1 /*
   2  * jfdctint.c
   3  *
   4  * Copyright (C) 1991-1996, Thomas G. Lane.
   5  * Modification developed 2003-2009 by Guido Vollbeding.
   6  * This file is part of the Independent JPEG Group's software.
   7  * For conditions of distribution and use, see the accompanying README file.
   8  *
   9  * This file contains a slow-but-accurate integer implementation of the
  10  * forward DCT (Discrete Cosine Transform).
  11  *
  12  * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
  13  * on each column.  Direct algorithms are also available, but they are
  14  * much more complex and seem not to be any faster when reduced to code.
  15  *
  16  * This implementation is based on an algorithm described in
  17  *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
  18  *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
  19  *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
  20  * The primary algorithm described there uses 11 multiplies and 29 adds.
  21  * We use their alternate method with 12 multiplies and 32 adds.
  22  * The advantage of this method is that no data path contains more than one
  23  * multiplication; this allows a very simple and accurate implementation in
  24  * scaled fixed-point arithmetic, with a minimal number of shifts.
  25  *
  26  * We also provide FDCT routines with various input sample block sizes for
  27  * direct resolution reduction or enlargement and for direct resolving the
  28  * common 2x1 and 1x2 subsampling cases without additional resampling: NxN
  29  * (N=1...16), 2NxN, and Nx2N (N=1...8) pixels for one 8x8 output DCT block.
  30  *
  31  * For N<8 we fill the remaining block coefficients with zero.
  32  * For N>8 we apply a partial N-point FDCT on the input samples, computing
  33  * just the lower 8 frequency coefficients and discarding the rest.
  34  *
  35  * We must scale the output coefficients of the N-point FDCT appropriately
  36  * to the standard 8-point FDCT level by 8/N per 1-D pass.  This scaling
  37  * is folded into the constant multipliers (pass 2) and/or final/initial
  38  * shifting.
  39  *
  40  * CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases
  41  * since there would be too many additional constants to pre-calculate.
  42  */
  43 
  44 #define JPEG_INTERNALS
  45 #include "jinclude.h"
  46 #include "jpeglib.h"
  47 #include "jdct.h"               /* Private declarations for DCT subsystem */
  48 
  49 #ifdef DCT_ISLOW_SUPPORTED
  50 
  51 
  52 /*
  53  * This module is specialized to the case DCTSIZE = 8.
  54  */
  55 
  56 #if DCTSIZE != 8
  57   Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */
  58 #endif
  59 
  60 
  61 /*
  62  * The poop on this scaling stuff is as follows:
  63  *
  64  * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
  65  * larger than the true DCT outputs.  The final outputs are therefore
  66  * a factor of N larger than desired; since N=8 this can be cured by
  67  * a simple right shift at the end of the algorithm.  The advantage of
  68  * this arrangement is that we save two multiplications per 1-D DCT,
  69  * because the y0 and y4 outputs need not be divided by sqrt(N).
  70  * In the IJG code, this factor of 8 is removed by the quantization step
  71  * (in jcdctmgr.c), NOT in this module.
  72  *
  73  * We have to do addition and subtraction of the integer inputs, which
  74  * is no problem, and multiplication by fractional constants, which is
  75  * a problem to do in integer arithmetic.  We multiply all the constants
  76  * by CONST_SCALE and convert them to integer constants (thus retaining
  77  * CONST_BITS bits of precision in the constants).  After doing a
  78  * multiplication we have to divide the product by CONST_SCALE, with proper
  79  * rounding, to produce the correct output.  This division can be done
  80  * cheaply as a right shift of CONST_BITS bits.  We postpone shifting
  81  * as long as possible so that partial sums can be added together with
  82  * full fractional precision.
  83  *
  84  * The outputs of the first pass are scaled up by PASS1_BITS bits so that
  85  * they are represented to better-than-integral precision.  These outputs
  86  * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
  87  * with the recommended scaling.  (For 12-bit sample data, the intermediate
  88  * array is INT32 anyway.)
  89  *
  90  * To avoid overflow of the 32-bit intermediate results in pass 2, we must
  91  * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis
  92  * shows that the values given below are the most effective.
  93  */
  94 
  95 #if BITS_IN_JSAMPLE == 8
  96 #define CONST_BITS  13
  97 #define PASS1_BITS  2
  98 #else
  99 #define CONST_BITS  13
 100 #define PASS1_BITS  1           /* lose a little precision to avoid overflow */
 101 #endif
 102 
 103 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
 104  * causing a lot of useless floating-point operations at run time.
 105  * To get around this we use the following pre-calculated constants.
 106  * If you change CONST_BITS you may want to add appropriate values.
 107  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
 108  */
 109 
 110 #if CONST_BITS == 13
 111 #define FIX_0_298631336  ((INT32)  2446)        /* FIX(0.298631336) */
 112 #define FIX_0_390180644  ((INT32)  3196)        /* FIX(0.390180644) */
 113 #define FIX_0_541196100  ((INT32)  4433)        /* FIX(0.541196100) */
 114 #define FIX_0_765366865  ((INT32)  6270)        /* FIX(0.765366865) */
 115 #define FIX_0_899976223  ((INT32)  7373)        /* FIX(0.899976223) */
 116 #define FIX_1_175875602  ((INT32)  9633)        /* FIX(1.175875602) */
 117 #define FIX_1_501321110  ((INT32)  12299)       /* FIX(1.501321110) */
 118 #define FIX_1_847759065  ((INT32)  15137)       /* FIX(1.847759065) */
 119 #define FIX_1_961570560  ((INT32)  16069)       /* FIX(1.961570560) */
 120 #define FIX_2_053119869  ((INT32)  16819)       /* FIX(2.053119869) */
 121 #define FIX_2_562915447  ((INT32)  20995)       /* FIX(2.562915447) */
 122 #define FIX_3_072711026  ((INT32)  25172)       /* FIX(3.072711026) */
 123 #else
 124 #define FIX_0_298631336  FIX(0.298631336)
 125 #define FIX_0_390180644  FIX(0.390180644)
 126 #define FIX_0_541196100  FIX(0.541196100)
 127 #define FIX_0_765366865  FIX(0.765366865)
 128 #define FIX_0_899976223  FIX(0.899976223)
 129 #define FIX_1_175875602  FIX(1.175875602)
 130 #define FIX_1_501321110  FIX(1.501321110)
 131 #define FIX_1_847759065  FIX(1.847759065)
 132 #define FIX_1_961570560  FIX(1.961570560)
 133 #define FIX_2_053119869  FIX(2.053119869)
 134 #define FIX_2_562915447  FIX(2.562915447)
 135 #define FIX_3_072711026  FIX(3.072711026)
 136 #endif
 137 
 138 
 139 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
 140  * For 8-bit samples with the recommended scaling, all the variable
 141  * and constant values involved are no more than 16 bits wide, so a
 142  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
 143  * For 12-bit samples, a full 32-bit multiplication will be needed.
 144  */
 145 
 146 #if BITS_IN_JSAMPLE == 8
 147 #define MULTIPLY(var,const)  MULTIPLY16C16(var,const)
 148 #else
 149 #define MULTIPLY(var,const)  ((var) * (const))
 150 #endif
 151 
 152 
 153 /*
 154  * Perform the forward DCT on one block of samples.
 155  */
 156 
 157 GLOBAL(void)
 158 jpeg_fdct_islow (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
 159 {
 160   INT32 tmp0, tmp1, tmp2, tmp3;
 161   INT32 tmp10, tmp11, tmp12, tmp13;
 162   INT32 z1;
 163   DCTELEM *dataptr;
 164   JSAMPROW elemptr;
 165   int ctr;
 166   SHIFT_TEMPS
 167 
 168   /* Pass 1: process rows. */
 169   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
 170   /* furthermore, we scale the results by 2**PASS1_BITS. */
 171 
 172   dataptr = data;
 173   for (ctr = 0; ctr < DCTSIZE; ctr++) {
 174     elemptr = sample_data[ctr] + start_col;
 175 
 176     /* Even part per LL&M figure 1 --- note that published figure is faulty;
 177      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
 178      */
 179 
 180     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
 181     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
 182     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
 183     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
 184 
 185     tmp10 = tmp0 + tmp3;
 186     tmp12 = tmp0 - tmp3;
 187     tmp11 = tmp1 + tmp2;
 188     tmp13 = tmp1 - tmp2;
 189 
 190     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
 191     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
 192     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
 193     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
 194 
 195     /* Apply unsigned->signed conversion */
 196     dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS);
 197     dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
 198 
 199     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
 200     /* Add fudge factor here for final descale. */
 201     z1 += ONE << (CONST_BITS-PASS1_BITS-1);
 202     dataptr[2] = (DCTELEM) RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865),
 203                                        CONST_BITS-PASS1_BITS);
 204     dataptr[6] = (DCTELEM) RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065),
 205                                        CONST_BITS-PASS1_BITS);
 206 
 207     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
 208      * cK represents sqrt(2) * cos(K*pi/16).
 209      * i0..i3 in the paper are tmp0..tmp3 here.
 210      */
 211 
 212     tmp10 = tmp0 + tmp3;
 213     tmp11 = tmp1 + tmp2;
 214     tmp12 = tmp0 + tmp2;
 215     tmp13 = tmp1 + tmp3;
 216     z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /*  c3 */
 217     /* Add fudge factor here for final descale. */
 218     z1 += ONE << (CONST_BITS-PASS1_BITS-1);
 219 
 220     tmp0  = MULTIPLY(tmp0,    FIX_1_501321110);    /*  c1+c3-c5-c7 */
 221     tmp1  = MULTIPLY(tmp1,    FIX_3_072711026);    /*  c1+c3+c5-c7 */
 222     tmp2  = MULTIPLY(tmp2,    FIX_2_053119869);    /*  c1+c3-c5+c7 */
 223     tmp3  = MULTIPLY(tmp3,    FIX_0_298631336);    /* -c1+c3+c5-c7 */
 224     tmp10 = MULTIPLY(tmp10, - FIX_0_899976223);    /*  c7-c3 */
 225     tmp11 = MULTIPLY(tmp11, - FIX_2_562915447);    /* -c1-c3 */
 226     tmp12 = MULTIPLY(tmp12, - FIX_0_390180644);    /*  c5-c3 */
 227     tmp13 = MULTIPLY(tmp13, - FIX_1_961570560);    /* -c3-c5 */
 228 
 229     tmp12 += z1;
 230     tmp13 += z1;
 231 
 232     dataptr[1] = (DCTELEM)
 233       RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS);
 234     dataptr[3] = (DCTELEM)
 235       RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS);
 236     dataptr[5] = (DCTELEM)
 237       RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS);
 238     dataptr[7] = (DCTELEM)
 239       RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS);
 240 
 241     dataptr += DCTSIZE;         /* advance pointer to next row */
 242   }
 243 
 244   /* Pass 2: process columns.
 245    * We remove the PASS1_BITS scaling, but leave the results scaled up
 246    * by an overall factor of 8.
 247    */
 248 
 249   dataptr = data;
 250   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
 251     /* Even part per LL&M figure 1 --- note that published figure is faulty;
 252      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
 253      */
 254 
 255     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
 256     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
 257     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
 258     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
 259 
 260     /* Add fudge factor here for final descale. */
 261     tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1));
 262     tmp12 = tmp0 - tmp3;
 263     tmp11 = tmp1 + tmp2;
 264     tmp13 = tmp1 - tmp2;
 265 
 266     tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
 267     tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
 268     tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
 269     tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
 270 
 271     dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS);
 272     dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS);
 273 
 274     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
 275     /* Add fudge factor here for final descale. */
 276     z1 += ONE << (CONST_BITS+PASS1_BITS-1);
 277     dataptr[DCTSIZE*2] = (DCTELEM)
 278       RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), CONST_BITS+PASS1_BITS);
 279     dataptr[DCTSIZE*6] = (DCTELEM)
 280       RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), CONST_BITS+PASS1_BITS);
 281 
 282     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
 283      * cK represents sqrt(2) * cos(K*pi/16).
 284      * i0..i3 in the paper are tmp0..tmp3 here.
 285      */
 286 
 287     tmp10 = tmp0 + tmp3;
 288     tmp11 = tmp1 + tmp2;
 289     tmp12 = tmp0 + tmp2;
 290     tmp13 = tmp1 + tmp3;
 291     z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /*  c3 */
 292     /* Add fudge factor here for final descale. */
 293     z1 += ONE << (CONST_BITS+PASS1_BITS-1);
 294 
 295     tmp0  = MULTIPLY(tmp0,    FIX_1_501321110);    /*  c1+c3-c5-c7 */
 296     tmp1  = MULTIPLY(tmp1,    FIX_3_072711026);    /*  c1+c3+c5-c7 */
 297     tmp2  = MULTIPLY(tmp2,    FIX_2_053119869);    /*  c1+c3-c5+c7 */
 298     tmp3  = MULTIPLY(tmp3,    FIX_0_298631336);    /* -c1+c3+c5-c7 */
 299     tmp10 = MULTIPLY(tmp10, - FIX_0_899976223);    /*  c7-c3 */
 300     tmp11 = MULTIPLY(tmp11, - FIX_2_562915447);    /* -c1-c3 */
 301     tmp12 = MULTIPLY(tmp12, - FIX_0_390180644);    /*  c5-c3 */
 302     tmp13 = MULTIPLY(tmp13, - FIX_1_961570560);    /* -c3-c5 */
 303 
 304     tmp12 += z1;
 305     tmp13 += z1;
 306 
 307     dataptr[DCTSIZE*1] = (DCTELEM)
 308       RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS+PASS1_BITS);
 309     dataptr[DCTSIZE*3] = (DCTELEM)
 310       RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS+PASS1_BITS);
 311     dataptr[DCTSIZE*5] = (DCTELEM)
 312       RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS+PASS1_BITS);
 313     dataptr[DCTSIZE*7] = (DCTELEM)
 314       RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS+PASS1_BITS);
 315 
 316     dataptr++;                  /* advance pointer to next column */
 317   }
 318 }
 319 
 320 #ifdef DCT_SCALING_SUPPORTED
 321 
 322 
 323 /*
 324  * Perform the forward DCT on a 7x7 sample block.
 325  */
 326 
 327 GLOBAL(void)
 328 jpeg_fdct_7x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
 329 {
 330   INT32 tmp0, tmp1, tmp2, tmp3;
 331   INT32 tmp10, tmp11, tmp12;
 332   INT32 z1, z2, z3;
 333   DCTELEM *dataptr;
 334   JSAMPROW elemptr;
 335   int ctr;
 336   SHIFT_TEMPS
 337 
 338   /* Pre-zero output coefficient block. */
 339   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
 340 
 341   /* Pass 1: process rows. */
 342   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
 343   /* furthermore, we scale the results by 2**PASS1_BITS. */
 344   /* cK represents sqrt(2) * cos(K*pi/14). */
 345 
 346   dataptr = data;
 347   for (ctr = 0; ctr < 7; ctr++) {
 348     elemptr = sample_data[ctr] + start_col;
 349 
 350     /* Even part */
 351 
 352     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]);
 353     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]);
 354     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[4]);
 355     tmp3 = GETJSAMPLE(elemptr[3]);
 356 
 357     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[6]);
 358     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[5]);
 359     tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[4]);
 360 
 361     z1 = tmp0 + tmp2;
 362     /* Apply unsigned->signed conversion */
 363     dataptr[0] = (DCTELEM)
 364       ((z1 + tmp1 + tmp3 - 7 * CENTERJSAMPLE) << PASS1_BITS);
 365     tmp3 += tmp3;
 366     z1 -= tmp3;
 367     z1 -= tmp3;
 368     z1 = MULTIPLY(z1, FIX(0.353553391));                /* (c2+c6-c4)/2 */
 369     z2 = MULTIPLY(tmp0 - tmp2, FIX(0.920609002));       /* (c2+c4-c6)/2 */
 370     z3 = MULTIPLY(tmp1 - tmp2, FIX(0.314692123));       /* c6 */
 371     dataptr[2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS-PASS1_BITS);
 372     z1 -= z2;
 373     z2 = MULTIPLY(tmp0 - tmp1, FIX(0.881747734));       /* c4 */
 374     dataptr[4] = (DCTELEM)
 375       DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.707106781)), /* c2+c6-c4 */
 376               CONST_BITS-PASS1_BITS);
 377     dataptr[6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS-PASS1_BITS);
 378 
 379     /* Odd part */
 380 
 381     tmp1 = MULTIPLY(tmp10 + tmp11, FIX(0.935414347));   /* (c3+c1-c5)/2 */
 382     tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.170262339));   /* (c3+c5-c1)/2 */
 383     tmp0 = tmp1 - tmp2;
 384     tmp1 += tmp2;
 385     tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.378756276)); /* -c1 */
 386     tmp1 += tmp2;
 387     tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.613604268));   /* c5 */
 388     tmp0 += tmp3;
 389     tmp2 += tmp3 + MULTIPLY(tmp12, FIX(1.870828693));   /* c3+c1-c5 */
 390 
 391     dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS);
 392     dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS);
 393     dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS);
 394 
 395     dataptr += DCTSIZE;         /* advance pointer to next row */
 396   }
 397 
 398   /* Pass 2: process columns.
 399    * We remove the PASS1_BITS scaling, but leave the results scaled up
 400    * by an overall factor of 8.
 401    * We must also scale the output by (8/7)**2 = 64/49, which we fold
 402    * into the constant multipliers:
 403    * cK now represents sqrt(2) * cos(K*pi/14) * 64/49.
 404    */
 405 
 406   dataptr = data;
 407   for (ctr = 0; ctr < 7; ctr++) {
 408     /* Even part */
 409 
 410     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*6];
 411     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*5];
 412     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*4];
 413     tmp3 = dataptr[DCTSIZE*3];
 414 
 415     tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*6];
 416     tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*5];
 417     tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*4];
 418 
 419     z1 = tmp0 + tmp2;
 420     dataptr[DCTSIZE*0] = (DCTELEM)
 421       DESCALE(MULTIPLY(z1 + tmp1 + tmp3, FIX(1.306122449)), /* 64/49 */
 422               CONST_BITS+PASS1_BITS);
 423     tmp3 += tmp3;
 424     z1 -= tmp3;
 425     z1 -= tmp3;
 426     z1 = MULTIPLY(z1, FIX(0.461784020));                /* (c2+c6-c4)/2 */
 427     z2 = MULTIPLY(tmp0 - tmp2, FIX(1.202428084));       /* (c2+c4-c6)/2 */
 428     z3 = MULTIPLY(tmp1 - tmp2, FIX(0.411026446));       /* c6 */
 429     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS+PASS1_BITS);
 430     z1 -= z2;
 431     z2 = MULTIPLY(tmp0 - tmp1, FIX(1.151670509));       /* c4 */
 432     dataptr[DCTSIZE*4] = (DCTELEM)
 433       DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.923568041)), /* c2+c6-c4 */
 434               CONST_BITS+PASS1_BITS);
 435     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+PASS1_BITS);
 436 
 437     /* Odd part */
 438 
 439     tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.221765677));   /* (c3+c1-c5)/2 */
 440     tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.222383464));   /* (c3+c5-c1)/2 */
 441     tmp0 = tmp1 - tmp2;
 442     tmp1 += tmp2;
 443     tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.800824523)); /* -c1 */
 444     tmp1 += tmp2;
 445     tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.801442310));   /* c5 */
 446     tmp0 += tmp3;
 447     tmp2 += tmp3 + MULTIPLY(tmp12, FIX(2.443531355));   /* c3+c1-c5 */
 448 
 449     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS);
 450     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS);
 451     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS);
 452 
 453     dataptr++;                  /* advance pointer to next column */
 454   }
 455 }
 456 
 457 
 458 /*
 459  * Perform the forward DCT on a 6x6 sample block.
 460  */
 461 
 462 GLOBAL(void)
 463 jpeg_fdct_6x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
 464 {
 465   INT32 tmp0, tmp1, tmp2;
 466   INT32 tmp10, tmp11, tmp12;
 467   DCTELEM *dataptr;
 468   JSAMPROW elemptr;
 469   int ctr;
 470   SHIFT_TEMPS
 471 
 472   /* Pre-zero output coefficient block. */
 473   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
 474 
 475   /* Pass 1: process rows. */
 476   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
 477   /* furthermore, we scale the results by 2**PASS1_BITS. */
 478   /* cK represents sqrt(2) * cos(K*pi/12). */
 479 
 480   dataptr = data;
 481   for (ctr = 0; ctr < 6; ctr++) {
 482     elemptr = sample_data[ctr] + start_col;
 483 
 484     /* Even part */
 485 
 486     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]);
 487     tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]);
 488     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]);
 489 
 490     tmp10 = tmp0 + tmp2;
 491     tmp12 = tmp0 - tmp2;
 492 
 493     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]);
 494     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]);
 495     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]);
 496 
 497     /* Apply unsigned->signed conversion */
 498     dataptr[0] = (DCTELEM)
 499       ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << PASS1_BITS);
 500     dataptr[2] = (DCTELEM)
 501       DESCALE(MULTIPLY(tmp12, FIX(1.224744871)),                 /* c2 */
 502               CONST_BITS-PASS1_BITS);
 503     dataptr[4] = (DCTELEM)
 504       DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */
 505               CONST_BITS-PASS1_BITS);
 506 
 507     /* Odd part */
 508 
 509     tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)),     /* c5 */
 510                     CONST_BITS-PASS1_BITS);
 511 
 512     dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << PASS1_BITS));
 513     dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << PASS1_BITS);
 514     dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << PASS1_BITS));
 515 
 516     dataptr += DCTSIZE;         /* advance pointer to next row */
 517   }
 518 
 519   /* Pass 2: process columns.
 520    * We remove the PASS1_BITS scaling, but leave the results scaled up
 521    * by an overall factor of 8.
 522    * We must also scale the output by (8/6)**2 = 16/9, which we fold
 523    * into the constant multipliers:
 524    * cK now represents sqrt(2) * cos(K*pi/12) * 16/9.
 525    */
 526 
 527   dataptr = data;
 528   for (ctr = 0; ctr < 6; ctr++) {
 529     /* Even part */
 530 
 531     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5];
 532     tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4];
 533     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
 534 
 535     tmp10 = tmp0 + tmp2;
 536     tmp12 = tmp0 - tmp2;
 537 
 538     tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5];
 539     tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4];
 540     tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
 541 
 542     dataptr[DCTSIZE*0] = (DCTELEM)
 543       DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)),         /* 16/9 */
 544               CONST_BITS+PASS1_BITS);
 545     dataptr[DCTSIZE*2] = (DCTELEM)
 546       DESCALE(MULTIPLY(tmp12, FIX(2.177324216)),                 /* c2 */
 547               CONST_BITS+PASS1_BITS);
 548     dataptr[DCTSIZE*4] = (DCTELEM)
 549       DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */
 550               CONST_BITS+PASS1_BITS);
 551 
 552     /* Odd part */
 553 
 554     tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829));             /* c5 */
 555 
 556     dataptr[DCTSIZE*1] = (DCTELEM)
 557       DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)),   /* 16/9 */
 558               CONST_BITS+PASS1_BITS);
 559     dataptr[DCTSIZE*3] = (DCTELEM)
 560       DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)),    /* 16/9 */
 561               CONST_BITS+PASS1_BITS);
 562     dataptr[DCTSIZE*5] = (DCTELEM)
 563       DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)),   /* 16/9 */
 564               CONST_BITS+PASS1_BITS);
 565 
 566     dataptr++;                  /* advance pointer to next column */
 567   }
 568 }
 569 
 570 
 571 /*
 572  * Perform the forward DCT on a 5x5 sample block.
