< prev index next >

modules/javafx.graphics/src/main/native-iio/libjpeg7/jdhuff.c

Print this page

        

@@ -1,10 +1,10 @@
 /*
  * jdhuff.c
  *
  * Copyright (C) 1991-1997, Thomas G. Lane.
- * Modified 2006-2009 by Guido Vollbeding.
+ * Modified 2006-2016 by Guido Vollbeding.
  * This file is part of the Independent JPEG Group's software.
  * For conditions of distribution and use, see the accompanying README file.
  *
  * This file contains Huffman entropy decoding routines.
  * Both sequential and progressive modes are supported in this single module.

@@ -227,10 +227,11 @@
    */
   bitread_perm_state bitstate;  /* Bit buffer at start of MCU */
   savable_state saved;          /* Other state at start of MCU */
 
   /* These fields are NOT loaded into local working state. */
+  boolean insufficient_data;    /* set TRUE after emitting warning */
   unsigned int restarts_to_go;  /* MCUs left in this restart interval */
 
   /* Following two fields used only in progressive mode */
 
   /* Pointers to derived tables (these workspaces have image lifespan) */

@@ -265,10 +266,55 @@
   { 20, 22, 33, 38, 46, 51, 55, 60 },
   { 21, 34, 37, 47, 50, 56, 59, 61 },
   { 35, 36, 48, 49, 57, 58, 62, 63 }
 };
 
+static const int jpeg_zigzag_order7[7][7] = {
+  {  0,  1,  5,  6, 14, 15, 27 },
+  {  2,  4,  7, 13, 16, 26, 28 },
+  {  3,  8, 12, 17, 25, 29, 38 },
+  {  9, 11, 18, 24, 30, 37, 39 },
+  { 10, 19, 23, 31, 36, 40, 45 },
+  { 20, 22, 32, 35, 41, 44, 46 },
+  { 21, 33, 34, 42, 43, 47, 48 }
+};
+
+static const int jpeg_zigzag_order6[6][6] = {
+  {  0,  1,  5,  6, 14, 15 },
+  {  2,  4,  7, 13, 16, 25 },
+  {  3,  8, 12, 17, 24, 26 },
+  {  9, 11, 18, 23, 27, 32 },
+  { 10, 19, 22, 28, 31, 33 },
+  { 20, 21, 29, 30, 34, 35 }
+};
+
+static const int jpeg_zigzag_order5[5][5] = {
+  {  0,  1,  5,  6, 14 },
+  {  2,  4,  7, 13, 15 },
+  {  3,  8, 12, 16, 21 },
+  {  9, 11, 17, 20, 22 },
+  { 10, 18, 19, 23, 24 }
+};
+
+static const int jpeg_zigzag_order4[4][4] = {
+  { 0,  1,  5,  6 },
+  { 2,  4,  7, 12 },
+  { 3,  8, 11, 13 },
+  { 9, 10, 14, 15 }
+};
+
+static const int jpeg_zigzag_order3[3][3] = {
+  { 0, 1, 5 },
+  { 2, 4, 6 },
+  { 3, 7, 8 }
+};
+
+static const int jpeg_zigzag_order2[2][2] = {
+  { 0, 1 },
+  { 2, 3 }
+};
+
 
 /*
  * Compute the derived values for a Huffman table.
  * This routine also performs some validation checks on the table.
  */

@@ -283,13 +329,10 @@
   int lookbits, ctr;
   char huffsize[257];
   unsigned int huffcode[257];
   unsigned int code;
 
-  MEMZERO(huffsize, SIZEOF(huffsize));
-  MEMZERO(huffcode, SIZEOF(huffcode));
-
   /* Note that huffsize[] and huffcode[] are filled in code-length order,
    * paralleling the order of the symbols themselves in htbl->huffval[].
    */
 
   /* Find the input Huffman table */

@@ -497,13 +540,13 @@
       /* Uh-oh.  Report corrupted data to user and stuff zeroes into
        * the data stream, so that we can produce some kind of image.
        * We use a nonvolatile flag to ensure that only one warning message
        * appears per data segment.
        */
-      if (! cinfo->entropy->insufficient_data) {
+      if (! ((huff_entropy_ptr) cinfo->entropy)->insufficient_data) {
         WARNMS(cinfo, JWRN_HIT_MARKER);
-        cinfo->entropy->insufficient_data = TRUE;
+        ((huff_entropy_ptr) cinfo->entropy)->insufficient_data = TRUE;
       }
       /* Fill the buffer with zero bits */
       get_buffer <<= MIN_GET_BITS - bits_left;
       bits_left = MIN_GET_BITS;
     }

