __LINE__)->
  45 #else
  46 #define __ gen()->lir()->
  47 #endif
  48 
  49 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
  50 #ifdef ARM
  51 #define PATCHED_ADDR  (204)
  52 #else
  53 #define PATCHED_ADDR  (max_jint)
  54 #endif
  55 
  56 void PhiResolverState::reset(int max_vregs) {
  57   // Initialize array sizes
  58   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  59   _virtual_operands.trunc_to(0);
  60   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  61   _other_operands.trunc_to(0);
  62   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  63   _vreg_table.trunc_to(0);
  64 }
  65 
  66 
  67 
  68 //--------------------------------------------------------------
  69 // PhiResolver
  70 
  71 // Resolves cycles:
  72 //
  73 //  r1 := r2  becomes  temp := r1
  74 //  r2 := r1           r1 := r2
  75 //                     r2 := temp
  76 // and orders moves:
  77 //
  78 //  r2 := r3  becomes  r1 := r2
  79 //  r1 := r2           r2 := r3
  80 
  81 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  82  : _gen(gen)
  83  , _state(gen->resolver_state())
  84  , _temp(LIR_OprFact::illegalOpr)
  85 {
  86   // reinitialize the shared state arrays
  87   _state.reset(max_vregs);
  88 }
  89 
  90 
  91 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  92   assert(src->is_valid(), "");
  93   assert(dest->is_valid(), "");
  94   __ move(src, dest);
  95 }
  96 
  97 
  98 void PhiResolver::move_temp_to(LIR_Opr dest) {
  99   assert(_temp->is_valid(), "");
 100   emit_move(_temp, dest);
 101   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 102 }
 103 
 104 
 105 void PhiResolver::move_to_temp(LIR_Opr src) {
 106   assert(_temp->is_illegal(), "");
 107   _temp = _gen->new_register(src->type());
 108   emit_move(src, _temp);
 109 }
 110 
 111 
 112 // Traverse assignment graph in depth first order and generate moves in post order
 113 // ie. two assignments: b := c, a := b start with node c:
 114 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 115 // Generates moves in this order: move b to a and move c to b
 116 // ie. cycle a := b, b := a start with node a
 117 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 118 // Generates moves in this order: move b to temp, move a to b, move temp to a
 119 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 120   if (!dest->visited()) {
 121     dest->set_visited();
 122     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 123       move(dest, dest->destination_at(i));
 124     }
 125   } else if (!dest->start_node()) {
 126     // cylce in graph detected
 127     assert(_loop == NULL, "only one loop valid!");
 128     _loop = dest;
 129     move_to_temp(src->operand());
 130     return;
 131   } // else dest is a start node
 132 
 133   if (!dest->assigned()) {
 134     if (_loop == dest) {
 135       move_temp_to(dest->operand());
 136       dest->set_assigned();
 137     } else if (src != NULL) {
 138       emit_move(src->operand(), dest->operand());
 139       dest->set_assigned();
 140     }
 141   }
 142 }
 143 
 144 
 145 PhiResolver::~PhiResolver() {
 146   int i;
 147   // resolve any cycles in moves from and to virtual registers
 148   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 149     ResolveNode* node = virtual_operands()[i];
 150     if (!node->visited()) {
 151       _loop = NULL;
 152       move(NULL, node);
 153       node->set_start_node();
 154       assert(_temp->is_illegal(), "move_temp_to() call missing");
 155     }
 156   }
 157 
 158   // generate move for move from non virtual register to abitrary destination
 159   for (i = other_operands().length() - 1; i >= 0; i --) {
 160     ResolveNode* node = other_operands()[i];
 161     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 162       emit_move(node->operand(), node->destination_at(j)->operand());
 163     }
 164   }
 165 }
 166 
 167 
 168 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 169   ResolveNode* node;
 170   if (opr->is_virtual()) {
 171     int vreg_num = opr->vreg_number();
 172     node = vreg_table().at_grow(vreg_num, NULL);
 173     assert(node == NULL || node->operand() == opr, "");
 174     if (node == NULL) {
 175       node = new ResolveNode(opr);
 176       vreg_table()[vreg_num] = node;
 177     }
 178     // Make sure that all virtual operands show up in the list when
 179     // they are used as the source of a move.
 180     if (source && !virtual_operands().contains(node)) {
 181       virtual_operands().append(node);
 182     }
 183   } else {
 184     assert(source, "");
 185     node = new ResolveNode(opr);
 186     other_operands().append(node);
 187   }
 188   return node;
 189 }
 190 
 191 
 192 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 193   assert(dest->is_virtual(), "");
 194   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 195   assert(src->is_valid(), "");
 196   assert(dest->is_valid(), "");
 197   ResolveNode* source = source_node(src);
 198   source->append(destination_node(dest));
 199 }
 200 
 201 
 202 //--------------------------------------------------------------
 203 // LIRItem
 204 
 205 void LIRItem::set_result(LIR_Opr opr) {
 206   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 207   value()->set_operand(opr);
 208 
 209   if (opr->is_virtual()) {
 210     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 211   }
 212 
 213   _result = opr;
 214 }
 215 
 216 void LIRItem::load_item() {
 217   if (result()->is_illegal()) {
 218     // update the items result
 219     _result = value()->operand();
 220   }
 221   if (!result()->is_register()) {
 222     LIR_Opr reg = _gen->new_register(value()->type());
 223     __ move(result(), reg);
 224     if (result()->is_constant()) {
 225       _result = reg;
 226     } else {
 227       set_result(reg);
 228     }
 229   }
 230 }
 231 
 232 
 233 void LIRItem::load_for_store(BasicType type) {
 234   if (_gen->can_store_as_constant(value(), type)) {
 235     _result = value()->operand();
 236     if (!_result->is_constant()) {
 237       _result = LIR_OprFact::value_type(value()->type());
 238     }
 239   } else if (type == T_BYTE || type == T_BOOLEAN) {
 240     load_byte_item();
 241   } else {
 242     load_item();
 243   }
 244 }
 245 
 246 void LIRItem::load_item_force(LIR_Opr reg) {
 247   LIR_Opr r = result();
 248   if (r != reg) {
 249 #if !defined(ARM) && !defined(E500V2)
 250     if (r->type() != reg->type()) {
 251       // moves between different types need an intervening spill slot
 252       r = _gen->force_to_spill(r, reg->type());
 253     }
 254 #endif
 255     __ move(r, reg);
 256     _result = reg;
 257   }
 258 }
 259 
 260 ciObject* LIRItem::get_jobject_constant() const {
 261   ObjectType* oc = type()->as_ObjectType();
 262   if (oc) {
 263     return oc->constant_value();
 264   }
 265   return NULL;
 266 }
 267 
 268 
 269 jint LIRItem::get_jint_constant() const {
 270   assert(is_constant() && value() != NULL, "");
 271   assert(type()->as_IntConstant() != NULL, "type check");
 272   return type()->as_IntConstant()->value();
 273 }
 274 
 275 
 276 jint LIRItem::get_address_constant() const {
 277   assert(is_constant() && value() != NULL, "");
 278   assert(type()->as_AddressConstant() != NULL, "type check");
 279   return type()->as_AddressConstant()->value();
 280 }
 281 
 282 
 283 jfloat LIRItem::get_jfloat_constant() const {
 284   assert(is_constant() && value() != NULL, "");
 285   assert(type()->as_FloatConstant() != NULL, "type check");
 286   return type()->as_FloatConstant()->value();
 287 }
 288 
 289 
 290 jdouble LIRItem::get_jdouble_constant() const {
 291   assert(is_constant() && value() != NULL, "");
 292   assert(type()->as_DoubleConstant() != NULL, "type check");
 293   return type()->as_DoubleConstant()->value();
 294 }
 295 
 296 
 297 jlong LIRItem::get_jlong_constant() const {
 298   assert(is_constant() && value() != NULL, "");
 299   assert(type()->as_LongConstant() != NULL, "type check");
 300   return type()->as_LongConstant()->value();
 301 }
 302 
 303 
 304 
 305 //--------------------------------------------------------------
 306 
 307 
 308 void LIRGenerator::init() {
 309   _bs = Universe::heap()->barrier_set();
 310 }
 311 
 312 
 313 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 314 #ifndef PRODUCT
 315   if (PrintIRWithLIR) {
 316     block->print();
 317   }
 318 #endif
 319 
 320   // set up the list of LIR instructions
 321   assert(block->lir() == NULL, "LIR list already computed for this block");
 322   _lir = new LIR_List(compilation(), block);
 323   block->set_lir(_lir);
 324 
 325   __ branch_destination(block->label());
 326 
 327   if (LIRTraceExecution &&
 328       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 329       !block->is_set(BlockBegin::exception_entry_flag)) {
 330     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 331     trace_block_entry(block);
 332   }
 333 }
 334 
 335 
 336 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 337 #ifndef PRODUCT
 338   if (PrintIRWithLIR) {
 339     tty->cr();
 340   }
 341 #endif
 342 
 343   // LIR_Opr for unpinned constants shouldn't be referenced by other
 344   // blocks so clear them out after processing the block.
 345   for (int i = 0; i < _unpinned_constants.length(); i++) {
 346     _unpinned_constants.at(i)->clear_operand();
 347   }
 348   _unpinned_constants.trunc_to(0);
 349 
 350   // clear our any registers for other local constants
 351   _constants.trunc_to(0);
 352   _reg_for_constants.trunc_to(0);
 353 }
 354 
 355 
 356 void LIRGenerator::block_do(BlockBegin* block) {
 357   CHECK_BAILOUT();
 358 
 359   block_do_prolog(block);
 360   set_block(block);
 361 
 362   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 363     if (instr->is_pinned()) do_root(instr);
 364   }
 365 
 366   set_block(NULL);
 367   block_do_epilog(block);
 368 }
 369 
 370 
 371 //-------------------------LIRGenerator-----------------------------
 372 
 373 // This is where the tree-walk starts; instr must be root;
 374 void LIRGenerator::do_root(Value instr) {
 375   CHECK_BAILOUT();
 376 
 377   InstructionMark im(compilation(), instr);
 378 
 379   assert(instr->is_pinned(), "use only with roots");
 380   assert(instr->subst() == instr, "shouldn't have missed substitution");
 381 
 382   instr->visit(this);
 383 
 384   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 385          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 386 }
 387 
 388 
 389 // This is called for each node in tree; the walk stops if a root is reached
 390 void LIRGenerator::walk(Value instr) {
 391   InstructionMark im(compilation(), instr);
 392   //stop walk when encounter a root
 393   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 394     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 395   } else {
 396     assert(instr->subst() == instr, "shouldn't have missed substitution");
 397     instr->visit(this);
 398     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 399   }
 400 }
 401 
 402 
 403 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 404   assert(state != NULL, "state must be defined");
 405 
 406 #ifndef PRODUCT
 407   state->verify();
 408 #endif
 409 
 410   ValueStack* s = state;
 411   for_each_state(s) {
 412     if (s->kind() == ValueStack::EmptyExceptionState) {
 413       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 414       continue;
 415     }
 416 
 417     int index;
 418     Value value;
 419     for_each_stack_value(s, index, value) {
 420       assert(value->subst() == value, "missed substitution");
 421       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 422         walk(value);
 423         assert(value->operand()->is_valid(), "must be evaluated now");
 424       }
 425     }
 426 
 427     int bci = s->bci();
 428     IRScope* scope = s->scope();
 429     ciMethod* method = scope->method();
 430 
 431     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 432     if (bci == SynchronizationEntryBCI) {
 433       if (x->as_ExceptionObject() || x->as_Throw()) {
 434         // all locals are dead on exit from the synthetic unlocker
 435         liveness.clear();
 436       } else {
 437         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 438       }
 439     }
 440     if (!liveness.is_valid()) {
 441       // Degenerate or breakpointed method.