 573  */
 574 
 575 GLOBAL(void)
 576 jpeg_fdct_5x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
 577 {
 578   INT32 tmp0, tmp1, tmp2;
 579   INT32 tmp10, tmp11;
 580   DCTELEM *dataptr;
 581   JSAMPROW elemptr;
 582   int ctr;
 583   SHIFT_TEMPS
 584 
 585   /* Pre-zero output coefficient block. */
 586   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
 587 
 588   /* Pass 1: process rows. */
 589   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
 590   /* furthermore, we scale the results by 2**PASS1_BITS. */
 591   /* We scale the results further by 2 as part of output adaption */
 592   /* scaling for different DCT size. */
 593   /* cK represents sqrt(2) * cos(K*pi/10). */
 594 
 595   dataptr = data;
 596   for (ctr = 0; ctr < 5; ctr++) {
 597     elemptr = sample_data[ctr] + start_col;
 598 
 599     /* Even part */
 600 
 601     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[4]);
 602     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[3]);
 603     tmp2 = GETJSAMPLE(elemptr[2]);
 604 
 605     tmp10 = tmp0 + tmp1;
 606     tmp11 = tmp0 - tmp1;
 607 
 608     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[4]);
 609     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[3]);
 610 
 611     /* Apply unsigned->signed conversion */
 612     dataptr[0] = (DCTELEM)
 613       ((tmp10 + tmp2 - 5 * CENTERJSAMPLE) << (PASS1_BITS+1));
 614     tmp11 = MULTIPLY(tmp11, FIX(0.790569415));          /* (c2+c4)/2 */
 615     tmp10 -= tmp2 << 2;
 616     tmp10 = MULTIPLY(tmp10, FIX(0.353553391));          /* (c2-c4)/2 */
 617     dataptr[2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS-PASS1_BITS-1);
 618     dataptr[4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS-PASS1_BITS-1);
 619 
 620     /* Odd part */
 621 
 622     tmp10 = MULTIPLY(tmp0 + tmp1, FIX(0.831253876));    /* c3 */
 623 
 624     dataptr[1] = (DCTELEM)
 625       DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.513743148)), /* c1-c3 */
 626               CONST_BITS-PASS1_BITS-1);
 627     dataptr[3] = (DCTELEM)
 628       DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.176250899)), /* c1+c3 */
 629               CONST_BITS-PASS1_BITS-1);
 630 
 631     dataptr += DCTSIZE;         /* advance pointer to next row */
 632   }
 633 
 634   /* Pass 2: process columns.
 635    * We remove the PASS1_BITS scaling, but leave the results scaled up
 636    * by an overall factor of 8.
 637    * We must also scale the output by (8/5)**2 = 64/25, which we partially
 638    * fold into the constant multipliers (other part was done in pass 1):
 639    * cK now represents sqrt(2) * cos(K*pi/10) * 32/25.
 640    */
 641 
 642   dataptr = data;
 643   for (ctr = 0; ctr < 5; ctr++) {
 644     /* Even part */
 645 
 646     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*4];
 647     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*3];
 648     tmp2 = dataptr[DCTSIZE*2];
 649 
 650     tmp10 = tmp0 + tmp1;
 651     tmp11 = tmp0 - tmp1;
 652 
 653     tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*4];
 654     tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*3];
 655 
 656     dataptr[DCTSIZE*0] = (DCTELEM)
 657       DESCALE(MULTIPLY(tmp10 + tmp2, FIX(1.28)),        /* 32/25 */
 658               CONST_BITS+PASS1_BITS);
 659     tmp11 = MULTIPLY(tmp11, FIX(1.011928851));          /* (c2+c4)/2 */
 660     tmp10 -= tmp2 << 2;
 661     tmp10 = MULTIPLY(tmp10, FIX(0.452548340));          /* (c2-c4)/2 */
 662     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS+PASS1_BITS);
 663     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS+PASS1_BITS);
 664 
 665     /* Odd part */
 666 
 667     tmp10 = MULTIPLY(tmp0 + tmp1, FIX(1.064004961));    /* c3 */
 668 
 669     dataptr[DCTSIZE*1] = (DCTELEM)
 670       DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.657591230)), /* c1-c3 */
 671               CONST_BITS+PASS1_BITS);
 672     dataptr[DCTSIZE*3] = (DCTELEM)
 673       DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.785601151)), /* c1+c3 */
 674               CONST_BITS+PASS1_BITS);
 675 
 676     dataptr++;                  /* advance pointer to next column */
 677   }
 678 }
 679 
 680 
 681 /*
 682  * Perform the forward DCT on a 4x4 sample block.
 683  */
 684 
 685 GLOBAL(void)
 686 jpeg_fdct_4x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
 687 {
 688   INT32 tmp0, tmp1;
 689   INT32 tmp10, tmp11;
 690   DCTELEM *dataptr;
 691   JSAMPROW elemptr;
 692   int ctr;
 693   SHIFT_TEMPS
 694 
 695   /* Pre-zero output coefficient block. */
 696   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
 697 
 698   /* Pass 1: process rows. */
 699   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
 700   /* furthermore, we scale the results by 2**PASS1_BITS. */
 701   /* We must also scale the output by (8/4)**2 = 2**2, which we add here. */
 702   /* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. */
 703 
 704   dataptr = data;
 705   for (ctr = 0; ctr < 4; ctr++) {
 706     elemptr = sample_data[ctr] + start_col;
 707 
 708     /* Even part */
 709 
 710     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]);
 711     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]);
 712 
 713     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]);
 714     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]);
 715 
 716     /* Apply unsigned->signed conversion */
 717     dataptr[0] = (DCTELEM)
 718       ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+2));
 719     dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+2));
 720 
 721     /* Odd part */
 722 
 723     tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100);       /* c6 */
 724     /* Add fudge factor here for final descale. */
 725     tmp0 += ONE << (CONST_BITS-PASS1_BITS-3);
 726 
 727     dataptr[1] = (DCTELEM)
 728       RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
 729                   CONST_BITS-PASS1_BITS-2);
 730     dataptr[3] = (DCTELEM)
 731       RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
 732                   CONST_BITS-PASS1_BITS-2);
 733 
 734     dataptr += DCTSIZE;         /* advance pointer to next row */
 735   }
 736 
 737   /* Pass 2: process columns.
 738    * We remove the PASS1_BITS scaling, but leave the results scaled up
 739    * by an overall factor of 8.
 740    */
 741 
 742   dataptr = data;
 743   for (ctr = 0; ctr < 4; ctr++) {
 744     /* Even part */
 745 
 746     /* Add fudge factor here for final descale. */
 747     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3] + (ONE << (PASS1_BITS-1));
 748     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2];
 749 
 750     tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3];
 751     tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2];
 752 
 753     dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS);
 754     dataptr[DCTSIZE*2] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS);
 755 
 756     /* Odd part */
 757 
 758     tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100);       /* c6 */
 759     /* Add fudge factor here for final descale. */
 760     tmp0 += ONE << (CONST_BITS+PASS1_BITS-1);
 761 
 762     dataptr[DCTSIZE*1] = (DCTELEM)
 763       RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
 764                   CONST_BITS+PASS1_BITS);
 765     dataptr[DCTSIZE*3] = (DCTELEM)
 766       RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
 767                   CONST_BITS+PASS1_BITS);
 768 
 769     dataptr++;                  /* advance pointer to next column */
 770   }
 771 }
 772 
 773 
 774 /*
 775  * Perform the forward DCT on a 3x3 sample block.
 776  */
 777 
 778 GLOBAL(void)
 779 jpeg_fdct_3x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
 780 {
 781   INT32 tmp0, tmp1, tmp2;
 782   DCTELEM *dataptr;
 783   JSAMPROW elemptr;
 784   int ctr;
 785   SHIFT_TEMPS
 786 
 787   /* Pre-zero output coefficient block. */
 788   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
 789 
 790   /* Pass 1: process rows. */
 791   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
 792   /* furthermore, we scale the results by 2**PASS1_BITS. */
 793   /* We scale the results further by 2**2 as part of output adaption */
 794   /* scaling for different DCT size. */
 795   /* cK represents sqrt(2) * cos(K*pi/6). */
 796 
 797   dataptr = data;
 798   for (ctr = 0; ctr < 3; ctr++) {
 799     elemptr = sample_data[ctr] + start_col;
 800 
 801     /* Even part */
 802 
 803     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[2]);
 804     tmp1 = GETJSAMPLE(elemptr[1]);
 805 
 806     tmp2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[2]);
 807 
 808     /* Apply unsigned->signed conversion */
 809     dataptr[0] = (DCTELEM)
 810       ((tmp0 + tmp1 - 3 * CENTERJSAMPLE) << (PASS1_BITS+2));
 811     dataptr[2] = (DCTELEM)
 812       DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(0.707106781)), /* c2 */
 813               CONST_BITS-PASS1_BITS-2);
 814 
 815     /* Odd part */
 816 
 817     dataptr[1] = (DCTELEM)
 818       DESCALE(MULTIPLY(tmp2, FIX(1.224744871)),               /* c1 */
 819               CONST_BITS-PASS1_BITS-2);
 820 
 821     dataptr += DCTSIZE;         /* advance pointer to next row */
 822   }
 823 
 824   /* Pass 2: process columns.
 825    * We remove the PASS1_BITS scaling, but leave the results scaled up
 826    * by an overall factor of 8.
 827    * We must also scale the output by (8/3)**2 = 64/9, which we partially
 828    * fold into the constant multipliers (other part was done in pass 1):
 829    * cK now represents sqrt(2) * cos(K*pi/6) * 16/9.
 830    */
 831 
 832   dataptr = data;
 833   for (ctr = 0; ctr < 3; ctr++) {
 834     /* Even part */
 835 
 836     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*2];
 837     tmp1 = dataptr[DCTSIZE*1];
 838 
 839     tmp2 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*2];
 840 
 841     dataptr[DCTSIZE*0] = (DCTELEM)
 842       DESCALE(MULTIPLY(tmp0 + tmp1, FIX(1.777777778)),        /* 16/9 */
 843               CONST_BITS+PASS1_BITS);
 844     dataptr[DCTSIZE*2] = (DCTELEM)
 845       DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(1.257078722)), /* c2 */
 846               CONST_BITS+PASS1_BITS);
 847 
 848     /* Odd part */
 849 
 850     dataptr[DCTSIZE*1] = (DCTELEM)
 851       DESCALE(MULTIPLY(tmp2, FIX(2.177324216)),               /* c1 */
 852               CONST_BITS+PASS1_BITS);
 853 
 854     dataptr++;                  /* advance pointer to next column */
 855   }
 856 }
 857 
 858 
 859 /*
 860  * Perform the forward DCT on a 2x2 sample block.
 861  */
 862 
 863 GLOBAL(void)
 864 jpeg_fdct_2x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
 865 {
 866   INT32 tmp0, tmp1, tmp2, tmp3;
 867   JSAMPROW elemptr;
 868 
 869   /* Pre-zero output coefficient block. */
 870   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
 871 
 872   /* Pass 1: process rows. */
 873   /* Note results are scaled up by sqrt(8) compared to a true DCT. */
 874 
 875   /* Row 0 */
 876   elemptr = sample_data[0] + start_col;
 877 
 878   tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[1]);
 879   tmp1 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[1]);
 880 
 881   /* Row 1 */
 882   elemptr = sample_data[1] + start_col;
 883 
 884   tmp2 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[1]);
 885   tmp3 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[1]);
 886 
 887   /* Pass 2: process columns.
 888    * We leave the results scaled up by an overall factor of 8.
 889    * We must also scale the output by (8/2)**2 = 2**4.
 890    */
 891 
 892   /* Column 0 */
 893   /* Apply unsigned->signed conversion */
 894   data[DCTSIZE*0] = (DCTELEM) ((tmp0 + tmp2 - 4 * CENTERJSAMPLE) << 4);
 895   data[DCTSIZE*1] = (DCTELEM) ((tmp0 - tmp2) << 4);
 896 
 897   /* Column 1 */
 898   data[DCTSIZE*0+1] = (DCTELEM) ((tmp1 + tmp3) << 4);
 899   data[DCTSIZE*1+1] = (DCTELEM) ((tmp1 - tmp3) << 4);
 900 }
 901 
 902 
 903 /*
 904  * Perform the forward DCT on a 1x1 sample block.
 905  */
 906 
 907 GLOBAL(void)
 908 jpeg_fdct_1x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
 909 {
 910   /* Pre-zero output coefficient block. */
 911   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
 912 
 913   /* We leave the result scaled up by an overall factor of 8. */
 914   /* We must also scale the output by (8/1)**2 = 2**6. */
 915   /* Apply unsigned->signed conversion */
 916   data[0] = (DCTELEM)
 917     ((GETJSAMPLE(sample_data[0][start_col]) - CENTERJSAMPLE) << 6);
 918 }
 919 
 920 
 921 /*
 922  * Perform the forward DCT on a 9x9 sample block.
 923  */
 924 
 925 GLOBAL(void)
 926 jpeg_fdct_9x9 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
 927 {
 928   INT32 tmp0, tmp1, tmp2, tmp3, tmp4;
 929   INT32 tmp10, tmp11, tmp12, tmp13;
 930   INT32 z1, z2;
 931   DCTELEM workspace[8];
 932   DCTELEM *dataptr;
 933   DCTELEM *wsptr;
 934   JSAMPROW elemptr;
 935   int ctr;
 936   SHIFT_TEMPS
 937 
 938   /* Pass 1: process rows. */
 939   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
 940   /* we scale the results further by 2 as part of output adaption */
 941   /* scaling for different DCT size. */
 942   /* cK represents sqrt(2) * cos(K*pi/18). */
 943 
 944   dataptr = data;
 945   ctr = 0;
 946   for (;;) {
 947     elemptr = sample_data[ctr] + start_col;
 948 
 949     /* Even part */
 950 
 951     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[8]);
 952     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[7]);
 953     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[6]);
 954     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[5]);
 955     tmp4 = GETJSAMPLE(elemptr[4]);
 956 
 957     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[8]);
 958     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[7]);
 959     tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[6]);
 960     tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[5]);
 961 
 962     z1 = tmp0 + tmp2 + tmp3;
 963     z2 = tmp1 + tmp4;
 964     /* Apply unsigned->signed conversion */
 965     dataptr[0] = (DCTELEM) ((z1 + z2 - 9 * CENTERJSAMPLE) << 1);
 966     dataptr[6] = (DCTELEM)
 967       DESCALE(MULTIPLY(z1 - z2 - z2, FIX(0.707106781)),  /* c6 */
 968               CONST_BITS-1);
 969     z1 = MULTIPLY(tmp0 - tmp2, FIX(1.328926049));        /* c2 */
 970     z2 = MULTIPLY(tmp1 - tmp4 - tmp4, FIX(0.707106781)); /* c6 */
 971     dataptr[2] = (DCTELEM)
 972       DESCALE(MULTIPLY(tmp2 - tmp3, FIX(1.083350441))    /* c4 */
 973               + z1 + z2, CONST_BITS-1);
 974     dataptr[4] = (DCTELEM)
 975       DESCALE(MULTIPLY(tmp3 - tmp0, FIX(0.245575608))    /* c8 */
 976               + z1 - z2, CONST_BITS-1);
 977 
 978     /* Odd part */
 979 
 980     dataptr[3] = (DCTELEM)
 981       DESCALE(MULTIPLY(tmp10 - tmp12 - tmp13, FIX(1.224744871)), /* c3 */
 982               CONST_BITS-1);
 983 
 984     tmp11 = MULTIPLY(tmp11, FIX(1.224744871));        /* c3 */
 985     tmp0 = MULTIPLY(tmp10 + tmp12, FIX(0.909038955)); /* c5 */
 986     tmp1 = MULTIPLY(tmp10 + tmp13, FIX(0.483689525)); /* c7 */
 987 
 988     dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp0 + tmp1, CONST_BITS-1);
 989 
 990     tmp2 = MULTIPLY(tmp12 - tmp13, FIX(1.392728481)); /* c1 */
 991 
 992     dataptr[5] = (DCTELEM) DESCALE(tmp0 - tmp11 - tmp2, CONST_BITS-1);
 993     dataptr[7] = (DCTELEM) DESCALE(tmp1 - tmp11 + tmp2, CONST_BITS-1);
 994 
 995     ctr++;
 996 
 997     if (ctr != DCTSIZE) {
 998       if (ctr == 9)
 999         break;                  /* Done. */
1000       dataptr += DCTSIZE;       /* advance pointer to next row */
1001     } else
1002       dataptr = workspace;      /* switch pointer to extended workspace */
1003   }
1004 
1005   /* Pass 2: process columns.
1006    * We leave the results scaled up by an overall factor of 8.
1007    * We must also scale the output by (8/9)**2 = 64/81, which we partially
1008    * fold into the constant multipliers and final/initial shifting:
1009    * cK now represents sqrt(2) * cos(K*pi/18) * 128/81.
1010    */
1011 
1012   dataptr = data;
1013   wsptr = workspace;
1014   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
1015     /* Even part */
1016 
1017     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*0];
1018     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*7];
1019     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*6];
1020     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*5];
1021     tmp4 = dataptr[DCTSIZE*4];
1022 
1023     tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*0];
1024     tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*7];
1025     tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*6];
1026     tmp13 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*5];
1027 
1028     z1 = tmp0 + tmp2 + tmp3;
1029     z2 = tmp1 + tmp4;
1030     dataptr[DCTSIZE*0] = (DCTELEM)
1031       DESCALE(MULTIPLY(z1 + z2, FIX(1.580246914)),       /* 128/81 */
1032               CONST_BITS+2);
1033     dataptr[DCTSIZE*6] = (DCTELEM)
1034       DESCALE(MULTIPLY(z1 - z2 - z2, FIX(1.117403309)),  /* c6 */
1035               CONST_BITS+2);
1036     z1 = MULTIPLY(tmp0 - tmp2, FIX(2.100031287));        /* c2 */
1037     z2 = MULTIPLY(tmp1 - tmp4 - tmp4, FIX(1.117403309)); /* c6 */
1038     dataptr[DCTSIZE*2] = (DCTELEM)
1039       DESCALE(MULTIPLY(tmp2 - tmp3, FIX(1.711961190))    /* c4 */
1040               + z1 + z2, CONST_BITS+2);
1041     dataptr[DCTSIZE*4] = (DCTELEM)
1042       DESCALE(MULTIPLY(tmp3 - tmp0, FIX(0.388070096))    /* c8 */
1043               + z1 - z2, CONST_BITS+2);
1044 
1045     /* Odd part */
1046 
1047     dataptr[DCTSIZE*3] = (DCTELEM)
1048       DESCALE(MULTIPLY(tmp10 - tmp12 - tmp13, FIX(1.935399303)), /* c3 */
1049               CONST_BITS+2);
1050 
1051     tmp11 = MULTIPLY(tmp11, FIX(1.935399303));        /* c3 */
1052     tmp0 = MULTIPLY(tmp10 + tmp12, FIX(1.436506004)); /* c5 */
1053     tmp1 = MULTIPLY(tmp10 + tmp13, FIX(0.764348879)); /* c7 */
1054 
1055     dataptr[DCTSIZE*1] = (DCTELEM)
1056       DESCALE(tmp11 + tmp0 + tmp1, CONST_BITS+2);
1057 
1058     tmp2 = MULTIPLY(tmp12 - tmp13, FIX(2.200854883)); /* c1 */
1059 
1060     dataptr[DCTSIZE*5] = (DCTELEM)
1061       DESCALE(tmp0 - tmp11 - tmp2, CONST_BITS+2);
1062     dataptr[DCTSIZE*7] = (DCTELEM)
1063       DESCALE(tmp1 - tmp11 + tmp2, CONST_BITS+2);
1064 
1065     dataptr++;                  /* advance pointer to next column */
1066     wsptr++;                    /* advance pointer to next column */
1067   }
1068 }
1069 
1070 
1071 /*
1072  * Perform the forward DCT on a 10x10 sample block.
1073  */
1074 
1075 GLOBAL(void)
1076 jpeg_fdct_10x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
1077 {
1078   INT32 tmp0, tmp1, tmp2, tmp3, tmp4;
1079   INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
1080   DCTELEM workspace[8*2];
1081   DCTELEM *dataptr;
1082   DCTELEM *wsptr;
1083   JSAMPROW elemptr;
1084   int ctr;
1085   SHIFT_TEMPS
1086 
1087   /* Pass 1: process rows. */
1088   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
1089   /* we scale the results further by 2 as part of output adaption */
1090   /* scaling for different DCT size. */
1091   /* cK represents sqrt(2) * cos(K*pi/20). */
1092 
1093   dataptr = data;
1094   ctr = 0;
1095   for (;;) {
1096     elemptr = sample_data[ctr] + start_col;
1097 
1098     /* Even part */
1099 
1100     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[9]);
1101     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[8]);
1102     tmp12 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[7]);
1103     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[6]);
1104     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[5]);
1105 
1106     tmp10 = tmp0 + tmp4;
1107     tmp13 = tmp0 - tmp4;
1108     tmp11 = tmp1 + tmp3;
1109     tmp14 = tmp1 - tmp3;
1110 
1111     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[9]);
1112     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[8]);
1113     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[7]);
1114     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[6]);
1115     tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[5]);
1116 
1117     /* Apply unsigned->signed conversion */
1118     dataptr[0] = (DCTELEM)
1119       ((tmp10 + tmp11 + tmp12 - 10 * CENTERJSAMPLE) << 1);
1120     tmp12 += tmp12;
1121     dataptr[4] = (DCTELEM)
1122       DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.144122806)) - /* c4 */
1123               MULTIPLY(tmp11 - tmp12, FIX(0.437016024)),  /* c8 */
1124               CONST_BITS-1);
1125     tmp10 = MULTIPLY(tmp13 + tmp14, FIX(0.831253876));    /* c6 */
1126     dataptr[2] = (DCTELEM)
1127       DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.513743148)),  /* c2-c6 */
1128               CONST_BITS-1);
1129     dataptr[6] = (DCTELEM)
1130       DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.176250899)),  /* c2+c6 */
1131               CONST_BITS-1);
1132 
1133     /* Odd part */
1134 
1135     tmp10 = tmp0 + tmp4;
1136     tmp11 = tmp1 - tmp3;
1137     dataptr[5] = (DCTELEM) ((tmp10 - tmp11 - tmp2) << 1);
1138     tmp2 <<= CONST_BITS;
1139     dataptr[1] = (DCTELEM)
1140       DESCALE(MULTIPLY(tmp0, FIX(1.396802247)) +          /* c1 */
1141               MULTIPLY(tmp1, FIX(1.260073511)) + tmp2 +   /* c3 */
1142               MULTIPLY(tmp3, FIX(0.642039522)) +          /* c7 */
1143               MULTIPLY(tmp4, FIX(0.221231742)),           /* c9 */
1144               CONST_BITS-1);
1145     tmp12 = MULTIPLY(tmp0 - tmp4, FIX(0.951056516)) -     /* (c3+c7)/2 */
1146             MULTIPLY(tmp1 + tmp3, FIX(0.587785252));      /* (c1-c9)/2 */
1147     tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.309016994)) +   /* (c3-c7)/2 */
1148             (tmp11 << (CONST_BITS - 1)) - tmp2;
1149     dataptr[3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS-1);
1150     dataptr[7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS-1);
1151 
1152     ctr++;
1153 
1154     if (ctr != DCTSIZE) {
1155       if (ctr == 10)
1156         break;                  /* Done. */
1157       dataptr += DCTSIZE;       /* advance pointer to next row */
1158     } else
1159       dataptr = workspace;      /* switch pointer to extended workspace */
1160   }
1161 
1162   /* Pass 2: process columns.
1163    * We leave the results scaled up by an overall factor of 8.
1164    * We must also scale the output by (8/10)**2 = 16/25, which we partially
1165    * fold into the constant multipliers and final/initial shifting:
1166    * cK now represents sqrt(2) * cos(K*pi/20) * 32/25.