@@ -574,35 +617,46 @@
   state->bits_left = bits_left;
 
   /* With garbage input we may reach the sentinel value l = 17. */
 
   if (l > 16) {
-    int br_offset = state->next_input_byte - state->cinfo->src->next_input_byte;
     WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
-    state->next_input_byte = state->cinfo->src->next_input_byte + br_offset;
     return 0;                   /* fake a zero as the safest result */
   }
 
   return htbl->pub->huffval[ (int) (code + htbl->valoffset[l]) ];
 }
 
 
 /*
+ * Finish up at the end of a Huffman-compressed scan.
+ */
+
+METHODDEF(void)
+finish_pass_huff (j_decompress_ptr cinfo)
+{
+  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+
+  /* Throw away any unused bits remaining in bit buffer; */
+  /* include any full bytes in next_marker's count of discarded bytes */
+  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
+  entropy->bitstate.bits_left = 0;
+}
+
+
+/*
  * Check for a restart marker & resynchronize decoder.
  * Returns FALSE if must suspend.
  */
 
 LOCAL(boolean)
 process_restart (j_decompress_ptr cinfo)
 {
   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
   int ci;
 
-  /* Throw away any unused bits remaining in bit buffer; */
-  /* include any full bytes in next_marker's count of discarded bytes */
-  cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
-  entropy->bitstate.bits_left = 0;
+  finish_pass_huff(cinfo);
 
   /* Advance past the RSTn marker */
   if (! (*cinfo->marker->read_restart_marker) (cinfo))
     return FALSE;
 

@@ -619,11 +673,11 @@
    * against a marker.  In that case we will end up treating the next data
    * segment as empty, and we can avoid producing bogus output pixels by
    * leaving the flag set.
    */
   if (cinfo->unread_marker == 0)
-    entropy->pub.insufficient_data = FALSE;
+    entropy->insufficient_data = FALSE;
 
   return TRUE;
 }
 
 

@@ -671,11 +725,11 @@
   }
 
   /* If we've run out of data, just leave the MCU set to zeroes.
    * This way, we return uniform gray for the remainder of the segment.
    */
-  if (! entropy->pub.insufficient_data) {
+  if (! entropy->insufficient_data) {
 
     /* Load up working state */
     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
     ASSIGN_STATE(state, entropy->saved);
 

@@ -723,14 +777,14 @@
 
 METHODDEF(boolean)
 decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 {
   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
-  int Se = cinfo->Se;
-  int Al = cinfo->Al;
   register int s, k, r;
   unsigned int EOBRUN;
+  int Se, Al;
+  const int * natural_order;
   JBLOCKROW block;
   BITREAD_STATE_VARS;
   d_derived_tbl * tbl;
 
   /* Process restart marker if needed; may have to suspend */

@@ -741,23 +795,26 @@
   }
 
   /* If we've run out of data, just leave the MCU set to zeroes.
    * This way, we return uniform gray for the remainder of the segment.
    */
-  if (! entropy->pub.insufficient_data) {
+  if (! entropy->insufficient_data) {
 
     /* Load up working state.
      * We can avoid loading/saving bitread state if in an EOB run.
      */
     EOBRUN = entropy->saved.EOBRUN;     /* only part of saved state we need */
 
     /* There is always only one block per MCU */
 
-    if (EOBRUN > 0)             /* if it's a band of zeroes... */
+    if (EOBRUN)                 /* if it's a band of zeroes... */
       EOBRUN--;                 /* ...process it now (we do nothing) */
     else {
       BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+      Se = cinfo->Se;
+      Al = cinfo->Al;
+      natural_order = cinfo->natural_order;
       block = MCU_data[0];
       tbl = entropy->ac_derived_tbl;
 
       for (k = cinfo->Ss; k <= Se; k++) {
         HUFF_DECODE(s, br_state, tbl, return FALSE, label2);

