1 /*
   2  * jquant1.c
   3  *
   4  * Copyright (C) 1991-1996, Thomas G. Lane.
   5  * This file is part of the Independent JPEG Group's software.
   6  * For conditions of distribution and use, see the accompanying README file.
   7  *
   8  * This file contains 1-pass color quantization (color mapping) routines.
   9  * These routines provide mapping to a fixed color map using equally spaced
  10  * color values.  Optional Floyd-Steinberg or ordered dithering is available.
  11  */
  12 
  13 #define JPEG_INTERNALS
  14 #include "jinclude.h"
  15 #include "jpeglib.h"
  16 
  17 #ifdef QUANT_1PASS_SUPPORTED
  18 
  19 
  20 /*
  21  * The main purpose of 1-pass quantization is to provide a fast, if not very
  22  * high quality, colormapped output capability.  A 2-pass quantizer usually
  23  * gives better visual quality; however, for quantized grayscale output this
  24  * quantizer is perfectly adequate.  Dithering is highly recommended with this
  25  * quantizer, though you can turn it off if you really want to.
  26  *
  27  * In 1-pass quantization the colormap must be chosen in advance of seeing the
  28  * image.  We use a map consisting of all combinations of Ncolors[i] color
  29  * values for the i'th component.  The Ncolors[] values are chosen so that
  30  * their product, the total number of colors, is no more than that requested.
  31  * (In most cases, the product will be somewhat less.)
  32  *
  33  * Since the colormap is orthogonal, the representative value for each color
  34  * component can be determined without considering the other components;
  35  * then these indexes can be combined into a colormap index by a standard
  36  * N-dimensional-array-subscript calculation.  Most of the arithmetic involved
  37  * can be precalculated and stored in the lookup table colorindex[].
  38  * colorindex[i][j] maps pixel value j in component i to the nearest
  39  * representative value (grid plane) for that component; this index is
  40  * multiplied by the array stride for component i, so that the
  41  * index of the colormap entry closest to a given pixel value is just
  42  *    sum( colorindex[component-number][pixel-component-value] )
  43  * Aside from being fast, this scheme allows for variable spacing between
  44  * representative values with no additional lookup cost.
  45  *
  46  * If gamma correction has been applied in color conversion, it might be wise
  47  * to adjust the color grid spacing so that the representative colors are
  48  * equidistant in linear space.  At this writing, gamma correction is not
  49  * implemented by jdcolor, so nothing is done here.
  50  */
  51 
  52 
  53 /* Declarations for ordered dithering.
  54  *
  55  * We use a standard 16x16 ordered dither array.  The basic concept of ordered
  56  * dithering is described in many references, for instance Dale Schumacher's
  57  * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991).
  58  * In place of Schumacher's comparisons against a "threshold" value, we add a
  59  * "dither" value to the input pixel and then round the result to the nearest
  60  * output value.  The dither value is equivalent to (0.5 - threshold) times
  61  * the distance between output values.  For ordered dithering, we assume that
  62  * the output colors are equally spaced; if not, results will probably be
  63  * worse, since the dither may be too much or too little at a given point.
  64  *
  65  * The normal calculation would be to form pixel value + dither, range-limit
  66  * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual.
  67  * We can skip the separate range-limiting step by extending the colorindex
  68  * table in both directions.
  69  */
  70 
  71 #define ODITHER_SIZE  16        /* dimension of dither matrix */
  72 /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */
  73 #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)       /* # cells in matrix */
  74 #define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */
  75 
  76 typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE];
  77 typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE];
  78 
  79 static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = {
  80   /* Bayer's order-4 dither array.  Generated by the code given in
  81    * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I.
  82    * The values in this array must range from 0 to ODITHER_CELLS-1.
  83    */
  84   {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 },
  85   { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 },
  86   {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 },
  87   { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 },
  88   {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 },
  89   { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 },
  90   {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 },
  91   { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 },
  92   {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 },
  93   { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 },
  94   {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 },
  95   { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 },
  96   {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 },
  97   { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 },
  98   {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 },
  99   { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 }
 100 };
 101 
 102 
 103 /* Declarations for Floyd-Steinberg dithering.
