1 /*
2 * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "ci/bcEscapeAnalyzer.hpp"
27 #include "compiler/compileLog.hpp"
28 #include "libadt/vectset.hpp"
29 #include "memory/allocation.hpp"
30 #include "opto/c2compiler.hpp"
31 #include "opto/arraycopynode.hpp"
32 #include "opto/callnode.hpp"
33 #include "opto/cfgnode.hpp"
34 #include "opto/compile.hpp"
35 #include "opto/escape.hpp"
36 #include "opto/phaseX.hpp"
37 #include "opto/movenode.hpp"
38 #include "opto/rootnode.hpp"
39
40 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
41 _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
42 _in_worklist(C->comp_arena()),
43 _next_pidx(0),
44 _collecting(true),
45 _verify(false),
46 _compile(C),
47 _igvn(igvn),
48 _node_map(C->comp_arena()) {
49 // Add unknown java object.
50 add_java_object(C->top(), PointsToNode::GlobalEscape);
51 phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
52 // Add ConP(#NULL) and ConN(#NULL) nodes.
53 Node* oop_null = igvn->zerocon(T_OBJECT);
54 assert(oop_null->_idx < nodes_size(), "should be created already");
55 add_java_object(oop_null, PointsToNode::NoEscape);
56 null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
57 if (UseCompressedOops) {
58 Node* noop_null = igvn->zerocon(T_NARROWOOP);
59 assert(noop_null->_idx < nodes_size(), "should be created already");
60 map_ideal_node(noop_null, null_obj);
61 }
62 _pcmp_neq = NULL; // Should be initialized
63 _pcmp_eq = NULL;
64 }
65
66 bool ConnectionGraph::has_candidates(Compile *C) {
67 // EA brings benefits only when the code has allocations and/or locks which
68 // are represented by ideal Macro nodes.
69 int cnt = C->macro_count();
70 for (int i = 0; i < cnt; i++) {
71 Node *n = C->macro_node(i);
72 if (n->is_Allocate())
73 return true;
74 if (n->is_Lock()) {
75 Node* obj = n->as_Lock()->obj_node()->uncast();
76 if (!(obj->is_Parm() || obj->is_Con()))
77 return true;
78 }
79 if (n->is_CallStaticJava() &&
80 n->as_CallStaticJava()->is_boxing_method()) {
81 return true;
82 }
83 }
84 return false;
85 }
86
87 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
88 Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
89 ResourceMark rm;
90
91 // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
92 // to create space for them in ConnectionGraph::_nodes[].
93 Node* oop_null = igvn->zerocon(T_OBJECT);
94 Node* noop_null = igvn->zerocon(T_NARROWOOP);
95 ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
96 // Perform escape analysis
97 if (congraph->compute_escape()) {
98 // There are non escaping objects.
99 C->set_congraph(congraph);
100 }
101 // Cleanup.
102 if (oop_null->outcnt() == 0)
103 igvn->hash_delete(oop_null);
104 if (noop_null->outcnt() == 0)
105 igvn->hash_delete(noop_null);
106 }
107
108 bool ConnectionGraph::compute_escape() {
109 Compile* C = _compile;
110 PhaseGVN* igvn = _igvn;
111
112 // Worklists used by EA.
113 Unique_Node_List delayed_worklist;
114 GrowableArray<Node*> alloc_worklist;
115 GrowableArray<Node*> ptr_cmp_worklist;
116 GrowableArray<Node*> storestore_worklist;
117 GrowableArray<ArrayCopyNode*> arraycopy_worklist;
118 GrowableArray<PointsToNode*> ptnodes_worklist;
119 GrowableArray<JavaObjectNode*> java_objects_worklist;
120 GrowableArray<JavaObjectNode*> non_escaped_worklist;
121 GrowableArray<FieldNode*> oop_fields_worklist;
122 DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
123
124 { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
125
126 // 1. Populate Connection Graph (CG) with PointsTo nodes.
127 ideal_nodes.map(C->live_nodes(), NULL); // preallocate space
128 // Initialize worklist
129 if (C->root() != NULL) {
130 ideal_nodes.push(C->root());
131 }
132 // Processed ideal nodes are unique on ideal_nodes list
133 // but several ideal nodes are mapped to the phantom_obj.
134 // To avoid duplicated entries on the following worklists
135 // add the phantom_obj only once to them.
136 ptnodes_worklist.append(phantom_obj);
137 java_objects_worklist.append(phantom_obj);
138 for( uint next = 0; next < ideal_nodes.size(); ++next ) {
139 Node* n = ideal_nodes.at(next);
140 // Create PointsTo nodes and add them to Connection Graph. Called
141 // only once per ideal node since ideal_nodes is Unique_Node list.
