1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/callGenerator.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/countbitsnode.hpp"
  38 #include "opto/intrinsicnode.hpp"
  39 #include "opto/idealKit.hpp"
  40 #include "opto/mathexactnode.hpp"
  41 #include "opto/movenode.hpp"
  42 #include "opto/mulnode.hpp"
  43 #include "opto/narrowptrnode.hpp"
  44 #include "opto/opaquenode.hpp"
  45 #include "opto/parse.hpp"
  46 #include "opto/runtime.hpp"
  47 #include "opto/subnode.hpp"
  48 #include "prims/nativeLookup.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "trace/traceMacros.hpp"
  51 
  52 class LibraryIntrinsic : public InlineCallGenerator {
  53   // Extend the set of intrinsics known to the runtime:
  54  public:
  55  private:
  56   bool             _is_virtual;
  57   bool             _does_virtual_dispatch;
  58   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  59   int8_t           _last_predicate; // Last generated predicate
  60   vmIntrinsics::ID _intrinsic_id;
  61 
  62  public:
  63   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  64     : InlineCallGenerator(m),
  65       _is_virtual(is_virtual),
  66       _does_virtual_dispatch(does_virtual_dispatch),
  67       _predicates_count((int8_t)predicates_count),
  68       _last_predicate((int8_t)-1),
  69       _intrinsic_id(id)
  70   {
  71   }
  72   virtual bool is_intrinsic() const { return true; }
  73   virtual bool is_virtual()   const { return _is_virtual; }
  74   virtual bool is_predicated() const { return _predicates_count > 0; }
  75   virtual int  predicates_count() const { return _predicates_count; }
  76   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  77   virtual JVMState* generate(JVMState* jvms);
  78   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  79   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  80 };
  81 
  82 
  83 // Local helper class for LibraryIntrinsic:
  84 class LibraryCallKit : public GraphKit {
  85  private:
  86   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  87   Node*             _result;        // the result node, if any
  88   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  89 
  90   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  91 
  92  public:
  93   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  94     : GraphKit(jvms),
  95       _intrinsic(intrinsic),
  96       _result(NULL)
  97   {
  98     // Check if this is a root compile.  In that case we don't have a caller.
  99     if (!jvms->has_method()) {
 100       _reexecute_sp = sp();
 101     } else {
 102       // Find out how many arguments the interpreter needs when deoptimizing
 103       // and save the stack pointer value so it can used by uncommon_trap.
 104       // We find the argument count by looking at the declared signature.
 105       bool ignored_will_link;
 106       ciSignature* declared_signature = NULL;
 107       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 108       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 109       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 110     }
 111   }
 112 
 113   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 114 
 115   ciMethod*         caller()    const    { return jvms()->method(); }
 116   int               bci()       const    { return jvms()->bci(); }
 117   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 118   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 119   ciMethod*         callee()    const    { return _intrinsic->method(); }
 120 
 121   bool  try_to_inline(int predicate);
 122   Node* try_to_predicate(int predicate);
 123 
 124   void push_result() {
 125     // Push the result onto the stack.
 126     if (!stopped() && result() != NULL) {
 127       BasicType bt = result()->bottom_type()->basic_type();
 128       push_node(bt, result());
 129     }
 130   }
 131 
 132  private:
 133   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 134     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 135   }
 136 
 137   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 138   void  set_result(RegionNode* region, PhiNode* value);
 139   Node*     result() { return _result; }
 140 
 141   virtual int reexecute_sp() { return _reexecute_sp; }
 142 
 143   // Helper functions to inline natives
 144   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 145   Node* generate_slow_guard(Node* test, RegionNode* region);
 146   Node* generate_fair_guard(Node* test, RegionNode* region);
 147   Node* generate_negative_guard(Node* index, RegionNode* region,
 148                                 // resulting CastII of index:
 149                                 Node* *pos_index = NULL);
 150   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 151                              Node* array_length,
 152                              RegionNode* region);
 153   Node* generate_current_thread(Node* &tls_output);
 154   Node* load_mirror_from_klass(Node* klass);
 155   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 156                                       RegionNode* region, int null_path,
 157                                       int offset);
 158   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 159                                RegionNode* region, int null_path) {
 160     int offset = java_lang_Class::klass_offset_in_bytes();
 161     return load_klass_from_mirror_common(mirror, never_see_null,
 162                                          region, null_path,
 163                                          offset);
 164   }
 165   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 166                                      RegionNode* region, int null_path) {
 167     int offset = java_lang_Class::array_klass_offset_in_bytes();
 168     return load_klass_from_mirror_common(mirror, never_see_null,
 169                                          region, null_path,
 170                                          offset);
 171   }
 172   Node* generate_access_flags_guard(Node* kls,
 173                                     int modifier_mask, int modifier_bits,
 174                                     RegionNode* region);
 175   Node* generate_interface_guard(Node* kls, RegionNode* region);
 176   Node* generate_array_guard(Node* kls, RegionNode* region) {
 177     return generate_array_guard_common(kls, region, false, false);
 178   }
 179   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 180     return generate_array_guard_common(kls, region, false, true);
 181   }
 182   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 183     return generate_array_guard_common(kls, region, true, false);
 184   }
 185   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 186     return generate_array_guard_common(kls, region, true, true);
 187   }
 188   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 189                                     bool obj_array, bool not_array);
 190   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 191   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 192                                      bool is_virtual = false, bool is_static = false);
 193   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 194     return generate_method_call(method_id, false, true);
 195   }
 196   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 197     return generate_method_call(method_id, true, false);
 198   }
 199   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 200 
 201   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 202   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 203   bool inline_string_compareTo();
 204   bool inline_string_indexOf();
 205   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 206   bool inline_string_equals();
 207   Node* round_double_node(Node* n);
 208   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 209   bool inline_math_native(vmIntrinsics::ID id);
 210   bool inline_trig(vmIntrinsics::ID id);
 211   bool inline_math(vmIntrinsics::ID id);
 212   template <typename OverflowOp>
 213   bool inline_math_overflow(Node* arg1, Node* arg2);
 214   void inline_math_mathExact(Node* math, Node* test);
 215   bool inline_math_addExactI(bool is_increment);
 216   bool inline_math_addExactL(bool is_increment);
 217   bool inline_math_multiplyExactI();
 218   bool inline_math_multiplyExactL();
 219   bool inline_math_negateExactI();
 220   bool inline_math_negateExactL();
 221   bool inline_math_subtractExactI(bool is_decrement);
 222   bool inline_math_subtractExactL(bool is_decrement);
 223   bool inline_exp();
 224   bool inline_pow();
 225   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 226   bool inline_min_max(vmIntrinsics::ID id);
 227   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 228   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 229   int classify_unsafe_addr(Node* &base, Node* &offset);
 230   Node* make_unsafe_address(Node* base, Node* offset);
 231   // Helper for inline_unsafe_access.
 232   // Generates the guards that check whether the result of
 233   // Unsafe.getObject should be recorded in an SATB log buffer.
 234   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 235   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 236   static bool klass_needs_init_guard(Node* kls);
 237   bool inline_unsafe_allocate();
 238   bool inline_unsafe_copyMemory();
 239   bool inline_native_currentThread();
 240 #ifdef TRACE_HAVE_INTRINSICS
 241   bool inline_native_classID();
 242   bool inline_native_threadID();
 243 #endif
 244   bool inline_native_time_funcs(address method, const char* funcName);
 245   bool inline_native_isInterrupted();
 246   bool inline_native_Class_query(vmIntrinsics::ID id);
 247   bool inline_native_subtype_check();
 248 
 249   bool inline_native_newArray();
 250   bool inline_native_getLength();
 251   bool inline_array_copyOf(bool is_copyOfRange);
 252   bool inline_array_equals();
 253   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 254   bool inline_native_clone(bool is_virtual);
 255   bool inline_native_Reflection_getCallerClass();
 256   // Helper function for inlining native object hash method
 257   bool inline_native_hashcode(bool is_virtual, bool is_static);
 258   bool inline_native_getClass();
 259 
 260   // Helper functions for inlining arraycopy
 261   bool inline_arraycopy();
 262   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 263                                                 RegionNode* slow_region);
 264   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 265   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 266   bool inline_unsafe_ordered_store(BasicType type);
 267   bool inline_unsafe_fence(vmIntrinsics::ID id);
 268   bool inline_fp_conversions(vmIntrinsics::ID id);
 269   bool inline_number_methods(vmIntrinsics::ID id);
 270   bool inline_reference_get();
 271   bool inline_Class_cast();
 272   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 273   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 274   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 275   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 276   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 277   bool inline_sha_implCompress(vmIntrinsics::ID id);
 278   bool inline_digestBase_implCompressMB(int predicate);
 279   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 280                                  bool long_state, address stubAddr, const char *stubName,
 281                                  Node* src_start, Node* ofs, Node* limit);
 282   Node* get_state_from_sha_object(Node *sha_object);
 283   Node* get_state_from_sha5_object(Node *sha_object);
 284   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 285   bool inline_encodeISOArray();
 286   bool inline_updateCRC32();
 287   bool inline_updateBytesCRC32();
 288   bool inline_updateByteBufferCRC32();
 289   bool inline_multiplyToLen();
 290 
 291   bool inline_profileBoolean();
 292 };
 293 
 294 
 295 //---------------------------make_vm_intrinsic----------------------------
 296 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 297   vmIntrinsics::ID id = m->intrinsic_id();
 298   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 299 
 300   ccstr disable_intr = NULL;
 301 
 302   if ((DisableIntrinsic[0] != '\0'
 303        && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
 304       (method_has_option_value("DisableIntrinsic", disable_intr)
 305        && strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)) {
 306     // disabled by a user request on the command line:
 307     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 308     return NULL;
 309   }
 310 
 311   if (!m->is_loaded()) {
 312     // do not attempt to inline unloaded methods
 313     return NULL;
 314   }
 315 
 316   // Only a few intrinsics implement a virtual dispatch.
 317   // They are expensive calls which are also frequently overridden.
 318   if (is_virtual) {
 319     switch (id) {
 320     case vmIntrinsics::_hashCode:
 321     case vmIntrinsics::_clone:
 322       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 323       break;
 324     default:
 325       return NULL;
 326     }
 327   }
 328 
 329   // -XX:-InlineNatives disables nearly all intrinsics:
 330   if (!InlineNatives) {
 331     switch (id) {
 332     case vmIntrinsics::_indexOf:
 333     case vmIntrinsics::_compareTo:
 334     case vmIntrinsics::_equals:
 335     case vmIntrinsics::_equalsC:
 336     case vmIntrinsics::_getAndAddInt:
 337     case vmIntrinsics::_getAndAddLong:
 338     case vmIntrinsics::_getAndSetInt:
 339     case vmIntrinsics::_getAndSetLong:
 340     case vmIntrinsics::_getAndSetObject:
 341     case vmIntrinsics::_loadFence:
 342     case vmIntrinsics::_storeFence:
 343     case vmIntrinsics::_fullFence:
 344       break;  // InlineNatives does not control String.compareTo
 345     case vmIntrinsics::_Reference_get:
 346       break;  // InlineNatives does not control Reference.get
 347     default:
 348       return NULL;
 349     }
 350   }
 351 
 352   int predicates = 0;
 353   bool does_virtual_dispatch = false;
 354 
 355   switch (id) {
 356   case vmIntrinsics::_compareTo:
 357     if (!SpecialStringCompareTo)  return NULL;
 358     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 359     break;
 360   case vmIntrinsics::_indexOf:
 361     if (!SpecialStringIndexOf)  return NULL;
 362     break;
 363   case vmIntrinsics::_equals:
 364     if (!SpecialStringEquals)  return NULL;
 365     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 366     break;
 367   case vmIntrinsics::_equalsC:
 368     if (!SpecialArraysEquals)  return NULL;
 369     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 370     break;
 371   case vmIntrinsics::_arraycopy:
 372     if (!InlineArrayCopy)  return NULL;
 373     break;
 374   case vmIntrinsics::_copyMemory:
 375     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 376     if (!InlineArrayCopy)  return NULL;
 377     break;
 378   case vmIntrinsics::_hashCode:
 379     if (!InlineObjectHash)  return NULL;
 380     does_virtual_dispatch = true;
 381     break;
 382   case vmIntrinsics::_clone:
 383     does_virtual_dispatch = true;
 384   case vmIntrinsics::_copyOf:
 385   case vmIntrinsics::_copyOfRange:
 386     if (!InlineObjectCopy)  return NULL;
 387     // These also use the arraycopy intrinsic mechanism:
 388     if (!InlineArrayCopy)  return NULL;
 389     break;
 390   case vmIntrinsics::_encodeISOArray:
 391     if (!SpecialEncodeISOArray)  return NULL;
 392     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 393     break;
 394   case vmIntrinsics::_checkIndex:
 395     // We do not intrinsify this.  The optimizer does fine with it.
 396     return NULL;
 397 
 398   case vmIntrinsics::_getCallerClass:
 399     if (!InlineReflectionGetCallerClass)  return NULL;
 400     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 401     break;
 402 
 403   case vmIntrinsics::_bitCount_i:
 404     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 405     break;
 406 
 407   case vmIntrinsics::_bitCount_l:
 408     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 409     break;
 410 
 411   case vmIntrinsics::_numberOfLeadingZeros_i:
 412     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 413     break;
 414 
 415   case vmIntrinsics::_numberOfLeadingZeros_l:
 416     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 417     break;
 418 
 419   case vmIntrinsics::_numberOfTrailingZeros_i:
 420     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 421     break;
 422 
 423   case vmIntrinsics::_numberOfTrailingZeros_l:
 424     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 425     break;
 426 
 427   case vmIntrinsics::_reverseBytes_c:
 428     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 429     break;
 430   case vmIntrinsics::_reverseBytes_s:
 431     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 432     break;
 433   case vmIntrinsics::_reverseBytes_i:
 434     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 435     break;
 436   case vmIntrinsics::_reverseBytes_l:
 437     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 438     break;
 439 
 440   case vmIntrinsics::_Reference_get:
 441     // Use the intrinsic version of Reference.get() so that the value in
 442     // the referent field can be registered by the G1 pre-barrier code.
 443     // Also add memory barrier to prevent commoning reads from this field
 444     // across safepoint since GC can change it value.
 445     break;
 446 
 447   case vmIntrinsics::_compareAndSwapObject:
 448 #ifdef _LP64
 449     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 450 #endif
 451     break;
 452 
 453   case vmIntrinsics::_compareAndSwapLong:
 454     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 455     break;
 456 
 457   case vmIntrinsics::_getAndAddInt:
 458     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 459     break;
 460 
 461   case vmIntrinsics::_getAndAddLong:
 462     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 463     break;
 464 
 465   case vmIntrinsics::_getAndSetInt:
 466     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 467     break;
 468 
 469   case vmIntrinsics::_getAndSetLong:
 470     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 471     break;
 472 
 473   case vmIntrinsics::_getAndSetObject:
 474 #ifdef _LP64
 475     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 476     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 477     break;
 478 #else
 479     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 480     break;
 481 #endif
 482 
 483   case vmIntrinsics::_aescrypt_encryptBlock:
 484   case vmIntrinsics::_aescrypt_decryptBlock:
 485     if (!UseAESIntrinsics) return NULL;
 486     break;
 487 
 488   case vmIntrinsics::_multiplyToLen:
 489     if (!UseMultiplyToLenIntrinsic) return NULL;
 490     break;
 491 
 492   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 493   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 494     if (!UseAESIntrinsics) return NULL;
 495     // these two require the predicated logic
 496     predicates = 1;
 497     break;
 498 
 499   case vmIntrinsics::_sha_implCompress:
 500     if (!UseSHA1Intrinsics) return NULL;
 501     break;
 502 
 503   case vmIntrinsics::_sha2_implCompress:
 504     if (!UseSHA256Intrinsics) return NULL;
 505     break;
 506 
 507   case vmIntrinsics::_sha5_implCompress:
 508     if (!UseSHA512Intrinsics) return NULL;
 509     break;
 510 
 511   case vmIntrinsics::_digestBase_implCompressMB:
 512     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
 513     predicates = 3;
 514     break;
 515 
 516   case vmIntrinsics::_updateCRC32:
 517   case vmIntrinsics::_updateBytesCRC32:
 518   case vmIntrinsics::_updateByteBufferCRC32:
 519     if (!UseCRC32Intrinsics) return NULL;
 520     break;
 521 
 522   case vmIntrinsics::_incrementExactI:
 523   case vmIntrinsics::_addExactI:
 524     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 525     break;
 526   case vmIntrinsics::_incrementExactL:
 527   case vmIntrinsics::_addExactL:
 528     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 529     break;
 530   case vmIntrinsics::_decrementExactI:
 531   case vmIntrinsics::_subtractExactI:
 532     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 533     break;
 534   case vmIntrinsics::_decrementExactL:
 535   case vmIntrinsics::_subtractExactL:
 536     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 537     break;
 538   case vmIntrinsics::_negateExactI:
 539     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 540     break;
 541   case vmIntrinsics::_negateExactL:
 542     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 543     break;
 544   case vmIntrinsics::_multiplyExactI:
 545     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 546     break;
 547   case vmIntrinsics::_multiplyExactL:
 548     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 549     break;
 550 
 551  default:
 552     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 553     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 554     break;
 555   }
 556 
 557   // -XX:-InlineClassNatives disables natives from the Class class.
 558   // The flag applies to all reflective calls, notably Array.newArray
 559   // (visible to Java programmers as Array.newInstance).
 560   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 561       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 562     if (!InlineClassNatives)  return NULL;
 563   }
 564 
 565   // -XX:-InlineThreadNatives disables natives from the Thread class.
 566   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 567     if (!InlineThreadNatives)  return NULL;
 568   }
 569 
 570   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 571   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 572       m->holder()->name() == ciSymbol::java_lang_Float() ||
 573       m->holder()->name() == ciSymbol::java_lang_Double()) {
 574     if (!InlineMathNatives)  return NULL;
 575   }
 576 
 577   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 578   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 579     if (!InlineUnsafeOps)  return NULL;
 580   }
 581 
 582   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
 583 }
 584 
 585 //----------------------register_library_intrinsics-----------------------
 586 // Initialize this file's data structures, for each Compile instance.
 587 void Compile::register_library_intrinsics() {
 588   // Nothing to do here.
 589 }
 590 
 591 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 592   LibraryCallKit kit(jvms, this);
 593   Compile* C = kit.C;
 594   int nodes = C->unique();
 595 #ifndef PRODUCT
 596   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 597     char buf[1000];
 598     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 599     tty->print_cr("Intrinsic %s", str);
 600   }
 601 #endif
 602   ciMethod* callee = kit.callee();
 603   const int bci    = kit.bci();
 604 
 605   // Try to inline the intrinsic.
 606   if (kit.try_to_inline(_last_predicate)) {
 607     if (C->print_intrinsics() || C->print_inlining()) {
 608       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 609     }
 610     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 611     if (C->log()) {
 612       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 613                      vmIntrinsics::name_at(intrinsic_id()),
 614                      (is_virtual() ? " virtual='1'" : ""),
 615                      C->unique() - nodes);
 616     }
 617     // Push the result from the inlined method onto the stack.
 618     kit.push_result();
 619     C->print_inlining_update(this);
 620     return kit.transfer_exceptions_into_jvms();
 621   }
 622 
 623   // The intrinsic bailed out
 624   if (C->print_intrinsics() || C->print_inlining()) {
 625     if (jvms->has_method()) {
 626       // Not a root compile.
 627       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 628       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 629     } else {
 630       // Root compile
 631       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 632                vmIntrinsics::name_at(intrinsic_id()),
 633                (is_virtual() ? " (virtual)" : ""), bci);
 634     }
 635   }
 636   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 637   C->print_inlining_update(this);
 638   return NULL;
 639 }
 640 
 641 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 642   LibraryCallKit kit(jvms, this);
 643   Compile* C = kit.C;
 644   int nodes = C->unique();
 645   _last_predicate = predicate;
 646 #ifndef PRODUCT
 647   assert(is_predicated() && predicate < predicates_count(), "sanity");
 648   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 649     char buf[1000];
 650     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 651     tty->print_cr("Predicate for intrinsic %s", str);
 652   }
 653 #endif
 654   ciMethod* callee = kit.callee();
 655   const int bci    = kit.bci();
 656 
 657   Node* slow_ctl = kit.try_to_predicate(predicate);
 658   if (!kit.failing()) {
 659     if (C->print_intrinsics() || C->print_inlining()) {
 660       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 661     }
 662     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 663     if (C->log()) {
 664       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 665                      vmIntrinsics::name_at(intrinsic_id()),
 666                      (is_virtual() ? " virtual='1'" : ""),
 667                      C->unique() - nodes);
 668     }
 669     return slow_ctl; // Could be NULL if the check folds.
 670   }
 671 
 672   // The intrinsic bailed out
 673   if (C->print_intrinsics() || C->print_inlining()) {
 674     if (jvms->has_method()) {
 675       // Not a root compile.
 676       const char* msg = "failed to generate predicate for intrinsic";
 677       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 678     } else {
 679       // Root compile
 680       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 681                                         vmIntrinsics::name_at(intrinsic_id()),
 682                                         (is_virtual() ? " (virtual)" : ""), bci);
 683     }
 684   }
 685   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 686   return NULL;
 687 }
 688 
 689 bool LibraryCallKit::try_to_inline(int predicate) {
 690   // Handle symbolic names for otherwise undistinguished boolean switches:
 691   const bool is_store       = true;
 692   const bool is_native_ptr  = true;
 693   const bool is_static      = true;
 694   const bool is_volatile    = true;
 695 
 696   if (!jvms()->has_method()) {
 697     // Root JVMState has a null method.
