1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/callGenerator.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/countbitsnode.hpp"
  38 #include "opto/intrinsicnode.hpp"
  39 #include "opto/idealKit.hpp"
  40 #include "opto/mathexactnode.hpp"
  41 #include "opto/movenode.hpp"
  42 #include "opto/mulnode.hpp"
  43 #include "opto/narrowptrnode.hpp"
  44 #include "opto/opaquenode.hpp"
  45 #include "opto/parse.hpp"
  46 #include "opto/runtime.hpp"
  47 #include "opto/subnode.hpp"
  48 #include "prims/nativeLookup.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "trace/traceMacros.hpp"
  51 
  52 class LibraryIntrinsic : public InlineCallGenerator {
  53   // Extend the set of intrinsics known to the runtime:
  54  public:
  55  private:
  56   bool             _is_virtual;
  57   bool             _does_virtual_dispatch;
  58   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  59   int8_t           _last_predicate; // Last generated predicate
  60   vmIntrinsics::ID _intrinsic_id;
  61 
  62  public:
  63   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  64     : InlineCallGenerator(m),
  65       _is_virtual(is_virtual),
  66       _does_virtual_dispatch(does_virtual_dispatch),
  67       _predicates_count((int8_t)predicates_count),
  68       _last_predicate((int8_t)-1),
  69       _intrinsic_id(id)
  70   {
  71   }
  72   virtual bool is_intrinsic() const { return true; }
  73   virtual bool is_virtual()   const { return _is_virtual; }
  74   virtual bool is_predicated() const { return _predicates_count > 0; }
  75   virtual int  predicates_count() const { return _predicates_count; }
  76   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  77   virtual JVMState* generate(JVMState* jvms);
  78   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  79   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  80 };
  81 
  82 
  83 // Local helper class for LibraryIntrinsic:
  84 class LibraryCallKit : public GraphKit {
  85  private:
  86   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  87   Node*             _result;        // the result node, if any
  88   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  89 
  90   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  91 
  92  public:
  93   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  94     : GraphKit(jvms),
  95       _intrinsic(intrinsic),
  96       _result(NULL)
  97   {
  98     // Check if this is a root compile.  In that case we don't have a caller.
  99     if (!jvms->has_method()) {
 100       _reexecute_sp = sp();
 101     } else {
 102       // Find out how many arguments the interpreter needs when deoptimizing
 103       // and save the stack pointer value so it can used by uncommon_trap.
 104       // We find the argument count by looking at the declared signature.
 105       bool ignored_will_link;
 106       ciSignature* declared_signature = NULL;
 107       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 108       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 109       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 110     }
 111   }
 112 
 113   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 114 
 115   ciMethod*         caller()    const    { return jvms()->method(); }
 116   int               bci()       const    { return jvms()->bci(); }
 117   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 118   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 119   ciMethod*         callee()    const    { return _intrinsic->method(); }
 120 
 121   bool  try_to_inline(int predicate);
 122   Node* try_to_predicate(int predicate);
 123 
 124   void push_result() {
 125     // Push the result onto the stack.
 126     if (!stopped() && result() != NULL) {
 127       BasicType bt = result()->bottom_type()->basic_type();
 128       push_node(bt, result());
 129     }
 130   }
 131 
 132  private:
 133   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 134     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 135   }
 136 
 137   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 138   void  set_result(RegionNode* region, PhiNode* value);
 139   Node*     result() { return _result; }
 140 
 141   virtual int reexecute_sp() { return _reexecute_sp; }
 142 
 143   // Helper functions to inline natives
 144   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 145   Node* generate_slow_guard(Node* test, RegionNode* region);
 146   Node* generate_fair_guard(Node* test, RegionNode* region);
 147   Node* generate_negative_guard(Node* index, RegionNode* region,
 148                                 // resulting CastII of index:
 149                                 Node* *pos_index = NULL);
 150   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 151                              Node* array_length,
 152                              RegionNode* region);
 153   Node* generate_current_thread(Node* &tls_output);
 154   Node* load_mirror_from_klass(Node* klass);
 155   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 156                                       RegionNode* region, int null_path,
 157                                       int offset);
 158   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 159                                RegionNode* region, int null_path) {
 160     int offset = java_lang_Class::klass_offset_in_bytes();
 161     return load_klass_from_mirror_common(mirror, never_see_null,
 162                                          region, null_path,
 163                                          offset);
 164   }
 165   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 166                                      RegionNode* region, int null_path) {
 167     int offset = java_lang_Class::array_klass_offset_in_bytes();
 168     return load_klass_from_mirror_common(mirror, never_see_null,
 169                                          region, null_path,
 170                                          offset);
 171   }
 172   Node* generate_access_flags_guard(Node* kls,
 173                                     int modifier_mask, int modifier_bits,
 174                                     RegionNode* region);
 175   Node* generate_interface_guard(Node* kls, RegionNode* region);
 176   Node* generate_array_guard(Node* kls, RegionNode* region) {
 177     return generate_array_guard_common(kls, region, false, false);
 178   }
 179   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 180     return generate_array_guard_common(kls, region, false, true);
 181   }
 182   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 183     return generate_array_guard_common(kls, region, true, false);
 184   }
 185   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 186     return generate_array_guard_common(kls, region, true, true);
 187   }
 188   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 189                                     bool obj_array, bool not_array);
 190   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 191   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 192                                      bool is_virtual = false, bool is_static = false);
 193   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 194     return generate_method_call(method_id, false, true);
 195   }
 196   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 197     return generate_method_call(method_id, true, false);
 198   }
 199   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 200 
 201   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 202   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 203   bool inline_string_compareTo();
 204   bool inline_string_indexOf();
 205   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 206   bool inline_string_equals();
 207   Node* round_double_node(Node* n);
 208   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 209   bool inline_math_native(vmIntrinsics::ID id);
 210   bool inline_trig(vmIntrinsics::ID id);
 211   bool inline_math(vmIntrinsics::ID id);
 212   template <typename OverflowOp>
 213   bool inline_math_overflow(Node* arg1, Node* arg2);
 214   void inline_math_mathExact(Node* math, Node* test);
 215   bool inline_math_addExactI(bool is_increment);
 216   bool inline_math_addExactL(bool is_increment);
 217   bool inline_math_multiplyExactI();
 218   bool inline_math_multiplyExactL();
 219   bool inline_math_negateExactI();
 220   bool inline_math_negateExactL();
 221   bool inline_math_subtractExactI(bool is_decrement);
 222   bool inline_math_subtractExactL(bool is_decrement);
 223   bool inline_exp();
 224   bool inline_pow();
 225   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 226   bool inline_min_max(vmIntrinsics::ID id);
 227   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 228   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 229   int classify_unsafe_addr(Node* &base, Node* &offset);
 230   Node* make_unsafe_address(Node* base, Node* offset);
 231   // Helper for inline_unsafe_access.
 232   // Generates the guards that check whether the result of
 233   // Unsafe.getObject should be recorded in an SATB log buffer.
 234   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 235   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 236   static bool klass_needs_init_guard(Node* kls);
 237   bool inline_unsafe_allocate();
 238   bool inline_unsafe_copyMemory();
 239   bool inline_native_currentThread();
 240 #ifdef TRACE_HAVE_INTRINSICS
 241   bool inline_native_classID();
 242   bool inline_native_threadID();
 243 #endif
 244   bool inline_native_time_funcs(address method, const char* funcName);
 245   bool inline_native_isInterrupted();
 246   bool inline_native_Class_query(vmIntrinsics::ID id);
 247   bool inline_native_subtype_check();
 248 
 249   bool inline_native_newArray();
 250   bool inline_native_getLength();
 251   bool inline_array_copyOf(bool is_copyOfRange);
 252   bool inline_array_equals();
 253   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 254   bool inline_native_clone(bool is_virtual);
 255   bool inline_native_Reflection_getCallerClass();
 256   // Helper function for inlining native object hash method
 257   bool inline_native_hashcode(bool is_virtual, bool is_static);
 258   bool inline_native_getClass();
 259 
 260   // Helper functions for inlining arraycopy
 261   bool inline_arraycopy();
 262   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 263                                                 RegionNode* slow_region);
 264   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 265   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 266   bool inline_unsafe_ordered_store(BasicType type);
 267   bool inline_unsafe_fence(vmIntrinsics::ID id);
 268   bool inline_fp_conversions(vmIntrinsics::ID id);
 269   bool inline_number_methods(vmIntrinsics::ID id);
 270   bool inline_reference_get();
 271   bool inline_Class_cast();
 272   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 273   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 274   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 275   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 276   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 277   bool inline_sha_implCompress(vmIntrinsics::ID id);
 278   bool inline_digestBase_implCompressMB(int predicate);
 279   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 280                                  bool long_state, address stubAddr, const char *stubName,
 281                                  Node* src_start, Node* ofs, Node* limit);
 282   Node* get_state_from_sha_object(Node *sha_object);
 283   Node* get_state_from_sha5_object(Node *sha_object);
 284   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 285   bool inline_encodeISOArray();
 286   bool inline_updateCRC32();
 287   bool inline_updateBytesCRC32();
 288   bool inline_updateByteBufferCRC32();
 289   bool inline_multiplyToLen();
 290 
 291   bool inline_profileBoolean();
 292 };
 293 
 294 
 295 //---------------------------make_vm_intrinsic----------------------------
 296 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 297   vmIntrinsics::ID id = m->intrinsic_id();
 298   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 299 
 300   ccstr disable_intr = NULL;
 301 
 302   if ((DisableIntrinsic[0] != '\0'
 303        && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
 304       (method_has_option_value("DisableIntrinsic", disable_intr)
 305        && strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)) {
 306     // disabled by a user request on the command line:
 307     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 308     return NULL;
 309   }
 310 
 311   if (!m->is_loaded()) {
 312     // do not attempt to inline unloaded methods
 313     return NULL;
 314   }
 315 
 316   // Only a few intrinsics implement a virtual dispatch.
 317   // They are expensive calls which are also frequently overridden.
 318   if (is_virtual) {
 319     switch (id) {
 320     case vmIntrinsics::_hashCode:
 321     case vmIntrinsics::_clone:
 322       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 323       break;
 324     default:
 325       return NULL;
 326     }
 327   }
 328 
 329   // -XX:-InlineNatives disables nearly all intrinsics:
 330   if (!InlineNatives) {
 331     switch (id) {
 332     case vmIntrinsics::_indexOf:
 333     case vmIntrinsics::_compareTo:
 334     case vmIntrinsics::_equals:
 335     case vmIntrinsics::_equalsC:
 336     case vmIntrinsics::_getAndAddInt:
 337     case vmIntrinsics::_getAndAddLong:
 338     case vmIntrinsics::_getAndSetInt:
 339     case vmIntrinsics::_getAndSetLong:
 340     case vmIntrinsics::_getAndSetObject:
 341     case vmIntrinsics::_loadFence:
 342     case vmIntrinsics::_storeFence:
 343     case vmIntrinsics::_fullFence:
 344       break;  // InlineNatives does not control String.compareTo
 345     case vmIntrinsics::_Reference_get:
 346       break;  // InlineNatives does not control Reference.get
 347     default:
 348       return NULL;
 349     }
 350   }
 351 
 352   int predicates = 0;
 353   bool does_virtual_dispatch = false;
 354 
 355   switch (id) {
 356   case vmIntrinsics::_compareTo:
 357     if (!SpecialStringCompareTo)  return NULL;
 358     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 359     break;
 360   case vmIntrinsics::_indexOf:
 361     if (!SpecialStringIndexOf)  return NULL;
 362     break;
 363   case vmIntrinsics::_equals:
 364     if (!SpecialStringEquals)  return NULL;
 365     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 366     break;
 367   case vmIntrinsics::_equalsC:
 368     if (!SpecialArraysEquals)  return NULL;
 369     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 370     break;
 371   case vmIntrinsics::_arraycopy:
 372     if (!InlineArrayCopy)  return NULL;
 373     break;
 374   case vmIntrinsics::_copyMemory:
 375     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 376     if (!InlineArrayCopy)  return NULL;
 377     break;
 378   case vmIntrinsics::_hashCode:
 379     if (!InlineObjectHash)  return NULL;
 380     does_virtual_dispatch = true;
 381     break;
 382   case vmIntrinsics::_clone:
 383     does_virtual_dispatch = true;
 384   case vmIntrinsics::_copyOf:
 385   case vmIntrinsics::_copyOfRange:
 386     if (!InlineObjectCopy)  return NULL;
 387     // These also use the arraycopy intrinsic mechanism:
 388     if (!InlineArrayCopy)  return NULL;
 389     break;
 390   case vmIntrinsics::_encodeISOArray:
 391     if (!SpecialEncodeISOArray)  return NULL;
 392     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 393     break;
 394   case vmIntrinsics::_checkIndex:
 395     // We do not intrinsify this.  The optimizer does fine with it.
 396     return NULL;
 397 
 398   case vmIntrinsics::_getCallerClass:
 399     if (!InlineReflectionGetCallerClass)  return NULL;
 400     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 401     break;
 402 
 403   case vmIntrinsics::_bitCount_i:
 404     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 405     break;
 406 
 407   case vmIntrinsics::_bitCount_l:
 408     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 409     break;
 410 
 411   case vmIntrinsics::_numberOfLeadingZeros_i:
 412     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 413     break;
 414 
 415   case vmIntrinsics::_numberOfLeadingZeros_l:
 416     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 417     break;
 418 
 419   case vmIntrinsics::_numberOfTrailingZeros_i:
 420     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 421     break;
 422 
 423   case vmIntrinsics::_numberOfTrailingZeros_l:
 424     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 425     break;
 426 
 427   case vmIntrinsics::_reverseBytes_c:
 428     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 429     break;
 430   case vmIntrinsics::_reverseBytes_s:
 431     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 432     break;
 433   case vmIntrinsics::_reverseBytes_i:
 434     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 435     break;
 436   case vmIntrinsics::_reverseBytes_l:
 437     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 438     break;
 439 
 440   case vmIntrinsics::_Reference_get:
 441     // Use the intrinsic version of Reference.get() so that the value in
 442     // the referent field can be registered by the G1 pre-barrier code.
 443     // Also add memory barrier to prevent commoning reads from this field
 444     // across safepoint since GC can change it value.
 445     break;
 446 
 447   case vmIntrinsics::_compareAndSwapObject:
 448 #ifdef _LP64
 449     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 450 #endif
 451     break;
 452 
 453   case vmIntrinsics::_compareAndSwapLong:
 454     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 455     break;
 456 
 457   case vmIntrinsics::_getAndAddInt:
 458     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 459     break;
 460 
 461   case vmIntrinsics::_getAndAddLong:
 462     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 463     break;
 464 
 465   case vmIntrinsics::_getAndSetInt:
 466     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 467     break;
 468 
 469   case vmIntrinsics::_getAndSetLong:
 470     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 471     break;
 472 
 473   case vmIntrinsics::_getAndSetObject:
 474 #ifdef _LP64
 475     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 476     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 477     break;
 478 #else
 479     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 480     break;
 481 #endif
 482 
 483   case vmIntrinsics::_aescrypt_encryptBlock:
 484   case vmIntrinsics::_aescrypt_decryptBlock:
 485     if (!UseAESIntrinsics) return NULL;
 486     break;
 487 
 488   case vmIntrinsics::_multiplyToLen:
 489     if (!UseMultiplyToLenIntrinsic) return NULL;
 490     break;
 491 
 492   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 493   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 494     if (!UseAESIntrinsics) return NULL;
 495     // these two require the predicated logic
 496     predicates = 1;
 497     break;
 498 
 499   case vmIntrinsics::_sha_implCompress:
 500     if (!UseSHA1Intrinsics) return NULL;
 501     break;
 502 
 503   case vmIntrinsics::_sha2_implCompress:
 504     if (!UseSHA256Intrinsics) return NULL;
 505     break;
 506 
 507   case vmIntrinsics::_sha5_implCompress:
 508     if (!UseSHA512Intrinsics) return NULL;
 509     break;
 510 
 511   case vmIntrinsics::_digestBase_implCompressMB:
 512     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
 513     predicates = 3;
 514     break;
 515 
 516   case vmIntrinsics::_updateCRC32:
 517   case vmIntrinsics::_updateBytesCRC32:
 518   case vmIntrinsics::_updateByteBufferCRC32:
 519     if (!UseCRC32Intrinsics) return NULL;
 520     break;
 521 
 522   case vmIntrinsics::_incrementExactI:
 523   case vmIntrinsics::_addExactI:
 524     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 525     break;
 526   case vmIntrinsics::_incrementExactL:
 527   case vmIntrinsics::_addExactL:
 528     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 529     break;
 530   case vmIntrinsics::_decrementExactI:
 531   case vmIntrinsics::_subtractExactI:
 532     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 533     break;
 534   case vmIntrinsics::_decrementExactL:
 535   case vmIntrinsics::_subtractExactL:
 536     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 537     break;
 538   case vmIntrinsics::_negateExactI:
 539     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 540     break;
 541   case vmIntrinsics::_negateExactL:
 542     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 543     break;
 544   case vmIntrinsics::_multiplyExactI:
 545     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 546     break;
 547   case vmIntrinsics::_multiplyExactL:
 548     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 549     break;
 550 
 551   case vmIntrinsics::_getShortUnaligned:
 552   case vmIntrinsics::_getCharUnaligned:
 553   case vmIntrinsics::_getIntUnaligned:
 554   case vmIntrinsics::_getLongUnaligned:
 555   case vmIntrinsics::_putShortUnaligned:
 556   case vmIntrinsics::_putCharUnaligned:
 557   case vmIntrinsics::_putIntUnaligned:
 558   case vmIntrinsics::_putLongUnaligned:
 559     if (!UseUnalignedAccesses) return NULL;
 560     break;
 561 
 562  default:
 563     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 564     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 565     break;
 566   }
 567 
 568   // -XX:-InlineClassNatives disables natives from the Class class.
 569   // The flag applies to all reflective calls, notably Array.newArray
 570   // (visible to Java programmers as Array.newInstance).
 571   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 572       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 573     if (!InlineClassNatives)  return NULL;
 574   }
 575 
 576   // -XX:-InlineThreadNatives disables natives from the Thread class.
 577   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 578     if (!InlineThreadNatives)  return NULL;
 579   }
 580 
 581   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 582   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 583       m->holder()->name() == ciSymbol::java_lang_Float() ||
 584       m->holder()->name() == ciSymbol::java_lang_Double()) {
 585     if (!InlineMathNatives)  return NULL;
 586   }
 587 
 588   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 589   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 590     if (!InlineUnsafeOps)  return NULL;
 591   }
 592 
 593   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
 594 }
 595 
 596 //----------------------register_library_intrinsics-----------------------
 597 // Initialize this file's data structures, for each Compile instance.
 598 void Compile::register_library_intrinsics() {
 599   // Nothing to do here.
 600 }
 601 
 602 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 603   LibraryCallKit kit(jvms, this);
 604   Compile* C = kit.C;
 605   int nodes = C->unique();
 606 #ifndef PRODUCT
 607   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 608     char buf[1000];
 609     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 610     tty->print_cr("Intrinsic %s", str);
 611   }
 612 #endif
 613   ciMethod* callee = kit.callee();
 614   const int bci    = kit.bci();
 615 
 616   // Try to inline the intrinsic.
 617   if (kit.try_to_inline(_last_predicate)) {
 618     if (C->print_intrinsics() || C->print_inlining()) {
 619       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 620     }
 621     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 622     if (C->log()) {
 623       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 624                      vmIntrinsics::name_at(intrinsic_id()),
 625                      (is_virtual() ? " virtual='1'" : ""),
 626                      C->unique() - nodes);
 627     }
 628     // Push the result from the inlined method onto the stack.
 629     kit.push_result();
 630     C->print_inlining_update(this);
 631     return kit.transfer_exceptions_into_jvms();
 632   }
 633 
 634   // The intrinsic bailed out
 635   if (C->print_intrinsics() || C->print_inlining()) {
 636     if (jvms->has_method()) {
 637       // Not a root compile.
 638       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 639       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 640     } else {
 641       // Root compile
 642       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 643                vmIntrinsics::name_at(intrinsic_id()),
 644                (is_virtual() ? " (virtual)" : ""), bci);
 645     }
 646   }
 647   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 648   C->print_inlining_update(this);
 649   return NULL;
 650 }
 651 
 652 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 653   LibraryCallKit kit(jvms, this);
 654   Compile* C = kit.C;
 655   int nodes = C->unique();
 656   _last_predicate = predicate;
 657 #ifndef PRODUCT
 658   assert(is_predicated() && predicate < predicates_count(), "sanity");
 659   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 660     char buf[1000];
 661     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 662     tty->print_cr("Predicate for intrinsic %s", str);
 663   }
 664 #endif
 665   ciMethod* callee = kit.callee();
 666   const int bci    = kit.bci();
 667 
 668   Node* slow_ctl = kit.try_to_predicate(predicate);
 669   if (!kit.failing()) {
 670     if (C->print_intrinsics() || C->print_inlining()) {
 671       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 672     }
 673     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 674     if (C->log()) {
 675       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 676                      vmIntrinsics::name_at(intrinsic_id()),
 677                      (is_virtual() ? " virtual='1'" : ""),
 678                      C->unique() - nodes);
 679     }
 680     return slow_ctl; // Could be NULL if the check folds.
 681   }
 682 
 683   // The intrinsic bailed out
 684   if (C->print_intrinsics() || C->print_inlining()) {
 685     if (jvms->has_method()) {
 686       // Not a root compile.
 687       const char* msg = "failed to generate predicate for intrinsic";
 688       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 689     } else {
 690       // Root compile
 691       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 692                                         vmIntrinsics::name_at(intrinsic_id()),
 693                                         (is_virtual() ? " (virtual)" : ""), bci);
 694     }
 695   }
 696   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 697   return NULL;
 698 }
 699 
 700 bool LibraryCallKit::try_to_inline(int predicate) {
 701   // Handle symbolic names for otherwise undistinguished boolean switches:
 702   const bool is_store       = true;
 703   const bool is_native_ptr  = true;
 704   const bool is_static      = true;
 705   const bool is_volatile    = true;
 706 
 707   if (!jvms()->has_method()) {
 708     // Root JVMState has a null method.