 442       bailout("Degenerate or breakpointed method");
 443     } else {
 444       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 445       for_each_local_value(s, index, value) {
 446         assert(value->subst() == value, "missed substition");
 447         if (liveness.at(index) && !value->type()->is_illegal()) {
 448           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 449             walk(value);
 450             assert(value->operand()->is_valid(), "must be evaluated now");
 451           }
 452         } else {
 453           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 454           s->invalidate_local(index);
 455         }
 456       }
 457     }
 458   }
 459 
 460   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 461 }
 462 
 463 
 464 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 465   return state_for(x, x->exception_state());
 466 }
 467 
 468 
 469 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 470   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 471    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 472    * the class. */
 473   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 474     assert(info != NULL, "info must be set if class is not loaded");
 475     __ klass2reg_patch(NULL, r, info);
 476   } else {
 477     // no patching needed
 478     __ metadata2reg(obj->constant_encoding(), r);
 479   }
 480 }
 481 
 482 
 483 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 484                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 485   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 486   if (index->is_constant()) {
 487     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 488                 index->as_jint(), null_check_info);
 489     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 490   } else {
 491     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 492                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 493     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 494   }
 495 }
 496 
 497 
 498 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 499   CodeStub* stub = new RangeCheckStub(info, index, true);
 500   if (index->is_constant()) {
 501     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 502     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 503   } else {
 504     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 505                 java_nio_Buffer::limit_offset(), T_INT, info);
 506     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 507   }
 508   __ move(index, result);
 509 }
 510 
 511 
 512 
 513 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 514   LIR_Opr result_op = result;
 515   LIR_Opr left_op   = left;
 516   LIR_Opr right_op  = right;
 517 
 518   if (TwoOperandLIRForm && left_op != result_op) {
 519     assert(right_op != result_op, "malformed");
 520     __ move(left_op, result_op);
 521     left_op = result_op;
 522   }
 523 
 524   switch(code) {
 525     case Bytecodes::_dadd:
 526     case Bytecodes::_fadd:
 527     case Bytecodes::_ladd:
 528     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 529     case Bytecodes::_fmul:
 530     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 531 
 532     case Bytecodes::_dmul:
 533       {
 534         if (is_strictfp) {
 535           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 536         } else {
 537           __ mul(left_op, right_op, result_op); break;
 538         }
 539       }
 540       break;
 541 
 542     case Bytecodes::_imul:
 543       {
 544         bool    did_strength_reduce = false;
 545 
 546         if (right->is_constant()) {
 547           int c = right->as_jint();
 548           if (is_power_of_2(c)) {
 549             // do not need tmp here
 550             __ shift_left(left_op, exact_log2(c), result_op);
 551             did_strength_reduce = true;
 552           } else {
 553             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 554           }
 555         }
 556         // we couldn't strength reduce so just emit the multiply
 557         if (!did_strength_reduce) {
 558           __ mul(left_op, right_op, result_op);
 559         }
 560       }
 561       break;
 562 
 563     case Bytecodes::_dsub:
 564     case Bytecodes::_fsub:
 565     case Bytecodes::_lsub:
 566     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 567 
 568     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 569     // ldiv and lrem are implemented with a direct runtime call
 570 
 571     case Bytecodes::_ddiv:
 572       {
 573         if (is_strictfp) {
 574           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 575         } else {
 576           __ div (left_op, right_op, result_op); break;
 577         }
 578       }
 579       break;
 580 
 581     case Bytecodes::_drem:
 582     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 583 
 584     default: ShouldNotReachHere();
 585   }
 586 }
 587 
 588 
 589 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 590   arithmetic_op(code, result, left, right, false, tmp);
 591 }
 592 
 593 
 594 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 595   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 596 }
 597 
 598 
 599 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 600   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 601 }
 602 
 603 
 604 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 605   if (TwoOperandLIRForm && value != result_op) {
 606     assert(count != result_op, "malformed");
 607     __ move(value, result_op);
 608     value = result_op;
 609   }
 610 
 611   assert(count->is_constant() || count->is_register(), "must be");
 612   switch(code) {
 613   case Bytecodes::_ishl:
 614   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 615   case Bytecodes::_ishr:
 616   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 617   case Bytecodes::_iushr:
 618   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 619   default: ShouldNotReachHere();
 620   }
 621 }
 622 
 623 
 624 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 625   if (TwoOperandLIRForm && left_op != result_op) {
 626     assert(right_op != result_op, "malformed");
 627     __ move(left_op, result_op);
 628     left_op = result_op;
 629   }
 630 
 631   switch(code) {
 632     case Bytecodes::_iand:
 633     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 634 
 635     case Bytecodes::_ior:
 636     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 637 
 638     case Bytecodes::_ixor:
 639     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 640 
 641     default: ShouldNotReachHere();
 642   }
 643 }
 644 
 645 
 646 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 647   if (!GenerateSynchronizationCode) return;
 648   // for slow path, use debug info for state after successful locking
 649   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 650   __ load_stack_address_monitor(monitor_no, lock);
 651   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 652   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 653 }
 654 
 655 
 656 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 657   if (!GenerateSynchronizationCode) return;
 658   // setup registers
 659   LIR_Opr hdr = lock;
 660   lock = new_hdr;
 661   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 662   __ load_stack_address_monitor(monitor_no, lock);
 663   __ unlock_object(hdr, object, lock, scratch, slow_path);
 664 }
 665 
 666 #ifndef PRODUCT
 667 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 668   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 669     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 670   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 671     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 672   }
 673 }
 674 #endif
 675 
 676 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 677   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 678   // If klass is not loaded we do not know if the klass has finalizers:
 679   if (UseFastNewInstance && klass->is_loaded()
 680       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 681 
 682     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 683 
 684     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 685 
 686     assert(klass->is_loaded(), "must be loaded");
 687     // allocate space for instance
 688     assert(klass->size_helper() >= 0, "illegal instance size");
 689     const int instance_size = align_object_size(klass->size_helper());
 690     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 691                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 692   } else {
 693     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 694     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 695     __ branch_destination(slow_path->continuation());
 696   }
 697 }
 698 
 699 
 700 static bool is_constant_zero(Instruction* inst) {
 701   IntConstant* c = inst->type()->as_IntConstant();
 702   if (c) {
 703     return (c->value() == 0);
 704   }
 705   return false;
 706 }
 707 
 708 
 709 static bool positive_constant(Instruction* inst) {
 710   IntConstant* c = inst->type()->as_IntConstant();
 711   if (c) {
 712     return (c->value() >= 0);
 713   }
 714   return false;
 715 }
 716 
 717 
 718 static ciArrayKlass* as_array_klass(ciType* type) {
 719   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 720     return (ciArrayKlass*)type;
 721   } else {
 722     return NULL;
 723   }
 724 }
 725 
 726 static ciType* phi_declared_type(Phi* phi) {
 727   ciType* t = phi->operand_at(0)->declared_type();
 728   if (t == NULL) {
 729     return NULL;
 730   }
 731   for(int i = 1; i < phi->operand_count(); i++) {
 732     if (t != phi->operand_at(i)->declared_type()) {
 733       return NULL;
 734     }
 735   }
 736   return t;
 737 }
 738 
 739 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 740   Instruction* src     = x->argument_at(0);
 741   Instruction* src_pos = x->argument_at(1);
 742   Instruction* dst     = x->argument_at(2);
 743   Instruction* dst_pos = x->argument_at(3);
 744   Instruction* length  = x->argument_at(4);
 745 
 746   // first try to identify the likely type of the arrays involved
 747   ciArrayKlass* expected_type = NULL;
 748   bool is_exact = false, src_objarray = false, dst_objarray = false;
 749   {
 750     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 751     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 752     Phi* phi;
 753     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 754       src_declared_type = as_array_klass(phi_declared_type(phi));
 755     }
 756     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 757     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 758     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 759       dst_declared_type = as_array_klass(phi_declared_type(phi));
 760     }
 761 
 762     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 763       // the types exactly match so the type is fully known
 764       is_exact = true;
 765       expected_type = src_exact_type;
 766     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 767       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 768       ciArrayKlass* src_type = NULL;
 769       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 770         src_type = (ciArrayKlass*) src_exact_type;
 771       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 772         src_type = (ciArrayKlass*) src_declared_type;
 773       }
 774       if (src_type != NULL) {
 775         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 776           is_exact = true;
 777           expected_type = dst_type;
 778         }
 779       }
 780     }
 781     // at least pass along a good guess
 782     if (expected_type == NULL) expected_type = dst_exact_type;
 783     if (expected_type == NULL) expected_type = src_declared_type;
 784     if (expected_type == NULL) expected_type = dst_declared_type;
 785 
 786     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 787     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 788   }
 789 
 790   // if a probable array type has been identified, figure out if any
 791   // of the required checks for a fast case can be elided.
 792   int flags = LIR_OpArrayCopy::all_flags;
 793 
 794   if (!src_objarray)
 795     flags &= ~LIR_OpArrayCopy::src_objarray;
 796   if (!dst_objarray)
 797     flags &= ~LIR_OpArrayCopy::dst_objarray;
 798 
 799   if (!x->arg_needs_null_check(0))
 800     flags &= ~LIR_OpArrayCopy::src_null_check;
 801   if (!x->arg_needs_null_check(2))
 802     flags &= ~LIR_OpArrayCopy::dst_null_check;
 803 
 804 
 805   if (expected_type != NULL) {
 806     Value length_limit = NULL;
 807 
 808     IfOp* ifop = length->as_IfOp();
 809     if (ifop != NULL) {
 810       // look for expressions like min(v, a.length) which ends up as
 811       //   x > y ? y : x  or  x >= y ? y : x
 812       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 813           ifop->x() == ifop->fval() &&
 814           ifop->y() == ifop->tval()) {
 815         length_limit = ifop->y();
 816       }
 817     }
 818 
 819     // try to skip null checks and range checks
 820     NewArray* src_array = src->as_NewArray();
 821     if (src_array != NULL) {
 822       flags &= ~LIR_OpArrayCopy::src_null_check;
 823       if (length_limit != NULL &&
 824           src_array->length() == length_limit &&
 825           is_constant_zero(src_pos)) {
 826         flags &= ~LIR_OpArrayCopy::src_range_check;
 827       }
 828     }
 829 
 830     NewArray* dst_array = dst->as_NewArray();
 831     if (dst_array != NULL) {
 832       flags &= ~LIR_OpArrayCopy::dst_null_check;
 833       if (length_limit != NULL &&
 834           dst_array->length() == length_limit &&
 835           is_constant_zero(dst_pos)) {
 836         flags &= ~LIR_OpArrayCopy::dst_range_check;
 837       }
 838     }
 839 
 840     // check from incoming constant values
 841     if (positive_constant(src_pos))
 842       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 843     if (positive_constant(dst_pos))
 844       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 845     if (positive_constant(length))
 846       flags &= ~LIR_OpArrayCopy::length_positive_check;
 847 
 848     // see if the range check can be elided, which might also imply
 849     // that src or dst is non-null.
 850     ArrayLength* al = length->as_ArrayLength();
 851     if (al != NULL) {
 852       if (al->array() == src) {
 853         // it's the length of the source array
 854         flags &= ~LIR_OpArrayCopy::length_positive_check;
 855         flags &= ~LIR_OpArrayCopy::src_null_check;
 856         if (is_constant_zero(src_pos))
 857           flags &= ~LIR_OpArrayCopy::src_range_check;
 858       }
 859       if (al->array() == dst) {
 860         // it's the length of the destination array
 861         flags &= ~LIR_OpArrayCopy::length_positive_check;
 862         flags &= ~LIR_OpArrayCopy::dst_null_check;
 863         if (is_constant_zero(dst_pos))
 864           flags &= ~LIR_OpArrayCopy::dst_range_check;
 865       }
 866     }
 867     if (is_exact) {
 868       flags &= ~LIR_OpArrayCopy::type_check;
 869     }
 870   }
 871 
 872   IntConstant* src_int = src_pos->type()->as_IntConstant();
 873   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 874   if (src_int && dst_int) {
 875     int s_offs = src_int->value();
 876     int d_offs = dst_int->value();
 877     if (src_int->value() >= dst_int->value()) {
 878       flags &= ~LIR_OpArrayCopy::overlapping;
 879     }
 880     if (expected_type != NULL) {
 881       BasicType t = expected_type->element_type()->basic_type();
 882       int element_size = type2aelembytes(t);
 883       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 884           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 885         flags &= ~LIR_OpArrayCopy::unaligned;
 886       }
 887     }
 888   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 889     // src and dest positions are the same, or dst is zero so assume
 890     // nonoverlapping copy.
 891     flags &= ~LIR_OpArrayCopy::overlapping;
 892   }
 893 
 894   if (src == dst) {
 895     // moving within a single array so no type checks are needed
 896     if (flags & LIR_OpArrayCopy::type_check) {
 897       flags &= ~LIR_OpArrayCopy::type_check;
 898     }
 899   }
 900   *flagsp = flags;
 901   *expected_typep = (ciArrayKlass*)expected_type;
 902 }
 903 
 904 
 905 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 906   assert(opr->is_register(), "why spill if item is not register?");
 907 
 908   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 909     LIR_Opr result = new_register(T_FLOAT);
 910     set_vreg_flag(result, must_start_in_memory);
 911     assert(opr->is_register(), "only a register can be spilled");
 912     assert(opr->value_type()->is_float(), "rounding only for floats available");
 913     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 914     return result;
 915   }
 916   return opr;
 917 }
 918 
 919 
 920 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 921   assert(type2size[t] == type2size[value->type()],
 922          err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
 923   if (!value->is_register()) {
 924     // force into a register
 925     LIR_Opr r = new_register(value->type());
 926     __ move(value, r);
 927     value = r;
 928   }
 929 
 930   // create a spill location
 931   LIR_Opr tmp = new_register(t);
 932   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 933 
 934   // move from register to spill
 935   __ move(value, tmp);
 936   return tmp;
 937 }
 938 
 939 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 940   if (if_instr->should_profile()) {
 941     ciMethod* method = if_instr->profiled_method();
 942     assert(method != NULL, "method should be set if branch is profiled");
 943     ciMethodData* md = method->method_data_or_null();
 944     assert(md != NULL, "Sanity");
 945     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 946     assert(data != NULL, "must have profiling data");
 947     assert(data->is_BranchData(), "need BranchData for two-way branches");
 948     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 949     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 950     if (if_instr->is_swapped()) {
 951       int t = taken_count_offset;
 952       taken_count_offset = not_taken_count_offset;
 953       not_taken_count_offset = t;
 954     }
 955 
 956     LIR_Opr md_reg = new_register(T_METADATA);
 957     __ metadata2reg(md->constant_encoding(), md_reg);
 958 
 959     LIR_Opr data_offset_reg = new_pointer_register();
 960     __ cmove(lir_cond(cond),
 961              LIR_OprFact::intptrConst(taken_count_offset),
 962              LIR_OprFact::intptrConst(not_taken_count_offset),
 963              data_offset_reg, as_BasicType(if_instr->x()->type()));
 964 
 965     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 966     LIR_Opr data_reg = new_pointer_register();
 967     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 968     __ move(data_addr, data_reg);
 969     // Use leal instead of add to avoid destroying condition codes on x86
 970     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 971     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 972     __ move(data_reg, data_addr);
 973   }
 974 }
 975 
 976 // Phi technique:
 977 // This is about passing live values from one basic block to the other.
 978 // In code generated with Java it is rather rare that more than one
 979 // value is on the stack from one basic block to the other.
 980 // We optimize our technique for efficient passing of one value
 981 // (of type long, int, double..) but it can be extended.
 982 // When entering or leaving a basic block, all registers and all spill
 983 // slots are release and empty. We use the released registers
 984 // and spill slots to pass the live values from one block
 985 // to the other. The topmost value, i.e., the value on TOS of expression
 986 // stack is passed in registers. All other values are stored in spilling
 987 // area. Every Phi has an index which designates its spill slot
 988 // At exit of a basic block, we fill the register(s) and spill slots.
 989 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 990 // and locks necessary registers and spilling slots.