@@ -767,24 +824,23 @@
           k += r;
           CHECK_BIT_BUFFER(br_state, s, return FALSE);
           r = GET_BITS(s);
           s = HUFF_EXTEND(r, s);
           /* Scale and output coefficient in natural (dezigzagged) order */
-          (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al);
+          (*block)[natural_order[k]] = (JCOEF) (s << Al);
         } else {
-          if (r == 15) {        /* ZRL */
-            k += 15;            /* skip 15 zeroes in band */
-          } else {              /* EOBr, run length is 2^r + appended bits */
-            EOBRUN = 1 << r;
+          if (r != 15) {        /* EOBr, run length is 2^r + appended bits */
             if (r) {            /* EOBr, r > 0 */
+              EOBRUN = 1 << r;
               CHECK_BIT_BUFFER(br_state, r, return FALSE);
               r = GET_BITS(r);
               EOBRUN += r;
-            }
             EOBRUN--;           /* this band is processed at this moment */
+            }
             break;              /* force end-of-band */
           }
+          k += 15;              /* ZRL: skip 15 zeroes in band */
         }
       }
 
       BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
     }

@@ -800,21 +856,19 @@
 }
 
 
 /*
  * MCU decoding for DC successive approximation refinement scan.
- * Note: we assume such scans can be multi-component, although the spec
- * is not very clear on the point.
+ * Note: we assume such scans can be multi-component,
+ * although the spec is not very clear on the point.
  */
 
 METHODDEF(boolean)
 decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 {
   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
-  int p1 = 1 << cinfo->Al;      /* 1 in the bit position being coded */
-  int blkn;
-  JBLOCKROW block;
+  int p1, blkn;
   BITREAD_STATE_VARS;
 
   /* Process restart marker if needed; may have to suspend */
   if (cinfo->restart_interval) {
     if (entropy->restarts_to_go == 0)

@@ -827,19 +881,19 @@
    */
 
   /* Load up working state */
   BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
 
+  p1 = 1 << cinfo->Al;          /* 1 in the bit position being coded */
+
   /* Outer loop handles each block in the MCU */
 
   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
-    block = MCU_data[blkn];
-
     /* Encoded data is simply the next bit of the two's-complement DC value */
     CHECK_BIT_BUFFER(br_state, 1, return FALSE);
     if (GET_BITS(1))
-      (*block)[0] |= p1;
+      MCU_data[blkn][0][0] |= p1;
     /* Note: since we use |=, repeating the assignment later is safe */
   }
 
   /* Completed MCU, so update state */
   BITREAD_SAVE_STATE(cinfo,entropy->bitstate);

@@ -857,15 +911,14 @@
 
 METHODDEF(boolean)
 decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 {
   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
-  int Se = cinfo->Se;
-  int p1 = 1 << cinfo->Al;      /* 1 in the bit position being coded */
-  int m1 = (-1) << cinfo->Al;   /* -1 in the bit position being coded */
   register int s, k, r;
   unsigned int EOBRUN;
+  int Se, p1, m1;
+  const int * natural_order;
   JBLOCKROW block;
   JCOEFPTR thiscoef;
   BITREAD_STATE_VARS;
   d_derived_tbl * tbl;
   int num_newnz;

@@ -878,11 +931,16 @@
         return FALSE;
   }
 
   /* If we've run out of data, don't modify the MCU.
    */
-  if (! entropy->pub.insufficient_data) {
+  if (! entropy->insufficient_data) {
+
+    Se = cinfo->Se;
+    p1 = 1 << cinfo->Al;        /* 1 in the bit position being coded */
+    m1 = (-1) << cinfo->Al;     /* -1 in the bit position being coded */
+    natural_order = cinfo->natural_order;
 
     /* Load up working state */
     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
     EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */
 

@@ -900,11 +958,11 @@
 
     /* initialize coefficient loop counter to start of band */
     k = cinfo->Ss;
 
     if (EOBRUN == 0) {
-      for (; k <= Se; k++) {
+      do {
         HUFF_DECODE(s, br_state, tbl, goto undoit, label3);
         r = s >> 4;
         s &= 15;
         if (s) {
           if (s != 1)           /* size of new coef should always be 1 */

@@ -929,12 +987,12 @@
         /* Advance over already-nonzero coefs and r still-zero coefs,
          * appending correction bits to the nonzeroes.  A correction bit is 1
          * if the absolute value of the coefficient must be increased.
          */
         do {
-          thiscoef = *block + jpeg_natural_order[k];
-          if (*thiscoef != 0) {
+          thiscoef = *block + natural_order[k];
+          if (*thiscoef) {
             CHECK_BIT_BUFFER(br_state, 1, goto undoit);
             if (GET_BITS(1)) {
               if ((*thiscoef & p1) == 0) { /* do nothing if already set it */
                 if (*thiscoef >= 0)
                   *thiscoef += p1;