 709     assert(map()->memory()->Opcode() == Op_Parm, "");
 710     // Insert the memory aliasing node
 711     set_all_memory(reset_memory());
 712   }
 713   assert(merged_memory(), "");
 714 
 715 
 716   switch (intrinsic_id()) {
 717   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 718   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 719   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 720 
 721   case vmIntrinsics::_dsin:
 722   case vmIntrinsics::_dcos:
 723   case vmIntrinsics::_dtan:
 724   case vmIntrinsics::_dabs:
 725   case vmIntrinsics::_datan2:
 726   case vmIntrinsics::_dsqrt:
 727   case vmIntrinsics::_dexp:
 728   case vmIntrinsics::_dlog:
 729   case vmIntrinsics::_dlog10:
 730   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 731 
 732   case vmIntrinsics::_min:
 733   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 734 
 735   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 736   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 737   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 738   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 739   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 740   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 741   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 742   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 743   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 744   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 745   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 746   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 747 
 748   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 749 
 750   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 751   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 752   case vmIntrinsics::_equals:                   return inline_string_equals();
 753 
 754   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 755   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 756   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 757   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 758   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 759   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 760   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 761   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 762   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 763 
 764   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 765   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 766   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 767   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 768   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 769   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 770   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 771   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 772   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 773 
 774   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 775   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 776   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 777   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 778   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 779   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 780   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 781   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 782 
 783   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 784   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 785   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 786   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 787   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 788   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 789   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 790   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 791 
 792   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 793   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 794   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 795   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 796   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 797   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 798   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 799   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 800   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 801 
 802   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 803   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 804   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 805   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 806   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 807   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 808   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 809   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 810   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 811 
 812   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 813   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 814   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 815   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 816 
 817   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 818   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 819   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 820   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 821 
 822   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 823   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 824   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 825 
 826   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 827   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 828   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 829 
 830   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 831   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 832   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 833   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 834   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 835 
 836   case vmIntrinsics::_loadFence:
 837   case vmIntrinsics::_storeFence:
 838   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 839 
 840   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 841   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 842 
 843 #ifdef TRACE_HAVE_INTRINSICS
 844   case vmIntrinsics::_classID:                  return inline_native_classID();
 845   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 846   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 847 #endif
 848   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 849   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 850   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 851   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 852   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 853   case vmIntrinsics::_getLength:                return inline_native_getLength();
 854   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 855   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 856   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 857   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 858 
 859   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 860 
 861   case vmIntrinsics::_isInstance:
 862   case vmIntrinsics::_getModifiers:
 863   case vmIntrinsics::_isInterface:
 864   case vmIntrinsics::_isArray:
 865   case vmIntrinsics::_isPrimitive:
 866   case vmIntrinsics::_getSuperclass:
 867   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 868 
 869   case vmIntrinsics::_floatToRawIntBits:
 870   case vmIntrinsics::_floatToIntBits:
 871   case vmIntrinsics::_intBitsToFloat:
 872   case vmIntrinsics::_doubleToRawLongBits:
 873   case vmIntrinsics::_doubleToLongBits:
 874   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 875 
 876   case vmIntrinsics::_numberOfLeadingZeros_i:
 877   case vmIntrinsics::_numberOfLeadingZeros_l:
 878   case vmIntrinsics::_numberOfTrailingZeros_i:
 879   case vmIntrinsics::_numberOfTrailingZeros_l:
 880   case vmIntrinsics::_bitCount_i:
 881   case vmIntrinsics::_bitCount_l:
 882   case vmIntrinsics::_reverseBytes_i:
 883   case vmIntrinsics::_reverseBytes_l:
 884   case vmIntrinsics::_reverseBytes_s:
 885   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 886 
 887   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 888 
 889   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 890 
 891   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 892 
 893   case vmIntrinsics::_aescrypt_encryptBlock:
 894   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 895 
 896   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 897   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 898     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 899 
 900   case vmIntrinsics::_sha_implCompress:
 901   case vmIntrinsics::_sha2_implCompress:
 902   case vmIntrinsics::_sha5_implCompress:
 903     return inline_sha_implCompress(intrinsic_id());
 904 
 905   case vmIntrinsics::_digestBase_implCompressMB:
 906     return inline_digestBase_implCompressMB(predicate);
 907 
 908   case vmIntrinsics::_multiplyToLen:
 909     return inline_multiplyToLen();
 910 
 911   case vmIntrinsics::_encodeISOArray:
 912     return inline_encodeISOArray();
 913 
 914   case vmIntrinsics::_updateCRC32:
 915     return inline_updateCRC32();
 916   case vmIntrinsics::_updateBytesCRC32:
 917     return inline_updateBytesCRC32();
 918   case vmIntrinsics::_updateByteBufferCRC32:
 919     return inline_updateByteBufferCRC32();
 920 
 921   case vmIntrinsics::_profileBoolean:
 922     return inline_profileBoolean();
 923 
 924   default:
 925     // If you get here, it may be that someone has added a new intrinsic
 926     // to the list in vmSymbols.hpp without implementing it here.
 927 #ifndef PRODUCT
 928     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 929       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 930                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 931     }
 932 #endif
 933     return false;
 934   }
 935 }
 936 
 937 Node* LibraryCallKit::try_to_predicate(int predicate) {
 938   if (!jvms()->has_method()) {
 939     // Root JVMState has a null method.
 940     assert(map()->memory()->Opcode() == Op_Parm, "");
 941     // Insert the memory aliasing node
 942     set_all_memory(reset_memory());
 943   }
 944   assert(merged_memory(), "");
 945 
 946   switch (intrinsic_id()) {
 947   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 948     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 949   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 950     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 951   case vmIntrinsics::_digestBase_implCompressMB:
 952     return inline_digestBase_implCompressMB_predicate(predicate);
 953 
 954   default:
 955     // If you get here, it may be that someone has added a new intrinsic
 956     // to the list in vmSymbols.hpp without implementing it here.
 957 #ifndef PRODUCT
 958     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 959       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 960                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 961     }
 962 #endif
 963     Node* slow_ctl = control();
 964     set_control(top()); // No fast path instrinsic
 965     return slow_ctl;
 966   }
 967 }
 968 
 969 //------------------------------set_result-------------------------------
 970 // Helper function for finishing intrinsics.
 971 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 972   record_for_igvn(region);
 973   set_control(_gvn.transform(region));
 974   set_result( _gvn.transform(value));
 975   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 976 }
 977 
 978 //------------------------------generate_guard---------------------------
 979 // Helper function for generating guarded fast-slow graph structures.
 980 // The given 'test', if true, guards a slow path.  If the test fails
 981 // then a fast path can be taken.  (We generally hope it fails.)
 982 // In all cases, GraphKit::control() is updated to the fast path.
 983 // The returned value represents the control for the slow path.
 984 // The return value is never 'top'; it is either a valid control
 985 // or NULL if it is obvious that the slow path can never be taken.
 986 // Also, if region and the slow control are not NULL, the slow edge
 987 // is appended to the region.
 988 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 989   if (stopped()) {
 990     // Already short circuited.
 991     return NULL;
 992   }
 993 
 994   // Build an if node and its projections.
 995   // If test is true we take the slow path, which we assume is uncommon.
 996   if (_gvn.type(test) == TypeInt::ZERO) {
 997     // The slow branch is never taken.  No need to build this guard.
 998     return NULL;
 999   }
1000 
1001   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
1002 
1003   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
1004   if (if_slow == top()) {
1005     // The slow branch is never taken.  No need to build this guard.
1006     return NULL;
1007   }
1008 
1009   if (region != NULL)
1010     region->add_req(if_slow);
1011 
1012   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
1013   set_control(if_fast);
1014 
1015   return if_slow;
1016 }
1017 
1018 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
1019   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
1020 }
1021 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1022   return generate_guard(test, region, PROB_FAIR);
1023 }
1024 
1025 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1026                                                      Node* *pos_index) {
1027   if (stopped())
1028     return NULL;                // already stopped
1029   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1030     return NULL;                // index is already adequately typed
1031   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
1032   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1033   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1034   if (is_neg != NULL && pos_index != NULL) {
1035     // Emulate effect of Parse::adjust_map_after_if.
1036     Node* ccast = new CastIINode(index, TypeInt::POS);
1037     ccast->set_req(0, control());
1038     (*pos_index) = _gvn.transform(ccast);
1039   }
1040   return is_neg;
1041 }
1042 
1043 // Make sure that 'position' is a valid limit index, in [0..length].
1044 // There are two equivalent plans for checking this:
1045 //   A. (offset + copyLength)  unsigned<=  arrayLength
1046 //   B. offset  <=  (arrayLength - copyLength)
1047 // We require that all of the values above, except for the sum and
1048 // difference, are already known to be non-negative.
1049 // Plan A is robust in the face of overflow, if offset and copyLength
1050 // are both hugely positive.
1051 //
1052 // Plan B is less direct and intuitive, but it does not overflow at
1053 // all, since the difference of two non-negatives is always
1054 // representable.  Whenever Java methods must perform the equivalent
1055 // check they generally use Plan B instead of Plan A.
1056 // For the moment we use Plan A.
1057 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1058                                                   Node* subseq_length,
1059                                                   Node* array_length,
1060                                                   RegionNode* region) {
1061   if (stopped())
1062     return NULL;                // already stopped
1063   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1064   if (zero_offset && subseq_length->eqv_uncast(array_length))
1065     return NULL;                // common case of whole-array copy
1066   Node* last = subseq_length;
1067   if (!zero_offset)             // last += offset
1068     last = _gvn.transform(new AddINode(last, offset));
1069   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1070   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1071   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1072   return is_over;
1073 }
1074 
1075 
1076 //--------------------------generate_current_thread--------------------
1077 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1078   ciKlass*    thread_klass = env()->Thread_klass();
1079   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1080   Node* thread = _gvn.transform(new ThreadLocalNode());
1081   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1082   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1083   tls_output = thread;
1084   return threadObj;
1085 }
1086 
1087 
1088 //------------------------------make_string_method_node------------------------
1089 // Helper method for String intrinsic functions. This version is called
1090 // with str1 and str2 pointing to String object nodes.
1091 //
1092 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1093   Node* no_ctrl = NULL;
1094 
1095   // Get start addr of string
1096   Node* str1_value   = load_String_value(no_ctrl, str1);
1097   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1098   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1099 
1100   // Get length of string 1
1101   Node* str1_len  = load_String_length(no_ctrl, str1);
1102 
1103   Node* str2_value   = load_String_value(no_ctrl, str2);
1104   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1105   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1106 
1107   Node* str2_len = NULL;
1108   Node* result = NULL;
1109 
1110   switch (opcode) {
1111   case Op_StrIndexOf:
1112     // Get length of string 2
1113     str2_len = load_String_length(no_ctrl, str2);
1114 
1115     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1116                                 str1_start, str1_len, str2_start, str2_len);
1117     break;
1118   case Op_StrComp:
1119     // Get length of string 2
1120     str2_len = load_String_length(no_ctrl, str2);
1121 
1122     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1123                              str1_start, str1_len, str2_start, str2_len);
1124     break;
1125   case Op_StrEquals:
1126     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1127                                str1_start, str2_start, str1_len);
1128     break;
1129   default:
1130     ShouldNotReachHere();
1131     return NULL;
1132   }
1133 
1134   // All these intrinsics have checks.
1135   C->set_has_split_ifs(true); // Has chance for split-if optimization
1136 
1137   return _gvn.transform(result);
1138 }
1139 
1140 // Helper method for String intrinsic functions. This version is called
1141 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1142 // to Int nodes containing the lenghts of str1 and str2.
1143 //
1144 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1145   Node* result = NULL;
1146   switch (opcode) {
1147   case Op_StrIndexOf:
1148     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1149                                 str1_start, cnt1, str2_start, cnt2);
1150     break;
1151   case Op_StrComp:
1152     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1153                              str1_start, cnt1, str2_start, cnt2);
1154     break;
1155   case Op_StrEquals:
1156     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1157                                str1_start, str2_start, cnt1);
1158     break;
1159   default:
1160     ShouldNotReachHere();
1161     return NULL;
1162   }
1163 
1164   // All these intrinsics have checks.
1165   C->set_has_split_ifs(true); // Has chance for split-if optimization
1166 
1167   return _gvn.transform(result);
1168 }
1169 
1170 //------------------------------inline_string_compareTo------------------------
1171 // public int java.lang.String.compareTo(String anotherString);
1172 bool LibraryCallKit::inline_string_compareTo() {
1173   Node* receiver = null_check(argument(0));
1174   Node* arg      = null_check(argument(1));
1175   if (stopped()) {
1176     return true;
1177   }
1178   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1179   return true;
1180 }
1181 
1182 //------------------------------inline_string_equals------------------------
1183 bool LibraryCallKit::inline_string_equals() {
1184   Node* receiver = null_check_receiver();
1185   // NOTE: Do not null check argument for String.equals() because spec
1186   // allows to specify NULL as argument.
1187   Node* argument = this->argument(1);
1188   if (stopped()) {
1189     return true;
1190   }
1191 
1192   // paths (plus control) merge
1193   RegionNode* region = new RegionNode(5);
1194   Node* phi = new PhiNode(region, TypeInt::BOOL);
1195 
1196   // does source == target string?
1197   Node* cmp = _gvn.transform(new CmpPNode(receiver, argument));
1198   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1199 
1200   Node* if_eq = generate_slow_guard(bol, NULL);
1201   if (if_eq != NULL) {
1202     // receiver == argument
1203     phi->init_req(2, intcon(1));
1204     region->init_req(2, if_eq);
1205   }
1206 
1207   // get String klass for instanceOf
1208   ciInstanceKlass* klass = env()->String_klass();
1209 
1210   if (!stopped()) {
1211     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1212     Node* cmp  = _gvn.transform(new CmpINode(inst, intcon(1)));
1213     Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1214 
1215     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1216     //instanceOf == true, fallthrough
1217 
1218     if (inst_false != NULL) {
1219       phi->init_req(3, intcon(0));
1220       region->init_req(3, inst_false);
1221     }
1222   }
1223 
1224   if (!stopped()) {
1225     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1226 
1227     // Properly cast the argument to String
1228     argument = _gvn.transform(new CheckCastPPNode(control(), argument, string_type));
1229     // This path is taken only when argument's type is String:NotNull.
1230     argument = cast_not_null(argument, false);
1231 
1232     Node* no_ctrl = NULL;
1233 
1234     // Get start addr of receiver
1235     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1236     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1237     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1238 
1239     // Get length of receiver
1240     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1241 
1242     // Get start addr of argument
1243     Node* argument_val    = load_String_value(no_ctrl, argument);
1244     Node* argument_offset = load_String_offset(no_ctrl, argument);
1245     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1246 
1247     // Get length of argument
1248     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1249 
1250     // Check for receiver count != argument count
1251     Node* cmp = _gvn.transform(new CmpINode(receiver_cnt, argument_cnt));
1252     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1253     Node* if_ne = generate_slow_guard(bol, NULL);
1254     if (if_ne != NULL) {
1255       phi->init_req(4, intcon(0));
1256       region->init_req(4, if_ne);
1257     }
1258 
1259     // Check for count == 0 is done by assembler code for StrEquals.
1260 
1261     if (!stopped()) {
1262       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1263       phi->init_req(1, equals);
1264       region->init_req(1, control());
1265     }
1266   }
1267 
1268   // post merge
1269   set_control(_gvn.transform(region));
1270   record_for_igvn(region);
1271 
1272   set_result(_gvn.transform(phi));
1273   return true;
1274 }
1275 
1276 //------------------------------inline_array_equals----------------------------
1277 bool LibraryCallKit::inline_array_equals() {
1278   Node* arg1 = argument(0);
1279   Node* arg2 = argument(1);
1280   set_result(_gvn.transform(new AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1281   return true;
1282 }
1283 
1284 // Java version of String.indexOf(constant string)
1285 // class StringDecl {
1286 //   StringDecl(char[] ca) {
1287 //     offset = 0;
1288 //     count = ca.length;
1289 //     value = ca;
1290 //   }
1291 //   int offset;
1292 //   int count;
1293 //   char[] value;
1294 // }
1295 //
1296 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1297 //                             int targetOffset, int cache_i, int md2) {
1298 //   int cache = cache_i;
1299 //   int sourceOffset = string_object.offset;
1300 //   int sourceCount = string_object.count;
1301 //   int targetCount = target_object.length;
1302 //
1303 //   int targetCountLess1 = targetCount - 1;
1304 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1305 //
1306 //   char[] source = string_object.value;
1307 //   char[] target = target_object;
1308 //   int lastChar = target[targetCountLess1];
1309 //
1310 //  outer_loop:
1311 //   for (int i = sourceOffset; i < sourceEnd; ) {
1312 //     int src = source[i + targetCountLess1];
1313 //     if (src == lastChar) {
1314 //       // With random strings and a 4-character alphabet,
1315 //       // reverse matching at this point sets up 0.8% fewer
1316 //       // frames, but (paradoxically) makes 0.3% more probes.
1317 //       // Since those probes are nearer the lastChar probe,
1318 //       // there is may be a net D$ win with reverse matching.
1319 //       // But, reversing loop inhibits unroll of inner loop
1320 //       // for unknown reason.  So, does running outer loop from
1321 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1322 //       for (int j = 0; j < targetCountLess1; j++) {
1323 //         if (target[targetOffset + j] != source[i+j]) {
1324 //           if ((cache & (1 << source[i+j])) == 0) {
1325 //             if (md2 < j+1) {
1326 //               i += j+1;
1327 //               continue outer_loop;
1328 //             }
1329 //           }
1330 //           i += md2;
1331 //           continue outer_loop;
1332 //         }
1333 //       }
1334 //       return i - sourceOffset;
1335 //     }
1336 //     if ((cache & (1 << src)) == 0) {
1337 //       i += targetCountLess1;
1338 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1339 //     i++;
1340 //   }
1341 //   return -1;
1342 // }
1343 
1344 //------------------------------string_indexOf------------------------
1345 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1346                                      jint cache_i, jint md2_i) {
1347 
1348   Node* no_ctrl  = NULL;
1349   float likely   = PROB_LIKELY(0.9);
1350   float unlikely = PROB_UNLIKELY(0.9);
1351 
1352   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1353 
1354   Node* source        = load_String_value(no_ctrl, string_object);
1355   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1356   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1357 
1358   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1359   jint target_length = target_array->length();
1360   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1361   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1362 
1363   // String.value field is known to be @Stable.
1364   if (UseImplicitStableValues) {
1365     target = cast_array_to_stable(target, target_type);
1366   }
1367 
1368   IdealKit kit(this, false, true);
1369 #define __ kit.
1370   Node* zero             = __ ConI(0);
1371   Node* one              = __ ConI(1);
1372   Node* cache            = __ ConI(cache_i);
1373   Node* md2              = __ ConI(md2_i);
1374   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1375   Node* targetCountLess1 = __ ConI(target_length - 1);
1376   Node* targetOffset     = __ ConI(targetOffset_i);
1377   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1378 
1379   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1380   Node* outer_loop = __ make_label(2 /* goto */);
1381   Node* return_    = __ make_label(1);
1382 
1383   __ set(rtn,__ ConI(-1));
1384   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1385        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1386        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1387        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1388        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1389          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1390               Node* tpj = __ AddI(targetOffset, __ value(j));
1391               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1392               Node* ipj  = __ AddI(__ value(i), __ value(j));
1393               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1394               __ if_then(targ, BoolTest::ne, src2); {
1395                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1396                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1397                     __ increment(i, __ AddI(__ value(j), one));
1398                     __ goto_(outer_loop);
1399                   } __ end_if(); __ dead(j);
1400                 }__ end_if(); __ dead(j);
1401                 __ increment(i, md2);
1402                 __ goto_(outer_loop);
1403               }__ end_if();
1404               __ increment(j, one);
1405          }__ end_loop(); __ dead(j);
1406          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1407          __ goto_(return_);
1408        }__ end_if();
1409        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1410          __ increment(i, targetCountLess1);
1411        }__ end_if();
1412        __ increment(i, one);
1413        __ bind(outer_loop);
1414   }__ end_loop(); __ dead(i);
1415   __ bind(return_);
1416 
1417   // Final sync IdealKit and GraphKit.
1418   final_sync(kit);
1419   Node* result = __ value(rtn);
1420 #undef __
1421   C->set_has_loops(true);
1422   return result;
1423 }
1424 
1425 //------------------------------inline_string_indexOf------------------------
1426 bool LibraryCallKit::inline_string_indexOf() {
1427   Node* receiver = argument(0);
1428   Node* arg      = argument(1);
1429 
1430   Node* result;
1431   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1432       UseSSE42Intrinsics) {
1433     // Generate SSE4.2 version of indexOf
1434     // We currently only have match rules that use SSE4.2
1435 
1436     receiver = null_check(receiver);
1437     arg      = null_check(arg);
1438     if (stopped()) {
1439       return true;
1440     }
1441 
1442     // Make the merge point
1443     RegionNode* result_rgn = new RegionNode(4);
1444     Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1445     Node* no_ctrl  = NULL;
1446 
1447     // Get start addr of source string
1448     Node* source = load_String_value(no_ctrl, receiver);
1449     Node* source_offset = load_String_offset(no_ctrl, receiver);
1450     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1451 
1452     // Get length of source string
1453     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1454 
1455     // Get start addr of substring
1456     Node* substr = load_String_value(no_ctrl, arg);
1457     Node* substr_offset = load_String_offset(no_ctrl, arg);
1458     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1459 
1460     // Get length of source string
1461     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1462 
1463     // Check for substr count > string count
1464     Node* cmp = _gvn.transform(new CmpINode(substr_cnt, source_cnt));
1465     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1466     Node* if_gt = generate_slow_guard(bol, NULL);
1467     if (if_gt != NULL) {
1468       result_phi->init_req(2, intcon(-1));
1469       result_rgn->init_req(2, if_gt);
1470     }
1471 
1472     if (!stopped()) {
1473       // Check for substr count == 0
1474       cmp = _gvn.transform(new CmpINode(substr_cnt, intcon(0)));
1475       bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1476       Node* if_zero = generate_slow_guard(bol, NULL);
1477       if (if_zero != NULL) {
1478         result_phi->init_req(3, intcon(0));
1479         result_rgn->init_req(3, if_zero);
1480       }
1481     }
1482 
1483     if (!stopped()) {
1484       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1485       result_phi->init_req(1, result);
1486       result_rgn->init_req(1, control());
1487     }
1488     set_control(_gvn.transform(result_rgn));
1489     record_for_igvn(result_rgn);
1490     result = _gvn.transform(result_phi);
1491 
1492   } else { // Use LibraryCallKit::string_indexOf
1493     // don't intrinsify if argument isn't a constant string.
1494     if (!arg->is_Con()) {
1495      return false;
1496     }
1497     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1498     if (str_type == NULL) {
1499       return false;
1500     }
1501     ciInstanceKlass* klass = env()->String_klass();
1502     ciObject* str_const = str_type->const_oop();
1503     if (str_const == NULL || str_const->klass() != klass) {
1504       return false;
1505     }
1506     ciInstance* str = str_const->as_instance();
1507     assert(str != NULL, "must be instance");
1508 
1509     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1510     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1511 
1512     int o;
1513     int c;
1514     if (java_lang_String::has_offset_field()) {
1515       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1516       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1517     } else {
1518       o = 0;
1519       c = pat->length();
1520     }
1521 
1522     // constant strings have no offset and count == length which
1523     // simplifies the resulting code somewhat so lets optimize for that.
1524     if (o != 0 || c != pat->length()) {
1525      return false;
1526     }
1527 
1528     receiver = null_check(receiver, T_OBJECT);
1529     // NOTE: No null check on the argument is needed since it's a constant String oop.
1530     if (stopped()) {
1531       return true;
1532     }
1533 
1534     // The null string as a pattern always returns 0 (match at beginning of string)
1535     if (c == 0) {
1536       set_result(intcon(0));
1537       return true;
1538     }
1539 
1540     // Generate default indexOf
1541     jchar lastChar = pat->char_at(o + (c - 1));
1542     int cache = 0;
1543     int i;
1544     for (i = 0; i < c - 1; i++) {
1545       assert(i < pat->length(), "out of range");
1546       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1547     }
1548 
1549     int md2 = c;
1550     for (i = 0; i < c - 1; i++) {
1551       assert(i < pat->length(), "out of range");
1552       if (pat->char_at(o + i) == lastChar) {
1553         md2 = (c - 1) - i;
1554       }
1555     }
1556 
1557     result = string_indexOf(receiver, pat, o, cache, md2);
1558   }
1559   set_result(result);
1560   return true;
1561 }
1562 
1563 //--------------------------round_double_node--------------------------------
1564 // Round a double node if necessary.