 991 
 992 
 993 // move current value to referenced phi function
 994 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 995   Phi* phi = sux_val->as_Phi();
 996   // cur_val can be null without phi being null in conjunction with inlining
 997   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 998     LIR_Opr operand = cur_val->operand();
 999     if (cur_val->operand()->is_illegal()) {
1000       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1001              "these can be produced lazily");
1002       operand = operand_for_instruction(cur_val);
1003     }
1004     resolver->move(operand, operand_for_instruction(phi));
1005   }
1006 }
1007 
1008 
1009 // Moves all stack values into their PHI position
1010 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1011   BlockBegin* bb = block();
1012   if (bb->number_of_sux() == 1) {
1013     BlockBegin* sux = bb->sux_at(0);
1014     assert(sux->number_of_preds() > 0, "invalid CFG");
1015 
1016     // a block with only one predecessor never has phi functions
1017     if (sux->number_of_preds() > 1) {
1018       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1019       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1020 
1021       ValueStack* sux_state = sux->state();
1022       Value sux_value;
1023       int index;
1024 
1025       assert(cur_state->scope() == sux_state->scope(), "not matching");
1026       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1027       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1028 
1029       for_each_stack_value(sux_state, index, sux_value) {
1030         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1031       }
1032 
1033       for_each_local_value(sux_state, index, sux_value) {
1034         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1035       }
1036 
1037       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1038     }
1039   }
1040 }
1041 
1042 
1043 LIR_Opr LIRGenerator::new_register(BasicType type) {
1044   int vreg = _virtual_register_number;
1045   // add a little fudge factor for the bailout, since the bailout is
1046   // only checked periodically.  This gives a few extra registers to
1047   // hand out before we really run out, which helps us keep from
1048   // tripping over assertions.
1049   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1050     bailout("out of virtual registers");
1051     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1052       // wrap it around
1053       _virtual_register_number = LIR_OprDesc::vreg_base;
1054     }
1055   }
1056   _virtual_register_number += 1;
1057   return LIR_OprFact::virtual_register(vreg, type);
1058 }
1059 
1060 
1061 // Try to lock using register in hint
1062 LIR_Opr LIRGenerator::rlock(Value instr) {
1063   return new_register(instr->type());
1064 }
1065 
1066 
1067 // does an rlock and sets result
1068 LIR_Opr LIRGenerator::rlock_result(Value x) {
1069   LIR_Opr reg = rlock(x);
1070   set_result(x, reg);
1071   return reg;
1072 }
1073 
1074 
1075 // does an rlock and sets result
1076 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1077   LIR_Opr reg;
1078   switch (type) {
1079   case T_BYTE:
1080   case T_BOOLEAN:
1081     reg = rlock_byte(type);
1082     break;
1083   default:
1084     reg = rlock(x);
1085     break;
1086   }
1087 
1088   set_result(x, reg);
1089   return reg;
1090 }
1091 
1092 
1093 //---------------------------------------------------------------------
1094 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1095   ObjectType* oc = value->type()->as_ObjectType();
1096   if (oc) {
1097     return oc->constant_value();
1098   }
1099   return NULL;
1100 }
1101 
1102 
1103 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1104   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1105   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1106 
1107   // no moves are created for phi functions at the begin of exception
1108   // handlers, so assign operands manually here
1109   for_each_phi_fun(block(), phi,
1110                    operand_for_instruction(phi));
1111 
1112   LIR_Opr thread_reg = getThreadPointer();
1113   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1114                exceptionOopOpr());
1115   __ move_wide(LIR_OprFact::oopConst(NULL),
1116                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1117   __ move_wide(LIR_OprFact::oopConst(NULL),
1118                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1119 
1120   LIR_Opr result = new_register(T_OBJECT);
1121   __ move(exceptionOopOpr(), result);
1122   set_result(x, result);
1123 }
1124 
1125 
1126 //----------------------------------------------------------------------
1127 //----------------------------------------------------------------------
1128 //----------------------------------------------------------------------
1129 //----------------------------------------------------------------------
1130 //                        visitor functions
1131 //----------------------------------------------------------------------
1132 //----------------------------------------------------------------------
1133 //----------------------------------------------------------------------
1134 //----------------------------------------------------------------------
1135 
1136 void LIRGenerator::do_Phi(Phi* x) {
1137   // phi functions are never visited directly
1138   ShouldNotReachHere();
1139 }
1140 
1141 
1142 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1143 void LIRGenerator::do_Constant(Constant* x) {
1144   if (x->state_before() != NULL) {
1145     // Any constant with a ValueStack requires patching so emit the patch here
1146     LIR_Opr reg = rlock_result(x);
1147     CodeEmitInfo* info = state_for(x, x->state_before());
1148     __ oop2reg_patch(NULL, reg, info);
1149   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1150     if (!x->is_pinned()) {
1151       // unpinned constants are handled specially so that they can be
1152       // put into registers when they are used multiple times within a
1153       // block.  After the block completes their operand will be
1154       // cleared so that other blocks can't refer to that register.
1155       set_result(x, load_constant(x));
1156     } else {
1157       LIR_Opr res = x->operand();
1158       if (!res->is_valid()) {
1159         res = LIR_OprFact::value_type(x->type());
1160       }
1161       if (res->is_constant()) {
1162         LIR_Opr reg = rlock_result(x);
1163         __ move(res, reg);
1164       } else {
1165         set_result(x, res);
1166       }
1167     }
1168   } else {
1169     set_result(x, LIR_OprFact::value_type(x->type()));
1170   }
1171 }
1172 
1173 
1174 void LIRGenerator::do_Local(Local* x) {
1175   // operand_for_instruction has the side effect of setting the result
1176   // so there's no need to do it here.
1177   operand_for_instruction(x);
1178 }
1179 
1180 
1181 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1182   Unimplemented();
1183 }
1184 
1185 
1186 void LIRGenerator::do_Return(Return* x) {
1187   if (compilation()->env()->dtrace_method_probes()) {
1188     BasicTypeList signature;
1189     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1190     signature.append(T_METADATA); // Method*
1191     LIR_OprList* args = new LIR_OprList();
1192     args->append(getThreadPointer());
1193     LIR_Opr meth = new_register(T_METADATA);
1194     __ metadata2reg(method()->constant_encoding(), meth);
1195     args->append(meth);
1196     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1197   }
1198 
1199   if (x->type()->is_void()) {
1200     __ return_op(LIR_OprFact::illegalOpr);
1201   } else {
1202     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1203     LIRItem result(x->result(), this);
1204 
1205     result.load_item_force(reg);
1206     __ return_op(result.result());
1207   }
1208   set_no_result(x);
1209 }
1210 
1211 // Examble: ref.get()
1212 // Combination of LoadField and g1 pre-write barrier
1213 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1214 
1215   const int referent_offset = java_lang_ref_Reference::referent_offset;
1216   guarantee(referent_offset > 0, "referent offset not initialized");
1217 
1218   assert(x->number_of_arguments() == 1, "wrong type");
1219 
1220   LIRItem reference(x->argument_at(0), this);
1221   reference.load_item();
1222 
1223   // need to perform the null check on the reference objecy
1224   CodeEmitInfo* info = NULL;
1225   if (x->needs_null_check()) {
1226     info = state_for(x);
1227   }
1228 
1229   LIR_Address* referent_field_adr =
1230     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1231 
1232   LIR_Opr result = rlock_result(x);
1233 
1234   __ load(referent_field_adr, result, info);
1235 
1236   // Register the value in the referent field with the pre-barrier
1237   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1238               result /* pre_val */,
1239               false  /* do_load */,
1240               false  /* patch */,
1241               NULL   /* info */);
1242 }
1243 
1244 // Example: clazz.isInstance(object)
1245 void LIRGenerator::do_isInstance(Intrinsic* x) {
1246   assert(x->number_of_arguments() == 2, "wrong type");
1247 
1248   // TODO could try to substitute this node with an equivalent InstanceOf
1249   // if clazz is known to be a constant Class. This will pick up newly found
1250   // constants after HIR construction. I'll leave this to a future change.
1251 
1252   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1253   // could follow the aastore example in a future change.
1254 
1255   LIRItem clazz(x->argument_at(0), this);
1256   LIRItem object(x->argument_at(1), this);
1257   clazz.load_item();
1258   object.load_item();
1259   LIR_Opr result = rlock_result(x);
1260 
1261   // need to perform null check on clazz
1262   if (x->needs_null_check()) {
1263     CodeEmitInfo* info = state_for(x);
1264     __ null_check(clazz.result(), info);
1265   }
1266 
1267   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1268                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1269                                      x->type(),
1270                                      NULL); // NULL CodeEmitInfo results in a leaf call
1271   __ move(call_result, result);
1272 }
1273 
1274 // Example: object.getClass ()
1275 void LIRGenerator::do_getClass(Intrinsic* x) {
1276   assert(x->number_of_arguments() == 1, "wrong type");
1277 
1278   LIRItem rcvr(x->argument_at(0), this);
1279   rcvr.load_item();
1280   LIR_Opr temp = new_register(T_METADATA);
1281   LIR_Opr result = rlock_result(x);
1282 
1283   // need to perform the null check on the rcvr
1284   CodeEmitInfo* info = NULL;
1285   if (x->needs_null_check()) {
1286     info = state_for(x);
1287   }
1288 
1289   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1290   // meaning of these two is mixed up (see JDK-8026837).
1291   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1292   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1293 }
1294 
1295 
1296 // Example: Thread.currentThread()
1297 void LIRGenerator::do_currentThread(Intrinsic* x) {
1298   assert(x->number_of_arguments() == 0, "wrong type");
1299   LIR_Opr reg = rlock_result(x);
1300   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1301 }
1302 
1303 
1304 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1305   assert(x->number_of_arguments() == 1, "wrong type");
1306   LIRItem receiver(x->argument_at(0), this);
1307 
1308   receiver.load_item();
1309   BasicTypeList signature;
1310   signature.append(T_OBJECT); // receiver
1311   LIR_OprList* args = new LIR_OprList();
1312   args->append(receiver.result());
1313   CodeEmitInfo* info = state_for(x, x->state());
1314   call_runtime(&signature, args,
1315                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1316                voidType, info);
1317 
1318   set_no_result(x);
1319 }
1320 
1321 
1322 //------------------------local access--------------------------------------
1323 
1324 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1325   if (x->operand()->is_illegal()) {
1326     Constant* c = x->as_Constant();
1327     if (c != NULL) {
1328       x->set_operand(LIR_OprFact::value_type(c->type()));
1329     } else {
1330       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1331       // allocate a virtual register for this local or phi
1332       x->set_operand(rlock(x));
1333       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1334     }
1335   }
1336   return x->operand();
1337 }
1338 
1339 
1340 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1341   if (opr->is_virtual()) {
1342     return instruction_for_vreg(opr->vreg_number());
1343   }
1344   return NULL;
1345 }
1346 
1347 
1348 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1349   if (reg_num < _instruction_for_operand.length()) {
1350     return _instruction_for_operand.at(reg_num);
1351   }
1352   return NULL;
1353 }
1354 
1355 
1356 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1357   if (_vreg_flags.size_in_bits() == 0) {
1358     BitMap2D temp(100, num_vreg_flags);
1359     temp.clear();
1360     _vreg_flags = temp;
1361   }
1362   _vreg_flags.at_put_grow(vreg_num, f, true);
1363 }
1364 
1365 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1366   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1367     return false;
1368   }
1369   return _vreg_flags.at(vreg_num, f);
1370 }
1371 
1372 
1373 // Block local constant handling.  This code is useful for keeping
1374 // unpinned constants and constants which aren't exposed in the IR in
1375 // registers.  Unpinned Constant instructions have their operands
1376 // cleared when the block is finished so that other blocks can't end
1377 // up referring to their registers.
1378 
1379 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1380   assert(!x->is_pinned(), "only for unpinned constants");
1381   _unpinned_constants.append(x);
1382   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1383 }
1384 
1385 
1386 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1387   BasicType t = c->type();
1388   for (int i = 0; i < _constants.length(); i++) {
1389     LIR_Const* other = _constants.at(i);
1390     if (t == other->type()) {
1391       switch (t) {
1392       case T_INT:
1393       case T_FLOAT:
1394         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1395         break;
1396       case T_LONG:
1397       case T_DOUBLE:
1398         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1399         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1400         break;
1401       case T_OBJECT:
1402         if (c->as_jobject() != other->as_jobject()) continue;
1403         break;
1404       }
1405       return _reg_for_constants.at(i);
1406     }
1407   }
1408 
1409   LIR_Opr result = new_register(t);
1410   __ move((LIR_Opr)c, result);
1411   _constants.append(c);
1412   _reg_for_constants.append(result);
1413   return result;
1414 }
1415 
1416 // Various barriers
1417 
1418 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1419                                bool do_load, bool patch, CodeEmitInfo* info) {
1420   // Do the pre-write barrier, if any.
1421   switch (_bs->kind()) {
1422 #if INCLUDE_ALL_GCS
1423     case BarrierSet::G1SATBCT:
1424     case BarrierSet::G1SATBCTLogging:
1425       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1426       break;
1427 #endif // INCLUDE_ALL_GCS
1428     case BarrierSet::CardTableModRef:
1429     case BarrierSet::CardTableExtension:
1430       // No pre barriers
1431       break;
1432     case BarrierSet::ModRef:
1433     case BarrierSet::Other:
1434       // No pre barriers
1435       break;
1436     default      :
1437       ShouldNotReachHere();
1438 
1439   }
1440 }
1441 
1442 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1443   switch (_bs->kind()) {
1444 #if INCLUDE_ALL_GCS
1445     case BarrierSet::G1SATBCT:
1446     case BarrierSet::G1SATBCTLogging:
1447       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1448       break;
1449 #endif // INCLUDE_ALL_GCS
1450     case BarrierSet::CardTableModRef:
1451     case BarrierSet::CardTableExtension:
1452       CardTableModRef_post_barrier(addr,  new_val);
1453       break;
1454     case BarrierSet::ModRef:
1455     case BarrierSet::Other:
1456       // No post barriers
1457       break;
1458     default      :
1459       ShouldNotReachHere();
1460     }
1461 }
1462 
1463 ////////////////////////////////////////////////////////////////////////
1464 #if INCLUDE_ALL_GCS
1465 
1466 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1467                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1468   // First we test whether marking is in progress.