@@ -947,39 +1005,41 @@
               break;            /* reached target zero coefficient */
           }
           k++;
         } while (k <= Se);
         if (s) {
-          int pos = jpeg_natural_order[k];
+          int pos = natural_order[k];
           /* Output newly nonzero coefficient */
           (*block)[pos] = (JCOEF) s;
           /* Remember its position in case we have to suspend */
           newnz_pos[num_newnz++] = pos;
         }
-      }
+        k++;
+      } while (k <= Se);
     }
 
-    if (EOBRUN > 0) {
+    if (EOBRUN) {
       /* Scan any remaining coefficient positions after the end-of-band
        * (the last newly nonzero coefficient, if any).  Append a correction
        * bit to each already-nonzero coefficient.  A correction bit is 1
        * if the absolute value of the coefficient must be increased.
        */
-      for (; k <= Se; k++) {
-        thiscoef = *block + jpeg_natural_order[k];
-        if (*thiscoef != 0) {
+      do {
+        thiscoef = *block + natural_order[k];
+        if (*thiscoef) {
           CHECK_BIT_BUFFER(br_state, 1, goto undoit);
           if (GET_BITS(1)) {
             if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */
               if (*thiscoef >= 0)
                 *thiscoef += p1;
               else
                 *thiscoef += m1;
             }
           }
         }
-      }
+        k++;
+      } while (k <= Se);
       /* Count one block completed in EOB run */
       EOBRUN--;
     }
 
     /* Completed MCU, so update state */

@@ -992,19 +1052,148 @@
 
   return TRUE;
 
 undoit:
   /* Re-zero any output coefficients that we made newly nonzero */
-  while (num_newnz > 0)
+  while (num_newnz)
     (*block)[newnz_pos[--num_newnz]] = 0;
 
   return FALSE;
 }
 
 
 /*
- * Decode one MCU's worth of Huffman-compressed coefficients.
+ * Decode one MCU's worth of Huffman-compressed coefficients,
+ * partial blocks.
+ */
+
+METHODDEF(boolean)
+decode_mcu_sub (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+  huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+  const int * natural_order;
+  int Se, blkn;
+  BITREAD_STATE_VARS;
+  savable_state state;
+
+  /* Process restart marker if needed; may have to suspend */
+  if (cinfo->restart_interval) {
+    if (entropy->restarts_to_go == 0)
+      if (! process_restart(cinfo))
+        return FALSE;
+  }
+
+  /* If we've run out of data, just leave the MCU set to zeroes.
+   * This way, we return uniform gray for the remainder of the segment.
+   */
+  if (! entropy->insufficient_data) {
+
+    natural_order = cinfo->natural_order;
+    Se = cinfo->lim_Se;
+
+    /* Load up working state */
+    BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+    ASSIGN_STATE(state, entropy->saved);
+
+    /* Outer loop handles each block in the MCU */
+
+    for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+      JBLOCKROW block = MCU_data[blkn];
+      d_derived_tbl * htbl;
+      register int s, k, r;
+      int coef_limit, ci;
+
+      /* Decode a single block's worth of coefficients */
+
+      /* Section F.2.2.1: decode the DC coefficient difference */
+      htbl = entropy->dc_cur_tbls[blkn];
+      HUFF_DECODE(s, br_state, htbl, return FALSE, label1);
+
+      htbl = entropy->ac_cur_tbls[blkn];
+      k = 1;
+      coef_limit = entropy->coef_limit[blkn];
+      if (coef_limit) {
+        /* Convert DC difference to actual value, update last_dc_val */
+        if (s) {
+          CHECK_BIT_BUFFER(br_state, s, return FALSE);
+          r = GET_BITS(s);
+          s = HUFF_EXTEND(r, s);
+        }
+        ci = cinfo->MCU_membership[blkn];
+        s += state.last_dc_val[ci];
+        state.last_dc_val[ci] = s;
+        /* Output the DC coefficient */
+        (*block)[0] = (JCOEF) s;
+
+        /* Section F.2.2.2: decode the AC coefficients */
+        /* Since zeroes are skipped, output area must be cleared beforehand */
+        for (; k < coef_limit; k++) {
+          HUFF_DECODE(s, br_state, htbl, return FALSE, label2);
+
+          r = s >> 4;
+          s &= 15;
+
+          if (s) {
+            k += r;
+            CHECK_BIT_BUFFER(br_state, s, return FALSE);
+            r = GET_BITS(s);
+            s = HUFF_EXTEND(r, s);
+            /* Output coefficient in natural (dezigzagged) order.
+             * Note: the extra entries in natural_order[] will save us
+             * if k > Se, which could happen if the data is corrupted.
+             */
+            (*block)[natural_order[k]] = (JCOEF) s;
+          } else {
+            if (r != 15)
+              goto EndOfBlock;
+            k += 15;
+          }
+        }
+      } else {
+        if (s) {
+          CHECK_BIT_BUFFER(br_state, s, return FALSE);
+          DROP_BITS(s);
+        }
+      }
+
+      /* Section F.2.2.2: decode the AC coefficients */
+      /* In this path we just discard the values */
+      for (; k <= Se; k++) {
+        HUFF_DECODE(s, br_state, htbl, return FALSE, label3);
+
+        r = s >> 4;
+        s &= 15;
+
+        if (s) {
+          k += r;
+          CHECK_BIT_BUFFER(br_state, s, return FALSE);
+          DROP_BITS(s);
+        } else {
+          if (r != 15)
+            break;
+          k += 15;
+        }
+      }
+
+      EndOfBlock: ;
+    }
+
+    /* Completed MCU, so update state */
+    BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+    ASSIGN_STATE(entropy->saved, state);
+  }
+
+  /* Account for restart interval (no-op if not using restarts) */
+  entropy->restarts_to_go--;
+
+  return TRUE;
+}
+
+
+/*
+ * Decode one MCU's worth of Huffman-compressed coefficients,
+ * full-size blocks.
  */
 