1565 Node* LibraryCallKit::round_double_node(Node* n) {
1566   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1567     n = _gvn.transform(new RoundDoubleNode(0, n));
1568   return n;
1569 }
1570 
1571 //------------------------------inline_math-----------------------------------
1572 // public static double Math.abs(double)
1573 // public static double Math.sqrt(double)
1574 // public static double Math.log(double)
1575 // public static double Math.log10(double)
1576 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1577   Node* arg = round_double_node(argument(0));
1578   Node* n;
1579   switch (id) {
1580   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1581   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1582   case vmIntrinsics::_dlog:   n = new LogDNode(C, control(),   arg);  break;
1583   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1584   default:  fatal_unexpected_iid(id);  break;
1585   }
1586   set_result(_gvn.transform(n));
1587   return true;
1588 }
1589 
1590 //------------------------------inline_trig----------------------------------
1591 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1592 // argument reduction which will turn into a fast/slow diamond.
1593 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1594   Node* arg = round_double_node(argument(0));
1595   Node* n = NULL;
1596 
1597   switch (id) {
1598   case vmIntrinsics::_dsin:  n = new SinDNode(C, control(), arg);  break;
1599   case vmIntrinsics::_dcos:  n = new CosDNode(C, control(), arg);  break;
1600   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1601   default:  fatal_unexpected_iid(id);  break;
1602   }
1603   n = _gvn.transform(n);
1604 
1605   // Rounding required?  Check for argument reduction!
1606   if (Matcher::strict_fp_requires_explicit_rounding) {
1607     static const double     pi_4 =  0.7853981633974483;
1608     static const double neg_pi_4 = -0.7853981633974483;
1609     // pi/2 in 80-bit extended precision
1610     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1611     // -pi/2 in 80-bit extended precision
1612     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1613     // Cutoff value for using this argument reduction technique
1614     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1615     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1616 
1617     // Pseudocode for sin:
1618     // if (x <= Math.PI / 4.0) {
1619     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1620     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1621     // } else {
1622     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1623     // }
1624     // return StrictMath.sin(x);
1625 
1626     // Pseudocode for cos:
1627     // if (x <= Math.PI / 4.0) {
1628     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1629     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1630     // } else {
1631     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1632     // }
1633     // return StrictMath.cos(x);
1634 
1635     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1636     // requires a special machine instruction to load it.  Instead we'll try
1637     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1638     // probably do the math inside the SIN encoding.
1639 
1640     // Make the merge point
1641     RegionNode* r = new RegionNode(3);
1642     Node* phi = new PhiNode(r, Type::DOUBLE);
1643 
1644     // Flatten arg so we need only 1 test
1645     Node *abs = _gvn.transform(new AbsDNode(arg));
1646     // Node for PI/4 constant
1647     Node *pi4 = makecon(TypeD::make(pi_4));
1648     // Check PI/4 : abs(arg)
1649     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1650     // Check: If PI/4 < abs(arg) then go slow
1651     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1652     // Branch either way
1653     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1654     set_control(opt_iff(r,iff));
1655 
1656     // Set fast path result
1657     phi->init_req(2, n);
1658 
1659     // Slow path - non-blocking leaf call
1660     Node* call = NULL;
1661     switch (id) {
1662     case vmIntrinsics::_dsin:
1663       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1664                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1665                                "Sin", NULL, arg, top());
1666       break;
1667     case vmIntrinsics::_dcos:
1668       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1669                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1670                                "Cos", NULL, arg, top());
1671       break;
1672     case vmIntrinsics::_dtan:
1673       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1674                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1675                                "Tan", NULL, arg, top());
1676       break;
1677     }
1678     assert(control()->in(0) == call, "");
1679     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1680     r->init_req(1, control());
1681     phi->init_req(1, slow_result);
1682 
1683     // Post-merge
1684     set_control(_gvn.transform(r));
1685     record_for_igvn(r);
1686     n = _gvn.transform(phi);
1687 
1688     C->set_has_split_ifs(true); // Has chance for split-if optimization
1689   }
1690   set_result(n);
1691   return true;
1692 }
1693 
1694 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1695   //-------------------
1696   //result=(result.isNaN())? funcAddr():result;
1697   // Check: If isNaN() by checking result!=result? then either trap
1698   // or go to runtime
1699   Node* cmpisnan = _gvn.transform(new CmpDNode(result, result));
1700   // Build the boolean node
1701   Node* bolisnum = _gvn.transform(new BoolNode(cmpisnan, BoolTest::eq));
1702 
1703   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1704     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1705       // The pow or exp intrinsic returned a NaN, which requires a call
1706       // to the runtime.  Recompile with the runtime call.
1707       uncommon_trap(Deoptimization::Reason_intrinsic,
1708                     Deoptimization::Action_make_not_entrant);
1709     }
1710     return result;
1711   } else {
1712     // If this inlining ever returned NaN in the past, we compile a call
1713     // to the runtime to properly handle corner cases
1714 
1715     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1716     Node* if_slow = _gvn.transform(new IfFalseNode(iff));
1717     Node* if_fast = _gvn.transform(new IfTrueNode(iff));
1718 
1719     if (!if_slow->is_top()) {
1720       RegionNode* result_region = new RegionNode(3);
1721       PhiNode*    result_val = new PhiNode(result_region, Type::DOUBLE);
1722 
1723       result_region->init_req(1, if_fast);
1724       result_val->init_req(1, result);
1725 
1726       set_control(if_slow);
1727 
1728       const TypePtr* no_memory_effects = NULL;
1729       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1730                                    no_memory_effects,
1731                                    x, top(), y, y ? top() : NULL);
1732       Node* value = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+0));
1733 #ifdef ASSERT
1734       Node* value_top = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+1));
1735       assert(value_top == top(), "second value must be top");
1736 #endif
1737 
1738       result_region->init_req(2, control());
1739       result_val->init_req(2, value);
1740       set_control(_gvn.transform(result_region));
1741       return _gvn.transform(result_val);
1742     } else {
1743       return result;
1744     }
1745   }
1746 }
1747 
1748 //------------------------------inline_exp-------------------------------------
1749 // Inline exp instructions, if possible.  The Intel hardware only misses
1750 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1751 bool LibraryCallKit::inline_exp() {
1752   Node* arg = round_double_node(argument(0));
1753   Node* n   = _gvn.transform(new ExpDNode(C, control(), arg));
1754 
1755   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1756   set_result(n);
1757 
1758   C->set_has_split_ifs(true); // Has chance for split-if optimization
1759   return true;
1760 }
1761 
1762 //------------------------------inline_pow-------------------------------------
1763 // Inline power instructions, if possible.
1764 bool LibraryCallKit::inline_pow() {
1765   // Pseudocode for pow
1766   // if (y == 2) {
1767   //   return x * x;
1768   // } else {
1769   //   if (x <= 0.0) {
1770   //     long longy = (long)y;
1771   //     if ((double)longy == y) { // if y is long
1772   //       if (y + 1 == y) longy = 0; // huge number: even
1773   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1774   //     } else {
1775   //       result = NaN;
1776   //     }
1777   //   } else {
1778   //     result = DPow(x,y);
1779   //   }
1780   //   if (result != result)?  {
1781   //     result = uncommon_trap() or runtime_call();
1782   //   }
1783   //   return result;
1784   // }
1785 
1786   Node* x = round_double_node(argument(0));
1787   Node* y = round_double_node(argument(2));
1788 
1789   Node* result = NULL;
1790 
1791   Node*   const_two_node = makecon(TypeD::make(2.0));
1792   Node*   cmp_node       = _gvn.transform(new CmpDNode(y, const_two_node));
1793   Node*   bool_node      = _gvn.transform(new BoolNode(cmp_node, BoolTest::eq));
1794   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1795   Node*   if_true        = _gvn.transform(new IfTrueNode(if_node));
1796   Node*   if_false       = _gvn.transform(new IfFalseNode(if_node));
1797 
1798   RegionNode* region_node = new RegionNode(3);
1799   region_node->init_req(1, if_true);
1800 
1801   Node* phi_node = new PhiNode(region_node, Type::DOUBLE);
1802   // special case for x^y where y == 2, we can convert it to x * x
1803   phi_node->init_req(1, _gvn.transform(new MulDNode(x, x)));
1804 
1805   // set control to if_false since we will now process the false branch
1806   set_control(if_false);
1807 
1808   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1809     // Short form: skip the fancy tests and just check for NaN result.
1810     result = _gvn.transform(new PowDNode(C, control(), x, y));
1811   } else {
1812     // If this inlining ever returned NaN in the past, include all
1813     // checks + call to the runtime.
1814 
1815     // Set the merge point for If node with condition of (x <= 0.0)
1816     // There are four possible paths to region node and phi node
1817     RegionNode *r = new RegionNode(4);
1818     Node *phi = new PhiNode(r, Type::DOUBLE);
1819 
1820     // Build the first if node: if (x <= 0.0)
1821     // Node for 0 constant
1822     Node *zeronode = makecon(TypeD::ZERO);
1823     // Check x:0
1824     Node *cmp = _gvn.transform(new CmpDNode(x, zeronode));
1825     // Check: If (x<=0) then go complex path
1826     Node *bol1 = _gvn.transform(new BoolNode( cmp, BoolTest::le ));
1827     // Branch either way
1828     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1829     // Fast path taken; set region slot 3
1830     Node *fast_taken = _gvn.transform(new IfFalseNode(if1));
1831     r->init_req(3,fast_taken); // Capture fast-control
1832 
1833     // Fast path not-taken, i.e. slow path
1834     Node *complex_path = _gvn.transform(new IfTrueNode(if1));
1835 
1836     // Set fast path result
1837     Node *fast_result = _gvn.transform(new PowDNode(C, control(), x, y));
1838     phi->init_req(3, fast_result);
1839 
1840     // Complex path
1841     // Build the second if node (if y is long)
1842     // Node for (long)y
1843     Node *longy = _gvn.transform(new ConvD2LNode(y));
1844     // Node for (double)((long) y)
1845     Node *doublelongy= _gvn.transform(new ConvL2DNode(longy));
1846     // Check (double)((long) y) : y
1847     Node *cmplongy= _gvn.transform(new CmpDNode(doublelongy, y));
1848     // Check if (y isn't long) then go to slow path
1849 
1850     Node *bol2 = _gvn.transform(new BoolNode( cmplongy, BoolTest::ne ));
1851     // Branch either way
1852     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1853     Node* ylong_path = _gvn.transform(new IfFalseNode(if2));
1854 
1855     Node *slow_path = _gvn.transform(new IfTrueNode(if2));
1856 
1857     // Calculate DPow(abs(x), y)*(1 & (long)y)
1858     // Node for constant 1
1859     Node *conone = longcon(1);
1860     // 1& (long)y
1861     Node *signnode= _gvn.transform(new AndLNode(conone, longy));
1862 
1863     // A huge number is always even. Detect a huge number by checking
1864     // if y + 1 == y and set integer to be tested for parity to 0.
1865     // Required for corner case:
1866     // (long)9.223372036854776E18 = max_jlong
1867     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1868     // max_jlong is odd but 9.223372036854776E18 is even
1869     Node* yplus1 = _gvn.transform(new AddDNode(y, makecon(TypeD::make(1))));
1870     Node *cmpyplus1= _gvn.transform(new CmpDNode(yplus1, y));
1871     Node *bolyplus1 = _gvn.transform(new BoolNode( cmpyplus1, BoolTest::eq ));
1872     Node* correctedsign = NULL;
1873     if (ConditionalMoveLimit != 0) {
1874       correctedsign = _gvn.transform(CMoveNode::make(NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1875     } else {
1876       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1877       RegionNode *r = new RegionNode(3);
1878       Node *phi = new PhiNode(r, TypeLong::LONG);
1879       r->init_req(1, _gvn.transform(new IfFalseNode(ifyplus1)));
1880       r->init_req(2, _gvn.transform(new IfTrueNode(ifyplus1)));
1881       phi->init_req(1, signnode);
1882       phi->init_req(2, longcon(0));
1883       correctedsign = _gvn.transform(phi);
1884       ylong_path = _gvn.transform(r);
1885       record_for_igvn(r);
1886     }
1887 
1888     // zero node
1889     Node *conzero = longcon(0);
1890     // Check (1&(long)y)==0?
1891     Node *cmpeq1 = _gvn.transform(new CmpLNode(correctedsign, conzero));
1892     // Check if (1&(long)y)!=0?, if so the result is negative
1893     Node *bol3 = _gvn.transform(new BoolNode( cmpeq1, BoolTest::ne ));
1894     // abs(x)
1895     Node *absx=_gvn.transform(new AbsDNode(x));
1896     // abs(x)^y
1897     Node *absxpowy = _gvn.transform(new PowDNode(C, control(), absx, y));
1898     // -abs(x)^y
1899     Node *negabsxpowy = _gvn.transform(new NegDNode (absxpowy));
1900     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1901     Node *signresult = NULL;
1902     if (ConditionalMoveLimit != 0) {
1903       signresult = _gvn.transform(CMoveNode::make(NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1904     } else {
1905       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1906       RegionNode *r = new RegionNode(3);
1907       Node *phi = new PhiNode(r, Type::DOUBLE);
1908       r->init_req(1, _gvn.transform(new IfFalseNode(ifyeven)));
1909       r->init_req(2, _gvn.transform(new IfTrueNode(ifyeven)));
1910       phi->init_req(1, absxpowy);
1911       phi->init_req(2, negabsxpowy);
1912       signresult = _gvn.transform(phi);
1913       ylong_path = _gvn.transform(r);
1914       record_for_igvn(r);
1915     }
1916     // Set complex path fast result
1917     r->init_req(2, ylong_path);
1918     phi->init_req(2, signresult);
1919 
1920     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1921     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1922     r->init_req(1,slow_path);
1923     phi->init_req(1,slow_result);
1924 
1925     // Post merge
1926     set_control(_gvn.transform(r));
1927     record_for_igvn(r);
1928     result = _gvn.transform(phi);
1929   }
1930 
1931   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1932 
1933   // control from finish_pow_exp is now input to the region node
1934   region_node->set_req(2, control());
1935   // the result from finish_pow_exp is now input to the phi node
1936   phi_node->init_req(2, result);
1937   set_control(_gvn.transform(region_node));
1938   record_for_igvn(region_node);
1939   set_result(_gvn.transform(phi_node));
1940 
1941   C->set_has_split_ifs(true); // Has chance for split-if optimization
1942   return true;
1943 }
1944 
1945 //------------------------------runtime_math-----------------------------
1946 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1947   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1948          "must be (DD)D or (D)D type");
1949 
1950   // Inputs
1951   Node* a = round_double_node(argument(0));
1952   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1953 
1954   const TypePtr* no_memory_effects = NULL;
1955   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1956                                  no_memory_effects,
1957                                  a, top(), b, b ? top() : NULL);
1958   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1959 #ifdef ASSERT
1960   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1961   assert(value_top == top(), "second value must be top");
1962 #endif
1963 
1964   set_result(value);
1965   return true;
1966 }
1967 
1968 //------------------------------inline_math_native-----------------------------
1969 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1970 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1971   switch (id) {
1972     // These intrinsics are not properly supported on all hardware
1973   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1974     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1975   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1976     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1977   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1978     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1979 
1980   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1981     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1982   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1983     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1984 
1985     // These intrinsics are supported on all hardware
1986   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1987   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1988 
1989   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1990     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1991   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1992     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1993 #undef FN_PTR
1994 
1995    // These intrinsics are not yet correctly implemented
1996   case vmIntrinsics::_datan2:
1997     return false;
1998 
1999   default:
2000     fatal_unexpected_iid(id);
2001     return false;
2002   }
2003 }
2004 
2005 static bool is_simple_name(Node* n) {
2006   return (n->req() == 1         // constant
2007           || (n->is_Type() && n->as_Type()->type()->singleton())
2008           || n->is_Proj()       // parameter or return value
2009           || n->is_Phi()        // local of some sort
2010           );
2011 }
2012 
2013 //----------------------------inline_min_max-----------------------------------
2014 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
2015   set_result(generate_min_max(id, argument(0), argument(1)));
2016   return true;
2017 }
2018 
2019 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
2020   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
2021   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2022   Node* fast_path = _gvn.transform( new IfFalseNode(check));
2023   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
2024 
2025   {
2026     PreserveJVMState pjvms(this);
2027     PreserveReexecuteState preexecs(this);
2028     jvms()->set_should_reexecute(true);
2029 
2030     set_control(slow_path);
2031     set_i_o(i_o());
2032 
2033     uncommon_trap(Deoptimization::Reason_intrinsic,
2034                   Deoptimization::Action_none);
2035   }
2036 
2037   set_control(fast_path);
2038   set_result(math);
2039 }
2040 
2041 template <typename OverflowOp>
2042 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2043   typedef typename OverflowOp::MathOp MathOp;
2044 
2045   MathOp* mathOp = new MathOp(arg1, arg2);
2046   Node* operation = _gvn.transform( mathOp );
2047   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2048   inline_math_mathExact(operation, ofcheck);
2049   return true;
2050 }
2051 
2052 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2053   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2054 }
2055 
2056 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2057   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2058 }
2059 
2060 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2061   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2062 }
2063 
2064 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2065   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2066 }
2067 
2068 bool LibraryCallKit::inline_math_negateExactI() {
2069   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2070 }
2071 
2072 bool LibraryCallKit::inline_math_negateExactL() {
2073   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2074 }
2075 
2076 bool LibraryCallKit::inline_math_multiplyExactI() {
2077   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2078 }
2079 
2080 bool LibraryCallKit::inline_math_multiplyExactL() {
2081   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2082 }
2083 
2084 Node*
2085 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2086   // These are the candidate return value:
2087   Node* xvalue = x0;
2088   Node* yvalue = y0;
2089 
2090   if (xvalue == yvalue) {
2091     return xvalue;
2092   }
2093 
2094   bool want_max = (id == vmIntrinsics::_max);
2095 
2096   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2097   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2098   if (txvalue == NULL || tyvalue == NULL)  return top();
2099   // This is not really necessary, but it is consistent with a
2100   // hypothetical MaxINode::Value method:
2101   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2102 
2103   // %%% This folding logic should (ideally) be in a different place.
2104   // Some should be inside IfNode, and there to be a more reliable
2105   // transformation of ?: style patterns into cmoves.  We also want
2106   // more powerful optimizations around cmove and min/max.
2107 
2108   // Try to find a dominating comparison of these guys.
2109   // It can simplify the index computation for Arrays.copyOf
2110   // and similar uses of System.arraycopy.
2111   // First, compute the normalized version of CmpI(x, y).
2112   int   cmp_op = Op_CmpI;
2113   Node* xkey = xvalue;
2114   Node* ykey = yvalue;
2115   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2116   if (ideal_cmpxy->is_Cmp()) {
2117     // E.g., if we have CmpI(length - offset, count),
2118     // it might idealize to CmpI(length, count + offset)
2119     cmp_op = ideal_cmpxy->Opcode();
2120     xkey = ideal_cmpxy->in(1);
2121     ykey = ideal_cmpxy->in(2);
2122   }
2123 
2124   // Start by locating any relevant comparisons.
2125   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2126   Node* cmpxy = NULL;
2127   Node* cmpyx = NULL;
2128   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2129     Node* cmp = start_from->fast_out(k);
2130     if (cmp->outcnt() > 0 &&            // must have prior uses
2131         cmp->in(0) == NULL &&           // must be context-independent
2132         cmp->Opcode() == cmp_op) {      // right kind of compare
2133       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2134       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2135     }
2136   }
2137 
2138   const int NCMPS = 2;
2139   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2140   int cmpn;
2141   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2142     if (cmps[cmpn] != NULL)  break;     // find a result
2143   }
2144   if (cmpn < NCMPS) {
2145     // Look for a dominating test that tells us the min and max.
2146     int depth = 0;                // Limit search depth for speed
2147     Node* dom = control();
2148     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2149       if (++depth >= 100)  break;
2150       Node* ifproj = dom;
2151       if (!ifproj->is_Proj())  continue;
2152       Node* iff = ifproj->in(0);
2153       if (!iff->is_If())  continue;
2154       Node* bol = iff->in(1);
2155       if (!bol->is_Bool())  continue;
2156       Node* cmp = bol->in(1);
2157       if (cmp == NULL)  continue;
2158       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2159         if (cmps[cmpn] == cmp)  break;
2160       if (cmpn == NCMPS)  continue;
2161       BoolTest::mask btest = bol->as_Bool()->_test._test;
2162       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2163       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2164       // At this point, we know that 'x btest y' is true.
2165       switch (btest) {
2166       case BoolTest::eq:
2167         // They are proven equal, so we can collapse the min/max.
2168         // Either value is the answer.  Choose the simpler.
2169         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2170           return yvalue;
2171         return xvalue;
2172       case BoolTest::lt:          // x < y
2173       case BoolTest::le:          // x <= y
2174         return (want_max ? yvalue : xvalue);
2175       case BoolTest::gt:          // x > y
2176       case BoolTest::ge:          // x >= y
2177         return (want_max ? xvalue : yvalue);
2178       }
2179     }
2180   }
2181 
2182   // We failed to find a dominating test.
2183   // Let's pick a test that might GVN with prior tests.
2184   Node*          best_bol   = NULL;
2185   BoolTest::mask best_btest = BoolTest::illegal;
2186   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2187     Node* cmp = cmps[cmpn];
2188     if (cmp == NULL)  continue;
2189     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2190       Node* bol = cmp->fast_out(j);
2191       if (!bol->is_Bool())  continue;
2192       BoolTest::mask btest = bol->as_Bool()->_test._test;
2193       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2194       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2195       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2196         best_bol   = bol->as_Bool();
2197         best_btest = btest;
2198       }
2199     }
2200   }
2201 
2202   Node* answer_if_true  = NULL;
2203   Node* answer_if_false = NULL;
2204   switch (best_btest) {
2205   default:
2206     if (cmpxy == NULL)
2207       cmpxy = ideal_cmpxy;
2208     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2209     // and fall through:
2210   case BoolTest::lt:          // x < y
2211   case BoolTest::le:          // x <= y
2212     answer_if_true  = (want_max ? yvalue : xvalue);
2213     answer_if_false = (want_max ? xvalue : yvalue);
2214     break;
2215   case BoolTest::gt:          // x > y
2216   case BoolTest::ge:          // x >= y
2217     answer_if_true  = (want_max ? xvalue : yvalue);
2218     answer_if_false = (want_max ? yvalue : xvalue);
2219     break;
2220   }
2221 
2222   jint hi, lo;
2223   if (want_max) {
2224     // We can sharpen the minimum.
2225     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2226     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2227   } else {
2228     // We can sharpen the maximum.
2229     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2230     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2231   }
2232 
2233   // Use a flow-free graph structure, to avoid creating excess control edges
2234   // which could hinder other optimizations.
2235   // Since Math.min/max is often used with arraycopy, we want
2236   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2237   Node* cmov = CMoveNode::make(NULL, best_bol,
2238                                answer_if_false, answer_if_true,
2239                                TypeInt::make(lo, hi, widen));
2240 
2241   return _gvn.transform(cmov);
2242 
2243   /*
2244   // This is not as desirable as it may seem, since Min and Max
2245   // nodes do not have a full set of optimizations.
2246   // And they would interfere, anyway, with 'if' optimizations
2247   // and with CMoveI canonical forms.
2248   switch (id) {
2249   case vmIntrinsics::_min:
2250     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2251   case vmIntrinsics::_max:
2252     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2253   default:
2254     ShouldNotReachHere();
2255   }
2256   */
2257 }
2258 
2259 inline int
2260 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2261   const TypePtr* base_type = TypePtr::NULL_PTR;
2262   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2263   if (base_type == NULL) {
2264     // Unknown type.