1469   BasicType flag_type;
1470   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1471     flag_type = T_INT;
1472   } else {
1473     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1474               "Assumption");
1475     flag_type = T_BYTE;
1476   }
1477   LIR_Opr thrd = getThreadPointer();
1478   LIR_Address* mark_active_flag_addr =
1479     new LIR_Address(thrd,
1480                     in_bytes(JavaThread::satb_mark_queue_offset() +
1481                              PtrQueue::byte_offset_of_active()),
1482                     flag_type);
1483   // Read the marking-in-progress flag.
1484   LIR_Opr flag_val = new_register(T_INT);
1485   __ load(mark_active_flag_addr, flag_val);
1486   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1487 
1488   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1489 
1490   CodeStub* slow;
1491 
1492   if (do_load) {
1493     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1494     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1495 
1496     if (patch)
1497       pre_val_patch_code = lir_patch_normal;
1498 
1499     pre_val = new_register(T_OBJECT);
1500 
1501     if (!addr_opr->is_address()) {
1502       assert(addr_opr->is_register(), "must be");
1503       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1504     }
1505     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1506   } else {
1507     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1508     assert(pre_val->is_register(), "must be");
1509     assert(pre_val->type() == T_OBJECT, "must be an object");
1510     assert(info == NULL, "sanity");
1511 
1512     slow = new G1PreBarrierStub(pre_val);
1513   }
1514 
1515   __ branch(lir_cond_notEqual, T_INT, slow);
1516   __ branch_destination(slow->continuation());
1517 }
1518 
1519 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1520   // If the "new_val" is a constant NULL, no barrier is necessary.
1521   if (new_val->is_constant() &&
1522       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1523 
1524   if (!new_val->is_register()) {
1525     LIR_Opr new_val_reg = new_register(T_OBJECT);
1526     if (new_val->is_constant()) {
1527       __ move(new_val, new_val_reg);
1528     } else {
1529       __ leal(new_val, new_val_reg);
1530     }
1531     new_val = new_val_reg;
1532   }
1533   assert(new_val->is_register(), "must be a register at this point");
1534 
1535   if (addr->is_address()) {
1536     LIR_Address* address = addr->as_address_ptr();
1537     LIR_Opr ptr = new_pointer_register();
1538     if (!address->index()->is_valid() && address->disp() == 0) {
1539       __ move(address->base(), ptr);
1540     } else {
1541       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1542       __ leal(addr, ptr);
1543     }
1544     addr = ptr;
1545   }
1546   assert(addr->is_register(), "must be a register at this point");
1547 
1548   LIR_Opr xor_res = new_pointer_register();
1549   LIR_Opr xor_shift_res = new_pointer_register();
1550   if (TwoOperandLIRForm ) {
1551     __ move(addr, xor_res);
1552     __ logical_xor(xor_res, new_val, xor_res);
1553     __ move(xor_res, xor_shift_res);
1554     __ unsigned_shift_right(xor_shift_res,
1555                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1556                             xor_shift_res,
1557                             LIR_OprDesc::illegalOpr());
1558   } else {
1559     __ logical_xor(addr, new_val, xor_res);
1560     __ unsigned_shift_right(xor_res,
1561                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1562                             xor_shift_res,
1563                             LIR_OprDesc::illegalOpr());
1564   }
1565 
1566   if (!new_val->is_register()) {
1567     LIR_Opr new_val_reg = new_register(T_OBJECT);
1568     __ leal(new_val, new_val_reg);
1569     new_val = new_val_reg;
1570   }
1571   assert(new_val->is_register(), "must be a register at this point");
1572 
1573   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1574 
1575   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1576   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1577   __ branch_destination(slow->continuation());
1578 }
1579 
1580 #endif // INCLUDE_ALL_GCS
1581 ////////////////////////////////////////////////////////////////////////
1582 
1583 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1584 
1585   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1586   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1587   if (addr->is_address()) {
1588     LIR_Address* address = addr->as_address_ptr();
1589     // ptr cannot be an object because we use this barrier for array card marks
1590     // and addr can point in the middle of an array.
1591     LIR_Opr ptr = new_pointer_register();
1592     if (!address->index()->is_valid() && address->disp() == 0) {
1593       __ move(address->base(), ptr);
1594     } else {
1595       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1596       __ leal(addr, ptr);
1597     }
1598     addr = ptr;
1599   }
1600   assert(addr->is_register(), "must be a register at this point");
1601 
1602 #ifdef ARM
1603   // TODO: ARM - move to platform-dependent code
1604   LIR_Opr tmp = FrameMap::R14_opr;
1605   if (VM_Version::supports_movw()) {
1606     __ move((LIR_Opr)card_table_base, tmp);
1607   } else {
1608     __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
1609   }
1610 
1611   CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
1612   LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
1613   if(((int)ct->byte_map_base & 0xff) == 0) {
1614     __ move(tmp, card_addr);
1615   } else {
1616     LIR_Opr tmp_zero = new_register(T_INT);
1617     __ move(LIR_OprFact::intConst(0), tmp_zero);
1618     __ move(tmp_zero, card_addr);
1619   }
1620 #elsif defined(TARGET_ARCH_aarch64)
1621   LIR_Opr tmp = new_pointer_register();
1622   if (TwoOperandLIRForm) {
1623     __ move(addr, tmp);
1624     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1625   } else {
1626     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1627   }
1628   if (can_inline_as_constant(card_table_base)) {
1629     __ move(LIR_OprFact::intConst(0),
1630               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1631   } else {
1632     __ move(LIR_OprFact::intConst(0),
1633               new LIR_Address(tmp, load_constant(card_table_base),
1634                               T_BYTE));
1635   }
1636 #else // ARM
1637   LIR_Opr tmp = new_pointer_register();
1638   if (TwoOperandLIRForm) {
1639     __ move(addr, tmp);
1640     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1641   } else {
1642     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1643   }
1644   if (can_inline_as_constant(card_table_base)) {
1645     __ move(LIR_OprFact::intConst(0),
1646               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1647   } else {
1648     __ move(LIR_OprFact::intConst(0),
1649               new LIR_Address(tmp, load_constant(card_table_base),
1650                               T_BYTE));
1651   }
1652 #endif // ARM
1653 }
1654 
1655 
1656 //------------------------field access--------------------------------------
1657 
1658 // Comment copied form templateTable_i486.cpp
1659 // ----------------------------------------------------------------------------
1660 // Volatile variables demand their effects be made known to all CPU's in
1661 // order.  Store buffers on most chips allow reads & writes to reorder; the
1662 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1663 // memory barrier (i.e., it's not sufficient that the interpreter does not
1664 // reorder volatile references, the hardware also must not reorder them).
1665 //
1666 // According to the new Java Memory Model (JMM):
1667 // (1) All volatiles are serialized wrt to each other.
1668 // ALSO reads & writes act as aquire & release, so:
1669 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1670 // the read float up to before the read.  It's OK for non-volatile memory refs
1671 // that happen before the volatile read to float down below it.
1672 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1673 // that happen BEFORE the write float down to after the write.  It's OK for
1674 // non-volatile memory refs that happen after the volatile write to float up
1675 // before it.
1676 //
1677 // We only put in barriers around volatile refs (they are expensive), not
1678 // _between_ memory refs (that would require us to track the flavor of the
1679 // previous memory refs).  Requirements (2) and (3) require some barriers
1680 // before volatile stores and after volatile loads.  These nearly cover
1681 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1682 // case is placed after volatile-stores although it could just as well go
1683 // before volatile-loads.
1684 
1685 
1686 void LIRGenerator::do_StoreField(StoreField* x) {
1687   bool needs_patching = x->needs_patching();
1688   bool is_volatile = x->field()->is_volatile();
1689   BasicType field_type = x->field_type();
1690   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1691 
1692   CodeEmitInfo* info = NULL;
1693   if (needs_patching) {
1694     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1695     info = state_for(x, x->state_before());
1696   } else if (x->needs_null_check()) {
1697     NullCheck* nc = x->explicit_null_check();
1698     if (nc == NULL) {
1699       info = state_for(x);
1700     } else {
1701       info = state_for(nc);
1702     }
1703   }
1704 
1705 
1706   LIRItem object(x->obj(), this);
1707   LIRItem value(x->value(),  this);
1708 
1709   object.load_item();
1710 
1711   if (is_volatile || needs_patching) {
1712     // load item if field is volatile (fewer special cases for volatiles)
1713     // load item if field not initialized
1714     // load item if field not constant
1715     // because of code patching we cannot inline constants
1716     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1717       value.load_byte_item();
1718     } else  {
1719       value.load_item();
1720     }
1721   } else {
1722     value.load_for_store(field_type);
1723   }
1724 
1725   set_no_result(x);
1726 
1727 #ifndef PRODUCT
1728   if (PrintNotLoaded && needs_patching) {
1729     tty->print_cr("   ###class not loaded at store_%s bci %d",
1730                   x->is_static() ?  "static" : "field", x->printable_bci());
1731   }
1732 #endif
1733 
1734   if (x->needs_null_check() &&
1735       (needs_patching ||
1736        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1737     // emit an explicit null check because the offset is too large
1738     __ null_check(object.result(), new CodeEmitInfo(info));
1739   }
1740 
1741   LIR_Address* address;
1742   if (needs_patching) {
1743     // we need to patch the offset in the instruction so don't allow
1744     // generate_address to try to be smart about emitting the -1.
1745     // Otherwise the patching code won't know how to find the
1746     // instruction to patch.
1747     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1748   } else {
1749     address = generate_address(object.result(), x->offset(), field_type);
1750   }
1751 
1752   if (is_volatile && os::is_MP()) {
1753     __ membar_release();
1754   }
1755 
1756   if (is_oop) {
1757     // Do the pre-write barrier, if any.
1758     pre_barrier(LIR_OprFact::address(address),
1759                 LIR_OprFact::illegalOpr /* pre_val */,
1760                 true /* do_load*/,
1761                 needs_patching,
1762                 (info ? new CodeEmitInfo(info) : NULL));
1763   }
1764 
1765   if (is_volatile && !needs_patching) {
1766     volatile_field_store(value.result(), address, info);
1767   } else {
1768     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1769     __ store(value.result(), address, info, patch_code);
1770   }
1771 
1772   if (is_oop) {
1773     // Store to object so mark the card of the header
1774     post_barrier(object.result(), value.result());
1775   }
1776 
1777   if (is_volatile && os::is_MP()) {
1778     __ membar();
1779   }
1780 }
1781 
1782 
1783 void LIRGenerator::do_LoadField(LoadField* x) {
1784   bool needs_patching = x->needs_patching();
1785   bool is_volatile = x->field()->is_volatile();
1786   BasicType field_type = x->field_type();
1787 
1788   CodeEmitInfo* info = NULL;
1789   if (needs_patching) {
1790     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1791     info = state_for(x, x->state_before());
1792   } else if (x->needs_null_check()) {
1793     NullCheck* nc = x->explicit_null_check();
1794     if (nc == NULL) {
1795       info = state_for(x);
1796     } else {
1797       info = state_for(nc);
1798     }
1799   }
1800 
1801   LIRItem object(x->obj(), this);
1802 
1803   object.load_item();
1804 
1805 #ifndef PRODUCT
1806   if (PrintNotLoaded && needs_patching) {
1807     tty->print_cr("   ###class not loaded at load_%s bci %d",
1808                   x->is_static() ?  "static" : "field", x->printable_bci());
1809   }
1810 #endif
1811 
1812   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1813   if (x->needs_null_check() &&
1814       (needs_patching ||
1815        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1816        stress_deopt)) {
1817     LIR_Opr obj = object.result();
1818     if (stress_deopt) {
1819       obj = new_register(T_OBJECT);
1820       __ move(LIR_OprFact::oopConst(NULL), obj);
1821     }
1822     // emit an explicit null check because the offset is too large
1823     __ null_check(obj, new CodeEmitInfo(info));
1824   }
1825 
1826   LIR_Opr reg = rlock_result(x, field_type);
1827   LIR_Address* address;
1828   if (needs_patching) {
1829     // we need to patch the offset in the instruction so don't allow
1830     // generate_address to try to be smart about emitting the -1.
1831     // Otherwise the patching code won't know how to find the
1832     // instruction to patch.
1833     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1834   } else {
1835     address = generate_address(object.result(), x->offset(), field_type);
1836   }
1837 
1838   if (is_volatile && !needs_patching) {
1839     volatile_field_load(address, reg, info);
1840   } else {
1841     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1842     __ load(address, reg, info, patch_code);
1843   }
1844 
1845   if (is_volatile && os::is_MP()) {
1846     __ membar_acquire();
1847   }
1848 }
1849 
1850 
1851 //------------------------java.nio.Buffer.checkIndex------------------------
1852 
1853 // int java.nio.Buffer.checkIndex(int)
1854 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1855   // NOTE: by the time we are in checkIndex() we are guaranteed that
1856   // the buffer is non-null (because checkIndex is package-private and
1857   // only called from within other methods in the buffer).