1167    */
1168 
1169   dataptr = data;
1170   wsptr = workspace;
1171   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
1172     /* Even part */
1173 
1174     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*1];
1175     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*0];
1176     tmp12 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*7];
1177     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*6];
1178     tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
1179 
1180     tmp10 = tmp0 + tmp4;
1181     tmp13 = tmp0 - tmp4;
1182     tmp11 = tmp1 + tmp3;
1183     tmp14 = tmp1 - tmp3;
1184 
1185     tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*1];
1186     tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*0];
1187     tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*7];
1188     tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*6];
1189     tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
1190 
1191     dataptr[DCTSIZE*0] = (DCTELEM)
1192       DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(1.28)), /* 32/25 */
1193               CONST_BITS+2);
1194     tmp12 += tmp12;
1195     dataptr[DCTSIZE*4] = (DCTELEM)
1196       DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.464477191)) - /* c4 */
1197               MULTIPLY(tmp11 - tmp12, FIX(0.559380511)),  /* c8 */
1198               CONST_BITS+2);
1199     tmp10 = MULTIPLY(tmp13 + tmp14, FIX(1.064004961));    /* c6 */
1200     dataptr[DCTSIZE*2] = (DCTELEM)
1201       DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.657591230)),  /* c2-c6 */
1202               CONST_BITS+2);
1203     dataptr[DCTSIZE*6] = (DCTELEM)
1204       DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.785601151)),  /* c2+c6 */
1205               CONST_BITS+2);
1206 
1207     /* Odd part */
1208 
1209     tmp10 = tmp0 + tmp4;
1210     tmp11 = tmp1 - tmp3;
1211     dataptr[DCTSIZE*5] = (DCTELEM)
1212       DESCALE(MULTIPLY(tmp10 - tmp11 - tmp2, FIX(1.28)),  /* 32/25 */
1213               CONST_BITS+2);
1214     tmp2 = MULTIPLY(tmp2, FIX(1.28));                     /* 32/25 */
1215     dataptr[DCTSIZE*1] = (DCTELEM)
1216       DESCALE(MULTIPLY(tmp0, FIX(1.787906876)) +          /* c1 */
1217               MULTIPLY(tmp1, FIX(1.612894094)) + tmp2 +   /* c3 */
1218               MULTIPLY(tmp3, FIX(0.821810588)) +          /* c7 */
1219               MULTIPLY(tmp4, FIX(0.283176630)),           /* c9 */
1220               CONST_BITS+2);
1221     tmp12 = MULTIPLY(tmp0 - tmp4, FIX(1.217352341)) -     /* (c3+c7)/2 */
1222             MULTIPLY(tmp1 + tmp3, FIX(0.752365123));      /* (c1-c9)/2 */
1223     tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.395541753)) +   /* (c3-c7)/2 */
1224             MULTIPLY(tmp11, FIX(0.64)) - tmp2;            /* 16/25 */
1225     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS+2);
1226     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS+2);
1227 
1228     dataptr++;                  /* advance pointer to next column */
1229     wsptr++;                    /* advance pointer to next column */
1230   }
1231 }
1232 
1233 
1234 /*
1235  * Perform the forward DCT on an 11x11 sample block.
1236  */
1237 
1238 GLOBAL(void)
1239 jpeg_fdct_11x11 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
1240 {
1241   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
1242   INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
1243   INT32 z1, z2, z3;
1244   DCTELEM workspace[8*3];
1245   DCTELEM *dataptr;
1246   DCTELEM *wsptr;
1247   JSAMPROW elemptr;
1248   int ctr;
1249   SHIFT_TEMPS
1250 
1251   /* Pass 1: process rows. */
1252   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
1253   /* we scale the results further by 2 as part of output adaption */
1254   /* scaling for different DCT size. */
1255   /* cK represents sqrt(2) * cos(K*pi/22). */
1256 
1257   dataptr = data;
1258   ctr = 0;
1259   for (;;) {
1260     elemptr = sample_data[ctr] + start_col;
1261 
1262     /* Even part */
1263 
1264     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[10]);
1265     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[9]);
1266     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[8]);
1267     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[7]);
1268     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[6]);
1269     tmp5 = GETJSAMPLE(elemptr[5]);
1270 
1271     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[10]);
1272     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[9]);
1273     tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[8]);
1274     tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[7]);
1275     tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[6]);
1276 
1277     /* Apply unsigned->signed conversion */
1278     dataptr[0] = (DCTELEM)
1279       ((tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 - 11 * CENTERJSAMPLE) << 1);
1280     tmp5 += tmp5;
1281     tmp0 -= tmp5;
1282     tmp1 -= tmp5;
1283     tmp2 -= tmp5;
1284     tmp3 -= tmp5;
1285     tmp4 -= tmp5;
1286     z1 = MULTIPLY(tmp0 + tmp3, FIX(1.356927976)) +       /* c2 */
1287          MULTIPLY(tmp2 + tmp4, FIX(0.201263574));        /* c10 */
1288     z2 = MULTIPLY(tmp1 - tmp3, FIX(0.926112931));        /* c6 */
1289     z3 = MULTIPLY(tmp0 - tmp1, FIX(1.189712156));        /* c4 */
1290     dataptr[2] = (DCTELEM)
1291       DESCALE(z1 + z2 - MULTIPLY(tmp3, FIX(1.018300590)) /* c2+c8-c6 */
1292               - MULTIPLY(tmp4, FIX(1.390975730)),        /* c4+c10 */
1293               CONST_BITS-1);
1294     dataptr[4] = (DCTELEM)
1295       DESCALE(z2 + z3 + MULTIPLY(tmp1, FIX(0.062335650)) /* c4-c6-c10 */
1296               - MULTIPLY(tmp2, FIX(1.356927976))         /* c2 */
1297               + MULTIPLY(tmp4, FIX(0.587485545)),        /* c8 */
1298               CONST_BITS-1);
1299     dataptr[6] = (DCTELEM)
1300       DESCALE(z1 + z3 - MULTIPLY(tmp0, FIX(1.620527200)) /* c2+c4-c6 */
1301               - MULTIPLY(tmp2, FIX(0.788749120)),        /* c8+c10 */
1302               CONST_BITS-1);
1303 
1304     /* Odd part */
1305 
1306     tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.286413905));    /* c3 */
1307     tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.068791298));    /* c5 */
1308     tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.764581576));    /* c7 */
1309     tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(tmp10, FIX(1.719967871)) /* c7+c5+c3-c1 */
1310            + MULTIPLY(tmp14, FIX(0.398430003));          /* c9 */
1311     tmp4 = MULTIPLY(tmp11 + tmp12, - FIX(0.764581576));  /* -c7 */
1312     tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.399818907));  /* -c1 */
1313     tmp1 += tmp4 + tmp5 + MULTIPLY(tmp11, FIX(1.276416582)) /* c9+c7+c1-c3 */
1314             - MULTIPLY(tmp14, FIX(1.068791298));         /* c5 */
1315     tmp10 = MULTIPLY(tmp12 + tmp13, FIX(0.398430003));   /* c9 */
1316     tmp2 += tmp4 + tmp10 - MULTIPLY(tmp12, FIX(1.989053629)) /* c9+c5+c3-c7 */
1317             + MULTIPLY(tmp14, FIX(1.399818907));         /* c1 */
1318     tmp3 += tmp5 + tmp10 + MULTIPLY(tmp13, FIX(1.305598626)) /* c1+c5-c9-c7 */
1319             - MULTIPLY(tmp14, FIX(1.286413905));         /* c3 */
1320 
1321     dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-1);
1322     dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-1);
1323     dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-1);
1324     dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS-1);
1325 
1326     ctr++;
1327 
1328     if (ctr != DCTSIZE) {
1329       if (ctr == 11)
1330         break;                  /* Done. */
1331       dataptr += DCTSIZE;       /* advance pointer to next row */
1332     } else
1333       dataptr = workspace;      /* switch pointer to extended workspace */
1334   }
1335 
1336   /* Pass 2: process columns.
1337    * We leave the results scaled up by an overall factor of 8.
1338    * We must also scale the output by (8/11)**2 = 64/121, which we partially
1339    * fold into the constant multipliers and final/initial shifting:
1340    * cK now represents sqrt(2) * cos(K*pi/22) * 128/121.
1341    */
1342 
1343   dataptr = data;
1344   wsptr = workspace;
1345   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
1346     /* Even part */
1347 
1348     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*2];
1349     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*1];
1350     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*0];
1351     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*7];
1352     tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*6];
1353     tmp5 = dataptr[DCTSIZE*5];
1354 
1355     tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*2];
1356     tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*1];
1357     tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*0];
1358     tmp13 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*7];
1359     tmp14 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*6];
1360 
1361     dataptr[DCTSIZE*0] = (DCTELEM)
1362       DESCALE(MULTIPLY(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5,
1363                        FIX(1.057851240)),                /* 128/121 */
1364               CONST_BITS+2);
1365     tmp5 += tmp5;
1366     tmp0 -= tmp5;
1367     tmp1 -= tmp5;
1368     tmp2 -= tmp5;
1369     tmp3 -= tmp5;
1370     tmp4 -= tmp5;
1371     z1 = MULTIPLY(tmp0 + tmp3, FIX(1.435427942)) +       /* c2 */
1372          MULTIPLY(tmp2 + tmp4, FIX(0.212906922));        /* c10 */
1373     z2 = MULTIPLY(tmp1 - tmp3, FIX(0.979689713));        /* c6 */
1374     z3 = MULTIPLY(tmp0 - tmp1, FIX(1.258538479));        /* c4 */
1375     dataptr[DCTSIZE*2] = (DCTELEM)
1376       DESCALE(z1 + z2 - MULTIPLY(tmp3, FIX(1.077210542)) /* c2+c8-c6 */
1377               - MULTIPLY(tmp4, FIX(1.471445400)),        /* c4+c10 */
1378               CONST_BITS+2);
1379     dataptr[DCTSIZE*4] = (DCTELEM)
1380       DESCALE(z2 + z3 + MULTIPLY(tmp1, FIX(0.065941844)) /* c4-c6-c10 */
1381               - MULTIPLY(tmp2, FIX(1.435427942))         /* c2 */
1382               + MULTIPLY(tmp4, FIX(0.621472312)),        /* c8 */
1383               CONST_BITS+2);
1384     dataptr[DCTSIZE*6] = (DCTELEM)
1385       DESCALE(z1 + z3 - MULTIPLY(tmp0, FIX(1.714276708)) /* c2+c4-c6 */
1386               - MULTIPLY(tmp2, FIX(0.834379234)),        /* c8+c10 */
1387               CONST_BITS+2);
1388 
1389     /* Odd part */
1390 
1391     tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.360834544));    /* c3 */
1392     tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.130622199));    /* c5 */
1393     tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.808813568));    /* c7 */
1394     tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(tmp10, FIX(1.819470145)) /* c7+c5+c3-c1 */
1395            + MULTIPLY(tmp14, FIX(0.421479672));          /* c9 */
1396     tmp4 = MULTIPLY(tmp11 + tmp12, - FIX(0.808813568));  /* -c7 */
1397     tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.480800167));  /* -c1 */
1398     tmp1 += tmp4 + tmp5 + MULTIPLY(tmp11, FIX(1.350258864)) /* c9+c7+c1-c3 */
1399             - MULTIPLY(tmp14, FIX(1.130622199));         /* c5 */
1400     tmp10 = MULTIPLY(tmp12 + tmp13, FIX(0.421479672));   /* c9 */
1401     tmp2 += tmp4 + tmp10 - MULTIPLY(tmp12, FIX(2.104122847)) /* c9+c5+c3-c7 */
1402             + MULTIPLY(tmp14, FIX(1.480800167));         /* c1 */
1403     tmp3 += tmp5 + tmp10 + MULTIPLY(tmp13, FIX(1.381129125)) /* c1+c5-c9-c7 */
1404             - MULTIPLY(tmp14, FIX(1.360834544));         /* c3 */
1405 
1406     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+2);
1407     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+2);
1408     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+2);
1409     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+2);
1410 
1411     dataptr++;                  /* advance pointer to next column */
1412     wsptr++;                    /* advance pointer to next column */
1413   }
1414 }
1415 
1416 
1417 /*
1418  * Perform the forward DCT on a 12x12 sample block.
1419  */
1420 
1421 GLOBAL(void)
1422 jpeg_fdct_12x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
1423 {
1424   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
1425   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
1426   DCTELEM workspace[8*4];
1427   DCTELEM *dataptr;
1428   DCTELEM *wsptr;
1429   JSAMPROW elemptr;
1430   int ctr;
1431   SHIFT_TEMPS
1432 
1433   /* Pass 1: process rows. */
1434   /* Note results are scaled up by sqrt(8) compared to a true DCT. */
1435   /* cK represents sqrt(2) * cos(K*pi/24). */
1436 
1437   dataptr = data;
1438   ctr = 0;
1439   for (;;) {
1440     elemptr = sample_data[ctr] + start_col;
1441 
1442     /* Even part */
1443 
1444     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[11]);
1445     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[10]);
1446     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[9]);
1447     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[8]);
1448     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[7]);
1449     tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[6]);
1450 
1451     tmp10 = tmp0 + tmp5;
1452     tmp13 = tmp0 - tmp5;
1453     tmp11 = tmp1 + tmp4;
1454     tmp14 = tmp1 - tmp4;
1455     tmp12 = tmp2 + tmp3;
1456     tmp15 = tmp2 - tmp3;
1457 
1458     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[11]);
1459     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[10]);
1460     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[9]);
1461     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[8]);
1462     tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[7]);
1463     tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[6]);
1464 
1465     /* Apply unsigned->signed conversion */
1466     dataptr[0] = (DCTELEM) (tmp10 + tmp11 + tmp12 - 12 * CENTERJSAMPLE);
1467     dataptr[6] = (DCTELEM) (tmp13 - tmp14 - tmp15);
1468     dataptr[4] = (DCTELEM)
1469       DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.224744871)), /* c4 */
1470               CONST_BITS);
1471     dataptr[2] = (DCTELEM)
1472       DESCALE(tmp14 - tmp15 + MULTIPLY(tmp13 + tmp15, FIX(1.366025404)), /* c2 */
1473               CONST_BITS);
1474 
1475     /* Odd part */
1476 
1477     tmp10 = MULTIPLY(tmp1 + tmp4, FIX_0_541196100);    /* c9 */
1478     tmp14 = tmp10 + MULTIPLY(tmp1, FIX_0_765366865);   /* c3-c9 */
1479     tmp15 = tmp10 - MULTIPLY(tmp4, FIX_1_847759065);   /* c3+c9 */
1480     tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.121971054));   /* c5 */
1481     tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.860918669));   /* c7 */
1482     tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.580774953)) /* c5+c7-c1 */
1483             + MULTIPLY(tmp5, FIX(0.184591911));        /* c11 */
1484     tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.184591911)); /* -c11 */
1485     tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.339493912)) /* c1+c5-c11 */
1486             + MULTIPLY(tmp5, FIX(0.860918669));        /* c7 */
1487     tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.725788011)) /* c1+c11-c7 */
1488             - MULTIPLY(tmp5, FIX(1.121971054));        /* c5 */
1489     tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.306562965)) /* c3 */
1490             - MULTIPLY(tmp2 + tmp5, FIX_0_541196100);  /* c9 */
1491 
1492     dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS);
1493     dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS);
1494     dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS);
1495     dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS);
1496 
1497     ctr++;
1498 
1499     if (ctr != DCTSIZE) {
1500       if (ctr == 12)
1501         break;                  /* Done. */
1502       dataptr += DCTSIZE;       /* advance pointer to next row */
1503     } else
1504       dataptr = workspace;      /* switch pointer to extended workspace */
1505   }
1506 
1507   /* Pass 2: process columns.
1508    * We leave the results scaled up by an overall factor of 8.
1509    * We must also scale the output by (8/12)**2 = 4/9, which we partially
1510    * fold into the constant multipliers and final shifting:
1511    * cK now represents sqrt(2) * cos(K*pi/24) * 8/9.
1512    */
1513 
1514   dataptr = data;
1515   wsptr = workspace;
1516   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
1517     /* Even part */
1518 
1519     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*3];
1520     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*2];
1521     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*1];
1522     tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*0];
1523     tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*7];
1524     tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*6];
1525 
1526     tmp10 = tmp0 + tmp5;
1527     tmp13 = tmp0 - tmp5;
1528     tmp11 = tmp1 + tmp4;
1529     tmp14 = tmp1 - tmp4;
1530     tmp12 = tmp2 + tmp3;
1531     tmp15 = tmp2 - tmp3;
1532 
1533     tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*3];
1534     tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*2];
1535     tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*1];
1536     tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*0];
1537     tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*7];
1538     tmp5 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*6];
1539 
1540     dataptr[DCTSIZE*0] = (DCTELEM)
1541       DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(0.888888889)), /* 8/9 */
1542               CONST_BITS+1);
1543     dataptr[DCTSIZE*6] = (DCTELEM)
1544       DESCALE(MULTIPLY(tmp13 - tmp14 - tmp15, FIX(0.888888889)), /* 8/9 */
1545               CONST_BITS+1);
1546     dataptr[DCTSIZE*4] = (DCTELEM)
1547       DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.088662108)),         /* c4 */
1548               CONST_BITS+1);
1549     dataptr[DCTSIZE*2] = (DCTELEM)
1550       DESCALE(MULTIPLY(tmp14 - tmp15, FIX(0.888888889)) +        /* 8/9 */
1551               MULTIPLY(tmp13 + tmp15, FIX(1.214244803)),         /* c2 */
1552               CONST_BITS+1);
1553 
1554     /* Odd part */
1555 
1556     tmp10 = MULTIPLY(tmp1 + tmp4, FIX(0.481063200));   /* c9 */
1557     tmp14 = tmp10 + MULTIPLY(tmp1, FIX(0.680326102));  /* c3-c9 */
1558     tmp15 = tmp10 - MULTIPLY(tmp4, FIX(1.642452502));  /* c3+c9 */
1559     tmp12 = MULTIPLY(tmp0 + tmp2, FIX(0.997307603));   /* c5 */
1560     tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.765261039));   /* c7 */
1561     tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.516244403)) /* c5+c7-c1 */
1562             + MULTIPLY(tmp5, FIX(0.164081699));        /* c11 */
1563     tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.164081699)); /* -c11 */
1564     tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.079550144)) /* c1+c5-c11 */
1565             + MULTIPLY(tmp5, FIX(0.765261039));        /* c7 */
1566     tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.645144899)) /* c1+c11-c7 */
1567             - MULTIPLY(tmp5, FIX(0.997307603));        /* c5 */
1568     tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.161389302)) /* c3 */
1569             - MULTIPLY(tmp2 + tmp5, FIX(0.481063200)); /* c9 */
1570 
1571     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+1);
1572     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+1);
1573     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+1);
1574     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+1);
1575 
1576     dataptr++;                  /* advance pointer to next column */
1577     wsptr++;                    /* advance pointer to next column */
1578   }
1579 }
1580 
1581 
1582 /*
1583  * Perform the forward DCT on a 13x13 sample block.
1584  */
1585 
1586 GLOBAL(void)
1587 jpeg_fdct_13x13 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
1588 {
1589   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
1590   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
1591   INT32 z1, z2;
1592   DCTELEM workspace[8*5];
1593   DCTELEM *dataptr;
1594   DCTELEM *wsptr;
1595   JSAMPROW elemptr;
1596   int ctr;
1597   SHIFT_TEMPS
1598 
1599   /* Pass 1: process rows. */
1600   /* Note results are scaled up by sqrt(8) compared to a true DCT. */
1601   /* cK represents sqrt(2) * cos(K*pi/26). */
1602 
1603   dataptr = data;
1604   ctr = 0;
1605   for (;;) {
1606     elemptr = sample_data[ctr] + start_col;
1607 
1608     /* Even part */
1609 
1610     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[12]);
1611     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[11]);
1612     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[10]);
1613     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[9]);
1614     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[8]);
1615     tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[7]);
1616     tmp6 = GETJSAMPLE(elemptr[6]);
1617 
1618     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[12]);
1619     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[11]);
1620     tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[10]);
1621     tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[9]);
1622     tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[8]);
1623     tmp15 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[7]);
1624 
1625     /* Apply unsigned->signed conversion */
1626     dataptr[0] = (DCTELEM)
1627       (tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + tmp6 - 13 * CENTERJSAMPLE);
1628     tmp6 += tmp6;
1629     tmp0 -= tmp6;
1630     tmp1 -= tmp6;
1631     tmp2 -= tmp6;
1632     tmp3 -= tmp6;
1633     tmp4 -= tmp6;
1634     tmp5 -= tmp6;
1635     dataptr[2] = (DCTELEM)
1636       DESCALE(MULTIPLY(tmp0, FIX(1.373119086)) +   /* c2 */
1637               MULTIPLY(tmp1, FIX(1.058554052)) +   /* c6 */
1638               MULTIPLY(tmp2, FIX(0.501487041)) -   /* c10 */
1639               MULTIPLY(tmp3, FIX(0.170464608)) -   /* c12 */
1640               MULTIPLY(tmp4, FIX(0.803364869)) -   /* c8 */
1641               MULTIPLY(tmp5, FIX(1.252223920)),    /* c4 */
1642               CONST_BITS);
1643     z1 = MULTIPLY(tmp0 - tmp2, FIX(1.155388986)) - /* (c4+c6)/2 */
1644          MULTIPLY(tmp3 - tmp4, FIX(0.435816023)) - /* (c2-c10)/2 */
1645          MULTIPLY(tmp1 - tmp5, FIX(0.316450131));  /* (c8-c12)/2 */
1646     z2 = MULTIPLY(tmp0 + tmp2, FIX(0.096834934)) - /* (c4-c6)/2 */
1647          MULTIPLY(tmp3 + tmp4, FIX(0.937303064)) + /* (c2+c10)/2 */
1648          MULTIPLY(tmp1 + tmp5, FIX(0.486914739));  /* (c8+c12)/2 */
1649 
1650     dataptr[4] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS);
1651     dataptr[6] = (DCTELEM) DESCALE(z1 - z2, CONST_BITS);
1652 
1653     /* Odd part */
1654 
1655     tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.322312651));   /* c3 */
1656     tmp2 = MULTIPLY(tmp10 + tmp12, FIX(1.163874945));   /* c5 */
1657     tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.937797057)) +  /* c7 */
1658            MULTIPLY(tmp14 + tmp15, FIX(0.338443458));   /* c11 */
1659     tmp0 = tmp1 + tmp2 + tmp3 -
1660            MULTIPLY(tmp10, FIX(2.020082300)) +          /* c3+c5+c7-c1 */
1661            MULTIPLY(tmp14, FIX(0.318774355));           /* c9-c11 */
1662     tmp4 = MULTIPLY(tmp14 - tmp15, FIX(0.937797057)) -  /* c7 */
1663            MULTIPLY(tmp11 + tmp12, FIX(0.338443458));   /* c11 */
1664     tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(1.163874945)); /* -c5 */
1665     tmp1 += tmp4 + tmp5 +
1666             MULTIPLY(tmp11, FIX(0.837223564)) -         /* c5+c9+c11-c3 */
1667             MULTIPLY(tmp14, FIX(2.341699410));          /* c1+c7 */
1668     tmp6 = MULTIPLY(tmp12 + tmp13, - FIX(0.657217813)); /* -c9 */
1669     tmp2 += tmp4 + tmp6 -
1670             MULTIPLY(tmp12, FIX(1.572116027)) +         /* c1+c5-c9-c11 */
1671             MULTIPLY(tmp15, FIX(2.260109708));          /* c3+c7 */
1672     tmp3 += tmp5 + tmp6 +
1673             MULTIPLY(tmp13, FIX(2.205608352)) -         /* c3+c5+c9-c7 */
1674             MULTIPLY(tmp15, FIX(1.742345811));          /* c1+c11 */
1675 
1676     dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS);
1677     dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS);
1678     dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS);
1679     dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS);
1680 
1681     ctr++;
1682 
1683     if (ctr != DCTSIZE) {
1684       if (ctr == 13)
1685         break;                  /* Done. */
1686       dataptr += DCTSIZE;       /* advance pointer to next row */
1687     } else
1688       dataptr = workspace;      /* switch pointer to extended workspace */
1689   }
1690 
1691   /* Pass 2: process columns.
1692    * We leave the results scaled up by an overall factor of 8.
1693    * We must also scale the output by (8/13)**2 = 64/169, which we partially
1694    * fold into the constant multipliers and final shifting:
1695    * cK now represents sqrt(2) * cos(K*pi/26) * 128/169.