 104  *
 105  * Errors are accumulated into the array fserrors[], at a resolution of
 106  * 1/16th of a pixel count.  The error at a given pixel is propagated
 107  * to its not-yet-processed neighbors using the standard F-S fractions,
 108  *              ...     (here)  7/16
 109  *              3/16    5/16    1/16
 110  * We work left-to-right on even rows, right-to-left on odd rows.
 111  *
 112  * We can get away with a single array (holding one row's worth of errors)
 113  * by using it to store the current row's errors at pixel columns not yet
 114  * processed, but the next row's errors at columns already processed.  We
 115  * need only a few extra variables to hold the errors immediately around the
 116  * current column.  (If we are lucky, those variables are in registers, but
 117  * even if not, they're probably cheaper to access than array elements are.)
 118  *
 119  * The fserrors[] array is indexed [component#][position].
 120  * We provide (#columns + 2) entries per component; the extra entry at each
 121  * end saves us from special-casing the first and last pixels.
 122  *
 123  * Note: on a wide image, we might not have enough room in a PC's near data
 124  * segment to hold the error array; so it is allocated with alloc_large.
 125  */
 126 
 127 #if BITS_IN_JSAMPLE == 8
 128 typedef INT16 FSERROR;          /* 16 bits should be enough */
 129 typedef int LOCFSERROR;         /* use 'int' for calculation temps */
 130 #else
 131 typedef INT32 FSERROR;          /* may need more than 16 bits */
 132 typedef INT32 LOCFSERROR;       /* be sure calculation temps are big enough */
 133 #endif
 134 
 135 typedef FSERROR FAR *FSERRPTR;  /* pointer to error array (in FAR storage!) */
 136 
 137 
 138 /* Private subobject */
 139 
 140 #define MAX_Q_COMPS 4           /* max components I can handle */
 141 
 142 typedef struct {
 143   struct jpeg_color_quantizer pub; /* public fields */
 144 
 145   /* Initially allocated colormap is saved here */
 146   JSAMPARRAY sv_colormap;       /* The color map as a 2-D pixel array */
 147   int sv_actual;                /* number of entries in use */
 148 
 149   JSAMPARRAY colorindex;        /* Precomputed mapping for speed */
 150   /* colorindex[i][j] = index of color closest to pixel value j in component i,
 151    * premultiplied as described above.  Since colormap indexes must fit into
 152    * JSAMPLEs, the entries of this array will too.
 153    */
 154   boolean is_padded;            /* is the colorindex padded for odither? */
 155 
 156   int Ncolors[MAX_Q_COMPS];     /* # of values alloced to each component */
 157 
 158   /* Variables for ordered dithering */
 159   int row_index;                /* cur row's vertical index in dither matrix */
 160   ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */
 161 
 162   /* Variables for Floyd-Steinberg dithering */
 163   FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */
 164   boolean on_odd_row;           /* flag to remember which row we are on */
 165 } my_cquantizer;
 166 
 167 typedef my_cquantizer * my_cquantize_ptr;
 168 
 169 
 170 /*
 171  * Policy-making subroutines for create_colormap and create_colorindex.
 172  * These routines determine the colormap to be used.  The rest of the module
 173  * only assumes that the colormap is orthogonal.
 174  *
 175  *  * select_ncolors decides how to divvy up the available colors
 176  *    among the components.
 177  *  * output_value defines the set of representative values for a component.
 178  *  * largest_input_value defines the mapping from input values to
 179  *    representative values for a component.
 180  * Note that the latter two routines may impose different policies for
 181  * different components, though this is not currently done.
