< prev index next >

modules/javafx.graphics/src/main/native-iio/libjpeg7/jfdctflt.c

Print this page


   1 /*
   2  * jfdctflt.c
   3  *
   4  * Copyright (C) 1994-1996, Thomas G. Lane.
   5  * Modified 2003-2009 by Guido Vollbeding.
   6  * This file is part of the Independent JPEG Group's software.
   7  * For conditions of distribution and use, see the accompanying README file.
   8  *
   9  * This file contains a floating-point implementation of the
  10  * forward DCT (Discrete Cosine Transform).
  11  *
  12  * This implementation should be more accurate than either of the integer
  13  * DCT implementations.  However, it may not give the same results on all
  14  * machines because of differences in roundoff behavior.  Speed will depend
  15  * on the hardware's floating point capacity.
  16  *
  17  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
  18  * on each column.  Direct algorithms are also available, but they are
  19  * much more complex and seem not to be any faster when reduced to code.
  20  *
  21  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
  22  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
  23  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
  24  * JPEG textbook (see REFERENCES section in file README).  The following code
  25  * is based directly on figure 4-8 in P&M.


  31  * to be done in the DCT itself.
  32  * The primary disadvantage of this method is that with a fixed-point
  33  * implementation, accuracy is lost due to imprecise representation of the
  34  * scaled quantization values.  However, that problem does not arise if
  35  * we use floating point arithmetic.
  36  */
  37 
  38 #define JPEG_INTERNALS
  39 #include "jinclude.h"
  40 #include "jpeglib.h"
  41 #include "jdct.h"               /* Private declarations for DCT subsystem */
  42 
  43 #ifdef DCT_FLOAT_SUPPORTED
  44 
  45 
  46 /*
  47  * This module is specialized to the case DCTSIZE = 8.
  48  */
  49 
  50 #if DCTSIZE != 8
  51   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
  52 #endif
  53 
  54 
  55 /*
  56  * Perform the forward DCT on one block of samples.


  57  */
  58 
  59 GLOBAL(void)
  60 jpeg_fdct_float (FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col)
  61 {
  62   FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  63   FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
  64   FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
  65   FAST_FLOAT *dataptr;
  66   JSAMPROW elemptr;
  67   int ctr;
  68 
  69   /* Pass 1: process rows. */
  70 
  71   dataptr = data;
  72   for (ctr = 0; ctr < DCTSIZE; ctr++) {
  73     elemptr = sample_data[ctr] + start_col;
  74 
  75     /* Load data into workspace */
  76     tmp0 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]));
  77     tmp7 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]));
  78     tmp1 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]));
  79     tmp6 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]));
  80     tmp2 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]));
  81     tmp5 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]));
  82     tmp3 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]));
  83     tmp4 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]));
  84 
  85     /* Even part */
  86 
  87     tmp10 = tmp0 + tmp3;        /* phase 2 */
  88     tmp13 = tmp0 - tmp3;
  89     tmp11 = tmp1 + tmp2;
  90     tmp12 = tmp1 - tmp2;
  91 
  92     /* Apply unsigned->signed conversion */
  93     dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
  94     dataptr[4] = tmp10 - tmp11;
  95 
  96     z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
  97     dataptr[2] = tmp13 + z1;    /* phase 5 */
  98     dataptr[6] = tmp13 - z1;
  99 
 100     /* Odd part */
 101 
 102     tmp10 = tmp4 + tmp5;        /* phase 2 */
 103     tmp11 = tmp5 + tmp6;
 104     tmp12 = tmp6 + tmp7;
 105 
 106     /* The rotator is modified from fig 4-8 to avoid extra negations. */
 107     z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
 108     z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
 109     z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
 110     z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
 111 
 112     z11 = tmp7 + z3;            /* phase 5 */