 METHODDEF(boolean)
 decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
 {

@@ -1021,11 +1210,11 @@
   }
 
   /* If we've run out of data, just leave the MCU set to zeroes.
    * This way, we return uniform gray for the remainder of the segment.
    */
-  if (! entropy->pub.insufficient_data) {
+  if (! entropy->insufficient_data) {
 
     /* Load up working state */
     BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
     ASSIGN_STATE(state, entropy->saved);
 

@@ -1130,21 +1319,21 @@
 
 METHODDEF(void)
 start_pass_huff_decoder (j_decompress_ptr cinfo)
 {
   huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
-  int ci, blkn, dctbl, actbl, i;
+  int ci, blkn, tbl, i;
   jpeg_component_info * compptr;
 
   if (cinfo->progressive_mode) {
     /* Validate progressive scan parameters */
     if (cinfo->Ss == 0) {
       if (cinfo->Se != 0)
         goto bad;
     } else {
       /* need not check Ss/Se < 0 since they came from unsigned bytes */
-      if (cinfo->Se < cinfo->Ss || cinfo->Se >= DCTSIZE2)
+      if (cinfo->Se < cinfo->Ss || cinfo->Se > cinfo->lim_Se)
         goto bad;
       /* AC scans may have only one component */
       if (cinfo->comps_in_scan != 1)
         goto bad;
     }

@@ -1199,20 +1388,20 @@
       /* Make sure requested tables are present, and compute derived tables.
        * We may build same derived table more than once, but it's not expensive.
        */
       if (cinfo->Ss == 0) {
         if (cinfo->Ah == 0) {   /* DC refinement needs no table */
-          i = compptr->dc_tbl_no;
-          jpeg_make_d_derived_tbl(cinfo, TRUE, i,
-                                  & entropy->derived_tbls[i]);
+          tbl = compptr->dc_tbl_no;
+          jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
+                                  & entropy->derived_tbls[tbl]);
         }
       } else {
-        i = compptr->ac_tbl_no;
-        jpeg_make_d_derived_tbl(cinfo, FALSE, i,
-                                & entropy->derived_tbls[i]);
+        tbl = compptr->ac_tbl_no;
+        jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
+                                & entropy->derived_tbls[tbl]);
         /* remember the single active table */
-        entropy->ac_derived_tbl = entropy->derived_tbls[i];
+        entropy->ac_derived_tbl = entropy->derived_tbls[tbl];
       }
       /* Initialize DC predictions to 0 */
       entropy->saved.last_dc_val[ci] = 0;
     }
 

@@ -1221,27 +1410,39 @@
   } else {
     /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
      * This ought to be an error condition, but we make it a warning because
      * there are some baseline files out there with all zeroes in these bytes.
      */
-    if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
-        cinfo->Ah != 0 || cinfo->Al != 0)
+    if (cinfo->Ss != 0 || cinfo->Ah != 0 || cinfo->Al != 0 ||
+        ((cinfo->is_baseline || cinfo->Se < DCTSIZE2) &&
+        cinfo->Se != cinfo->lim_Se))
       WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
 