 182  */
 183 
 184 
 185 LOCAL(int)
 186 select_ncolors (j_decompress_ptr cinfo, int Ncolors[])
 187 /* Determine allocation of desired colors to components, */
 188 /* and fill in Ncolors[] array to indicate choice. */
 189 /* Return value is total number of colors (product of Ncolors[] values). */
 190 {
 191   int nc = cinfo->out_color_components; /* number of color components */
 192   int max_colors = cinfo->desired_number_of_colors;
 193   int total_colors, iroot, i, j;
 194   boolean changed;
 195   long temp;
 196   static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE };
 197 
 198   /* We can allocate at least the nc'th root of max_colors per component. */
 199   /* Compute floor(nc'th root of max_colors). */
 200   iroot = 1;
 201   do {
 202     iroot++;
 203     temp = iroot;               /* set temp = iroot ** nc */
 204     for (i = 1; i < nc; i++)
 205       temp *= iroot;
 206   } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */
 207   iroot--;                      /* now iroot = floor(root) */
 208 
 209   /* Must have at least 2 color values per component */
 210   if (iroot < 2)
 211     ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp);
 212 
 213   /* Initialize to iroot color values for each component */
 214   total_colors = 1;
 215   for (i = 0; i < nc; i++) {
 216     Ncolors[i] = iroot;
 217     total_colors *= iroot;
 218   }
 219   /* We may be able to increment the count for one or more components without
 220    * exceeding max_colors, though we know not all can be incremented.
 221    * Sometimes, the first component can be incremented more than once!
 222    * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.)
 223    * In RGB colorspace, try to increment G first, then R, then B.
 224    */
 225   do {
 226     changed = FALSE;
 227     for (i = 0; i < nc; i++) {
 228       j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i);
 229       /* calculate new total_colors if Ncolors[j] is incremented */
 230       temp = total_colors / Ncolors[j];
 231       temp *= Ncolors[j]+1;     /* done in long arith to avoid oflo */
 232       if (temp > (long) max_colors)
 233         break;                  /* won't fit, done with this pass */
 234       Ncolors[j]++;             /* OK, apply the increment */
 235       total_colors = (int) temp;
 236       changed = TRUE;
 237     }
 238   } while (changed);
 239 
 240   return total_colors;
 241 }
 242 
 243 
 244 LOCAL(int)
 245 output_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
 246 /* Return j'th output value, where j will range from 0 to maxj */
 247 /* The output values must fall in 0..MAXJSAMPLE in increasing order */
 248 {
 249   /* We always provide values 0 and MAXJSAMPLE for each component;
 250    * any additional values are equally spaced between these limits.
 251    * (Forcing the upper and lower values to the limits ensures that
 252    * dithering can't produce a color outside the selected gamut.)
 253    */
 254   return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj);
 255 }
 256 
 257 
 258 LOCAL(int)
 259 largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj)
 260 /* Return largest input value that should map to j'th output value */
 261 /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */
 262 {
 263   /* Breakpoints are halfway between values returned by output_value */
 264   return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj));
 265 }
 266 
 267 
 268 /*
 269  * Create the colormap.
 270  */
 271 
 272 LOCAL(void)
 273 create_colormap (j_decompress_ptr cinfo)
 274 {
 275   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 276   JSAMPARRAY colormap;          /* Created colormap */
 277   int total_colors;             /* Number of distinct output colors */
 278   int i,j,k, nci, blksize, blkdist, ptr, val;
 279 
 280   /* Select number of colors for each component */
 281   total_colors = select_ncolors(cinfo, cquantize->Ncolors);
 282 
 283   /* Report selected color counts */
 284   if (cinfo->out_color_components == 3)
 285     TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS,
 286              total_colors, cquantize->Ncolors[0],
 287              cquantize->Ncolors[1], cquantize->Ncolors[2]);
 288   else
 289     TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors);
 290 
 291   /* Allocate and fill in the colormap. */
 292   /* The colors are ordered in the map in standard row-major order, */
 293   /* i.e. rightmost (highest-indexed) color changes most rapidly. */
 294 
 295   colormap = (*cinfo->mem->alloc_sarray)
 296     ((j_common_ptr) cinfo, JPOOL_IMAGE,
 297      (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components);
 298 
 299   /* blksize is number of adjacent repeated entries for a component */
 300   /* blkdist is distance between groups of identical entries for a component */
 301   blkdist = total_colors;
 302 
 303   for (i = 0; i < cinfo->out_color_components; i++) {
 304     /* fill in colormap entries for i'th color component */
 305     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
 306     blksize = blkdist / nci;
 307     for (j = 0; j < nci; j++) {
 308       /* Compute j'th output value (out of nci) for component */
 309       val = output_value(cinfo, i, j, nci-1);
 310       /* Fill in all colormap entries that have this value of this component */
 311       for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) {
 312         /* fill in blksize entries beginning at ptr */
 313         for (k = 0; k < blksize; k++)
 314           colormap[i][ptr+k] = (JSAMPLE) val;
 315       }
 316     }
 317     blkdist = blksize;          /* blksize of this color is blkdist of next */
 318   }
 319 
 320   /* Save the colormap in private storage,
 321    * where it will survive color quantization mode changes.