 698     assert(map()->memory()->Opcode() == Op_Parm, "");
 699     // Insert the memory aliasing node
 700     set_all_memory(reset_memory());
 701   }
 702   assert(merged_memory(), "");
 703 
 704 
 705   switch (intrinsic_id()) {
 706   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 707   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 708   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 709 
 710   case vmIntrinsics::_dsin:
 711   case vmIntrinsics::_dcos:
 712   case vmIntrinsics::_dtan:
 713   case vmIntrinsics::_dabs:
 714   case vmIntrinsics::_datan2:
 715   case vmIntrinsics::_dsqrt:
 716   case vmIntrinsics::_dexp:
 717   case vmIntrinsics::_dlog:
 718   case vmIntrinsics::_dlog10:
 719   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 720 
 721   case vmIntrinsics::_min:
 722   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 723 
 724   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 725   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 726   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 727   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 728   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 729   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 730   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 731   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 732   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 733   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 734   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 735   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 736 
 737   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 738 
 739   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 740   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 741   case vmIntrinsics::_equals:                   return inline_string_equals();
 742 
 743   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 744   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 745   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 746   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 747   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 748   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 749   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 750   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 751   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 752 
 753   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 754   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 755   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 756   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 757   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 758   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 759   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 760   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 761   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 762 
 763   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 764   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 765   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 766   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 767   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 768   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 769   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 770   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 771 
 772   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 773   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 774   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 775   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 776   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 777   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 778   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 779   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 780 
 781   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 782   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 783   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 784   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 785   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 786   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 787   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 788   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 789   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 790 
 791   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 792   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 793   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 794   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 795   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 796   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 797   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 798   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 799   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 800 
 801   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 802   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 803   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 804 
 805   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 806   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 807   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 808 
 809   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 810   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 811   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 812   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 813   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 814 
 815   case vmIntrinsics::_loadFence:
 816   case vmIntrinsics::_storeFence:
 817   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 818 
 819   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 820   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 821 
 822 #ifdef TRACE_HAVE_INTRINSICS
 823   case vmIntrinsics::_classID:                  return inline_native_classID();
 824   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 825   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 826 #endif
 827   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 828   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 829   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 830   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 831   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 832   case vmIntrinsics::_getLength:                return inline_native_getLength();
 833   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 834   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 835   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 836   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 837 
 838   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 839 
 840   case vmIntrinsics::_isInstance:
 841   case vmIntrinsics::_getModifiers:
 842   case vmIntrinsics::_isInterface:
 843   case vmIntrinsics::_isArray:
 844   case vmIntrinsics::_isPrimitive:
 845   case vmIntrinsics::_getSuperclass:
 846   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 847 
 848   case vmIntrinsics::_floatToRawIntBits:
 849   case vmIntrinsics::_floatToIntBits:
 850   case vmIntrinsics::_intBitsToFloat:
 851   case vmIntrinsics::_doubleToRawLongBits:
 852   case vmIntrinsics::_doubleToLongBits:
 853   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 854 
 855   case vmIntrinsics::_numberOfLeadingZeros_i:
 856   case vmIntrinsics::_numberOfLeadingZeros_l:
 857   case vmIntrinsics::_numberOfTrailingZeros_i:
 858   case vmIntrinsics::_numberOfTrailingZeros_l:
 859   case vmIntrinsics::_bitCount_i:
 860   case vmIntrinsics::_bitCount_l:
 861   case vmIntrinsics::_reverseBytes_i:
 862   case vmIntrinsics::_reverseBytes_l:
 863   case vmIntrinsics::_reverseBytes_s:
 864   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 865 
 866   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 867 
 868   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 869 
 870   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 871 
 872   case vmIntrinsics::_aescrypt_encryptBlock:
 873   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 874 
 875   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 876   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 877     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 878 
 879   case vmIntrinsics::_sha_implCompress:
 880   case vmIntrinsics::_sha2_implCompress:
 881   case vmIntrinsics::_sha5_implCompress:
 882     return inline_sha_implCompress(intrinsic_id());
 883 
 884   case vmIntrinsics::_digestBase_implCompressMB:
 885     return inline_digestBase_implCompressMB(predicate);
 886 
 887   case vmIntrinsics::_multiplyToLen:
 888     return inline_multiplyToLen();
 889 
 890   case vmIntrinsics::_encodeISOArray:
 891     return inline_encodeISOArray();
 892 
 893   case vmIntrinsics::_updateCRC32:
 894     return inline_updateCRC32();
 895   case vmIntrinsics::_updateBytesCRC32:
 896     return inline_updateBytesCRC32();
 897   case vmIntrinsics::_updateByteBufferCRC32:
 898     return inline_updateByteBufferCRC32();
 899 
 900   case vmIntrinsics::_profileBoolean:
 901     return inline_profileBoolean();
 902 
 903   default:
 904     // If you get here, it may be that someone has added a new intrinsic
 905     // to the list in vmSymbols.hpp without implementing it here.
 906 #ifndef PRODUCT
 907     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 908       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 909                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 910     }
 911 #endif
 912     return false;
 913   }
 914 }
 915 
 916 Node* LibraryCallKit::try_to_predicate(int predicate) {
 917   if (!jvms()->has_method()) {
 918     // Root JVMState has a null method.
 919     assert(map()->memory()->Opcode() == Op_Parm, "");
 920     // Insert the memory aliasing node
 921     set_all_memory(reset_memory());
 922   }
 923   assert(merged_memory(), "");
 924 
 925   switch (intrinsic_id()) {
 926   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 927     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 928   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 929     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 930   case vmIntrinsics::_digestBase_implCompressMB:
 931     return inline_digestBase_implCompressMB_predicate(predicate);
 932 
 933   default:
 934     // If you get here, it may be that someone has added a new intrinsic
 935     // to the list in vmSymbols.hpp without implementing it here.
 936 #ifndef PRODUCT
 937     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 938       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 939                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 940     }
 941 #endif
 942     Node* slow_ctl = control();
 943     set_control(top()); // No fast path instrinsic
 944     return slow_ctl;
 945   }
 946 }
 947 
 948 //------------------------------set_result-------------------------------
 949 // Helper function for finishing intrinsics.
 950 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 951   record_for_igvn(region);
 952   set_control(_gvn.transform(region));
 953   set_result( _gvn.transform(value));
 954   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 955 }
 956 
 957 //------------------------------generate_guard---------------------------
 958 // Helper function for generating guarded fast-slow graph structures.
 959 // The given 'test', if true, guards a slow path.  If the test fails
 960 // then a fast path can be taken.  (We generally hope it fails.)
 961 // In all cases, GraphKit::control() is updated to the fast path.
 962 // The returned value represents the control for the slow path.
 963 // The return value is never 'top'; it is either a valid control
 964 // or NULL if it is obvious that the slow path can never be taken.
 965 // Also, if region and the slow control are not NULL, the slow edge
 966 // is appended to the region.
 967 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 968   if (stopped()) {
 969     // Already short circuited.
 970     return NULL;
 971   }
 972 
 973   // Build an if node and its projections.
 974   // If test is true we take the slow path, which we assume is uncommon.
 975   if (_gvn.type(test) == TypeInt::ZERO) {
 976     // The slow branch is never taken.  No need to build this guard.
 977     return NULL;
 978   }
 979 
 980   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 981 
 982   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 983   if (if_slow == top()) {
 984     // The slow branch is never taken.  No need to build this guard.
 985     return NULL;
 986   }
 987 
 988   if (region != NULL)
 989     region->add_req(if_slow);
 990 
 991   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 992   set_control(if_fast);
 993 
 994   return if_slow;
 995 }
 996 
 997 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 998   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 999 }
1000 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1001   return generate_guard(test, region, PROB_FAIR);
1002 }
1003 
1004 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1005                                                      Node* *pos_index) {
1006   if (stopped())
1007     return NULL;                // already stopped
1008   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1009     return NULL;                // index is already adequately typed
1010   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
1011   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1012   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1013   if (is_neg != NULL && pos_index != NULL) {
1014     // Emulate effect of Parse::adjust_map_after_if.
1015     Node* ccast = new CastIINode(index, TypeInt::POS);
1016     ccast->set_req(0, control());
1017     (*pos_index) = _gvn.transform(ccast);
1018   }
1019   return is_neg;
1020 }
1021 
1022 // Make sure that 'position' is a valid limit index, in [0..length].
1023 // There are two equivalent plans for checking this:
1024 //   A. (offset + copyLength)  unsigned<=  arrayLength
1025 //   B. offset  <=  (arrayLength - copyLength)
1026 // We require that all of the values above, except for the sum and
1027 // difference, are already known to be non-negative.
1028 // Plan A is robust in the face of overflow, if offset and copyLength
1029 // are both hugely positive.
1030 //
1031 // Plan B is less direct and intuitive, but it does not overflow at
1032 // all, since the difference of two non-negatives is always
1033 // representable.  Whenever Java methods must perform the equivalent
1034 // check they generally use Plan B instead of Plan A.
1035 // For the moment we use Plan A.
1036 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1037                                                   Node* subseq_length,
1038                                                   Node* array_length,
1039                                                   RegionNode* region) {
1040   if (stopped())
1041     return NULL;                // already stopped
1042   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1043   if (zero_offset && subseq_length->eqv_uncast(array_length))
1044     return NULL;                // common case of whole-array copy
1045   Node* last = subseq_length;
1046   if (!zero_offset)             // last += offset
1047     last = _gvn.transform(new AddINode(last, offset));
1048   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1049   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1050   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1051   return is_over;
1052 }
1053 
1054 
1055 //--------------------------generate_current_thread--------------------
1056 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1057   ciKlass*    thread_klass = env()->Thread_klass();
1058   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1059   Node* thread = _gvn.transform(new ThreadLocalNode());
1060   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1061   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1062   tls_output = thread;
1063   return threadObj;
1064 }
1065 
1066 
1067 //------------------------------make_string_method_node------------------------
1068 // Helper method for String intrinsic functions. This version is called
1069 // with str1 and str2 pointing to String object nodes.
1070 //
1071 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1072   Node* no_ctrl = NULL;
1073 
1074   // Get start addr of string
1075   Node* str1_value   = load_String_value(no_ctrl, str1);
1076   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1077   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1078 
1079   // Get length of string 1
1080   Node* str1_len  = load_String_length(no_ctrl, str1);
1081 
1082   Node* str2_value   = load_String_value(no_ctrl, str2);
1083   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1084   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1085 
1086   Node* str2_len = NULL;
1087   Node* result = NULL;
1088 
1089   switch (opcode) {
1090   case Op_StrIndexOf:
1091     // Get length of string 2
1092     str2_len = load_String_length(no_ctrl, str2);
1093 
1094     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1095                                 str1_start, str1_len, str2_start, str2_len);
1096     break;
1097   case Op_StrComp:
1098     // Get length of string 2
1099     str2_len = load_String_length(no_ctrl, str2);
1100 
1101     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1102                              str1_start, str1_len, str2_start, str2_len);
1103     break;
1104   case Op_StrEquals:
1105     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1106                                str1_start, str2_start, str1_len);
1107     break;
1108   default:
1109     ShouldNotReachHere();
1110     return NULL;
1111   }
1112 
1113   // All these intrinsics have checks.
1114   C->set_has_split_ifs(true); // Has chance for split-if optimization
1115 
1116   return _gvn.transform(result);
1117 }
1118 
1119 // Helper method for String intrinsic functions. This version is called
1120 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1121 // to Int nodes containing the lenghts of str1 and str2.
1122 //
1123 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1124   Node* result = NULL;
1125   switch (opcode) {
1126   case Op_StrIndexOf:
1127     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1128                                 str1_start, cnt1, str2_start, cnt2);
1129     break;
1130   case Op_StrComp:
1131     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1132                              str1_start, cnt1, str2_start, cnt2);
1133     break;
1134   case Op_StrEquals:
1135     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1136                                str1_start, str2_start, cnt1);
1137     break;
1138   default:
1139     ShouldNotReachHere();
1140     return NULL;
1141   }
1142 
1143   // All these intrinsics have checks.
1144   C->set_has_split_ifs(true); // Has chance for split-if optimization
1145 
1146   return _gvn.transform(result);
1147 }
1148 
1149 //------------------------------inline_string_compareTo------------------------
1150 // public int java.lang.String.compareTo(String anotherString);
1151 bool LibraryCallKit::inline_string_compareTo() {
1152   Node* receiver = null_check(argument(0));
1153   Node* arg      = null_check(argument(1));
1154   if (stopped()) {
1155     return true;
1156   }
1157   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1158   return true;
1159 }
1160 
1161 //------------------------------inline_string_equals------------------------
1162 bool LibraryCallKit::inline_string_equals() {
1163   Node* receiver = null_check_receiver();
1164   // NOTE: Do not null check argument for String.equals() because spec
1165   // allows to specify NULL as argument.
1166   Node* argument = this->argument(1);
1167   if (stopped()) {
1168     return true;
1169   }
1170 
1171   // paths (plus control) merge
1172   RegionNode* region = new RegionNode(5);
1173   Node* phi = new PhiNode(region, TypeInt::BOOL);
1174 
1175   // does source == target string?
1176   Node* cmp = _gvn.transform(new CmpPNode(receiver, argument));
1177   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1178 
1179   Node* if_eq = generate_slow_guard(bol, NULL);
1180   if (if_eq != NULL) {
1181     // receiver == argument
1182     phi->init_req(2, intcon(1));
1183     region->init_req(2, if_eq);
1184   }
1185 
1186   // get String klass for instanceOf
1187   ciInstanceKlass* klass = env()->String_klass();
1188 
1189   if (!stopped()) {
1190     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1191     Node* cmp  = _gvn.transform(new CmpINode(inst, intcon(1)));
1192     Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1193 
1194     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1195     //instanceOf == true, fallthrough
1196 
1197     if (inst_false != NULL) {
1198       phi->init_req(3, intcon(0));
1199       region->init_req(3, inst_false);
1200     }
1201   }
1202 
1203   if (!stopped()) {
1204     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1205 
1206     // Properly cast the argument to String
1207     argument = _gvn.transform(new CheckCastPPNode(control(), argument, string_type));
1208     // This path is taken only when argument's type is String:NotNull.
1209     argument = cast_not_null(argument, false);
1210 
1211     Node* no_ctrl = NULL;
1212 
1213     // Get start addr of receiver
1214     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1215     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1216     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1217 
1218     // Get length of receiver
1219     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1220 
1221     // Get start addr of argument
1222     Node* argument_val    = load_String_value(no_ctrl, argument);
1223     Node* argument_offset = load_String_offset(no_ctrl, argument);
1224     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1225 
1226     // Get length of argument
1227     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1228 
1229     // Check for receiver count != argument count
1230     Node* cmp = _gvn.transform(new CmpINode(receiver_cnt, argument_cnt));
1231     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1232     Node* if_ne = generate_slow_guard(bol, NULL);
1233     if (if_ne != NULL) {
1234       phi->init_req(4, intcon(0));
1235       region->init_req(4, if_ne);
1236     }
1237 
1238     // Check for count == 0 is done by assembler code for StrEquals.
1239 
1240     if (!stopped()) {
1241       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1242       phi->init_req(1, equals);
1243       region->init_req(1, control());
1244     }
1245   }
1246 
1247   // post merge
1248   set_control(_gvn.transform(region));
1249   record_for_igvn(region);
1250 
1251   set_result(_gvn.transform(phi));
1252   return true;
1253 }
1254 
1255 //------------------------------inline_array_equals----------------------------
1256 bool LibraryCallKit::inline_array_equals() {
1257   Node* arg1 = argument(0);
1258   Node* arg2 = argument(1);
1259   set_result(_gvn.transform(new AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1260   return true;
1261 }
1262 
1263 // Java version of String.indexOf(constant string)
1264 // class StringDecl {
1265 //   StringDecl(char[] ca) {
1266 //     offset = 0;
1267 //     count = ca.length;
1268 //     value = ca;
1269 //   }
1270 //   int offset;
1271 //   int count;
1272 //   char[] value;
1273 // }
1274 //
1275 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1276 //                             int targetOffset, int cache_i, int md2) {
1277 //   int cache = cache_i;
1278 //   int sourceOffset = string_object.offset;
1279 //   int sourceCount = string_object.count;
1280 //   int targetCount = target_object.length;
1281 //
1282 //   int targetCountLess1 = targetCount - 1;
1283 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1284 //
1285 //   char[] source = string_object.value;
1286 //   char[] target = target_object;
1287 //   int lastChar = target[targetCountLess1];
1288 //
1289 //  outer_loop:
1290 //   for (int i = sourceOffset; i < sourceEnd; ) {
1291 //     int src = source[i + targetCountLess1];
1292 //     if (src == lastChar) {
1293 //       // With random strings and a 4-character alphabet,
1294 //       // reverse matching at this point sets up 0.8% fewer
1295 //       // frames, but (paradoxically) makes 0.3% more probes.
1296 //       // Since those probes are nearer the lastChar probe,
1297 //       // there is may be a net D$ win with reverse matching.
1298 //       // But, reversing loop inhibits unroll of inner loop
1299 //       // for unknown reason.  So, does running outer loop from
1300 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1301 //       for (int j = 0; j < targetCountLess1; j++) {
1302 //         if (target[targetOffset + j] != source[i+j]) {
1303 //           if ((cache & (1 << source[i+j])) == 0) {
1304 //             if (md2 < j+1) {
1305 //               i += j+1;
1306 //               continue outer_loop;
1307 //             }
1308 //           }
1309 //           i += md2;
1310 //           continue outer_loop;
1311 //         }
1312 //       }
1313 //       return i - sourceOffset;
1314 //     }
1315 //     if ((cache & (1 << src)) == 0) {
1316 //       i += targetCountLess1;
1317 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1318 //     i++;
1319 //   }
1320 //   return -1;
1321 // }
1322 
1323 //------------------------------string_indexOf------------------------
1324 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1325                                      jint cache_i, jint md2_i) {
1326 
1327   Node* no_ctrl  = NULL;
1328   float likely   = PROB_LIKELY(0.9);
1329   float unlikely = PROB_UNLIKELY(0.9);
1330 
1331   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1332 
1333   Node* source        = load_String_value(no_ctrl, string_object);
1334   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1335   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1336 
1337   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1338   jint target_length = target_array->length();
1339   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1340   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1341 
1342   // String.value field is known to be @Stable.
1343   if (UseImplicitStableValues) {
1344     target = cast_array_to_stable(target, target_type);
1345   }
1346 
1347   IdealKit kit(this, false, true);
1348 #define __ kit.
1349   Node* zero             = __ ConI(0);
1350   Node* one              = __ ConI(1);
1351   Node* cache            = __ ConI(cache_i);
1352   Node* md2              = __ ConI(md2_i);
1353   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1354   Node* targetCountLess1 = __ ConI(target_length - 1);
1355   Node* targetOffset     = __ ConI(targetOffset_i);
1356   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1357 
1358   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1359   Node* outer_loop = __ make_label(2 /* goto */);
1360   Node* return_    = __ make_label(1);
1361 
1362   __ set(rtn,__ ConI(-1));
1363   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1364        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1365        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1366        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1367        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1368          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1369               Node* tpj = __ AddI(targetOffset, __ value(j));
1370               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1371               Node* ipj  = __ AddI(__ value(i), __ value(j));
1372               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1373               __ if_then(targ, BoolTest::ne, src2); {
1374                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1375                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1376                     __ increment(i, __ AddI(__ value(j), one));
1377                     __ goto_(outer_loop);
1378                   } __ end_if(); __ dead(j);
1379                 }__ end_if(); __ dead(j);
1380                 __ increment(i, md2);
1381                 __ goto_(outer_loop);
1382               }__ end_if();
1383               __ increment(j, one);
1384          }__ end_loop(); __ dead(j);
1385          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1386          __ goto_(return_);
1387        }__ end_if();
1388        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1389          __ increment(i, targetCountLess1);
1390        }__ end_if();
1391        __ increment(i, one);
1392        __ bind(outer_loop);
1393   }__ end_loop(); __ dead(i);
1394   __ bind(return_);
1395 
1396   // Final sync IdealKit and GraphKit.
1397   final_sync(kit);
1398   Node* result = __ value(rtn);
1399 #undef __
1400   C->set_has_loops(true);
1401   return result;
1402 }
1403 
1404 //------------------------------inline_string_indexOf------------------------
1405 bool LibraryCallKit::inline_string_indexOf() {
1406   Node* receiver = argument(0);
1407   Node* arg      = argument(1);
1408 
1409   Node* result;
1410   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1411       UseSSE42Intrinsics) {
1412     // Generate SSE4.2 version of indexOf
1413     // We currently only have match rules that use SSE4.2
1414 
1415     receiver = null_check(receiver);
1416     arg      = null_check(arg);
1417     if (stopped()) {
1418       return true;
1419     }
1420 
1421     // Make the merge point
1422     RegionNode* result_rgn = new RegionNode(4);
1423     Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1424     Node* no_ctrl  = NULL;
1425 
1426     // Get start addr of source string
1427     Node* source = load_String_value(no_ctrl, receiver);
1428     Node* source_offset = load_String_offset(no_ctrl, receiver);
1429     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1430 
1431     // Get length of source string
1432     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1433 
1434     // Get start addr of substring
1435     Node* substr = load_String_value(no_ctrl, arg);
1436     Node* substr_offset = load_String_offset(no_ctrl, arg);
1437     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1438 
1439     // Get length of source string
1440     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1441 
1442     // Check for substr count > string count
1443     Node* cmp = _gvn.transform(new CmpINode(substr_cnt, source_cnt));
1444     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1445     Node* if_gt = generate_slow_guard(bol, NULL);
1446     if (if_gt != NULL) {
1447       result_phi->init_req(2, intcon(-1));
1448       result_rgn->init_req(2, if_gt);
1449     }
1450 
1451     if (!stopped()) {
1452       // Check for substr count == 0
1453       cmp = _gvn.transform(new CmpINode(substr_cnt, intcon(0)));
1454       bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1455       Node* if_zero = generate_slow_guard(bol, NULL);
1456       if (if_zero != NULL) {
1457         result_phi->init_req(3, intcon(0));
1458         result_rgn->init_req(3, if_zero);
1459       }
1460     }
1461 
1462     if (!stopped()) {
1463       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1464       result_phi->init_req(1, result);
1465       result_rgn->init_req(1, control());
1466     }
1467     set_control(_gvn.transform(result_rgn));
1468     record_for_igvn(result_rgn);
1469     result = _gvn.transform(result_phi);
1470 
1471   } else { // Use LibraryCallKit::string_indexOf
1472     // don't intrinsify if argument isn't a constant string.
1473     if (!arg->is_Con()) {
1474      return false;
1475     }
1476     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1477     if (str_type == NULL) {
1478       return false;
1479     }
1480     ciInstanceKlass* klass = env()->String_klass();
1481     ciObject* str_const = str_type->const_oop();
1482     if (str_const == NULL || str_const->klass() != klass) {
1483       return false;
1484     }
1485     ciInstance* str = str_const->as_instance();
1486     assert(str != NULL, "must be instance");
1487 
1488     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1489     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1490 
1491     int o;
1492     int c;
1493     if (java_lang_String::has_offset_field()) {
1494       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1495       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1496     } else {
1497       o = 0;
1498       c = pat->length();
1499     }
1500 
1501     // constant strings have no offset and count == length which
1502     // simplifies the resulting code somewhat so lets optimize for that.
1503     if (o != 0 || c != pat->length()) {
1504      return false;
1505     }
1506 
1507     receiver = null_check(receiver, T_OBJECT);
1508     // NOTE: No null check on the argument is needed since it's a constant String oop.
1509     if (stopped()) {
1510       return true;
1511     }
1512 
1513     // The null string as a pattern always returns 0 (match at beginning of string)
1514     if (c == 0) {
1515       set_result(intcon(0));
1516       return true;
1517     }
1518 
1519     // Generate default indexOf
1520     jchar lastChar = pat->char_at(o + (c - 1));
1521     int cache = 0;
1522     int i;
1523     for (i = 0; i < c - 1; i++) {
1524       assert(i < pat->length(), "out of range");
1525       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1526     }
1527 
1528     int md2 = c;
1529     for (i = 0; i < c - 1; i++) {
1530       assert(i < pat->length(), "out of range");
1531       if (pat->char_at(o + i) == lastChar) {
1532         md2 = (c - 1) - i;
1533       }
1534     }
1535 
1536     result = string_indexOf(receiver, pat, o, cache, md2);
1537   }
1538   set_result(result);
1539   return true;
1540 }
1541 
1542 //--------------------------round_double_node--------------------------------
1543 // Round a double node if necessary.
1544 Node* LibraryCallKit::round_double_node(Node* n) {
1545   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1546     n = _gvn.transform(new RoundDoubleNode(0, n));
1547   return n;
1548 }
1549 
1550 //------------------------------inline_math-----------------------------------
1551 // public static double Math.abs(double)
1552 // public static double Math.sqrt(double)
1553 // public static double Math.log(double)
1554 // public static double Math.log10(double)
1555 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1556   Node* arg = round_double_node(argument(0));
1557   Node* n;
1558   switch (id) {
1559   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1560   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1561   case vmIntrinsics::_dlog:   n = new LogDNode(C, control(),   arg);  break;
1562   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1563   default:  fatal_unexpected_iid(id);  break;
1564   }
1565   set_result(_gvn.transform(n));
1566   return true;
1567 }
1568 
1569 //------------------------------inline_trig----------------------------------
1570 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1571 // argument reduction which will turn into a fast/slow diamond.