1696    */
1697 
1698   dataptr = data;
1699   wsptr = workspace;
1700   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
1701     /* Even part */
1702 
1703     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*4];
1704     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*3];
1705     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*2];
1706     tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*1];
1707     tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*0];
1708     tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*7];
1709     tmp6 = dataptr[DCTSIZE*6];
1710 
1711     tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*4];
1712     tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*3];
1713     tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*2];
1714     tmp13 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*1];
1715     tmp14 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*0];
1716     tmp15 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*7];
1717 
1718     dataptr[DCTSIZE*0] = (DCTELEM)
1719       DESCALE(MULTIPLY(tmp0 + tmp1 + tmp2 + tmp3 + tmp4 + tmp5 + tmp6,
1720                        FIX(0.757396450)),          /* 128/169 */
1721               CONST_BITS+1);
1722     tmp6 += tmp6;
1723     tmp0 -= tmp6;
1724     tmp1 -= tmp6;
1725     tmp2 -= tmp6;
1726     tmp3 -= tmp6;
1727     tmp4 -= tmp6;
1728     tmp5 -= tmp6;
1729     dataptr[DCTSIZE*2] = (DCTELEM)
1730       DESCALE(MULTIPLY(tmp0, FIX(1.039995521)) +   /* c2 */
1731               MULTIPLY(tmp1, FIX(0.801745081)) +   /* c6 */
1732               MULTIPLY(tmp2, FIX(0.379824504)) -   /* c10 */
1733               MULTIPLY(tmp3, FIX(0.129109289)) -   /* c12 */
1734               MULTIPLY(tmp4, FIX(0.608465700)) -   /* c8 */
1735               MULTIPLY(tmp5, FIX(0.948429952)),    /* c4 */
1736               CONST_BITS+1);
1737     z1 = MULTIPLY(tmp0 - tmp2, FIX(0.875087516)) - /* (c4+c6)/2 */
1738          MULTIPLY(tmp3 - tmp4, FIX(0.330085509)) - /* (c2-c10)/2 */
1739          MULTIPLY(tmp1 - tmp5, FIX(0.239678205));  /* (c8-c12)/2 */
1740     z2 = MULTIPLY(tmp0 + tmp2, FIX(0.073342435)) - /* (c4-c6)/2 */
1741          MULTIPLY(tmp3 + tmp4, FIX(0.709910013)) + /* (c2+c10)/2 */
1742          MULTIPLY(tmp1 + tmp5, FIX(0.368787494));  /* (c8+c12)/2 */
1743 
1744     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+1);
1745     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 - z2, CONST_BITS+1);
1746 
1747     /* Odd part */
1748 
1749     tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.001514908));   /* c3 */
1750     tmp2 = MULTIPLY(tmp10 + tmp12, FIX(0.881514751));   /* c5 */
1751     tmp3 = MULTIPLY(tmp10 + tmp13, FIX(0.710284161)) +  /* c7 */
1752            MULTIPLY(tmp14 + tmp15, FIX(0.256335874));   /* c11 */
1753     tmp0 = tmp1 + tmp2 + tmp3 -
1754            MULTIPLY(tmp10, FIX(1.530003162)) +          /* c3+c5+c7-c1 */
1755            MULTIPLY(tmp14, FIX(0.241438564));           /* c9-c11 */
1756     tmp4 = MULTIPLY(tmp14 - tmp15, FIX(0.710284161)) -  /* c7 */
1757            MULTIPLY(tmp11 + tmp12, FIX(0.256335874));   /* c11 */
1758     tmp5 = MULTIPLY(tmp11 + tmp13, - FIX(0.881514751)); /* -c5 */
1759     tmp1 += tmp4 + tmp5 +
1760             MULTIPLY(tmp11, FIX(0.634110155)) -         /* c5+c9+c11-c3 */
1761             MULTIPLY(tmp14, FIX(1.773594819));          /* c1+c7 */
1762     tmp6 = MULTIPLY(tmp12 + tmp13, - FIX(0.497774438)); /* -c9 */
1763     tmp2 += tmp4 + tmp6 -
1764             MULTIPLY(tmp12, FIX(1.190715098)) +         /* c1+c5-c9-c11 */
1765             MULTIPLY(tmp15, FIX(1.711799069));          /* c3+c7 */
1766     tmp3 += tmp5 + tmp6 +
1767             MULTIPLY(tmp13, FIX(1.670519935)) -         /* c3+c5+c9-c7 */
1768             MULTIPLY(tmp15, FIX(1.319646532));          /* c1+c11 */
1769 
1770     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+1);
1771     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+1);
1772     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+1);
1773     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+1);
1774 
1775     dataptr++;                  /* advance pointer to next column */
1776     wsptr++;                    /* advance pointer to next column */
1777   }
1778 }
1779 
1780 
1781 /*
1782  * Perform the forward DCT on a 14x14 sample block.
1783  */
1784 
1785 GLOBAL(void)
1786 jpeg_fdct_14x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
1787 {
1788   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
1789   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
1790   DCTELEM workspace[8*6];
1791   DCTELEM *dataptr;
1792   DCTELEM *wsptr;
1793   JSAMPROW elemptr;
1794   int ctr;
1795   SHIFT_TEMPS
1796 
1797   /* Pass 1: process rows. */
1798   /* Note results are scaled up by sqrt(8) compared to a true DCT. */
1799   /* cK represents sqrt(2) * cos(K*pi/28). */
1800 
1801   dataptr = data;
1802   ctr = 0;
1803   for (;;) {
1804     elemptr = sample_data[ctr] + start_col;
1805 
1806     /* Even part */
1807 
1808     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[13]);
1809     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[12]);
1810     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[11]);
1811     tmp13 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[10]);
1812     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[9]);
1813     tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[8]);
1814     tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[7]);
1815 
1816     tmp10 = tmp0 + tmp6;
1817     tmp14 = tmp0 - tmp6;
1818     tmp11 = tmp1 + tmp5;
1819     tmp15 = tmp1 - tmp5;
1820     tmp12 = tmp2 + tmp4;
1821     tmp16 = tmp2 - tmp4;
1822 
1823     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[13]);
1824     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[12]);
1825     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[11]);
1826     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[10]);
1827     tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[9]);
1828     tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[8]);
1829     tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[7]);
1830 
1831     /* Apply unsigned->signed conversion */
1832     dataptr[0] = (DCTELEM)
1833       (tmp10 + tmp11 + tmp12 + tmp13 - 14 * CENTERJSAMPLE);
1834     tmp13 += tmp13;
1835     dataptr[4] = (DCTELEM)
1836       DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.274162392)) + /* c4 */
1837               MULTIPLY(tmp11 - tmp13, FIX(0.314692123)) - /* c12 */
1838               MULTIPLY(tmp12 - tmp13, FIX(0.881747734)),  /* c8 */
1839               CONST_BITS);
1840 
1841     tmp10 = MULTIPLY(tmp14 + tmp15, FIX(1.105676686));    /* c6 */
1842 
1843     dataptr[2] = (DCTELEM)
1844       DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.273079590))   /* c2-c6 */
1845               + MULTIPLY(tmp16, FIX(0.613604268)),        /* c10 */
1846               CONST_BITS);
1847     dataptr[6] = (DCTELEM)
1848       DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.719280954))   /* c6+c10 */
1849               - MULTIPLY(tmp16, FIX(1.378756276)),        /* c2 */
1850               CONST_BITS);
1851 
1852     /* Odd part */
1853 
1854     tmp10 = tmp1 + tmp2;
1855     tmp11 = tmp5 - tmp4;
1856     dataptr[7] = (DCTELEM) (tmp0 - tmp10 + tmp3 - tmp11 - tmp6);
1857     tmp3 <<= CONST_BITS;
1858     tmp10 = MULTIPLY(tmp10, - FIX(0.158341681));          /* -c13 */
1859     tmp11 = MULTIPLY(tmp11, FIX(1.405321284));            /* c1 */
1860     tmp10 += tmp11 - tmp3;
1861     tmp11 = MULTIPLY(tmp0 + tmp2, FIX(1.197448846)) +     /* c5 */
1862             MULTIPLY(tmp4 + tmp6, FIX(0.752406978));      /* c9 */
1863     dataptr[5] = (DCTELEM)
1864       DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(2.373959773)) /* c3+c5-c13 */
1865               + MULTIPLY(tmp4, FIX(1.119999435)),         /* c1+c11-c9 */
1866               CONST_BITS);
1867     tmp12 = MULTIPLY(tmp0 + tmp1, FIX(1.334852607)) +     /* c3 */
1868             MULTIPLY(tmp5 - tmp6, FIX(0.467085129));      /* c11 */
1869     dataptr[3] = (DCTELEM)
1870       DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.424103948)) /* c3-c9-c13 */
1871               - MULTIPLY(tmp5, FIX(3.069855259)),         /* c1+c5+c11 */
1872               CONST_BITS);
1873     dataptr[1] = (DCTELEM)
1874       DESCALE(tmp11 + tmp12 + tmp3 + tmp6 -
1875               MULTIPLY(tmp0 + tmp6, FIX(1.126980169)),    /* c3+c5-c1 */
1876               CONST_BITS);
1877 
1878     ctr++;
1879 
1880     if (ctr != DCTSIZE) {
1881       if (ctr == 14)
1882         break;                  /* Done. */
1883       dataptr += DCTSIZE;       /* advance pointer to next row */
1884     } else
1885       dataptr = workspace;      /* switch pointer to extended workspace */
1886   }
1887 
1888   /* Pass 2: process columns.
1889    * We leave the results scaled up by an overall factor of 8.
1890    * We must also scale the output by (8/14)**2 = 16/49, which we partially
1891    * fold into the constant multipliers and final shifting:
1892    * cK now represents sqrt(2) * cos(K*pi/28) * 32/49.
1893    */
1894 
1895   dataptr = data;
1896   wsptr = workspace;
1897   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
1898     /* Even part */
1899 
1900     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*5];
1901     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*4];
1902     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*3];
1903     tmp13 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*2];
1904     tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*1];
1905     tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*0];
1906     tmp6 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
1907 
1908     tmp10 = tmp0 + tmp6;
1909     tmp14 = tmp0 - tmp6;
1910     tmp11 = tmp1 + tmp5;
1911     tmp15 = tmp1 - tmp5;
1912     tmp12 = tmp2 + tmp4;
1913     tmp16 = tmp2 - tmp4;
1914 
1915     tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*5];
1916     tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*4];
1917     tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*3];
1918     tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*2];
1919     tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*1];
1920     tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*0];
1921     tmp6 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
1922 
1923     dataptr[DCTSIZE*0] = (DCTELEM)
1924       DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12 + tmp13,
1925                        FIX(0.653061224)),                 /* 32/49 */
1926               CONST_BITS+1);
1927     tmp13 += tmp13;
1928     dataptr[DCTSIZE*4] = (DCTELEM)
1929       DESCALE(MULTIPLY(tmp10 - tmp13, FIX(0.832106052)) + /* c4 */
1930               MULTIPLY(tmp11 - tmp13, FIX(0.205513223)) - /* c12 */
1931               MULTIPLY(tmp12 - tmp13, FIX(0.575835255)),  /* c8 */
1932               CONST_BITS+1);
1933 
1934     tmp10 = MULTIPLY(tmp14 + tmp15, FIX(0.722074570));    /* c6 */
1935 
1936     dataptr[DCTSIZE*2] = (DCTELEM)
1937       DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.178337691))   /* c2-c6 */
1938               + MULTIPLY(tmp16, FIX(0.400721155)),        /* c10 */
1939               CONST_BITS+1);
1940     dataptr[DCTSIZE*6] = (DCTELEM)
1941       DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.122795725))   /* c6+c10 */
1942               - MULTIPLY(tmp16, FIX(0.900412262)),        /* c2 */
1943               CONST_BITS+1);
1944 
1945     /* Odd part */
1946 
1947     tmp10 = tmp1 + tmp2;
1948     tmp11 = tmp5 - tmp4;
1949     dataptr[DCTSIZE*7] = (DCTELEM)
1950       DESCALE(MULTIPLY(tmp0 - tmp10 + tmp3 - tmp11 - tmp6,
1951                        FIX(0.653061224)),                 /* 32/49 */
1952               CONST_BITS+1);
1953     tmp3  = MULTIPLY(tmp3 , FIX(0.653061224));            /* 32/49 */
1954     tmp10 = MULTIPLY(tmp10, - FIX(0.103406812));          /* -c13 */
1955     tmp11 = MULTIPLY(tmp11, FIX(0.917760839));            /* c1 */
1956     tmp10 += tmp11 - tmp3;
1957     tmp11 = MULTIPLY(tmp0 + tmp2, FIX(0.782007410)) +     /* c5 */
1958             MULTIPLY(tmp4 + tmp6, FIX(0.491367823));      /* c9 */
1959     dataptr[DCTSIZE*5] = (DCTELEM)
1960       DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(1.550341076)) /* c3+c5-c13 */
1961               + MULTIPLY(tmp4, FIX(0.731428202)),         /* c1+c11-c9 */
1962               CONST_BITS+1);
1963     tmp12 = MULTIPLY(tmp0 + tmp1, FIX(0.871740478)) +     /* c3 */
1964             MULTIPLY(tmp5 - tmp6, FIX(0.305035186));      /* c11 */
1965     dataptr[DCTSIZE*3] = (DCTELEM)
1966       DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.276965844)) /* c3-c9-c13 */
1967               - MULTIPLY(tmp5, FIX(2.004803435)),         /* c1+c5+c11 */
1968               CONST_BITS+1);
1969     dataptr[DCTSIZE*1] = (DCTELEM)
1970       DESCALE(tmp11 + tmp12 + tmp3
1971               - MULTIPLY(tmp0, FIX(0.735987049))          /* c3+c5-c1 */
1972               - MULTIPLY(tmp6, FIX(0.082925825)),         /* c9-c11-c13 */
1973               CONST_BITS+1);
1974 
1975     dataptr++;                  /* advance pointer to next column */
1976     wsptr++;                    /* advance pointer to next column */
1977   }
1978 }
1979 
1980 
1981 /*
1982  * Perform the forward DCT on a 15x15 sample block.
1983  */
1984 
1985 GLOBAL(void)
1986 jpeg_fdct_15x15 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
1987 {
1988   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
1989   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
1990   INT32 z1, z2, z3;
1991   DCTELEM workspace[8*7];
1992   DCTELEM *dataptr;
1993   DCTELEM *wsptr;
1994   JSAMPROW elemptr;
1995   int ctr;
1996   SHIFT_TEMPS
1997 
1998   /* Pass 1: process rows. */
1999   /* Note results are scaled up by sqrt(8) compared to a true DCT. */
2000   /* cK represents sqrt(2) * cos(K*pi/30). */
2001 
2002   dataptr = data;
2003   ctr = 0;
2004   for (;;) {
2005     elemptr = sample_data[ctr] + start_col;
2006 
2007     /* Even part */
2008 
2009     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[14]);
2010     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[13]);
2011     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[12]);
2012     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[11]);
2013     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[10]);
2014     tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[9]);
2015     tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[8]);
2016     tmp7 = GETJSAMPLE(elemptr[7]);
2017 
2018     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[14]);
2019     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[13]);
2020     tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[12]);
2021     tmp13 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[11]);
2022     tmp14 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[10]);
2023     tmp15 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[9]);
2024     tmp16 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[8]);
2025 
2026     z1 = tmp0 + tmp4 + tmp5;
2027     z2 = tmp1 + tmp3 + tmp6;
2028     z3 = tmp2 + tmp7;
2029     /* Apply unsigned->signed conversion */
2030     dataptr[0] = (DCTELEM) (z1 + z2 + z3 - 15 * CENTERJSAMPLE);
2031     z3 += z3;
2032     dataptr[6] = (DCTELEM)
2033       DESCALE(MULTIPLY(z1 - z3, FIX(1.144122806)) - /* c6 */
2034               MULTIPLY(z2 - z3, FIX(0.437016024)),  /* c12 */
2035               CONST_BITS);
2036     tmp2 += ((tmp1 + tmp4) >> 1) - tmp7 - tmp7;
2037     z1 = MULTIPLY(tmp3 - tmp2, FIX(1.531135173)) -  /* c2+c14 */
2038          MULTIPLY(tmp6 - tmp2, FIX(2.238241955));   /* c4+c8 */
2039     z2 = MULTIPLY(tmp5 - tmp2, FIX(0.798468008)) -  /* c8-c14 */
2040          MULTIPLY(tmp0 - tmp2, FIX(0.091361227));   /* c2-c4 */
2041     z3 = MULTIPLY(tmp0 - tmp3, FIX(1.383309603)) +  /* c2 */
2042          MULTIPLY(tmp6 - tmp5, FIX(0.946293579)) +  /* c8 */
2043          MULTIPLY(tmp1 - tmp4, FIX(0.790569415));   /* (c6+c12)/2 */
2044 
2045     dataptr[2] = (DCTELEM) DESCALE(z1 + z3, CONST_BITS);
2046     dataptr[4] = (DCTELEM) DESCALE(z2 + z3, CONST_BITS);
2047 
2048     /* Odd part */
2049 
2050     tmp2 = MULTIPLY(tmp10 - tmp12 - tmp13 + tmp15 + tmp16,
2051                     FIX(1.224744871));                         /* c5 */
2052     tmp1 = MULTIPLY(tmp10 - tmp14 - tmp15, FIX(1.344997024)) + /* c3 */
2053            MULTIPLY(tmp11 - tmp13 - tmp16, FIX(0.831253876));  /* c9 */
2054     tmp12 = MULTIPLY(tmp12, FIX(1.224744871));                 /* c5 */
2055     tmp4 = MULTIPLY(tmp10 - tmp16, FIX(1.406466353)) +         /* c1 */
2056            MULTIPLY(tmp11 + tmp14, FIX(1.344997024)) +         /* c3 */
2057            MULTIPLY(tmp13 + tmp15, FIX(0.575212477));          /* c11 */
2058     tmp0 = MULTIPLY(tmp13, FIX(0.475753014)) -                 /* c7-c11 */
2059            MULTIPLY(tmp14, FIX(0.513743148)) +                 /* c3-c9 */
2060            MULTIPLY(tmp16, FIX(1.700497885)) + tmp4 + tmp12;   /* c1+c13 */
2061     tmp3 = MULTIPLY(tmp10, - FIX(0.355500862)) -               /* -(c1-c7) */
2062            MULTIPLY(tmp11, FIX(2.176250899)) -                 /* c3+c9 */
2063            MULTIPLY(tmp15, FIX(0.869244010)) + tmp4 - tmp12;   /* c11+c13 */
2064 
2065     dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS);
2066     dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS);
2067     dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS);
2068     dataptr[7] = (DCTELEM) DESCALE(tmp3, CONST_BITS);
2069 
2070     ctr++;
2071 
2072     if (ctr != DCTSIZE) {
2073       if (ctr == 15)
2074         break;                  /* Done. */
2075       dataptr += DCTSIZE;       /* advance pointer to next row */
2076     } else
2077       dataptr = workspace;      /* switch pointer to extended workspace */
2078   }
2079 
2080   /* Pass 2: process columns.
2081    * We leave the results scaled up by an overall factor of 8.
2082    * We must also scale the output by (8/15)**2 = 64/225, which we partially
2083    * fold into the constant multipliers and final shifting:
2084    * cK now represents sqrt(2) * cos(K*pi/30) * 256/225.
2085    */
2086 
2087   dataptr = data;
2088   wsptr = workspace;
2089   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
2090     /* Even part */
2091 
2092     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*6];
2093     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*5];
2094     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*4];
2095     tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*3];
2096     tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*2];
2097     tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*1];
2098     tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*0];
2099     tmp7 = dataptr[DCTSIZE*7];
2100 
2101     tmp10 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*6];
2102     tmp11 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*5];
2103     tmp12 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*4];
2104     tmp13 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*3];
2105     tmp14 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*2];
2106     tmp15 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*1];
2107     tmp16 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*0];
2108 
2109     z1 = tmp0 + tmp4 + tmp5;
2110     z2 = tmp1 + tmp3 + tmp6;
2111     z3 = tmp2 + tmp7;
2112     dataptr[DCTSIZE*0] = (DCTELEM)
2113       DESCALE(MULTIPLY(z1 + z2 + z3, FIX(1.137777778)), /* 256/225 */
2114               CONST_BITS+2);
2115     z3 += z3;
2116     dataptr[DCTSIZE*6] = (DCTELEM)
2117       DESCALE(MULTIPLY(z1 - z3, FIX(1.301757503)) - /* c6 */
2118               MULTIPLY(z2 - z3, FIX(0.497227121)),  /* c12 */
2119               CONST_BITS+2);
2120     tmp2 += ((tmp1 + tmp4) >> 1) - tmp7 - tmp7;
2121     z1 = MULTIPLY(tmp3 - tmp2, FIX(1.742091575)) -  /* c2+c14 */
2122          MULTIPLY(tmp6 - tmp2, FIX(2.546621957));   /* c4+c8 */
2123     z2 = MULTIPLY(tmp5 - tmp2, FIX(0.908479156)) -  /* c8-c14 */
2124          MULTIPLY(tmp0 - tmp2, FIX(0.103948774));   /* c2-c4 */
2125     z3 = MULTIPLY(tmp0 - tmp3, FIX(1.573898926)) +  /* c2 */
2126          MULTIPLY(tmp6 - tmp5, FIX(1.076671805)) +  /* c8 */
2127          MULTIPLY(tmp1 - tmp4, FIX(0.899492312));   /* (c6+c12)/2 */
2128 
2129     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z3, CONST_BITS+2);
2130     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(z2 + z3, CONST_BITS+2);
2131 
2132     /* Odd part */
2133 
2134     tmp2 = MULTIPLY(tmp10 - tmp12 - tmp13 + tmp15 + tmp16,
2135                     FIX(1.393487498));                         /* c5 */
2136     tmp1 = MULTIPLY(tmp10 - tmp14 - tmp15, FIX(1.530307725)) + /* c3 */
2137            MULTIPLY(tmp11 - tmp13 - tmp16, FIX(0.945782187));  /* c9 */
2138     tmp12 = MULTIPLY(tmp12, FIX(1.393487498));                 /* c5 */
2139     tmp4 = MULTIPLY(tmp10 - tmp16, FIX(1.600246161)) +         /* c1 */
2140            MULTIPLY(tmp11 + tmp14, FIX(1.530307725)) +         /* c3 */
2141            MULTIPLY(tmp13 + tmp15, FIX(0.654463974));          /* c11 */
2142     tmp0 = MULTIPLY(tmp13, FIX(0.541301207)) -                 /* c7-c11 */
2143            MULTIPLY(tmp14, FIX(0.584525538)) +                 /* c3-c9 */
2144            MULTIPLY(tmp16, FIX(1.934788705)) + tmp4 + tmp12;   /* c1+c13 */
2145     tmp3 = MULTIPLY(tmp10, - FIX(0.404480980)) -               /* -(c1-c7) */
2146            MULTIPLY(tmp11, FIX(2.476089912)) -                 /* c3+c9 */
2147            MULTIPLY(tmp15, FIX(0.989006518)) + tmp4 - tmp12;   /* c11+c13 */
2148 
2149     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+2);
2150     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+2);
2151     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+2);
2152     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3, CONST_BITS+2);
2153 
2154     dataptr++;                  /* advance pointer to next column */
2155     wsptr++;                    /* advance pointer to next column */
2156   }
2157 }
2158 
2159 
2160 /*
2161  * Perform the forward DCT on a 16x16 sample block.