 322    */
 323   cquantize->sv_colormap = colormap;
 324   cquantize->sv_actual = total_colors;
 325 }
 326 
 327 
 328 /*
 329  * Create the color index table.
 330  */
 331 
 332 LOCAL(void)
 333 create_colorindex (j_decompress_ptr cinfo)
 334 {
 335   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 336   JSAMPROW indexptr;
 337   int i,j,k, nci, blksize, val, pad;
 338 
 339   /* For ordered dither, we pad the color index tables by MAXJSAMPLE in
 340    * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE).
 341    * This is not necessary in the other dithering modes.  However, we
 342    * flag whether it was done in case user changes dithering mode.
 343    */
 344   if (cinfo->dither_mode == JDITHER_ORDERED) {
 345     pad = MAXJSAMPLE*2;
 346     cquantize->is_padded = TRUE;
 347   } else {
 348     pad = 0;
 349     cquantize->is_padded = FALSE;
 350   }
 351 
 352   cquantize->colorindex = (*cinfo->mem->alloc_sarray)
 353     ((j_common_ptr) cinfo, JPOOL_IMAGE,
 354      (JDIMENSION) (MAXJSAMPLE+1 + pad),
 355      (JDIMENSION) cinfo->out_color_components);
 356 
 357   /* blksize is number of adjacent repeated entries for a component */
 358   blksize = cquantize->sv_actual;
 359 
 360   for (i = 0; i < cinfo->out_color_components; i++) {
 361     /* fill in colorindex entries for i'th color component */
 362     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
 363     blksize = blksize / nci;
 364 
 365     /* adjust colorindex pointers to provide padding at negative indexes. */
 366     if (pad)
 367       cquantize->colorindex[i] += MAXJSAMPLE;
 368 
 369     /* in loop, val = index of current output value, */
 370     /* and k = largest j that maps to current val */
 371     indexptr = cquantize->colorindex[i];
 372     val = 0;
 373     k = largest_input_value(cinfo, i, 0, nci-1);
 374     for (j = 0; j <= MAXJSAMPLE; j++) {
 375       while (j > k)             /* advance val if past boundary */
 376         k = largest_input_value(cinfo, i, ++val, nci-1);
 377       /* premultiply so that no multiplication needed in main processing */
 378       indexptr[j] = (JSAMPLE) (val * blksize);
 379     }
 380     /* Pad at both ends if necessary */
 381     if (pad)
 382       for (j = 1; j <= MAXJSAMPLE; j++) {
 383         indexptr[-j] = indexptr[0];
 384         indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE];
 385       }
 386   }
 387 }
 388 
 389 
 390 /*
 391  * Create an ordered-dither array for a component having ncolors
 392  * distinct output values.
 393  */
 394 
 395 LOCAL(ODITHER_MATRIX_PTR)
 396 make_odither_array (j_decompress_ptr cinfo, int ncolors)
 397 {
 398   ODITHER_MATRIX_PTR odither;
 399   int j,k;
 400   INT32 num,den;
 401 
 402   odither = (ODITHER_MATRIX_PTR)
 403     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 404                                 SIZEOF(ODITHER_MATRIX));
 405   /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1).
 406    * Hence the dither value for the matrix cell with fill order f
 407    * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1).
 408    * On 16-bit-int machine, be careful to avoid overflow.
 409    */
 410   den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1));
 411   for (j = 0; j < ODITHER_SIZE; j++) {
 412     for (k = 0; k < ODITHER_SIZE; k++) {
 413       num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k])))
 414             * MAXJSAMPLE;
 415       /* Ensure round towards zero despite C's lack of consistency
 416        * about rounding negative values in integer division...