2265     return Type::AnyPtr;
2266   } else if (base_type == TypePtr::NULL_PTR) {
2267     // Since this is a NULL+long form, we have to switch to a rawptr.
2268     base   = _gvn.transform(new CastX2PNode(offset));
2269     offset = MakeConX(0);
2270     return Type::RawPtr;
2271   } else if (base_type->base() == Type::RawPtr) {
2272     return Type::RawPtr;
2273   } else if (base_type->isa_oopptr()) {
2274     // Base is never null => always a heap address.
2275     if (base_type->ptr() == TypePtr::NotNull) {
2276       return Type::OopPtr;
2277     }
2278     // Offset is small => always a heap address.
2279     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2280     if (offset_type != NULL &&
2281         base_type->offset() == 0 &&     // (should always be?)
2282         offset_type->_lo >= 0 &&
2283         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2284       return Type::OopPtr;
2285     }
2286     // Otherwise, it might either be oop+off or NULL+addr.
2287     return Type::AnyPtr;
2288   } else {
2289     // No information:
2290     return Type::AnyPtr;
2291   }
2292 }
2293 
2294 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2295   int kind = classify_unsafe_addr(base, offset);
2296   if (kind == Type::RawPtr) {
2297     return basic_plus_adr(top(), base, offset);
2298   } else {
2299     return basic_plus_adr(base, offset);
2300   }
2301 }
2302 
2303 //--------------------------inline_number_methods-----------------------------
2304 // inline int     Integer.numberOfLeadingZeros(int)
2305 // inline int        Long.numberOfLeadingZeros(long)
2306 //
2307 // inline int     Integer.numberOfTrailingZeros(int)
2308 // inline int        Long.numberOfTrailingZeros(long)
2309 //
2310 // inline int     Integer.bitCount(int)
2311 // inline int        Long.bitCount(long)
2312 //
2313 // inline char  Character.reverseBytes(char)
2314 // inline short     Short.reverseBytes(short)
2315 // inline int     Integer.reverseBytes(int)
2316 // inline long       Long.reverseBytes(long)
2317 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2318   Node* arg = argument(0);
2319   Node* n;
2320   switch (id) {
2321   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2322   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2323   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2324   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2325   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2326   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2327   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2328   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2329   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2330   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2331   default:  fatal_unexpected_iid(id);  break;
2332   }
2333   set_result(_gvn.transform(n));
2334   return true;
2335 }
2336 
2337 //----------------------------inline_unsafe_access----------------------------
2338 
2339 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2340 
2341 // Helper that guards and inserts a pre-barrier.
2342 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2343                                         Node* pre_val, bool need_mem_bar) {
2344   // We could be accessing the referent field of a reference object. If so, when G1
2345   // is enabled, we need to log the value in the referent field in an SATB buffer.
2346   // This routine performs some compile time filters and generates suitable
2347   // runtime filters that guard the pre-barrier code.
2348   // Also add memory barrier for non volatile load from the referent field
2349   // to prevent commoning of loads across safepoint.
2350   if (!UseG1GC && !need_mem_bar)
2351     return;
2352 
2353   // Some compile time checks.
2354 
2355   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2356   const TypeX* otype = offset->find_intptr_t_type();
2357   if (otype != NULL && otype->is_con() &&
2358       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2359     // Constant offset but not the reference_offset so just return
2360     return;
2361   }
2362 
2363   // We only need to generate the runtime guards for instances.
2364   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2365   if (btype != NULL) {
2366     if (btype->isa_aryptr()) {
2367       // Array type so nothing to do
2368       return;
2369     }
2370 
2371     const TypeInstPtr* itype = btype->isa_instptr();
2372     if (itype != NULL) {
2373       // Can the klass of base_oop be statically determined to be
2374       // _not_ a sub-class of Reference and _not_ Object?
2375       ciKlass* klass = itype->klass();
2376       if ( klass->is_loaded() &&
2377           !klass->is_subtype_of(env()->Reference_klass()) &&
2378           !env()->Object_klass()->is_subtype_of(klass)) {
2379         return;
2380       }
2381     }
2382   }
2383 
2384   // The compile time filters did not reject base_oop/offset so
2385   // we need to generate the following runtime filters
2386   //
2387   // if (offset == java_lang_ref_Reference::_reference_offset) {
2388   //   if (instance_of(base, java.lang.ref.Reference)) {
2389   //     pre_barrier(_, pre_val, ...);
2390   //   }
2391   // }
2392 
2393   float likely   = PROB_LIKELY(  0.999);
2394   float unlikely = PROB_UNLIKELY(0.999);
2395 
2396   IdealKit ideal(this);
2397 #define __ ideal.
2398 
2399   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2400 
2401   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2402       // Update graphKit memory and control from IdealKit.
2403       sync_kit(ideal);
2404 
2405       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2406       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2407 
2408       // Update IdealKit memory and control from graphKit.
2409       __ sync_kit(this);
2410 
2411       Node* one = __ ConI(1);
2412       // is_instof == 0 if base_oop == NULL
2413       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2414 
2415         // Update graphKit from IdeakKit.
2416         sync_kit(ideal);
2417 
2418         // Use the pre-barrier to record the value in the referent field
2419         pre_barrier(false /* do_load */,
2420                     __ ctrl(),
2421                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2422                     pre_val /* pre_val */,
2423                     T_OBJECT);
2424         if (need_mem_bar) {
2425           // Add memory barrier to prevent commoning reads from this field
2426           // across safepoint since GC can change its value.
2427           insert_mem_bar(Op_MemBarCPUOrder);
2428         }
2429         // Update IdealKit from graphKit.
2430         __ sync_kit(this);
2431 
2432       } __ end_if(); // _ref_type != ref_none
2433   } __ end_if(); // offset == referent_offset
2434 
2435   // Final sync IdealKit and GraphKit.
2436   final_sync(ideal);
2437 #undef __
2438 }
2439 
2440 
2441 // Interpret Unsafe.fieldOffset cookies correctly:
2442 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2443 
2444 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2445   // Attempt to infer a sharper value type from the offset and base type.
2446   ciKlass* sharpened_klass = NULL;
2447 
2448   // See if it is an instance field, with an object type.
2449   if (alias_type->field() != NULL) {
2450     assert(!is_native_ptr, "native pointer op cannot use a java address");
2451     if (alias_type->field()->type()->is_klass()) {
2452       sharpened_klass = alias_type->field()->type()->as_klass();
2453     }
2454   }
2455 
2456   // See if it is a narrow oop array.
2457   if (adr_type->isa_aryptr()) {
2458     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2459       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2460       if (elem_type != NULL) {
2461         sharpened_klass = elem_type->klass();
2462       }
2463     }
2464   }
2465 
2466   // The sharpened class might be unloaded if there is no class loader
2467   // contraint in place.
2468   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2469     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2470 
2471 #ifndef PRODUCT
2472     if (C->print_intrinsics() || C->print_inlining()) {
2473       tty->print("  from base type: ");  adr_type->dump();
2474       tty->print("  sharpened value: ");  tjp->dump();
2475     }
2476 #endif
2477     // Sharpen the value type.
2478     return tjp;
2479   }
2480   return NULL;
2481 }
2482 
2483 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2484   if (callee()->is_static())  return false;  // caller must have the capability!
2485 
2486 #ifndef PRODUCT
2487   {
2488     ResourceMark rm;
2489     // Check the signatures.
2490     ciSignature* sig = callee()->signature();
2491 #ifdef ASSERT
2492     if (!is_store) {
2493       // Object getObject(Object base, int/long offset), etc.
2494       BasicType rtype = sig->return_type()->basic_type();
2495       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2496           rtype = T_ADDRESS;  // it is really a C void*
2497       assert(rtype == type, "getter must return the expected value");
2498       if (!is_native_ptr) {
2499         assert(sig->count() == 2, "oop getter has 2 arguments");
2500         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2501         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2502       } else {
2503         assert(sig->count() == 1, "native getter has 1 argument");
2504         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2505       }
2506     } else {
2507       // void putObject(Object base, int/long offset, Object x), etc.
2508       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2509       if (!is_native_ptr) {
2510         assert(sig->count() == 3, "oop putter has 3 arguments");
2511         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2512         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2513       } else {
2514         assert(sig->count() == 2, "native putter has 2 arguments");
2515         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2516       }
2517       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2518       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2519         vtype = T_ADDRESS;  // it is really a C void*
2520       assert(vtype == type, "putter must accept the expected value");
2521     }
2522 #endif // ASSERT
2523  }
2524 #endif //PRODUCT
2525 
2526   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2527 
2528   Node* receiver = argument(0);  // type: oop
2529 
2530   // Build address expression.
2531   Node* adr;
2532   Node* heap_base_oop = top();
2533   Node* offset = top();
2534   Node* val;
2535 
2536   if (!is_native_ptr) {
2537     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2538     Node* base = argument(1);  // type: oop
2539     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2540     offset = argument(2);  // type: long
2541     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2542     // to be plain byte offsets, which are also the same as those accepted
2543     // by oopDesc::field_base.
2544     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2545            "fieldOffset must be byte-scaled");
2546     // 32-bit machines ignore the high half!
2547     offset = ConvL2X(offset);
2548     adr = make_unsafe_address(base, offset);
2549     heap_base_oop = base;
2550     val = is_store ? argument(4) : NULL;
2551   } else {
2552     Node* ptr = argument(1);  // type: long
2553     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2554     adr = make_unsafe_address(NULL, ptr);
2555     val = is_store ? argument(3) : NULL;
2556   }
2557 
2558   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2559 
2560   // First guess at the value type.
2561   const Type *value_type = Type::get_const_basic_type(type);
2562 
2563   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2564   // there was not enough information to nail it down.
2565   Compile::AliasType* alias_type = C->alias_type(adr_type);
2566   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2567 
2568   // We will need memory barriers unless we can determine a unique
2569   // alias category for this reference.  (Note:  If for some reason
2570   // the barriers get omitted and the unsafe reference begins to "pollute"
2571   // the alias analysis of the rest of the graph, either Compile::can_alias
2572   // or Compile::must_alias will throw a diagnostic assert.)
2573   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2574 
2575   // If we are reading the value of the referent field of a Reference
2576   // object (either by using Unsafe directly or through reflection)
2577   // then, if G1 is enabled, we need to record the referent in an
2578   // SATB log buffer using the pre-barrier mechanism.
2579   // Also we need to add memory barrier to prevent commoning reads
2580   // from this field across safepoint since GC can change its value.
2581   bool need_read_barrier = !is_native_ptr && !is_store &&
2582                            offset != top() && heap_base_oop != top();
2583 
2584   if (!is_store && type == T_OBJECT) {
2585     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2586     if (tjp != NULL) {
2587       value_type = tjp;
2588     }
2589   }
2590 
2591   receiver = null_check(receiver);
2592   if (stopped()) {
2593     return true;
2594   }
2595   // Heap pointers get a null-check from the interpreter,
2596   // as a courtesy.  However, this is not guaranteed by Unsafe,
2597   // and it is not possible to fully distinguish unintended nulls
2598   // from intended ones in this API.
2599 
2600   if (is_volatile) {
2601     // We need to emit leading and trailing CPU membars (see below) in
2602     // addition to memory membars when is_volatile. This is a little
2603     // too strong, but avoids the need to insert per-alias-type
2604     // volatile membars (for stores; compare Parse::do_put_xxx), which
2605     // we cannot do effectively here because we probably only have a
2606     // rough approximation of type.
2607     need_mem_bar = true;
2608     // For Stores, place a memory ordering barrier now.
2609     if (is_store) {
2610       insert_mem_bar(Op_MemBarRelease);
2611     } else {
2612       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2613         insert_mem_bar(Op_MemBarVolatile);
2614       }
2615     }
2616   }
2617 
2618   // Memory barrier to prevent normal and 'unsafe' accesses from
2619   // bypassing each other.  Happens after null checks, so the
2620   // exception paths do not take memory state from the memory barrier,
2621   // so there's no problems making a strong assert about mixing users
2622   // of safe & unsafe memory.
2623   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2624 
2625   if (!is_store) {
2626     MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2627     Node* p = make_load(control(), adr, value_type, type, adr_type, mo, is_volatile);
2628     // load value
2629     switch (type) {
2630     case T_BOOLEAN:
2631     case T_CHAR:
2632     case T_BYTE:
2633     case T_SHORT:
2634     case T_INT:
2635     case T_LONG:
2636     case T_FLOAT:
2637     case T_DOUBLE:
2638       break;
2639     case T_OBJECT:
2640       if (need_read_barrier) {
2641         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2642       }
2643       break;
2644     case T_ADDRESS:
2645       // Cast to an int type.
2646       p = _gvn.transform(new CastP2XNode(NULL, p));
2647       p = ConvX2UL(p);
2648       break;
2649     default:
2650       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2651       break;
2652     }
2653     // The load node has the control of the preceding MemBarCPUOrder.  All
2654     // following nodes will have the control of the MemBarCPUOrder inserted at
2655     // the end of this method.  So, pushing the load onto the stack at a later
2656     // point is fine.
2657     set_result(p);
2658   } else {
2659     // place effect of store into memory
2660     switch (type) {
2661     case T_DOUBLE:
2662       val = dstore_rounding(val);
2663       break;
2664     case T_ADDRESS:
2665       // Repackage the long as a pointer.
2666       val = ConvL2X(val);
2667       val = _gvn.transform(new CastX2PNode(val));
2668       break;
2669     }
2670 
2671     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2672     if (type != T_OBJECT ) {
2673       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2674     } else {
2675       // Possibly an oop being stored to Java heap or native memory
2676       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2677         // oop to Java heap.
2678         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2679       } else {
2680         // We can't tell at compile time if we are storing in the Java heap or outside
2681         // of it. So we need to emit code to conditionally do the proper type of
2682         // store.
2683 
2684         IdealKit ideal(this);
2685 #define __ ideal.
2686         // QQQ who knows what probability is here??
2687         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2688           // Sync IdealKit and graphKit.
2689           sync_kit(ideal);
2690           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2691           // Update IdealKit memory.
2692           __ sync_kit(this);
2693         } __ else_(); {
2694           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2695         } __ end_if();
2696         // Final sync IdealKit and GraphKit.
2697         final_sync(ideal);
2698 #undef __
2699       }
2700     }
2701   }
2702 
2703   if (is_volatile) {
2704     if (!is_store) {
2705       insert_mem_bar(Op_MemBarAcquire);
2706     } else {
2707       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2708         insert_mem_bar(Op_MemBarVolatile);
2709       }
2710     }
2711   }
2712 
2713   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2714 
2715   return true;
2716 }
2717 
2718 //----------------------------inline_unsafe_load_store----------------------------
2719 // This method serves a couple of different customers (depending on LoadStoreKind):
2720 //
2721 // LS_cmpxchg:
2722 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2723 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2724 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2725 //
2726 // LS_xadd:
2727 //   public int  getAndAddInt( Object o, long offset, int  delta)
2728 //   public long getAndAddLong(Object o, long offset, long delta)
2729 //
2730 // LS_xchg:
2731 //   int    getAndSet(Object o, long offset, int    newValue)
2732 //   long   getAndSet(Object o, long offset, long   newValue)
2733 //   Object getAndSet(Object o, long offset, Object newValue)
2734 //
2735 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2736   // This basic scheme here is the same as inline_unsafe_access, but
2737   // differs in enough details that combining them would make the code
2738   // overly confusing.  (This is a true fact! I originally combined
2739   // them, but even I was confused by it!) As much code/comments as
2740   // possible are retained from inline_unsafe_access though to make
2741   // the correspondences clearer. - dl
2742 
2743   if (callee()->is_static())  return false;  // caller must have the capability!
2744 
2745 #ifndef PRODUCT
2746   BasicType rtype;
2747   {
2748     ResourceMark rm;
2749     // Check the signatures.
2750     ciSignature* sig = callee()->signature();
2751     rtype = sig->return_type()->basic_type();
2752     if (kind == LS_xadd || kind == LS_xchg) {
2753       // Check the signatures.
2754 #ifdef ASSERT
2755       assert(rtype == type, "get and set must return the expected type");
2756       assert(sig->count() == 3, "get and set has 3 arguments");
2757       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2758       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2759       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2760 #endif // ASSERT
2761     } else if (kind == LS_cmpxchg) {
2762       // Check the signatures.
2763 #ifdef ASSERT
2764       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2765       assert(sig->count() == 4, "CAS has 4 arguments");
2766       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2767       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2768 #endif // ASSERT
2769     } else {
2770       ShouldNotReachHere();
2771     }
2772   }
2773 #endif //PRODUCT
2774 
2775   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2776 
2777   // Get arguments:
2778   Node* receiver = NULL;
2779   Node* base     = NULL;
2780   Node* offset   = NULL;
2781   Node* oldval   = NULL;
2782   Node* newval   = NULL;
2783   if (kind == LS_cmpxchg) {
2784     const bool two_slot_type = type2size[type] == 2;
2785     receiver = argument(0);  // type: oop
2786     base     = argument(1);  // type: oop
2787     offset   = argument(2);  // type: long
2788     oldval   = argument(4);  // type: oop, int, or long
2789     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2790   } else if (kind == LS_xadd || kind == LS_xchg){
2791     receiver = argument(0);  // type: oop
2792     base     = argument(1);  // type: oop
2793     offset   = argument(2);  // type: long
2794     oldval   = NULL;
2795     newval   = argument(4);  // type: oop, int, or long
2796   }
2797 
2798   // Null check receiver.
2799   receiver = null_check(receiver);
2800   if (stopped()) {
2801     return true;
2802   }
2803 
2804   // Build field offset expression.
2805   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2806   // to be plain byte offsets, which are also the same as those accepted
2807   // by oopDesc::field_base.
2808   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2809   // 32-bit machines ignore the high half of long offsets
2810   offset = ConvL2X(offset);
2811   Node* adr = make_unsafe_address(base, offset);
2812   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2813 
2814   // For CAS, unlike inline_unsafe_access, there seems no point in
2815   // trying to refine types. Just use the coarse types here.
2816   const Type *value_type = Type::get_const_basic_type(type);
2817   Compile::AliasType* alias_type = C->alias_type(adr_type);
2818   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2819 
2820   if (kind == LS_xchg && type == T_OBJECT) {
2821     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2822     if (tjp != NULL) {
2823       value_type = tjp;
2824     }
2825   }
2826 
2827   int alias_idx = C->get_alias_index(adr_type);
2828 
2829   // Memory-model-wise, a LoadStore acts like a little synchronized
2830   // block, so needs barriers on each side.  These don't translate
2831   // into actual barriers on most machines, but we still need rest of
2832   // compiler to respect ordering.
2833 
2834   insert_mem_bar(Op_MemBarRelease);
2835   insert_mem_bar(Op_MemBarCPUOrder);
2836 
2837   // 4984716: MemBars must be inserted before this
2838   //          memory node in order to avoid a false
2839   //          dependency which will confuse the scheduler.
2840   Node *mem = memory(alias_idx);
2841 
2842   // For now, we handle only those cases that actually exist: ints,
2843   // longs, and Object. Adding others should be straightforward.
2844   Node* load_store;
2845   switch(type) {
2846   case T_INT:
2847     if (kind == LS_xadd) {
2848       load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2849     } else if (kind == LS_xchg) {
2850       load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2851     } else if (kind == LS_cmpxchg) {
2852       load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
2853     } else {
2854       ShouldNotReachHere();
2855     }
2856     break;
2857   case T_LONG:
2858     if (kind == LS_xadd) {
2859       load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2860     } else if (kind == LS_xchg) {
2861       load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2862     } else if (kind == LS_cmpxchg) {
2863       load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2864     } else {
2865       ShouldNotReachHere();
2866     }
2867     break;
2868   case T_OBJECT:
2869     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2870     // could be delayed during Parse (for example, in adjust_map_after_if()).
2871     // Execute transformation here to avoid barrier generation in such case.
2872     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2873       newval = _gvn.makecon(TypePtr::NULL_PTR);
2874 
2875     // Reference stores need a store barrier.
2876     if (kind == LS_xchg) {
2877       // If pre-barrier must execute before the oop store, old value will require do_load here.
2878       if (!can_move_pre_barrier()) {
2879         pre_barrier(true /* do_load*/,
2880                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2881                     NULL /* pre_val*/,
2882                     T_OBJECT);
2883       } // Else move pre_barrier to use load_store value, see below.
2884     } else if (kind == LS_cmpxchg) {
2885       // Same as for newval above:
2886       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2887         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2888       }
2889       // The only known value which might get overwritten is oldval.
2890       pre_barrier(false /* do_load */,
2891                   control(), NULL, NULL, max_juint, NULL, NULL,
2892                   oldval /* pre_val */,
2893                   T_OBJECT);
2894     } else {
2895       ShouldNotReachHere();
2896     }
2897 
2898 #ifdef _LP64
2899     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2900       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2901       if (kind == LS_xchg) {
2902         load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
2903                                                        newval_enc, adr_type, value_type->make_narrowoop()));
2904       } else {
2905         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2906         Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2907         load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
2908                                                                 newval_enc, oldval_enc));
2909       }
2910     } else
2911 #endif
2912     {
2913       if (kind == LS_xchg) {
2914         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2915       } else {
2916         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2917         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2918       }
2919     }
2920     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2921     break;
2922   default:
2923     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2924     break;
2925   }
2926 
2927   // SCMemProjNodes represent the memory state of a LoadStore. Their
2928   // main role is to prevent LoadStore nodes from being optimized away
2929   // when their results aren't used.
2930   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
2931   set_memory(proj, alias_idx);
2932 
2933   if (type == T_OBJECT && kind == LS_xchg) {
2934 #ifdef _LP64
2935     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2936       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
2937     }
2938 #endif
2939     if (can_move_pre_barrier()) {
2940       // Don't need to load pre_val. The old value is returned by load_store.
2941       // The pre_barrier can execute after the xchg as long as no safepoint
2942       // gets inserted between them.
2943       pre_barrier(false /* do_load */,
2944                   control(), NULL, NULL, max_juint, NULL, NULL,
2945                   load_store /* pre_val */,
2946                   T_OBJECT);
2947     }
2948   }
2949 
2950   // Add the trailing membar surrounding the access
2951   insert_mem_bar(Op_MemBarCPUOrder);
2952   insert_mem_bar(Op_MemBarAcquire);
2953 
2954   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2955   set_result(load_store);
2956   return true;
2957 }
2958 
2959 //----------------------------inline_unsafe_ordered_store----------------------
2960 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
2961 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
2962 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
2963 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2964   // This is another variant of inline_unsafe_access, differing in
2965   // that it always issues store-store ("release") barrier and ensures
2966   // store-atomicity (which only matters for "long").
2967 
2968   if (callee()->is_static())  return false;  // caller must have the capability!
2969 
2970 #ifndef PRODUCT
2971   {
2972     ResourceMark rm;
2973     // Check the signatures.
2974     ciSignature* sig = callee()->signature();
2975 #ifdef ASSERT
2976     BasicType rtype = sig->return_type()->basic_type();
2977     assert(rtype == T_VOID, "must return void");
2978     assert(sig->count() == 3, "has 3 arguments");
2979     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2980     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2981 #endif // ASSERT
2982   }
2983 #endif //PRODUCT
2984 
2985   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2986 
2987   // Get arguments:
2988   Node* receiver = argument(0);  // type: oop
2989   Node* base     = argument(1);  // type: oop
2990   Node* offset   = argument(2);  // type: long
2991   Node* val      = argument(4);  // type: oop, int, or long
2992 
2993   // Null check receiver.