2162  */
2163 
2164 GLOBAL(void)
2165 jpeg_fdct_16x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
2166 {
2167   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
2168   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17;
2169   DCTELEM workspace[DCTSIZE2];
2170   DCTELEM *dataptr;
2171   DCTELEM *wsptr;
2172   JSAMPROW elemptr;
2173   int ctr;
2174   SHIFT_TEMPS
2175 
2176   /* Pass 1: process rows. */
2177   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
2178   /* furthermore, we scale the results by 2**PASS1_BITS. */
2179   /* cK represents sqrt(2) * cos(K*pi/32). */
2180 
2181   dataptr = data;
2182   ctr = 0;
2183   for (;;) {
2184     elemptr = sample_data[ctr] + start_col;
2185 
2186     /* Even part */
2187 
2188     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[15]);
2189     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[14]);
2190     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[13]);
2191     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[12]);
2192     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[11]);
2193     tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[10]);
2194     tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[9]);
2195     tmp7 = GETJSAMPLE(elemptr[7]) + GETJSAMPLE(elemptr[8]);
2196 
2197     tmp10 = tmp0 + tmp7;
2198     tmp14 = tmp0 - tmp7;
2199     tmp11 = tmp1 + tmp6;
2200     tmp15 = tmp1 - tmp6;
2201     tmp12 = tmp2 + tmp5;
2202     tmp16 = tmp2 - tmp5;
2203     tmp13 = tmp3 + tmp4;
2204     tmp17 = tmp3 - tmp4;
2205 
2206     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[15]);
2207     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[14]);
2208     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[13]);
2209     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[12]);
2210     tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[11]);
2211     tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[10]);
2212     tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[9]);
2213     tmp7 = GETJSAMPLE(elemptr[7]) - GETJSAMPLE(elemptr[8]);
2214 
2215     /* Apply unsigned->signed conversion */
2216     dataptr[0] = (DCTELEM)
2217       ((tmp10 + tmp11 + tmp12 + tmp13 - 16 * CENTERJSAMPLE) << PASS1_BITS);
2218     dataptr[4] = (DCTELEM)
2219       DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */
2220               MULTIPLY(tmp11 - tmp12, FIX_0_541196100),   /* c12[16] = c6[8] */
2221               CONST_BITS-PASS1_BITS);
2222 
2223     tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) +   /* c14[16] = c7[8] */
2224             MULTIPLY(tmp14 - tmp16, FIX(1.387039845));    /* c2[16] = c1[8] */
2225 
2226     dataptr[2] = (DCTELEM)
2227       DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982))   /* c6+c14 */
2228               + MULTIPLY(tmp16, FIX(2.172734804)),        /* c2+c10 */
2229               CONST_BITS-PASS1_BITS);
2230     dataptr[6] = (DCTELEM)
2231       DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243))   /* c2-c6 */
2232               - MULTIPLY(tmp17, FIX(1.061594338)),        /* c10+c14 */
2233               CONST_BITS-PASS1_BITS);
2234 
2235     /* Odd part */
2236 
2237     tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) +         /* c3 */
2238             MULTIPLY(tmp6 - tmp7, FIX(0.410524528));          /* c13 */
2239     tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) +         /* c5 */
2240             MULTIPLY(tmp5 + tmp7, FIX(0.666655658));          /* c11 */
2241     tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) +         /* c7 */
2242             MULTIPLY(tmp4 - tmp7, FIX(0.897167586));          /* c9 */
2243     tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) +         /* c15 */
2244             MULTIPLY(tmp6 - tmp5, FIX(1.407403738));          /* c1 */
2245     tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) +       /* -c11 */
2246             MULTIPLY(tmp4 + tmp6, - FIX(1.247225013));        /* -c5 */
2247     tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) +       /* -c3 */
2248             MULTIPLY(tmp5 - tmp4, FIX(0.410524528));          /* c13 */
2249     tmp10 = tmp11 + tmp12 + tmp13 -
2250             MULTIPLY(tmp0, FIX(2.286341144)) +                /* c7+c5+c3-c1 */
2251             MULTIPLY(tmp7, FIX(0.779653625));                 /* c15+c13-c11+c9 */
2252     tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */
2253              - MULTIPLY(tmp6, FIX(1.663905119));              /* c7+c13+c1-c5 */
2254     tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */
2255              + MULTIPLY(tmp5, FIX(1.227391138));              /* c9-c11+c1-c13 */
2256     tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */
2257              + MULTIPLY(tmp4, FIX(2.167985692));              /* c1+c13+c5-c9 */
2258 
2259     dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
2260     dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
2261     dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
2262     dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
2263 
2264     ctr++;
2265 
2266     if (ctr != DCTSIZE) {
2267       if (ctr == DCTSIZE * 2)
2268         break;                  /* Done. */
2269       dataptr += DCTSIZE;       /* advance pointer to next row */
2270     } else
2271       dataptr = workspace;      /* switch pointer to extended workspace */
2272   }
2273 
2274   /* Pass 2: process columns.
2275    * We remove the PASS1_BITS scaling, but leave the results scaled up
2276    * by an overall factor of 8.
2277    * We must also scale the output by (8/16)**2 = 1/2**2.
2278    */
2279 
2280   dataptr = data;
2281   wsptr = workspace;
2282   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
2283     /* Even part */
2284 
2285     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*7];
2286     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*6];
2287     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*5];
2288     tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*4];
2289     tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*3];
2290     tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*2];
2291     tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*1];
2292     tmp7 = dataptr[DCTSIZE*7] + wsptr[DCTSIZE*0];
2293 
2294     tmp10 = tmp0 + tmp7;
2295     tmp14 = tmp0 - tmp7;
2296     tmp11 = tmp1 + tmp6;
2297     tmp15 = tmp1 - tmp6;
2298     tmp12 = tmp2 + tmp5;
2299     tmp16 = tmp2 - tmp5;
2300     tmp13 = tmp3 + tmp4;
2301     tmp17 = tmp3 - tmp4;
2302 
2303     tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*7];
2304     tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*6];
2305     tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*5];
2306     tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*4];
2307     tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*3];
2308     tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*2];
2309     tmp6 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*1];
2310     tmp7 = dataptr[DCTSIZE*7] - wsptr[DCTSIZE*0];
2311 
2312     dataptr[DCTSIZE*0] = (DCTELEM)
2313       DESCALE(tmp10 + tmp11 + tmp12 + tmp13, PASS1_BITS+2);
2314     dataptr[DCTSIZE*4] = (DCTELEM)
2315       DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */
2316               MULTIPLY(tmp11 - tmp12, FIX_0_541196100),   /* c12[16] = c6[8] */
2317               CONST_BITS+PASS1_BITS+2);
2318 
2319     tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) +   /* c14[16] = c7[8] */
2320             MULTIPLY(tmp14 - tmp16, FIX(1.387039845));    /* c2[16] = c1[8] */
2321 
2322     dataptr[DCTSIZE*2] = (DCTELEM)
2323       DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982))   /* c6+c14 */
2324               + MULTIPLY(tmp16, FIX(2.172734804)),        /* c2+10 */
2325               CONST_BITS+PASS1_BITS+2);
2326     dataptr[DCTSIZE*6] = (DCTELEM)
2327       DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243))   /* c2-c6 */
2328               - MULTIPLY(tmp17, FIX(1.061594338)),        /* c10+c14 */
2329               CONST_BITS+PASS1_BITS+2);
2330 
2331     /* Odd part */
2332 
2333     tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) +         /* c3 */
2334             MULTIPLY(tmp6 - tmp7, FIX(0.410524528));          /* c13 */
2335     tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) +         /* c5 */
2336             MULTIPLY(tmp5 + tmp7, FIX(0.666655658));          /* c11 */
2337     tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) +         /* c7 */
2338             MULTIPLY(tmp4 - tmp7, FIX(0.897167586));          /* c9 */
2339     tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) +         /* c15 */
2340             MULTIPLY(tmp6 - tmp5, FIX(1.407403738));          /* c1 */
2341     tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) +       /* -c11 */
2342             MULTIPLY(tmp4 + tmp6, - FIX(1.247225013));        /* -c5 */
2343     tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) +       /* -c3 */
2344             MULTIPLY(tmp5 - tmp4, FIX(0.410524528));          /* c13 */
2345     tmp10 = tmp11 + tmp12 + tmp13 -
2346             MULTIPLY(tmp0, FIX(2.286341144)) +                /* c7+c5+c3-c1 */
2347             MULTIPLY(tmp7, FIX(0.779653625));                 /* c15+c13-c11+c9 */
2348     tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */
2349              - MULTIPLY(tmp6, FIX(1.663905119));              /* c7+c13+c1-c5 */
2350     tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */
2351              + MULTIPLY(tmp5, FIX(1.227391138));              /* c9-c11+c1-c13 */
2352     tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */
2353              + MULTIPLY(tmp4, FIX(2.167985692));              /* c1+c13+c5-c9 */
2354 
2355     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS+2);
2356     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS+2);
2357     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS+2);
2358     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS+2);
2359 
2360     dataptr++;                  /* advance pointer to next column */
2361     wsptr++;                    /* advance pointer to next column */
2362   }
2363 }
2364 
2365 
2366 /*
2367  * Perform the forward DCT on a 16x8 sample block.
2368  *
2369  * 16-point FDCT in pass 1 (rows), 8-point in pass 2 (columns).
2370  */
2371 
2372 GLOBAL(void)
2373 jpeg_fdct_16x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
2374 {
2375   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
2376   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17;
2377   INT32 z1;
2378   DCTELEM *dataptr;
2379   JSAMPROW elemptr;
2380   int ctr;
2381   SHIFT_TEMPS
2382 
2383   /* Pass 1: process rows. */
2384   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
2385   /* furthermore, we scale the results by 2**PASS1_BITS. */
2386   /* 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32). */
2387 
2388   dataptr = data;
2389   ctr = 0;
2390   for (ctr = 0; ctr < DCTSIZE; ctr++) {
2391     elemptr = sample_data[ctr] + start_col;
2392 
2393     /* Even part */
2394 
2395     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[15]);
2396     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[14]);
2397     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[13]);
2398     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[12]);
2399     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[11]);
2400     tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[10]);
2401     tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[9]);
2402     tmp7 = GETJSAMPLE(elemptr[7]) + GETJSAMPLE(elemptr[8]);
2403 
2404     tmp10 = tmp0 + tmp7;
2405     tmp14 = tmp0 - tmp7;
2406     tmp11 = tmp1 + tmp6;
2407     tmp15 = tmp1 - tmp6;
2408     tmp12 = tmp2 + tmp5;
2409     tmp16 = tmp2 - tmp5;
2410     tmp13 = tmp3 + tmp4;
2411     tmp17 = tmp3 - tmp4;
2412 
2413     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[15]);
2414     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[14]);
2415     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[13]);
2416     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[12]);
2417     tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[11]);
2418     tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[10]);
2419     tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[9]);
2420     tmp7 = GETJSAMPLE(elemptr[7]) - GETJSAMPLE(elemptr[8]);
2421 
2422     /* Apply unsigned->signed conversion */
2423     dataptr[0] = (DCTELEM)
2424       ((tmp10 + tmp11 + tmp12 + tmp13 - 16 * CENTERJSAMPLE) << PASS1_BITS);
2425     dataptr[4] = (DCTELEM)
2426       DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */
2427               MULTIPLY(tmp11 - tmp12, FIX_0_541196100),   /* c12[16] = c6[8] */
2428               CONST_BITS-PASS1_BITS);
2429 
2430     tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) +   /* c14[16] = c7[8] */
2431             MULTIPLY(tmp14 - tmp16, FIX(1.387039845));    /* c2[16] = c1[8] */
2432 
2433     dataptr[2] = (DCTELEM)
2434       DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982))   /* c6+c14 */
2435               + MULTIPLY(tmp16, FIX(2.172734804)),        /* c2+c10 */
2436               CONST_BITS-PASS1_BITS);
2437     dataptr[6] = (DCTELEM)
2438       DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243))   /* c2-c6 */
2439               - MULTIPLY(tmp17, FIX(1.061594338)),        /* c10+c14 */
2440               CONST_BITS-PASS1_BITS);
2441 
2442     /* Odd part */
2443 
2444     tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) +         /* c3 */
2445             MULTIPLY(tmp6 - tmp7, FIX(0.410524528));          /* c13 */
2446     tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) +         /* c5 */
2447             MULTIPLY(tmp5 + tmp7, FIX(0.666655658));          /* c11 */
2448     tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) +         /* c7 */
2449             MULTIPLY(tmp4 - tmp7, FIX(0.897167586));          /* c9 */
2450     tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) +         /* c15 */
2451             MULTIPLY(tmp6 - tmp5, FIX(1.407403738));          /* c1 */
2452     tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) +       /* -c11 */
2453             MULTIPLY(tmp4 + tmp6, - FIX(1.247225013));        /* -c5 */
2454     tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) +       /* -c3 */
2455             MULTIPLY(tmp5 - tmp4, FIX(0.410524528));          /* c13 */
2456     tmp10 = tmp11 + tmp12 + tmp13 -
2457             MULTIPLY(tmp0, FIX(2.286341144)) +                /* c7+c5+c3-c1 */
2458             MULTIPLY(tmp7, FIX(0.779653625));                 /* c15+c13-c11+c9 */
2459     tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */
2460              - MULTIPLY(tmp6, FIX(1.663905119));              /* c7+c13+c1-c5 */
2461     tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */
2462              + MULTIPLY(tmp5, FIX(1.227391138));              /* c9-c11+c1-c13 */
2463     tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */
2464              + MULTIPLY(tmp4, FIX(2.167985692));              /* c1+c13+c5-c9 */
2465 
2466     dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
2467     dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
2468     dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
2469     dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
2470 
2471     dataptr += DCTSIZE;         /* advance pointer to next row */
2472   }
2473 
2474   /* Pass 2: process columns.
2475    * We remove the PASS1_BITS scaling, but leave the results scaled up
2476    * by an overall factor of 8.
2477    * We must also scale the output by 8/16 = 1/2.
2478    */
2479 
2480   dataptr = data;
2481   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
2482     /* Even part per LL&M figure 1 --- note that published figure is faulty;
2483      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
2484      */
2485 
2486     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
2487     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
2488     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
2489     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
2490 
2491     tmp10 = tmp0 + tmp3;
2492     tmp12 = tmp0 - tmp3;
2493     tmp11 = tmp1 + tmp2;
2494     tmp13 = tmp1 - tmp2;
2495 
2496     tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
2497     tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
2498     tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
2499     tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
2500 
2501     dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS+1);
2502     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS+1);
2503 
2504     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
2505     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865),
2506                                            CONST_BITS+PASS1_BITS+1);
2507     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065),
2508                                            CONST_BITS+PASS1_BITS+1);
2509 
2510     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
2511      * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
2512      * i0..i3 in the paper are tmp0..tmp3 here.
2513      */
2514 
2515     tmp10 = tmp0 + tmp3;
2516     tmp11 = tmp1 + tmp2;
2517     tmp12 = tmp0 + tmp2;
2518     tmp13 = tmp1 + tmp3;
2519     z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /*  c3 */
2520 
2521     tmp0  = MULTIPLY(tmp0,    FIX_1_501321110);    /*  c1+c3-c5-c7 */
2522     tmp1  = MULTIPLY(tmp1,    FIX_3_072711026);    /*  c1+c3+c5-c7 */
2523     tmp2  = MULTIPLY(tmp2,    FIX_2_053119869);    /*  c1+c3-c5+c7 */
2524     tmp3  = MULTIPLY(tmp3,    FIX_0_298631336);    /* -c1+c3+c5-c7 */
2525     tmp10 = MULTIPLY(tmp10, - FIX_0_899976223);    /*  c7-c3 */
2526     tmp11 = MULTIPLY(tmp11, - FIX_2_562915447);    /* -c1-c3 */
2527     tmp12 = MULTIPLY(tmp12, - FIX_0_390180644);    /*  c5-c3 */
2528     tmp13 = MULTIPLY(tmp13, - FIX_1_961570560);    /* -c3-c5 */
2529 
2530     tmp12 += z1;
2531     tmp13 += z1;
2532 
2533     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0 + tmp10 + tmp12,
2534                                            CONST_BITS+PASS1_BITS+1);
2535     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1 + tmp11 + tmp13,
2536                                            CONST_BITS+PASS1_BITS+1);
2537     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2 + tmp11 + tmp12,
2538                                            CONST_BITS+PASS1_BITS+1);
2539     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp3 + tmp10 + tmp13,
2540                                            CONST_BITS+PASS1_BITS+1);
2541 
2542     dataptr++;                  /* advance pointer to next column */
2543   }
2544 }
2545 
2546 
2547 /*
2548  * Perform the forward DCT on a 14x7 sample block.
2549  *
2550  * 14-point FDCT in pass 1 (rows), 7-point in pass 2 (columns).
2551  */
2552 
2553 GLOBAL(void)
2554 jpeg_fdct_14x7 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
2555 {
2556   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
2557   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
2558   INT32 z1, z2, z3;
2559   DCTELEM *dataptr;
2560   JSAMPROW elemptr;
2561   int ctr;
2562   SHIFT_TEMPS
2563 
2564   /* Zero bottom row of output coefficient block. */
2565   MEMZERO(&data[DCTSIZE*7], SIZEOF(DCTELEM) * DCTSIZE);
2566 
2567   /* Pass 1: process rows. */
2568   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
2569   /* furthermore, we scale the results by 2**PASS1_BITS. */
2570   /* 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28). */
2571 
2572   dataptr = data;
2573   for (ctr = 0; ctr < 7; ctr++) {
2574     elemptr = sample_data[ctr] + start_col;
2575 
2576     /* Even part */
2577 
2578     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[13]);
2579     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[12]);
2580     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[11]);
2581     tmp13 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[10]);
2582     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[9]);
2583     tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[8]);
2584     tmp6 = GETJSAMPLE(elemptr[6]) + GETJSAMPLE(elemptr[7]);
2585 
2586     tmp10 = tmp0 + tmp6;
2587     tmp14 = tmp0 - tmp6;
2588     tmp11 = tmp1 + tmp5;
2589     tmp15 = tmp1 - tmp5;
2590     tmp12 = tmp2 + tmp4;
2591     tmp16 = tmp2 - tmp4;
2592 
2593     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[13]);
2594     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[12]);
2595     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[11]);
2596     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[10]);
2597     tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[9]);
2598     tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[8]);
2599     tmp6 = GETJSAMPLE(elemptr[6]) - GETJSAMPLE(elemptr[7]);
2600 
2601     /* Apply unsigned->signed conversion */
2602     dataptr[0] = (DCTELEM)
2603       ((tmp10 + tmp11 + tmp12 + tmp13 - 14 * CENTERJSAMPLE) << PASS1_BITS);
2604     tmp13 += tmp13;
2605     dataptr[4] = (DCTELEM)
2606       DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.274162392)) + /* c4 */
2607               MULTIPLY(tmp11 - tmp13, FIX(0.314692123)) - /* c12 */
2608               MULTIPLY(tmp12 - tmp13, FIX(0.881747734)),  /* c8 */
2609               CONST_BITS-PASS1_BITS);
2610 
2611     tmp10 = MULTIPLY(tmp14 + tmp15, FIX(1.105676686));    /* c6 */
2612 
2613     dataptr[2] = (DCTELEM)
2614       DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.273079590))   /* c2-c6 */
2615               + MULTIPLY(tmp16, FIX(0.613604268)),        /* c10 */
2616               CONST_BITS-PASS1_BITS);
2617     dataptr[6] = (DCTELEM)
2618       DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.719280954))   /* c6+c10 */
2619               - MULTIPLY(tmp16, FIX(1.378756276)),        /* c2 */
2620               CONST_BITS-PASS1_BITS);
2621 
2622     /* Odd part */
2623 
2624     tmp10 = tmp1 + tmp2;
2625     tmp11 = tmp5 - tmp4;
2626     dataptr[7] = (DCTELEM) ((tmp0 - tmp10 + tmp3 - tmp11 - tmp6) << PASS1_BITS);
2627     tmp3 <<= CONST_BITS;
2628     tmp10 = MULTIPLY(tmp10, - FIX(0.158341681));          /* -c13 */
2629     tmp11 = MULTIPLY(tmp11, FIX(1.405321284));            /* c1 */
2630     tmp10 += tmp11 - tmp3;
2631     tmp11 = MULTIPLY(tmp0 + tmp2, FIX(1.197448846)) +     /* c5 */
2632             MULTIPLY(tmp4 + tmp6, FIX(0.752406978));      /* c9 */
2633     dataptr[5] = (DCTELEM)
2634       DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(2.373959773)) /* c3+c5-c13 */
2635               + MULTIPLY(tmp4, FIX(1.119999435)),         /* c1+c11-c9 */
2636               CONST_BITS-PASS1_BITS);
2637     tmp12 = MULTIPLY(tmp0 + tmp1, FIX(1.334852607)) +     /* c3 */
2638             MULTIPLY(tmp5 - tmp6, FIX(0.467085129));      /* c11 */
2639     dataptr[3] = (DCTELEM)
2640       DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.424103948)) /* c3-c9-c13 */
2641               - MULTIPLY(tmp5, FIX(3.069855259)),         /* c1+c5+c11 */
2642               CONST_BITS-PASS1_BITS);
2643     dataptr[1] = (DCTELEM)
2644       DESCALE(tmp11 + tmp12 + tmp3 + tmp6 -
2645               MULTIPLY(tmp0 + tmp6, FIX(1.126980169)),    /* c3+c5-c1 */
2646               CONST_BITS-PASS1_BITS);
2647 
2648     dataptr += DCTSIZE;         /* advance pointer to next row */
2649   }
2650 
2651   /* Pass 2: process columns.
2652    * We remove the PASS1_BITS scaling, but leave the results scaled up
2653    * by an overall factor of 8.
2654    * We must also scale the output by (8/14)*(8/7) = 32/49, which we
2655    * partially fold into the constant multipliers and final shifting:
2656    * 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14) * 64/49.
2657    */
2658 
2659   dataptr = data;
2660   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
2661     /* Even part */
2662 
2663     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*6];
2664     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*5];
2665     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*4];
2666     tmp3 = dataptr[DCTSIZE*3];
2667 
2668     tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*6];
2669     tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*5];
2670     tmp12 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*4];
2671 
2672     z1 = tmp0 + tmp2;
2673     dataptr[DCTSIZE*0] = (DCTELEM)
2674       DESCALE(MULTIPLY(z1 + tmp1 + tmp3, FIX(1.306122449)), /* 64/49 */
2675               CONST_BITS+PASS1_BITS+1);
2676     tmp3 += tmp3;
2677     z1 -= tmp3;
2678     z1 -= tmp3;
2679     z1 = MULTIPLY(z1, FIX(0.461784020));                /* (c2+c6-c4)/2 */
2680     z2 = MULTIPLY(tmp0 - tmp2, FIX(1.202428084));       /* (c2+c4-c6)/2 */
2681     z3 = MULTIPLY(tmp1 - tmp2, FIX(0.411026446));       /* c6 */
2682     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS+PASS1_BITS+1);
2683     z1 -= z2;
2684     z2 = MULTIPLY(tmp0 - tmp1, FIX(1.151670509));       /* c4 */
2685     dataptr[DCTSIZE*4] = (DCTELEM)
2686       DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.923568041)), /* c2+c6-c4 */
2687               CONST_BITS+PASS1_BITS+1);
2688     dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS+PASS1_BITS+1);
2689 
2690     /* Odd part */
2691 
2692     tmp1 = MULTIPLY(tmp10 + tmp11, FIX(1.221765677));   /* (c3+c1-c5)/2 */
2693     tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.222383464));   /* (c3+c5-c1)/2 */
2694     tmp0 = tmp1 - tmp2;
2695     tmp1 += tmp2;
2696     tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.800824523)); /* -c1 */
2697     tmp1 += tmp2;
2698     tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.801442310));   /* c5 */
2699     tmp0 += tmp3;
2700     tmp2 += tmp3 + MULTIPLY(tmp12, FIX(2.443531355));   /* c3+c1-c5 */
2701 
2702     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp0, CONST_BITS+PASS1_BITS+1);
2703     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp1, CONST_BITS+PASS1_BITS+1);
2704     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp2, CONST_BITS+PASS1_BITS+1);
2705 
2706     dataptr++;                  /* advance pointer to next column */
2707   }
2708 }
2709 
2710 
2711 /*
2712  * Perform the forward DCT on a 12x6 sample block.
2713  *
2714  * 12-point FDCT in pass 1 (rows), 6-point in pass 2 (columns).