 417        */
 418       odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den);
 419     }
 420   }
 421   return odither;
 422 }
 423 
 424 
 425 /*
 426  * Create the ordered-dither tables.
 427  * Components having the same number of representative colors may
 428  * share a dither table.
 429  */
 430 
 431 LOCAL(void)
 432 create_odither_tables (j_decompress_ptr cinfo)
 433 {
 434   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 435   ODITHER_MATRIX_PTR odither;
 436   int i, j, nci;
 437 
 438   for (i = 0; i < cinfo->out_color_components; i++) {
 439     nci = cquantize->Ncolors[i]; /* # of distinct values for this color */
 440     odither = NULL;             /* search for matching prior component */
 441     for (j = 0; j < i; j++) {
 442       if (nci == cquantize->Ncolors[j]) {
 443         odither = cquantize->odither[j];
 444         break;
 445       }
 446     }
 447     if (odither == NULL)        /* need a new table? */
 448       odither = make_odither_array(cinfo, nci);
 449     cquantize->odither[i] = odither;
 450   }
 451 }
 452 
 453 
 454 /*
 455  * Map some rows of pixels to the output colormapped representation.
 456  */
 457 
 458 METHODDEF(void)
 459 color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
 460                 JSAMPARRAY output_buf, int num_rows)
 461 /* General case, no dithering */
 462 {
 463   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 464   JSAMPARRAY colorindex = cquantize->colorindex;
 465   register int pixcode, ci;
 466   register JSAMPROW ptrin, ptrout;
 467   int row;
 468   JDIMENSION col;
 469   JDIMENSION width = cinfo->output_width;
 470   register int nc = cinfo->out_color_components;
 471 
 472   for (row = 0; row < num_rows; row++) {
 473     ptrin = input_buf[row];
 474     ptrout = output_buf[row];
 475     for (col = width; col > 0; col--) {
 476       pixcode = 0;
 477       for (ci = 0; ci < nc; ci++) {
 478         pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]);
 479       }
 480       *ptrout++ = (JSAMPLE) pixcode;
 481     }
 482   }
 483 }
 484 
 485 
 486 METHODDEF(void)
 487 color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
 488                  JSAMPARRAY output_buf, int num_rows)
 489 /* Fast path for out_color_components==3, no dithering */
 490 {
 491   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 492   register int pixcode;
 493   register JSAMPROW ptrin, ptrout;
 494   JSAMPROW colorindex0 = cquantize->colorindex[0];
 495   JSAMPROW colorindex1 = cquantize->colorindex[1];
 496   JSAMPROW colorindex2 = cquantize->colorindex[2];
 497   int row;
 498   JDIMENSION col;
 499   JDIMENSION width = cinfo->output_width;
 500 
 501   for (row = 0; row < num_rows; row++) {
 502     ptrin = input_buf[row];
 503     ptrout = output_buf[row];
 504     for (col = width; col > 0; col--) {
 505       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]);
 506       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]);
 507       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]);
 508       *ptrout++ = (JSAMPLE) pixcode;
 509     }
 510   }
 511 }
 512 
 513 
 514 METHODDEF(void)
 515 quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
 516                      JSAMPARRAY output_buf, int num_rows)
 517 /* General case, with ordered dithering */
 518 {
 519   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 520   register JSAMPROW input_ptr;
 521   register JSAMPROW output_ptr;
 522   JSAMPROW colorindex_ci;
 523   int * dither;                 /* points to active row of dither matrix */
 524   int row_index, col_index;     /* current indexes into dither matrix */
 525   int nc = cinfo->out_color_components;
 526   int ci;
 527   int row;
 528   JDIMENSION col;
 529   JDIMENSION width = cinfo->output_width;
 530 
 531   for (row = 0; row < num_rows; row++) {
 532     /* Initialize output values to 0 so can process components separately */
 533     jzero_far((void FAR *) output_buf[row],
 534               (size_t) (width * SIZEOF(JSAMPLE)));
 535     row_index = cquantize->row_index;
 536     for (ci = 0; ci < nc; ci++) {
 537       input_ptr = input_buf[row] + ci;
 538       output_ptr = output_buf[row];
 539       colorindex_ci = cquantize->colorindex[ci];
 540       dither = cquantize->odither[ci][row_index];
 541       col_index = 0;
 542 
 543       for (col = width; col > 0; col--) {
 544         /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE,
 545          * select output value, accumulate into output code for this pixel.