142 add_node_to_connection_graph(n, &delayed_worklist);
143 PointsToNode* ptn = ptnode_adr(n->_idx);
144 if (ptn != NULL && ptn != phantom_obj) {
145 ptnodes_worklist.append(ptn);
146 if (ptn->is_JavaObject()) {
147 java_objects_worklist.append(ptn->as_JavaObject());
148 if ((n->is_Allocate() || n->is_CallStaticJava()) &&
149 (ptn->escape_state() < PointsToNode::GlobalEscape)) {
150 // Only allocations and java static calls results are interesting.
151 non_escaped_worklist.append(ptn->as_JavaObject());
152 }
153 } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
154 oop_fields_worklist.append(ptn->as_Field());
155 }
156 }
157 if (n->is_MergeMem()) {
158 // Collect all MergeMem nodes to add memory slices for
159 // scalar replaceable objects in split_unique_types().
160 _mergemem_worklist.append(n->as_MergeMem());
161 } else if (OptimizePtrCompare && n->is_Cmp() &&
162 (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
163 // Collect compare pointers nodes.
164 ptr_cmp_worklist.append(n);
165 } else if (n->is_MemBarStoreStore()) {
166 // Collect all MemBarStoreStore nodes so that depending on the
167 // escape status of the associated Allocate node some of them
168 // may be eliminated.
169 storestore_worklist.append(n);
170 } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
171 (n->req() > MemBarNode::Precedent)) {
172 record_for_optimizer(n);
173 #ifdef ASSERT
174 } else if (n->is_AddP()) {
175 // Collect address nodes for graph verification.
176 addp_worklist.append(n);
177 #endif
178 } else if (n->is_ArrayCopy()) {
179 // Keep a list of ArrayCopy nodes so if one of its input is non
180 // escaping, we can record a unique type
181 arraycopy_worklist.append(n->as_ArrayCopy());
182 }
183 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
184 Node* m = n->fast_out(i); // Get user
185 ideal_nodes.push(m);
186 }
187 }
188 if (non_escaped_worklist.length() == 0) {
189 _collecting = false;
190 return false; // Nothing to do.
191 }
192 // Add final simple edges to graph.
193 while(delayed_worklist.size() > 0) {
194 Node* n = delayed_worklist.pop();
195 add_final_edges(n);
196 }
197 int ptnodes_length = ptnodes_worklist.length();
198
199 #ifdef ASSERT
200 if (VerifyConnectionGraph) {
201 // Verify that no new simple edges could be created and all
202 // local vars has edges.
203 _verify = true;
204 for (int next = 0; next < ptnodes_length; ++next) {
205 PointsToNode* ptn = ptnodes_worklist.at(next);
206 add_final_edges(ptn->ideal_node());
207 if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
208 ptn->dump();
209 assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
210 }
211 }
212 _verify = false;
213 }
214 #endif
215 // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
216 // processing, calls to CI to resolve symbols (types, fields, methods)
217 // referenced in bytecode. During symbol resolution VM may throw
218 // an exception which CI cleans and converts to compilation failure.
219 if (C->failing()) return false;
220
221 // 2. Finish Graph construction by propagating references to all
222 // java objects through graph.
223 if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
224 java_objects_worklist, oop_fields_worklist)) {
225 // All objects escaped or hit time or iterations limits.
226 _collecting = false;
227 return false;
228 }
229
230 // 3. Adjust scalar_replaceable state of nonescaping objects and push
231 // scalar replaceable allocations on alloc_worklist for processing
232 // in split_unique_types().
233 int non_escaped_length = non_escaped_worklist.length();
234 for (int next = 0; next < non_escaped_length; next++) {
235 JavaObjectNode* ptn = non_escaped_worklist.at(next);
236 bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
237 Node* n = ptn->ideal_node();
238 if (n->is_Allocate()) {
239 n->as_Allocate()->_is_non_escaping = noescape;
240 }
241 if (n->is_CallStaticJava()) {
242 n->as_CallStaticJava()->_is_non_escaping = noescape;
243 }
244 if (noescape && ptn->scalar_replaceable()) {
245 adjust_scalar_replaceable_state(ptn);
246 if (ptn->scalar_replaceable()) {
247 alloc_worklist.append(ptn->ideal_node());
248 }
249 }
250 }
251
252 #ifdef ASSERT
253 if (VerifyConnectionGraph) {
254 // Verify that graph is complete - no new edges could be added or needed.