   1 /*
   2  * jfdctflt.c
   3  *
   4  * Copyright (C) 1994-1996, Thomas G. Lane.
   5  * Modified 2003-2017 by Guido Vollbeding.
   6  * This file is part of the Independent JPEG Group's software.
   7  * For conditions of distribution and use, see the accompanying README file.
   8  *
   9  * This file contains a floating-point implementation of the
  10  * forward DCT (Discrete Cosine Transform).
  11  *
  12  * This implementation should be more accurate than either of the integer
  13  * DCT implementations.  However, it may not give the same results on all
  14  * machines because of differences in roundoff behavior.  Speed will depend
  15  * on the hardware's floating point capacity.
  16  *
  17  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
  18  * on each column.  Direct algorithms are also available, but they are
  19  * much more complex and seem not to be any faster when reduced to code.
  20  *
  21  * This implementation is based on Arai, Agui, and Nakajima's algorithm for
  22  * scaled DCT.  Their original paper (Trans. IEICE E-71(11):1095) is in
  23  * Japanese, but the algorithm is described in the Pennebaker & Mitchell
  24  * JPEG textbook (see REFERENCES section in file README).  The following code
  25  * is based directly on figure 4-8 in P&M.


  31  * to be done in the DCT itself.
  32  * The primary disadvantage of this method is that with a fixed-point
  33  * implementation, accuracy is lost due to imprecise representation of the
  34  * scaled quantization values.  However, that problem does not arise if
  35  * we use floating point arithmetic.
  36  */
  37 
  38 #define JPEG_INTERNALS
  39 #include "jinclude.h"
  40 #include "jpeglib.h"
  41 #include "jdct.h"               /* Private declarations for DCT subsystem */
  42 
  43 #ifdef DCT_FLOAT_SUPPORTED
  44 
  45 
  46 /*
  47  * This module is specialized to the case DCTSIZE = 8.
  48  */
  49 
  50 #if DCTSIZE != 8
  51   Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
  52 #endif
  53 
  54 
  55 /*
  56  * Perform the forward DCT on one block of samples.
  57  *
  58  * cK represents cos(K*pi/16).
  59  */
  60 
  61 GLOBAL(void)
  62 jpeg_fdct_float (FAST_FLOAT * data, JSAMPARRAY sample_data, JDIMENSION start_col)
  63 {
  64   FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  65   FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
  66   FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
  67   FAST_FLOAT *dataptr;
  68   JSAMPROW elemptr;
  69   int ctr;
  70 
  71   /* Pass 1: process rows. */
  72 
  73   dataptr = data;
  74   for (ctr = 0; ctr < DCTSIZE; ctr++) {
  75     elemptr = sample_data[ctr] + start_col;
  76 
  77     /* Load data into workspace */
  78     tmp0 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]));
  79     tmp7 = (FAST_FLOAT) (GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]));
  80     tmp1 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]));
  81     tmp6 = (FAST_FLOAT) (GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]));
  82     tmp2 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]));
  83     tmp5 = (FAST_FLOAT) (GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]));
  84     tmp3 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]));
  85     tmp4 = (FAST_FLOAT) (GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]));
  86 
  87     /* Even part */
  88 
  89     tmp10 = tmp0 + tmp3;        /* phase 2 */
  90     tmp13 = tmp0 - tmp3;
  91     tmp11 = tmp1 + tmp2;
  92     tmp12 = tmp1 - tmp2;
  93 
  94     /* Apply unsigned->signed conversion. */
  95     dataptr[0] = tmp10 + tmp11 - 8 * CENTERJSAMPLE; /* phase 3 */
  96     dataptr[4] = tmp10 - tmp11;
  97 
  98     z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
  99     dataptr[2] = tmp13 + z1;    /* phase 5 */
 100     dataptr[6] = tmp13 - z1;
 101 
 102     /* Odd part */
 103 
 104     tmp10 = tmp4 + tmp5;        /* phase 2 */
 105     tmp11 = tmp5 + tmp6;
 106     tmp12 = tmp6 + tmp7;
 107 
 108     /* The rotator is modified from fig 4-8 to avoid extra negations. */
 109     z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
 110     z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
 111     z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
 112     z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
 113 
 114     z11 = tmp7 + z3;            /* phase 5 */


< prev index next >