2994   receiver = null_check(receiver);
2995   if (stopped()) {
2996     return true;
2997   }
2998 
2999   // Build field offset expression.
3000   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3001   // 32-bit machines ignore the high half of long offsets
3002   offset = ConvL2X(offset);
3003   Node* adr = make_unsafe_address(base, offset);
3004   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3005   const Type *value_type = Type::get_const_basic_type(type);
3006   Compile::AliasType* alias_type = C->alias_type(adr_type);
3007 
3008   insert_mem_bar(Op_MemBarRelease);
3009   insert_mem_bar(Op_MemBarCPUOrder);
3010   // Ensure that the store is atomic for longs:
3011   const bool require_atomic_access = true;
3012   Node* store;
3013   if (type == T_OBJECT) // reference stores need a store barrier.
3014     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3015   else {
3016     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3017   }
3018   insert_mem_bar(Op_MemBarCPUOrder);
3019   return true;
3020 }
3021 
3022 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3023   // Regardless of form, don't allow previous ld/st to move down,
3024   // then issue acquire, release, or volatile mem_bar.
3025   insert_mem_bar(Op_MemBarCPUOrder);
3026   switch(id) {
3027     case vmIntrinsics::_loadFence:
3028       insert_mem_bar(Op_LoadFence);
3029       return true;
3030     case vmIntrinsics::_storeFence:
3031       insert_mem_bar(Op_StoreFence);
3032       return true;
3033     case vmIntrinsics::_fullFence:
3034       insert_mem_bar(Op_MemBarVolatile);
3035       return true;
3036     default:
3037       fatal_unexpected_iid(id);
3038       return false;
3039   }
3040 }
3041 
3042 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3043   if (!kls->is_Con()) {
3044     return true;
3045   }
3046   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3047   if (klsptr == NULL) {
3048     return true;
3049   }
3050   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3051   // don't need a guard for a klass that is already initialized
3052   return !ik->is_initialized();
3053 }
3054 
3055 //----------------------------inline_unsafe_allocate---------------------------
3056 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3057 bool LibraryCallKit::inline_unsafe_allocate() {
3058   if (callee()->is_static())  return false;  // caller must have the capability!
3059 
3060   null_check_receiver();  // null-check, then ignore
3061   Node* cls = null_check(argument(1));
3062   if (stopped())  return true;
3063 
3064   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3065   kls = null_check(kls);
3066   if (stopped())  return true;  // argument was like int.class
3067 
3068   Node* test = NULL;
3069   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3070     // Note:  The argument might still be an illegal value like
3071     // Serializable.class or Object[].class.   The runtime will handle it.
3072     // But we must make an explicit check for initialization.
3073     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3074     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3075     // can generate code to load it as unsigned byte.
3076     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3077     Node* bits = intcon(InstanceKlass::fully_initialized);
3078     test = _gvn.transform(new SubINode(inst, bits));
3079     // The 'test' is non-zero if we need to take a slow path.
3080   }
3081 
3082   Node* obj = new_instance(kls, test);
3083   set_result(obj);
3084   return true;
3085 }
3086 
3087 #ifdef TRACE_HAVE_INTRINSICS
3088 /*
3089  * oop -> myklass
3090  * myklass->trace_id |= USED
3091  * return myklass->trace_id & ~0x3
3092  */
3093 bool LibraryCallKit::inline_native_classID() {
3094   null_check_receiver();  // null-check, then ignore
3095   Node* cls = null_check(argument(1), T_OBJECT);
3096   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3097   kls = null_check(kls, T_OBJECT);
3098   ByteSize offset = TRACE_ID_OFFSET;
3099   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3100   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3101   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3102   Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
3103   Node* clsused = longcon(0x01l); // set the class bit
3104   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3105 
3106   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3107   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3108   set_result(andl);
3109   return true;
3110 }
3111 
3112 bool LibraryCallKit::inline_native_threadID() {
3113   Node* tls_ptr = NULL;
3114   Node* cur_thr = generate_current_thread(tls_ptr);
3115   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3116   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3117   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3118 
3119   Node* threadid = NULL;
3120   size_t thread_id_size = OSThread::thread_id_size();
3121   if (thread_id_size == (size_t) BytesPerLong) {
3122     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3123   } else if (thread_id_size == (size_t) BytesPerInt) {
3124     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3125   } else {
3126     ShouldNotReachHere();
3127   }
3128   set_result(threadid);
3129   return true;
3130 }
3131 #endif
3132 
3133 //------------------------inline_native_time_funcs--------------
3134 // inline code for System.currentTimeMillis() and System.nanoTime()
3135 // these have the same type and signature
3136 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3137   const TypeFunc* tf = OptoRuntime::void_long_Type();
3138   const TypePtr* no_memory_effects = NULL;
3139   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3140   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3141 #ifdef ASSERT
3142   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3143   assert(value_top == top(), "second value must be top");
3144 #endif
3145   set_result(value);
3146   return true;
3147 }
3148 
3149 //------------------------inline_native_currentThread------------------
3150 bool LibraryCallKit::inline_native_currentThread() {
3151   Node* junk = NULL;
3152   set_result(generate_current_thread(junk));
3153   return true;
3154 }
3155 
3156 //------------------------inline_native_isInterrupted------------------
3157 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3158 bool LibraryCallKit::inline_native_isInterrupted() {
3159   // Add a fast path to t.isInterrupted(clear_int):
3160   //   (t == Thread.current() &&
3161   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3162   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3163   // So, in the common case that the interrupt bit is false,
3164   // we avoid making a call into the VM.  Even if the interrupt bit
3165   // is true, if the clear_int argument is false, we avoid the VM call.
3166   // However, if the receiver is not currentThread, we must call the VM,
3167   // because there must be some locking done around the operation.
3168 
3169   // We only go to the fast case code if we pass two guards.
3170   // Paths which do not pass are accumulated in the slow_region.
3171 
3172   enum {
3173     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3174     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3175     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3176     PATH_LIMIT
3177   };
3178 
3179   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3180   // out of the function.
3181   insert_mem_bar(Op_MemBarCPUOrder);
3182 
3183   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3184   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3185 
3186   RegionNode* slow_region = new RegionNode(1);
3187   record_for_igvn(slow_region);
3188 
3189   // (a) Receiving thread must be the current thread.
3190   Node* rec_thr = argument(0);
3191   Node* tls_ptr = NULL;
3192   Node* cur_thr = generate_current_thread(tls_ptr);
3193   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3194   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3195 
3196   generate_slow_guard(bol_thr, slow_region);
3197 
3198   // (b) Interrupt bit on TLS must be false.
3199   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3200   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3201   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3202 
3203   // Set the control input on the field _interrupted read to prevent it floating up.
3204   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3205   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3206   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3207 
3208   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3209 
3210   // First fast path:  if (!TLS._interrupted) return false;
3211   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3212   result_rgn->init_req(no_int_result_path, false_bit);
3213   result_val->init_req(no_int_result_path, intcon(0));
3214 
3215   // drop through to next case
3216   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3217 
3218 #ifndef TARGET_OS_FAMILY_windows
3219   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3220   Node* clr_arg = argument(1);
3221   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3222   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3223   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3224 
3225   // Second fast path:  ... else if (!clear_int) return true;
3226   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3227   result_rgn->init_req(no_clear_result_path, false_arg);
3228   result_val->init_req(no_clear_result_path, intcon(1));
3229 
3230   // drop through to next case
3231   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3232 #else
3233   // To return true on Windows you must read the _interrupted field
3234   // and check the the event state i.e. take the slow path.
3235 #endif // TARGET_OS_FAMILY_windows
3236 
3237   // (d) Otherwise, go to the slow path.
3238   slow_region->add_req(control());
3239   set_control( _gvn.transform(slow_region));
3240 
3241   if (stopped()) {
3242     // There is no slow path.
3243     result_rgn->init_req(slow_result_path, top());
3244     result_val->init_req(slow_result_path, top());
3245   } else {
3246     // non-virtual because it is a private non-static
3247     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3248 
3249     Node* slow_val = set_results_for_java_call(slow_call);
3250     // this->control() comes from set_results_for_java_call
3251 
3252     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3253     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3254 
3255     // These two phis are pre-filled with copies of of the fast IO and Memory
3256     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3257     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3258 
3259     result_rgn->init_req(slow_result_path, control());
3260     result_io ->init_req(slow_result_path, i_o());
3261     result_mem->init_req(slow_result_path, reset_memory());
3262     result_val->init_req(slow_result_path, slow_val);
3263 
3264     set_all_memory(_gvn.transform(result_mem));
3265     set_i_o(       _gvn.transform(result_io));
3266   }
3267 
3268   C->set_has_split_ifs(true); // Has chance for split-if optimization
3269   set_result(result_rgn, result_val);
3270   return true;
3271 }
3272 
3273 //---------------------------load_mirror_from_klass----------------------------
3274 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3275 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3276   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3277   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3278 }
3279 
3280 //-----------------------load_klass_from_mirror_common-------------------------
3281 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3282 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3283 // and branch to the given path on the region.
3284 // If never_see_null, take an uncommon trap on null, so we can optimistically
3285 // compile for the non-null case.
3286 // If the region is NULL, force never_see_null = true.
3287 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3288                                                     bool never_see_null,
3289                                                     RegionNode* region,
3290                                                     int null_path,
3291                                                     int offset) {
3292   if (region == NULL)  never_see_null = true;
3293   Node* p = basic_plus_adr(mirror, offset);
3294   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3295   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3296   Node* null_ctl = top();
3297   kls = null_check_oop(kls, &null_ctl, never_see_null);
3298   if (region != NULL) {
3299     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3300     region->init_req(null_path, null_ctl);
3301   } else {
3302     assert(null_ctl == top(), "no loose ends");
3303   }
3304   return kls;
3305 }
3306 
3307 //--------------------(inline_native_Class_query helpers)---------------------
3308 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3309 // Fall through if (mods & mask) == bits, take the guard otherwise.
3310 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3311   // Branch around if the given klass has the given modifier bit set.
3312   // Like generate_guard, adds a new path onto the region.
3313   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3314   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3315   Node* mask = intcon(modifier_mask);
3316   Node* bits = intcon(modifier_bits);
3317   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3318   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3319   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3320   return generate_fair_guard(bol, region);
3321 }
3322 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3323   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3324 }
3325 
3326 //-------------------------inline_native_Class_query-------------------
3327 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3328   const Type* return_type = TypeInt::BOOL;
3329   Node* prim_return_value = top();  // what happens if it's a primitive class?
3330   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3331   bool expect_prim = false;     // most of these guys expect to work on refs
3332 
3333   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3334 
3335   Node* mirror = argument(0);
3336   Node* obj    = top();
3337 
3338   switch (id) {
3339   case vmIntrinsics::_isInstance:
3340     // nothing is an instance of a primitive type
3341     prim_return_value = intcon(0);
3342     obj = argument(1);
3343     break;
3344   case vmIntrinsics::_getModifiers:
3345     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3346     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3347     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3348     break;
3349   case vmIntrinsics::_isInterface:
3350     prim_return_value = intcon(0);
3351     break;
3352   case vmIntrinsics::_isArray:
3353     prim_return_value = intcon(0);
3354     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3355     break;
3356   case vmIntrinsics::_isPrimitive:
3357     prim_return_value = intcon(1);
3358     expect_prim = true;  // obviously
3359     break;
3360   case vmIntrinsics::_getSuperclass:
3361     prim_return_value = null();
3362     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3363     break;
3364   case vmIntrinsics::_getClassAccessFlags:
3365     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3366     return_type = TypeInt::INT;  // not bool!  6297094
3367     break;
3368   default:
3369     fatal_unexpected_iid(id);
3370     break;
3371   }
3372 
3373   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3374   if (mirror_con == NULL)  return false;  // cannot happen?
3375 
3376 #ifndef PRODUCT
3377   if (C->print_intrinsics() || C->print_inlining()) {
3378     ciType* k = mirror_con->java_mirror_type();
3379     if (k) {
3380       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3381       k->print_name();
3382       tty->cr();
3383     }
3384   }
3385 #endif
3386 
3387   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3388   RegionNode* region = new RegionNode(PATH_LIMIT);
3389   record_for_igvn(region);
3390   PhiNode* phi = new PhiNode(region, return_type);
3391 
3392   // The mirror will never be null of Reflection.getClassAccessFlags, however
3393   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3394   // if it is. See bug 4774291.
3395 
3396   // For Reflection.getClassAccessFlags(), the null check occurs in
3397   // the wrong place; see inline_unsafe_access(), above, for a similar
3398   // situation.
3399   mirror = null_check(mirror);
3400   // If mirror or obj is dead, only null-path is taken.
3401   if (stopped())  return true;
3402 
3403   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3404 
3405   // Now load the mirror's klass metaobject, and null-check it.
3406   // Side-effects region with the control path if the klass is null.
3407   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3408   // If kls is null, we have a primitive mirror.
3409   phi->init_req(_prim_path, prim_return_value);
3410   if (stopped()) { set_result(region, phi); return true; }
3411   bool safe_for_replace = (region->in(_prim_path) == top());
3412 
3413   Node* p;  // handy temp
3414   Node* null_ctl;
3415 
3416   // Now that we have the non-null klass, we can perform the real query.
3417   // For constant classes, the query will constant-fold in LoadNode::Value.
3418   Node* query_value = top();
3419   switch (id) {
3420   case vmIntrinsics::_isInstance:
3421     // nothing is an instance of a primitive type
3422     query_value = gen_instanceof(obj, kls, safe_for_replace);
3423     break;
3424 
3425   case vmIntrinsics::_getModifiers:
3426     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3427     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3428     break;
3429 
3430   case vmIntrinsics::_isInterface:
3431     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3432     if (generate_interface_guard(kls, region) != NULL)
3433       // A guard was added.  If the guard is taken, it was an interface.
3434       phi->add_req(intcon(1));
3435     // If we fall through, it's a plain class.
3436     query_value = intcon(0);
3437     break;
3438 
3439   case vmIntrinsics::_isArray:
3440     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3441     if (generate_array_guard(kls, region) != NULL)
3442       // A guard was added.  If the guard is taken, it was an array.
3443       phi->add_req(intcon(1));
3444     // If we fall through, it's a plain class.
3445     query_value = intcon(0);
3446     break;
3447 
3448   case vmIntrinsics::_isPrimitive:
3449     query_value = intcon(0); // "normal" path produces false
3450     break;
3451 
3452   case vmIntrinsics::_getSuperclass:
3453     // The rules here are somewhat unfortunate, but we can still do better
3454     // with random logic than with a JNI call.
3455     // Interfaces store null or Object as _super, but must report null.
3456     // Arrays store an intermediate super as _super, but must report Object.
3457     // Other types can report the actual _super.
3458     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3459     if (generate_interface_guard(kls, region) != NULL)
3460       // A guard was added.  If the guard is taken, it was an interface.
3461       phi->add_req(null());
3462     if (generate_array_guard(kls, region) != NULL)
3463       // A guard was added.  If the guard is taken, it was an array.
3464       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3465     // If we fall through, it's a plain class.  Get its _super.
3466     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3467     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3468     null_ctl = top();
3469     kls = null_check_oop(kls, &null_ctl);
3470     if (null_ctl != top()) {
3471       // If the guard is taken, Object.superClass is null (both klass and mirror).
3472       region->add_req(null_ctl);
3473       phi   ->add_req(null());
3474     }
3475     if (!stopped()) {
3476       query_value = load_mirror_from_klass(kls);
3477     }
3478     break;
3479 
3480   case vmIntrinsics::_getClassAccessFlags:
3481     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3482     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3483     break;
3484 
3485   default:
3486     fatal_unexpected_iid(id);
3487     break;
3488   }
3489 
3490   // Fall-through is the normal case of a query to a real class.
3491   phi->init_req(1, query_value);
3492   region->init_req(1, control());
3493 
3494   C->set_has_split_ifs(true); // Has chance for split-if optimization
3495   set_result(region, phi);
3496   return true;
3497 }
3498 
3499 //-------------------------inline_Class_cast-------------------
3500 bool LibraryCallKit::inline_Class_cast() {
3501   Node* mirror = argument(0); // Class
3502   Node* obj    = argument(1);
3503   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3504   if (mirror_con == NULL) {
3505     return false;  // dead path (mirror->is_top()).
3506   }
3507   if (obj == NULL || obj->is_top()) {
3508     return false;  // dead path
3509   }
3510   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3511 
3512   // First, see if Class.cast() can be folded statically.
3513   // java_mirror_type() returns non-null for compile-time Class constants.
3514   ciType* tm = mirror_con->java_mirror_type();
3515   if (tm != NULL && tm->is_klass() &&
3516       tp != NULL && tp->klass() != NULL) {
3517     if (!tp->klass()->is_loaded()) {
3518       // Don't use intrinsic when class is not loaded.
3519       return false;
3520     } else {
3521       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3522       if (static_res == Compile::SSC_always_true) {
3523         // isInstance() is true - fold the code.
3524         set_result(obj);
3525         return true;
3526       } else if (static_res == Compile::SSC_always_false) {
3527         // Don't use intrinsic, have to throw ClassCastException.
3528         // If the reference is null, the non-intrinsic bytecode will
3529         // be optimized appropriately.
3530         return false;
3531       }
3532     }
3533   }
3534 
3535   // Bailout intrinsic and do normal inlining if exception path is frequent.
3536   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3537     return false;
3538   }
3539 
3540   // Generate dynamic checks.
3541   // Class.cast() is java implementation of _checkcast bytecode.
3542   // Do checkcast (Parse::do_checkcast()) optimizations here.
3543 
3544   mirror = null_check(mirror);
3545   // If mirror is dead, only null-path is taken.
3546   if (stopped()) {
3547     return true;
3548   }
3549 
3550   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3551   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3552   RegionNode* region = new RegionNode(PATH_LIMIT);
3553   record_for_igvn(region);
3554 
3555   // Now load the mirror's klass metaobject, and null-check it.
3556   // If kls is null, we have a primitive mirror and
3557   // nothing is an instance of a primitive type.
3558   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3559 
3560   Node* res = top();
3561   if (!stopped()) {
3562     Node* bad_type_ctrl = top();
3563     // Do checkcast optimizations.
3564     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3565     region->init_req(_bad_type_path, bad_type_ctrl);
3566   }
3567   if (region->in(_prim_path) != top() ||
3568       region->in(_bad_type_path) != top()) {
3569     // Let Interpreter throw ClassCastException.
3570     PreserveJVMState pjvms(this);
3571     set_control(_gvn.transform(region));
3572     uncommon_trap(Deoptimization::Reason_intrinsic,
3573                   Deoptimization::Action_maybe_recompile);
3574   }
3575   if (!stopped()) {
3576     set_result(res);
3577   }
3578   return true;
3579 }
3580 
3581 
3582 //--------------------------inline_native_subtype_check------------------------
3583 // This intrinsic takes the JNI calls out of the heart of
3584 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3585 bool LibraryCallKit::inline_native_subtype_check() {
3586   // Pull both arguments off the stack.
3587   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3588   args[0] = argument(0);
3589   args[1] = argument(1);
3590   Node* klasses[2];             // corresponding Klasses: superk, subk
3591   klasses[0] = klasses[1] = top();
3592 
3593   enum {
3594     // A full decision tree on {superc is prim, subc is prim}:
3595     _prim_0_path = 1,           // {P,N} => false
3596                                 // {P,P} & superc!=subc => false
3597     _prim_same_path,            // {P,P} & superc==subc => true
3598     _prim_1_path,               // {N,P} => false
3599     _ref_subtype_path,          // {N,N} & subtype check wins => true
3600     _both_ref_path,             // {N,N} & subtype check loses => false
3601     PATH_LIMIT
3602   };
3603 
3604   RegionNode* region = new RegionNode(PATH_LIMIT);
3605   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3606   record_for_igvn(region);
3607 
3608   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3609   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3610   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3611 
3612   // First null-check both mirrors and load each mirror's klass metaobject.
3613   int which_arg;
3614   for (which_arg = 0; which_arg <= 1; which_arg++) {
3615     Node* arg = args[which_arg];
3616     arg = null_check(arg);
3617     if (stopped())  break;
3618     args[which_arg] = arg;
3619 
3620     Node* p = basic_plus_adr(arg, class_klass_offset);
3621     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3622     klasses[which_arg] = _gvn.transform(kls);
3623   }
3624 
3625   // Having loaded both klasses, test each for null.
3626   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3627   for (which_arg = 0; which_arg <= 1; which_arg++) {
3628     Node* kls = klasses[which_arg];
3629     Node* null_ctl = top();
3630     kls = null_check_oop(kls, &null_ctl, never_see_null);
3631     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3632     region->init_req(prim_path, null_ctl);
3633     if (stopped())  break;
3634     klasses[which_arg] = kls;
3635   }
3636 
3637   if (!stopped()) {
3638     // now we have two reference types, in klasses[0..1]
3639     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3640     Node* superk = klasses[0];  // the receiver
3641     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3642     // now we have a successful reference subtype check
3643     region->set_req(_ref_subtype_path, control());
3644   }
3645 
3646   // If both operands are primitive (both klasses null), then
3647   // we must return true when they are identical primitives.
3648   // It is convenient to test this after the first null klass check.
3649   set_control(region->in(_prim_0_path)); // go back to first null check
3650   if (!stopped()) {
3651     // Since superc is primitive, make a guard for the superc==subc case.
3652     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3653     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3654     generate_guard(bol_eq, region, PROB_FAIR);
3655     if (region->req() == PATH_LIMIT+1) {
3656       // A guard was added.  If the added guard is taken, superc==subc.
3657       region->swap_edges(PATH_LIMIT, _prim_same_path);
3658       region->del_req(PATH_LIMIT);
3659     }
3660     region->set_req(_prim_0_path, control()); // Not equal after all.
3661   }
3662 
3663   // these are the only paths that produce 'true':
3664   phi->set_req(_prim_same_path,   intcon(1));
3665   phi->set_req(_ref_subtype_path, intcon(1));
3666 
3667   // pull together the cases:
3668   assert(region->req() == PATH_LIMIT, "sane region");
3669   for (uint i = 1; i < region->req(); i++) {
3670     Node* ctl = region->in(i);
3671     if (ctl == NULL || ctl == top()) {
3672       region->set_req(i, top());
3673       phi   ->set_req(i, top());
3674     } else if (phi->in(i) == NULL) {
3675       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3676     }
3677   }
3678 
3679   set_control(_gvn.transform(region));
3680   set_result(_gvn.transform(phi));
3681   return true;
3682 }
3683 
3684 //---------------------generate_array_guard_common------------------------
3685 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3686                                                   bool obj_array, bool not_array) {
3687   // If obj_array/non_array==false/false:
3688   // Branch around if the given klass is in fact an array (either obj or prim).
3689   // If obj_array/non_array==false/true:
3690   // Branch around if the given klass is not an array klass of any kind.
3691   // If obj_array/non_array==true/true:
3692   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3693   // If obj_array/non_array==true/false:
3694   // Branch around if the kls is an oop array (Object[] or subtype)
3695   //
3696   // Like generate_guard, adds a new path onto the region.
3697   jint  layout_con = 0;
3698   Node* layout_val = get_layout_helper(kls, layout_con);
3699   if (layout_val == NULL) {
3700     bool query = (obj_array
3701                   ? Klass::layout_helper_is_objArray(layout_con)
3702                   : Klass::layout_helper_is_array(layout_con));
3703     if (query == not_array) {
3704       return NULL;                       // never a branch
3705     } else {                             // always a branch
3706       Node* always_branch = control();
3707       if (region != NULL)
3708         region->add_req(always_branch);
3709       set_control(top());
3710       return always_branch;
3711     }
3712   }
3713   // Now test the correct condition.