1572 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1573   Node* arg = round_double_node(argument(0));
1574   Node* n = NULL;
1575 
1576   switch (id) {
1577   case vmIntrinsics::_dsin:  n = new SinDNode(C, control(), arg);  break;
1578   case vmIntrinsics::_dcos:  n = new CosDNode(C, control(), arg);  break;
1579   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1580   default:  fatal_unexpected_iid(id);  break;
1581   }
1582   n = _gvn.transform(n);
1583 
1584   // Rounding required?  Check for argument reduction!
1585   if (Matcher::strict_fp_requires_explicit_rounding) {
1586     static const double     pi_4 =  0.7853981633974483;
1587     static const double neg_pi_4 = -0.7853981633974483;
1588     // pi/2 in 80-bit extended precision
1589     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1590     // -pi/2 in 80-bit extended precision
1591     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1592     // Cutoff value for using this argument reduction technique
1593     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1594     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1595 
1596     // Pseudocode for sin:
1597     // if (x <= Math.PI / 4.0) {
1598     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1599     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1600     // } else {
1601     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1602     // }
1603     // return StrictMath.sin(x);
1604 
1605     // Pseudocode for cos:
1606     // if (x <= Math.PI / 4.0) {
1607     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1608     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1609     // } else {
1610     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1611     // }
1612     // return StrictMath.cos(x);
1613 
1614     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1615     // requires a special machine instruction to load it.  Instead we'll try
1616     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1617     // probably do the math inside the SIN encoding.
1618 
1619     // Make the merge point
1620     RegionNode* r = new RegionNode(3);
1621     Node* phi = new PhiNode(r, Type::DOUBLE);
1622 
1623     // Flatten arg so we need only 1 test
1624     Node *abs = _gvn.transform(new AbsDNode(arg));
1625     // Node for PI/4 constant
1626     Node *pi4 = makecon(TypeD::make(pi_4));
1627     // Check PI/4 : abs(arg)
1628     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1629     // Check: If PI/4 < abs(arg) then go slow
1630     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1631     // Branch either way
1632     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1633     set_control(opt_iff(r,iff));
1634 
1635     // Set fast path result
1636     phi->init_req(2, n);
1637 
1638     // Slow path - non-blocking leaf call
1639     Node* call = NULL;
1640     switch (id) {
1641     case vmIntrinsics::_dsin:
1642       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1643                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1644                                "Sin", NULL, arg, top());
1645       break;
1646     case vmIntrinsics::_dcos:
1647       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1648                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1649                                "Cos", NULL, arg, top());
1650       break;
1651     case vmIntrinsics::_dtan:
1652       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1653                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1654                                "Tan", NULL, arg, top());
1655       break;
1656     }
1657     assert(control()->in(0) == call, "");
1658     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1659     r->init_req(1, control());
1660     phi->init_req(1, slow_result);
1661 
1662     // Post-merge
1663     set_control(_gvn.transform(r));
1664     record_for_igvn(r);
1665     n = _gvn.transform(phi);
1666 
1667     C->set_has_split_ifs(true); // Has chance for split-if optimization
1668   }
1669   set_result(n);
1670   return true;
1671 }
1672 
1673 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1674   //-------------------
1675   //result=(result.isNaN())? funcAddr():result;
1676   // Check: If isNaN() by checking result!=result? then either trap
1677   // or go to runtime
1678   Node* cmpisnan = _gvn.transform(new CmpDNode(result, result));
1679   // Build the boolean node
1680   Node* bolisnum = _gvn.transform(new BoolNode(cmpisnan, BoolTest::eq));
1681 
1682   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1683     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1684       // The pow or exp intrinsic returned a NaN, which requires a call
1685       // to the runtime.  Recompile with the runtime call.
1686       uncommon_trap(Deoptimization::Reason_intrinsic,
1687                     Deoptimization::Action_make_not_entrant);
1688     }
1689     return result;
1690   } else {
1691     // If this inlining ever returned NaN in the past, we compile a call
1692     // to the runtime to properly handle corner cases
1693 
1694     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1695     Node* if_slow = _gvn.transform(new IfFalseNode(iff));
1696     Node* if_fast = _gvn.transform(new IfTrueNode(iff));
1697 
1698     if (!if_slow->is_top()) {
1699       RegionNode* result_region = new RegionNode(3);
1700       PhiNode*    result_val = new PhiNode(result_region, Type::DOUBLE);
1701 
1702       result_region->init_req(1, if_fast);
1703       result_val->init_req(1, result);
1704 
1705       set_control(if_slow);
1706 
1707       const TypePtr* no_memory_effects = NULL;
1708       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1709                                    no_memory_effects,
1710                                    x, top(), y, y ? top() : NULL);
1711       Node* value = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+0));
1712 #ifdef ASSERT
1713       Node* value_top = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+1));
1714       assert(value_top == top(), "second value must be top");
1715 #endif
1716 
1717       result_region->init_req(2, control());
1718       result_val->init_req(2, value);
1719       set_control(_gvn.transform(result_region));
1720       return _gvn.transform(result_val);
1721     } else {
1722       return result;
1723     }
1724   }
1725 }
1726 
1727 //------------------------------inline_exp-------------------------------------
1728 // Inline exp instructions, if possible.  The Intel hardware only misses
1729 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1730 bool LibraryCallKit::inline_exp() {
1731   Node* arg = round_double_node(argument(0));
1732   Node* n   = _gvn.transform(new ExpDNode(C, control(), arg));
1733 
1734   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1735   set_result(n);
1736 
1737   C->set_has_split_ifs(true); // Has chance for split-if optimization
1738   return true;
1739 }
1740 
1741 //------------------------------inline_pow-------------------------------------
1742 // Inline power instructions, if possible.
1743 bool LibraryCallKit::inline_pow() {
1744   // Pseudocode for pow
1745   // if (y == 2) {
1746   //   return x * x;
1747   // } else {
1748   //   if (x <= 0.0) {
1749   //     long longy = (long)y;
1750   //     if ((double)longy == y) { // if y is long
1751   //       if (y + 1 == y) longy = 0; // huge number: even
1752   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1753   //     } else {
1754   //       result = NaN;
1755   //     }
1756   //   } else {
1757   //     result = DPow(x,y);
1758   //   }
1759   //   if (result != result)?  {
1760   //     result = uncommon_trap() or runtime_call();
1761   //   }
1762   //   return result;
1763   // }
1764 
1765   Node* x = round_double_node(argument(0));
1766   Node* y = round_double_node(argument(2));
1767 
1768   Node* result = NULL;
1769 
1770   Node*   const_two_node = makecon(TypeD::make(2.0));
1771   Node*   cmp_node       = _gvn.transform(new CmpDNode(y, const_two_node));
1772   Node*   bool_node      = _gvn.transform(new BoolNode(cmp_node, BoolTest::eq));
1773   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1774   Node*   if_true        = _gvn.transform(new IfTrueNode(if_node));
1775   Node*   if_false       = _gvn.transform(new IfFalseNode(if_node));
1776 
1777   RegionNode* region_node = new RegionNode(3);
1778   region_node->init_req(1, if_true);
1779 
1780   Node* phi_node = new PhiNode(region_node, Type::DOUBLE);
1781   // special case for x^y where y == 2, we can convert it to x * x
1782   phi_node->init_req(1, _gvn.transform(new MulDNode(x, x)));
1783 
1784   // set control to if_false since we will now process the false branch
1785   set_control(if_false);
1786 
1787   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1788     // Short form: skip the fancy tests and just check for NaN result.
1789     result = _gvn.transform(new PowDNode(C, control(), x, y));
1790   } else {
1791     // If this inlining ever returned NaN in the past, include all
1792     // checks + call to the runtime.
1793 
1794     // Set the merge point for If node with condition of (x <= 0.0)
1795     // There are four possible paths to region node and phi node
1796     RegionNode *r = new RegionNode(4);
1797     Node *phi = new PhiNode(r, Type::DOUBLE);
1798 
1799     // Build the first if node: if (x <= 0.0)
1800     // Node for 0 constant
1801     Node *zeronode = makecon(TypeD::ZERO);
1802     // Check x:0
1803     Node *cmp = _gvn.transform(new CmpDNode(x, zeronode));
1804     // Check: If (x<=0) then go complex path
1805     Node *bol1 = _gvn.transform(new BoolNode( cmp, BoolTest::le ));
1806     // Branch either way
1807     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1808     // Fast path taken; set region slot 3
1809     Node *fast_taken = _gvn.transform(new IfFalseNode(if1));
1810     r->init_req(3,fast_taken); // Capture fast-control
1811 
1812     // Fast path not-taken, i.e. slow path
1813     Node *complex_path = _gvn.transform(new IfTrueNode(if1));
1814 
1815     // Set fast path result
1816     Node *fast_result = _gvn.transform(new PowDNode(C, control(), x, y));
1817     phi->init_req(3, fast_result);
1818 
1819     // Complex path
1820     // Build the second if node (if y is long)
1821     // Node for (long)y
1822     Node *longy = _gvn.transform(new ConvD2LNode(y));
1823     // Node for (double)((long) y)
1824     Node *doublelongy= _gvn.transform(new ConvL2DNode(longy));
1825     // Check (double)((long) y) : y
1826     Node *cmplongy= _gvn.transform(new CmpDNode(doublelongy, y));
1827     // Check if (y isn't long) then go to slow path
1828 
1829     Node *bol2 = _gvn.transform(new BoolNode( cmplongy, BoolTest::ne ));
1830     // Branch either way
1831     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1832     Node* ylong_path = _gvn.transform(new IfFalseNode(if2));
1833 
1834     Node *slow_path = _gvn.transform(new IfTrueNode(if2));
1835 
1836     // Calculate DPow(abs(x), y)*(1 & (long)y)
1837     // Node for constant 1
1838     Node *conone = longcon(1);
1839     // 1& (long)y
1840     Node *signnode= _gvn.transform(new AndLNode(conone, longy));
1841 
1842     // A huge number is always even. Detect a huge number by checking
1843     // if y + 1 == y and set integer to be tested for parity to 0.
1844     // Required for corner case:
1845     // (long)9.223372036854776E18 = max_jlong
1846     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1847     // max_jlong is odd but 9.223372036854776E18 is even
1848     Node* yplus1 = _gvn.transform(new AddDNode(y, makecon(TypeD::make(1))));
1849     Node *cmpyplus1= _gvn.transform(new CmpDNode(yplus1, y));
1850     Node *bolyplus1 = _gvn.transform(new BoolNode( cmpyplus1, BoolTest::eq ));
1851     Node* correctedsign = NULL;
1852     if (ConditionalMoveLimit != 0) {
1853       correctedsign = _gvn.transform(CMoveNode::make(NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1854     } else {
1855       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1856       RegionNode *r = new RegionNode(3);
1857       Node *phi = new PhiNode(r, TypeLong::LONG);
1858       r->init_req(1, _gvn.transform(new IfFalseNode(ifyplus1)));
1859       r->init_req(2, _gvn.transform(new IfTrueNode(ifyplus1)));
1860       phi->init_req(1, signnode);
1861       phi->init_req(2, longcon(0));
1862       correctedsign = _gvn.transform(phi);
1863       ylong_path = _gvn.transform(r);
1864       record_for_igvn(r);
1865     }
1866 
1867     // zero node
1868     Node *conzero = longcon(0);
1869     // Check (1&(long)y)==0?
1870     Node *cmpeq1 = _gvn.transform(new CmpLNode(correctedsign, conzero));
1871     // Check if (1&(long)y)!=0?, if so the result is negative
1872     Node *bol3 = _gvn.transform(new BoolNode( cmpeq1, BoolTest::ne ));
1873     // abs(x)
1874     Node *absx=_gvn.transform(new AbsDNode(x));
1875     // abs(x)^y
1876     Node *absxpowy = _gvn.transform(new PowDNode(C, control(), absx, y));
1877     // -abs(x)^y
1878     Node *negabsxpowy = _gvn.transform(new NegDNode (absxpowy));
1879     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1880     Node *signresult = NULL;
1881     if (ConditionalMoveLimit != 0) {
1882       signresult = _gvn.transform(CMoveNode::make(NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1883     } else {
1884       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1885       RegionNode *r = new RegionNode(3);
1886       Node *phi = new PhiNode(r, Type::DOUBLE);
1887       r->init_req(1, _gvn.transform(new IfFalseNode(ifyeven)));
1888       r->init_req(2, _gvn.transform(new IfTrueNode(ifyeven)));
1889       phi->init_req(1, absxpowy);
1890       phi->init_req(2, negabsxpowy);
1891       signresult = _gvn.transform(phi);
1892       ylong_path = _gvn.transform(r);
1893       record_for_igvn(r);
1894     }
1895     // Set complex path fast result
1896     r->init_req(2, ylong_path);
1897     phi->init_req(2, signresult);
1898 
1899     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1900     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1901     r->init_req(1,slow_path);
1902     phi->init_req(1,slow_result);
1903 
1904     // Post merge
1905     set_control(_gvn.transform(r));
1906     record_for_igvn(r);
1907     result = _gvn.transform(phi);
1908   }
1909 
1910   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1911 
1912   // control from finish_pow_exp is now input to the region node
1913   region_node->set_req(2, control());
1914   // the result from finish_pow_exp is now input to the phi node
1915   phi_node->init_req(2, result);
1916   set_control(_gvn.transform(region_node));
1917   record_for_igvn(region_node);
1918   set_result(_gvn.transform(phi_node));
1919 
1920   C->set_has_split_ifs(true); // Has chance for split-if optimization
1921   return true;
1922 }
1923 
1924 //------------------------------runtime_math-----------------------------
1925 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1926   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1927          "must be (DD)D or (D)D type");
1928 
1929   // Inputs
1930   Node* a = round_double_node(argument(0));
1931   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1932 
1933   const TypePtr* no_memory_effects = NULL;
1934   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1935                                  no_memory_effects,
1936                                  a, top(), b, b ? top() : NULL);
1937   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1938 #ifdef ASSERT
1939   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1940   assert(value_top == top(), "second value must be top");
1941 #endif
1942 
1943   set_result(value);
1944   return true;
1945 }
1946 
1947 //------------------------------inline_math_native-----------------------------
1948 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1949 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1950   switch (id) {
1951     // These intrinsics are not properly supported on all hardware
1952   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1953     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1954   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1955     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1956   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1957     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1958 
1959   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1960     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1961   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1962     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1963 
1964     // These intrinsics are supported on all hardware
1965   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1966   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1967 
1968   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1969     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1970   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1971     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1972 #undef FN_PTR
1973 
1974    // These intrinsics are not yet correctly implemented
1975   case vmIntrinsics::_datan2:
1976     return false;
1977 
1978   default:
1979     fatal_unexpected_iid(id);
1980     return false;
1981   }
1982 }
1983 
1984 static bool is_simple_name(Node* n) {
1985   return (n->req() == 1         // constant
1986           || (n->is_Type() && n->as_Type()->type()->singleton())
1987           || n->is_Proj()       // parameter or return value
1988           || n->is_Phi()        // local of some sort
1989           );
1990 }
1991 
1992 //----------------------------inline_min_max-----------------------------------
1993 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1994   set_result(generate_min_max(id, argument(0), argument(1)));
1995   return true;
1996 }
1997 
1998 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1999   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
2000   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2001   Node* fast_path = _gvn.transform( new IfFalseNode(check));
2002   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
2003 
2004   {
2005     PreserveJVMState pjvms(this);
2006     PreserveReexecuteState preexecs(this);
2007     jvms()->set_should_reexecute(true);
2008 
2009     set_control(slow_path);
2010     set_i_o(i_o());
2011 
2012     uncommon_trap(Deoptimization::Reason_intrinsic,
2013                   Deoptimization::Action_none);
2014   }
2015 
2016   set_control(fast_path);
2017   set_result(math);
2018 }
2019 
2020 template <typename OverflowOp>
2021 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2022   typedef typename OverflowOp::MathOp MathOp;
2023 
2024   MathOp* mathOp = new MathOp(arg1, arg2);
2025   Node* operation = _gvn.transform( mathOp );
2026   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2027   inline_math_mathExact(operation, ofcheck);
2028   return true;
2029 }
2030 
2031 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2032   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2033 }
2034 
2035 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2036   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2037 }
2038 
2039 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2040   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2041 }
2042 
2043 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2044   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2045 }
2046 
2047 bool LibraryCallKit::inline_math_negateExactI() {
2048   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2049 }
2050 
2051 bool LibraryCallKit::inline_math_negateExactL() {
2052   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2053 }
2054 
2055 bool LibraryCallKit::inline_math_multiplyExactI() {
2056   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2057 }
2058 
2059 bool LibraryCallKit::inline_math_multiplyExactL() {
2060   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2061 }
2062 
2063 Node*
2064 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2065   // These are the candidate return value:
2066   Node* xvalue = x0;
2067   Node* yvalue = y0;
2068 
2069   if (xvalue == yvalue) {
2070     return xvalue;
2071   }
2072 
2073   bool want_max = (id == vmIntrinsics::_max);
2074 
2075   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2076   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2077   if (txvalue == NULL || tyvalue == NULL)  return top();
2078   // This is not really necessary, but it is consistent with a
2079   // hypothetical MaxINode::Value method:
2080   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2081 
2082   // %%% This folding logic should (ideally) be in a different place.
2083   // Some should be inside IfNode, and there to be a more reliable
2084   // transformation of ?: style patterns into cmoves.  We also want
2085   // more powerful optimizations around cmove and min/max.
2086 
2087   // Try to find a dominating comparison of these guys.
2088   // It can simplify the index computation for Arrays.copyOf
2089   // and similar uses of System.arraycopy.
2090   // First, compute the normalized version of CmpI(x, y).
2091   int   cmp_op = Op_CmpI;
2092   Node* xkey = xvalue;
2093   Node* ykey = yvalue;
2094   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2095   if (ideal_cmpxy->is_Cmp()) {
2096     // E.g., if we have CmpI(length - offset, count),
2097     // it might idealize to CmpI(length, count + offset)
2098     cmp_op = ideal_cmpxy->Opcode();
2099     xkey = ideal_cmpxy->in(1);
2100     ykey = ideal_cmpxy->in(2);
2101   }
2102 
2103   // Start by locating any relevant comparisons.
2104   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2105   Node* cmpxy = NULL;
2106   Node* cmpyx = NULL;
2107   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2108     Node* cmp = start_from->fast_out(k);
2109     if (cmp->outcnt() > 0 &&            // must have prior uses
2110         cmp->in(0) == NULL &&           // must be context-independent
2111         cmp->Opcode() == cmp_op) {      // right kind of compare
2112       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2113       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2114     }
2115   }
2116 
2117   const int NCMPS = 2;
2118   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2119   int cmpn;
2120   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2121     if (cmps[cmpn] != NULL)  break;     // find a result
2122   }
2123   if (cmpn < NCMPS) {
2124     // Look for a dominating test that tells us the min and max.
2125     int depth = 0;                // Limit search depth for speed
2126     Node* dom = control();
2127     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2128       if (++depth >= 100)  break;
2129       Node* ifproj = dom;
2130       if (!ifproj->is_Proj())  continue;
2131       Node* iff = ifproj->in(0);
2132       if (!iff->is_If())  continue;
2133       Node* bol = iff->in(1);
2134       if (!bol->is_Bool())  continue;
2135       Node* cmp = bol->in(1);
2136       if (cmp == NULL)  continue;
2137       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2138         if (cmps[cmpn] == cmp)  break;
2139       if (cmpn == NCMPS)  continue;
2140       BoolTest::mask btest = bol->as_Bool()->_test._test;
2141       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2142       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2143       // At this point, we know that 'x btest y' is true.
2144       switch (btest) {
2145       case BoolTest::eq:
2146         // They are proven equal, so we can collapse the min/max.
2147         // Either value is the answer.  Choose the simpler.
2148         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2149           return yvalue;
2150         return xvalue;
2151       case BoolTest::lt:          // x < y
2152       case BoolTest::le:          // x <= y
2153         return (want_max ? yvalue : xvalue);
2154       case BoolTest::gt:          // x > y
2155       case BoolTest::ge:          // x >= y
2156         return (want_max ? xvalue : yvalue);
2157       }
2158     }
2159   }
2160 
2161   // We failed to find a dominating test.
2162   // Let's pick a test that might GVN with prior tests.
2163   Node*          best_bol   = NULL;
2164   BoolTest::mask best_btest = BoolTest::illegal;
2165   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2166     Node* cmp = cmps[cmpn];
2167     if (cmp == NULL)  continue;
2168     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2169       Node* bol = cmp->fast_out(j);
2170       if (!bol->is_Bool())  continue;
2171       BoolTest::mask btest = bol->as_Bool()->_test._test;
2172       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2173       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2174       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2175         best_bol   = bol->as_Bool();
2176         best_btest = btest;
2177       }
2178     }
2179   }
2180 
2181   Node* answer_if_true  = NULL;
2182   Node* answer_if_false = NULL;
2183   switch (best_btest) {
2184   default:
2185     if (cmpxy == NULL)
2186       cmpxy = ideal_cmpxy;
2187     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2188     // and fall through:
2189   case BoolTest::lt:          // x < y
2190   case BoolTest::le:          // x <= y
2191     answer_if_true  = (want_max ? yvalue : xvalue);
2192     answer_if_false = (want_max ? xvalue : yvalue);
2193     break;
2194   case BoolTest::gt:          // x > y
2195   case BoolTest::ge:          // x >= y
2196     answer_if_true  = (want_max ? xvalue : yvalue);
2197     answer_if_false = (want_max ? yvalue : xvalue);
2198     break;
2199   }
2200 
2201   jint hi, lo;
2202   if (want_max) {
2203     // We can sharpen the minimum.
2204     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2205     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2206   } else {
2207     // We can sharpen the maximum.
2208     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2209     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2210   }
2211 
2212   // Use a flow-free graph structure, to avoid creating excess control edges
2213   // which could hinder other optimizations.
2214   // Since Math.min/max is often used with arraycopy, we want
2215   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2216   Node* cmov = CMoveNode::make(NULL, best_bol,
2217                                answer_if_false, answer_if_true,
2218                                TypeInt::make(lo, hi, widen));
2219 
2220   return _gvn.transform(cmov);
2221 
2222   /*
2223   // This is not as desirable as it may seem, since Min and Max
2224   // nodes do not have a full set of optimizations.
2225   // And they would interfere, anyway, with 'if' optimizations
2226   // and with CMoveI canonical forms.
2227   switch (id) {
2228   case vmIntrinsics::_min:
2229     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2230   case vmIntrinsics::_max:
2231     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2232   default:
2233     ShouldNotReachHere();
2234   }
2235   */
2236 }
2237 
2238 inline int
2239 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2240   const TypePtr* base_type = TypePtr::NULL_PTR;
2241   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2242   if (base_type == NULL) {
2243     // Unknown type.
2244     return Type::AnyPtr;
2245   } else if (base_type == TypePtr::NULL_PTR) {
2246     // Since this is a NULL+long form, we have to switch to a rawptr.
2247     base   = _gvn.transform(new CastX2PNode(offset));
2248     offset = MakeConX(0);
2249     return Type::RawPtr;
2250   } else if (base_type->base() == Type::RawPtr) {
2251     return Type::RawPtr;
2252   } else if (base_type->isa_oopptr()) {
2253     // Base is never null => always a heap address.