 546          * Range-limiting need not be done explicitly, as we have extended
 547          * the colorindex table to produce the right answers for out-of-range
 548          * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the
 549          * required amount of padding.
 550          */
 551         *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]];
 552         input_ptr += nc;
 553         output_ptr++;
 554         col_index = (col_index + 1) & ODITHER_MASK;
 555       }
 556     }
 557     /* Advance row index for next row */
 558     row_index = (row_index + 1) & ODITHER_MASK;
 559     cquantize->row_index = row_index;
 560   }
 561 }
 562 
 563 
 564 METHODDEF(void)
 565 quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
 566                       JSAMPARRAY output_buf, int num_rows)
 567 /* Fast path for out_color_components==3, with ordered dithering */
 568 {
 569   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 570   register int pixcode;
 571   register JSAMPROW input_ptr;
 572   register JSAMPROW output_ptr;
 573   JSAMPROW colorindex0 = cquantize->colorindex[0];
 574   JSAMPROW colorindex1 = cquantize->colorindex[1];
 575   JSAMPROW colorindex2 = cquantize->colorindex[2];
 576   int * dither0;                /* points to active row of dither matrix */
 577   int * dither1;
 578   int * dither2;
 579   int row_index, col_index;     /* current indexes into dither matrix */
 580   int row;
 581   JDIMENSION col;
 582   JDIMENSION width = cinfo->output_width;
 583 
 584   for (row = 0; row < num_rows; row++) {
 585     row_index = cquantize->row_index;
 586     input_ptr = input_buf[row];
 587     output_ptr = output_buf[row];
 588     dither0 = cquantize->odither[0][row_index];
 589     dither1 = cquantize->odither[1][row_index];
 590     dither2 = cquantize->odither[2][row_index];
 591     col_index = 0;
 592 
 593     for (col = width; col > 0; col--) {
 594       pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) +
 595                                         dither0[col_index]]);
 596       pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) +
 597                                         dither1[col_index]]);
 598       pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) +
 599                                         dither2[col_index]]);
 600       *output_ptr++ = (JSAMPLE) pixcode;
 601       col_index = (col_index + 1) & ODITHER_MASK;
 602     }
 603     row_index = (row_index + 1) & ODITHER_MASK;
 604     cquantize->row_index = row_index;
 605   }
 606 }
 607 
 608 
 609 METHODDEF(void)
 610 quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
 611                     JSAMPARRAY output_buf, int num_rows)
 612 /* General case, with Floyd-Steinberg dithering */
 613 {
 614   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 615   register LOCFSERROR cur;      /* current error or pixel value */
 616   LOCFSERROR belowerr;          /* error for pixel below cur */
 617   LOCFSERROR bpreverr;          /* error for below/prev col */
 618   LOCFSERROR bnexterr;          /* error for below/next col */
 619   LOCFSERROR delta;
 620   register FSERRPTR errorptr;   /* => fserrors[] at column before current */
 621   register JSAMPROW input_ptr;
 622   register JSAMPROW output_ptr;
 623   JSAMPROW colorindex_ci;
 624   JSAMPROW colormap_ci;
 625   int pixcode;
 626   int nc = cinfo->out_color_components;
 627   int dir;                      /* 1 for left-to-right, -1 for right-to-left */
 628   int dirnc;                    /* dir * nc */
 629   int ci;
 630   int row;
 631   JDIMENSION col;
 632   JDIMENSION width = cinfo->output_width;
 633   JSAMPLE *range_limit = cinfo->sample_range_limit;
 634   SHIFT_TEMPS
 635 
 636   for (row = 0; row < num_rows; row++) {
 637     /* Initialize output values to 0 so can process components separately */
 638     jzero_far((void FAR *) output_buf[row],
 639               (size_t) (width * SIZEOF(JSAMPLE)));
 640     for (ci = 0; ci < nc; ci++) {
 641       input_ptr = input_buf[row] + ci;
 642       output_ptr = output_buf[row];
 643       if (cquantize->on_odd_row) {
 644         /* work right to left in this row */
 645         input_ptr += (width-1) * nc; /* so point to rightmost pixel */
 646         output_ptr += width-1;
 647         dir = -1;
 648         dirnc = -nc;
 649         errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */
 650       } else {
 651         /* work left to right in this row */
 652         dir = 1;
 653         dirnc = nc;
 654         errorptr = cquantize->fserrors[ci]; /* => entry before first column */
 655       }
 656       colorindex_ci = cquantize->colorindex[ci];
 657       colormap_ci = cquantize->sv_colormap[ci];
 658       /* Preset error values: no error propagated to first pixel from left */
 659       cur = 0;
 660       /* and no error propagated to row below yet */
 661       belowerr = bpreverr = 0;
 662 
 663       for (col = width; col > 0; col--) {
 664         /* cur holds the error propagated from the previous pixel on the
 665          * current line.  Add the error propagated from the previous line
 666          * to form the complete error correction term for this pixel, and
 667          * round the error term (which is expressed * 16) to an integer.