3714   jint  nval = (obj_array
3715                 ? ((jint)Klass::_lh_array_tag_type_value
3716                    <<    Klass::_lh_array_tag_shift)
3717                 : Klass::_lh_neutral_value);
3718   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3719   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3720   // invert the test if we are looking for a non-array
3721   if (not_array)  btest = BoolTest(btest).negate();
3722   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3723   return generate_fair_guard(bol, region);
3724 }
3725 
3726 
3727 //-----------------------inline_native_newArray--------------------------
3728 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3729 bool LibraryCallKit::inline_native_newArray() {
3730   Node* mirror    = argument(0);
3731   Node* count_val = argument(1);
3732 
3733   mirror = null_check(mirror);
3734   // If mirror or obj is dead, only null-path is taken.
3735   if (stopped())  return true;
3736 
3737   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3738   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3739   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3740   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3741   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3742 
3743   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3744   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3745                                                   result_reg, _slow_path);
3746   Node* normal_ctl   = control();
3747   Node* no_array_ctl = result_reg->in(_slow_path);
3748 
3749   // Generate code for the slow case.  We make a call to newArray().
3750   set_control(no_array_ctl);
3751   if (!stopped()) {
3752     // Either the input type is void.class, or else the
3753     // array klass has not yet been cached.  Either the
3754     // ensuing call will throw an exception, or else it
3755     // will cache the array klass for next time.
3756     PreserveJVMState pjvms(this);
3757     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3758     Node* slow_result = set_results_for_java_call(slow_call);
3759     // this->control() comes from set_results_for_java_call
3760     result_reg->set_req(_slow_path, control());
3761     result_val->set_req(_slow_path, slow_result);
3762     result_io ->set_req(_slow_path, i_o());
3763     result_mem->set_req(_slow_path, reset_memory());
3764   }
3765 
3766   set_control(normal_ctl);
3767   if (!stopped()) {
3768     // Normal case:  The array type has been cached in the java.lang.Class.
3769     // The following call works fine even if the array type is polymorphic.
3770     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3771     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3772     result_reg->init_req(_normal_path, control());
3773     result_val->init_req(_normal_path, obj);
3774     result_io ->init_req(_normal_path, i_o());
3775     result_mem->init_req(_normal_path, reset_memory());
3776   }
3777 
3778   // Return the combined state.
3779   set_i_o(        _gvn.transform(result_io)  );
3780   set_all_memory( _gvn.transform(result_mem));
3781 
3782   C->set_has_split_ifs(true); // Has chance for split-if optimization
3783   set_result(result_reg, result_val);
3784   return true;
3785 }
3786 
3787 //----------------------inline_native_getLength--------------------------
3788 // public static native int java.lang.reflect.Array.getLength(Object array);
3789 bool LibraryCallKit::inline_native_getLength() {
3790   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3791 
3792   Node* array = null_check(argument(0));
3793   // If array is dead, only null-path is taken.
3794   if (stopped())  return true;
3795 
3796   // Deoptimize if it is a non-array.
3797   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3798 
3799   if (non_array != NULL) {
3800     PreserveJVMState pjvms(this);
3801     set_control(non_array);
3802     uncommon_trap(Deoptimization::Reason_intrinsic,
3803                   Deoptimization::Action_maybe_recompile);
3804   }
3805 
3806   // If control is dead, only non-array-path is taken.
3807   if (stopped())  return true;
3808 
3809   // The works fine even if the array type is polymorphic.
3810   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3811   Node* result = load_array_length(array);
3812 
3813   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3814   set_result(result);
3815   return true;
3816 }
3817 
3818 //------------------------inline_array_copyOf----------------------------
3819 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3820 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3821 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3822   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3823 
3824   // Get the arguments.
3825   Node* original          = argument(0);
3826   Node* start             = is_copyOfRange? argument(1): intcon(0);
3827   Node* end               = is_copyOfRange? argument(2): argument(1);
3828   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3829 
3830   Node* newcopy;
3831 
3832   // Set the original stack and the reexecute bit for the interpreter to reexecute
3833   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3834   { PreserveReexecuteState preexecs(this);
3835     jvms()->set_should_reexecute(true);
3836 
3837     array_type_mirror = null_check(array_type_mirror);
3838     original          = null_check(original);
3839 
3840     // Check if a null path was taken unconditionally.
3841     if (stopped())  return true;
3842 
3843     Node* orig_length = load_array_length(original);
3844 
3845     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3846     klass_node = null_check(klass_node);
3847 
3848     RegionNode* bailout = new RegionNode(1);
3849     record_for_igvn(bailout);
3850 
3851     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3852     // Bail out if that is so.
3853     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3854     if (not_objArray != NULL) {
3855       // Improve the klass node's type from the new optimistic assumption:
3856       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3857       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3858       Node* cast = new CastPPNode(klass_node, akls);
3859       cast->init_req(0, control());
3860       klass_node = _gvn.transform(cast);
3861     }
3862 
3863     // Bail out if either start or end is negative.
3864     generate_negative_guard(start, bailout, &start);
3865     generate_negative_guard(end,   bailout, &end);
3866 
3867     Node* length = end;
3868     if (_gvn.type(start) != TypeInt::ZERO) {
3869       length = _gvn.transform(new SubINode(end, start));
3870     }
3871 
3872     // Bail out if length is negative.
3873     // Without this the new_array would throw
3874     // NegativeArraySizeException but IllegalArgumentException is what
3875     // should be thrown
3876     generate_negative_guard(length, bailout, &length);
3877 
3878     if (bailout->req() > 1) {
3879       PreserveJVMState pjvms(this);
3880       set_control(_gvn.transform(bailout));
3881       uncommon_trap(Deoptimization::Reason_intrinsic,
3882                     Deoptimization::Action_maybe_recompile);
3883     }
3884 
3885     if (!stopped()) {
3886       // How many elements will we copy from the original?
3887       // The answer is MinI(orig_length - start, length).
3888       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3889       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3890 
3891       newcopy = new_array(klass_node, length, 0);  // no arguments to push
3892 
3893       // Generate a direct call to the right arraycopy function(s).
3894       // We know the copy is disjoint but we might not know if the
3895       // oop stores need checking.
3896       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3897       // This will fail a store-check if x contains any non-nulls.
3898 
3899       Node* alloc = tightly_coupled_allocation(newcopy, NULL);
3900 
3901       ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, alloc != NULL,
3902                                               load_object_klass(original), klass_node);
3903       if (!is_copyOfRange) {
3904         ac->set_copyof();
3905       } else {
3906         ac->set_copyofrange();
3907       }
3908       Node* n = _gvn.transform(ac);
3909       assert(n == ac, "cannot disappear");
3910       ac->connect_outputs(this);
3911     }
3912   } // original reexecute is set back here
3913 
3914   C->set_has_split_ifs(true); // Has chance for split-if optimization
3915   if (!stopped()) {
3916     set_result(newcopy);
3917   }
3918   return true;
3919 }
3920 
3921 
3922 //----------------------generate_virtual_guard---------------------------
3923 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3924 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3925                                              RegionNode* slow_region) {
3926   ciMethod* method = callee();
3927   int vtable_index = method->vtable_index();
3928   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3929          err_msg_res("bad index %d", vtable_index));
3930   // Get the Method* out of the appropriate vtable entry.
3931   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3932                      vtable_index*vtableEntry::size()) * wordSize +
3933                      vtableEntry::method_offset_in_bytes();
3934   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3935   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3936 
3937   // Compare the target method with the expected method (e.g., Object.hashCode).
3938   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3939 
3940   Node* native_call = makecon(native_call_addr);
3941   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
3942   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
3943 
3944   return generate_slow_guard(test_native, slow_region);
3945 }
3946 
3947 //-----------------------generate_method_call----------------------------
3948 // Use generate_method_call to make a slow-call to the real
3949 // method if the fast path fails.  An alternative would be to
3950 // use a stub like OptoRuntime::slow_arraycopy_Java.
3951 // This only works for expanding the current library call,
3952 // not another intrinsic.  (E.g., don't use this for making an
3953 // arraycopy call inside of the copyOf intrinsic.)
3954 CallJavaNode*
3955 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3956   // When compiling the intrinsic method itself, do not use this technique.
3957   guarantee(callee() != C->method(), "cannot make slow-call to self");
3958 
3959   ciMethod* method = callee();
3960   // ensure the JVMS we have will be correct for this call
3961   guarantee(method_id == method->intrinsic_id(), "must match");
3962 
3963   const TypeFunc* tf = TypeFunc::make(method);
3964   CallJavaNode* slow_call;
3965   if (is_static) {
3966     assert(!is_virtual, "");
3967     slow_call = new CallStaticJavaNode(C, tf,
3968                            SharedRuntime::get_resolve_static_call_stub(),
3969                            method, bci());
3970   } else if (is_virtual) {
3971     null_check_receiver();
3972     int vtable_index = Method::invalid_vtable_index;
3973     if (UseInlineCaches) {
3974       // Suppress the vtable call
3975     } else {
3976       // hashCode and clone are not a miranda methods,
3977       // so the vtable index is fixed.
3978       // No need to use the linkResolver to get it.
3979        vtable_index = method->vtable_index();
3980        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3981               err_msg_res("bad index %d", vtable_index));
3982     }
3983     slow_call = new CallDynamicJavaNode(tf,
3984                           SharedRuntime::get_resolve_virtual_call_stub(),
3985                           method, vtable_index, bci());
3986   } else {  // neither virtual nor static:  opt_virtual
3987     null_check_receiver();
3988     slow_call = new CallStaticJavaNode(C, tf,
3989                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3990                                 method, bci());
3991     slow_call->set_optimized_virtual(true);
3992   }
3993   set_arguments_for_java_call(slow_call);
3994   set_edges_for_java_call(slow_call);
3995   return slow_call;
3996 }
3997 
3998 
3999 /**
4000  * Build special case code for calls to hashCode on an object. This call may
4001  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4002  * slightly different code.
4003  */
4004 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4005   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4006   assert(!(is_virtual && is_static), "either virtual, special, or static");
4007 
4008   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4009 
4010   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4011   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4012   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4013   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4014   Node* obj = NULL;
4015   if (!is_static) {
4016     // Check for hashing null object
4017     obj = null_check_receiver();
4018     if (stopped())  return true;        // unconditionally null
4019     result_reg->init_req(_null_path, top());
4020     result_val->init_req(_null_path, top());
4021   } else {
4022     // Do a null check, and return zero if null.
4023     // System.identityHashCode(null) == 0
4024     obj = argument(0);
4025     Node* null_ctl = top();
4026     obj = null_check_oop(obj, &null_ctl);
4027     result_reg->init_req(_null_path, null_ctl);
4028     result_val->init_req(_null_path, _gvn.intcon(0));
4029   }
4030 
4031   // Unconditionally null?  Then return right away.
4032   if (stopped()) {
4033     set_control( result_reg->in(_null_path));
4034     if (!stopped())
4035       set_result(result_val->in(_null_path));
4036     return true;
4037   }
4038 
4039   // We only go to the fast case code if we pass a number of guards.  The
4040   // paths which do not pass are accumulated in the slow_region.
4041   RegionNode* slow_region = new RegionNode(1);
4042   record_for_igvn(slow_region);
4043 
4044   // If this is a virtual call, we generate a funny guard.  We pull out
4045   // the vtable entry corresponding to hashCode() from the target object.
4046   // If the target method which we are calling happens to be the native
4047   // Object hashCode() method, we pass the guard.  We do not need this
4048   // guard for non-virtual calls -- the caller is known to be the native
4049   // Object hashCode().
4050   if (is_virtual) {
4051     // After null check, get the object's klass.
4052     Node* obj_klass = load_object_klass(obj);
4053     generate_virtual_guard(obj_klass, slow_region);
4054   }
4055 
4056   // Get the header out of the object, use LoadMarkNode when available
4057   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4058   // The control of the load must be NULL. Otherwise, the load can move before
4059   // the null check after castPP removal.
4060   Node* no_ctrl = NULL;
4061   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4062 
4063   // Test the header to see if it is unlocked.
4064   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4065   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4066   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4067   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4068   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4069 
4070   generate_slow_guard(test_unlocked, slow_region);
4071 
4072   // Get the hash value and check to see that it has been properly assigned.
4073   // We depend on hash_mask being at most 32 bits and avoid the use of
4074   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4075   // vm: see markOop.hpp.
4076   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4077   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4078   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4079   // This hack lets the hash bits live anywhere in the mark object now, as long
4080   // as the shift drops the relevant bits into the low 32 bits.  Note that
4081   // Java spec says that HashCode is an int so there's no point in capturing
4082   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4083   hshifted_header      = ConvX2I(hshifted_header);
4084   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4085 
4086   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4087   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4088   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4089 
4090   generate_slow_guard(test_assigned, slow_region);
4091 
4092   Node* init_mem = reset_memory();
4093   // fill in the rest of the null path:
4094   result_io ->init_req(_null_path, i_o());
4095   result_mem->init_req(_null_path, init_mem);
4096 
4097   result_val->init_req(_fast_path, hash_val);
4098   result_reg->init_req(_fast_path, control());
4099   result_io ->init_req(_fast_path, i_o());
4100   result_mem->init_req(_fast_path, init_mem);
4101 
4102   // Generate code for the slow case.  We make a call to hashCode().
4103   set_control(_gvn.transform(slow_region));
4104   if (!stopped()) {
4105     // No need for PreserveJVMState, because we're using up the present state.
4106     set_all_memory(init_mem);
4107     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4108     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4109     Node* slow_result = set_results_for_java_call(slow_call);
4110     // this->control() comes from set_results_for_java_call
4111     result_reg->init_req(_slow_path, control());
4112     result_val->init_req(_slow_path, slow_result);
4113     result_io  ->set_req(_slow_path, i_o());
4114     result_mem ->set_req(_slow_path, reset_memory());
4115   }
4116 
4117   // Return the combined state.
4118   set_i_o(        _gvn.transform(result_io)  );
4119   set_all_memory( _gvn.transform(result_mem));
4120 
4121   set_result(result_reg, result_val);
4122   return true;
4123 }
4124 
4125 //---------------------------inline_native_getClass----------------------------
4126 // public final native Class<?> java.lang.Object.getClass();
4127 //
4128 // Build special case code for calls to getClass on an object.
4129 bool LibraryCallKit::inline_native_getClass() {
4130   Node* obj = null_check_receiver();
4131   if (stopped())  return true;
4132   set_result(load_mirror_from_klass(load_object_klass(obj)));
4133   return true;
4134 }
4135 
4136 //-----------------inline_native_Reflection_getCallerClass---------------------
4137 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4138 //
4139 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4140 //
4141 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4142 // in that it must skip particular security frames and checks for
4143 // caller sensitive methods.
4144 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4145 #ifndef PRODUCT
4146   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4147     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4148   }
4149 #endif
4150 
4151   if (!jvms()->has_method()) {
4152 #ifndef PRODUCT
4153     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4154       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4155     }
4156 #endif
4157     return false;
4158   }
4159 
4160   // Walk back up the JVM state to find the caller at the required
4161   // depth.
4162   JVMState* caller_jvms = jvms();
4163 
4164   // Cf. JVM_GetCallerClass
4165   // NOTE: Start the loop at depth 1 because the current JVM state does
4166   // not include the Reflection.getCallerClass() frame.
4167   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4168     ciMethod* m = caller_jvms->method();
4169     switch (n) {
4170     case 0:
4171       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4172       break;
4173     case 1:
4174       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4175       if (!m->caller_sensitive()) {
4176 #ifndef PRODUCT
4177         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4178           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4179         }
4180 #endif
4181         return false;  // bail-out; let JVM_GetCallerClass do the work
4182       }
4183       break;
4184     default:
4185       if (!m->is_ignored_by_security_stack_walk()) {
4186         // We have reached the desired frame; return the holder class.
4187         // Acquire method holder as java.lang.Class and push as constant.
4188         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4189         ciInstance* caller_mirror = caller_klass->java_mirror();
4190         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4191 
4192 #ifndef PRODUCT
4193         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4194           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4195           tty->print_cr("  JVM state at this point:");
4196           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4197             ciMethod* m = jvms()->of_depth(i)->method();
4198             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4199           }
4200         }
4201 #endif
4202         return true;
4203       }
4204       break;
4205     }
4206   }
4207 
4208 #ifndef PRODUCT
4209   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4210     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4211     tty->print_cr("  JVM state at this point:");
4212     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4213       ciMethod* m = jvms()->of_depth(i)->method();
4214       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4215     }
4216   }
4217 #endif
4218 
4219   return false;  // bail-out; let JVM_GetCallerClass do the work
4220 }
4221 
4222 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4223   Node* arg = argument(0);
4224   Node* result;
4225 
4226   switch (id) {
4227   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4228   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4229   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4230   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4231 
4232   case vmIntrinsics::_doubleToLongBits: {
4233     // two paths (plus control) merge in a wood
4234     RegionNode *r = new RegionNode(3);
4235     Node *phi = new PhiNode(r, TypeLong::LONG);
4236 
4237     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4238     // Build the boolean node
4239     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4240 
4241     // Branch either way.
4242     // NaN case is less traveled, which makes all the difference.
4243     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4244     Node *opt_isnan = _gvn.transform(ifisnan);
4245     assert( opt_isnan->is_If(), "Expect an IfNode");
4246     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4247     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4248 
4249     set_control(iftrue);
4250 
4251     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4252     Node *slow_result = longcon(nan_bits); // return NaN
4253     phi->init_req(1, _gvn.transform( slow_result ));
4254     r->init_req(1, iftrue);
4255 
4256     // Else fall through
4257     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4258     set_control(iffalse);
4259 
4260     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4261     r->init_req(2, iffalse);
4262 
4263     // Post merge
4264     set_control(_gvn.transform(r));
4265     record_for_igvn(r);
4266 
4267     C->set_has_split_ifs(true); // Has chance for split-if optimization
4268     result = phi;
4269     assert(result->bottom_type()->isa_long(), "must be");
4270     break;
4271   }
4272 
4273   case vmIntrinsics::_floatToIntBits: {
4274     // two paths (plus control) merge in a wood
4275     RegionNode *r = new RegionNode(3);
4276     Node *phi = new PhiNode(r, TypeInt::INT);
4277 
4278     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4279     // Build the boolean node
4280     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4281 
4282     // Branch either way.
4283     // NaN case is less traveled, which makes all the difference.
4284     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4285     Node *opt_isnan = _gvn.transform(ifisnan);
4286     assert( opt_isnan->is_If(), "Expect an IfNode");
4287     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4288     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4289 
4290     set_control(iftrue);
4291 
4292     static const jint nan_bits = 0x7fc00000;
4293     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4294     phi->init_req(1, _gvn.transform( slow_result ));
4295     r->init_req(1, iftrue);
4296 
4297     // Else fall through
4298     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4299     set_control(iffalse);
4300 
4301     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4302     r->init_req(2, iffalse);
4303 
4304     // Post merge
4305     set_control(_gvn.transform(r));
4306     record_for_igvn(r);
4307 
4308     C->set_has_split_ifs(true); // Has chance for split-if optimization
4309     result = phi;
4310     assert(result->bottom_type()->isa_int(), "must be");
4311     break;
4312   }
4313 
4314   default:
4315     fatal_unexpected_iid(id);
4316     break;
4317   }
4318   set_result(_gvn.transform(result));
4319   return true;
4320 }
4321 
4322 #ifdef _LP64
4323 #define XTOP ,top() /*additional argument*/
4324 #else  //_LP64
4325 #define XTOP        /*no additional argument*/
4326 #endif //_LP64
4327 
4328 //----------------------inline_unsafe_copyMemory-------------------------
4329 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4330 bool LibraryCallKit::inline_unsafe_copyMemory() {
4331   if (callee()->is_static())  return false;  // caller must have the capability!
4332   null_check_receiver();  // null-check receiver
4333   if (stopped())  return true;
4334 
4335   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4336 
4337   Node* src_ptr =         argument(1);   // type: oop
4338   Node* src_off = ConvL2X(argument(2));  // type: long
4339   Node* dst_ptr =         argument(4);   // type: oop
4340   Node* dst_off = ConvL2X(argument(5));  // type: long
4341   Node* size    = ConvL2X(argument(7));  // type: long
4342 
4343   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4344          "fieldOffset must be byte-scaled");
4345 
4346   Node* src = make_unsafe_address(src_ptr, src_off);
4347   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4348 
4349   // Conservatively insert a memory barrier on all memory slices.
4350   // Do not let writes of the copy source or destination float below the copy.
4351   insert_mem_bar(Op_MemBarCPUOrder);
4352 
4353   // Call it.  Note that the length argument is not scaled.
4354   make_runtime_call(RC_LEAF|RC_NO_FP,
4355                     OptoRuntime::fast_arraycopy_Type(),
4356                     StubRoutines::unsafe_arraycopy(),
4357                     "unsafe_arraycopy",
4358                     TypeRawPtr::BOTTOM,
4359                     src, dst, size XTOP);
4360 
4361   // Do not let reads of the copy destination float above the copy.
4362   insert_mem_bar(Op_MemBarCPUOrder);
4363 
4364   return true;
4365 }
4366 
4367 //------------------------clone_coping-----------------------------------
4368 // Helper function for inline_native_clone.
4369 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4370   assert(obj_size != NULL, "");
4371   Node* raw_obj = alloc_obj->in(1);
4372   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4373 
4374   AllocateNode* alloc = NULL;
4375   if (ReduceBulkZeroing) {
4376     // We will be completely responsible for initializing this object -
4377     // mark Initialize node as complete.
4378     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4379     // The object was just allocated - there should be no any stores!
4380     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4381     // Mark as complete_with_arraycopy so that on AllocateNode
4382     // expansion, we know this AllocateNode is initialized by an array
4383     // copy and a StoreStore barrier exists after the array copy.
4384     alloc->initialization()->set_complete_with_arraycopy();
4385   }
4386 
4387   // Copy the fastest available way.
4388   // TODO: generate fields copies for small objects instead.
4389   Node* src  = obj;
4390   Node* dest = alloc_obj;
4391   Node* size = _gvn.transform(obj_size);
4392 
4393   // Exclude the header but include array length to copy by 8 bytes words.
4394   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4395   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4396                             instanceOopDesc::base_offset_in_bytes();
4397   // base_off:
4398   // 8  - 32-bit VM
4399   // 12 - 64-bit VM, compressed klass
4400   // 16 - 64-bit VM, normal klass
4401   if (base_off % BytesPerLong != 0) {
4402     assert(UseCompressedClassPointers, "");
4403     if (is_array) {
4404       // Exclude length to copy by 8 bytes words.
4405       base_off += sizeof(int);
4406     } else {
4407       // Include klass to copy by 8 bytes words.
4408       base_off = instanceOopDesc::klass_offset_in_bytes();
4409     }
4410     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4411   }
4412   src  = basic_plus_adr(src,  base_off);
4413   dest = basic_plus_adr(dest, base_off);
4414 
4415   // Compute the length also, if needed:
4416   Node* countx = size;
4417   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4418   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4419 
4420   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4421 
4422   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4423   ac->set_clonebasic();
4424   Node* n = _gvn.transform(ac);
4425   if (n == ac) {
4426     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4427   } else {
4428     set_all_memory(n);
4429   }
4430 
4431   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4432   if (card_mark) {
4433     assert(!is_array, "");
4434     // Put in store barrier for any and all oops we are sticking
4435     // into this object.  (We could avoid this if we could prove
4436     // that the object type contains no oop fields at all.)