2715  */
2716 
2717 GLOBAL(void)
2718 jpeg_fdct_12x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
2719 {
2720   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
2721   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
2722   DCTELEM *dataptr;
2723   JSAMPROW elemptr;
2724   int ctr;
2725   SHIFT_TEMPS
2726 
2727   /* Zero 2 bottom rows of output coefficient block. */
2728   MEMZERO(&data[DCTSIZE*6], SIZEOF(DCTELEM) * DCTSIZE * 2);
2729 
2730   /* Pass 1: process rows. */
2731   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
2732   /* furthermore, we scale the results by 2**PASS1_BITS. */
2733   /* 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24). */
2734 
2735   dataptr = data;
2736   for (ctr = 0; ctr < 6; ctr++) {
2737     elemptr = sample_data[ctr] + start_col;
2738 
2739     /* Even part */
2740 
2741     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[11]);
2742     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[10]);
2743     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[9]);
2744     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[8]);
2745     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[7]);
2746     tmp5 = GETJSAMPLE(elemptr[5]) + GETJSAMPLE(elemptr[6]);
2747 
2748     tmp10 = tmp0 + tmp5;
2749     tmp13 = tmp0 - tmp5;
2750     tmp11 = tmp1 + tmp4;
2751     tmp14 = tmp1 - tmp4;
2752     tmp12 = tmp2 + tmp3;
2753     tmp15 = tmp2 - tmp3;
2754 
2755     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[11]);
2756     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[10]);
2757     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[9]);
2758     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[8]);
2759     tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[7]);
2760     tmp5 = GETJSAMPLE(elemptr[5]) - GETJSAMPLE(elemptr[6]);
2761 
2762     /* Apply unsigned->signed conversion */
2763     dataptr[0] = (DCTELEM)
2764       ((tmp10 + tmp11 + tmp12 - 12 * CENTERJSAMPLE) << PASS1_BITS);
2765     dataptr[6] = (DCTELEM) ((tmp13 - tmp14 - tmp15) << PASS1_BITS);
2766     dataptr[4] = (DCTELEM)
2767       DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.224744871)), /* c4 */
2768               CONST_BITS-PASS1_BITS);
2769     dataptr[2] = (DCTELEM)
2770       DESCALE(tmp14 - tmp15 + MULTIPLY(tmp13 + tmp15, FIX(1.366025404)), /* c2 */
2771               CONST_BITS-PASS1_BITS);
2772 
2773     /* Odd part */
2774 
2775     tmp10 = MULTIPLY(tmp1 + tmp4, FIX_0_541196100);    /* c9 */
2776     tmp14 = tmp10 + MULTIPLY(tmp1, FIX_0_765366865);   /* c3-c9 */
2777     tmp15 = tmp10 - MULTIPLY(tmp4, FIX_1_847759065);   /* c3+c9 */
2778     tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.121971054));   /* c5 */
2779     tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.860918669));   /* c7 */
2780     tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.580774953)) /* c5+c7-c1 */
2781             + MULTIPLY(tmp5, FIX(0.184591911));        /* c11 */
2782     tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.184591911)); /* -c11 */
2783     tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.339493912)) /* c1+c5-c11 */
2784             + MULTIPLY(tmp5, FIX(0.860918669));        /* c7 */
2785     tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.725788011)) /* c1+c11-c7 */
2786             - MULTIPLY(tmp5, FIX(1.121971054));        /* c5 */
2787     tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.306562965)) /* c3 */
2788             - MULTIPLY(tmp2 + tmp5, FIX_0_541196100);  /* c9 */
2789 
2790     dataptr[1] = (DCTELEM) DESCALE(tmp10, CONST_BITS-PASS1_BITS);
2791     dataptr[3] = (DCTELEM) DESCALE(tmp11, CONST_BITS-PASS1_BITS);
2792     dataptr[5] = (DCTELEM) DESCALE(tmp12, CONST_BITS-PASS1_BITS);
2793     dataptr[7] = (DCTELEM) DESCALE(tmp13, CONST_BITS-PASS1_BITS);
2794 
2795     dataptr += DCTSIZE;         /* advance pointer to next row */
2796   }
2797 
2798   /* Pass 2: process columns.
2799    * We remove the PASS1_BITS scaling, but leave the results scaled up
2800    * by an overall factor of 8.
2801    * We must also scale the output by (8/12)*(8/6) = 8/9, which we
2802    * partially fold into the constant multipliers and final shifting:
2803    * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12) * 16/9.
2804    */
2805 
2806   dataptr = data;
2807   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
2808     /* Even part */
2809 
2810     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5];
2811     tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4];
2812     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
2813 
2814     tmp10 = tmp0 + tmp2;
2815     tmp12 = tmp0 - tmp2;
2816 
2817     tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5];
2818     tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4];
2819     tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
2820 
2821     dataptr[DCTSIZE*0] = (DCTELEM)
2822       DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)),         /* 16/9 */
2823               CONST_BITS+PASS1_BITS+1);
2824     dataptr[DCTSIZE*2] = (DCTELEM)
2825       DESCALE(MULTIPLY(tmp12, FIX(2.177324216)),                 /* c2 */
2826               CONST_BITS+PASS1_BITS+1);
2827     dataptr[DCTSIZE*4] = (DCTELEM)
2828       DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */
2829               CONST_BITS+PASS1_BITS+1);
2830 
2831     /* Odd part */
2832 
2833     tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829));             /* c5 */
2834 
2835     dataptr[DCTSIZE*1] = (DCTELEM)
2836       DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)),   /* 16/9 */
2837               CONST_BITS+PASS1_BITS+1);
2838     dataptr[DCTSIZE*3] = (DCTELEM)
2839       DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)),    /* 16/9 */
2840               CONST_BITS+PASS1_BITS+1);
2841     dataptr[DCTSIZE*5] = (DCTELEM)
2842       DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)),   /* 16/9 */
2843               CONST_BITS+PASS1_BITS+1);
2844 
2845     dataptr++;                  /* advance pointer to next column */
2846   }
2847 }
2848 
2849 
2850 /*
2851  * Perform the forward DCT on a 10x5 sample block.
2852  *
2853  * 10-point FDCT in pass 1 (rows), 5-point in pass 2 (columns).
2854  */
2855 
2856 GLOBAL(void)
2857 jpeg_fdct_10x5 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
2858 {
2859   INT32 tmp0, tmp1, tmp2, tmp3, tmp4;
2860   INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
2861   DCTELEM *dataptr;
2862   JSAMPROW elemptr;
2863   int ctr;
2864   SHIFT_TEMPS
2865 
2866   /* Zero 3 bottom rows of output coefficient block. */
2867   MEMZERO(&data[DCTSIZE*5], SIZEOF(DCTELEM) * DCTSIZE * 3);
2868 
2869   /* Pass 1: process rows. */
2870   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
2871   /* furthermore, we scale the results by 2**PASS1_BITS. */
2872   /* 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20). */
2873 
2874   dataptr = data;
2875   for (ctr = 0; ctr < 5; ctr++) {
2876     elemptr = sample_data[ctr] + start_col;
2877 
2878     /* Even part */
2879 
2880     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[9]);
2881     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[8]);
2882     tmp12 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[7]);
2883     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[6]);
2884     tmp4 = GETJSAMPLE(elemptr[4]) + GETJSAMPLE(elemptr[5]);
2885 
2886     tmp10 = tmp0 + tmp4;
2887     tmp13 = tmp0 - tmp4;
2888     tmp11 = tmp1 + tmp3;
2889     tmp14 = tmp1 - tmp3;
2890 
2891     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[9]);
2892     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[8]);
2893     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[7]);
2894     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[6]);
2895     tmp4 = GETJSAMPLE(elemptr[4]) - GETJSAMPLE(elemptr[5]);
2896 
2897     /* Apply unsigned->signed conversion */
2898     dataptr[0] = (DCTELEM)
2899       ((tmp10 + tmp11 + tmp12 - 10 * CENTERJSAMPLE) << PASS1_BITS);
2900     tmp12 += tmp12;
2901     dataptr[4] = (DCTELEM)
2902       DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.144122806)) - /* c4 */
2903               MULTIPLY(tmp11 - tmp12, FIX(0.437016024)),  /* c8 */
2904               CONST_BITS-PASS1_BITS);
2905     tmp10 = MULTIPLY(tmp13 + tmp14, FIX(0.831253876));    /* c6 */
2906     dataptr[2] = (DCTELEM)
2907       DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.513743148)),  /* c2-c6 */
2908               CONST_BITS-PASS1_BITS);
2909     dataptr[6] = (DCTELEM)
2910       DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.176250899)),  /* c2+c6 */
2911               CONST_BITS-PASS1_BITS);
2912 
2913     /* Odd part */
2914 
2915     tmp10 = tmp0 + tmp4;
2916     tmp11 = tmp1 - tmp3;
2917     dataptr[5] = (DCTELEM) ((tmp10 - tmp11 - tmp2) << PASS1_BITS);
2918     tmp2 <<= CONST_BITS;
2919     dataptr[1] = (DCTELEM)
2920       DESCALE(MULTIPLY(tmp0, FIX(1.396802247)) +          /* c1 */
2921               MULTIPLY(tmp1, FIX(1.260073511)) + tmp2 +   /* c3 */
2922               MULTIPLY(tmp3, FIX(0.642039522)) +          /* c7 */
2923               MULTIPLY(tmp4, FIX(0.221231742)),           /* c9 */
2924               CONST_BITS-PASS1_BITS);
2925     tmp12 = MULTIPLY(tmp0 - tmp4, FIX(0.951056516)) -     /* (c3+c7)/2 */
2926             MULTIPLY(tmp1 + tmp3, FIX(0.587785252));      /* (c1-c9)/2 */
2927     tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.309016994)) +   /* (c3-c7)/2 */
2928             (tmp11 << (CONST_BITS - 1)) - tmp2;
2929     dataptr[3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS-PASS1_BITS);
2930     dataptr[7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS-PASS1_BITS);
2931 
2932     dataptr += DCTSIZE;         /* advance pointer to next row */
2933   }
2934 
2935   /* Pass 2: process columns.
2936    * We remove the PASS1_BITS scaling, but leave the results scaled up
2937    * by an overall factor of 8.
2938    * We must also scale the output by (8/10)*(8/5) = 32/25, which we
2939    * fold into the constant multipliers:
2940    * 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10) * 32/25.
2941    */
2942 
2943   dataptr = data;
2944   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
2945     /* Even part */
2946 
2947     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*4];
2948     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*3];
2949     tmp2 = dataptr[DCTSIZE*2];
2950 
2951     tmp10 = tmp0 + tmp1;
2952     tmp11 = tmp0 - tmp1;
2953 
2954     tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*4];
2955     tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*3];
2956 
2957     dataptr[DCTSIZE*0] = (DCTELEM)
2958       DESCALE(MULTIPLY(tmp10 + tmp2, FIX(1.28)),        /* 32/25 */
2959               CONST_BITS+PASS1_BITS);
2960     tmp11 = MULTIPLY(tmp11, FIX(1.011928851));          /* (c2+c4)/2 */
2961     tmp10 -= tmp2 << 2;
2962     tmp10 = MULTIPLY(tmp10, FIX(0.452548340));          /* (c2-c4)/2 */
2963     dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS+PASS1_BITS);
2964     dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS+PASS1_BITS);
2965 
2966     /* Odd part */
2967 
2968     tmp10 = MULTIPLY(tmp0 + tmp1, FIX(1.064004961));    /* c3 */
2969 
2970     dataptr[DCTSIZE*1] = (DCTELEM)
2971       DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.657591230)), /* c1-c3 */
2972               CONST_BITS+PASS1_BITS);
2973     dataptr[DCTSIZE*3] = (DCTELEM)
2974       DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.785601151)), /* c1+c3 */
2975               CONST_BITS+PASS1_BITS);
2976 
2977     dataptr++;                  /* advance pointer to next column */
2978   }
2979 }
2980 
2981 
2982 /*
2983  * Perform the forward DCT on an 8x4 sample block.
2984  *
2985  * 8-point FDCT in pass 1 (rows), 4-point in pass 2 (columns).
2986  */
2987 
2988 GLOBAL(void)
2989 jpeg_fdct_8x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
2990 {
2991   INT32 tmp0, tmp1, tmp2, tmp3;
2992   INT32 tmp10, tmp11, tmp12, tmp13;
2993   INT32 z1;
2994   DCTELEM *dataptr;
2995   JSAMPROW elemptr;
2996   int ctr;
2997   SHIFT_TEMPS
2998 
2999   /* Zero 4 bottom rows of output coefficient block. */
3000   MEMZERO(&data[DCTSIZE*4], SIZEOF(DCTELEM) * DCTSIZE * 4);
3001 
3002   /* Pass 1: process rows. */
3003   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
3004   /* furthermore, we scale the results by 2**PASS1_BITS. */
3005   /* We must also scale the output by 8/4 = 2, which we add here. */
3006 
3007   dataptr = data;
3008   for (ctr = 0; ctr < 4; ctr++) {
3009     elemptr = sample_data[ctr] + start_col;
3010 
3011     /* Even part per LL&M figure 1 --- note that published figure is faulty;
3012      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
3013      */
3014 
3015     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
3016     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
3017     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
3018     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
3019 
3020     tmp10 = tmp0 + tmp3;
3021     tmp12 = tmp0 - tmp3;
3022     tmp11 = tmp1 + tmp2;
3023     tmp13 = tmp1 - tmp2;
3024 
3025     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
3026     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
3027     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
3028     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
3029 
3030     /* Apply unsigned->signed conversion */
3031     dataptr[0] = (DCTELEM)
3032       ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << (PASS1_BITS+1));
3033     dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << (PASS1_BITS+1));
3034 
3035     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
3036     /* Add fudge factor here for final descale. */
3037     z1 += ONE << (CONST_BITS-PASS1_BITS-2);
3038     dataptr[2] = (DCTELEM) RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865),
3039                                        CONST_BITS-PASS1_BITS-1);
3040     dataptr[6] = (DCTELEM) RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065),
3041                                        CONST_BITS-PASS1_BITS-1);
3042 
3043     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
3044      * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
3045      * i0..i3 in the paper are tmp0..tmp3 here.
3046      */
3047 
3048     tmp10 = tmp0 + tmp3;
3049     tmp11 = tmp1 + tmp2;
3050     tmp12 = tmp0 + tmp2;
3051     tmp13 = tmp1 + tmp3;
3052     z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /*  c3 */
3053     /* Add fudge factor here for final descale. */
3054     z1 += ONE << (CONST_BITS-PASS1_BITS-2);
3055 
3056     tmp0  = MULTIPLY(tmp0,    FIX_1_501321110);    /*  c1+c3-c5-c7 */
3057     tmp1  = MULTIPLY(tmp1,    FIX_3_072711026);    /*  c1+c3+c5-c7 */
3058     tmp2  = MULTIPLY(tmp2,    FIX_2_053119869);    /*  c1+c3-c5+c7 */
3059     tmp3  = MULTIPLY(tmp3,    FIX_0_298631336);    /* -c1+c3+c5-c7 */
3060     tmp10 = MULTIPLY(tmp10, - FIX_0_899976223);    /*  c7-c3 */
3061     tmp11 = MULTIPLY(tmp11, - FIX_2_562915447);    /* -c1-c3 */
3062     tmp12 = MULTIPLY(tmp12, - FIX_0_390180644);    /*  c5-c3 */
3063     tmp13 = MULTIPLY(tmp13, - FIX_1_961570560);    /* -c3-c5 */
3064 
3065     tmp12 += z1;
3066     tmp13 += z1;
3067 
3068     dataptr[1] = (DCTELEM)
3069       RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS-1);
3070     dataptr[3] = (DCTELEM)
3071       RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS-1);
3072     dataptr[5] = (DCTELEM)
3073       RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS-1);
3074     dataptr[7] = (DCTELEM)
3075       RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS-1);
3076 
3077     dataptr += DCTSIZE;         /* advance pointer to next row */
3078   }
3079 
3080   /* Pass 2: process columns.
3081    * We remove the PASS1_BITS scaling, but leave the results scaled up
3082    * by an overall factor of 8.
3083    * 4-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
3084    */
3085 
3086   dataptr = data;
3087   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
3088     /* Even part */
3089 
3090     /* Add fudge factor here for final descale. */
3091     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3] + (ONE << (PASS1_BITS-1));
3092     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2];
3093 
3094     tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3];
3095     tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2];
3096 
3097     dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS);
3098     dataptr[DCTSIZE*2] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS);
3099 
3100     /* Odd part */
3101 
3102     tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100);   /* c6 */
3103     /* Add fudge factor here for final descale. */
3104     tmp0 += ONE << (CONST_BITS+PASS1_BITS-1);
3105 
3106     dataptr[DCTSIZE*1] = (DCTELEM)
3107       RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
3108                   CONST_BITS+PASS1_BITS);
3109     dataptr[DCTSIZE*3] = (DCTELEM)
3110       RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
3111                   CONST_BITS+PASS1_BITS);
3112 
3113     dataptr++;                  /* advance pointer to next column */
3114   }
3115 }
3116 
3117 
3118 /*
3119  * Perform the forward DCT on a 6x3 sample block.
3120  *
3121  * 6-point FDCT in pass 1 (rows), 3-point in pass 2 (columns).
3122  */
3123 
3124 GLOBAL(void)
3125 jpeg_fdct_6x3 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
3126 {
3127   INT32 tmp0, tmp1, tmp2;
3128   INT32 tmp10, tmp11, tmp12;
3129   DCTELEM *dataptr;
3130   JSAMPROW elemptr;
3131   int ctr;
3132   SHIFT_TEMPS
3133 
3134   /* Pre-zero output coefficient block. */
3135   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
3136 
3137   /* Pass 1: process rows. */
3138   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
3139   /* furthermore, we scale the results by 2**PASS1_BITS. */
3140   /* We scale the results further by 2 as part of output adaption */
3141   /* scaling for different DCT size. */
3142   /* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */
3143 
3144   dataptr = data;
3145   for (ctr = 0; ctr < 3; ctr++) {
3146     elemptr = sample_data[ctr] + start_col;
3147 
3148     /* Even part */
3149 
3150     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]);
3151     tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]);
3152     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]);
3153 
3154     tmp10 = tmp0 + tmp2;
3155     tmp12 = tmp0 - tmp2;
3156 
3157     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]);
3158     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]);
3159     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]);
3160 
3161     /* Apply unsigned->signed conversion */
3162     dataptr[0] = (DCTELEM)
3163       ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << (PASS1_BITS+1));
3164     dataptr[2] = (DCTELEM)
3165       DESCALE(MULTIPLY(tmp12, FIX(1.224744871)),                 /* c2 */
3166               CONST_BITS-PASS1_BITS-1);
3167     dataptr[4] = (DCTELEM)
3168       DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */
3169               CONST_BITS-PASS1_BITS-1);
3170 
3171     /* Odd part */
3172 
3173     tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)),     /* c5 */
3174                     CONST_BITS-PASS1_BITS-1);
3175 
3176     dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << (PASS1_BITS+1)));
3177     dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << (PASS1_BITS+1));
3178     dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << (PASS1_BITS+1)));
3179 
3180     dataptr += DCTSIZE;         /* advance pointer to next row */
3181   }
3182 
3183   /* Pass 2: process columns.
3184    * We remove the PASS1_BITS scaling, but leave the results scaled up
3185    * by an overall factor of 8.
3186    * We must also scale the output by (8/6)*(8/3) = 32/9, which we partially
3187    * fold into the constant multipliers (other part was done in pass 1):
3188    * 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6) * 16/9.
3189    */
3190 
3191   dataptr = data;
3192   for (ctr = 0; ctr < 6; ctr++) {
3193     /* Even part */
3194 
3195     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*2];
3196     tmp1 = dataptr[DCTSIZE*1];
3197 
3198     tmp2 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*2];
3199 
3200     dataptr[DCTSIZE*0] = (DCTELEM)
3201       DESCALE(MULTIPLY(tmp0 + tmp1, FIX(1.777777778)),        /* 16/9 */
3202               CONST_BITS+PASS1_BITS);
3203     dataptr[DCTSIZE*2] = (DCTELEM)
3204       DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(1.257078722)), /* c2 */
3205               CONST_BITS+PASS1_BITS);
3206 
3207     /* Odd part */
3208 
3209     dataptr[DCTSIZE*1] = (DCTELEM)
3210       DESCALE(MULTIPLY(tmp2, FIX(2.177324216)),               /* c1 */
3211               CONST_BITS+PASS1_BITS);
3212 
3213     dataptr++;                  /* advance pointer to next column */
3214   }
3215 }
3216 
3217 
3218 /*
3219  * Perform the forward DCT on a 4x2 sample block.
3220  *
3221  * 4-point FDCT in pass 1 (rows), 2-point in pass 2 (columns).
3222  */
3223 
3224 GLOBAL(void)
3225 jpeg_fdct_4x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
3226 {
3227   INT32 tmp0, tmp1;
3228   INT32 tmp10, tmp11;
3229   DCTELEM *dataptr;
3230   JSAMPROW elemptr;
3231   int ctr;
3232   SHIFT_TEMPS
3233 
3234   /* Pre-zero output coefficient block. */
3235   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
3236 
3237   /* Pass 1: process rows. */
3238   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
3239   /* furthermore, we scale the results by 2**PASS1_BITS. */
3240   /* We must also scale the output by (8/4)*(8/2) = 2**3, which we add here. */
3241   /* 4-point FDCT kernel, */
3242   /* cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT]. */
3243 
3244   dataptr = data;
3245   for (ctr = 0; ctr < 2; ctr++) {
3246     elemptr = sample_data[ctr] + start_col;
3247 
3248     /* Even part */
3249 
3250     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]);
3251     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]);
3252 
3253     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]);
3254     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]);
3255 
3256     /* Apply unsigned->signed conversion */
3257     dataptr[0] = (DCTELEM)
3258       ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+3));
3259     dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+3));
3260 
3261     /* Odd part */
3262 
3263     tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100);       /* c6 */
3264     /* Add fudge factor here for final descale. */
3265     tmp0 += ONE << (CONST_BITS-PASS1_BITS-4);
3266 
3267     dataptr[1] = (DCTELEM)
3268       RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
3269                   CONST_BITS-PASS1_BITS-3);
3270     dataptr[3] = (DCTELEM)
3271       RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
3272                   CONST_BITS-PASS1_BITS-3);
3273 
3274     dataptr += DCTSIZE;         /* advance pointer to next row */
3275   }
3276 
3277   /* Pass 2: process columns.
3278    * We remove the PASS1_BITS scaling, but leave the results scaled up
3279    * by an overall factor of 8.
3280    */
3281 
3282   dataptr = data;
3283   for (ctr = 0; ctr < 4; ctr++) {
3284     /* Even part */
3285 
3286     /* Add fudge factor here for final descale. */
3287     tmp0 = dataptr[DCTSIZE*0] + (ONE << (PASS1_BITS-1));
3288     tmp1 = dataptr[DCTSIZE*1];
3289 
3290     dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp0 + tmp1, PASS1_BITS);
3291 
3292     /* Odd part */
3293 
3294     dataptr[DCTSIZE*1] = (DCTELEM) RIGHT_SHIFT(tmp0 - tmp1, PASS1_BITS);
3295 
3296     dataptr++;                  /* advance pointer to next column */
3297   }
3298 }
3299 
3300 
3301 /*
3302  * Perform the forward DCT on a 2x1 sample block.
3303  *
3304  * 2-point FDCT in pass 1 (rows), 1-point in pass 2 (columns).
3305  */
3306 
3307 GLOBAL(void)
3308 jpeg_fdct_2x1 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
3309 {
3310   INT32 tmp0, tmp1;
3311   JSAMPROW elemptr;
3312 
3313   /* Pre-zero output coefficient block. */
3314   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
3315 
3316   elemptr = sample_data[0] + start_col;
3317 
3318   tmp0 = GETJSAMPLE(elemptr[0]);
3319   tmp1 = GETJSAMPLE(elemptr[1]);
3320 
3321   /* We leave the results scaled up by an overall factor of 8.
3322    * We must also scale the output by (8/2)*(8/1) = 2**5.
3323    */
3324 
3325   /* Even part */
3326   /* Apply unsigned->signed conversion */
3327   data[0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5);
3328 
3329   /* Odd part */
3330   data[1] = (DCTELEM) ((tmp0 - tmp1) << 5);
3331 }
3332 
3333 
3334 /*
3335  * Perform the forward DCT on an 8x16 sample block.
3336  *
3337  * 8-point FDCT in pass 1 (rows), 16-point in pass 2 (columns).
3338  */
3339 
3340 GLOBAL(void)
3341 jpeg_fdct_8x16 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
3342 {
3343   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
3344   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16, tmp17;
3345   INT32 z1;
3346   DCTELEM workspace[DCTSIZE2];
3347   DCTELEM *dataptr;
3348   DCTELEM *wsptr;
3349   JSAMPROW elemptr;
3350   int ctr;
3351   SHIFT_TEMPS
3352 
3353   /* Pass 1: process rows. */
3354   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
3355   /* furthermore, we scale the results by 2**PASS1_BITS. */
3356 
3357   dataptr = data;
3358   ctr = 0;
3359   for (;;) {
3360     elemptr = sample_data[ctr] + start_col;
3361 
3362     /* Even part per LL&M figure 1 --- note that published figure is faulty;
3363      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
3364      */
3365 
3366     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[7]);
3367     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[6]);
3368     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[5]);
3369     tmp3 = GETJSAMPLE(elemptr[3]) + GETJSAMPLE(elemptr[4]);
3370 
3371     tmp10 = tmp0 + tmp3;
3372     tmp12 = tmp0 - tmp3;
3373     tmp11 = tmp1 + tmp2;
3374     tmp13 = tmp1 - tmp2;
3375 
3376     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[7]);
3377     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[6]);
3378     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[5]);
3379     tmp3 = GETJSAMPLE(elemptr[3]) - GETJSAMPLE(elemptr[4]);
3380 
3381     /* Apply unsigned->signed conversion */
3382     dataptr[0] = (DCTELEM) ((tmp10 + tmp11 - 8 * CENTERJSAMPLE) << PASS1_BITS);
3383     dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
3384 
3385     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
3386     dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, FIX_0_765366865),
3387                                    CONST_BITS-PASS1_BITS);
3388     dataptr[6] = (DCTELEM) DESCALE(z1 - MULTIPLY(tmp13, FIX_1_847759065),
3389                                    CONST_BITS-PASS1_BITS);
3390 
3391     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
3392      * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
3393      * i0..i3 in the paper are tmp0..tmp3 here.