 668          * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
 669          * for either sign of the error value.
 670          * Note: errorptr points to *previous* column's array entry.
 671          */
 672         cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4);
 673         /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
 674          * The maximum error is +- MAXJSAMPLE; this sets the required size
 675          * of the range_limit array.
 676          */
 677         cur += GETJSAMPLE(*input_ptr);
 678         cur = GETJSAMPLE(range_limit[cur]);
 679         /* Select output value, accumulate into output code for this pixel */
 680         pixcode = GETJSAMPLE(colorindex_ci[cur]);
 681         *output_ptr += (JSAMPLE) pixcode;
 682         /* Compute actual representation error at this pixel */
 683         /* Note: we can do this even though we don't have the final */
 684         /* pixel code, because the colormap is orthogonal. */
 685         cur -= GETJSAMPLE(colormap_ci[pixcode]);
 686         /* Compute error fractions to be propagated to adjacent pixels.
 687          * Add these into the running sums, and simultaneously shift the
 688          * next-line error sums left by 1 column.
 689          */
 690         bnexterr = cur;
 691         delta = cur * 2;
 692         cur += delta;           /* form error * 3 */
 693         errorptr[0] = (FSERROR) (bpreverr + cur);
 694         cur += delta;           /* form error * 5 */
 695         bpreverr = belowerr + cur;
 696         belowerr = bnexterr;
 697         cur += delta;           /* form error * 7 */
 698         /* At this point cur contains the 7/16 error value to be propagated
 699          * to the next pixel on the current line, and all the errors for the
 700          * next line have been shifted over. We are therefore ready to move on.
 701          */
 702         input_ptr += dirnc;     /* advance input ptr to next column */
 703         output_ptr += dir;      /* advance output ptr to next column */
 704         errorptr += dir;        /* advance errorptr to current column */
 705       }
 706       /* Post-loop cleanup: we must unload the final error value into the
 707        * final fserrors[] entry.  Note we need not unload belowerr because
 708        * it is for the dummy column before or after the actual array.
 709        */
 710       errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */
 711     }
 712     cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE);
 713   }
 714 }
 715 
 716 
 717 /*
 718  * Allocate workspace for Floyd-Steinberg errors.
 719  */
 720 
 721 LOCAL(void)
 722 alloc_fs_workspace (j_decompress_ptr cinfo)
 723 {
 724   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 725   size_t arraysize;
 726   int i;
 727 
 728   arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
 729   for (i = 0; i < cinfo->out_color_components; i++) {
 730     cquantize->fserrors[i] = (FSERRPTR)
 731       (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize);
 732   }
 733 }
 734 
 735 
 736 /*
 737  * Initialize for one-pass color quantization.