4437     Node* no_particular_value = NULL;
4438     Node* no_particular_field = NULL;
4439     int raw_adr_idx = Compile::AliasIdxRaw;
4440     post_barrier(control(),
4441                  memory(raw_adr_type),
4442                  alloc_obj,
4443                  no_particular_field,
4444                  raw_adr_idx,
4445                  no_particular_value,
4446                  T_OBJECT,
4447                  false);
4448   }
4449 
4450   // Do not let reads from the cloned object float above the arraycopy.
4451   if (alloc != NULL) {
4452     // Do not let stores that initialize this object be reordered with
4453     // a subsequent store that would make this object accessible by
4454     // other threads.
4455     // Record what AllocateNode this StoreStore protects so that
4456     // escape analysis can go from the MemBarStoreStoreNode to the
4457     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4458     // based on the escape status of the AllocateNode.
4459     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4460   } else {
4461     insert_mem_bar(Op_MemBarCPUOrder);
4462   }
4463 }
4464 
4465 //------------------------inline_native_clone----------------------------
4466 // protected native Object java.lang.Object.clone();
4467 //
4468 // Here are the simple edge cases:
4469 //  null receiver => normal trap
4470 //  virtual and clone was overridden => slow path to out-of-line clone
4471 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4472 //
4473 // The general case has two steps, allocation and copying.
4474 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4475 //
4476 // Copying also has two cases, oop arrays and everything else.
4477 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4478 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4479 //
4480 // These steps fold up nicely if and when the cloned object's klass
4481 // can be sharply typed as an object array, a type array, or an instance.
4482 //
4483 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4484   PhiNode* result_val;
4485 
4486   // Set the reexecute bit for the interpreter to reexecute
4487   // the bytecode that invokes Object.clone if deoptimization happens.
4488   { PreserveReexecuteState preexecs(this);
4489     jvms()->set_should_reexecute(true);
4490 
4491     Node* obj = null_check_receiver();
4492     if (stopped())  return true;
4493 
4494     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4495 
4496     // If we are going to clone an instance, we need its exact type to
4497     // know the number and types of fields to convert the clone to
4498     // loads/stores. Maybe a speculative type can help us.
4499     if (!obj_type->klass_is_exact() &&
4500         obj_type->speculative_type() != NULL &&
4501         obj_type->speculative_type()->is_instance_klass()) {
4502       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4503       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4504           !spec_ik->has_injected_fields()) {
4505         ciKlass* k = obj_type->klass();
4506         if (!k->is_instance_klass() ||
4507             k->as_instance_klass()->is_interface() ||
4508             k->as_instance_klass()->has_subklass()) {
4509           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4510         }
4511       }
4512     }
4513 
4514     Node* obj_klass = load_object_klass(obj);
4515     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4516     const TypeOopPtr*   toop   = ((tklass != NULL)
4517                                 ? tklass->as_instance_type()
4518                                 : TypeInstPtr::NOTNULL);
4519 
4520     // Conservatively insert a memory barrier on all memory slices.
4521     // Do not let writes into the original float below the clone.
4522     insert_mem_bar(Op_MemBarCPUOrder);
4523 
4524     // paths into result_reg:
4525     enum {
4526       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4527       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4528       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4529       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4530       PATH_LIMIT
4531     };
4532     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4533     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4534     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4535     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4536     record_for_igvn(result_reg);
4537 
4538     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4539     int raw_adr_idx = Compile::AliasIdxRaw;
4540 
4541     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4542     if (array_ctl != NULL) {
4543       // It's an array.
4544       PreserveJVMState pjvms(this);
4545       set_control(array_ctl);
4546       Node* obj_length = load_array_length(obj);
4547       Node* obj_size  = NULL;
4548       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4549 
4550       if (!use_ReduceInitialCardMarks()) {
4551         // If it is an oop array, it requires very special treatment,
4552         // because card marking is required on each card of the array.
4553         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4554         if (is_obja != NULL) {
4555           PreserveJVMState pjvms2(this);
4556           set_control(is_obja);
4557           // Generate a direct call to the right arraycopy function(s).
4558           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4559           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4560           ac->set_cloneoop();
4561           Node* n = _gvn.transform(ac);
4562           assert(n == ac, "cannot disappear");
4563           ac->connect_outputs(this);
4564 
4565           result_reg->init_req(_objArray_path, control());
4566           result_val->init_req(_objArray_path, alloc_obj);
4567           result_i_o ->set_req(_objArray_path, i_o());
4568           result_mem ->set_req(_objArray_path, reset_memory());
4569         }
4570       }
4571       // Otherwise, there are no card marks to worry about.
4572       // (We can dispense with card marks if we know the allocation
4573       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4574       //  causes the non-eden paths to take compensating steps to
4575       //  simulate a fresh allocation, so that no further
4576       //  card marks are required in compiled code to initialize
4577       //  the object.)
4578 
4579       if (!stopped()) {
4580         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4581 
4582         // Present the results of the copy.
4583         result_reg->init_req(_array_path, control());
4584         result_val->init_req(_array_path, alloc_obj);
4585         result_i_o ->set_req(_array_path, i_o());
4586         result_mem ->set_req(_array_path, reset_memory());
4587       }
4588     }
4589 
4590     // We only go to the instance fast case code if we pass a number of guards.
4591     // The paths which do not pass are accumulated in the slow_region.
4592     RegionNode* slow_region = new RegionNode(1);
4593     record_for_igvn(slow_region);
4594     if (!stopped()) {
4595       // It's an instance (we did array above).  Make the slow-path tests.
4596       // If this is a virtual call, we generate a funny guard.  We grab
4597       // the vtable entry corresponding to clone() from the target object.
4598       // If the target method which we are calling happens to be the
4599       // Object clone() method, we pass the guard.  We do not need this
4600       // guard for non-virtual calls; the caller is known to be the native
4601       // Object clone().
4602       if (is_virtual) {
4603         generate_virtual_guard(obj_klass, slow_region);
4604       }
4605 
4606       // The object must be cloneable and must not have a finalizer.
4607       // Both of these conditions may be checked in a single test.
4608       // We could optimize the cloneable test further, but we don't care.
4609       generate_access_flags_guard(obj_klass,
4610                                   // Test both conditions:
4611                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4612                                   // Must be cloneable but not finalizer:
4613                                   JVM_ACC_IS_CLONEABLE,
4614                                   slow_region);
4615     }
4616 
4617     if (!stopped()) {
4618       // It's an instance, and it passed the slow-path tests.
4619       PreserveJVMState pjvms(this);
4620       Node* obj_size  = NULL;
4621       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4622       // is reexecuted if deoptimization occurs and there could be problems when merging
4623       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4624       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4625 
4626       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4627 
4628       // Present the results of the slow call.
4629       result_reg->init_req(_instance_path, control());
4630       result_val->init_req(_instance_path, alloc_obj);
4631       result_i_o ->set_req(_instance_path, i_o());
4632       result_mem ->set_req(_instance_path, reset_memory());
4633     }
4634 
4635     // Generate code for the slow case.  We make a call to clone().
4636     set_control(_gvn.transform(slow_region));
4637     if (!stopped()) {
4638       PreserveJVMState pjvms(this);
4639       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4640       Node* slow_result = set_results_for_java_call(slow_call);
4641       // this->control() comes from set_results_for_java_call
4642       result_reg->init_req(_slow_path, control());
4643       result_val->init_req(_slow_path, slow_result);
4644       result_i_o ->set_req(_slow_path, i_o());
4645       result_mem ->set_req(_slow_path, reset_memory());
4646     }
4647 
4648     // Return the combined state.
4649     set_control(    _gvn.transform(result_reg));
4650     set_i_o(        _gvn.transform(result_i_o));
4651     set_all_memory( _gvn.transform(result_mem));
4652   } // original reexecute is set back here
4653 
4654   set_result(_gvn.transform(result_val));
4655   return true;
4656 }
4657 
4658 //------------------------------inline_arraycopy-----------------------
4659 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4660 //                                                      Object dest, int destPos,
4661 //                                                      int length);
4662 bool LibraryCallKit::inline_arraycopy() {
4663   // Get the arguments.
4664   Node* src         = argument(0);  // type: oop
4665   Node* src_offset  = argument(1);  // type: int
4666   Node* dest        = argument(2);  // type: oop
4667   Node* dest_offset = argument(3);  // type: int
4668   Node* length      = argument(4);  // type: int
4669 
4670   // The following tests must be performed
4671   // (1) src and dest are arrays.
4672   // (2) src and dest arrays must have elements of the same BasicType
4673   // (3) src and dest must not be null.
4674   // (4) src_offset must not be negative.
4675   // (5) dest_offset must not be negative.
4676   // (6) length must not be negative.
4677   // (7) src_offset + length must not exceed length of src.
4678   // (8) dest_offset + length must not exceed length of dest.
4679   // (9) each element of an oop array must be assignable
4680 
4681   // (3) src and dest must not be null.
4682   // always do this here because we need the JVM state for uncommon traps
4683   src  = null_check(src,  T_ARRAY);
4684   dest = null_check(dest, T_ARRAY);
4685 
4686   // Check for allocation before we add nodes that would confuse
4687   // tightly_coupled_allocation()
4688   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4689 
4690   ciMethod* trap_method = method();
4691   int trap_bci = bci();
4692   SafePointNode* sfpt = NULL;
4693   if (alloc != NULL) {
4694     // The JVM state for uncommon traps between the allocation and
4695     // arraycopy is set to the state before the allocation: if the
4696     // initialization is performed by the array copy, we don't want to
4697     // go back to the interpreter with an unitialized array.
4698     JVMState* old_jvms = alloc->jvms();
4699     JVMState* jvms = old_jvms->clone_shallow(C);
4700     uint size = alloc->req();
4701     sfpt = new SafePointNode(size, jvms);
4702     jvms->set_map(sfpt);
4703     for (uint i = 0; i < size; i++) {
4704       sfpt->init_req(i, alloc->in(i));
4705     }
4706     // re-push array length for deoptimization
4707     sfpt->ins_req(jvms->stkoff() + jvms->sp(), alloc->in(AllocateNode::ALength));
4708     jvms->set_sp(jvms->sp()+1);
4709     jvms->set_monoff(jvms->monoff()+1);
4710     jvms->set_scloff(jvms->scloff()+1);
4711     jvms->set_endoff(jvms->endoff()+1);
4712     jvms->set_should_reexecute(true);
4713 
4714     sfpt->set_i_o(map()->i_o());
4715     sfpt->set_memory(map()->memory());
4716 
4717     trap_method = jvms->method();
4718     trap_bci = jvms->bci();
4719   }
4720 
4721   bool validated = false;
4722 
4723   const Type* src_type  = _gvn.type(src);
4724   const Type* dest_type = _gvn.type(dest);
4725   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4726   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4727 
4728   // Do we have the type of src?
4729   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4730   // Do we have the type of dest?
4731   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4732   // Is the type for src from speculation?
4733   bool src_spec = false;
4734   // Is the type for dest from speculation?
4735   bool dest_spec = false;
4736 
4737   if (!has_src || !has_dest) {
4738     // We don't have sufficient type information, let's see if
4739     // speculative types can help. We need to have types for both src
4740     // and dest so that it pays off.
4741 
4742     // Do we already have or could we have type information for src
4743     bool could_have_src = has_src;
4744     // Do we already have or could we have type information for dest
4745     bool could_have_dest = has_dest;
4746 
4747     ciKlass* src_k = NULL;
4748     if (!has_src) {
4749       src_k = src_type->speculative_type_not_null();
4750       if (src_k != NULL && src_k->is_array_klass()) {
4751         could_have_src = true;
4752       }
4753     }
4754 
4755     ciKlass* dest_k = NULL;
4756     if (!has_dest) {
4757       dest_k = dest_type->speculative_type_not_null();
4758       if (dest_k != NULL && dest_k->is_array_klass()) {
4759         could_have_dest = true;
4760       }
4761     }
4762 
4763     if (could_have_src && could_have_dest) {
4764       // This is going to pay off so emit the required guards
4765       if (!has_src) {
4766         src = maybe_cast_profiled_obj(src, src_k, true, sfpt);
4767         src_type  = _gvn.type(src);
4768         top_src  = src_type->isa_aryptr();
4769         has_src = (top_src != NULL && top_src->klass() != NULL);
4770         src_spec = true;
4771       }
4772       if (!has_dest) {
4773         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4774         dest_type  = _gvn.type(dest);
4775         top_dest  = dest_type->isa_aryptr();
4776         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4777         dest_spec = true;
4778       }
4779     }
4780   }
4781 
4782   if (has_src && has_dest) {
4783     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4784     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4785     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4786     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4787 
4788     if (src_elem == dest_elem && src_elem == T_OBJECT) {
4789       // If both arrays are object arrays then having the exact types
4790       // for both will remove the need for a subtype check at runtime
4791       // before the call and may make it possible to pick a faster copy
4792       // routine (without a subtype check on every element)
4793       // Do we have the exact type of src?
4794       bool could_have_src = src_spec;
4795       // Do we have the exact type of dest?
4796       bool could_have_dest = dest_spec;
4797       ciKlass* src_k = top_src->klass();
4798       ciKlass* dest_k = top_dest->klass();
4799       if (!src_spec) {
4800         src_k = src_type->speculative_type_not_null();
4801         if (src_k != NULL && src_k->is_array_klass()) {
4802           could_have_src = true;
4803         }
4804       }
4805       if (!dest_spec) {
4806         dest_k = dest_type->speculative_type_not_null();
4807         if (dest_k != NULL && dest_k->is_array_klass()) {
4808           could_have_dest = true;
4809         }
4810       }
4811       if (could_have_src && could_have_dest) {
4812         // If we can have both exact types, emit the missing guards
4813         if (could_have_src && !src_spec) {
4814           src = maybe_cast_profiled_obj(src, src_k, true, sfpt);
4815         }
4816         if (could_have_dest && !dest_spec) {
4817           dest = maybe_cast_profiled_obj(dest, dest_k, true);
4818         }
4819       }
4820     }
4821   }
4822 
4823   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && !src->is_top() && !dest->is_top()) {
4824     // validate arguments: enables transformation the ArrayCopyNode
4825     validated = true;
4826 
4827     RegionNode* slow_region = new RegionNode(1);
4828     record_for_igvn(slow_region);
4829 
4830     // (1) src and dest are arrays.
4831     generate_non_array_guard(load_object_klass(src), slow_region);
4832     generate_non_array_guard(load_object_klass(dest), slow_region);
4833 
4834     // (2) src and dest arrays must have elements of the same BasicType
4835     // done at macro expansion or at Ideal transformation time
4836 
4837     // (4) src_offset must not be negative.
4838     generate_negative_guard(src_offset, slow_region);
4839 
4840     // (5) dest_offset must not be negative.
4841     generate_negative_guard(dest_offset, slow_region);
4842 
4843     // (7) src_offset + length must not exceed length of src.
4844     generate_limit_guard(src_offset, length,
4845                          load_array_length(src),
4846                          slow_region);
4847 
4848     // (8) dest_offset + length must not exceed length of dest.
4849     generate_limit_guard(dest_offset, length,
4850                          load_array_length(dest),
4851                          slow_region);
4852 
4853     // (9) each element of an oop array must be assignable
4854     Node* src_klass  = load_object_klass(src);
4855     Node* dest_klass = load_object_klass(dest);
4856     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4857 
4858     if (not_subtype_ctrl != top()) {
4859       if (sfpt != NULL) {
4860         GraphKit kit(sfpt->jvms());
4861         PreserveJVMState pjvms(&kit);
4862         kit.set_control(not_subtype_ctrl);
4863         kit.uncommon_trap(Deoptimization::Reason_intrinsic,
4864                           Deoptimization::Action_make_not_entrant);
4865         assert(kit.stopped(), "Should be stopped");
4866       } else {
4867         PreserveJVMState pjvms(this);
4868         set_control(not_subtype_ctrl);
4869         uncommon_trap(Deoptimization::Reason_intrinsic,
4870                       Deoptimization::Action_make_not_entrant);
4871         assert(stopped(), "Should be stopped");
4872       }
4873     }
4874     if (sfpt != NULL) {
4875       GraphKit kit(sfpt->jvms());
4876       kit.set_control(_gvn.transform(slow_region));
4877       kit.uncommon_trap(Deoptimization::Reason_intrinsic,
4878                         Deoptimization::Action_make_not_entrant);
4879       assert(kit.stopped(), "Should be stopped");
4880     } else {
4881       PreserveJVMState pjvms(this);
4882       set_control(_gvn.transform(slow_region));
4883       uncommon_trap(Deoptimization::Reason_intrinsic,
4884                     Deoptimization::Action_make_not_entrant);
4885       assert(stopped(), "Should be stopped");
4886     }
4887   }
4888 
4889   if (stopped()) {
4890     return true;
4891   }
4892 
4893   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
4894                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
4895                                           // so the compiler has a chance to eliminate them: during macro expansion,
4896                                           // we have to set their control (CastPP nodes are eliminated).
4897                                           load_object_klass(src), load_object_klass(dest),
4898                                           load_array_length(src), load_array_length(dest));
4899 
4900   ac->set_arraycopy(validated);
4901 
4902   Node* n = _gvn.transform(ac);
4903   if (n == ac) {
4904     ac->connect_outputs(this);
4905   } else {
4906     assert(validated, "shouldn't transform if all arguments not validated");
4907     set_all_memory(n);
4908   }
4909 
4910   return true;
4911 }
4912 
4913 
4914 // Helper function which determines if an arraycopy immediately follows
4915 // an allocation, with no intervening tests or other escapes for the object.
4916 AllocateArrayNode*
4917 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4918                                            RegionNode* slow_region) {
4919   if (stopped())             return NULL;  // no fast path
4920   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4921 
4922   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4923   if (alloc == NULL)  return NULL;
4924 
4925   Node* rawmem = memory(Compile::AliasIdxRaw);
4926   // Is the allocation's memory state untouched?
4927   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4928     // Bail out if there have been raw-memory effects since the allocation.
4929     // (Example:  There might have been a call or safepoint.)
4930     return NULL;
4931   }
4932   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4933   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4934     return NULL;
4935   }
4936 
4937   // There must be no unexpected observers of this allocation.
4938   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4939     Node* obs = ptr->fast_out(i);
4940     if (obs != this->map()) {
4941       return NULL;
4942     }
4943   }
4944 
4945   // This arraycopy must unconditionally follow the allocation of the ptr.
4946   Node* alloc_ctl = ptr->in(0);
4947   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4948 
4949   Node* ctl = control();
4950   while (ctl != alloc_ctl) {
4951     // There may be guards which feed into the slow_region.
4952     // Any other control flow means that we might not get a chance
4953     // to finish initializing the allocated object.
4954     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4955       IfNode* iff = ctl->in(0)->as_If();
4956       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
4957       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4958       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4959         ctl = iff->in(0);       // This test feeds the known slow_region.
4960         continue;
4961       }
4962       // One more try:  Various low-level checks bottom out in
4963       // uncommon traps.  If the debug-info of the trap omits
4964       // any reference to the allocation, as we've already
4965       // observed, then there can be no objection to the trap.
4966       bool found_trap = false;
4967       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
4968         Node* obs = not_ctl->fast_out(j);
4969         if (obs->in(0) == not_ctl && obs->is_Call() &&
4970             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
4971           found_trap = true; break;
4972         }
4973       }
4974       if (found_trap) {
4975         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
4976         continue;
4977       }
4978     }
4979     return NULL;
4980   }
4981 
4982   // If we get this far, we have an allocation which immediately
4983   // precedes the arraycopy, and we can take over zeroing the new object.
4984   // The arraycopy will finish the initialization, and provide
4985   // a new control state to which we will anchor the destination pointer.
4986 
4987   return alloc;
4988 }
4989 
4990 //-------------inline_encodeISOArray-----------------------------------
4991 // encode char[] to byte[] in ISO_8859_1
4992 bool LibraryCallKit::inline_encodeISOArray() {
4993   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
4994   // no receiver since it is static method
4995   Node *src         = argument(0);
4996   Node *src_offset  = argument(1);
4997   Node *dst         = argument(2);
4998   Node *dst_offset  = argument(3);
4999   Node *length      = argument(4);
5000 
5001   const Type* src_type = src->Value(&_gvn);
5002   const Type* dst_type = dst->Value(&_gvn);
5003   const TypeAryPtr* top_src = src_type->isa_aryptr();
5004   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5005   if (top_src  == NULL || top_src->klass()  == NULL ||
5006       top_dest == NULL || top_dest->klass() == NULL) {
5007     // failed array check
5008     return false;
5009   }
5010 
5011   // Figure out the size and type of the elements we will be copying.
5012   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5013   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5014   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5015     return false;
5016   }
5017   Node* src_start = array_element_address(src, src_offset, src_elem);
5018   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5019   // 'src_start' points to src array + scaled offset
5020   // 'dst_start' points to dst array + scaled offset
5021 
5022   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5023   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5024   enc = _gvn.transform(enc);
5025   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5026   set_memory(res_mem, mtype);
5027   set_result(enc);
5028   return true;
5029 }
5030 
5031 //-------------inline_multiplyToLen-----------------------------------
5032 bool LibraryCallKit::inline_multiplyToLen() {
5033   assert(UseMultiplyToLenIntrinsic, "not implementated on this platform");
5034 
5035   address stubAddr = StubRoutines::multiplyToLen();
5036   if (stubAddr == NULL) {
5037     return false; // Intrinsic's stub is not implemented on this platform
5038   }
5039   const char* stubName = "multiplyToLen";
5040 
5041   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5042 
5043   Node* x    = argument(1);
5044   Node* xlen = argument(2);
5045   Node* y    = argument(3);
5046   Node* ylen = argument(4);
5047   Node* z    = argument(5);
5048 
5049   const Type* x_type = x->Value(&_gvn);
5050   const Type* y_type = y->Value(&_gvn);
5051   const TypeAryPtr* top_x = x_type->isa_aryptr();
5052   const TypeAryPtr* top_y = y_type->isa_aryptr();
5053   if (top_x  == NULL || top_x->klass()  == NULL ||
5054       top_y == NULL || top_y->klass() == NULL) {
5055     // failed array check
5056     return false;
5057   }
5058 
5059   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5060   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5061   if (x_elem != T_INT || y_elem != T_INT) {
5062     return false;
5063   }
5064 
5065   // Set the original stack and the reexecute bit for the interpreter to reexecute
5066   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5067   // on the return from z array allocation in runtime.
5068   { PreserveReexecuteState preexecs(this);
5069     jvms()->set_should_reexecute(true);
5070 
5071     Node* x_start = array_element_address(x, intcon(0), x_elem);
5072     Node* y_start = array_element_address(y, intcon(0), y_elem);
5073     // 'x_start' points to x array + scaled xlen
5074     // 'y_start' points to y array + scaled ylen
5075 
5076     // Allocate the result array
5077     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5078     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5079     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5080 
5081     IdealKit ideal(this);
5082 
5083 #define __ ideal.
5084      Node* one = __ ConI(1);
5085      Node* zero = __ ConI(0);
5086      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5087      __ set(need_alloc, zero);
5088      __ set(z_alloc, z);
5089      __ if_then(z, BoolTest::eq, null()); {
5090        __ increment (need_alloc, one);
5091      } __ else_(); {
5092        // Update graphKit memory and control from IdealKit.
5093        sync_kit(ideal);
5094        Node* zlen_arg = load_array_length(z);
5095        // Update IdealKit memory and control from graphKit.