3394      */
3395 
3396     tmp10 = tmp0 + tmp3;
3397     tmp11 = tmp1 + tmp2;
3398     tmp12 = tmp0 + tmp2;
3399     tmp13 = tmp1 + tmp3;
3400     z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /*  c3 */
3401 
3402     tmp0  = MULTIPLY(tmp0,    FIX_1_501321110);    /*  c1+c3-c5-c7 */
3403     tmp1  = MULTIPLY(tmp1,    FIX_3_072711026);    /*  c1+c3+c5-c7 */
3404     tmp2  = MULTIPLY(tmp2,    FIX_2_053119869);    /*  c1+c3-c5+c7 */
3405     tmp3  = MULTIPLY(tmp3,    FIX_0_298631336);    /* -c1+c3+c5-c7 */
3406     tmp10 = MULTIPLY(tmp10, - FIX_0_899976223);    /*  c7-c3 */
3407     tmp11 = MULTIPLY(tmp11, - FIX_2_562915447);    /* -c1-c3 */
3408     tmp12 = MULTIPLY(tmp12, - FIX_0_390180644);    /*  c5-c3 */
3409     tmp13 = MULTIPLY(tmp13, - FIX_1_961570560);    /* -c3-c5 */
3410 
3411     tmp12 += z1;
3412     tmp13 += z1;
3413 
3414     dataptr[1] = (DCTELEM) DESCALE(tmp0 + tmp10 + tmp12, CONST_BITS-PASS1_BITS);
3415     dataptr[3] = (DCTELEM) DESCALE(tmp1 + tmp11 + tmp13, CONST_BITS-PASS1_BITS);
3416     dataptr[5] = (DCTELEM) DESCALE(tmp2 + tmp11 + tmp12, CONST_BITS-PASS1_BITS);
3417     dataptr[7] = (DCTELEM) DESCALE(tmp3 + tmp10 + tmp13, CONST_BITS-PASS1_BITS);
3418 
3419     ctr++;
3420 
3421     if (ctr != DCTSIZE) {
3422       if (ctr == DCTSIZE * 2)
3423         break;                  /* Done. */
3424       dataptr += DCTSIZE;       /* advance pointer to next row */
3425     } else
3426       dataptr = workspace;      /* switch pointer to extended workspace */
3427   }
3428 
3429   /* Pass 2: process columns.
3430    * We remove the PASS1_BITS scaling, but leave the results scaled up
3431    * by an overall factor of 8.
3432    * We must also scale the output by 8/16 = 1/2.
3433    * 16-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/32).
3434    */
3435 
3436   dataptr = data;
3437   wsptr = workspace;
3438   for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
3439     /* Even part */
3440 
3441     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*7];
3442     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*6];
3443     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*5];
3444     tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*4];
3445     tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*3];
3446     tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*2];
3447     tmp6 = dataptr[DCTSIZE*6] + wsptr[DCTSIZE*1];
3448     tmp7 = dataptr[DCTSIZE*7] + wsptr[DCTSIZE*0];
3449 
3450     tmp10 = tmp0 + tmp7;
3451     tmp14 = tmp0 - tmp7;
3452     tmp11 = tmp1 + tmp6;
3453     tmp15 = tmp1 - tmp6;
3454     tmp12 = tmp2 + tmp5;
3455     tmp16 = tmp2 - tmp5;
3456     tmp13 = tmp3 + tmp4;
3457     tmp17 = tmp3 - tmp4;
3458 
3459     tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*7];
3460     tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*6];
3461     tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*5];
3462     tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*4];
3463     tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*3];
3464     tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*2];
3465     tmp6 = dataptr[DCTSIZE*6] - wsptr[DCTSIZE*1];
3466     tmp7 = dataptr[DCTSIZE*7] - wsptr[DCTSIZE*0];
3467 
3468     dataptr[DCTSIZE*0] = (DCTELEM)
3469       DESCALE(tmp10 + tmp11 + tmp12 + tmp13, PASS1_BITS+1);
3470     dataptr[DCTSIZE*4] = (DCTELEM)
3471       DESCALE(MULTIPLY(tmp10 - tmp13, FIX(1.306562965)) + /* c4[16] = c2[8] */
3472               MULTIPLY(tmp11 - tmp12, FIX_0_541196100),   /* c12[16] = c6[8] */
3473               CONST_BITS+PASS1_BITS+1);
3474 
3475     tmp10 = MULTIPLY(tmp17 - tmp15, FIX(0.275899379)) +   /* c14[16] = c7[8] */
3476             MULTIPLY(tmp14 - tmp16, FIX(1.387039845));    /* c2[16] = c1[8] */
3477 
3478     dataptr[DCTSIZE*2] = (DCTELEM)
3479       DESCALE(tmp10 + MULTIPLY(tmp15, FIX(1.451774982))   /* c6+c14 */
3480               + MULTIPLY(tmp16, FIX(2.172734804)),        /* c2+c10 */
3481               CONST_BITS+PASS1_BITS+1);
3482     dataptr[DCTSIZE*6] = (DCTELEM)
3483       DESCALE(tmp10 - MULTIPLY(tmp14, FIX(0.211164243))   /* c2-c6 */
3484               - MULTIPLY(tmp17, FIX(1.061594338)),        /* c10+c14 */
3485               CONST_BITS+PASS1_BITS+1);
3486 
3487     /* Odd part */
3488 
3489     tmp11 = MULTIPLY(tmp0 + tmp1, FIX(1.353318001)) +         /* c3 */
3490             MULTIPLY(tmp6 - tmp7, FIX(0.410524528));          /* c13 */
3491     tmp12 = MULTIPLY(tmp0 + tmp2, FIX(1.247225013)) +         /* c5 */
3492             MULTIPLY(tmp5 + tmp7, FIX(0.666655658));          /* c11 */
3493     tmp13 = MULTIPLY(tmp0 + tmp3, FIX(1.093201867)) +         /* c7 */
3494             MULTIPLY(tmp4 - tmp7, FIX(0.897167586));          /* c9 */
3495     tmp14 = MULTIPLY(tmp1 + tmp2, FIX(0.138617169)) +         /* c15 */
3496             MULTIPLY(tmp6 - tmp5, FIX(1.407403738));          /* c1 */
3497     tmp15 = MULTIPLY(tmp1 + tmp3, - FIX(0.666655658)) +       /* -c11 */
3498             MULTIPLY(tmp4 + tmp6, - FIX(1.247225013));        /* -c5 */
3499     tmp16 = MULTIPLY(tmp2 + tmp3, - FIX(1.353318001)) +       /* -c3 */
3500             MULTIPLY(tmp5 - tmp4, FIX(0.410524528));          /* c13 */
3501     tmp10 = tmp11 + tmp12 + tmp13 -
3502             MULTIPLY(tmp0, FIX(2.286341144)) +                /* c7+c5+c3-c1 */
3503             MULTIPLY(tmp7, FIX(0.779653625));                 /* c15+c13-c11+c9 */
3504     tmp11 += tmp14 + tmp15 + MULTIPLY(tmp1, FIX(0.071888074)) /* c9-c3-c15+c11 */
3505              - MULTIPLY(tmp6, FIX(1.663905119));              /* c7+c13+c1-c5 */
3506     tmp12 += tmp14 + tmp16 - MULTIPLY(tmp2, FIX(1.125726048)) /* c7+c5+c15-c3 */
3507              + MULTIPLY(tmp5, FIX(1.227391138));              /* c9-c11+c1-c13 */
3508     tmp13 += tmp15 + tmp16 + MULTIPLY(tmp3, FIX(1.065388962)) /* c15+c3+c11-c7 */
3509              + MULTIPLY(tmp4, FIX(2.167985692));              /* c1+c13+c5-c9 */
3510 
3511     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS+1);
3512     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS+1);
3513     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS+1);
3514     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS+1);
3515 
3516     dataptr++;                  /* advance pointer to next column */
3517     wsptr++;                    /* advance pointer to next column */
3518   }
3519 }
3520 
3521 
3522 /*
3523  * Perform the forward DCT on a 7x14 sample block.
3524  *
3525  * 7-point FDCT in pass 1 (rows), 14-point in pass 2 (columns).
3526  */
3527 
3528 GLOBAL(void)
3529 jpeg_fdct_7x14 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
3530 {
3531   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
3532   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16;
3533   INT32 z1, z2, z3;
3534   DCTELEM workspace[8*6];
3535   DCTELEM *dataptr;
3536   DCTELEM *wsptr;
3537   JSAMPROW elemptr;
3538   int ctr;
3539   SHIFT_TEMPS
3540 
3541   /* Pre-zero output coefficient block. */
3542   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
3543 
3544   /* Pass 1: process rows. */
3545   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
3546   /* furthermore, we scale the results by 2**PASS1_BITS. */
3547   /* 7-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/14). */
3548 
3549   dataptr = data;
3550   ctr = 0;
3551   for (;;) {
3552     elemptr = sample_data[ctr] + start_col;
3553 
3554     /* Even part */
3555 
3556     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[6]);
3557     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[5]);
3558     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[4]);
3559     tmp3 = GETJSAMPLE(elemptr[3]);
3560 
3561     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[6]);
3562     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[5]);
3563     tmp12 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[4]);
3564 
3565     z1 = tmp0 + tmp2;
3566     /* Apply unsigned->signed conversion */
3567     dataptr[0] = (DCTELEM)
3568       ((z1 + tmp1 + tmp3 - 7 * CENTERJSAMPLE) << PASS1_BITS);
3569     tmp3 += tmp3;
3570     z1 -= tmp3;
3571     z1 -= tmp3;
3572     z1 = MULTIPLY(z1, FIX(0.353553391));                /* (c2+c6-c4)/2 */
3573     z2 = MULTIPLY(tmp0 - tmp2, FIX(0.920609002));       /* (c2+c4-c6)/2 */
3574     z3 = MULTIPLY(tmp1 - tmp2, FIX(0.314692123));       /* c6 */
3575     dataptr[2] = (DCTELEM) DESCALE(z1 + z2 + z3, CONST_BITS-PASS1_BITS);
3576     z1 -= z2;
3577     z2 = MULTIPLY(tmp0 - tmp1, FIX(0.881747734));       /* c4 */
3578     dataptr[4] = (DCTELEM)
3579       DESCALE(z2 + z3 - MULTIPLY(tmp1 - tmp3, FIX(0.707106781)), /* c2+c6-c4 */
3580               CONST_BITS-PASS1_BITS);
3581     dataptr[6] = (DCTELEM) DESCALE(z1 + z2, CONST_BITS-PASS1_BITS);
3582 
3583     /* Odd part */
3584 
3585     tmp1 = MULTIPLY(tmp10 + tmp11, FIX(0.935414347));   /* (c3+c1-c5)/2 */
3586     tmp2 = MULTIPLY(tmp10 - tmp11, FIX(0.170262339));   /* (c3+c5-c1)/2 */
3587     tmp0 = tmp1 - tmp2;
3588     tmp1 += tmp2;
3589     tmp2 = MULTIPLY(tmp11 + tmp12, - FIX(1.378756276)); /* -c1 */
3590     tmp1 += tmp2;
3591     tmp3 = MULTIPLY(tmp10 + tmp12, FIX(0.613604268));   /* c5 */
3592     tmp0 += tmp3;
3593     tmp2 += tmp3 + MULTIPLY(tmp12, FIX(1.870828693));   /* c3+c1-c5 */
3594 
3595     dataptr[1] = (DCTELEM) DESCALE(tmp0, CONST_BITS-PASS1_BITS);
3596     dataptr[3] = (DCTELEM) DESCALE(tmp1, CONST_BITS-PASS1_BITS);
3597     dataptr[5] = (DCTELEM) DESCALE(tmp2, CONST_BITS-PASS1_BITS);
3598 
3599     ctr++;
3600 
3601     if (ctr != DCTSIZE) {
3602       if (ctr == 14)
3603         break;                  /* Done. */
3604       dataptr += DCTSIZE;       /* advance pointer to next row */
3605     } else
3606       dataptr = workspace;      /* switch pointer to extended workspace */
3607   }
3608 
3609   /* Pass 2: process columns.
3610    * We remove the PASS1_BITS scaling, but leave the results scaled up
3611    * by an overall factor of 8.
3612    * We must also scale the output by (8/7)*(8/14) = 32/49, which we
3613    * fold into the constant multipliers:
3614    * 14-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/28) * 32/49.
3615    */
3616 
3617   dataptr = data;
3618   wsptr = workspace;
3619   for (ctr = 0; ctr < 7; ctr++) {
3620     /* Even part */
3621 
3622     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*5];
3623     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*4];
3624     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*3];
3625     tmp13 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*2];
3626     tmp4 = dataptr[DCTSIZE*4] + wsptr[DCTSIZE*1];
3627     tmp5 = dataptr[DCTSIZE*5] + wsptr[DCTSIZE*0];
3628     tmp6 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7];
3629 
3630     tmp10 = tmp0 + tmp6;
3631     tmp14 = tmp0 - tmp6;
3632     tmp11 = tmp1 + tmp5;
3633     tmp15 = tmp1 - tmp5;
3634     tmp12 = tmp2 + tmp4;
3635     tmp16 = tmp2 - tmp4;
3636 
3637     tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*5];
3638     tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*4];
3639     tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*3];
3640     tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*2];
3641     tmp4 = dataptr[DCTSIZE*4] - wsptr[DCTSIZE*1];
3642     tmp5 = dataptr[DCTSIZE*5] - wsptr[DCTSIZE*0];
3643     tmp6 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7];
3644 
3645     dataptr[DCTSIZE*0] = (DCTELEM)
3646       DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12 + tmp13,
3647                        FIX(0.653061224)),                 /* 32/49 */
3648               CONST_BITS+PASS1_BITS);
3649     tmp13 += tmp13;
3650     dataptr[DCTSIZE*4] = (DCTELEM)
3651       DESCALE(MULTIPLY(tmp10 - tmp13, FIX(0.832106052)) + /* c4 */
3652               MULTIPLY(tmp11 - tmp13, FIX(0.205513223)) - /* c12 */
3653               MULTIPLY(tmp12 - tmp13, FIX(0.575835255)),  /* c8 */
3654               CONST_BITS+PASS1_BITS);
3655 
3656     tmp10 = MULTIPLY(tmp14 + tmp15, FIX(0.722074570));    /* c6 */
3657 
3658     dataptr[DCTSIZE*2] = (DCTELEM)
3659       DESCALE(tmp10 + MULTIPLY(tmp14, FIX(0.178337691))   /* c2-c6 */
3660               + MULTIPLY(tmp16, FIX(0.400721155)),        /* c10 */
3661               CONST_BITS+PASS1_BITS);
3662     dataptr[DCTSIZE*6] = (DCTELEM)
3663       DESCALE(tmp10 - MULTIPLY(tmp15, FIX(1.122795725))   /* c6+c10 */
3664               - MULTIPLY(tmp16, FIX(0.900412262)),        /* c2 */
3665               CONST_BITS+PASS1_BITS);
3666 
3667     /* Odd part */
3668 
3669     tmp10 = tmp1 + tmp2;
3670     tmp11 = tmp5 - tmp4;
3671     dataptr[DCTSIZE*7] = (DCTELEM)
3672       DESCALE(MULTIPLY(tmp0 - tmp10 + tmp3 - tmp11 - tmp6,
3673                        FIX(0.653061224)),                 /* 32/49 */
3674               CONST_BITS+PASS1_BITS);
3675     tmp3  = MULTIPLY(tmp3 , FIX(0.653061224));            /* 32/49 */
3676     tmp10 = MULTIPLY(tmp10, - FIX(0.103406812));          /* -c13 */
3677     tmp11 = MULTIPLY(tmp11, FIX(0.917760839));            /* c1 */
3678     tmp10 += tmp11 - tmp3;
3679     tmp11 = MULTIPLY(tmp0 + tmp2, FIX(0.782007410)) +     /* c5 */
3680             MULTIPLY(tmp4 + tmp6, FIX(0.491367823));      /* c9 */
3681     dataptr[DCTSIZE*5] = (DCTELEM)
3682       DESCALE(tmp10 + tmp11 - MULTIPLY(tmp2, FIX(1.550341076)) /* c3+c5-c13 */
3683               + MULTIPLY(tmp4, FIX(0.731428202)),         /* c1+c11-c9 */
3684               CONST_BITS+PASS1_BITS);
3685     tmp12 = MULTIPLY(tmp0 + tmp1, FIX(0.871740478)) +     /* c3 */
3686             MULTIPLY(tmp5 - tmp6, FIX(0.305035186));      /* c11 */
3687     dataptr[DCTSIZE*3] = (DCTELEM)
3688       DESCALE(tmp10 + tmp12 - MULTIPLY(tmp1, FIX(0.276965844)) /* c3-c9-c13 */
3689               - MULTIPLY(tmp5, FIX(2.004803435)),         /* c1+c5+c11 */
3690               CONST_BITS+PASS1_BITS);
3691     dataptr[DCTSIZE*1] = (DCTELEM)
3692       DESCALE(tmp11 + tmp12 + tmp3
3693               - MULTIPLY(tmp0, FIX(0.735987049))          /* c3+c5-c1 */
3694               - MULTIPLY(tmp6, FIX(0.082925825)),         /* c9-c11-c13 */
3695               CONST_BITS+PASS1_BITS);
3696 
3697     dataptr++;                  /* advance pointer to next column */
3698     wsptr++;                    /* advance pointer to next column */
3699   }
3700 }
3701 
3702 
3703 /*
3704  * Perform the forward DCT on a 6x12 sample block.
3705  *
3706  * 6-point FDCT in pass 1 (rows), 12-point in pass 2 (columns).
3707  */
3708 
3709 GLOBAL(void)
3710 jpeg_fdct_6x12 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
3711 {
3712   INT32 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5;
3713   INT32 tmp10, tmp11, tmp12, tmp13, tmp14, tmp15;
3714   DCTELEM workspace[8*4];
3715   DCTELEM *dataptr;
3716   DCTELEM *wsptr;
3717   JSAMPROW elemptr;
3718   int ctr;
3719   SHIFT_TEMPS
3720 
3721   /* Pre-zero output coefficient block. */
3722   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
3723 
3724   /* Pass 1: process rows. */
3725   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
3726   /* furthermore, we scale the results by 2**PASS1_BITS. */
3727   /* 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12). */
3728 
3729   dataptr = data;
3730   ctr = 0;
3731   for (;;) {
3732     elemptr = sample_data[ctr] + start_col;
3733 
3734     /* Even part */
3735 
3736     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[5]);
3737     tmp11 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[4]);
3738     tmp2 = GETJSAMPLE(elemptr[2]) + GETJSAMPLE(elemptr[3]);
3739 
3740     tmp10 = tmp0 + tmp2;
3741     tmp12 = tmp0 - tmp2;
3742 
3743     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[5]);
3744     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[4]);
3745     tmp2 = GETJSAMPLE(elemptr[2]) - GETJSAMPLE(elemptr[3]);
3746 
3747     /* Apply unsigned->signed conversion */
3748     dataptr[0] = (DCTELEM)
3749       ((tmp10 + tmp11 - 6 * CENTERJSAMPLE) << PASS1_BITS);
3750     dataptr[2] = (DCTELEM)
3751       DESCALE(MULTIPLY(tmp12, FIX(1.224744871)),                 /* c2 */
3752               CONST_BITS-PASS1_BITS);
3753     dataptr[4] = (DCTELEM)
3754       DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(0.707106781)), /* c4 */
3755               CONST_BITS-PASS1_BITS);
3756 
3757     /* Odd part */
3758 
3759     tmp10 = DESCALE(MULTIPLY(tmp0 + tmp2, FIX(0.366025404)),     /* c5 */
3760                     CONST_BITS-PASS1_BITS);
3761 
3762     dataptr[1] = (DCTELEM) (tmp10 + ((tmp0 + tmp1) << PASS1_BITS));
3763     dataptr[3] = (DCTELEM) ((tmp0 - tmp1 - tmp2) << PASS1_BITS);
3764     dataptr[5] = (DCTELEM) (tmp10 + ((tmp2 - tmp1) << PASS1_BITS));
3765 
3766     ctr++;
3767 
3768     if (ctr != DCTSIZE) {
3769       if (ctr == 12)
3770         break;                  /* Done. */
3771       dataptr += DCTSIZE;       /* advance pointer to next row */
3772     } else
3773       dataptr = workspace;      /* switch pointer to extended workspace */
3774   }
3775 
3776   /* Pass 2: process columns.
3777    * We remove the PASS1_BITS scaling, but leave the results scaled up
3778    * by an overall factor of 8.
3779    * We must also scale the output by (8/6)*(8/12) = 8/9, which we
3780    * fold into the constant multipliers:
3781    * 12-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/24) * 8/9.
3782    */
3783 
3784   dataptr = data;
3785   wsptr = workspace;
3786   for (ctr = 0; ctr < 6; ctr++) {
3787     /* Even part */
3788 
3789     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*3];
3790     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*2];
3791     tmp2 = dataptr[DCTSIZE*2] + wsptr[DCTSIZE*1];
3792     tmp3 = dataptr[DCTSIZE*3] + wsptr[DCTSIZE*0];
3793     tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*7];
3794     tmp5 = dataptr[DCTSIZE*5] + dataptr[DCTSIZE*6];
3795 
3796     tmp10 = tmp0 + tmp5;
3797     tmp13 = tmp0 - tmp5;
3798     tmp11 = tmp1 + tmp4;
3799     tmp14 = tmp1 - tmp4;
3800     tmp12 = tmp2 + tmp3;
3801     tmp15 = tmp2 - tmp3;
3802 
3803     tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*3];
3804     tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*2];
3805     tmp2 = dataptr[DCTSIZE*2] - wsptr[DCTSIZE*1];
3806     tmp3 = dataptr[DCTSIZE*3] - wsptr[DCTSIZE*0];
3807     tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*7];
3808     tmp5 = dataptr[DCTSIZE*5] - dataptr[DCTSIZE*6];
3809 
3810     dataptr[DCTSIZE*0] = (DCTELEM)
3811       DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(0.888888889)), /* 8/9 */
3812               CONST_BITS+PASS1_BITS);
3813     dataptr[DCTSIZE*6] = (DCTELEM)
3814       DESCALE(MULTIPLY(tmp13 - tmp14 - tmp15, FIX(0.888888889)), /* 8/9 */
3815               CONST_BITS+PASS1_BITS);
3816     dataptr[DCTSIZE*4] = (DCTELEM)
3817       DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.088662108)),         /* c4 */
3818               CONST_BITS+PASS1_BITS);
3819     dataptr[DCTSIZE*2] = (DCTELEM)
3820       DESCALE(MULTIPLY(tmp14 - tmp15, FIX(0.888888889)) +        /* 8/9 */
3821               MULTIPLY(tmp13 + tmp15, FIX(1.214244803)),         /* c2 */
3822               CONST_BITS+PASS1_BITS);
3823 
3824     /* Odd part */
3825 
3826     tmp10 = MULTIPLY(tmp1 + tmp4, FIX(0.481063200));   /* c9 */
3827     tmp14 = tmp10 + MULTIPLY(tmp1, FIX(0.680326102));  /* c3-c9 */
3828     tmp15 = tmp10 - MULTIPLY(tmp4, FIX(1.642452502));  /* c3+c9 */
3829     tmp12 = MULTIPLY(tmp0 + tmp2, FIX(0.997307603));   /* c5 */
3830     tmp13 = MULTIPLY(tmp0 + tmp3, FIX(0.765261039));   /* c7 */
3831     tmp10 = tmp12 + tmp13 + tmp14 - MULTIPLY(tmp0, FIX(0.516244403)) /* c5+c7-c1 */
3832             + MULTIPLY(tmp5, FIX(0.164081699));        /* c11 */
3833     tmp11 = MULTIPLY(tmp2 + tmp3, - FIX(0.164081699)); /* -c11 */
3834     tmp12 += tmp11 - tmp15 - MULTIPLY(tmp2, FIX(2.079550144)) /* c1+c5-c11 */
3835             + MULTIPLY(tmp5, FIX(0.765261039));        /* c7 */
3836     tmp13 += tmp11 - tmp14 + MULTIPLY(tmp3, FIX(0.645144899)) /* c1+c11-c7 */
3837             - MULTIPLY(tmp5, FIX(0.997307603));        /* c5 */
3838     tmp11 = tmp15 + MULTIPLY(tmp0 - tmp3, FIX(1.161389302)) /* c3 */
3839             - MULTIPLY(tmp2 + tmp5, FIX(0.481063200)); /* c9 */
3840 
3841     dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp10, CONST_BITS+PASS1_BITS);
3842     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp11, CONST_BITS+PASS1_BITS);
3843     dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12, CONST_BITS+PASS1_BITS);
3844     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp13, CONST_BITS+PASS1_BITS);
3845 
3846     dataptr++;                  /* advance pointer to next column */
3847     wsptr++;                    /* advance pointer to next column */
3848   }
3849 }
3850 
3851 
3852 /*
3853  * Perform the forward DCT on a 5x10 sample block.