1858   assert(x->number_of_arguments() == 2, "wrong type");
1859   LIRItem buf  (x->argument_at(0), this);
1860   LIRItem index(x->argument_at(1), this);
1861   buf.load_item();
1862   index.load_item();
1863 
1864   LIR_Opr result = rlock_result(x);
1865   if (GenerateRangeChecks) {
1866     CodeEmitInfo* info = state_for(x);
1867     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1868     if (index.result()->is_constant()) {
1869       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1870       __ branch(lir_cond_belowEqual, T_INT, stub);
1871     } else {
1872       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1873                   java_nio_Buffer::limit_offset(), T_INT, info);
1874       __ branch(lir_cond_aboveEqual, T_INT, stub);
1875     }
1876     __ move(index.result(), result);
1877   } else {
1878     // Just load the index into the result register
1879     __ move(index.result(), result);
1880   }
1881 }
1882 
1883 
1884 //------------------------array access--------------------------------------
1885 
1886 
1887 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1888   LIRItem array(x->array(), this);
1889   array.load_item();
1890   LIR_Opr reg = rlock_result(x);
1891 
1892   CodeEmitInfo* info = NULL;
1893   if (x->needs_null_check()) {
1894     NullCheck* nc = x->explicit_null_check();
1895     if (nc == NULL) {
1896       info = state_for(x);
1897     } else {
1898       info = state_for(nc);
1899     }
1900     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1901       LIR_Opr obj = new_register(T_OBJECT);
1902       __ move(LIR_OprFact::oopConst(NULL), obj);
1903       __ null_check(obj, new CodeEmitInfo(info));
1904     }
1905   }
1906   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1907 }
1908 
1909 
1910 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1911   bool use_length = x->length() != NULL;
1912   LIRItem array(x->array(), this);
1913   LIRItem index(x->index(), this);
1914   LIRItem length(this);
1915   bool needs_range_check = x->compute_needs_range_check();
1916 
1917   if (use_length && needs_range_check) {
1918     length.set_instruction(x->length());
1919     length.load_item();
1920   }
1921 
1922   array.load_item();
1923   if (index.is_constant() && can_inline_as_constant(x->index())) {
1924     // let it be a constant
1925     index.dont_load_item();
1926   } else {
1927     index.load_item();
1928   }
1929 
1930   CodeEmitInfo* range_check_info = state_for(x);
1931   CodeEmitInfo* null_check_info = NULL;
1932   if (x->needs_null_check()) {
1933     NullCheck* nc = x->explicit_null_check();
1934     if (nc != NULL) {
1935       null_check_info = state_for(nc);
1936     } else {
1937       null_check_info = range_check_info;
1938     }
1939     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1940       LIR_Opr obj = new_register(T_OBJECT);
1941       __ move(LIR_OprFact::oopConst(NULL), obj);
1942       __ null_check(obj, new CodeEmitInfo(null_check_info));
1943     }
1944   }
1945 
1946   // emit array address setup early so it schedules better
1947   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1948 
1949   if (GenerateRangeChecks && needs_range_check) {
1950     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1951       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1952     } else if (use_length) {
1953       // TODO: use a (modified) version of array_range_check that does not require a
1954       //       constant length to be loaded to a register
1955       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1956       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1957     } else {
1958       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1959       // The range check performs the null check, so clear it out for the load
1960       null_check_info = NULL;
1961     }
1962   }
1963 
1964   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1965 }
1966 
1967 
1968 void LIRGenerator::do_NullCheck(NullCheck* x) {
1969   if (x->can_trap()) {
1970     LIRItem value(x->obj(), this);
1971     value.load_item();
1972     CodeEmitInfo* info = state_for(x);
1973     __ null_check(value.result(), info);
1974   }
1975 }
1976 
1977 
1978 void LIRGenerator::do_TypeCast(TypeCast* x) {
1979   LIRItem value(x->obj(), this);
1980   value.load_item();
1981   // the result is the same as from the node we are casting
1982   set_result(x, value.result());
1983 }
1984 
1985 
1986 void LIRGenerator::do_Throw(Throw* x) {
1987   LIRItem exception(x->exception(), this);
1988   exception.load_item();
1989   set_no_result(x);
1990   LIR_Opr exception_opr = exception.result();
1991   CodeEmitInfo* info = state_for(x, x->state());
1992 
1993 #ifndef PRODUCT
1994   if (PrintC1Statistics) {
1995     increment_counter(Runtime1::throw_count_address(), T_INT);
1996   }
1997 #endif
1998 
1999   // check if the instruction has an xhandler in any of the nested scopes
2000   bool unwind = false;
2001   if (info->exception_handlers()->length() == 0) {
2002     // this throw is not inside an xhandler
2003     unwind = true;
2004   } else {
2005     // get some idea of the throw type
2006     bool type_is_exact = true;
2007     ciType* throw_type = x->exception()->exact_type();
2008     if (throw_type == NULL) {
2009       type_is_exact = false;
2010       throw_type = x->exception()->declared_type();
2011     }
2012     if (throw_type != NULL && throw_type->is_instance_klass()) {
2013       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2014       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2015     }
2016   }
2017 
2018   // do null check before moving exception oop into fixed register
2019   // to avoid a fixed interval with an oop during the null check.
2020   // Use a copy of the CodeEmitInfo because debug information is
2021   // different for null_check and throw.
2022   if (GenerateCompilerNullChecks &&
2023       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
2024     // if the exception object wasn't created using new then it might be null.
2025     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2026   }
2027 
2028   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2029     // we need to go through the exception lookup path to get JVMTI
2030     // notification done
2031     unwind = false;
2032   }
2033 
2034   // move exception oop into fixed register
2035   __ move(exception_opr, exceptionOopOpr());
2036 
2037   if (unwind) {
2038     __ unwind_exception(exceptionOopOpr());
2039   } else {
2040     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2041   }
2042 }
2043 
2044 
2045 void LIRGenerator::do_RoundFP(RoundFP* x) {
2046   LIRItem input(x->input(), this);
2047   input.load_item();
2048   LIR_Opr input_opr = input.result();
2049   assert(input_opr->is_register(), "why round if value is not in a register?");
2050   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2051   if (input_opr->is_single_fpu()) {
2052     set_result(x, round_item(input_opr)); // This code path not currently taken
2053   } else {
2054     LIR_Opr result = new_register(T_DOUBLE);
2055     set_vreg_flag(result, must_start_in_memory);
2056     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2057     set_result(x, result);
2058   }
2059 }
2060 
2061 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2062 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2063 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2064   LIRItem base(x->base(), this);
2065   LIRItem idx(this);
2066 
2067   base.load_item();
2068   if (x->has_index()) {
2069     idx.set_instruction(x->index());
2070     idx.load_nonconstant();
2071   }
2072 
2073   LIR_Opr reg = rlock_result(x, x->basic_type());
2074 
2075   int   log2_scale = 0;
2076   if (x->has_index()) {
2077     log2_scale = x->log2_scale();
2078   }
2079 
2080   assert(!x->has_index() || idx.value() == x->index(), "should match");
2081 
2082   LIR_Opr base_op = base.result();
2083   LIR_Opr index_op = idx.result();
2084 #ifndef _LP64
2085   if (base_op->type() == T_LONG) {
2086     base_op = new_register(T_INT);
2087     __ convert(Bytecodes::_l2i, base.result(), base_op);
2088   }
2089   if (x->has_index()) {
2090     if (index_op->type() == T_LONG) {
2091       LIR_Opr long_index_op = index_op;
2092       if (index_op->is_constant()) {
2093         long_index_op = new_register(T_LONG);
2094         __ move(index_op, long_index_op);
2095       }
2096       index_op = new_register(T_INT);
2097       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2098     } else {
2099       assert(x->index()->type()->tag() == intTag, "must be");
2100     }
2101   }
2102   // At this point base and index should be all ints.
2103   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2104   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2105 #else
2106   if (x->has_index()) {
2107     if (index_op->type() == T_INT) {
2108       if (!index_op->is_constant()) {
2109         index_op = new_register(T_LONG);
2110         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2111       }
2112     } else {
2113       assert(index_op->type() == T_LONG, "must be");
2114       if (index_op->is_constant()) {
2115         index_op = new_register(T_LONG);
2116         __ move(idx.result(), index_op);
2117       }
2118     }
2119   }
2120   // At this point base is a long non-constant
2121   // Index is a long register or a int constant.
2122   // We allow the constant to stay an int because that would allow us a more compact encoding by
2123   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2124   // move it into a register first.
2125   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2126   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2127                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2128 #endif
2129 
2130   BasicType dst_type = x->basic_type();
2131 
2132   LIR_Address* addr;
2133   if (index_op->is_constant()) {
2134     assert(log2_scale == 0, "must not have a scale");
2135     assert(index_op->type() == T_INT, "only int constants supported");
2136     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2137   } else {
2138 #if defined(X86) || defined(AARCH64)
2139     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2140 #elif defined(ARM)
2141     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2142 #else
2143     if (index_op->is_illegal() || log2_scale == 0) {
2144       addr = new LIR_Address(base_op, index_op, dst_type);
2145     } else {
2146       LIR_Opr tmp = new_pointer_register();
2147       __ shift_left(index_op, log2_scale, tmp);
2148       addr = new LIR_Address(base_op, tmp, dst_type);
2149     }
2150 #endif
2151   }
2152 
2153   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2154     __ unaligned_move(addr, reg);
2155   } else {
2156     if (dst_type == T_OBJECT && x->is_wide()) {
2157       __ move_wide(addr, reg);
2158     } else {
2159       __ move(addr, reg);
2160     }
2161   }
2162 }
2163 
2164 
2165 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2166   int  log2_scale = 0;
2167   BasicType type = x->basic_type();
2168 
2169   if (x->has_index()) {
2170     log2_scale = x->log2_scale();
2171   }
2172 
2173   LIRItem base(x->base(), this);
2174   LIRItem value(x->value(), this);
2175   LIRItem idx(this);
2176 
2177   base.load_item();
2178   if (x->has_index()) {
2179     idx.set_instruction(x->index());
2180     idx.load_item();
2181   }
2182 
2183   if (type == T_BYTE || type == T_BOOLEAN) {
2184     value.load_byte_item();
2185   } else {
2186     value.load_item();
2187   }
2188 
2189   set_no_result(x);
2190 
2191   LIR_Opr base_op = base.result();
2192   LIR_Opr index_op = idx.result();
2193 
2194 #ifndef _LP64
2195   if (base_op->type() == T_LONG) {
2196     base_op = new_register(T_INT);
2197     __ convert(Bytecodes::_l2i, base.result(), base_op);
2198   }
2199   if (x->has_index()) {
2200     if (index_op->type() == T_LONG) {
2201       index_op = new_register(T_INT);
2202       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2203     }
2204   }
2205   // At this point base and index should be all ints and not constants
2206   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2207   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2208 #else
2209   if (x->has_index()) {
2210     if (index_op->type() == T_INT) {
2211       index_op = new_register(T_LONG);
2212       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2213     }
2214   }
2215   // At this point base and index are long and non-constant
2216   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2217   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2218 #endif
2219 
2220   if (log2_scale != 0) {
2221     // temporary fix (platform dependent code without shift on Intel would be better)
2222     // TODO: ARM also allows embedded shift in the address
2223     LIR_Opr tmp = new_pointer_register();
2224     if (TwoOperandLIRForm) {
2225       __ move(index_op, tmp);
2226       index_op = tmp;
2227     }
2228     __ shift_left(index_op, log2_scale, tmp);
2229     if (!TwoOperandLIRForm) {
2230       index_op = tmp;
2231     }
2232   }
2233 
2234   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2235   __ move(value.result(), addr);
2236 }
2237 
2238 
2239 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2240   BasicType type = x->basic_type();
2241   LIRItem src(x->object(), this);
2242   LIRItem off(x->offset(), this);
2243 
2244   off.load_item();
2245   src.load_item();
2246 
2247   LIR_Opr value = rlock_result(x, x->basic_type());
2248 
2249   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2250 
2251 #if INCLUDE_ALL_GCS
2252   // We might be reading the value of the referent field of a
2253   // Reference object in order to attach it back to the live
2254   // object graph. If G1 is enabled then we need to record
2255   // the value that is being returned in an SATB log buffer.
2256   //
2257   // We need to generate code similar to the following...
2258   //
2259   // if (offset == java_lang_ref_Reference::referent_offset) {
2260   //   if (src != NULL) {
2261   //     if (klass(src)->reference_type() != REF_NONE) {
2262   //       pre_barrier(..., value, ...);
2263   //     }
2264   //   }
2265   // }
2266 
2267   if (UseG1GC && type == T_OBJECT) {
2268     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2269     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2270     bool gen_source_check = true;    // Assume we need to check the src object for null.
2271     bool gen_type_check = true;      // Assume we need to check the reference_type.
2272 
2273     if (off.is_constant()) {
2274       jlong off_con = (off.type()->is_int() ?
2275                         (jlong) off.get_jint_constant() :
2276                         off.get_jlong_constant());
2277 
2278 
2279       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2280         // The constant offset is something other than referent_offset.
2281         // We can skip generating/checking the remaining guards and
2282         // skip generation of the code stub.
2283         gen_pre_barrier = false;
2284       } else {
2285         // The constant offset is the same as referent_offset -
2286         // we do not need to generate a runtime offset check.
2287         gen_offset_check = false;
2288       }
2289     }
2290 
2291     // We don't need to generate stub if the source object is an array
2292     if (gen_pre_barrier && src.type()->is_array()) {
2293       gen_pre_barrier = false;
2294     }
2295 
2296     if (gen_pre_barrier) {
2297       // We still need to continue with the checks.
2298       if (src.is_constant()) {
2299         ciObject* src_con = src.get_jobject_constant();
2300         guarantee(src_con != NULL, "no source constant");
2301 
2302         if (src_con->is_null_object()) {
2303           // The constant src object is null - We can skip
2304           // generating the code stub.
2305           gen_pre_barrier = false;
2306         } else {
2307           // Non-null constant source object. We still have to generate
2308           // the slow stub - but we don't need to generate the runtime
2309           // null object check.
2310           gen_source_check = false;
2311         }
2312       }
2313     }
2314     if (gen_pre_barrier && !PatchALot) {
2315       // Can the klass of object be statically determined to be
2316       // a sub-class of Reference?
2317       ciType* type = src.value()->declared_type();
2318       if ((type != NULL) && type->is_loaded()) {
2319         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2320           gen_type_check = false;
2321         } else if (type->is_klass() &&
2322                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2323           // Not Reference and not Object klass.
2324           gen_pre_barrier = false;
2325         }
2326       }
2327     }
2328 
2329     if (gen_pre_barrier) {
2330       LabelObj* Lcont = new LabelObj();
2331 
2332       // We can have generate one runtime check here. Let's start with
2333       // the offset check.
2334       if (gen_offset_check) {
2335         // if (offset != referent_offset) -> continue
2336         // If offset is an int then we can do the comparison with the
2337         // referent_offset constant; otherwise we need to move
2338         // referent_offset into a temporary register and generate
2339         // a reg-reg compare.
2340 
2341         LIR_Opr referent_off;
2342 
2343         if (off.type()->is_int()) {
2344           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2345         } else {
2346           assert(off.type()->is_long(), "what else?");
2347           referent_off = new_register(T_LONG);
2348           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2349         }
2350         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2351         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2352       }
2353       if (gen_source_check) {
2354         // offset is a const and equals referent offset
2355         // if (source == null) -> continue
2356         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2357         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2358       }
2359       LIR_Opr src_klass = new_register(T_OBJECT);
2360       if (gen_type_check) {
2361         // We have determined that offset == referent_offset && src != null.