 738  */
 739 
 740 METHODDEF(void)
 741 start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan)
 742 {
 743   my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
 744   size_t arraysize;
 745   int i;
 746 
 747   /* Install my colormap. */
 748   cinfo->colormap = cquantize->sv_colormap;
 749   cinfo->actual_number_of_colors = cquantize->sv_actual;
 750 
 751   /* Initialize for desired dithering mode. */
 752   switch (cinfo->dither_mode) {
 753   case JDITHER_NONE:
 754     if (cinfo->out_color_components == 3)
 755       cquantize->pub.color_quantize = color_quantize3;
 756     else
 757       cquantize->pub.color_quantize = color_quantize;
 758     break;
 759   case JDITHER_ORDERED:
 760     if (cinfo->out_color_components == 3)
 761       cquantize->pub.color_quantize = quantize3_ord_dither;
 762     else
 763       cquantize->pub.color_quantize = quantize_ord_dither;
 764     cquantize->row_index = 0;   /* initialize state for ordered dither */
 765     /* If user changed to ordered dither from another mode,
 766      * we must recreate the color index table with padding.
 767      * This will cost extra space, but probably isn't very likely.
 768      */
 769     if (! cquantize->is_padded)
 770       create_colorindex(cinfo);
 771     /* Create ordered-dither tables if we didn't already. */
 772     if (cquantize->odither[0] == NULL)
 773       create_odither_tables(cinfo);
 774     break;
 775   case JDITHER_FS:
 776     cquantize->pub.color_quantize = quantize_fs_dither;
 777     cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */
 778     /* Allocate Floyd-Steinberg workspace if didn't already. */
 779     if (cquantize->fserrors[0] == NULL)
 780       alloc_fs_workspace(cinfo);
 781     /* Initialize the propagated errors to zero. */
 782     arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR));
 783     for (i = 0; i < cinfo->out_color_components; i++)
 784       jzero_far((void FAR *) cquantize->fserrors[i], arraysize);
 785     break;
 786   default:
 787     ERREXIT(cinfo, JERR_NOT_COMPILED);
 788     break;
 789   }
 790 }
 791 
 792 
 793 /*
 794  * Finish up at the end of the pass.
 795  */
 796 
 797 METHODDEF(void)
 798 finish_pass_1_quant (j_decompress_ptr cinfo)
 799 {
 800   /* no work in 1-pass case */
 801 }
 802 
 803 
 804 /*
 805  * Switch to a new external colormap between output passes.
 806  * Shouldn't get to this module!
 807  */
 808 
 809 METHODDEF(void)
 810 new_color_map_1_quant (j_decompress_ptr cinfo)
 811 {
 812   ERREXIT(cinfo, JERR_MODE_CHANGE);
 813 }
 814 
 815 
 816 /*
 817  * Module initialization routine for 1-pass color quantization.
 818  */
 819 
 820 GLOBAL(void)
 821 jinit_1pass_quantizer (j_decompress_ptr cinfo)
 822 {
 823   my_cquantize_ptr cquantize;
 824 
 825   cquantize = (my_cquantize_ptr)
 826     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
 827                                 SIZEOF(my_cquantizer));
 828   cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
 829   cquantize->pub.start_pass = start_pass_1_quant;
 830   cquantize->pub.finish_pass = finish_pass_1_quant;
 831   cquantize->pub.new_color_map = new_color_map_1_quant;
 832   cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */
 833   cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */
 834 
 835   /* Make sure my internal arrays won't overflow */
 836   if (cinfo->out_color_components > MAX_Q_COMPS)
 837     ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS);
 838   /* Make sure colormap indexes can be represented by JSAMPLEs */
 839   if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1))
 840     ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1);
 841 
 842   /* Create the colormap and color index table. */
 843   create_colormap(cinfo);
 844   create_colorindex(cinfo);
 845 
 846   /* Allocate Floyd-Steinberg workspace now if requested.
 847    * We do this now since it is FAR storage and may affect the memory
 848    * manager's space calculations.  If the user changes to FS dither
 849    * mode in a later pass, we will allocate the space then, and will
 850    * possibly overrun the max_memory_to_use setting.
 851    */
 852   if (cinfo->dither_mode == JDITHER_FS)
 853     alloc_fs_workspace(cinfo);
 854 }
 855 
 856 #endif /* QUANT_1PASS_SUPPORTED */