255 verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
256 java_objects_worklist, addp_worklist);
257 }
258 assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
259 assert(null_obj->escape_state() == PointsToNode::NoEscape &&
260 null_obj->edge_count() == 0 &&
261 !null_obj->arraycopy_src() &&
262 !null_obj->arraycopy_dst(), "sanity");
263 #endif
264
265 _collecting = false;
266
267 } // TracePhase t3("connectionGraph")
268
269 // 4. Optimize ideal graph based on EA information.
270 bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
271 if (has_non_escaping_obj) {
272 optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
273 }
274
275 #ifndef PRODUCT
276 if (PrintEscapeAnalysis) {
277 dump(ptnodes_worklist); // Dump ConnectionGraph
278 }
279 #endif
280
281 bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
282 #ifdef ASSERT
283 if (VerifyConnectionGraph) {
284 int alloc_length = alloc_worklist.length();
285 for (int next = 0; next < alloc_length; ++next) {
286 Node* n = alloc_worklist.at(next);
287 PointsToNode* ptn = ptnode_adr(n->_idx);
288 assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
289 }
290 }
291 #endif
292
293 // 5. Separate memory graph for scalar replaceable allcations.
294 if (has_scalar_replaceable_candidates &&
295 C->AliasLevel() >= 3 && EliminateAllocations) {
296 // Now use the escape information to create unique types for
297 // scalar replaceable objects.
298 split_unique_types(alloc_worklist, arraycopy_worklist);
299 if (C->failing()) return false;
300 C->print_method(PHASE_AFTER_EA, 2);
301
302 #ifdef ASSERT
303 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
304 tty->print("=== No allocations eliminated for ");
305 C->method()->print_short_name();
306 if(!EliminateAllocations) {
307 tty->print(" since EliminateAllocations is off ===");
308 } else if(!has_scalar_replaceable_candidates) {
309 tty->print(" since there are no scalar replaceable candidates ===");
310 } else if(C->AliasLevel() < 3) {
311 tty->print(" since AliasLevel < 3 ===");
312 }
313 tty->cr();
314 #endif
315 }
316 return has_non_escaping_obj;
317 }
318
319 // Utility function for nodes that load an object
320 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
321 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
322 // ThreadLocal has RawPtr type.
323 const Type* t = _igvn->type(n);
324 if (t->make_ptr() != NULL) {
325 Node* adr = n->in(MemNode::Address);
326 #ifdef ASSERT
327 if (!adr->is_AddP()) {
328 assert(_igvn->type(adr)->isa_rawptr(), "sanity");
329 } else {
330 assert((ptnode_adr(adr->_idx) == NULL ||
331 ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
332 }
333 #endif
334 add_local_var_and_edge(n, PointsToNode::NoEscape,
335 adr, delayed_worklist);
336 }
337 }
338
339 // Populate Connection Graph with PointsTo nodes and create simple
340 // connection graph edges.
341 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
342 assert(!_verify, "this method should not be called for verification");
343 PhaseGVN* igvn = _igvn;
344 uint n_idx = n->_idx;
345 PointsToNode* n_ptn = ptnode_adr(n_idx);
346 if (n_ptn != NULL)
347 return; // No need to redefine PointsTo node during first iteration.
348
349 if (n->is_Call()) {
350 // Arguments to allocation and locking don't escape.
351 if (n->is_AbstractLock()) {
352 // Put Lock and Unlock nodes on IGVN worklist to process them during
353 // first IGVN optimization when escape information is still available.
354 record_for_optimizer(n);
355 } else if (n->is_Allocate()) {
356 add_call_node(n->as_Call());
357 record_for_optimizer(n);
358 } else {
359 if (n->is_CallStaticJava()) {
360 const char* name = n->as_CallStaticJava()->_name;
361 if (name != NULL && strcmp(name, "uncommon_trap") == 0)
362 return; // Skip uncommon traps
363 }
364 // Don't mark as processed since call's arguments have to be processed.
365 delayed_worklist->push(n);
366 // Check if a call returns an object.
367 if ((n->as_Call()->returns_pointer() &&
368 n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
369 (n->is_CallStaticJava() &&
370 n->as_CallStaticJava()->is_boxing_method())) {
371 add_call_node(n->as_Call());
372 }
373 }
374 return;
375 }
376 // Put this check here to process call arguments since some call nodes
377 // point to phantom_obj.
378 if (n_ptn == phantom_obj || n_ptn == null_obj)
379 return; // Skip predefined nodes.