2362         // if (src->_klass->_reference_type == REF_NONE) -> continue
2363         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2364         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2365         LIR_Opr reference_type = new_register(T_INT);
2366         __ move(reference_type_addr, reference_type);
2367         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2368         __ branch(lir_cond_equal, T_INT, Lcont->label());
2369       }
2370       {
2371         // We have determined that src->_klass->_reference_type != REF_NONE
2372         // so register the value in the referent field with the pre-barrier.
2373         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2374                     value  /* pre_val */,
2375                     false  /* do_load */,
2376                     false  /* patch */,
2377                     NULL   /* info */);
2378       }
2379       __ branch_destination(Lcont->label());
2380     }
2381   }
2382 #endif // INCLUDE_ALL_GCS
2383 
2384   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2385 }
2386 
2387 
2388 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2389   BasicType type = x->basic_type();
2390   LIRItem src(x->object(), this);
2391   LIRItem off(x->offset(), this);
2392   LIRItem data(x->value(), this);
2393 
2394   src.load_item();
2395   if (type == T_BOOLEAN || type == T_BYTE) {
2396     data.load_byte_item();
2397   } else {
2398     data.load_item();
2399   }
2400   off.load_item();
2401 
2402   set_no_result(x);
2403 
2404   if (x->is_volatile() && os::is_MP()) __ membar_release();
2405   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2406   if (x->is_volatile() && os::is_MP()) __ membar();
2407 }
2408 
2409 
2410 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
2411   LIRItem src(x->object(), this);
2412   LIRItem off(x->offset(), this);
2413 
2414   src.load_item();
2415   if (off.is_constant() && can_inline_as_constant(x->offset())) {
2416     // let it be a constant
2417     off.dont_load_item();
2418   } else {
2419     off.load_item();
2420   }
2421 
2422   set_no_result(x);
2423 
2424   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
2425   __ prefetch(addr, is_store);
2426 }
2427 
2428 
2429 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
2430   do_UnsafePrefetch(x, false);
2431 }
2432 
2433 
2434 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
2435   do_UnsafePrefetch(x, true);
2436 }
2437 
2438 
2439 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2440   int lng = x->length();
2441 
2442   for (int i = 0; i < lng; i++) {
2443     SwitchRange* one_range = x->at(i);
2444     int low_key = one_range->low_key();
2445     int high_key = one_range->high_key();
2446     BlockBegin* dest = one_range->sux();
2447     if (low_key == high_key) {
2448       __ cmp(lir_cond_equal, value, low_key);
2449       __ branch(lir_cond_equal, T_INT, dest);
2450     } else if (high_key - low_key == 1) {
2451       __ cmp(lir_cond_equal, value, low_key);
2452       __ branch(lir_cond_equal, T_INT, dest);
2453       __ cmp(lir_cond_equal, value, high_key);
2454       __ branch(lir_cond_equal, T_INT, dest);
2455     } else {
2456       LabelObj* L = new LabelObj();
2457       __ cmp(lir_cond_less, value, low_key);
2458       __ branch(lir_cond_less, T_INT, L->label());
2459       __ cmp(lir_cond_lessEqual, value, high_key);
2460       __ branch(lir_cond_lessEqual, T_INT, dest);
2461       __ branch_destination(L->label());
2462     }
2463   }
2464   __ jump(default_sux);
2465 }
2466 
2467 
2468 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2469   SwitchRangeList* res = new SwitchRangeList();
2470   int len = x->length();
2471   if (len > 0) {
2472     BlockBegin* sux = x->sux_at(0);
2473     int key = x->lo_key();
2474     BlockBegin* default_sux = x->default_sux();
2475     SwitchRange* range = new SwitchRange(key, sux);
2476     for (int i = 0; i < len; i++, key++) {
2477       BlockBegin* new_sux = x->sux_at(i);
2478       if (sux == new_sux) {
2479         // still in same range
2480         range->set_high_key(key);
2481       } else {
2482         // skip tests which explicitly dispatch to the default
2483         if (sux != default_sux) {
2484           res->append(range);
2485         }
2486         range = new SwitchRange(key, new_sux);
2487       }
2488       sux = new_sux;
2489     }
2490     if (res->length() == 0 || res->last() != range)  res->append(range);
2491   }
2492   return res;
2493 }
2494 
2495 
2496 // we expect the keys to be sorted by increasing value
2497 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2498   SwitchRangeList* res = new SwitchRangeList();
2499   int len = x->length();
2500   if (len > 0) {
2501     BlockBegin* default_sux = x->default_sux();
2502     int key = x->key_at(0);
2503     BlockBegin* sux = x->sux_at(0);
2504     SwitchRange* range = new SwitchRange(key, sux);
2505     for (int i = 1; i < len; i++) {
2506       int new_key = x->key_at(i);
2507       BlockBegin* new_sux = x->sux_at(i);
2508       if (key+1 == new_key && sux == new_sux) {
2509         // still in same range
2510         range->set_high_key(new_key);
2511       } else {
2512         // skip tests which explicitly dispatch to the default
2513         if (range->sux() != default_sux) {
2514           res->append(range);
2515         }
2516         range = new SwitchRange(new_key, new_sux);
2517       }
2518       key = new_key;
2519       sux = new_sux;
2520     }
2521     if (res->length() == 0 || res->last() != range)  res->append(range);
2522   }
2523   return res;
2524 }
2525 
2526 
2527 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2528   LIRItem tag(x->tag(), this);
2529   tag.load_item();
2530   set_no_result(x);
2531 
2532   if (x->is_safepoint()) {
2533     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2534   }
2535 
2536   // move values into phi locations
2537   move_to_phi(x->state());
2538 
2539   int lo_key = x->lo_key();
2540   int hi_key = x->hi_key();
2541   int len = x->length();
2542   LIR_Opr value = tag.result();
2543   if (UseTableRanges) {
2544     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2545   } else {
2546     for (int i = 0; i < len; i++) {
2547       __ cmp(lir_cond_equal, value, i + lo_key);
2548       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2549     }
2550     __ jump(x->default_sux());
2551   }
2552 }
2553 
2554 
2555 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2556   LIRItem tag(x->tag(), this);
2557   tag.load_item();
2558   set_no_result(x);
2559 
2560   if (x->is_safepoint()) {
2561     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2562   }
2563 
2564   // move values into phi locations
2565   move_to_phi(x->state());
2566 
2567   LIR_Opr value = tag.result();
2568   if (UseTableRanges) {
2569     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2570   } else {
2571     int len = x->length();
2572     for (int i = 0; i < len; i++) {
2573       __ cmp(lir_cond_equal, value, x->key_at(i));
2574       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2575     }
2576     __ jump(x->default_sux());
2577   }
2578 }
2579 
2580 
2581 void LIRGenerator::do_Goto(Goto* x) {
2582   set_no_result(x);
2583 
2584   if (block()->next()->as_OsrEntry()) {
2585     // need to free up storage used for OSR entry point
2586     LIR_Opr osrBuffer = block()->next()->operand();
2587     BasicTypeList signature;
2588     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2589     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2590     __ move(osrBuffer, cc->args()->at(0));
2591     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2592                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2593   }
2594 
2595   if (x->is_safepoint()) {
2596     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2597 
2598     // increment backedge counter if needed
2599     CodeEmitInfo* info = state_for(x, state);
2600     increment_backedge_counter(info, x->profiled_bci());
2601     CodeEmitInfo* safepoint_info = state_for(x, state);
2602     __ safepoint(safepoint_poll_register(), safepoint_info);
2603   }
2604 
2605   // Gotos can be folded Ifs, handle this case.
2606   if (x->should_profile()) {
2607     ciMethod* method = x->profiled_method();
2608     assert(method != NULL, "method should be set if branch is profiled");
2609     ciMethodData* md = method->method_data_or_null();
2610     assert(md != NULL, "Sanity");
2611     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2612     assert(data != NULL, "must have profiling data");
2613     int offset;
2614     if (x->direction() == Goto::taken) {
2615       assert(data->is_BranchData(), "need BranchData for two-way branches");
2616       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2617     } else if (x->direction() == Goto::not_taken) {
2618       assert(data->is_BranchData(), "need BranchData for two-way branches");
2619       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2620     } else {
2621       assert(data->is_JumpData(), "need JumpData for branches");
2622       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2623     }
2624     LIR_Opr md_reg = new_register(T_METADATA);
2625     __ metadata2reg(md->constant_encoding(), md_reg);
2626 
2627     increment_counter(new LIR_Address(md_reg, offset,
2628                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2629   }
2630 
2631   // emit phi-instruction move after safepoint since this simplifies
2632   // describing the state as the safepoint.
2633   move_to_phi(x->state());
2634 
2635   __ jump(x->default_sux());
2636 }
2637 
2638 /**
2639  * Emit profiling code if needed for arguments, parameters, return value types
2640  *
2641  * @param md                    MDO the code will update at runtime
2642  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2643  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2644  * @param profiled_k            current profile
2645  * @param obj                   IR node for the object to be profiled
2646  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2647  *                              Set once we find an update to make and use for next ones.
2648  * @param not_null              true if we know obj cannot be null
2649  * @param signature_at_call_k   signature at call for obj
2650  * @param callee_signature_k    signature of callee for obj
2651  *                              at call and callee signatures differ at method handle call
2652  * @return                      the only klass we know will ever be seen at this profile point
2653  */
2654 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2655                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2656                                     ciKlass* callee_signature_k) {
2657   ciKlass* result = NULL;
2658   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2659   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2660   // known not to be null or null bit already set and already set to
2661   // unknown: nothing we can do to improve profiling
2662   if (!do_null && !do_update) {
2663     return result;
2664   }
2665 
2666   ciKlass* exact_klass = NULL;
2667   Compilation* comp = Compilation::current();
2668   if (do_update) {
2669     // try to find exact type, using CHA if possible, so that loading
2670     // the klass from the object can be avoided
2671     ciType* type = obj->exact_type();
2672     if (type == NULL) {
2673       type = obj->declared_type();
2674       type = comp->cha_exact_type(type);
2675     }
2676     assert(type == NULL || type->is_klass(), "type should be class");
2677     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2678 
2679     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2680   }
2681 
2682   if (!do_null && !do_update) {
2683     return result;
2684   }
2685 
2686   ciKlass* exact_signature_k = NULL;
2687   if (do_update) {
2688     // Is the type from the signature exact (the only one possible)?
2689     exact_signature_k = signature_at_call_k->exact_klass();
2690     if (exact_signature_k == NULL) {
2691       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2692     } else {
2693       result = exact_signature_k;
2694       // Known statically. No need to emit any code: prevent
2695       // LIR_Assembler::emit_profile_type() from emitting useless code
2696       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2697     }
2698     // exact_klass and exact_signature_k can be both non NULL but
2699     // different if exact_klass is loaded after the ciObject for
2700     // exact_signature_k is created.
2701     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2702       // sometimes the type of the signature is better than the best type
2703       // the compiler has
2704       exact_klass = exact_signature_k;
2705     }
2706     if (callee_signature_k != NULL &&
2707         callee_signature_k != signature_at_call_k) {
2708       ciKlass* improved_klass = callee_signature_k->exact_klass();
2709       if (improved_klass == NULL) {
2710         improved_klass = comp->cha_exact_type(callee_signature_k);
2711       }
2712       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2713         exact_klass = exact_signature_k;
2714       }
2715     }
2716     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2717   }
2718 
2719   if (!do_null && !do_update) {
2720     return result;
2721   }
2722 
2723   if (mdp == LIR_OprFact::illegalOpr) {
2724     mdp = new_register(T_METADATA);
2725     __ metadata2reg(md->constant_encoding(), mdp);
2726     if (md_base_offset != 0) {
2727       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2728       mdp = new_pointer_register();
2729       __ leal(LIR_OprFact::address(base_type_address), mdp);
2730     }
2731   }
2732   LIRItem value(obj, this);
2733   value.load_item();
2734   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2735                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2736   return result;
2737 }
2738 
2739 // profile parameters on entry to the root of the compilation
2740 void LIRGenerator::profile_parameters(Base* x) {
2741   if (compilation()->profile_parameters()) {
2742     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2743     ciMethodData* md = scope()->method()->method_data_or_null();
2744     assert(md != NULL, "Sanity");
2745 
2746     if (md->parameters_type_data() != NULL) {
2747       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2748       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2749       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2750       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2751         LIR_Opr src = args->at(i);
2752         assert(!src->is_illegal(), "check");
2753         BasicType t = src->type();
2754         if (t == T_OBJECT || t == T_ARRAY) {
2755           intptr_t profiled_k = parameters->type(j);
2756           Local* local = x->state()->local_at(java_index)->as_Local();
2757           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2758                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2759                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2760           // If the profile is known statically set it once for all and do not emit any code
2761           if (exact != NULL) {
2762             md->set_parameter_type(j, exact);
2763           }
2764           j++;
2765         }
2766         java_index += type2size[t];
2767       }
2768     }
2769   }
2770 }
2771 
2772 void LIRGenerator::do_Base(Base* x) {
2773   __ std_entry(LIR_OprFact::illegalOpr);
2774   // Emit moves from physical registers / stack slots to virtual registers
2775   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2776   IRScope* irScope = compilation()->hir()->top_scope();
2777   int java_index = 0;
2778   for (int i = 0; i < args->length(); i++) {
2779     LIR_Opr src = args->at(i);
2780     assert(!src->is_illegal(), "check");
2781     BasicType t = src->type();
2782 
2783     // Types which are smaller than int are passed as int, so
2784     // correct the type which passed.
2785     switch (t) {
2786     case T_BYTE:
2787     case T_BOOLEAN:
2788     case T_SHORT:
2789     case T_CHAR:
2790       t = T_INT;
2791       break;
2792     }
2793 
2794     LIR_Opr dest = new_register(t);
2795     __ move(src, dest);
2796 
2797     // Assign new location to Local instruction for this local
2798     Local* local = x->state()->local_at(java_index)->as_Local();
2799     assert(local != NULL, "Locals for incoming arguments must have been created");
2800 #ifndef __SOFTFP__
2801     // The java calling convention passes double as long and float as int.