3854  *
3855  * 5-point FDCT in pass 1 (rows), 10-point in pass 2 (columns).
3856  */
3857 
3858 GLOBAL(void)
3859 jpeg_fdct_5x10 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
3860 {
3861   INT32 tmp0, tmp1, tmp2, tmp3, tmp4;
3862   INT32 tmp10, tmp11, tmp12, tmp13, tmp14;
3863   DCTELEM workspace[8*2];
3864   DCTELEM *dataptr;
3865   DCTELEM *wsptr;
3866   JSAMPROW elemptr;
3867   int ctr;
3868   SHIFT_TEMPS
3869 
3870   /* Pre-zero output coefficient block. */
3871   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
3872 
3873   /* Pass 1: process rows. */
3874   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
3875   /* furthermore, we scale the results by 2**PASS1_BITS. */
3876   /* 5-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/10). */
3877 
3878   dataptr = data;
3879   ctr = 0;
3880   for (;;) {
3881     elemptr = sample_data[ctr] + start_col;
3882 
3883     /* Even part */
3884 
3885     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[4]);
3886     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[3]);
3887     tmp2 = GETJSAMPLE(elemptr[2]);
3888 
3889     tmp10 = tmp0 + tmp1;
3890     tmp11 = tmp0 - tmp1;
3891 
3892     tmp0 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[4]);
3893     tmp1 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[3]);
3894 
3895     /* Apply unsigned->signed conversion */
3896     dataptr[0] = (DCTELEM)
3897       ((tmp10 + tmp2 - 5 * CENTERJSAMPLE) << PASS1_BITS);
3898     tmp11 = MULTIPLY(tmp11, FIX(0.790569415));          /* (c2+c4)/2 */
3899     tmp10 -= tmp2 << 2;
3900     tmp10 = MULTIPLY(tmp10, FIX(0.353553391));          /* (c2-c4)/2 */
3901     dataptr[2] = (DCTELEM) DESCALE(tmp11 + tmp10, CONST_BITS-PASS1_BITS);
3902     dataptr[4] = (DCTELEM) DESCALE(tmp11 - tmp10, CONST_BITS-PASS1_BITS);
3903 
3904     /* Odd part */
3905 
3906     tmp10 = MULTIPLY(tmp0 + tmp1, FIX(0.831253876));    /* c3 */
3907 
3908     dataptr[1] = (DCTELEM)
3909       DESCALE(tmp10 + MULTIPLY(tmp0, FIX(0.513743148)), /* c1-c3 */
3910               CONST_BITS-PASS1_BITS);
3911     dataptr[3] = (DCTELEM)
3912       DESCALE(tmp10 - MULTIPLY(tmp1, FIX(2.176250899)), /* c1+c3 */
3913               CONST_BITS-PASS1_BITS);
3914 
3915     ctr++;
3916 
3917     if (ctr != DCTSIZE) {
3918       if (ctr == 10)
3919         break;                  /* Done. */
3920       dataptr += DCTSIZE;       /* advance pointer to next row */
3921     } else
3922       dataptr = workspace;      /* switch pointer to extended workspace */
3923   }
3924 
3925   /* Pass 2: process columns.
3926    * We remove the PASS1_BITS scaling, but leave the results scaled up
3927    * by an overall factor of 8.
3928    * We must also scale the output by (8/5)*(8/10) = 32/25, which we
3929    * fold into the constant multipliers:
3930    * 10-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/20) * 32/25.
3931    */
3932 
3933   dataptr = data;
3934   wsptr = workspace;
3935   for (ctr = 0; ctr < 5; ctr++) {
3936     /* Even part */
3937 
3938     tmp0 = dataptr[DCTSIZE*0] + wsptr[DCTSIZE*1];
3939     tmp1 = dataptr[DCTSIZE*1] + wsptr[DCTSIZE*0];
3940     tmp12 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*7];
3941     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*6];
3942     tmp4 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5];
3943 
3944     tmp10 = tmp0 + tmp4;
3945     tmp13 = tmp0 - tmp4;
3946     tmp11 = tmp1 + tmp3;
3947     tmp14 = tmp1 - tmp3;
3948 
3949     tmp0 = dataptr[DCTSIZE*0] - wsptr[DCTSIZE*1];
3950     tmp1 = dataptr[DCTSIZE*1] - wsptr[DCTSIZE*0];
3951     tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*7];
3952     tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*6];
3953     tmp4 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5];
3954 
3955     dataptr[DCTSIZE*0] = (DCTELEM)
3956       DESCALE(MULTIPLY(tmp10 + tmp11 + tmp12, FIX(1.28)), /* 32/25 */
3957               CONST_BITS+PASS1_BITS);
3958     tmp12 += tmp12;
3959     dataptr[DCTSIZE*4] = (DCTELEM)
3960       DESCALE(MULTIPLY(tmp10 - tmp12, FIX(1.464477191)) - /* c4 */
3961               MULTIPLY(tmp11 - tmp12, FIX(0.559380511)),  /* c8 */
3962               CONST_BITS+PASS1_BITS);
3963     tmp10 = MULTIPLY(tmp13 + tmp14, FIX(1.064004961));    /* c6 */
3964     dataptr[DCTSIZE*2] = (DCTELEM)
3965       DESCALE(tmp10 + MULTIPLY(tmp13, FIX(0.657591230)),  /* c2-c6 */
3966               CONST_BITS+PASS1_BITS);
3967     dataptr[DCTSIZE*6] = (DCTELEM)
3968       DESCALE(tmp10 - MULTIPLY(tmp14, FIX(2.785601151)),  /* c2+c6 */
3969               CONST_BITS+PASS1_BITS);
3970 
3971     /* Odd part */
3972 
3973     tmp10 = tmp0 + tmp4;
3974     tmp11 = tmp1 - tmp3;
3975     dataptr[DCTSIZE*5] = (DCTELEM)
3976       DESCALE(MULTIPLY(tmp10 - tmp11 - tmp2, FIX(1.28)),  /* 32/25 */
3977               CONST_BITS+PASS1_BITS);
3978     tmp2 = MULTIPLY(tmp2, FIX(1.28));                     /* 32/25 */
3979     dataptr[DCTSIZE*1] = (DCTELEM)
3980       DESCALE(MULTIPLY(tmp0, FIX(1.787906876)) +          /* c1 */
3981               MULTIPLY(tmp1, FIX(1.612894094)) + tmp2 +   /* c3 */
3982               MULTIPLY(tmp3, FIX(0.821810588)) +          /* c7 */
3983               MULTIPLY(tmp4, FIX(0.283176630)),           /* c9 */
3984               CONST_BITS+PASS1_BITS);
3985     tmp12 = MULTIPLY(tmp0 - tmp4, FIX(1.217352341)) -     /* (c3+c7)/2 */
3986             MULTIPLY(tmp1 + tmp3, FIX(0.752365123));      /* (c1-c9)/2 */
3987     tmp13 = MULTIPLY(tmp10 + tmp11, FIX(0.395541753)) +   /* (c3-c7)/2 */
3988             MULTIPLY(tmp11, FIX(0.64)) - tmp2;            /* 16/25 */
3989     dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp12 + tmp13, CONST_BITS+PASS1_BITS);
3990     dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp12 - tmp13, CONST_BITS+PASS1_BITS);
3991 
3992     dataptr++;                  /* advance pointer to next column */
3993     wsptr++;                    /* advance pointer to next column */
3994   }
3995 }
3996 
3997 
3998 /*
3999  * Perform the forward DCT on a 4x8 sample block.
4000  *
4001  * 4-point FDCT in pass 1 (rows), 8-point in pass 2 (columns).
4002  */
4003 
4004 GLOBAL(void)
4005 jpeg_fdct_4x8 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
4006 {
4007   INT32 tmp0, tmp1, tmp2, tmp3;
4008   INT32 tmp10, tmp11, tmp12, tmp13;
4009   INT32 z1;
4010   DCTELEM *dataptr;
4011   JSAMPROW elemptr;
4012   int ctr;
4013   SHIFT_TEMPS
4014 
4015   /* Pre-zero output coefficient block. */
4016   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
4017 
4018   /* Pass 1: process rows. */
4019   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
4020   /* furthermore, we scale the results by 2**PASS1_BITS. */
4021   /* We must also scale the output by 8/4 = 2, which we add here. */
4022   /* 4-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16). */
4023 
4024   dataptr = data;
4025   for (ctr = 0; ctr < DCTSIZE; ctr++) {
4026     elemptr = sample_data[ctr] + start_col;
4027 
4028     /* Even part */
4029 
4030     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[3]);
4031     tmp1 = GETJSAMPLE(elemptr[1]) + GETJSAMPLE(elemptr[2]);
4032 
4033     tmp10 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[3]);
4034     tmp11 = GETJSAMPLE(elemptr[1]) - GETJSAMPLE(elemptr[2]);
4035 
4036     /* Apply unsigned->signed conversion */
4037     dataptr[0] = (DCTELEM)
4038       ((tmp0 + tmp1 - 4 * CENTERJSAMPLE) << (PASS1_BITS+1));
4039     dataptr[2] = (DCTELEM) ((tmp0 - tmp1) << (PASS1_BITS+1));
4040 
4041     /* Odd part */
4042 
4043     tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100);       /* c6 */
4044     /* Add fudge factor here for final descale. */
4045     tmp0 += ONE << (CONST_BITS-PASS1_BITS-2);
4046 
4047     dataptr[1] = (DCTELEM)
4048       RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
4049                   CONST_BITS-PASS1_BITS-1);
4050     dataptr[3] = (DCTELEM)
4051       RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
4052                   CONST_BITS-PASS1_BITS-1);
4053 
4054     dataptr += DCTSIZE;         /* advance pointer to next row */
4055   }
4056 
4057   /* Pass 2: process columns.
4058    * We remove the PASS1_BITS scaling, but leave the results scaled up
4059    * by an overall factor of 8.
4060    */
4061 
4062   dataptr = data;
4063   for (ctr = 0; ctr < 4; ctr++) {
4064     /* Even part per LL&M figure 1 --- note that published figure is faulty;
4065      * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
4066      */
4067 
4068     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
4069     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
4070     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
4071     tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
4072 
4073     /* Add fudge factor here for final descale. */
4074     tmp10 = tmp0 + tmp3 + (ONE << (PASS1_BITS-1));
4075     tmp12 = tmp0 - tmp3;
4076     tmp11 = tmp1 + tmp2;
4077     tmp13 = tmp1 - tmp2;
4078 
4079     tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
4080     tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
4081     tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
4082     tmp3 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
4083 
4084     dataptr[DCTSIZE*0] = (DCTELEM) RIGHT_SHIFT(tmp10 + tmp11, PASS1_BITS);
4085     dataptr[DCTSIZE*4] = (DCTELEM) RIGHT_SHIFT(tmp10 - tmp11, PASS1_BITS);
4086 
4087     z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
4088     /* Add fudge factor here for final descale. */
4089     z1 += ONE << (CONST_BITS+PASS1_BITS-1);
4090     dataptr[DCTSIZE*2] = (DCTELEM)
4091       RIGHT_SHIFT(z1 + MULTIPLY(tmp12, FIX_0_765366865), CONST_BITS+PASS1_BITS);
4092     dataptr[DCTSIZE*6] = (DCTELEM)
4093       RIGHT_SHIFT(z1 - MULTIPLY(tmp13, FIX_1_847759065), CONST_BITS+PASS1_BITS);
4094 
4095     /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
4096      * 8-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/16).
4097      * i0..i3 in the paper are tmp0..tmp3 here.
4098      */
4099 
4100     tmp10 = tmp0 + tmp3;
4101     tmp11 = tmp1 + tmp2;
4102     tmp12 = tmp0 + tmp2;
4103     tmp13 = tmp1 + tmp3;
4104     z1 = MULTIPLY(tmp12 + tmp13, FIX_1_175875602); /*  c3 */
4105     /* Add fudge factor here for final descale. */
4106     z1 += ONE << (CONST_BITS+PASS1_BITS-1);
4107 
4108     tmp0  = MULTIPLY(tmp0,    FIX_1_501321110);    /*  c1+c3-c5-c7 */
4109     tmp1  = MULTIPLY(tmp1,    FIX_3_072711026);    /*  c1+c3+c5-c7 */
4110     tmp2  = MULTIPLY(tmp2,    FIX_2_053119869);    /*  c1+c3-c5+c7 */
4111     tmp3  = MULTIPLY(tmp3,    FIX_0_298631336);    /* -c1+c3+c5-c7 */
4112     tmp10 = MULTIPLY(tmp10, - FIX_0_899976223);    /*  c7-c3 */
4113     tmp11 = MULTIPLY(tmp11, - FIX_2_562915447);    /* -c1-c3 */
4114     tmp12 = MULTIPLY(tmp12, - FIX_0_390180644);    /*  c5-c3 */
4115     tmp13 = MULTIPLY(tmp13, - FIX_1_961570560);    /* -c3-c5 */
4116 
4117     tmp12 += z1;
4118     tmp13 += z1;
4119 
4120     dataptr[DCTSIZE*1] = (DCTELEM)
4121       RIGHT_SHIFT(tmp0 + tmp10 + tmp12, CONST_BITS+PASS1_BITS);
4122     dataptr[DCTSIZE*3] = (DCTELEM)
4123       RIGHT_SHIFT(tmp1 + tmp11 + tmp13, CONST_BITS+PASS1_BITS);
4124     dataptr[DCTSIZE*5] = (DCTELEM)
4125       RIGHT_SHIFT(tmp2 + tmp11 + tmp12, CONST_BITS+PASS1_BITS);
4126     dataptr[DCTSIZE*7] = (DCTELEM)
4127       RIGHT_SHIFT(tmp3 + tmp10 + tmp13, CONST_BITS+PASS1_BITS);
4128 
4129     dataptr++;                  /* advance pointer to next column */
4130   }
4131 }
4132 
4133 
4134 /*
4135  * Perform the forward DCT on a 3x6 sample block.
4136  *
4137  * 3-point FDCT in pass 1 (rows), 6-point in pass 2 (columns).
4138  */
4139 
4140 GLOBAL(void)
4141 jpeg_fdct_3x6 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
4142 {
4143   INT32 tmp0, tmp1, tmp2;
4144   INT32 tmp10, tmp11, tmp12;
4145   DCTELEM *dataptr;
4146   JSAMPROW elemptr;
4147   int ctr;
4148   SHIFT_TEMPS
4149 
4150   /* Pre-zero output coefficient block. */
4151   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
4152 
4153   /* Pass 1: process rows. */
4154   /* Note results are scaled up by sqrt(8) compared to a true DCT; */
4155   /* furthermore, we scale the results by 2**PASS1_BITS. */
4156   /* We scale the results further by 2 as part of output adaption */
4157   /* scaling for different DCT size. */
4158   /* 3-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/6). */
4159 
4160   dataptr = data;
4161   for (ctr = 0; ctr < 6; ctr++) {
4162     elemptr = sample_data[ctr] + start_col;
4163 
4164     /* Even part */
4165 
4166     tmp0 = GETJSAMPLE(elemptr[0]) + GETJSAMPLE(elemptr[2]);
4167     tmp1 = GETJSAMPLE(elemptr[1]);
4168 
4169     tmp2 = GETJSAMPLE(elemptr[0]) - GETJSAMPLE(elemptr[2]);
4170 
4171     /* Apply unsigned->signed conversion */
4172     dataptr[0] = (DCTELEM)
4173       ((tmp0 + tmp1 - 3 * CENTERJSAMPLE) << (PASS1_BITS+1));
4174     dataptr[2] = (DCTELEM)
4175       DESCALE(MULTIPLY(tmp0 - tmp1 - tmp1, FIX(0.707106781)), /* c2 */
4176               CONST_BITS-PASS1_BITS-1);
4177 
4178     /* Odd part */
4179 
4180     dataptr[1] = (DCTELEM)
4181       DESCALE(MULTIPLY(tmp2, FIX(1.224744871)),               /* c1 */
4182               CONST_BITS-PASS1_BITS-1);
4183 
4184     dataptr += DCTSIZE;         /* advance pointer to next row */
4185   }
4186 
4187   /* Pass 2: process columns.
4188    * We remove the PASS1_BITS scaling, but leave the results scaled up
4189    * by an overall factor of 8.
4190    * We must also scale the output by (8/6)*(8/3) = 32/9, which we partially
4191    * fold into the constant multipliers (other part was done in pass 1):
4192    * 6-point FDCT kernel, cK represents sqrt(2) * cos(K*pi/12) * 16/9.
4193    */
4194 
4195   dataptr = data;
4196   for (ctr = 0; ctr < 3; ctr++) {
4197     /* Even part */
4198 
4199     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*5];
4200     tmp11 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*4];
4201     tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3];
4202 
4203     tmp10 = tmp0 + tmp2;
4204     tmp12 = tmp0 - tmp2;
4205 
4206     tmp0 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*5];
4207     tmp1 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*4];
4208     tmp2 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3];
4209 
4210     dataptr[DCTSIZE*0] = (DCTELEM)
4211       DESCALE(MULTIPLY(tmp10 + tmp11, FIX(1.777777778)),         /* 16/9 */
4212               CONST_BITS+PASS1_BITS);
4213     dataptr[DCTSIZE*2] = (DCTELEM)
4214       DESCALE(MULTIPLY(tmp12, FIX(2.177324216)),                 /* c2 */
4215               CONST_BITS+PASS1_BITS);
4216     dataptr[DCTSIZE*4] = (DCTELEM)
4217       DESCALE(MULTIPLY(tmp10 - tmp11 - tmp11, FIX(1.257078722)), /* c4 */
4218               CONST_BITS+PASS1_BITS);
4219 
4220     /* Odd part */
4221 
4222     tmp10 = MULTIPLY(tmp0 + tmp2, FIX(0.650711829));             /* c5 */
4223 
4224     dataptr[DCTSIZE*1] = (DCTELEM)
4225       DESCALE(tmp10 + MULTIPLY(tmp0 + tmp1, FIX(1.777777778)),   /* 16/9 */
4226               CONST_BITS+PASS1_BITS);
4227     dataptr[DCTSIZE*3] = (DCTELEM)
4228       DESCALE(MULTIPLY(tmp0 - tmp1 - tmp2, FIX(1.777777778)),    /* 16/9 */
4229               CONST_BITS+PASS1_BITS);
4230     dataptr[DCTSIZE*5] = (DCTELEM)
4231       DESCALE(tmp10 + MULTIPLY(tmp2 - tmp1, FIX(1.777777778)),   /* 16/9 */
4232               CONST_BITS+PASS1_BITS);
4233 
4234     dataptr++;                  /* advance pointer to next column */
4235   }
4236 }
4237 
4238 
4239 /*
4240  * Perform the forward DCT on a 2x4 sample block.
4241  *
4242  * 2-point FDCT in pass 1 (rows), 4-point in pass 2 (columns).
4243  */
4244 
4245 GLOBAL(void)
4246 jpeg_fdct_2x4 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
4247 {
4248   INT32 tmp0, tmp1;
4249   INT32 tmp10, tmp11;
4250   DCTELEM *dataptr;
4251   JSAMPROW elemptr;
4252   int ctr;
4253   SHIFT_TEMPS
4254 
4255   /* Pre-zero output coefficient block. */
4256   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
4257 
4258   /* Pass 1: process rows. */
4259   /* Note results are scaled up by sqrt(8) compared to a true DCT. */
4260   /* We must also scale the output by (8/2)*(8/4) = 2**3, which we add here. */
4261 
4262   dataptr = data;
4263   for (ctr = 0; ctr < 4; ctr++) {
4264     elemptr = sample_data[ctr] + start_col;
4265 
4266     /* Even part */
4267 
4268     tmp0 = GETJSAMPLE(elemptr[0]);
4269     tmp1 = GETJSAMPLE(elemptr[1]);
4270 
4271     /* Apply unsigned->signed conversion */
4272     dataptr[0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 3);
4273 
4274     /* Odd part */
4275 
4276     dataptr[1] = (DCTELEM) ((tmp0 - tmp1) << 3);
4277 
4278     dataptr += DCTSIZE;         /* advance pointer to next row */
4279   }
4280 
4281   /* Pass 2: process columns.
4282    * We leave the results scaled up by an overall factor of 8.
4283    * 4-point FDCT kernel,
4284    * cK represents sqrt(2) * cos(K*pi/16) [refers to 8-point FDCT].
4285    */
4286 
4287   dataptr = data;
4288   for (ctr = 0; ctr < 2; ctr++) {
4289     /* Even part */
4290 
4291     tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*3];
4292     tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*2];
4293 
4294     tmp10 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*3];
4295     tmp11 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*2];
4296 
4297     dataptr[DCTSIZE*0] = (DCTELEM) (tmp0 + tmp1);
4298     dataptr[DCTSIZE*2] = (DCTELEM) (tmp0 - tmp1);
4299 
4300     /* Odd part */
4301 
4302     tmp0 = MULTIPLY(tmp10 + tmp11, FIX_0_541196100);       /* c6 */
4303     /* Add fudge factor here for final descale. */
4304     tmp0 += ONE << (CONST_BITS-1);
4305 
4306     dataptr[DCTSIZE*1] = (DCTELEM)
4307       RIGHT_SHIFT(tmp0 + MULTIPLY(tmp10, FIX_0_765366865), /* c2-c6 */
4308                   CONST_BITS);
4309     dataptr[DCTSIZE*3] = (DCTELEM)
4310       RIGHT_SHIFT(tmp0 - MULTIPLY(tmp11, FIX_1_847759065), /* c2+c6 */
4311                   CONST_BITS);
4312 
4313     dataptr++;                  /* advance pointer to next column */
4314   }
4315 }
4316 
4317 
4318 /*
4319  * Perform the forward DCT on a 1x2 sample block.
4320  *
4321  * 1-point FDCT in pass 1 (rows), 2-point in pass 2 (columns).
4322  */
4323 
4324 GLOBAL(void)
4325 jpeg_fdct_1x2 (DCTELEM * data, JSAMPARRAY sample_data, JDIMENSION start_col)
4326 {
4327   INT32 tmp0, tmp1;
4328 
4329   /* Pre-zero output coefficient block. */
4330   MEMZERO(data, SIZEOF(DCTELEM) * DCTSIZE2);
4331 
4332   tmp0 = GETJSAMPLE(sample_data[0][start_col]);
4333   tmp1 = GETJSAMPLE(sample_data[1][start_col]);
4334 
4335   /* We leave the results scaled up by an overall factor of 8.
4336    * We must also scale the output by (8/1)*(8/2) = 2**5.
4337    */
4338 
4339   /* Even part */
4340   /* Apply unsigned->signed conversion */
4341   data[DCTSIZE*0] = (DCTELEM) ((tmp0 + tmp1 - 2 * CENTERJSAMPLE) << 5);
4342 
4343   /* Odd part */
4344   data[DCTSIZE*1] = (DCTELEM) ((tmp0 - tmp1) << 5);
4345 }
4346 
4347 #endif /* DCT_SCALING_SUPPORTED */
4348 #endif /* DCT_ISLOW_SUPPORTED */