2254     if (base_type->ptr() == TypePtr::NotNull) {
2255       return Type::OopPtr;
2256     }
2257     // Offset is small => always a heap address.
2258     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2259     if (offset_type != NULL &&
2260         base_type->offset() == 0 &&     // (should always be?)
2261         offset_type->_lo >= 0 &&
2262         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2263       return Type::OopPtr;
2264     }
2265     // Otherwise, it might either be oop+off or NULL+addr.
2266     return Type::AnyPtr;
2267   } else {
2268     // No information:
2269     return Type::AnyPtr;
2270   }
2271 }
2272 
2273 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2274   int kind = classify_unsafe_addr(base, offset);
2275   if (kind == Type::RawPtr) {
2276     return basic_plus_adr(top(), base, offset);
2277   } else {
2278     return basic_plus_adr(base, offset);
2279   }
2280 }
2281 
2282 //--------------------------inline_number_methods-----------------------------
2283 // inline int     Integer.numberOfLeadingZeros(int)
2284 // inline int        Long.numberOfLeadingZeros(long)
2285 //
2286 // inline int     Integer.numberOfTrailingZeros(int)
2287 // inline int        Long.numberOfTrailingZeros(long)
2288 //
2289 // inline int     Integer.bitCount(int)
2290 // inline int        Long.bitCount(long)
2291 //
2292 // inline char  Character.reverseBytes(char)
2293 // inline short     Short.reverseBytes(short)
2294 // inline int     Integer.reverseBytes(int)
2295 // inline long       Long.reverseBytes(long)
2296 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2297   Node* arg = argument(0);
2298   Node* n;
2299   switch (id) {
2300   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2301   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2302   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2303   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2304   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2305   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2306   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2307   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2308   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2309   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2310   default:  fatal_unexpected_iid(id);  break;
2311   }
2312   set_result(_gvn.transform(n));
2313   return true;
2314 }
2315 
2316 //----------------------------inline_unsafe_access----------------------------
2317 
2318 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2319 
2320 // Helper that guards and inserts a pre-barrier.
2321 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2322                                         Node* pre_val, bool need_mem_bar) {
2323   // We could be accessing the referent field of a reference object. If so, when G1
2324   // is enabled, we need to log the value in the referent field in an SATB buffer.
2325   // This routine performs some compile time filters and generates suitable
2326   // runtime filters that guard the pre-barrier code.
2327   // Also add memory barrier for non volatile load from the referent field
2328   // to prevent commoning of loads across safepoint.
2329   if (!UseG1GC && !need_mem_bar)
2330     return;
2331 
2332   // Some compile time checks.
2333 
2334   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2335   const TypeX* otype = offset->find_intptr_t_type();
2336   if (otype != NULL && otype->is_con() &&
2337       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2338     // Constant offset but not the reference_offset so just return
2339     return;
2340   }
2341 
2342   // We only need to generate the runtime guards for instances.
2343   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2344   if (btype != NULL) {
2345     if (btype->isa_aryptr()) {
2346       // Array type so nothing to do
2347       return;
2348     }
2349 
2350     const TypeInstPtr* itype = btype->isa_instptr();
2351     if (itype != NULL) {
2352       // Can the klass of base_oop be statically determined to be
2353       // _not_ a sub-class of Reference and _not_ Object?
2354       ciKlass* klass = itype->klass();
2355       if ( klass->is_loaded() &&
2356           !klass->is_subtype_of(env()->Reference_klass()) &&
2357           !env()->Object_klass()->is_subtype_of(klass)) {
2358         return;
2359       }
2360     }
2361   }
2362 
2363   // The compile time filters did not reject base_oop/offset so
2364   // we need to generate the following runtime filters
2365   //
2366   // if (offset == java_lang_ref_Reference::_reference_offset) {
2367   //   if (instance_of(base, java.lang.ref.Reference)) {
2368   //     pre_barrier(_, pre_val, ...);
2369   //   }
2370   // }
2371 
2372   float likely   = PROB_LIKELY(  0.999);
2373   float unlikely = PROB_UNLIKELY(0.999);
2374 
2375   IdealKit ideal(this);
2376 #define __ ideal.
2377 
2378   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2379 
2380   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2381       // Update graphKit memory and control from IdealKit.
2382       sync_kit(ideal);
2383 
2384       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2385       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2386 
2387       // Update IdealKit memory and control from graphKit.
2388       __ sync_kit(this);
2389 
2390       Node* one = __ ConI(1);
2391       // is_instof == 0 if base_oop == NULL
2392       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2393 
2394         // Update graphKit from IdeakKit.
2395         sync_kit(ideal);
2396 
2397         // Use the pre-barrier to record the value in the referent field
2398         pre_barrier(false /* do_load */,
2399                     __ ctrl(),
2400                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2401                     pre_val /* pre_val */,
2402                     T_OBJECT);
2403         if (need_mem_bar) {
2404           // Add memory barrier to prevent commoning reads from this field
2405           // across safepoint since GC can change its value.
2406           insert_mem_bar(Op_MemBarCPUOrder);
2407         }
2408         // Update IdealKit from graphKit.
2409         __ sync_kit(this);
2410 
2411       } __ end_if(); // _ref_type != ref_none
2412   } __ end_if(); // offset == referent_offset
2413 
2414   // Final sync IdealKit and GraphKit.
2415   final_sync(ideal);
2416 #undef __
2417 }
2418 
2419 
2420 // Interpret Unsafe.fieldOffset cookies correctly:
2421 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2422 
2423 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2424   // Attempt to infer a sharper value type from the offset and base type.
2425   ciKlass* sharpened_klass = NULL;
2426 
2427   // See if it is an instance field, with an object type.
2428   if (alias_type->field() != NULL) {
2429     assert(!is_native_ptr, "native pointer op cannot use a java address");
2430     if (alias_type->field()->type()->is_klass()) {
2431       sharpened_klass = alias_type->field()->type()->as_klass();
2432     }
2433   }
2434 
2435   // See if it is a narrow oop array.
2436   if (adr_type->isa_aryptr()) {
2437     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2438       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2439       if (elem_type != NULL) {
2440         sharpened_klass = elem_type->klass();
2441       }
2442     }
2443   }
2444 
2445   // The sharpened class might be unloaded if there is no class loader
2446   // contraint in place.
2447   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2448     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2449 
2450 #ifndef PRODUCT
2451     if (C->print_intrinsics() || C->print_inlining()) {
2452       tty->print("  from base type: ");  adr_type->dump();
2453       tty->print("  sharpened value: ");  tjp->dump();
2454     }
2455 #endif
2456     // Sharpen the value type.
2457     return tjp;
2458   }
2459   return NULL;
2460 }
2461 
2462 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2463   if (callee()->is_static())  return false;  // caller must have the capability!
2464 
2465 #ifndef PRODUCT
2466   {
2467     ResourceMark rm;
2468     // Check the signatures.
2469     ciSignature* sig = callee()->signature();
2470 #ifdef ASSERT
2471     if (!is_store) {
2472       // Object getObject(Object base, int/long offset), etc.
2473       BasicType rtype = sig->return_type()->basic_type();
2474       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2475           rtype = T_ADDRESS;  // it is really a C void*
2476       assert(rtype == type, "getter must return the expected value");
2477       if (!is_native_ptr) {
2478         assert(sig->count() == 2, "oop getter has 2 arguments");
2479         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2480         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2481       } else {
2482         assert(sig->count() == 1, "native getter has 1 argument");
2483         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2484       }
2485     } else {
2486       // void putObject(Object base, int/long offset, Object x), etc.
2487       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2488       if (!is_native_ptr) {
2489         assert(sig->count() == 3, "oop putter has 3 arguments");
2490         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2491         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2492       } else {
2493         assert(sig->count() == 2, "native putter has 2 arguments");
2494         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2495       }
2496       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2497       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2498         vtype = T_ADDRESS;  // it is really a C void*
2499       assert(vtype == type, "putter must accept the expected value");
2500     }
2501 #endif // ASSERT
2502  }
2503 #endif //PRODUCT
2504 
2505   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2506 
2507   Node* receiver = argument(0);  // type: oop
2508 
2509   // Build address expression.
2510   Node* adr;
2511   Node* heap_base_oop = top();
2512   Node* offset = top();
2513   Node* val;
2514 
2515   if (!is_native_ptr) {
2516     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2517     Node* base = argument(1);  // type: oop
2518     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2519     offset = argument(2);  // type: long
2520     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2521     // to be plain byte offsets, which are also the same as those accepted
2522     // by oopDesc::field_base.
2523     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2524            "fieldOffset must be byte-scaled");
2525     // 32-bit machines ignore the high half!
2526     offset = ConvL2X(offset);
2527     adr = make_unsafe_address(base, offset);
2528     heap_base_oop = base;
2529     val = is_store ? argument(4) : NULL;
2530   } else {
2531     Node* ptr = argument(1);  // type: long
2532     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2533     adr = make_unsafe_address(NULL, ptr);
2534     val = is_store ? argument(3) : NULL;
2535   }
2536 
2537   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2538 
2539   // First guess at the value type.
2540   const Type *value_type = Type::get_const_basic_type(type);
2541 
2542   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2543   // there was not enough information to nail it down.
2544   Compile::AliasType* alias_type = C->alias_type(adr_type);
2545   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2546 
2547   // We will need memory barriers unless we can determine a unique
2548   // alias category for this reference.  (Note:  If for some reason
2549   // the barriers get omitted and the unsafe reference begins to "pollute"
2550   // the alias analysis of the rest of the graph, either Compile::can_alias
2551   // or Compile::must_alias will throw a diagnostic assert.)
2552   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2553 
2554   // If we are reading the value of the referent field of a Reference
2555   // object (either by using Unsafe directly or through reflection)
2556   // then, if G1 is enabled, we need to record the referent in an
2557   // SATB log buffer using the pre-barrier mechanism.
2558   // Also we need to add memory barrier to prevent commoning reads
2559   // from this field across safepoint since GC can change its value.
2560   bool need_read_barrier = !is_native_ptr && !is_store &&
2561                            offset != top() && heap_base_oop != top();
2562 
2563   if (!is_store && type == T_OBJECT) {
2564     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2565     if (tjp != NULL) {
2566       value_type = tjp;
2567     }
2568   }
2569 
2570   receiver = null_check(receiver);
2571   if (stopped()) {
2572     return true;
2573   }
2574   // Heap pointers get a null-check from the interpreter,
2575   // as a courtesy.  However, this is not guaranteed by Unsafe,
2576   // and it is not possible to fully distinguish unintended nulls
2577   // from intended ones in this API.
2578 
2579   if (is_volatile) {
2580     // We need to emit leading and trailing CPU membars (see below) in
2581     // addition to memory membars when is_volatile. This is a little
2582     // too strong, but avoids the need to insert per-alias-type
2583     // volatile membars (for stores; compare Parse::do_put_xxx), which
2584     // we cannot do effectively here because we probably only have a
2585     // rough approximation of type.
2586     need_mem_bar = true;
2587     // For Stores, place a memory ordering barrier now.
2588     if (is_store) {
2589       insert_mem_bar(Op_MemBarRelease);
2590     } else {
2591       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2592         insert_mem_bar(Op_MemBarVolatile);
2593       }
2594     }
2595   }
2596 
2597   // Memory barrier to prevent normal and 'unsafe' accesses from
2598   // bypassing each other.  Happens after null checks, so the
2599   // exception paths do not take memory state from the memory barrier,
2600   // so there's no problems making a strong assert about mixing users
2601   // of safe & unsafe memory.
2602   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2603 
2604   if (!is_store) {
2605     MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2606     Node* p = make_load(control(), adr, value_type, type, adr_type, mo, is_volatile);
2607     // load value
2608     switch (type) {
2609     case T_BOOLEAN:
2610     case T_CHAR:
2611     case T_BYTE:
2612     case T_SHORT:
2613     case T_INT:
2614     case T_LONG:
2615     case T_FLOAT:
2616     case T_DOUBLE:
2617       break;
2618     case T_OBJECT:
2619       if (need_read_barrier) {
2620         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2621       }
2622       break;
2623     case T_ADDRESS:
2624       // Cast to an int type.
2625       p = _gvn.transform(new CastP2XNode(NULL, p));
2626       p = ConvX2UL(p);
2627       break;
2628     default:
2629       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2630       break;
2631     }
2632     // The load node has the control of the preceding MemBarCPUOrder.  All
2633     // following nodes will have the control of the MemBarCPUOrder inserted at
2634     // the end of this method.  So, pushing the load onto the stack at a later
2635     // point is fine.
2636     set_result(p);
2637   } else {
2638     // place effect of store into memory
2639     switch (type) {
2640     case T_DOUBLE:
2641       val = dstore_rounding(val);
2642       break;
2643     case T_ADDRESS:
2644       // Repackage the long as a pointer.
2645       val = ConvL2X(val);
2646       val = _gvn.transform(new CastX2PNode(val));
2647       break;
2648     }
2649 
2650     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2651     if (type != T_OBJECT ) {
2652       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2653     } else {
2654       // Possibly an oop being stored to Java heap or native memory
2655       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2656         // oop to Java heap.
2657         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2658       } else {
2659         // We can't tell at compile time if we are storing in the Java heap or outside
2660         // of it. So we need to emit code to conditionally do the proper type of
2661         // store.
2662 
2663         IdealKit ideal(this);
2664 #define __ ideal.
2665         // QQQ who knows what probability is here??
2666         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2667           // Sync IdealKit and graphKit.
2668           sync_kit(ideal);
2669           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2670           // Update IdealKit memory.
2671           __ sync_kit(this);
2672         } __ else_(); {
2673           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2674         } __ end_if();
2675         // Final sync IdealKit and GraphKit.
2676         final_sync(ideal);
2677 #undef __
2678       }
2679     }
2680   }
2681 
2682   if (is_volatile) {
2683     if (!is_store) {
2684       insert_mem_bar(Op_MemBarAcquire);
2685     } else {
2686       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2687         insert_mem_bar(Op_MemBarVolatile);
2688       }
2689     }
2690   }
2691 
2692   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2693 
2694   return true;
2695 }
2696 
2697 //----------------------------inline_unsafe_load_store----------------------------
2698 // This method serves a couple of different customers (depending on LoadStoreKind):
2699 //
2700 // LS_cmpxchg:
2701 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2702 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2703 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2704 //
2705 // LS_xadd:
2706 //   public int  getAndAddInt( Object o, long offset, int  delta)
2707 //   public long getAndAddLong(Object o, long offset, long delta)
2708 //
2709 // LS_xchg:
2710 //   int    getAndSet(Object o, long offset, int    newValue)
2711 //   long   getAndSet(Object o, long offset, long   newValue)
2712 //   Object getAndSet(Object o, long offset, Object newValue)
2713 //
2714 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2715   // This basic scheme here is the same as inline_unsafe_access, but
2716   // differs in enough details that combining them would make the code
2717   // overly confusing.  (This is a true fact! I originally combined
2718   // them, but even I was confused by it!) As much code/comments as
2719   // possible are retained from inline_unsafe_access though to make
2720   // the correspondences clearer. - dl
2721 
2722   if (callee()->is_static())  return false;  // caller must have the capability!
2723 
2724 #ifndef PRODUCT
2725   BasicType rtype;
2726   {
2727     ResourceMark rm;
2728     // Check the signatures.
2729     ciSignature* sig = callee()->signature();
2730     rtype = sig->return_type()->basic_type();
2731     if (kind == LS_xadd || kind == LS_xchg) {
2732       // Check the signatures.
2733 #ifdef ASSERT
2734       assert(rtype == type, "get and set must return the expected type");
2735       assert(sig->count() == 3, "get and set has 3 arguments");
2736       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2737       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2738       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2739 #endif // ASSERT
2740     } else if (kind == LS_cmpxchg) {
2741       // Check the signatures.
2742 #ifdef ASSERT
2743       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2744       assert(sig->count() == 4, "CAS has 4 arguments");
2745       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2746       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2747 #endif // ASSERT
2748     } else {
2749       ShouldNotReachHere();
2750     }
2751   }
2752 #endif //PRODUCT
2753 
2754   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2755 
2756   // Get arguments:
2757   Node* receiver = NULL;
2758   Node* base     = NULL;
2759   Node* offset   = NULL;
2760   Node* oldval   = NULL;
2761   Node* newval   = NULL;
2762   if (kind == LS_cmpxchg) {
2763     const bool two_slot_type = type2size[type] == 2;
2764     receiver = argument(0);  // type: oop
2765     base     = argument(1);  // type: oop
2766     offset   = argument(2);  // type: long
2767     oldval   = argument(4);  // type: oop, int, or long
2768     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2769   } else if (kind == LS_xadd || kind == LS_xchg){
2770     receiver = argument(0);  // type: oop
2771     base     = argument(1);  // type: oop
2772     offset   = argument(2);  // type: long
2773     oldval   = NULL;
2774     newval   = argument(4);  // type: oop, int, or long
2775   }
2776 
2777   // Null check receiver.
2778   receiver = null_check(receiver);
2779   if (stopped()) {
2780     return true;
2781   }
2782 
2783   // Build field offset expression.
2784   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2785   // to be plain byte offsets, which are also the same as those accepted
2786   // by oopDesc::field_base.
2787   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2788   // 32-bit machines ignore the high half of long offsets
2789   offset = ConvL2X(offset);
2790   Node* adr = make_unsafe_address(base, offset);
2791   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2792 
2793   // For CAS, unlike inline_unsafe_access, there seems no point in
2794   // trying to refine types. Just use the coarse types here.
2795   const Type *value_type = Type::get_const_basic_type(type);
2796   Compile::AliasType* alias_type = C->alias_type(adr_type);
2797   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2798 
2799   if (kind == LS_xchg && type == T_OBJECT) {
2800     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2801     if (tjp != NULL) {
2802       value_type = tjp;
2803     }
2804   }
2805 
2806   int alias_idx = C->get_alias_index(adr_type);
2807 
2808   // Memory-model-wise, a LoadStore acts like a little synchronized
2809   // block, so needs barriers on each side.  These don't translate
2810   // into actual barriers on most machines, but we still need rest of
2811   // compiler to respect ordering.
2812 
2813   insert_mem_bar(Op_MemBarRelease);
2814   insert_mem_bar(Op_MemBarCPUOrder);
2815 
2816   // 4984716: MemBars must be inserted before this
2817   //          memory node in order to avoid a false
2818   //          dependency which will confuse the scheduler.
2819   Node *mem = memory(alias_idx);
2820 
2821   // For now, we handle only those cases that actually exist: ints,
2822   // longs, and Object. Adding others should be straightforward.
2823   Node* load_store;
2824   switch(type) {
2825   case T_INT:
2826     if (kind == LS_xadd) {
2827       load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2828     } else if (kind == LS_xchg) {
2829       load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2830     } else if (kind == LS_cmpxchg) {
2831       load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
2832     } else {
2833       ShouldNotReachHere();
2834     }
2835     break;
2836   case T_LONG:
2837     if (kind == LS_xadd) {
2838       load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2839     } else if (kind == LS_xchg) {
2840       load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2841     } else if (kind == LS_cmpxchg) {
2842       load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2843     } else {
2844       ShouldNotReachHere();
2845     }
2846     break;
2847   case T_OBJECT:
2848     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2849     // could be delayed during Parse (for example, in adjust_map_after_if()).
2850     // Execute transformation here to avoid barrier generation in such case.
2851     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2852       newval = _gvn.makecon(TypePtr::NULL_PTR);
2853 
2854     // Reference stores need a store barrier.
2855     if (kind == LS_xchg) {
2856       // If pre-barrier must execute before the oop store, old value will require do_load here.
2857       if (!can_move_pre_barrier()) {
2858         pre_barrier(true /* do_load*/,
2859                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2860                     NULL /* pre_val*/,
2861                     T_OBJECT);
2862       } // Else move pre_barrier to use load_store value, see below.
2863     } else if (kind == LS_cmpxchg) {
2864       // Same as for newval above:
2865       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2866         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2867       }
2868       // The only known value which might get overwritten is oldval.
2869       pre_barrier(false /* do_load */,
2870                   control(), NULL, NULL, max_juint, NULL, NULL,
2871                   oldval /* pre_val */,
2872                   T_OBJECT);
2873     } else {
2874       ShouldNotReachHere();
2875     }
2876 
2877 #ifdef _LP64
2878     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2879       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2880       if (kind == LS_xchg) {
2881         load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
2882                                                        newval_enc, adr_type, value_type->make_narrowoop()));
2883       } else {
2884         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2885         Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2886         load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
2887                                                                 newval_enc, oldval_enc));
2888       }
2889     } else
2890 #endif
2891     {
2892       if (kind == LS_xchg) {
2893         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2894       } else {
2895         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2896         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2897       }
2898     }
2899     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2900     break;
2901   default:
2902     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2903     break;
2904   }
2905 
2906   // SCMemProjNodes represent the memory state of a LoadStore. Their
2907   // main role is to prevent LoadStore nodes from being optimized away
2908   // when their results aren't used.
2909   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
2910   set_memory(proj, alias_idx);
2911 
2912   if (type == T_OBJECT && kind == LS_xchg) {
2913 #ifdef _LP64
2914     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2915       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
2916     }
2917 #endif
2918     if (can_move_pre_barrier()) {
2919       // Don't need to load pre_val. The old value is returned by load_store.
2920       // The pre_barrier can execute after the xchg as long as no safepoint
2921       // gets inserted between them.
2922       pre_barrier(false /* do_load */,
2923                   control(), NULL, NULL, max_juint, NULL, NULL,
2924                   load_store /* pre_val */,
2925                   T_OBJECT);
2926     }
2927   }
2928 
2929   // Add the trailing membar surrounding the access
2930   insert_mem_bar(Op_MemBarCPUOrder);
2931   insert_mem_bar(Op_MemBarAcquire);
2932 
2933   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2934   set_result(load_store);
2935   return true;
2936 }
2937 
2938 //----------------------------inline_unsafe_ordered_store----------------------
2939 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
2940 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
2941 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
2942 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2943   // This is another variant of inline_unsafe_access, differing in
2944   // that it always issues store-store ("release") barrier and ensures
2945   // store-atomicity (which only matters for "long").
2946 
2947   if (callee()->is_static())  return false;  // caller must have the capability!
2948 
2949 #ifndef PRODUCT
2950   {
2951     ResourceMark rm;
2952     // Check the signatures.
2953     ciSignature* sig = callee()->signature();
2954 #ifdef ASSERT
2955     BasicType rtype = sig->return_type()->basic_type();
2956     assert(rtype == T_VOID, "must return void");
2957     assert(sig->count() == 3, "has 3 arguments");
2958     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2959     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2960 #endif // ASSERT
2961   }
2962 #endif //PRODUCT
2963 
2964   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2965 
2966   // Get arguments:
2967   Node* receiver = argument(0);  // type: oop
2968   Node* base     = argument(1);  // type: oop
2969   Node* offset   = argument(2);  // type: long
2970   Node* val      = argument(4);  // type: oop, int, or long
2971 
2972   // Null check receiver.
2973   receiver = null_check(receiver);
2974   if (stopped()) {
2975     return true;
2976   }
2977 
2978   // Build field offset expression.