2802     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2803 #endif // __SOFTFP__
2804     local->set_operand(dest);
2805     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2806     java_index += type2size[t];
2807   }
2808 
2809   if (compilation()->env()->dtrace_method_probes()) {
2810     BasicTypeList signature;
2811     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2812     signature.append(T_METADATA); // Method*
2813     LIR_OprList* args = new LIR_OprList();
2814     args->append(getThreadPointer());
2815     LIR_Opr meth = new_register(T_METADATA);
2816     __ metadata2reg(method()->constant_encoding(), meth);
2817     args->append(meth);
2818     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2819   }
2820 
2821   if (method()->is_synchronized()) {
2822     LIR_Opr obj;
2823     if (method()->is_static()) {
2824       obj = new_register(T_OBJECT);
2825       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2826     } else {
2827       Local* receiver = x->state()->local_at(0)->as_Local();
2828       assert(receiver != NULL, "must already exist");
2829       obj = receiver->operand();
2830     }
2831     assert(obj->is_valid(), "must be valid");
2832 
2833     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2834       LIR_Opr lock = new_register(T_INT);
2835       __ load_stack_address_monitor(0, lock);
2836 
2837       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2838       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2839 
2840       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2841       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2842     }
2843   }
2844 
2845   // increment invocation counters if needed
2846   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2847     profile_parameters(x);
2848     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2849     increment_invocation_counter(info);
2850   }
2851 
2852   // all blocks with a successor must end with an unconditional jump
2853   // to the successor even if they are consecutive
2854   __ jump(x->default_sux());
2855 }
2856 
2857 
2858 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2859   // construct our frame and model the production of incoming pointer
2860   // to the OSR buffer.
2861   __ osr_entry(LIR_Assembler::osrBufferPointer());
2862   LIR_Opr result = rlock_result(x);
2863   __ move(LIR_Assembler::osrBufferPointer(), result);
2864 }
2865 
2866 
2867 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2868   assert(args->length() == arg_list->length(),
2869          err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
2870   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2871     LIRItem* param = args->at(i);
2872     LIR_Opr loc = arg_list->at(i);
2873     if (loc->is_register()) {
2874       param->load_item_force(loc);
2875     } else {
2876       LIR_Address* addr = loc->as_address_ptr();
2877       param->load_for_store(addr->type());
2878       if (addr->type() == T_OBJECT) {
2879         __ move_wide(param->result(), addr);
2880       } else
2881         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2882           __ unaligned_move(param->result(), addr);
2883         } else {
2884           __ move(param->result(), addr);
2885         }
2886     }
2887   }
2888 
2889   if (x->has_receiver()) {
2890     LIRItem* receiver = args->at(0);
2891     LIR_Opr loc = arg_list->at(0);
2892     if (loc->is_register()) {
2893       receiver->load_item_force(loc);
2894     } else {
2895       assert(loc->is_address(), "just checking");
2896       receiver->load_for_store(T_OBJECT);
2897       __ move_wide(receiver->result(), loc->as_address_ptr());
2898     }
2899   }
2900 }
2901 
2902 
2903 // Visits all arguments, returns appropriate items without loading them
2904 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2905   LIRItemList* argument_items = new LIRItemList();
2906   if (x->has_receiver()) {
2907     LIRItem* receiver = new LIRItem(x->receiver(), this);
2908     argument_items->append(receiver);
2909   }
2910   for (int i = 0; i < x->number_of_arguments(); i++) {
2911     LIRItem* param = new LIRItem(x->argument_at(i), this);
2912     argument_items->append(param);
2913   }
2914   return argument_items;
2915 }
2916 
2917 
2918 // The invoke with receiver has following phases:
2919 //   a) traverse and load/lock receiver;
2920 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2921 //   c) push receiver on stack
2922 //   d) load each of the items and push on stack
2923 //   e) unlock receiver
2924 //   f) move receiver into receiver-register %o0
2925 //   g) lock result registers and emit call operation
2926 //
2927 // Before issuing a call, we must spill-save all values on stack
2928 // that are in caller-save register. "spill-save" moves those registers
2929 // either in a free callee-save register or spills them if no free
2930 // callee save register is available.
2931 //
2932 // The problem is where to invoke spill-save.
2933 // - if invoked between e) and f), we may lock callee save
2934 //   register in "spill-save" that destroys the receiver register
2935 //   before f) is executed
2936 // - if we rearrange f) to be earlier (by loading %o0) it
2937 //   may destroy a value on the stack that is currently in %o0
2938 //   and is waiting to be spilled
2939 // - if we keep the receiver locked while doing spill-save,
2940 //   we cannot spill it as it is spill-locked
2941 //
2942 void LIRGenerator::do_Invoke(Invoke* x) {
2943   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2944 
2945   LIR_OprList* arg_list = cc->args();
2946   LIRItemList* args = invoke_visit_arguments(x);
2947   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2948 
2949   // setup result register
2950   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2951   if (x->type() != voidType) {
2952     result_register = result_register_for(x->type());
2953   }
2954 
2955   CodeEmitInfo* info = state_for(x, x->state());
2956 
2957   invoke_load_arguments(x, args, arg_list);
2958 
2959   if (x->has_receiver()) {
2960     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2961     receiver = args->at(0)->result();
2962   }
2963 
2964   // emit invoke code
2965   bool optimized = x->target_is_loaded() && x->target_is_final();
2966   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2967 
2968   // JSR 292
2969   // Preserve the SP over MethodHandle call sites, if needed.
2970   ciMethod* target = x->target();
2971   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2972                                   target->is_method_handle_intrinsic() ||
2973                                   target->is_compiled_lambda_form());
2974   if (is_method_handle_invoke) {
2975     info->set_is_method_handle_invoke(true);
2976     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2977         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2978     }
2979   }
2980 
2981   switch (x->code()) {
2982     case Bytecodes::_invokestatic:
2983       __ call_static(target, result_register,
2984                      SharedRuntime::get_resolve_static_call_stub(),
2985                      arg_list, info);
2986       break;
2987     case Bytecodes::_invokespecial:
2988     case Bytecodes::_invokevirtual:
2989     case Bytecodes::_invokeinterface:
2990       // for final target we still produce an inline cache, in order
2991       // to be able to call mixed mode
2992       if (x->code() == Bytecodes::_invokespecial || optimized) {
2993         __ call_opt_virtual(target, receiver, result_register,
2994                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2995                             arg_list, info);
2996       } else if (x->vtable_index() < 0) {
2997         __ call_icvirtual(target, receiver, result_register,
2998                           SharedRuntime::get_resolve_virtual_call_stub(),
2999                           arg_list, info);
3000       } else {
3001         int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
3002         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
3003         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3004       }
3005       break;
3006     case Bytecodes::_invokedynamic: {
3007       __ call_dynamic(target, receiver, result_register,
3008                       SharedRuntime::get_resolve_static_call_stub(),
3009                       arg_list, info);
3010       break;
3011     }
3012     default:
3013       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
3014       break;
3015   }
3016 
3017   // JSR 292
3018   // Restore the SP after MethodHandle call sites, if needed.
3019   if (is_method_handle_invoke
3020       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3021     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3022   }
3023 
3024   if (x->type()->is_float() || x->type()->is_double()) {
3025     // Force rounding of results from non-strictfp when in strictfp
3026     // scope (or when we don't know the strictness of the callee, to
3027     // be safe.)
3028     if (method()->is_strict()) {
3029       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3030         result_register = round_item(result_register);
3031       }
3032     }
3033   }
3034 
3035   if (result_register->is_valid()) {
3036     LIR_Opr result = rlock_result(x);
3037     __ move(result_register, result);
3038   }
3039 }
3040 
3041 
3042 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3043   assert(x->number_of_arguments() == 1, "wrong type");
3044   LIRItem value       (x->argument_at(0), this);
3045   LIR_Opr reg = rlock_result(x);
3046   value.load_item();
3047   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3048   __ move(tmp, reg);
3049 }
3050 
3051 
3052 
3053 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3054 void LIRGenerator::do_IfOp(IfOp* x) {
3055 #ifdef ASSERT
3056   {
3057     ValueTag xtag = x->x()->type()->tag();
3058     ValueTag ttag = x->tval()->type()->tag();
3059     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3060     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3061     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3062   }
3063 #endif
3064 
3065   LIRItem left(x->x(), this);
3066   LIRItem right(x->y(), this);
3067   left.load_item();
3068   if (can_inline_as_constant(right.value())) {
3069     right.dont_load_item();
3070   } else {
3071     right.load_item();
3072   }
3073 
3074   LIRItem t_val(x->tval(), this);
3075   LIRItem f_val(x->fval(), this);
3076   t_val.dont_load_item();
3077   f_val.dont_load_item();
3078   LIR_Opr reg = rlock_result(x);
3079 
3080   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3081   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3082 }
3083 
3084 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
3085     assert(x->number_of_arguments() == expected_arguments, "wrong type");
3086     LIR_Opr reg = result_register_for(x->type());
3087     __ call_runtime_leaf(routine, getThreadTemp(),
3088                          reg, new LIR_OprList());
3089     LIR_Opr result = rlock_result(x);
3090     __ move(reg, result);
3091 }
3092 
3093 #ifdef TRACE_HAVE_INTRINSICS
3094 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
3095     LIR_Opr thread = getThreadPointer();
3096     LIR_Opr osthread = new_pointer_register();
3097     __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
3098     size_t thread_id_size = OSThread::thread_id_size();
3099     if (thread_id_size == (size_t) BytesPerLong) {
3100       LIR_Opr id = new_register(T_LONG);
3101       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
3102       __ convert(Bytecodes::_l2i, id, rlock_result(x));
3103     } else if (thread_id_size == (size_t) BytesPerInt) {
3104       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
3105     } else {
3106       ShouldNotReachHere();
3107     }
3108 }
3109 
3110 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3111     CodeEmitInfo* info = state_for(x);
3112     CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3113     BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
3114     assert(info != NULL, "must have info");
3115     LIRItem arg(x->argument_at(1), this);
3116     arg.load_item();
3117     LIR_Opr klass = new_pointer_register();
3118     __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
3119     LIR_Opr id = new_register(T_LONG);
3120     ByteSize offset = TRACE_ID_OFFSET;
3121     LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3122     __ move(trace_id_addr, id);
3123     __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3124     __ store(id, trace_id_addr);
3125     __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
3126     __ move(id, rlock_result(x));
3127 }
3128 #endif
3129 
3130 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3131   switch (x->id()) {
3132   case vmIntrinsics::_intBitsToFloat      :
3133   case vmIntrinsics::_doubleToRawLongBits :
3134   case vmIntrinsics::_longBitsToDouble    :
3135   case vmIntrinsics::_floatToRawIntBits   : {
3136     do_FPIntrinsics(x);
3137     break;
3138   }
3139 
3140 #ifdef TRACE_HAVE_INTRINSICS
3141   case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
3142   case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
3143   case vmIntrinsics::_counterTime:
3144     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
3145     break;
3146 #endif
3147 
3148   case vmIntrinsics::_currentTimeMillis:
3149     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
3150     break;
3151 
3152   case vmIntrinsics::_nanoTime:
3153     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
3154     break;
3155 
3156   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3157   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3158   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3159   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3160 
3161   case vmIntrinsics::_dlog:           // fall through
3162   case vmIntrinsics::_dlog10:         // fall through
3163   case vmIntrinsics::_dabs:           // fall through
3164   case vmIntrinsics::_dsqrt:          // fall through
3165   case vmIntrinsics::_dtan:           // fall through
3166   case vmIntrinsics::_dsin :          // fall through
3167   case vmIntrinsics::_dcos :          // fall through
3168   case vmIntrinsics::_dexp :          // fall through
3169   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3170   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3171 
3172   // java.nio.Buffer.checkIndex
3173   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3174 
3175   case vmIntrinsics::_compareAndSwapObject:
3176     do_CompareAndSwap(x, objectType);
3177     break;
3178   case vmIntrinsics::_compareAndSwapInt:
3179     do_CompareAndSwap(x, intType);
3180     break;
3181   case vmIntrinsics::_compareAndSwapLong:
3182     do_CompareAndSwap(x, longType);
3183     break;
3184 
3185   case vmIntrinsics::_loadFence :
3186 #ifndef AARCH64
3187     if (os::is_MP()) __ membar_acquire();
3188 #else
3189     if (os::is_MP()) __ membar_loadstore();
3190 #endif
3191     break;
3192   case vmIntrinsics::_storeFence:
3193 #ifndef AARCH64
3194     if (os::is_MP()) __ membar_release();
3195 #else
3196     if (os::is_MP()) __ membar_storeload();
3197 #endif
3198     break;
3199   case vmIntrinsics::_fullFence :
3200     if (os::is_MP()) __ membar();
3201     break;
3202 
3203   case vmIntrinsics::_Reference_get:
3204     do_Reference_get(x);
3205     break;
3206 
3207   case vmIntrinsics::_updateCRC32:
3208   case vmIntrinsics::_updateBytesCRC32:
3209   case vmIntrinsics::_updateByteBufferCRC32:
3210     do_update_CRC32(x);
3211     break;
3212 
3213   default: ShouldNotReachHere(); break;
3214   }
3215 }
3216 
3217 void LIRGenerator::profile_arguments(ProfileCall* x) {
3218   if (compilation()->profile_arguments()) {
3219     int bci = x->bci_of_invoke();
3220     ciMethodData* md = x->method()->method_data_or_null();
3221     ciProfileData* data = md->bci_to_data(bci);
3222     if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3223         (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3224       ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3225       int base_offset = md->byte_offset_of_slot(data, extra);
3226       LIR_Opr mdp = LIR_OprFact::illegalOpr;
3227       ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3228 
3229       Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3230       int start = 0;
3231       int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3232       if (x->inlined() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3233         // first argument is not profiled at call (method handle invoke)
3234         assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3235         start = 1;
3236       }
3237       ciSignature* callee_signature = x->callee()->signature();
3238       // method handle call to virtual method
3239       bool has_receiver = x->inlined() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3240       ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3241 
3242       bool ignored_will_link;
3243       ciSignature* signature_at_call = NULL;
3244       x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3245       ciSignatureStream signature_at_call_stream(signature_at_call);
3246 
3247       // if called through method handle invoke, some arguments may have been popped
3248       for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3249         int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3250         ciKlass* exact = profile_type(md, base_offset, off,
3251                                       args->type(i), x->profiled_arg_at(i+start), mdp,
3252                                       !x->arg_needs_null_check(i+start),
3253                                       signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3254         if (exact != NULL) {
3255           md->set_argument_type(bci, i, exact);
3256         }
3257       }
3258     } else {
3259 #ifdef ASSERT
3260       Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3261       int n = x->nb_profiled_args();
3262       assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3263                                                   (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3264              "only at JSR292 bytecodes");
3265 #endif
3266     }
3267   }
3268 }
3269 
3270 // profile parameters on entry to an inlined method
3271 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3272   if (compilation()->profile_parameters() && x->inlined()) {
3273     ciMethodData* md = x->callee()->method_data_or_null();
3274     if (md != NULL) {
3275       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3276       if (parameters_type_data != NULL) {
3277         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3278         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3279         bool has_receiver = !x->callee()->is_static();
3280         ciSignature* sig = x->callee()->signature();
3281         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3282         int i = 0; // to iterate on the Instructions
3283         Value arg = x->recv();
3284         bool not_null = false;
3285         int bci = x->bci_of_invoke();
3286         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3287         // The first parameter is the receiver so that's what we start
3288         // with if it exists. One exception is method handle call to
3289         // virtual method: the receiver is in the args list
3290         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3291           i = 1;
3292           arg = x->profiled_arg_at(0);
3293           not_null = !x->arg_needs_null_check(0);
3294         }
3295         int k = 0; // to iterate on the profile data
3296         for (;;) {
3297           intptr_t profiled_k = parameters->type(k);
3298           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3299                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3300                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3301           // If the profile is known statically set it once for all and do not emit any code
3302           if (exact != NULL) {
3303             md->set_parameter_type(k, exact);
3304           }
3305           k++;
3306           if (k >= parameters_type_data->number_of_parameters()) {
3307 #ifdef ASSERT
3308             int extra = 0;
3309             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3310                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3311                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3312               extra += 1;
3313             }
3314             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3315 #endif
3316             break;
3317           }
3318           arg = x->profiled_arg_at(i);
3319           not_null = !x->arg_needs_null_check(i);
3320           i++;
3321         }
3322       }
3323     }
3324   }
3325 }
3326 
3327 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3328   // Need recv in a temporary register so it interferes with the other temporaries
3329   LIR_Opr recv = LIR_OprFact::illegalOpr;
3330   LIR_Opr mdo = new_register(T_OBJECT);
3331   // tmp is used to hold the counters on SPARC
3332   LIR_Opr tmp = new_pointer_register();
3333 
3334   if (x->nb_profiled_args() > 0) {
3335     profile_arguments(x);
3336   }
3337 
3338   // profile parameters on inlined method entry including receiver
3339   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3340     profile_parameters_at_call(x);
3341   }
3342 
3343   if (x->recv() != NULL) {
3344     LIRItem value(x->recv(), this);
3345     value.load_item();
3346     recv = new_register(T_OBJECT);
3347     __ move(value.result(), recv);
3348   }
3349   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3350 }
3351 
3352 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3353   int bci = x->bci_of_invoke();
3354   ciMethodData* md = x->method()->method_data_or_null();
3355   ciProfileData* data = md->bci_to_data(bci);
3356   assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3357   ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3358   LIR_Opr mdp = LIR_OprFact::illegalOpr;
3359 
3360   bool ignored_will_link;
3361   ciSignature* signature_at_call = NULL;
3362   x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3363 
3364   // The offset within the MDO of the entry to update may be too large
3365   // to be used in load/store instructions on some platforms. So have
3366   // profile_type() compute the address of the profile in a register.