5096        __ sync_kit(this);
5097        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5098          __ increment (need_alloc, one);
5099        } __ end_if();
5100      } __ end_if();
5101 
5102      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5103        // Update graphKit memory and control from IdealKit.
5104        sync_kit(ideal);
5105        Node * narr = new_array(klass_node, zlen, 1);
5106        // Update IdealKit memory and control from graphKit.
5107        __ sync_kit(this);
5108        __ set(z_alloc, narr);
5109      } __ end_if();
5110 
5111      sync_kit(ideal);
5112      z = __ value(z_alloc);
5113      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5114      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5115      // Final sync IdealKit and GraphKit.
5116      final_sync(ideal);
5117 #undef __
5118 
5119     Node* z_start = array_element_address(z, intcon(0), T_INT);
5120 
5121     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5122                                    OptoRuntime::multiplyToLen_Type(),
5123                                    stubAddr, stubName, TypePtr::BOTTOM,
5124                                    x_start, xlen, y_start, ylen, z_start, zlen);
5125   } // original reexecute is set back here
5126 
5127   C->set_has_split_ifs(true); // Has chance for split-if optimization
5128   set_result(z);
5129   return true;
5130 }
5131 
5132 
5133 /**
5134  * Calculate CRC32 for byte.
5135  * int java.util.zip.CRC32.update(int crc, int b)
5136  */
5137 bool LibraryCallKit::inline_updateCRC32() {
5138   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5139   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5140   // no receiver since it is static method
5141   Node* crc  = argument(0); // type: int
5142   Node* b    = argument(1); // type: int
5143 
5144   /*
5145    *    int c = ~ crc;
5146    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5147    *    b = b ^ (c >>> 8);
5148    *    crc = ~b;
5149    */
5150 
5151   Node* M1 = intcon(-1);
5152   crc = _gvn.transform(new XorINode(crc, M1));
5153   Node* result = _gvn.transform(new XorINode(crc, b));
5154   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5155 
5156   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5157   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5158   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5159   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5160 
5161   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5162   result = _gvn.transform(new XorINode(crc, result));
5163   result = _gvn.transform(new XorINode(result, M1));
5164   set_result(result);
5165   return true;
5166 }
5167 
5168 /**
5169  * Calculate CRC32 for byte[] array.
5170  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5171  */
5172 bool LibraryCallKit::inline_updateBytesCRC32() {
5173   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5174   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5175   // no receiver since it is static method
5176   Node* crc     = argument(0); // type: int
5177   Node* src     = argument(1); // type: oop
5178   Node* offset  = argument(2); // type: int
5179   Node* length  = argument(3); // type: int
5180 
5181   const Type* src_type = src->Value(&_gvn);
5182   const TypeAryPtr* top_src = src_type->isa_aryptr();
5183   if (top_src  == NULL || top_src->klass()  == NULL) {
5184     // failed array check
5185     return false;
5186   }
5187 
5188   // Figure out the size and type of the elements we will be copying.
5189   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5190   if (src_elem != T_BYTE) {
5191     return false;
5192   }
5193 
5194   // 'src_start' points to src array + scaled offset
5195   Node* src_start = array_element_address(src, offset, src_elem);
5196 
5197   // We assume that range check is done by caller.
5198   // TODO: generate range check (offset+length < src.length) in debug VM.
5199 
5200   // Call the stub.
5201   address stubAddr = StubRoutines::updateBytesCRC32();
5202   const char *stubName = "updateBytesCRC32";
5203 
5204   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5205                                  stubAddr, stubName, TypePtr::BOTTOM,
5206                                  crc, src_start, length);
5207   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5208   set_result(result);
5209   return true;
5210 }
5211 
5212 /**
5213  * Calculate CRC32 for ByteBuffer.
5214  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5215  */
5216 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5217   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5218   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5219   // no receiver since it is static method
5220   Node* crc     = argument(0); // type: int
5221   Node* src     = argument(1); // type: long
5222   Node* offset  = argument(3); // type: int
5223   Node* length  = argument(4); // type: int
5224 
5225   src = ConvL2X(src);  // adjust Java long to machine word
5226   Node* base = _gvn.transform(new CastX2PNode(src));
5227   offset = ConvI2X(offset);
5228 
5229   // 'src_start' points to src array + scaled offset
5230   Node* src_start = basic_plus_adr(top(), base, offset);
5231 
5232   // Call the stub.
5233   address stubAddr = StubRoutines::updateBytesCRC32();
5234   const char *stubName = "updateBytesCRC32";
5235 
5236   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5237                                  stubAddr, stubName, TypePtr::BOTTOM,
5238                                  crc, src_start, length);
5239   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5240   set_result(result);
5241   return true;
5242 }
5243 
5244 //----------------------------inline_reference_get----------------------------
5245 // public T java.lang.ref.Reference.get();
5246 bool LibraryCallKit::inline_reference_get() {
5247   const int referent_offset = java_lang_ref_Reference::referent_offset;
5248   guarantee(referent_offset > 0, "should have already been set");
5249 
5250   // Get the argument:
5251   Node* reference_obj = null_check_receiver();
5252   if (stopped()) return true;
5253 
5254   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5255 
5256   ciInstanceKlass* klass = env()->Object_klass();
5257   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5258 
5259   Node* no_ctrl = NULL;
5260   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5261 
5262   // Use the pre-barrier to record the value in the referent field
5263   pre_barrier(false /* do_load */,
5264               control(),
5265               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5266               result /* pre_val */,
5267               T_OBJECT);
5268 
5269   // Add memory barrier to prevent commoning reads from this field
5270   // across safepoint since GC can change its value.
5271   insert_mem_bar(Op_MemBarCPUOrder);
5272 
5273   set_result(result);
5274   return true;
5275 }
5276 
5277 
5278 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5279                                               bool is_exact=true, bool is_static=false) {
5280 
5281   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5282   assert(tinst != NULL, "obj is null");
5283   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5284   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5285 
5286   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5287                                                                           ciSymbol::make(fieldTypeString),
5288                                                                           is_static);
5289   if (field == NULL) return (Node *) NULL;
5290   assert (field != NULL, "undefined field");
5291 
5292   // Next code  copied from Parse::do_get_xxx():
5293 
5294   // Compute address and memory type.
5295   int offset  = field->offset_in_bytes();
5296   bool is_vol = field->is_volatile();
5297   ciType* field_klass = field->type();
5298   assert(field_klass->is_loaded(), "should be loaded");
5299   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5300   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5301   BasicType bt = field->layout_type();
5302 
5303   // Build the resultant type of the load
5304   const Type *type;
5305   if (bt == T_OBJECT) {
5306     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5307   } else {
5308     type = Type::get_const_basic_type(bt);
5309   }
5310 
5311   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5312     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5313   }
5314   // Build the load.
5315   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5316   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, is_vol);
5317   // If reference is volatile, prevent following memory ops from
5318   // floating up past the volatile read.  Also prevents commoning
5319   // another volatile read.
5320   if (is_vol) {
5321     // Memory barrier includes bogus read of value to force load BEFORE membar
5322     insert_mem_bar(Op_MemBarAcquire, loadedField);
5323   }
5324   return loadedField;
5325 }
5326 
5327 
5328 //------------------------------inline_aescrypt_Block-----------------------
5329 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5330   address stubAddr;
5331   const char *stubName;
5332   assert(UseAES, "need AES instruction support");
5333 
5334   switch(id) {
5335   case vmIntrinsics::_aescrypt_encryptBlock:
5336     stubAddr = StubRoutines::aescrypt_encryptBlock();
5337     stubName = "aescrypt_encryptBlock";
5338     break;
5339   case vmIntrinsics::_aescrypt_decryptBlock:
5340     stubAddr = StubRoutines::aescrypt_decryptBlock();
5341     stubName = "aescrypt_decryptBlock";
5342     break;
5343   }
5344   if (stubAddr == NULL) return false;
5345 
5346   Node* aescrypt_object = argument(0);
5347   Node* src             = argument(1);
5348   Node* src_offset      = argument(2);
5349   Node* dest            = argument(3);
5350   Node* dest_offset     = argument(4);
5351 
5352   // (1) src and dest are arrays.
5353   const Type* src_type = src->Value(&_gvn);
5354   const Type* dest_type = dest->Value(&_gvn);
5355   const TypeAryPtr* top_src = src_type->isa_aryptr();
5356   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5357   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5358 
5359   // for the quick and dirty code we will skip all the checks.
5360   // we are just trying to get the call to be generated.
5361   Node* src_start  = src;
5362   Node* dest_start = dest;
5363   if (src_offset != NULL || dest_offset != NULL) {
5364     assert(src_offset != NULL && dest_offset != NULL, "");
5365     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5366     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5367   }
5368 
5369   // now need to get the start of its expanded key array
5370   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5371   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5372   if (k_start == NULL) return false;
5373 
5374   if (Matcher::pass_original_key_for_aes()) {
5375     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5376     // compatibility issues between Java key expansion and SPARC crypto instructions
5377     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5378     if (original_k_start == NULL) return false;
5379 
5380     // Call the stub.
5381     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5382                       stubAddr, stubName, TypePtr::BOTTOM,
5383                       src_start, dest_start, k_start, original_k_start);
5384   } else {
5385     // Call the stub.
5386     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5387                       stubAddr, stubName, TypePtr::BOTTOM,
5388                       src_start, dest_start, k_start);
5389   }
5390 
5391   return true;
5392 }
5393 
5394 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5395 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5396   address stubAddr;
5397   const char *stubName;
5398 
5399   assert(UseAES, "need AES instruction support");
5400 
5401   switch(id) {
5402   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5403     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5404     stubName = "cipherBlockChaining_encryptAESCrypt";
5405     break;
5406   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5407     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5408     stubName = "cipherBlockChaining_decryptAESCrypt";
5409     break;
5410   }
5411   if (stubAddr == NULL) return false;
5412 
5413   Node* cipherBlockChaining_object = argument(0);
5414   Node* src                        = argument(1);
5415   Node* src_offset                 = argument(2);
5416   Node* len                        = argument(3);
5417   Node* dest                       = argument(4);
5418   Node* dest_offset                = argument(5);
5419 
5420   // (1) src and dest are arrays.
5421   const Type* src_type = src->Value(&_gvn);
5422   const Type* dest_type = dest->Value(&_gvn);
5423   const TypeAryPtr* top_src = src_type->isa_aryptr();
5424   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5425   assert (top_src  != NULL && top_src->klass()  != NULL
5426           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5427 
5428   // checks are the responsibility of the caller
5429   Node* src_start  = src;
5430   Node* dest_start = dest;
5431   if (src_offset != NULL || dest_offset != NULL) {
5432     assert(src_offset != NULL && dest_offset != NULL, "");
5433     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5434     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5435   }
5436 
5437   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5438   // (because of the predicated logic executed earlier).
5439   // so we cast it here safely.
5440   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5441 
5442   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5443   if (embeddedCipherObj == NULL) return false;
5444 
5445   // cast it to what we know it will be at runtime
5446   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5447   assert(tinst != NULL, "CBC obj is null");
5448   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5449   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5450   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
5451 
5452   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5453   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5454   const TypeOopPtr* xtype = aklass->as_instance_type();
5455   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
5456   aescrypt_object = _gvn.transform(aescrypt_object);
5457 
5458   // we need to get the start of the aescrypt_object's expanded key array
5459   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5460   if (k_start == NULL) return false;
5461 
5462   // similarly, get the start address of the r vector
5463   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5464   if (objRvec == NULL) return false;
5465   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5466 
5467   Node* cbcCrypt;
5468   if (Matcher::pass_original_key_for_aes()) {
5469     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5470     // compatibility issues between Java key expansion and SPARC crypto instructions
5471     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5472     if (original_k_start == NULL) return false;
5473 
5474     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
5475     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5476                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5477                                  stubAddr, stubName, TypePtr::BOTTOM,
5478                                  src_start, dest_start, k_start, r_start, len, original_k_start);
5479   } else {
5480     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5481     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5482                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5483                                  stubAddr, stubName, TypePtr::BOTTOM,
5484                                  src_start, dest_start, k_start, r_start, len);
5485   }
5486 
5487   // return cipher length (int)
5488   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
5489   set_result(retvalue);
5490   return true;
5491 }
5492 
5493 //------------------------------get_key_start_from_aescrypt_object-----------------------
5494 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5495   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5496   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5497   if (objAESCryptKey == NULL) return (Node *) NULL;
5498 
5499   // now have the array, need to get the start address of the K array
5500   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5501   return k_start;
5502 }
5503 
5504 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
5505 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
5506   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
5507   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5508   if (objAESCryptKey == NULL) return (Node *) NULL;
5509 
5510   // now have the array, need to get the start address of the lastKey array
5511   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
5512   return original_k_start;
5513 }
5514 
5515 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5516 // Return node representing slow path of predicate check.
5517 // the pseudo code we want to emulate with this predicate is:
5518 // for encryption:
5519 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5520 // for decryption:
5521 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5522 //    note cipher==plain is more conservative than the original java code but that's OK
5523 //
5524 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5525   // The receiver was checked for NULL already.
5526   Node* objCBC = argument(0);
5527 
5528   // Load embeddedCipher field of CipherBlockChaining object.
5529   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5530 
5531   // get AESCrypt klass for instanceOf check
5532   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5533   // will have same classloader as CipherBlockChaining object
5534   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5535   assert(tinst != NULL, "CBCobj is null");
5536   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5537 
5538   // we want to do an instanceof comparison against the AESCrypt class
5539   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5540   if (!klass_AESCrypt->is_loaded()) {
5541     // if AESCrypt is not even loaded, we never take the intrinsic fast path
5542     Node* ctrl = control();
5543     set_control(top()); // no regular fast path
5544     return ctrl;
5545   }
5546   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5547 
5548   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5549   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
5550   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
5551 
5552   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5553 
5554   // for encryption, we are done
5555   if (!decrypting)
5556     return instof_false;  // even if it is NULL
5557 
5558   // for decryption, we need to add a further check to avoid
5559   // taking the intrinsic path when cipher and plain are the same
5560   // see the original java code for why.
5561   RegionNode* region = new RegionNode(3);
5562   region->init_req(1, instof_false);
5563   Node* src = argument(1);
5564   Node* dest = argument(4);
5565   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
5566   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
5567   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
5568   region->init_req(2, src_dest_conjoint);
5569 
5570   record_for_igvn(region);
5571   return _gvn.transform(region);
5572 }
5573 
5574 //------------------------------inline_sha_implCompress-----------------------
5575 //
5576 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
5577 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
5578 //
5579 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
5580 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
5581 //
5582 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
5583 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
5584 //
5585 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
5586   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
5587 
5588   Node* sha_obj = argument(0);
5589   Node* src     = argument(1); // type oop
5590   Node* ofs     = argument(2); // type int
5591 
5592   const Type* src_type = src->Value(&_gvn);
5593   const TypeAryPtr* top_src = src_type->isa_aryptr();
5594   if (top_src  == NULL || top_src->klass()  == NULL) {
5595     // failed array check
5596     return false;
5597   }
5598   // Figure out the size and type of the elements we will be copying.
5599   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5600   if (src_elem != T_BYTE) {
5601     return false;
5602   }
5603   // 'src_start' points to src array + offset
5604   Node* src_start = array_element_address(src, ofs, src_elem);
5605   Node* state = NULL;
5606   address stubAddr;
5607   const char *stubName;
5608 
5609   switch(id) {
5610   case vmIntrinsics::_sha_implCompress:
5611     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
5612     state = get_state_from_sha_object(sha_obj);
5613     stubAddr = StubRoutines::sha1_implCompress();
5614     stubName = "sha1_implCompress";
5615     break;
5616   case vmIntrinsics::_sha2_implCompress:
5617     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
5618     state = get_state_from_sha_object(sha_obj);
5619     stubAddr = StubRoutines::sha256_implCompress();
5620     stubName = "sha256_implCompress";
5621     break;
5622   case vmIntrinsics::_sha5_implCompress:
5623     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
5624     state = get_state_from_sha5_object(sha_obj);
5625     stubAddr = StubRoutines::sha512_implCompress();
5626     stubName = "sha512_implCompress";
5627     break;
5628   default:
5629     fatal_unexpected_iid(id);
5630     return false;
5631   }
5632   if (state == NULL) return false;
5633 
5634   // Call the stub.
5635   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
5636                                  stubAddr, stubName, TypePtr::BOTTOM,
5637                                  src_start, state);
5638 
5639   return true;
5640 }
5641 
5642 //------------------------------inline_digestBase_implCompressMB-----------------------
5643 //
5644 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
5645 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
5646 //
5647 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
5648   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
5649          "need SHA1/SHA256/SHA512 instruction support");
5650   assert((uint)predicate < 3, "sanity");
5651   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
5652 
5653   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
5654   Node* src            = argument(1); // byte[] array
5655   Node* ofs            = argument(2); // type int
5656   Node* limit          = argument(3); // type int
5657 
5658   const Type* src_type = src->Value(&_gvn);
5659   const TypeAryPtr* top_src = src_type->isa_aryptr();
5660   if (top_src  == NULL || top_src->klass()  == NULL) {
5661     // failed array check
5662     return false;
5663   }
5664   // Figure out the size and type of the elements we will be copying.
5665   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5666   if (src_elem != T_BYTE) {
5667     return false;
5668   }
5669   // 'src_start' points to src array + offset
5670   Node* src_start = array_element_address(src, ofs, src_elem);
5671 
5672   const char* klass_SHA_name = NULL;
5673   const char* stub_name = NULL;
5674   address     stub_addr = NULL;
5675   bool        long_state = false;
5676 
5677   switch (predicate) {
5678   case 0:
5679     if (UseSHA1Intrinsics) {
5680       klass_SHA_name = "sun/security/provider/SHA";
5681       stub_name = "sha1_implCompressMB";
5682       stub_addr = StubRoutines::sha1_implCompressMB();
5683     }
5684     break;
5685   case 1:
5686     if (UseSHA256Intrinsics) {
5687       klass_SHA_name = "sun/security/provider/SHA2";
5688       stub_name = "sha256_implCompressMB";
5689       stub_addr = StubRoutines::sha256_implCompressMB();
5690     }
5691     break;
5692   case 2:
5693     if (UseSHA512Intrinsics) {
5694       klass_SHA_name = "sun/security/provider/SHA5";
5695       stub_name = "sha512_implCompressMB";
5696       stub_addr = StubRoutines::sha512_implCompressMB();
5697       long_state = true;
5698     }
5699     break;
5700   default:
5701     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
5702   }
5703   if (klass_SHA_name != NULL) {
5704     // get DigestBase klass to lookup for SHA klass
5705     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
5706     assert(tinst != NULL, "digestBase_obj is not instance???");
5707     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
5708 
5709     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
5710     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
5711     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
5712     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
5713   }
5714   return false;
5715 }
5716 //------------------------------inline_sha_implCompressMB-----------------------
5717 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
5718                                                bool long_state, address stubAddr, const char *stubName,
5719                                                Node* src_start, Node* ofs, Node* limit) {
5720   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
5721   const TypeOopPtr* xtype = aklass->as_instance_type();
5722   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
5723   sha_obj = _gvn.transform(sha_obj);
5724 
5725   Node* state;
5726   if (long_state) {
5727     state = get_state_from_sha5_object(sha_obj);
5728   } else {
5729     state = get_state_from_sha_object(sha_obj);
5730   }
5731   if (state == NULL) return false;
5732 
5733   // Call the stub.
5734   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5735                                  OptoRuntime::digestBase_implCompressMB_Type(),
5736                                  stubAddr, stubName, TypePtr::BOTTOM,
5737                                  src_start, state, ofs, limit);
5738   // return ofs (int)
5739   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5740   set_result(result);
5741 
5742   return true;
5743 }
5744 
5745 //------------------------------get_state_from_sha_object-----------------------
5746 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
5747   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
5748   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
5749   if (sha_state == NULL) return (Node *) NULL;
5750 
5751   // now have the array, need to get the start address of the state array
5752   Node* state = array_element_address(sha_state, intcon(0), T_INT);
5753   return state;
5754 }
5755 
5756 //------------------------------get_state_from_sha5_object-----------------------
5757 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
5758   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
5759   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
5760   if (sha_state == NULL) return (Node *) NULL;
5761 
5762   // now have the array, need to get the start address of the state array
5763   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
5764   return state;
5765 }
5766 
5767 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
5768 // Return node representing slow path of predicate check.
5769 // the pseudo code we want to emulate with this predicate is:
5770 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
5771 //
5772 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
5773   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
5774          "need SHA1/SHA256/SHA512 instruction support");
5775   assert((uint)predicate < 3, "sanity");
5776 
5777   // The receiver was checked for NULL already.
5778   Node* digestBaseObj = argument(0);
5779 
5780   // get DigestBase klass for instanceOf check
5781   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
5782   assert(tinst != NULL, "digestBaseObj is null");
5783   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
5784 
5785   const char* klass_SHA_name = NULL;
5786   switch (predicate) {
5787   case 0:
5788     if (UseSHA1Intrinsics) {
5789       // we want to do an instanceof comparison against the SHA class
5790       klass_SHA_name = "sun/security/provider/SHA";
5791     }
5792     break;
5793   case 1:
5794     if (UseSHA256Intrinsics) {
5795       // we want to do an instanceof comparison against the SHA2 class
5796       klass_SHA_name = "sun/security/provider/SHA2";
5797     }
5798     break;
5799   case 2:
5800     if (UseSHA512Intrinsics) {
5801       // we want to do an instanceof comparison against the SHA5 class
5802       klass_SHA_name = "sun/security/provider/SHA5";
5803     }
5804     break;
5805   default:
5806     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
5807   }
5808 
5809   ciKlass* klass_SHA = NULL;
5810   if (klass_SHA_name != NULL) {
5811     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
5812   }
5813   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
5814     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
5815     Node* ctrl = control();
5816     set_control(top()); // no intrinsic path
5817     return ctrl;
5818   }
5819   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
5820 
5821   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
5822   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
5823   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
5824   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5825 
5826   return instof_false;  // even if it is NULL
5827 }
5828 
5829 bool LibraryCallKit::inline_profileBoolean() {
5830   Node* counts = argument(1);
5831   const TypeAryPtr* ary = NULL;
5832   ciArray* aobj = NULL;
5833   if (counts->is_Con()
5834       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
5835       && (aobj = ary->const_oop()->as_array()) != NULL
5836       && (aobj->length() == 2)) {
5837     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
5838     jint false_cnt = aobj->element_value(0).as_int();
5839     jint  true_cnt = aobj->element_value(1).as_int();
5840 
5841     method()->set_injected_profile(true);
5842 
5843     if (C->log() != NULL) {
5844       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
5845                      false_cnt, true_cnt);
5846     }
5847 
5848     if (false_cnt + true_cnt == 0) {
5849       // According to profile, never executed.
5850       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
5851                           Deoptimization::Action_reinterpret);
5852       return true;
5853     }
5854     // Stop profiling.
5855     // MethodHandleImpl::profileBoolean() has profiling logic in it's bytecode.
5856     // By replacing method's body with profile data (represented as ProfileBooleanNode
5857     // on IR level) we effectively disable profiling.
5858     // It enables full speed execution once optimized code is generated.
5859     Node* profile = _gvn.transform(new ProfileBooleanNode(argument(0), false_cnt, true_cnt));
5860     C->record_for_igvn(profile);
5861     set_result(profile);
5862     return true;
5863   } else {
5864     // Continue profiling.
5865     // Profile data isn't available at the moment. So, execute method's bytecode version.
5866     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
5867     // is compiled and counters aren't available since corresponding MethodHandle
5868     // isn't a compile-time constant.
5869     return false;
5870   }
5871 }