2979   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2980   // 32-bit machines ignore the high half of long offsets
2981   offset = ConvL2X(offset);
2982   Node* adr = make_unsafe_address(base, offset);
2983   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2984   const Type *value_type = Type::get_const_basic_type(type);
2985   Compile::AliasType* alias_type = C->alias_type(adr_type);
2986 
2987   insert_mem_bar(Op_MemBarRelease);
2988   insert_mem_bar(Op_MemBarCPUOrder);
2989   // Ensure that the store is atomic for longs:
2990   const bool require_atomic_access = true;
2991   Node* store;
2992   if (type == T_OBJECT) // reference stores need a store barrier.
2993     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
2994   else {
2995     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
2996   }
2997   insert_mem_bar(Op_MemBarCPUOrder);
2998   return true;
2999 }
3000 
3001 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3002   // Regardless of form, don't allow previous ld/st to move down,
3003   // then issue acquire, release, or volatile mem_bar.
3004   insert_mem_bar(Op_MemBarCPUOrder);
3005   switch(id) {
3006     case vmIntrinsics::_loadFence:
3007       insert_mem_bar(Op_LoadFence);
3008       return true;
3009     case vmIntrinsics::_storeFence:
3010       insert_mem_bar(Op_StoreFence);
3011       return true;
3012     case vmIntrinsics::_fullFence:
3013       insert_mem_bar(Op_MemBarVolatile);
3014       return true;
3015     default:
3016       fatal_unexpected_iid(id);
3017       return false;
3018   }
3019 }
3020 
3021 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3022   if (!kls->is_Con()) {
3023     return true;
3024   }
3025   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3026   if (klsptr == NULL) {
3027     return true;
3028   }
3029   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3030   // don't need a guard for a klass that is already initialized
3031   return !ik->is_initialized();
3032 }
3033 
3034 //----------------------------inline_unsafe_allocate---------------------------
3035 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3036 bool LibraryCallKit::inline_unsafe_allocate() {
3037   if (callee()->is_static())  return false;  // caller must have the capability!
3038 
3039   null_check_receiver();  // null-check, then ignore
3040   Node* cls = null_check(argument(1));
3041   if (stopped())  return true;
3042 
3043   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3044   kls = null_check(kls);
3045   if (stopped())  return true;  // argument was like int.class
3046 
3047   Node* test = NULL;
3048   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3049     // Note:  The argument might still be an illegal value like
3050     // Serializable.class or Object[].class.   The runtime will handle it.
3051     // But we must make an explicit check for initialization.
3052     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3053     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3054     // can generate code to load it as unsigned byte.
3055     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3056     Node* bits = intcon(InstanceKlass::fully_initialized);
3057     test = _gvn.transform(new SubINode(inst, bits));
3058     // The 'test' is non-zero if we need to take a slow path.
3059   }
3060 
3061   Node* obj = new_instance(kls, test);
3062   set_result(obj);
3063   return true;
3064 }
3065 
3066 #ifdef TRACE_HAVE_INTRINSICS
3067 /*
3068  * oop -> myklass
3069  * myklass->trace_id |= USED
3070  * return myklass->trace_id & ~0x3
3071  */
3072 bool LibraryCallKit::inline_native_classID() {
3073   null_check_receiver();  // null-check, then ignore
3074   Node* cls = null_check(argument(1), T_OBJECT);
3075   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3076   kls = null_check(kls, T_OBJECT);
3077   ByteSize offset = TRACE_ID_OFFSET;
3078   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3079   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3080   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3081   Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
3082   Node* clsused = longcon(0x01l); // set the class bit
3083   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3084 
3085   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3086   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3087   set_result(andl);
3088   return true;
3089 }
3090 
3091 bool LibraryCallKit::inline_native_threadID() {
3092   Node* tls_ptr = NULL;
3093   Node* cur_thr = generate_current_thread(tls_ptr);
3094   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3095   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3096   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3097 
3098   Node* threadid = NULL;
3099   size_t thread_id_size = OSThread::thread_id_size();
3100   if (thread_id_size == (size_t) BytesPerLong) {
3101     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3102   } else if (thread_id_size == (size_t) BytesPerInt) {
3103     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3104   } else {
3105     ShouldNotReachHere();
3106   }
3107   set_result(threadid);
3108   return true;
3109 }
3110 #endif
3111 
3112 //------------------------inline_native_time_funcs--------------
3113 // inline code for System.currentTimeMillis() and System.nanoTime()
3114 // these have the same type and signature
3115 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3116   const TypeFunc* tf = OptoRuntime::void_long_Type();
3117   const TypePtr* no_memory_effects = NULL;
3118   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3119   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3120 #ifdef ASSERT
3121   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3122   assert(value_top == top(), "second value must be top");
3123 #endif
3124   set_result(value);
3125   return true;
3126 }
3127 
3128 //------------------------inline_native_currentThread------------------
3129 bool LibraryCallKit::inline_native_currentThread() {
3130   Node* junk = NULL;
3131   set_result(generate_current_thread(junk));
3132   return true;
3133 }
3134 
3135 //------------------------inline_native_isInterrupted------------------
3136 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3137 bool LibraryCallKit::inline_native_isInterrupted() {
3138   // Add a fast path to t.isInterrupted(clear_int):
3139   //   (t == Thread.current() &&
3140   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3141   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3142   // So, in the common case that the interrupt bit is false,
3143   // we avoid making a call into the VM.  Even if the interrupt bit
3144   // is true, if the clear_int argument is false, we avoid the VM call.
3145   // However, if the receiver is not currentThread, we must call the VM,
3146   // because there must be some locking done around the operation.
3147 
3148   // We only go to the fast case code if we pass two guards.
3149   // Paths which do not pass are accumulated in the slow_region.
3150 
3151   enum {
3152     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3153     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3154     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3155     PATH_LIMIT
3156   };
3157 
3158   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3159   // out of the function.
3160   insert_mem_bar(Op_MemBarCPUOrder);
3161 
3162   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3163   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3164 
3165   RegionNode* slow_region = new RegionNode(1);
3166   record_for_igvn(slow_region);
3167 
3168   // (a) Receiving thread must be the current thread.
3169   Node* rec_thr = argument(0);
3170   Node* tls_ptr = NULL;
3171   Node* cur_thr = generate_current_thread(tls_ptr);
3172   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3173   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3174 
3175   generate_slow_guard(bol_thr, slow_region);
3176 
3177   // (b) Interrupt bit on TLS must be false.
3178   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3179   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3180   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3181 
3182   // Set the control input on the field _interrupted read to prevent it floating up.
3183   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3184   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3185   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3186 
3187   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3188 
3189   // First fast path:  if (!TLS._interrupted) return false;
3190   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3191   result_rgn->init_req(no_int_result_path, false_bit);
3192   result_val->init_req(no_int_result_path, intcon(0));
3193 
3194   // drop through to next case
3195   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3196 
3197 #ifndef TARGET_OS_FAMILY_windows
3198   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3199   Node* clr_arg = argument(1);
3200   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3201   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3202   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3203 
3204   // Second fast path:  ... else if (!clear_int) return true;
3205   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3206   result_rgn->init_req(no_clear_result_path, false_arg);
3207   result_val->init_req(no_clear_result_path, intcon(1));
3208 
3209   // drop through to next case
3210   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3211 #else
3212   // To return true on Windows you must read the _interrupted field
3213   // and check the the event state i.e. take the slow path.
3214 #endif // TARGET_OS_FAMILY_windows
3215 
3216   // (d) Otherwise, go to the slow path.
3217   slow_region->add_req(control());
3218   set_control( _gvn.transform(slow_region));
3219 
3220   if (stopped()) {
3221     // There is no slow path.
3222     result_rgn->init_req(slow_result_path, top());
3223     result_val->init_req(slow_result_path, top());
3224   } else {
3225     // non-virtual because it is a private non-static
3226     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3227 
3228     Node* slow_val = set_results_for_java_call(slow_call);
3229     // this->control() comes from set_results_for_java_call
3230 
3231     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3232     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3233 
3234     // These two phis are pre-filled with copies of of the fast IO and Memory
3235     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3236     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3237 
3238     result_rgn->init_req(slow_result_path, control());
3239     result_io ->init_req(slow_result_path, i_o());
3240     result_mem->init_req(slow_result_path, reset_memory());
3241     result_val->init_req(slow_result_path, slow_val);
3242 
3243     set_all_memory(_gvn.transform(result_mem));
3244     set_i_o(       _gvn.transform(result_io));
3245   }
3246 
3247   C->set_has_split_ifs(true); // Has chance for split-if optimization
3248   set_result(result_rgn, result_val);
3249   return true;
3250 }
3251 
3252 //---------------------------load_mirror_from_klass----------------------------
3253 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3254 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3255   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3256   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3257 }
3258 
3259 //-----------------------load_klass_from_mirror_common-------------------------
3260 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3261 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3262 // and branch to the given path on the region.
3263 // If never_see_null, take an uncommon trap on null, so we can optimistically
3264 // compile for the non-null case.
3265 // If the region is NULL, force never_see_null = true.
3266 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3267                                                     bool never_see_null,
3268                                                     RegionNode* region,
3269                                                     int null_path,
3270                                                     int offset) {
3271   if (region == NULL)  never_see_null = true;
3272   Node* p = basic_plus_adr(mirror, offset);
3273   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3274   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3275   Node* null_ctl = top();
3276   kls = null_check_oop(kls, &null_ctl, never_see_null);
3277   if (region != NULL) {
3278     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3279     region->init_req(null_path, null_ctl);
3280   } else {
3281     assert(null_ctl == top(), "no loose ends");
3282   }
3283   return kls;
3284 }
3285 
3286 //--------------------(inline_native_Class_query helpers)---------------------
3287 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3288 // Fall through if (mods & mask) == bits, take the guard otherwise.
3289 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3290   // Branch around if the given klass has the given modifier bit set.
3291   // Like generate_guard, adds a new path onto the region.
3292   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3293   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3294   Node* mask = intcon(modifier_mask);
3295   Node* bits = intcon(modifier_bits);
3296   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3297   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3298   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3299   return generate_fair_guard(bol, region);
3300 }
3301 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3302   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3303 }
3304 
3305 //-------------------------inline_native_Class_query-------------------
3306 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3307   const Type* return_type = TypeInt::BOOL;
3308   Node* prim_return_value = top();  // what happens if it's a primitive class?
3309   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3310   bool expect_prim = false;     // most of these guys expect to work on refs
3311 
3312   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3313 
3314   Node* mirror = argument(0);
3315   Node* obj    = top();
3316 
3317   switch (id) {
3318   case vmIntrinsics::_isInstance:
3319     // nothing is an instance of a primitive type
3320     prim_return_value = intcon(0);
3321     obj = argument(1);
3322     break;
3323   case vmIntrinsics::_getModifiers:
3324     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3325     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3326     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3327     break;
3328   case vmIntrinsics::_isInterface:
3329     prim_return_value = intcon(0);
3330     break;
3331   case vmIntrinsics::_isArray:
3332     prim_return_value = intcon(0);
3333     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3334     break;
3335   case vmIntrinsics::_isPrimitive:
3336     prim_return_value = intcon(1);
3337     expect_prim = true;  // obviously
3338     break;
3339   case vmIntrinsics::_getSuperclass:
3340     prim_return_value = null();
3341     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3342     break;
3343   case vmIntrinsics::_getClassAccessFlags:
3344     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3345     return_type = TypeInt::INT;  // not bool!  6297094
3346     break;
3347   default:
3348     fatal_unexpected_iid(id);
3349     break;
3350   }
3351 
3352   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3353   if (mirror_con == NULL)  return false;  // cannot happen?
3354 
3355 #ifndef PRODUCT
3356   if (C->print_intrinsics() || C->print_inlining()) {
3357     ciType* k = mirror_con->java_mirror_type();
3358     if (k) {
3359       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3360       k->print_name();
3361       tty->cr();
3362     }
3363   }
3364 #endif
3365 
3366   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3367   RegionNode* region = new RegionNode(PATH_LIMIT);
3368   record_for_igvn(region);
3369   PhiNode* phi = new PhiNode(region, return_type);
3370 
3371   // The mirror will never be null of Reflection.getClassAccessFlags, however
3372   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3373   // if it is. See bug 4774291.
3374 
3375   // For Reflection.getClassAccessFlags(), the null check occurs in
3376   // the wrong place; see inline_unsafe_access(), above, for a similar
3377   // situation.
3378   mirror = null_check(mirror);
3379   // If mirror or obj is dead, only null-path is taken.
3380   if (stopped())  return true;
3381 
3382   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3383 
3384   // Now load the mirror's klass metaobject, and null-check it.
3385   // Side-effects region with the control path if the klass is null.
3386   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3387   // If kls is null, we have a primitive mirror.
3388   phi->init_req(_prim_path, prim_return_value);
3389   if (stopped()) { set_result(region, phi); return true; }
3390   bool safe_for_replace = (region->in(_prim_path) == top());
3391 
3392   Node* p;  // handy temp
3393   Node* null_ctl;
3394 
3395   // Now that we have the non-null klass, we can perform the real query.
3396   // For constant classes, the query will constant-fold in LoadNode::Value.
3397   Node* query_value = top();
3398   switch (id) {
3399   case vmIntrinsics::_isInstance:
3400     // nothing is an instance of a primitive type
3401     query_value = gen_instanceof(obj, kls, safe_for_replace);
3402     break;
3403 
3404   case vmIntrinsics::_getModifiers:
3405     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3406     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3407     break;
3408 
3409   case vmIntrinsics::_isInterface:
3410     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3411     if (generate_interface_guard(kls, region) != NULL)
3412       // A guard was added.  If the guard is taken, it was an interface.
3413       phi->add_req(intcon(1));
3414     // If we fall through, it's a plain class.
3415     query_value = intcon(0);
3416     break;
3417 
3418   case vmIntrinsics::_isArray:
3419     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3420     if (generate_array_guard(kls, region) != NULL)
3421       // A guard was added.  If the guard is taken, it was an array.
3422       phi->add_req(intcon(1));
3423     // If we fall through, it's a plain class.
3424     query_value = intcon(0);
3425     break;
3426 
3427   case vmIntrinsics::_isPrimitive:
3428     query_value = intcon(0); // "normal" path produces false
3429     break;
3430 
3431   case vmIntrinsics::_getSuperclass:
3432     // The rules here are somewhat unfortunate, but we can still do better
3433     // with random logic than with a JNI call.
3434     // Interfaces store null or Object as _super, but must report null.
3435     // Arrays store an intermediate super as _super, but must report Object.
3436     // Other types can report the actual _super.
3437     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3438     if (generate_interface_guard(kls, region) != NULL)
3439       // A guard was added.  If the guard is taken, it was an interface.
3440       phi->add_req(null());
3441     if (generate_array_guard(kls, region) != NULL)
3442       // A guard was added.  If the guard is taken, it was an array.
3443       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3444     // If we fall through, it's a plain class.  Get its _super.
3445     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3446     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3447     null_ctl = top();
3448     kls = null_check_oop(kls, &null_ctl);
3449     if (null_ctl != top()) {
3450       // If the guard is taken, Object.superClass is null (both klass and mirror).
3451       region->add_req(null_ctl);
3452       phi   ->add_req(null());
3453     }
3454     if (!stopped()) {
3455       query_value = load_mirror_from_klass(kls);
3456     }
3457     break;
3458 
3459   case vmIntrinsics::_getClassAccessFlags:
3460     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3461     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3462     break;
3463 
3464   default:
3465     fatal_unexpected_iid(id);
3466     break;
3467   }
3468 
3469   // Fall-through is the normal case of a query to a real class.
3470   phi->init_req(1, query_value);
3471   region->init_req(1, control());
3472 
3473   C->set_has_split_ifs(true); // Has chance for split-if optimization
3474   set_result(region, phi);
3475   return true;
3476 }
3477 
3478 //-------------------------inline_Class_cast-------------------
3479 bool LibraryCallKit::inline_Class_cast() {
3480   Node* mirror = argument(0); // Class
3481   Node* obj    = argument(1);
3482   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3483   if (mirror_con == NULL) {
3484     return false;  // dead path (mirror->is_top()).
3485   }
3486   if (obj == NULL || obj->is_top()) {
3487     return false;  // dead path
3488   }
3489   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3490 
3491   // First, see if Class.cast() can be folded statically.
3492   // java_mirror_type() returns non-null for compile-time Class constants.
3493   ciType* tm = mirror_con->java_mirror_type();
3494   if (tm != NULL && tm->is_klass() &&
3495       tp != NULL && tp->klass() != NULL) {
3496     if (!tp->klass()->is_loaded()) {
3497       // Don't use intrinsic when class is not loaded.
3498       return false;
3499     } else {
3500       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3501       if (static_res == Compile::SSC_always_true) {
3502         // isInstance() is true - fold the code.
3503         set_result(obj);
3504         return true;
3505       } else if (static_res == Compile::SSC_always_false) {
3506         // Don't use intrinsic, have to throw ClassCastException.
3507         // If the reference is null, the non-intrinsic bytecode will
3508         // be optimized appropriately.
3509         return false;
3510       }
3511     }
3512   }
3513 
3514   // Bailout intrinsic and do normal inlining if exception path is frequent.
3515   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3516     return false;
3517   }
3518 
3519   // Generate dynamic checks.
3520   // Class.cast() is java implementation of _checkcast bytecode.
3521   // Do checkcast (Parse::do_checkcast()) optimizations here.
3522 
3523   mirror = null_check(mirror);
3524   // If mirror is dead, only null-path is taken.
3525   if (stopped()) {
3526     return true;
3527   }
3528 
3529   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3530   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3531   RegionNode* region = new RegionNode(PATH_LIMIT);
3532   record_for_igvn(region);
3533 
3534   // Now load the mirror's klass metaobject, and null-check it.
3535   // If kls is null, we have a primitive mirror and
3536   // nothing is an instance of a primitive type.
3537   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3538 
3539   Node* res = top();
3540   if (!stopped()) {
3541     Node* bad_type_ctrl = top();
3542     // Do checkcast optimizations.
3543     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3544     region->init_req(_bad_type_path, bad_type_ctrl);
3545   }
3546   if (region->in(_prim_path) != top() ||
3547       region->in(_bad_type_path) != top()) {
3548     // Let Interpreter throw ClassCastException.
3549     PreserveJVMState pjvms(this);
3550     set_control(_gvn.transform(region));
3551     uncommon_trap(Deoptimization::Reason_intrinsic,
3552                   Deoptimization::Action_maybe_recompile);
3553   }
3554   if (!stopped()) {
3555     set_result(res);
3556   }
3557   return true;
3558 }
3559 
3560 
3561 //--------------------------inline_native_subtype_check------------------------
3562 // This intrinsic takes the JNI calls out of the heart of
3563 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3564 bool LibraryCallKit::inline_native_subtype_check() {
3565   // Pull both arguments off the stack.
3566   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3567   args[0] = argument(0);
3568   args[1] = argument(1);
3569   Node* klasses[2];             // corresponding Klasses: superk, subk
3570   klasses[0] = klasses[1] = top();
3571 
3572   enum {
3573     // A full decision tree on {superc is prim, subc is prim}:
3574     _prim_0_path = 1,           // {P,N} => false
3575                                 // {P,P} & superc!=subc => false
3576     _prim_same_path,            // {P,P} & superc==subc => true
3577     _prim_1_path,               // {N,P} => false
3578     _ref_subtype_path,          // {N,N} & subtype check wins => true
3579     _both_ref_path,             // {N,N} & subtype check loses => false
3580     PATH_LIMIT
3581   };
3582 
3583   RegionNode* region = new RegionNode(PATH_LIMIT);
3584   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3585   record_for_igvn(region);
3586 
3587   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3588   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3589   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3590 
3591   // First null-check both mirrors and load each mirror's klass metaobject.
3592   int which_arg;
3593   for (which_arg = 0; which_arg <= 1; which_arg++) {
3594     Node* arg = args[which_arg];
3595     arg = null_check(arg);
3596     if (stopped())  break;
3597     args[which_arg] = arg;
3598 
3599     Node* p = basic_plus_adr(arg, class_klass_offset);
3600     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3601     klasses[which_arg] = _gvn.transform(kls);
3602   }
3603 
3604   // Having loaded both klasses, test each for null.
3605   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3606   for (which_arg = 0; which_arg <= 1; which_arg++) {
3607     Node* kls = klasses[which_arg];
3608     Node* null_ctl = top();
3609     kls = null_check_oop(kls, &null_ctl, never_see_null);
3610     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3611     region->init_req(prim_path, null_ctl);
3612     if (stopped())  break;
3613     klasses[which_arg] = kls;
3614   }
3615 
3616   if (!stopped()) {
3617     // now we have two reference types, in klasses[0..1]
3618     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3619     Node* superk = klasses[0];  // the receiver
3620     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3621     // now we have a successful reference subtype check
3622     region->set_req(_ref_subtype_path, control());
3623   }
3624 
3625   // If both operands are primitive (both klasses null), then
3626   // we must return true when they are identical primitives.
3627   // It is convenient to test this after the first null klass check.
3628   set_control(region->in(_prim_0_path)); // go back to first null check
3629   if (!stopped()) {
3630     // Since superc is primitive, make a guard for the superc==subc case.
3631     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3632     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3633     generate_guard(bol_eq, region, PROB_FAIR);
3634     if (region->req() == PATH_LIMIT+1) {
3635       // A guard was added.  If the added guard is taken, superc==subc.
3636       region->swap_edges(PATH_LIMIT, _prim_same_path);
3637       region->del_req(PATH_LIMIT);
3638     }
3639     region->set_req(_prim_0_path, control()); // Not equal after all.
3640   }
3641 
3642   // these are the only paths that produce 'true':
3643   phi->set_req(_prim_same_path,   intcon(1));
3644   phi->set_req(_ref_subtype_path, intcon(1));
3645 
3646   // pull together the cases:
3647   assert(region->req() == PATH_LIMIT, "sane region");
3648   for (uint i = 1; i < region->req(); i++) {
3649     Node* ctl = region->in(i);
3650     if (ctl == NULL || ctl == top()) {
3651       region->set_req(i, top());
3652       phi   ->set_req(i, top());
3653     } else if (phi->in(i) == NULL) {
3654       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3655     }
3656   }
3657 
3658   set_control(_gvn.transform(region));
3659   set_result(_gvn.transform(phi));
3660   return true;
3661 }
3662 
3663 //---------------------generate_array_guard_common------------------------
3664 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3665                                                   bool obj_array, bool not_array) {
3666   // If obj_array/non_array==false/false:
3667   // Branch around if the given klass is in fact an array (either obj or prim).
3668   // If obj_array/non_array==false/true:
3669   // Branch around if the given klass is not an array klass of any kind.
3670   // If obj_array/non_array==true/true:
3671   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3672   // If obj_array/non_array==true/false:
3673   // Branch around if the kls is an oop array (Object[] or subtype)
3674   //
3675   // Like generate_guard, adds a new path onto the region.
3676   jint  layout_con = 0;
3677   Node* layout_val = get_layout_helper(kls, layout_con);
3678   if (layout_val == NULL) {
3679     bool query = (obj_array
3680                   ? Klass::layout_helper_is_objArray(layout_con)
3681                   : Klass::layout_helper_is_array(layout_con));
3682     if (query == not_array) {
3683       return NULL;                       // never a branch
3684     } else {                             // always a branch
3685       Node* always_branch = control();
3686       if (region != NULL)
3687         region->add_req(always_branch);
3688       set_control(top());
3689       return always_branch;
3690     }
3691   }
3692   // Now test the correct condition.