     /* Select MCU decoding routine */
+    /* We retain the hard-coded case for full-size blocks.
+     * This is not necessary, but it appears that this version is slightly
+     * more performant in the given implementation.
+     * With an improved implementation we would prefer a single optimized
+     * function.
+     */
+    if (cinfo->lim_Se != DCTSIZE2-1)
+      entropy->pub.decode_mcu = decode_mcu_sub;
+    else
     entropy->pub.decode_mcu = decode_mcu;
 
     for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
       compptr = cinfo->cur_comp_info[ci];
-      dctbl = compptr->dc_tbl_no;
-      actbl = compptr->ac_tbl_no;
       /* Compute derived values for Huffman tables */
       /* We may do this more than once for a table, but it's not expensive */
-      jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl,
-                              & entropy->dc_derived_tbls[dctbl]);
-      jpeg_make_d_derived_tbl(cinfo, FALSE, actbl,
-                              & entropy->ac_derived_tbls[actbl]);
+      tbl = compptr->dc_tbl_no;
+      jpeg_make_d_derived_tbl(cinfo, TRUE, tbl,
+                              & entropy->dc_derived_tbls[tbl]);
+      if (cinfo->lim_Se) {      /* AC needs no table when not present */
+        tbl = compptr->ac_tbl_no;
+        jpeg_make_d_derived_tbl(cinfo, FALSE, tbl,
+                                & entropy->ac_derived_tbls[tbl]);
+      }
       /* Initialize DC predictions to 0 */
       entropy->saved.last_dc_val[ci] = 0;
     }
 
     /* Precalculate decoding info for each block in an MCU of this scan */

@@ -1252,24 +1453,61 @@
       entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no];
       entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no];
       /* Decide whether we really care about the coefficient values */
       if (compptr->component_needed) {
         ci = compptr->DCT_v_scaled_size;
-        if (ci <= 0 || ci > 8) ci = 8;
         i = compptr->DCT_h_scaled_size;
+        switch (cinfo->lim_Se) {
+        case (1*1-1):
+          entropy->coef_limit[blkn] = 1;
+          break;
+        case (2*2-1):
+          if (ci <= 0 || ci > 2) ci = 2;
+          if (i <= 0 || i > 2) i = 2;
+          entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order2[ci - 1][i - 1];
+          break;
+        case (3*3-1):
+          if (ci <= 0 || ci > 3) ci = 3;
+          if (i <= 0 || i > 3) i = 3;
+          entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order3[ci - 1][i - 1];
+          break;
+        case (4*4-1):
+          if (ci <= 0 || ci > 4) ci = 4;
+          if (i <= 0 || i > 4) i = 4;
+          entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order4[ci - 1][i - 1];
+          break;
+        case (5*5-1):
+          if (ci <= 0 || ci > 5) ci = 5;
+          if (i <= 0 || i > 5) i = 5;
+          entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order5[ci - 1][i - 1];
+          break;
+        case (6*6-1):
+          if (ci <= 0 || ci > 6) ci = 6;
+          if (i <= 0 || i > 6) i = 6;
+          entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order6[ci - 1][i - 1];
+          break;
+        case (7*7-1):
+          if (ci <= 0 || ci > 7) ci = 7;
+          if (i <= 0 || i > 7) i = 7;
+          entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order7[ci - 1][i - 1];
+          break;
+        default:
+          if (ci <= 0 || ci > 8) ci = 8;
         if (i <= 0 || i > 8) i = 8;
         entropy->coef_limit[blkn] = 1 + jpeg_zigzag_order[ci - 1][i - 1];
+          break;
+        }
       } else {
         entropy->coef_limit[blkn] = 0;
       }
     }
   }
 
   /* Initialize bitread state variables */
   entropy->bitstate.bits_left = 0;
   entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
-  entropy->pub.insufficient_data = FALSE;
+  entropy->insufficient_data = FALSE;
 
   /* Initialize restart counter */
   entropy->restarts_to_go = cinfo->restart_interval;
 }
 

@@ -1285,12 +1523,13 @@
   int i;
 
   entropy = (huff_entropy_ptr)
     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
                                 SIZEOF(huff_entropy_decoder));
-  cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
+  cinfo->entropy = &entropy->pub;
   entropy->pub.start_pass = start_pass_huff_decoder;
+  entropy->pub.finish_pass = finish_pass_huff;
 
   if (cinfo->progressive_mode) {
     /* Create progression status table */
     int *coef_bit_ptr, ci;
     cinfo->coef_bits = (int (*)[DCTSIZE2])
< prev index next >