3367   ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3368                                 ret->type(), x->ret(), mdp,
3369                                 !x->needs_null_check(),
3370                                 signature_at_call->return_type()->as_klass(),
3371                                 x->callee()->signature()->return_type()->as_klass());
3372   if (exact != NULL) {
3373     md->set_return_type(bci, exact);
3374   }
3375 }
3376 
3377 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3378   // We can safely ignore accessors here, since c2 will inline them anyway,
3379   // accessors are also always mature.
3380   if (!x->inlinee()->is_accessor()) {
3381     CodeEmitInfo* info = state_for(x, x->state(), true);
3382     // Notify the runtime very infrequently only to take care of counter overflows
3383     increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
3384   }
3385 }
3386 
3387 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3388   int freq_log;
3389   int level = compilation()->env()->comp_level();
3390   if (level == CompLevel_limited_profile) {
3391     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3392   } else if (level == CompLevel_full_profile) {
3393     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3394   } else {
3395     ShouldNotReachHere();
3396   }
3397   // Increment the appropriate invocation/backedge counter and notify the runtime.
3398   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
3399 }
3400 
3401 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3402                                                 ciMethod *method, int frequency,
3403                                                 int bci, bool backedge, bool notify) {
3404   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3405   int level = _compilation->env()->comp_level();
3406   assert(level > CompLevel_simple, "Shouldn't be here");
3407 
3408   int offset = -1;
3409   LIR_Opr counter_holder;
3410   if (level == CompLevel_limited_profile) {
3411     MethodCounters* counters_adr = method->ensure_method_counters();
3412     if (counters_adr == NULL) {
3413       bailout("method counters allocation failed");
3414       return;
3415     }
3416     counter_holder = new_pointer_register();
3417     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3418     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3419                                  MethodCounters::invocation_counter_offset());
3420   } else if (level == CompLevel_full_profile) {
3421     counter_holder = new_register(T_METADATA);
3422     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3423                                  MethodData::invocation_counter_offset());
3424     ciMethodData* md = method->method_data_or_null();
3425     assert(md != NULL, "Sanity");
3426     __ metadata2reg(md->constant_encoding(), counter_holder);
3427   } else {
3428     ShouldNotReachHere();
3429   }
3430   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3431   LIR_Opr result = new_register(T_INT);
3432   __ load(counter, result);
3433   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3434   __ store(result, counter);
3435   if (notify) {
3436     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
3437     LIR_Opr meth = new_register(T_METADATA);
3438     __ metadata2reg(method->constant_encoding(), meth);
3439     __ logical_and(result, mask, result);
3440     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3441     // The bci for info can point to cmp for if's we want the if bci
3442     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3443     __ branch(lir_cond_equal, T_INT, overflow);
3444     __ branch_destination(overflow->continuation());
3445   }
3446 }
3447 
3448 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3449   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3450   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3451 
3452   if (x->pass_thread()) {
3453     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3454     args->append(getThreadPointer());
3455   }
3456 
3457   for (int i = 0; i < x->number_of_arguments(); i++) {
3458     Value a = x->argument_at(i);
3459     LIRItem* item = new LIRItem(a, this);
3460     item->load_item();
3461     args->append(item->result());
3462     signature->append(as_BasicType(a->type()));
3463   }
3464 
3465   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3466   if (x->type() == voidType) {
3467     set_no_result(x);
3468   } else {
3469     __ move(result, rlock_result(x));
3470   }
3471 }
3472 
3473 #ifdef ASSERT
3474 void LIRGenerator::do_Assert(Assert *x) {
3475   ValueTag tag = x->x()->type()->tag();
3476   If::Condition cond = x->cond();
3477 
3478   LIRItem xitem(x->x(), this);
3479   LIRItem yitem(x->y(), this);
3480   LIRItem* xin = &xitem;
3481   LIRItem* yin = &yitem;
3482 
3483   assert(tag == intTag, "Only integer assertions are valid!");
3484 
3485   xin->load_item();
3486   yin->dont_load_item();
3487 
3488   set_no_result(x);
3489 
3490   LIR_Opr left = xin->result();
3491   LIR_Opr right = yin->result();
3492 
3493   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3494 }
3495 #endif
3496 
3497 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3498 
3499 
3500   Instruction *a = x->x();
3501   Instruction *b = x->y();
3502   if (!a || StressRangeCheckElimination) {
3503     assert(!b || StressRangeCheckElimination, "B must also be null");
3504 
3505     CodeEmitInfo *info = state_for(x, x->state());
3506     CodeStub* stub = new PredicateFailedStub(info);
3507 
3508     __ jump(stub);
3509   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3510     int a_int = a->type()->as_IntConstant()->value();
3511     int b_int = b->type()->as_IntConstant()->value();
3512 
3513     bool ok = false;
3514 
3515     switch(x->cond()) {
3516       case Instruction::eql: ok = (a_int == b_int); break;
3517       case Instruction::neq: ok = (a_int != b_int); break;
3518       case Instruction::lss: ok = (a_int < b_int); break;
3519       case Instruction::leq: ok = (a_int <= b_int); break;
3520       case Instruction::gtr: ok = (a_int > b_int); break;
3521       case Instruction::geq: ok = (a_int >= b_int); break;
3522       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3523       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3524       default: ShouldNotReachHere();
3525     }
3526 
3527     if (ok) {
3528 
3529       CodeEmitInfo *info = state_for(x, x->state());
3530       CodeStub* stub = new PredicateFailedStub(info);
3531 
3532       __ jump(stub);
3533     }
3534   } else {
3535 
3536     ValueTag tag = x->x()->type()->tag();
3537     If::Condition cond = x->cond();
3538     LIRItem xitem(x->x(), this);
3539     LIRItem yitem(x->y(), this);
3540     LIRItem* xin = &xitem;
3541     LIRItem* yin = &yitem;
3542 
3543     assert(tag == intTag, "Only integer deoptimizations are valid!");
3544 
3545     xin->load_item();
3546     yin->dont_load_item();
3547     set_no_result(x);
3548 
3549     LIR_Opr left = xin->result();
3550     LIR_Opr right = yin->result();
3551 
3552     CodeEmitInfo *info = state_for(x, x->state());
3553     CodeStub* stub = new PredicateFailedStub(info);
3554 
3555     __ cmp(lir_cond(cond), left, right);
3556     __ branch(lir_cond(cond), right->type(), stub);
3557   }
3558 }
3559 
3560 
3561 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3562   LIRItemList args(1);
3563   LIRItem value(arg1, this);
3564   args.append(&value);
3565   BasicTypeList signature;
3566   signature.append(as_BasicType(arg1->type()));
3567 
3568   return call_runtime(&signature, &args, entry, result_type, info);
3569 }
3570 
3571 
3572 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3573   LIRItemList args(2);
3574   LIRItem value1(arg1, this);
3575   LIRItem value2(arg2, this);
3576   args.append(&value1);
3577   args.append(&value2);
3578   BasicTypeList signature;
3579   signature.append(as_BasicType(arg1->type()));
3580   signature.append(as_BasicType(arg2->type()));
3581 
3582   return call_runtime(&signature, &args, entry, result_type, info);
3583 }
3584 
3585 
3586 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3587                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3588   // get a result register
3589   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3590   LIR_Opr result = LIR_OprFact::illegalOpr;
3591   if (result_type->tag() != voidTag) {
3592     result = new_register(result_type);
3593     phys_reg = result_register_for(result_type);
3594   }
3595 
3596   // move the arguments into the correct location
3597   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3598   assert(cc->length() == args->length(), "argument mismatch");
3599   for (int i = 0; i < args->length(); i++) {
3600     LIR_Opr arg = args->at(i);
3601     LIR_Opr loc = cc->at(i);
3602     if (loc->is_register()) {
3603       __ move(arg, loc);
3604     } else {
3605       LIR_Address* addr = loc->as_address_ptr();
3606 //           if (!can_store_as_constant(arg)) {
3607 //             LIR_Opr tmp = new_register(arg->type());
3608 //             __ move(arg, tmp);
3609 //             arg = tmp;
3610 //           }
3611       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3612         __ unaligned_move(arg, addr);
3613       } else {
3614         __ move(arg, addr);
3615       }
3616     }
3617   }
3618 
3619   if (info) {
3620     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3621   } else {
3622     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3623   }
3624   if (result->is_valid()) {
3625     __ move(phys_reg, result);
3626   }
3627   return result;
3628 }
3629 
3630 
3631 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3632                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3633   // get a result register
3634   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3635   LIR_Opr result = LIR_OprFact::illegalOpr;
3636   if (result_type->tag() != voidTag) {
3637     result = new_register(result_type);
3638     phys_reg = result_register_for(result_type);
3639   }
3640 
3641   // move the arguments into the correct location
3642   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3643 
3644   assert(cc->length() == args->length(), "argument mismatch");
3645   for (int i = 0; i < args->length(); i++) {
3646     LIRItem* arg = args->at(i);
3647     LIR_Opr loc = cc->at(i);
3648     if (loc->is_register()) {
3649       arg->load_item_force(loc);
3650     } else {
3651       LIR_Address* addr = loc->as_address_ptr();
3652       arg->load_for_store(addr->type());
3653       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3654         __ unaligned_move(arg->result(), addr);
3655       } else {
3656         __ move(arg->result(), addr);
3657       }
3658     }
3659   }
3660 
3661   if (info) {
3662     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3663   } else {
3664     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3665   }
3666   if (result->is_valid()) {
3667     __ move(phys_reg, result);
3668   }
3669   return result;
3670 }
3671 
3672 void LIRGenerator::do_MemBar(MemBar* x) {
3673   if (os::is_MP()) {
3674     LIR_Code code = x->code();
3675     switch(code) {
3676       case lir_membar_acquire   : __ membar_acquire(); break;
3677       case lir_membar_release   : __ membar_release(); break;
3678       case lir_membar           : __ membar(); break;
3679       case lir_membar_loadload  : __ membar_loadload(); break;
3680       case lir_membar_storestore: __ membar_storestore(); break;
3681       case lir_membar_loadstore : __ membar_loadstore(); break;
3682       case lir_membar_storeload : __ membar_storeload(); break;
3683       default                   : ShouldNotReachHere(); break;
3684     }
3685   }
3686 }