3693   jint  nval = (obj_array
3694                 ? ((jint)Klass::_lh_array_tag_type_value
3695                    <<    Klass::_lh_array_tag_shift)
3696                 : Klass::_lh_neutral_value);
3697   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3698   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3699   // invert the test if we are looking for a non-array
3700   if (not_array)  btest = BoolTest(btest).negate();
3701   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3702   return generate_fair_guard(bol, region);
3703 }
3704 
3705 
3706 //-----------------------inline_native_newArray--------------------------
3707 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3708 bool LibraryCallKit::inline_native_newArray() {
3709   Node* mirror    = argument(0);
3710   Node* count_val = argument(1);
3711 
3712   mirror = null_check(mirror);
3713   // If mirror or obj is dead, only null-path is taken.
3714   if (stopped())  return true;
3715 
3716   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3717   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3718   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3719   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3720   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3721 
3722   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3723   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3724                                                   result_reg, _slow_path);
3725   Node* normal_ctl   = control();
3726   Node* no_array_ctl = result_reg->in(_slow_path);
3727 
3728   // Generate code for the slow case.  We make a call to newArray().
3729   set_control(no_array_ctl);
3730   if (!stopped()) {
3731     // Either the input type is void.class, or else the
3732     // array klass has not yet been cached.  Either the
3733     // ensuing call will throw an exception, or else it
3734     // will cache the array klass for next time.
3735     PreserveJVMState pjvms(this);
3736     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3737     Node* slow_result = set_results_for_java_call(slow_call);
3738     // this->control() comes from set_results_for_java_call
3739     result_reg->set_req(_slow_path, control());
3740     result_val->set_req(_slow_path, slow_result);
3741     result_io ->set_req(_slow_path, i_o());
3742     result_mem->set_req(_slow_path, reset_memory());
3743   }
3744 
3745   set_control(normal_ctl);
3746   if (!stopped()) {
3747     // Normal case:  The array type has been cached in the java.lang.Class.
3748     // The following call works fine even if the array type is polymorphic.
3749     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3750     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3751     result_reg->init_req(_normal_path, control());
3752     result_val->init_req(_normal_path, obj);
3753     result_io ->init_req(_normal_path, i_o());
3754     result_mem->init_req(_normal_path, reset_memory());
3755   }
3756 
3757   // Return the combined state.
3758   set_i_o(        _gvn.transform(result_io)  );
3759   set_all_memory( _gvn.transform(result_mem));
3760 
3761   C->set_has_split_ifs(true); // Has chance for split-if optimization
3762   set_result(result_reg, result_val);
3763   return true;
3764 }
3765 
3766 //----------------------inline_native_getLength--------------------------
3767 // public static native int java.lang.reflect.Array.getLength(Object array);
3768 bool LibraryCallKit::inline_native_getLength() {
3769   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3770 
3771   Node* array = null_check(argument(0));
3772   // If array is dead, only null-path is taken.
3773   if (stopped())  return true;
3774 
3775   // Deoptimize if it is a non-array.
3776   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3777 
3778   if (non_array != NULL) {
3779     PreserveJVMState pjvms(this);
3780     set_control(non_array);
3781     uncommon_trap(Deoptimization::Reason_intrinsic,
3782                   Deoptimization::Action_maybe_recompile);
3783   }
3784 
3785   // If control is dead, only non-array-path is taken.
3786   if (stopped())  return true;
3787 
3788   // The works fine even if the array type is polymorphic.
3789   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3790   Node* result = load_array_length(array);
3791 
3792   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3793   set_result(result);
3794   return true;
3795 }
3796 
3797 //------------------------inline_array_copyOf----------------------------
3798 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3799 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3800 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3801   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3802 
3803   // Get the arguments.
3804   Node* original          = argument(0);
3805   Node* start             = is_copyOfRange? argument(1): intcon(0);
3806   Node* end               = is_copyOfRange? argument(2): argument(1);
3807   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3808 
3809   Node* newcopy;
3810 
3811   // Set the original stack and the reexecute bit for the interpreter to reexecute
3812   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3813   { PreserveReexecuteState preexecs(this);
3814     jvms()->set_should_reexecute(true);
3815 
3816     array_type_mirror = null_check(array_type_mirror);
3817     original          = null_check(original);
3818 
3819     // Check if a null path was taken unconditionally.
3820     if (stopped())  return true;
3821 
3822     Node* orig_length = load_array_length(original);
3823 
3824     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3825     klass_node = null_check(klass_node);
3826 
3827     RegionNode* bailout = new RegionNode(1);
3828     record_for_igvn(bailout);
3829 
3830     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3831     // Bail out if that is so.
3832     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3833     if (not_objArray != NULL) {
3834       // Improve the klass node's type from the new optimistic assumption:
3835       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3836       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3837       Node* cast = new CastPPNode(klass_node, akls);
3838       cast->init_req(0, control());
3839       klass_node = _gvn.transform(cast);
3840     }
3841 
3842     // Bail out if either start or end is negative.
3843     generate_negative_guard(start, bailout, &start);
3844     generate_negative_guard(end,   bailout, &end);
3845 
3846     Node* length = end;
3847     if (_gvn.type(start) != TypeInt::ZERO) {
3848       length = _gvn.transform(new SubINode(end, start));
3849     }
3850 
3851     // Bail out if length is negative.
3852     // Without this the new_array would throw
3853     // NegativeArraySizeException but IllegalArgumentException is what
3854     // should be thrown
3855     generate_negative_guard(length, bailout, &length);
3856 
3857     if (bailout->req() > 1) {
3858       PreserveJVMState pjvms(this);
3859       set_control(_gvn.transform(bailout));
3860       uncommon_trap(Deoptimization::Reason_intrinsic,
3861                     Deoptimization::Action_maybe_recompile);
3862     }
3863 
3864     if (!stopped()) {
3865       // How many elements will we copy from the original?
3866       // The answer is MinI(orig_length - start, length).
3867       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3868       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3869 
3870       newcopy = new_array(klass_node, length, 0);  // no arguments to push
3871 
3872       // Generate a direct call to the right arraycopy function(s).
3873       // We know the copy is disjoint but we might not know if the
3874       // oop stores need checking.
3875       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3876       // This will fail a store-check if x contains any non-nulls.
3877 
3878       Node* alloc = tightly_coupled_allocation(newcopy, NULL);
3879 
3880       ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, alloc != NULL,
3881                                               load_object_klass(original), klass_node);
3882       if (!is_copyOfRange) {
3883         ac->set_copyof();
3884       } else {
3885         ac->set_copyofrange();
3886       }
3887       Node* n = _gvn.transform(ac);
3888       assert(n == ac, "cannot disappear");
3889       ac->connect_outputs(this);
3890     }
3891   } // original reexecute is set back here
3892 
3893   C->set_has_split_ifs(true); // Has chance for split-if optimization
3894   if (!stopped()) {
3895     set_result(newcopy);
3896   }
3897   return true;
3898 }
3899 
3900 
3901 //----------------------generate_virtual_guard---------------------------
3902 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3903 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3904                                              RegionNode* slow_region) {
3905   ciMethod* method = callee();
3906   int vtable_index = method->vtable_index();
3907   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3908          err_msg_res("bad index %d", vtable_index));
3909   // Get the Method* out of the appropriate vtable entry.
3910   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3911                      vtable_index*vtableEntry::size()) * wordSize +
3912                      vtableEntry::method_offset_in_bytes();
3913   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3914   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3915 
3916   // Compare the target method with the expected method (e.g., Object.hashCode).
3917   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3918 
3919   Node* native_call = makecon(native_call_addr);
3920   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
3921   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
3922 
3923   return generate_slow_guard(test_native, slow_region);
3924 }
3925 
3926 //-----------------------generate_method_call----------------------------
3927 // Use generate_method_call to make a slow-call to the real
3928 // method if the fast path fails.  An alternative would be to
3929 // use a stub like OptoRuntime::slow_arraycopy_Java.
3930 // This only works for expanding the current library call,
3931 // not another intrinsic.  (E.g., don't use this for making an
3932 // arraycopy call inside of the copyOf intrinsic.)
3933 CallJavaNode*
3934 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3935   // When compiling the intrinsic method itself, do not use this technique.
3936   guarantee(callee() != C->method(), "cannot make slow-call to self");
3937 
3938   ciMethod* method = callee();
3939   // ensure the JVMS we have will be correct for this call
3940   guarantee(method_id == method->intrinsic_id(), "must match");
3941 
3942   const TypeFunc* tf = TypeFunc::make(method);
3943   CallJavaNode* slow_call;
3944   if (is_static) {
3945     assert(!is_virtual, "");
3946     slow_call = new CallStaticJavaNode(C, tf,
3947                            SharedRuntime::get_resolve_static_call_stub(),
3948                            method, bci());
3949   } else if (is_virtual) {
3950     null_check_receiver();
3951     int vtable_index = Method::invalid_vtable_index;
3952     if (UseInlineCaches) {
3953       // Suppress the vtable call
3954     } else {
3955       // hashCode and clone are not a miranda methods,
3956       // so the vtable index is fixed.
3957       // No need to use the linkResolver to get it.
3958        vtable_index = method->vtable_index();
3959        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3960               err_msg_res("bad index %d", vtable_index));
3961     }
3962     slow_call = new CallDynamicJavaNode(tf,
3963                           SharedRuntime::get_resolve_virtual_call_stub(),
3964                           method, vtable_index, bci());
3965   } else {  // neither virtual nor static:  opt_virtual
3966     null_check_receiver();
3967     slow_call = new CallStaticJavaNode(C, tf,
3968                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3969                                 method, bci());
3970     slow_call->set_optimized_virtual(true);
3971   }
3972   set_arguments_for_java_call(slow_call);
3973   set_edges_for_java_call(slow_call);
3974   return slow_call;
3975 }
3976 
3977 
3978 /**
3979  * Build special case code for calls to hashCode on an object. This call may
3980  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
3981  * slightly different code.
3982  */
3983 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3984   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3985   assert(!(is_virtual && is_static), "either virtual, special, or static");
3986 
3987   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3988 
3989   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3990   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
3991   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3992   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3993   Node* obj = NULL;
3994   if (!is_static) {
3995     // Check for hashing null object
3996     obj = null_check_receiver();
3997     if (stopped())  return true;        // unconditionally null
3998     result_reg->init_req(_null_path, top());
3999     result_val->init_req(_null_path, top());
4000   } else {
4001     // Do a null check, and return zero if null.
4002     // System.identityHashCode(null) == 0
4003     obj = argument(0);
4004     Node* null_ctl = top();
4005     obj = null_check_oop(obj, &null_ctl);
4006     result_reg->init_req(_null_path, null_ctl);
4007     result_val->init_req(_null_path, _gvn.intcon(0));
4008   }
4009 
4010   // Unconditionally null?  Then return right away.
4011   if (stopped()) {
4012     set_control( result_reg->in(_null_path));
4013     if (!stopped())
4014       set_result(result_val->in(_null_path));
4015     return true;
4016   }
4017 
4018   // We only go to the fast case code if we pass a number of guards.  The
4019   // paths which do not pass are accumulated in the slow_region.
4020   RegionNode* slow_region = new RegionNode(1);
4021   record_for_igvn(slow_region);
4022 
4023   // If this is a virtual call, we generate a funny guard.  We pull out
4024   // the vtable entry corresponding to hashCode() from the target object.
4025   // If the target method which we are calling happens to be the native
4026   // Object hashCode() method, we pass the guard.  We do not need this
4027   // guard for non-virtual calls -- the caller is known to be the native
4028   // Object hashCode().
4029   if (is_virtual) {
4030     // After null check, get the object's klass.
4031     Node* obj_klass = load_object_klass(obj);
4032     generate_virtual_guard(obj_klass, slow_region);
4033   }
4034 
4035   // Get the header out of the object, use LoadMarkNode when available
4036   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4037   // The control of the load must be NULL. Otherwise, the load can move before
4038   // the null check after castPP removal.
4039   Node* no_ctrl = NULL;
4040   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4041 
4042   // Test the header to see if it is unlocked.
4043   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4044   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4045   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4046   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4047   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4048 
4049   generate_slow_guard(test_unlocked, slow_region);
4050 
4051   // Get the hash value and check to see that it has been properly assigned.
4052   // We depend on hash_mask being at most 32 bits and avoid the use of
4053   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4054   // vm: see markOop.hpp.
4055   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4056   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4057   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4058   // This hack lets the hash bits live anywhere in the mark object now, as long
4059   // as the shift drops the relevant bits into the low 32 bits.  Note that
4060   // Java spec says that HashCode is an int so there's no point in capturing
4061   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4062   hshifted_header      = ConvX2I(hshifted_header);
4063   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4064 
4065   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4066   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4067   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4068 
4069   generate_slow_guard(test_assigned, slow_region);
4070 
4071   Node* init_mem = reset_memory();
4072   // fill in the rest of the null path:
4073   result_io ->init_req(_null_path, i_o());
4074   result_mem->init_req(_null_path, init_mem);
4075 
4076   result_val->init_req(_fast_path, hash_val);
4077   result_reg->init_req(_fast_path, control());
4078   result_io ->init_req(_fast_path, i_o());
4079   result_mem->init_req(_fast_path, init_mem);
4080 
4081   // Generate code for the slow case.  We make a call to hashCode().
4082   set_control(_gvn.transform(slow_region));
4083   if (!stopped()) {
4084     // No need for PreserveJVMState, because we're using up the present state.
4085     set_all_memory(init_mem);
4086     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4087     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4088     Node* slow_result = set_results_for_java_call(slow_call);
4089     // this->control() comes from set_results_for_java_call
4090     result_reg->init_req(_slow_path, control());
4091     result_val->init_req(_slow_path, slow_result);
4092     result_io  ->set_req(_slow_path, i_o());
4093     result_mem ->set_req(_slow_path, reset_memory());
4094   }
4095 
4096   // Return the combined state.
4097   set_i_o(        _gvn.transform(result_io)  );
4098   set_all_memory( _gvn.transform(result_mem));
4099 
4100   set_result(result_reg, result_val);
4101   return true;
4102 }
4103 
4104 //---------------------------inline_native_getClass----------------------------
4105 // public final native Class<?> java.lang.Object.getClass();
4106 //
4107 // Build special case code for calls to getClass on an object.
4108 bool LibraryCallKit::inline_native_getClass() {
4109   Node* obj = null_check_receiver();
4110   if (stopped())  return true;
4111   set_result(load_mirror_from_klass(load_object_klass(obj)));
4112   return true;
4113 }
4114 
4115 //-----------------inline_native_Reflection_getCallerClass---------------------
4116 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4117 //
4118 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4119 //
4120 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4121 // in that it must skip particular security frames and checks for
4122 // caller sensitive methods.
4123 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4124 #ifndef PRODUCT
4125   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4126     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4127   }
4128 #endif
4129 
4130   if (!jvms()->has_method()) {
4131 #ifndef PRODUCT
4132     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4133       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4134     }
4135 #endif
4136     return false;
4137   }
4138 
4139   // Walk back up the JVM state to find the caller at the required
4140   // depth.
4141   JVMState* caller_jvms = jvms();
4142 
4143   // Cf. JVM_GetCallerClass
4144   // NOTE: Start the loop at depth 1 because the current JVM state does
4145   // not include the Reflection.getCallerClass() frame.
4146   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4147     ciMethod* m = caller_jvms->method();
4148     switch (n) {
4149     case 0:
4150       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4151       break;
4152     case 1:
4153       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4154       if (!m->caller_sensitive()) {
4155 #ifndef PRODUCT
4156         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4157           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4158         }
4159 #endif
4160         return false;  // bail-out; let JVM_GetCallerClass do the work
4161       }
4162       break;
4163     default:
4164       if (!m->is_ignored_by_security_stack_walk()) {
4165         // We have reached the desired frame; return the holder class.
4166         // Acquire method holder as java.lang.Class and push as constant.
4167         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4168         ciInstance* caller_mirror = caller_klass->java_mirror();
4169         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4170 
4171 #ifndef PRODUCT
4172         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4173           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4174           tty->print_cr("  JVM state at this point:");
4175           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4176             ciMethod* m = jvms()->of_depth(i)->method();
4177             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4178           }
4179         }
4180 #endif
4181         return true;
4182       }
4183       break;
4184     }
4185   }
4186 
4187 #ifndef PRODUCT
4188   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4189     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4190     tty->print_cr("  JVM state at this point:");
4191     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4192       ciMethod* m = jvms()->of_depth(i)->method();
4193       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4194     }
4195   }
4196 #endif
4197 
4198   return false;  // bail-out; let JVM_GetCallerClass do the work
4199 }
4200 
4201 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4202   Node* arg = argument(0);
4203   Node* result;
4204 
4205   switch (id) {
4206   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4207   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4208   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4209   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4210 
4211   case vmIntrinsics::_doubleToLongBits: {
4212     // two paths (plus control) merge in a wood
4213     RegionNode *r = new RegionNode(3);
4214     Node *phi = new PhiNode(r, TypeLong::LONG);
4215 
4216     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4217     // Build the boolean node
4218     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4219 
4220     // Branch either way.
4221     // NaN case is less traveled, which makes all the difference.
4222     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4223     Node *opt_isnan = _gvn.transform(ifisnan);
4224     assert( opt_isnan->is_If(), "Expect an IfNode");
4225     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4226     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4227 
4228     set_control(iftrue);
4229 
4230     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4231     Node *slow_result = longcon(nan_bits); // return NaN
4232     phi->init_req(1, _gvn.transform( slow_result ));
4233     r->init_req(1, iftrue);
4234 
4235     // Else fall through
4236     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4237     set_control(iffalse);
4238 
4239     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4240     r->init_req(2, iffalse);
4241 
4242     // Post merge
4243     set_control(_gvn.transform(r));
4244     record_for_igvn(r);
4245 
4246     C->set_has_split_ifs(true); // Has chance for split-if optimization
4247     result = phi;
4248     assert(result->bottom_type()->isa_long(), "must be");
4249     break;
4250   }
4251 
4252   case vmIntrinsics::_floatToIntBits: {
4253     // two paths (plus control) merge in a wood
4254     RegionNode *r = new RegionNode(3);
4255     Node *phi = new PhiNode(r, TypeInt::INT);
4256 
4257     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4258     // Build the boolean node
4259     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4260 
4261     // Branch either way.
4262     // NaN case is less traveled, which makes all the difference.
4263     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4264     Node *opt_isnan = _gvn.transform(ifisnan);
4265     assert( opt_isnan->is_If(), "Expect an IfNode");
4266     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4267     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4268 
4269     set_control(iftrue);
4270 
4271     static const jint nan_bits = 0x7fc00000;
4272     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4273     phi->init_req(1, _gvn.transform( slow_result ));
4274     r->init_req(1, iftrue);
4275 
4276     // Else fall through
4277     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4278     set_control(iffalse);
4279 
4280     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4281     r->init_req(2, iffalse);
4282 
4283     // Post merge
4284     set_control(_gvn.transform(r));
4285     record_for_igvn(r);
4286 
4287     C->set_has_split_ifs(true); // Has chance for split-if optimization
4288     result = phi;
4289     assert(result->bottom_type()->isa_int(), "must be");
4290     break;
4291   }
4292 
4293   default:
4294     fatal_unexpected_iid(id);
4295     break;
4296   }
4297   set_result(_gvn.transform(result));
4298   return true;
4299 }
4300 
4301 #ifdef _LP64
4302 #define XTOP ,top() /*additional argument*/
4303 #else  //_LP64
4304 #define XTOP        /*no additional argument*/
4305 #endif //_LP64
4306 
4307 //----------------------inline_unsafe_copyMemory-------------------------
4308 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4309 bool LibraryCallKit::inline_unsafe_copyMemory() {
4310   if (callee()->is_static())  return false;  // caller must have the capability!
4311   null_check_receiver();  // null-check receiver
4312   if (stopped())  return true;
4313 
4314   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4315 
4316   Node* src_ptr =         argument(1);   // type: oop
4317   Node* src_off = ConvL2X(argument(2));  // type: long
4318   Node* dst_ptr =         argument(4);   // type: oop
4319   Node* dst_off = ConvL2X(argument(5));  // type: long
4320   Node* size    = ConvL2X(argument(7));  // type: long
4321 
4322   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4323          "fieldOffset must be byte-scaled");
4324 
4325   Node* src = make_unsafe_address(src_ptr, src_off);
4326   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4327 
4328   // Conservatively insert a memory barrier on all memory slices.
4329   // Do not let writes of the copy source or destination float below the copy.
4330   insert_mem_bar(Op_MemBarCPUOrder);
4331 
4332   // Call it.  Note that the length argument is not scaled.
4333   make_runtime_call(RC_LEAF|RC_NO_FP,
4334                     OptoRuntime::fast_arraycopy_Type(),
4335                     StubRoutines::unsafe_arraycopy(),
4336                     "unsafe_arraycopy",
4337                     TypeRawPtr::BOTTOM,
4338                     src, dst, size XTOP);
4339 
4340   // Do not let reads of the copy destination float above the copy.
4341   insert_mem_bar(Op_MemBarCPUOrder);
4342 
4343   return true;
4344 }
4345 
4346 //------------------------clone_coping-----------------------------------
4347 // Helper function for inline_native_clone.
4348 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4349   assert(obj_size != NULL, "");
4350   Node* raw_obj = alloc_obj->in(1);
4351   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4352 
4353   AllocateNode* alloc = NULL;
4354   if (ReduceBulkZeroing) {
4355     // We will be completely responsible for initializing this object -
4356     // mark Initialize node as complete.
4357     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4358     // The object was just allocated - there should be no any stores!
4359     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4360     // Mark as complete_with_arraycopy so that on AllocateNode
4361     // expansion, we know this AllocateNode is initialized by an array
4362     // copy and a StoreStore barrier exists after the array copy.
4363     alloc->initialization()->set_complete_with_arraycopy();
4364   }
4365 
4366   // Copy the fastest available way.
4367   // TODO: generate fields copies for small objects instead.
4368   Node* src  = obj;
4369   Node* dest = alloc_obj;
4370   Node* size = _gvn.transform(obj_size);
4371 
4372   // Exclude the header but include array length to copy by 8 bytes words.
4373   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4374   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4375                             instanceOopDesc::base_offset_in_bytes();
4376   // base_off:
4377   // 8  - 32-bit VM
4378   // 12 - 64-bit VM, compressed klass
4379   // 16 - 64-bit VM, normal klass
4380   if (base_off % BytesPerLong != 0) {
4381     assert(UseCompressedClassPointers, "");
4382     if (is_array) {
4383       // Exclude length to copy by 8 bytes words.
4384       base_off += sizeof(int);
4385     } else {
4386       // Include klass to copy by 8 bytes words.
4387       base_off = instanceOopDesc::klass_offset_in_bytes();
4388     }
4389     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4390   }
4391   src  = basic_plus_adr(src,  base_off);
4392   dest = basic_plus_adr(dest, base_off);
4393 
4394   // Compute the length also, if needed:
4395   Node* countx = size;
4396   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4397   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4398 
4399   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4400 
4401   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4402   ac->set_clonebasic();
4403   Node* n = _gvn.transform(ac);
4404   if (n == ac) {
4405     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4406   } else {
4407     set_all_memory(n);
4408   }
4409 
4410   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4411   if (card_mark) {
4412     assert(!is_array, "");
4413     // Put in store barrier for any and all oops we are sticking
4414     // into this object.  (We could avoid this if we could prove
4415     // that the object type contains no oop fields at all.)
4416     Node* no_particular_value = NULL;
4417     Node* no_particular_field = NULL;
4418     int raw_adr_idx = Compile::AliasIdxRaw;
4419     post_barrier(control(),
4420                  memory(raw_adr_type),
4421                  alloc_obj,
4422                  no_particular_field,
4423                  raw_adr_idx,
4424                  no_particular_value,
4425                  T_OBJECT,
4426                  false);
4427   }
4428 
4429   // Do not let reads from the cloned object float above the arraycopy.
4430   if (alloc != NULL) {
4431     // Do not let stores that initialize this object be reordered with
4432     // a subsequent store that would make this object accessible by
4433     // other threads.
4434     // Record what AllocateNode this StoreStore protects so that
4435     // escape analysis can go from the MemBarStoreStoreNode to the
4436     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4437     // based on the escape status of the AllocateNode.
4438     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4439   } else {
4440     insert_mem_bar(Op_MemBarCPUOrder);
4441   }
4442 }
4443 
4444 //------------------------inline_native_clone----------------------------
4445 // protected native Object java.lang.Object.clone();
4446 //
4447 // Here are the simple edge cases:
4448 //  null receiver => normal trap
4449 //  virtual and clone was overridden => slow path to out-of-line clone
4450 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4451 //
4452 // The general case has two steps, allocation and copying.
4453 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4454 //
4455 // Copying also has two cases, oop arrays and everything else.
4456 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4457 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4458 //
4459 // These steps fold up nicely if and when the cloned object's klass
4460 // can be sharply typed as an object array, a type array, or an instance.
4461 //
4462 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4463   PhiNode* result_val;
4464 
4465   // Set the reexecute bit for the interpreter to reexecute
4466   // the bytecode that invokes Object.clone if deoptimization happens.
4467   { PreserveReexecuteState preexecs(this);
4468     jvms()->set_should_reexecute(true);
4469 
4470     Node* obj = null_check_receiver();
4471     if (stopped())  return true;
4472 
4473     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4474 
4475     // If we are going to clone an instance, we need its exact type to
4476     // know the number and types of fields to convert the clone to
4477     // loads/stores. Maybe a speculative type can help us.
4478     if (!obj_type->klass_is_exact() &&
4479         obj_type->speculative_type() != NULL &&
4480         obj_type->speculative_type()->is_instance_klass()) {
4481       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4482       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4483           !spec_ik->has_injected_fields()) {
4484         ciKlass* k = obj_type->klass();
4485         if (!k->is_instance_klass() ||
4486             k->as_instance_klass()->is_interface() ||
4487             k->as_instance_klass()->has_subklass()) {
4488           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4489         }
4490       }
4491     }
4492 
4493     Node* obj_klass = load_object_klass(obj);
4494     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4495     const TypeOopPtr*   toop   = ((tklass != NULL)
4496                                 ? tklass->as_instance_type()
4497                                 : TypeInstPtr::NOTNULL);
4498 
4499     // Conservatively insert a memory barrier on all memory slices.
4500     // Do not let writes into the original float below the clone.
4501     insert_mem_bar(Op_MemBarCPUOrder);
4502 
4503     // paths into result_reg:
4504     enum {
4505       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4506       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4507       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4508       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4509       PATH_LIMIT
4510     };
4511     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4512     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4513     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4514     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4515     record_for_igvn(result_reg);
4516 
4517     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4518     int raw_adr_idx = Compile::AliasIdxRaw;
4519 
4520     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4521     if (array_ctl != NULL) {
4522       // It's an array.
4523       PreserveJVMState pjvms(this);
4524       set_control(array_ctl);
4525       Node* obj_length = load_array_length(obj);
4526       Node* obj_size  = NULL;
4527       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4528 
4529       if (!use_ReduceInitialCardMarks()) {
4530         // If it is an oop array, it requires very special treatment,
4531         // because card marking is required on each card of the array.
4532         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4533         if (is_obja != NULL) {
4534           PreserveJVMState pjvms2(this);
4535           set_control(is_obja);
4536           // Generate a direct call to the right arraycopy function(s).
4537           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4538           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4539           ac->set_cloneoop();
4540           Node* n = _gvn.transform(ac);
4541           assert(n == ac, "cannot disappear");
4542           ac->connect_outputs(this);
4543 
4544           result_reg->init_req(_objArray_path, control());
4545           result_val->init_req(_objArray_path, alloc_obj);
4546           result_i_o ->set_req(_objArray_path, i_o());
4547           result_mem ->set_req(_objArray_path, reset_memory());
4548         }
4549       }
4550       // Otherwise, there are no card marks to worry about.
4551       // (We can dispense with card marks if we know the allocation
4552       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4553       //  causes the non-eden paths to take compensating steps to
4554       //  simulate a fresh allocation, so that no further
4555       //  card marks are required in compiled code to initialize
4556       //  the object.)
4557 
4558       if (!stopped()) {
4559         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4560 
4561         // Present the results of the copy.
4562         result_reg->init_req(_array_path, control());
4563         result_val->init_req(_array_path, alloc_obj);
4564         result_i_o ->set_req(_array_path, i_o());
4565         result_mem ->set_req(_array_path, reset_memory());
4566       }
4567     }
4568 
4569     // We only go to the instance fast case code if we pass a number of guards.
4570     // The paths which do not pass are accumulated in the slow_region.
4571     RegionNode* slow_region = new RegionNode(1);
4572     record_for_igvn(slow_region);
4573     if (!stopped()) {
4574       // It's an instance (we did array above).  Make the slow-path tests.
4575       // If this is a virtual call, we generate a funny guard.  We grab
4576       // the vtable entry corresponding to clone() from the target object.
4577       // If the target method which we are calling happens to be the
4578       // Object clone() method, we pass the guard.  We do not need this
4579       // guard for non-virtual calls; the caller is known to be the native
4580       // Object clone().
4581       if (is_virtual) {
4582         generate_virtual_guard(obj_klass, slow_region);
4583       }
4584 
4585       // The object must be cloneable and must not have a finalizer.
4586       // Both of these conditions may be checked in a single test.
4587       // We could optimize the cloneable test further, but we don't care.
4588       generate_access_flags_guard(obj_klass,
4589                                   // Test both conditions:
4590                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4591                                   // Must be cloneable but not finalizer:
4592                                   JVM_ACC_IS_CLONEABLE,
4593                                   slow_region);
4594     }
4595 
4596     if (!stopped()) {
4597       // It's an instance, and it passed the slow-path tests.
4598       PreserveJVMState pjvms(this);
4599       Node* obj_size  = NULL;
4600       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4601       // is reexecuted if deoptimization occurs and there could be problems when merging
4602       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4603       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4604 
4605       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4606 
4607       // Present the results of the slow call.
4608       result_reg->init_req(_instance_path, control());
4609       result_val->init_req(_instance_path, alloc_obj);
4610       result_i_o ->set_req(_instance_path, i_o());
4611       result_mem ->set_req(_instance_path, reset_memory());
4612     }
4613 
4614     // Generate code for the slow case.  We make a call to clone().
4615     set_control(_gvn.transform(slow_region));
4616     if (!stopped()) {
4617       PreserveJVMState pjvms(this);
4618       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4619       Node* slow_result = set_results_for_java_call(slow_call);
4620       // this->control() comes from set_results_for_java_call
4621       result_reg->init_req(_slow_path, control());
4622       result_val->init_req(_slow_path, slow_result);
4623       result_i_o ->set_req(_slow_path, i_o());
4624       result_mem ->set_req(_slow_path, reset_memory());
4625     }
4626 
4627     // Return the combined state.
4628     set_control(    _gvn.transform(result_reg));
4629     set_i_o(        _gvn.transform(result_i_o));
4630     set_all_memory( _gvn.transform(result_mem));
4631   } // original reexecute is set back here
4632 
4633   set_result(_gvn.transform(result_val));
4634   return true;
4635 }
4636 
4637 //------------------------------inline_arraycopy-----------------------
4638 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4639 //                                                      Object dest, int destPos,
4640 //                                                      int length);
4641 bool LibraryCallKit::inline_arraycopy() {
4642   // Get the arguments.
4643   Node* src         = argument(0);  // type: oop
4644   Node* src_offset  = argument(1);  // type: int
4645   Node* dest        = argument(2);  // type: oop
4646   Node* dest_offset = argument(3);  // type: int
4647   Node* length      = argument(4);  // type: int
4648 
4649   // The following tests must be performed
4650   // (1) src and dest are arrays.
4651   // (2) src and dest arrays must have elements of the same BasicType
4652   // (3) src and dest must not be null.
4653   // (4) src_offset must not be negative.
4654   // (5) dest_offset must not be negative.
4655   // (6) length must not be negative.
4656   // (7) src_offset + length must not exceed length of src.
4657   // (8) dest_offset + length must not exceed length of dest.
4658   // (9) each element of an oop array must be assignable
4659 
4660   // (3) src and dest must not be null.
4661   // always do this here because we need the JVM state for uncommon traps
4662   src  = null_check(src,  T_ARRAY);
4663   dest = null_check(dest, T_ARRAY);
4664 
4665   // Check for allocation before we add nodes that would confuse
4666   // tightly_coupled_allocation()
4667   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4668 
4669   ciMethod* trap_method = method();
4670   int trap_bci = bci();
4671   SafePointNode* sfpt = NULL;
4672   if (alloc != NULL) {
4673     // The JVM state for uncommon traps between the allocation and
4674     // arraycopy is set to the state before the allocation: if the
4675     // initialization is performed by the array copy, we don't want to
4676     // go back to the interpreter with an unitialized array.
4677     JVMState* old_jvms = alloc->jvms();
4678     JVMState* jvms = old_jvms->clone_shallow(C);
4679     uint size = alloc->req();
4680     sfpt = new SafePointNode(size, jvms);
4681     jvms->set_map(sfpt);
4682     for (uint i = 0; i < size; i++) {
4683       sfpt->init_req(i, alloc->in(i));
4684     }
4685     // re-push array length for deoptimization
4686     sfpt->ins_req(jvms->stkoff() + jvms->sp(), alloc->in(AllocateNode::ALength));
4687     jvms->set_sp(jvms->sp()+1);
4688     jvms->set_monoff(jvms->monoff()+1);
4689     jvms->set_scloff(jvms->scloff()+1);
4690     jvms->set_endoff(jvms->endoff()+1);
4691     jvms->set_should_reexecute(true);
4692 
4693     sfpt->set_i_o(map()->i_o());
4694     sfpt->set_memory(map()->memory());
4695 
4696     trap_method = jvms->method();
4697     trap_bci = jvms->bci();
4698   }
4699 
4700   bool validated = false;
4701 
4702   const Type* src_type  = _gvn.type(src);
4703   const Type* dest_type = _gvn.type(dest);
4704   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4705   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4706 
4707   // Do we have the type of src?
4708   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4709   // Do we have the type of dest?
4710   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4711   // Is the type for src from speculation?
4712   bool src_spec = false;
4713   // Is the type for dest from speculation?
4714   bool dest_spec = false;
4715 
4716   if (!has_src || !has_dest) {
4717     // We don't have sufficient type information, let's see if
4718     // speculative types can help. We need to have types for both src
4719     // and dest so that it pays off.
4720 
4721     // Do we already have or could we have type information for src
4722     bool could_have_src = has_src;
4723     // Do we already have or could we have type information for dest
4724     bool could_have_dest = has_dest;
4725 
4726     ciKlass* src_k = NULL;
4727     if (!has_src) {
4728       src_k = src_type->speculative_type_not_null();
4729       if (src_k != NULL && src_k->is_array_klass()) {
4730         could_have_src = true;
4731       }
4732     }
4733 
4734     ciKlass* dest_k = NULL;
4735     if (!has_dest) {
4736       dest_k = dest_type->speculative_type_not_null();
4737       if (dest_k != NULL && dest_k->is_array_klass()) {
4738         could_have_dest = true;
4739       }
4740     }
4741 
4742     if (could_have_src && could_have_dest) {
4743       // This is going to pay off so emit the required guards
4744       if (!has_src) {
4745         src = maybe_cast_profiled_obj(src, src_k, true, sfpt);
4746         src_type  = _gvn.type(src);
4747         top_src  = src_type->isa_aryptr();
4748         has_src = (top_src != NULL && top_src->klass() != NULL);
4749         src_spec = true;
4750       }
4751       if (!has_dest) {
4752         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4753         dest_type  = _gvn.type(dest);
4754         top_dest  = dest_type->isa_aryptr();
4755         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4756         dest_spec = true;
4757       }
4758     }
4759   }
4760 
4761   if (has_src && has_dest) {
4762     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4763     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4764     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4765     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4766 
4767     if (src_elem == dest_elem && src_elem == T_OBJECT) {
4768       // If both arrays are object arrays then having the exact types
4769       // for both will remove the need for a subtype check at runtime
4770       // before the call and may make it possible to pick a faster copy
4771       // routine (without a subtype check on every element)
4772       // Do we have the exact type of src?
4773       bool could_have_src = src_spec;
4774       // Do we have the exact type of dest?
4775       bool could_have_dest = dest_spec;
4776       ciKlass* src_k = top_src->klass();
4777       ciKlass* dest_k = top_dest->klass();
4778       if (!src_spec) {
4779         src_k = src_type->speculative_type_not_null();
4780         if (src_k != NULL && src_k->is_array_klass()) {
4781           could_have_src = true;
4782         }
4783       }
4784       if (!dest_spec) {
4785         dest_k = dest_type->speculative_type_not_null();
4786         if (dest_k != NULL && dest_k->is_array_klass()) {
4787           could_have_dest = true;
4788         }
4789       }
4790       if (could_have_src && could_have_dest) {
4791         // If we can have both exact types, emit the missing guards
4792         if (could_have_src && !src_spec) {
4793           src = maybe_cast_profiled_obj(src, src_k, true, sfpt);
4794         }
4795         if (could_have_dest && !dest_spec) {
4796           dest = maybe_cast_profiled_obj(dest, dest_k, true);
4797         }
4798       }
4799     }
4800   }
4801 
4802   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && !src->is_top() && !dest->is_top()) {
4803     // validate arguments: enables transformation the ArrayCopyNode
4804     validated = true;
4805 
4806     RegionNode* slow_region = new RegionNode(1);
4807     record_for_igvn(slow_region);
4808 
4809     // (1) src and dest are arrays.
4810     generate_non_array_guard(load_object_klass(src), slow_region);
4811     generate_non_array_guard(load_object_klass(dest), slow_region);
4812 
4813     // (2) src and dest arrays must have elements of the same BasicType
4814     // done at macro expansion or at Ideal transformation time
4815 
4816     // (4) src_offset must not be negative.
4817     generate_negative_guard(src_offset, slow_region);
4818 
4819     // (5) dest_offset must not be negative.
4820     generate_negative_guard(dest_offset, slow_region);
4821 
4822     // (7) src_offset + length must not exceed length of src.
4823     generate_limit_guard(src_offset, length,
4824                          load_array_length(src),
4825                          slow_region);
4826 
4827     // (8) dest_offset + length must not exceed length of dest.
4828     generate_limit_guard(dest_offset, length,
4829                          load_array_length(dest),
4830                          slow_region);
4831 
4832     // (9) each element of an oop array must be assignable
4833     Node* src_klass  = load_object_klass(src);
4834     Node* dest_klass = load_object_klass(dest);
4835     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4836 
4837     if (not_subtype_ctrl != top()) {
4838       if (sfpt != NULL) {
4839         GraphKit kit(sfpt->jvms());
4840         PreserveJVMState pjvms(&kit);
4841         kit.set_control(not_subtype_ctrl);
4842         kit.uncommon_trap(Deoptimization::Reason_intrinsic,
4843                           Deoptimization::Action_make_not_entrant);
4844         assert(kit.stopped(), "Should be stopped");
4845       } else {
4846         PreserveJVMState pjvms(this);
4847         set_control(not_subtype_ctrl);
4848         uncommon_trap(Deoptimization::Reason_intrinsic,
4849                       Deoptimization::Action_make_not_entrant);
4850         assert(stopped(), "Should be stopped");
4851       }
4852     }
4853     if (sfpt != NULL) {
4854       GraphKit kit(sfpt->jvms());
4855       kit.set_control(_gvn.transform(slow_region));
4856       kit.uncommon_trap(Deoptimization::Reason_intrinsic,
4857                         Deoptimization::Action_make_not_entrant);
4858       assert(kit.stopped(), "Should be stopped");
4859     } else {
4860       PreserveJVMState pjvms(this);
4861       set_control(_gvn.transform(slow_region));
4862       uncommon_trap(Deoptimization::Reason_intrinsic,
4863                     Deoptimization::Action_make_not_entrant);
4864       assert(stopped(), "Should be stopped");
4865     }
4866   }
4867 
4868   if (stopped()) {
4869     return true;
4870   }
4871 
4872   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
4873                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
4874                                           // so the compiler has a chance to eliminate them: during macro expansion,
4875                                           // we have to set their control (CastPP nodes are eliminated).
4876                                           load_object_klass(src), load_object_klass(dest),
4877                                           load_array_length(src), load_array_length(dest));
4878 
4879   ac->set_arraycopy(validated);
4880 
4881   Node* n = _gvn.transform(ac);
4882   if (n == ac) {
4883     ac->connect_outputs(this);
4884   } else {
4885     assert(validated, "shouldn't transform if all arguments not validated");
4886     set_all_memory(n);
4887   }
4888 
4889   return true;
4890 }
4891 
4892 
4893 // Helper function which determines if an arraycopy immediately follows
4894 // an allocation, with no intervening tests or other escapes for the object.
4895 AllocateArrayNode*
4896 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4897                                            RegionNode* slow_region) {
4898   if (stopped())             return NULL;  // no fast path
4899   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4900 
4901   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4902   if (alloc == NULL)  return NULL;
4903 
4904   Node* rawmem = memory(Compile::AliasIdxRaw);
4905   // Is the allocation's memory state untouched?
4906   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4907     // Bail out if there have been raw-memory effects since the allocation.
4908     // (Example:  There might have been a call or safepoint.)
4909     return NULL;
4910   }
4911   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4912   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4913     return NULL;
4914   }
4915 
4916   // There must be no unexpected observers of this allocation.
4917   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4918     Node* obs = ptr->fast_out(i);
4919     if (obs != this->map()) {
4920       return NULL;
4921     }
4922   }
4923 
4924   // This arraycopy must unconditionally follow the allocation of the ptr.
4925   Node* alloc_ctl = ptr->in(0);
4926   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4927 
4928   Node* ctl = control();
4929   while (ctl != alloc_ctl) {
4930     // There may be guards which feed into the slow_region.
4931     // Any other control flow means that we might not get a chance
4932     // to finish initializing the allocated object.
4933     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4934       IfNode* iff = ctl->in(0)->as_If();
4935       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
4936       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4937       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4938         ctl = iff->in(0);       // This test feeds the known slow_region.
4939         continue;
4940       }
4941       // One more try:  Various low-level checks bottom out in
4942       // uncommon traps.  If the debug-info of the trap omits
4943       // any reference to the allocation, as we've already
4944       // observed, then there can be no objection to the trap.
4945       bool found_trap = false;
4946       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
4947         Node* obs = not_ctl->fast_out(j);
4948         if (obs->in(0) == not_ctl && obs->is_Call() &&
4949             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
4950           found_trap = true; break;
4951         }
4952       }
4953       if (found_trap) {
4954         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
4955         continue;
4956       }
4957     }
4958     return NULL;
4959   }
4960 
4961   // If we get this far, we have an allocation which immediately
4962   // precedes the arraycopy, and we can take over zeroing the new object.
4963   // The arraycopy will finish the initialization, and provide
4964   // a new control state to which we will anchor the destination pointer.
4965 
4966   return alloc;
4967 }
4968 
4969 //-------------inline_encodeISOArray-----------------------------------
4970 // encode char[] to byte[] in ISO_8859_1
4971 bool LibraryCallKit::inline_encodeISOArray() {
4972   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
4973   // no receiver since it is static method
4974   Node *src         = argument(0);
4975   Node *src_offset  = argument(1);
4976   Node *dst         = argument(2);
4977   Node *dst_offset  = argument(3);
4978   Node *length      = argument(4);
4979 
4980   const Type* src_type = src->Value(&_gvn);
4981   const Type* dst_type = dst->Value(&_gvn);
4982   const TypeAryPtr* top_src = src_type->isa_aryptr();
4983   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
4984   if (top_src  == NULL || top_src->klass()  == NULL ||
4985       top_dest == NULL || top_dest->klass() == NULL) {
4986     // failed array check
4987     return false;
4988   }
4989 
4990   // Figure out the size and type of the elements we will be copying.
4991   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4992   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4993   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
4994     return false;
4995   }
4996   Node* src_start = array_element_address(src, src_offset, src_elem);
4997   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
4998   // 'src_start' points to src array + scaled offset
4999   // 'dst_start' points to dst array + scaled offset
5000 
5001   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5002   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5003   enc = _gvn.transform(enc);
5004   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5005   set_memory(res_mem, mtype);
5006   set_result(enc);
5007   return true;
5008 }
5009 
5010 //-------------inline_multiplyToLen-----------------------------------
5011 bool LibraryCallKit::inline_multiplyToLen() {
5012   assert(UseMultiplyToLenIntrinsic, "not implementated on this platform");
5013 
5014   address stubAddr = StubRoutines::multiplyToLen();
5015   if (stubAddr == NULL) {
5016     return false; // Intrinsic's stub is not implemented on this platform
5017   }
5018   const char* stubName = "multiplyToLen";
5019 
5020   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5021 
5022   Node* x    = argument(1);
5023   Node* xlen = argument(2);
5024   Node* y    = argument(3);
5025   Node* ylen = argument(4);
5026   Node* z    = argument(5);
5027 
5028   const Type* x_type = x->Value(&_gvn);
5029   const Type* y_type = y->Value(&_gvn);
5030   const TypeAryPtr* top_x = x_type->isa_aryptr();
5031   const TypeAryPtr* top_y = y_type->isa_aryptr();
5032   if (top_x  == NULL || top_x->klass()  == NULL ||
5033       top_y == NULL || top_y->klass() == NULL) {
5034     // failed array check
5035     return false;
5036   }
5037 
5038   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5039   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5040   if (x_elem != T_INT || y_elem != T_INT) {
5041     return false;
5042   }
5043 
5044   // Set the original stack and the reexecute bit for the interpreter to reexecute
5045   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5046   // on the return from z array allocation in runtime.
5047   { PreserveReexecuteState preexecs(this);
5048     jvms()->set_should_reexecute(true);
5049 
5050     Node* x_start = array_element_address(x, intcon(0), x_elem);
5051     Node* y_start = array_element_address(y, intcon(0), y_elem);
5052     // 'x_start' points to x array + scaled xlen
5053     // 'y_start' points to y array + scaled ylen
5054 
5055     // Allocate the result array
5056     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5057     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5058     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5059 
5060     IdealKit ideal(this);
5061 
5062 #define __ ideal.
5063      Node* one = __ ConI(1);
5064      Node* zero = __ ConI(0);
5065      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5066      __ set(need_alloc, zero);
5067      __ set(z_alloc, z);
5068      __ if_then(z, BoolTest::eq, null()); {
5069        __ increment (need_alloc, one);
5070      } __ else_(); {
5071        // Update graphKit memory and control from IdealKit.
5072        sync_kit(ideal);
5073        Node* zlen_arg = load_array_length(z);
5074        // Update IdealKit memory and control from graphKit.
5075        __ sync_kit(this);
5076        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5077          __ increment (need_alloc, one);
5078        } __ end_if();
5079      } __ end_if();
5080 
5081      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5082        // Update graphKit memory and control from IdealKit.
5083        sync_kit(ideal);
5084        Node * narr = new_array(klass_node, zlen, 1);
5085        // Update IdealKit memory and control from graphKit.
5086        __ sync_kit(this);
5087        __ set(z_alloc, narr);
5088      } __ end_if();
5089 
5090      sync_kit(ideal);
5091      z = __ value(z_alloc);
5092      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5093      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5094      // Final sync IdealKit and GraphKit.
5095      final_sync(ideal);
5096 #undef __
5097 
5098     Node* z_start = array_element_address(z, intcon(0), T_INT);
5099 
5100     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5101                                    OptoRuntime::multiplyToLen_Type(),
5102                                    stubAddr, stubName, TypePtr::BOTTOM,
5103                                    x_start, xlen, y_start, ylen, z_start, zlen);
5104   } // original reexecute is set back here
5105 
5106   C->set_has_split_ifs(true); // Has chance for split-if optimization
5107   set_result(z);
5108   return true;
5109 }
5110 
5111 
5112 /**
5113  * Calculate CRC32 for byte.
5114  * int java.util.zip.CRC32.update(int crc, int b)
5115  */
5116 bool LibraryCallKit::inline_updateCRC32() {
5117   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5118   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5119   // no receiver since it is static method
5120   Node* crc  = argument(0); // type: int
5121   Node* b    = argument(1); // type: int
5122 
5123   /*
5124    *    int c = ~ crc;
5125    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5126    *    b = b ^ (c >>> 8);
5127    *    crc = ~b;
5128    */
5129 
5130   Node* M1 = intcon(-1);
5131   crc = _gvn.transform(new XorINode(crc, M1));
5132   Node* result = _gvn.transform(new XorINode(crc, b));
5133   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5134 
5135   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5136   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5137   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5138   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5139 
5140   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5141   result = _gvn.transform(new XorINode(crc, result));
5142   result = _gvn.transform(new XorINode(result, M1));
5143   set_result(result);
5144   return true;
5145 }
5146 
5147 /**
5148  * Calculate CRC32 for byte[] array.
5149  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5150  */
5151 bool LibraryCallKit::inline_updateBytesCRC32() {
5152   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5153   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5154   // no receiver since it is static method
5155   Node* crc     = argument(0); // type: int
5156   Node* src     = argument(1); // type: oop
5157   Node* offset  = argument(2); // type: int
5158   Node* length  = argument(3); // type: int
5159 
5160   const Type* src_type = src->Value(&_gvn);
5161   const TypeAryPtr* top_src = src_type->isa_aryptr();
5162   if (top_src  == NULL || top_src->klass()  == NULL) {
5163     // failed array check
5164     return false;
5165   }
5166 
5167   // Figure out the size and type of the elements we will be copying.
5168   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5169   if (src_elem != T_BYTE) {
5170     return false;
5171   }
5172 
5173   // 'src_start' points to src array + scaled offset
5174   Node* src_start = array_element_address(src, offset, src_elem);
5175 
5176   // We assume that range check is done by caller.
5177   // TODO: generate range check (offset+length < src.length) in debug VM.
5178 
5179   // Call the stub.
5180   address stubAddr = StubRoutines::updateBytesCRC32();
5181   const char *stubName = "updateBytesCRC32";
5182 
5183   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5184                                  stubAddr, stubName, TypePtr::BOTTOM,
5185                                  crc, src_start, length);
5186   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5187   set_result(result);
5188   return true;
5189 }
5190 
5191 /**
5192  * Calculate CRC32 for ByteBuffer.
5193  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5194  */
5195 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5196   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5197   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5198   // no receiver since it is static method
5199   Node* crc     = argument(0); // type: int
5200   Node* src     = argument(1); // type: long
5201   Node* offset  = argument(3); // type: int
5202   Node* length  = argument(4); // type: int
5203 
5204   src = ConvL2X(src);  // adjust Java long to machine word
5205   Node* base = _gvn.transform(new CastX2PNode(src));
5206   offset = ConvI2X(offset);
5207 
5208   // 'src_start' points to src array + scaled offset
5209   Node* src_start = basic_plus_adr(top(), base, offset);
5210 
5211   // Call the stub.
5212   address stubAddr = StubRoutines::updateBytesCRC32();
5213   const char *stubName = "updateBytesCRC32";
5214 
5215   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5216                                  stubAddr, stubName, TypePtr::BOTTOM,
5217                                  crc, src_start, length);
5218   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5219   set_result(result);
5220   return true;
5221 }
5222 
5223 //----------------------------inline_reference_get----------------------------
5224 // public T java.lang.ref.Reference.get();
5225 bool LibraryCallKit::inline_reference_get() {
5226   const int referent_offset = java_lang_ref_Reference::referent_offset;
5227   guarantee(referent_offset > 0, "should have already been set");
5228 
5229   // Get the argument:
5230   Node* reference_obj = null_check_receiver();
5231   if (stopped()) return true;
5232 
5233   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5234 
5235   ciInstanceKlass* klass = env()->Object_klass();
5236   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5237 
5238   Node* no_ctrl = NULL;
5239   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5240 
5241   // Use the pre-barrier to record the value in the referent field
5242   pre_barrier(false /* do_load */,
5243               control(),
5244               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5245               result /* pre_val */,
5246               T_OBJECT);
5247 
5248   // Add memory barrier to prevent commoning reads from this field
5249   // across safepoint since GC can change its value.
5250   insert_mem_bar(Op_MemBarCPUOrder);
5251 
5252   set_result(result);
5253   return true;
5254 }
5255 
5256 
5257 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5258                                               bool is_exact=true, bool is_static=false) {
5259 
5260   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5261   assert(tinst != NULL, "obj is null");
5262   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5263   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5264 
5265   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5266                                                                           ciSymbol::make(fieldTypeString),
5267                                                                           is_static);
5268   if (field == NULL) return (Node *) NULL;
5269   assert (field != NULL, "undefined field");
5270 
5271   // Next code  copied from Parse::do_get_xxx():
5272 
5273   // Compute address and memory type.
5274   int offset  = field->offset_in_bytes();
5275   bool is_vol = field->is_volatile();
5276   ciType* field_klass = field->type();
5277   assert(field_klass->is_loaded(), "should be loaded");
5278   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5279   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5280   BasicType bt = field->layout_type();
5281 
5282   // Build the resultant type of the load
5283   const Type *type;
5284   if (bt == T_OBJECT) {
5285     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5286   } else {
5287     type = Type::get_const_basic_type(bt);
5288   }
5289 
5290   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5291     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5292   }
5293   // Build the load.
5294   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5295   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, is_vol);
5296   // If reference is volatile, prevent following memory ops from
5297   // floating up past the volatile read.  Also prevents commoning
5298   // another volatile read.
5299   if (is_vol) {
5300     // Memory barrier includes bogus read of value to force load BEFORE membar
5301     insert_mem_bar(Op_MemBarAcquire, loadedField);
5302   }
5303   return loadedField;
5304 }
5305 
5306 
5307 //------------------------------inline_aescrypt_Block-----------------------
5308 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5309   address stubAddr;
5310   const char *stubName;
5311   assert(UseAES, "need AES instruction support");
5312 
5313   switch(id) {
5314   case vmIntrinsics::_aescrypt_encryptBlock:
5315     stubAddr = StubRoutines::aescrypt_encryptBlock();
5316     stubName = "aescrypt_encryptBlock";
5317     break;
5318   case vmIntrinsics::_aescrypt_decryptBlock:
5319     stubAddr = StubRoutines::aescrypt_decryptBlock();
5320     stubName = "aescrypt_decryptBlock";
5321     break;
5322   }
5323   if (stubAddr == NULL) return false;
5324 
5325   Node* aescrypt_object = argument(0);
5326   Node* src             = argument(1);
5327   Node* src_offset      = argument(2);
5328   Node* dest            = argument(3);
5329   Node* dest_offset     = argument(4);
5330 
5331   // (1) src and dest are arrays.
5332   const Type* src_type = src->Value(&_gvn);
5333   const Type* dest_type = dest->Value(&_gvn);
5334   const TypeAryPtr* top_src = src_type->isa_aryptr();
5335   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5336   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5337 
5338   // for the quick and dirty code we will skip all the checks.
5339   // we are just trying to get the call to be generated.
5340   Node* src_start  = src;
5341   Node* dest_start = dest;
5342   if (src_offset != NULL || dest_offset != NULL) {
5343     assert(src_offset != NULL && dest_offset != NULL, "");
5344     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5345     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5346   }
5347 
5348   // now need to get the start of its expanded key array
5349   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5350   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5351   if (k_start == NULL) return false;
5352 
5353   if (Matcher::pass_original_key_for_aes()) {
5354     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5355     // compatibility issues between Java key expansion and SPARC crypto instructions
5356     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5357     if (original_k_start == NULL) return false;
5358 
5359     // Call the stub.
5360     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5361                       stubAddr, stubName, TypePtr::BOTTOM,
5362                       src_start, dest_start, k_start, original_k_start);
5363   } else {
5364     // Call the stub.
5365     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5366                       stubAddr, stubName, TypePtr::BOTTOM,
5367                       src_start, dest_start, k_start);
5368   }
5369 
5370   return true;
5371 }
5372 
5373 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5374 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5375   address stubAddr;
5376   const char *stubName;
5377 
5378   assert(UseAES, "need AES instruction support");
5379 
5380   switch(id) {
5381   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5382     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5383     stubName = "cipherBlockChaining_encryptAESCrypt";
5384     break;
5385   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5386     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5387     stubName = "cipherBlockChaining_decryptAESCrypt";
5388     break;
5389   }
5390   if (stubAddr == NULL) return false;
5391 
5392   Node* cipherBlockChaining_object = argument(0);
5393   Node* src                        = argument(1);
5394   Node* src_offset                 = argument(2);
5395   Node* len                        = argument(3);
5396   Node* dest                       = argument(4);
5397   Node* dest_offset                = argument(5);
5398 
5399   // (1) src and dest are arrays.
5400   const Type* src_type = src->Value(&_gvn);
5401   const Type* dest_type = dest->Value(&_gvn);
5402   const TypeAryPtr* top_src = src_type->isa_aryptr();
5403   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5404   assert (top_src  != NULL && top_src->klass()  != NULL
5405           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5406 
5407   // checks are the responsibility of the caller
5408   Node* src_start  = src;
5409   Node* dest_start = dest;
5410   if (src_offset != NULL || dest_offset != NULL) {
5411     assert(src_offset != NULL && dest_offset != NULL, "");
5412     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5413     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5414   }
5415 
5416   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5417   // (because of the predicated logic executed earlier).
5418   // so we cast it here safely.
5419   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5420 
5421   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5422   if (embeddedCipherObj == NULL) return false;
5423 
5424   // cast it to what we know it will be at runtime
5425   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5426   assert(tinst != NULL, "CBC obj is null");
5427   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5428   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5429   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
5430 
5431   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5432   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5433   const TypeOopPtr* xtype = aklass->as_instance_type();
5434   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
5435   aescrypt_object = _gvn.transform(aescrypt_object);
5436 
5437   // we need to get the start of the aescrypt_object's expanded key array
5438   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5439   if (k_start == NULL) return false;
5440 
5441   // similarly, get the start address of the r vector
5442   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5443   if (objRvec == NULL) return false;
5444   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5445 
5446   Node* cbcCrypt;
5447   if (Matcher::pass_original_key_for_aes()) {
5448     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5449     // compatibility issues between Java key expansion and SPARC crypto instructions
5450     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5451     if (original_k_start == NULL) return false;
5452 
5453     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
5454     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5455                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5456                                  stubAddr, stubName, TypePtr::BOTTOM,
5457                                  src_start, dest_start, k_start, r_start, len, original_k_start);
5458   } else {
5459     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5460     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5461                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5462                                  stubAddr, stubName, TypePtr::BOTTOM,
5463                                  src_start, dest_start, k_start, r_start, len);
5464   }
5465 
5466   // return cipher length (int)
5467   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
5468   set_result(retvalue);
5469   return true;
5470 }
5471 
5472 //------------------------------get_key_start_from_aescrypt_object-----------------------
5473 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5474   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5475   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5476   if (objAESCryptKey == NULL) return (Node *) NULL;
5477 
5478   // now have the array, need to get the start address of the K array
5479   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5480   return k_start;
5481 }
5482 
5483 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
5484 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
5485   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
5486   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5487   if (objAESCryptKey == NULL) return (Node *) NULL;
5488 
5489   // now have the array, need to get the start address of the lastKey array
5490   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
5491   return original_k_start;
5492 }
5493 
5494 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5495 // Return node representing slow path of predicate check.
5496 // the pseudo code we want to emulate with this predicate is:
5497 // for encryption:
5498 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5499 // for decryption:
5500 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5501 //    note cipher==plain is more conservative than the original java code but that's OK
5502 //
5503 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5504   // The receiver was checked for NULL already.
5505   Node* objCBC = argument(0);
5506 
5507   // Load embeddedCipher field of CipherBlockChaining object.
5508   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5509 
5510   // get AESCrypt klass for instanceOf check
5511   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5512   // will have same classloader as CipherBlockChaining object
5513   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5514   assert(tinst != NULL, "CBCobj is null");
5515   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5516 
5517   // we want to do an instanceof comparison against the AESCrypt class
5518   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5519   if (!klass_AESCrypt->is_loaded()) {
5520     // if AESCrypt is not even loaded, we never take the intrinsic fast path
5521     Node* ctrl = control();
5522     set_control(top()); // no regular fast path
5523     return ctrl;
5524   }
5525   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5526 
5527   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5528   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
5529   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
5530 
5531   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5532 
5533   // for encryption, we are done
5534   if (!decrypting)
5535     return instof_false;  // even if it is NULL
5536 
5537   // for decryption, we need to add a further check to avoid
5538   // taking the intrinsic path when cipher and plain are the same
5539   // see the original java code for why.
5540   RegionNode* region = new RegionNode(3);
5541   region->init_req(1, instof_false);
5542   Node* src = argument(1);
5543   Node* dest = argument(4);
5544   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
5545   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
5546   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
5547   region->init_req(2, src_dest_conjoint);
5548 
5549   record_for_igvn(region);
5550   return _gvn.transform(region);
5551 }
5552 
5553 //------------------------------inline_sha_implCompress-----------------------
5554 //
5555 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
5556 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
5557 //
5558 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
5559 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
5560 //
5561 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
5562 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
5563 //
5564 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
5565   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
5566 
5567   Node* sha_obj = argument(0);
5568   Node* src     = argument(1); // type oop
5569   Node* ofs     = argument(2); // type int
5570 
5571   const Type* src_type = src->Value(&_gvn);
5572   const TypeAryPtr* top_src = src_type->isa_aryptr();
5573   if (top_src  == NULL || top_src->klass()  == NULL) {
5574     // failed array check
5575     return false;
5576   }
5577   // Figure out the size and type of the elements we will be copying.
5578   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5579   if (src_elem != T_BYTE) {
5580     return false;
5581   }
5582   // 'src_start' points to src array + offset
5583   Node* src_start = array_element_address(src, ofs, src_elem);
5584   Node* state = NULL;
5585   address stubAddr;
5586   const char *stubName;
5587 
5588   switch(id) {
5589   case vmIntrinsics::_sha_implCompress:
5590     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
5591     state = get_state_from_sha_object(sha_obj);
5592     stubAddr = StubRoutines::sha1_implCompress();
5593     stubName = "sha1_implCompress";
5594     break;
5595   case vmIntrinsics::_sha2_implCompress:
5596     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
5597     state = get_state_from_sha_object(sha_obj);
5598     stubAddr = StubRoutines::sha256_implCompress();
5599     stubName = "sha256_implCompress";
5600     break;
5601   case vmIntrinsics::_sha5_implCompress:
5602     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
5603     state = get_state_from_sha5_object(sha_obj);
5604     stubAddr = StubRoutines::sha512_implCompress();
5605     stubName = "sha512_implCompress";
5606     break;
5607   default:
5608     fatal_unexpected_iid(id);
5609     return false;
5610   }
5611   if (state == NULL) return false;
5612 
5613   // Call the stub.
5614   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
5615                                  stubAddr, stubName, TypePtr::BOTTOM,
5616                                  src_start, state);
5617 
5618   return true;
5619 }
5620 
5621 //------------------------------inline_digestBase_implCompressMB-----------------------
5622 //
5623 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
5624 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
5625 //
5626 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
5627   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
5628          "need SHA1/SHA256/SHA512 instruction support");
5629   assert((uint)predicate < 3, "sanity");
5630   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
5631 
5632   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
5633   Node* src            = argument(1); // byte[] array
5634   Node* ofs            = argument(2); // type int
5635   Node* limit          = argument(3); // type int
5636 
5637   const Type* src_type = src->Value(&_gvn);
5638   const TypeAryPtr* top_src = src_type->isa_aryptr();
5639   if (top_src  == NULL || top_src->klass()  == NULL) {
5640     // failed array check
5641     return false;
5642   }
5643   // Figure out the size and type of the elements we will be copying.
5644   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5645   if (src_elem != T_BYTE) {
5646     return false;
5647   }
5648   // 'src_start' points to src array + offset
5649   Node* src_start = array_element_address(src, ofs, src_elem);
5650 
5651   const char* klass_SHA_name = NULL;
5652   const char* stub_name = NULL;
5653   address     stub_addr = NULL;
5654   bool        long_state = false;
5655 
5656   switch (predicate) {
5657   case 0:
5658     if (UseSHA1Intrinsics) {
5659       klass_SHA_name = "sun/security/provider/SHA";
5660       stub_name = "sha1_implCompressMB";
5661       stub_addr = StubRoutines::sha1_implCompressMB();
5662     }
5663     break;
5664   case 1:
5665     if (UseSHA256Intrinsics) {
5666       klass_SHA_name = "sun/security/provider/SHA2";
5667       stub_name = "sha256_implCompressMB";
5668       stub_addr = StubRoutines::sha256_implCompressMB();
5669     }
5670     break;
5671   case 2:
5672     if (UseSHA512Intrinsics) {
5673       klass_SHA_name = "sun/security/provider/SHA5";
5674       stub_name = "sha512_implCompressMB";
5675       stub_addr = StubRoutines::sha512_implCompressMB();
5676       long_state = true;
5677     }
5678     break;
5679   default:
5680     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
5681   }
5682   if (klass_SHA_name != NULL) {
5683     // get DigestBase klass to lookup for SHA klass
5684     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
5685     assert(tinst != NULL, "digestBase_obj is not instance???");
5686     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
5687 
5688     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
5689     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
5690     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
5691     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
5692   }
5693   return false;
5694 }
5695 //------------------------------inline_sha_implCompressMB-----------------------
5696 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
5697                                                bool long_state, address stubAddr, const char *stubName,
5698                                                Node* src_start, Node* ofs, Node* limit) {
5699   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
5700   const TypeOopPtr* xtype = aklass->as_instance_type();
5701   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
5702   sha_obj = _gvn.transform(sha_obj);
5703 
5704   Node* state;
5705   if (long_state) {
5706     state = get_state_from_sha5_object(sha_obj);
5707   } else {
5708     state = get_state_from_sha_object(sha_obj);
5709   }
5710   if (state == NULL) return false;
5711 
5712   // Call the stub.
5713   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5714                                  OptoRuntime::digestBase_implCompressMB_Type(),
5715                                  stubAddr, stubName, TypePtr::BOTTOM,
5716                                  src_start, state, ofs, limit);
5717   // return ofs (int)
5718   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5719   set_result(result);
5720 
5721   return true;
5722 }
5723 
5724 //------------------------------get_state_from_sha_object-----------------------
5725 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
5726   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
5727   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
5728   if (sha_state == NULL) return (Node *) NULL;
5729 
5730   // now have the array, need to get the start address of the state array
5731   Node* state = array_element_address(sha_state, intcon(0), T_INT);
5732   return state;
5733 }
5734 
5735 //------------------------------get_state_from_sha5_object-----------------------
5736 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
5737   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
5738   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
5739   if (sha_state == NULL) return (Node *) NULL;
5740 
5741   // now have the array, need to get the start address of the state array
5742   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
5743   return state;
5744 }
5745 
5746 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
5747 // Return node representing slow path of predicate check.
5748 // the pseudo code we want to emulate with this predicate is:
5749 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
5750 //
5751 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
5752   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
5753          "need SHA1/SHA256/SHA512 instruction support");
5754   assert((uint)predicate < 3, "sanity");
5755 
5756   // The receiver was checked for NULL already.
5757   Node* digestBaseObj = argument(0);
5758 
5759   // get DigestBase klass for instanceOf check
5760   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
5761   assert(tinst != NULL, "digestBaseObj is null");
5762   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
5763 
5764   const char* klass_SHA_name = NULL;
5765   switch (predicate) {
5766   case 0:
5767     if (UseSHA1Intrinsics) {
5768       // we want to do an instanceof comparison against the SHA class
5769       klass_SHA_name = "sun/security/provider/SHA";
5770     }
5771     break;
5772   case 1:
5773     if (UseSHA256Intrinsics) {
5774       // we want to do an instanceof comparison against the SHA2 class
5775       klass_SHA_name = "sun/security/provider/SHA2";
5776     }
5777     break;
5778   case 2:
5779     if (UseSHA512Intrinsics) {
5780       // we want to do an instanceof comparison against the SHA5 class
5781       klass_SHA_name = "sun/security/provider/SHA5";
5782     }
5783     break;
5784   default:
5785     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
5786   }
5787 
5788   ciKlass* klass_SHA = NULL;
5789   if (klass_SHA_name != NULL) {
5790     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
5791   }
5792   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
5793     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
5794     Node* ctrl = control();
5795     set_control(top()); // no intrinsic path
5796     return ctrl;
5797   }
5798   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
5799 
5800   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
5801   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
5802   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
5803   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5804 
5805   return instof_false;  // even if it is NULL
5806 }
5807 
5808 bool LibraryCallKit::inline_profileBoolean() {
5809   Node* counts = argument(1);
5810   const TypeAryPtr* ary = NULL;
5811   ciArray* aobj = NULL;
5812   if (counts->is_Con()
5813       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
5814       && (aobj = ary->const_oop()->as_array()) != NULL
5815       && (aobj->length() == 2)) {
5816     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
5817     jint false_cnt = aobj->element_value(0).as_int();
5818     jint  true_cnt = aobj->element_value(1).as_int();
5819 
5820     method()->set_injected_profile(true);
5821 
5822     if (C->log() != NULL) {
5823       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
5824                      false_cnt, true_cnt);
5825     }
5826 
5827     if (false_cnt + true_cnt == 0) {
5828       // According to profile, never executed.
5829       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
5830                           Deoptimization::Action_reinterpret);
5831       return true;
5832     }
5833     // Stop profiling.
5834     // MethodHandleImpl::profileBoolean() has profiling logic in it's bytecode.
5835     // By replacing method's body with profile data (represented as ProfileBooleanNode
5836     // on IR level) we effectively disable profiling.
5837     // It enables full speed execution once optimized code is generated.
5838     Node* profile = _gvn.transform(new ProfileBooleanNode(argument(0), false_cnt, true_cnt));
5839     C->record_for_igvn(profile);
5840     set_result(profile);
5841     return true;
5842   } else {
5843     // Continue profiling.
5844     // Profile data isn't available at the moment. So, execute method's bytecode version.
5845     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
5846     // is compiled and counters aren't available since corresponding MethodHandle
5847     // isn't a compile-time constant.
5848     return false;
5849   }
5850 }