380
381 int opcode = n->Opcode();
382 switch (opcode) {
383 case Op_AddP: {
384 Node* base = get_addp_base(n);
385 PointsToNode* ptn_base = ptnode_adr(base->_idx);
386 // Field nodes are created for all field types. They are used in
387 // adjust_scalar_replaceable_state() and split_unique_types().
388 // Note, non-oop fields will have only base edges in Connection
389 // Graph because such fields are not used for oop loads and stores.
390 int offset = address_offset(n, igvn);
391 add_field(n, PointsToNode::NoEscape, offset);
392 if (ptn_base == NULL) {
393 delayed_worklist->push(n); // Process it later.
394 } else {
395 n_ptn = ptnode_adr(n_idx);
396 add_base(n_ptn->as_Field(), ptn_base);
397 }
398 break;
399 }
400 case Op_CastX2P: {
401 map_ideal_node(n, phantom_obj);
402 break;
403 }
404 case Op_CastPP:
405 case Op_CheckCastPP:
406 case Op_EncodeP:
407 case Op_DecodeN:
408 case Op_EncodePKlass:
409 case Op_DecodeNKlass: {
410 add_local_var_and_edge(n, PointsToNode::NoEscape,
411 n->in(1), delayed_worklist);
412 break;
413 }
414 case Op_CMoveP: {
415 add_local_var(n, PointsToNode::NoEscape);
416 // Do not add edges during first iteration because some could be
417 // not defined yet.
418 delayed_worklist->push(n);
419 break;
420 }
421 case Op_ConP:
422 case Op_ConN:
423 case Op_ConNKlass: {
424 // assume all oop constants globally escape except for null
425 PointsToNode::EscapeState es;
426 const Type* t = igvn->type(n);
427 if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
428 es = PointsToNode::NoEscape;
429 } else {
430 es = PointsToNode::GlobalEscape;
431 }
432 add_java_object(n, es);
433 break;
434 }
435 case Op_CreateEx: {
436 // assume that all exception objects globally escape
437 map_ideal_node(n, phantom_obj);
438 break;
439 }
440 case Op_LoadKlass:
441 case Op_LoadNKlass: {
442 // Unknown class is loaded
443 map_ideal_node(n, phantom_obj);
444 break;
445 }
446 case Op_LoadP:
447 case Op_LoadN:
448 case Op_LoadPLocked: {
449 add_objload_to_connection_graph(n, delayed_worklist);
450 break;
451 }
452 case Op_Parm: {
453 map_ideal_node(n, phantom_obj);
454 break;
455 }
456 case Op_PartialSubtypeCheck: {
457 // Produces Null or notNull and is used in only in CmpP so
458 // phantom_obj could be used.
459 map_ideal_node(n, phantom_obj); // Result is unknown
460 break;
461 }
462 case Op_Phi: {
463 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
464 // ThreadLocal has RawPtr type.
465 const Type* t = n->as_Phi()->type();
466 if (t->make_ptr() != NULL) {
467 add_local_var(n, PointsToNode::NoEscape);
468 // Do not add edges during first iteration because some could be
469 // not defined yet.
470 delayed_worklist->push(n);
471 }
472 break;
473 }
474 case Op_Proj: {
475 // we are only interested in the oop result projection from a call
476 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
477 n->in(0)->as_Call()->returns_pointer()) {
478 add_local_var_and_edge(n, PointsToNode::NoEscape,
479 n->in(0), delayed_worklist);
480 }
481 break;
482 }
483 case Op_Rethrow: // Exception object escapes
484 case Op_Return: {
485 if (n->req() > TypeFunc::Parms &&
486 igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
487 // Treat Return value as LocalVar with GlobalEscape escape state.
488 add_local_var_and_edge(n, PointsToNode::GlobalEscape,
489 n->in(TypeFunc::Parms), delayed_worklist);
490 }
491 break;
492 }
493 case Op_GetAndSetP:
494 case Op_GetAndSetN: {
495 add_objload_to_connection_graph(n, delayed_worklist);
496 // fallthrough
497 }
498 case Op_StoreP:
499 case Op_StoreN:
500 case Op_StoreNKlass:
501 case Op_StorePConditional:
502 case Op_CompareAndSwapP:
503 case Op_CompareAndSwapN: {
504 Node* adr = n->in(MemNode::Address);
505 const Type *adr_type = igvn->type(adr);
506 adr_type = adr_type->make_ptr();
507 if (adr_type == NULL) {
508 break; // skip dead nodes
509 }
510 if (adr_type->isa_oopptr() ||
511 (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
512 (adr_type == TypeRawPtr::NOTNULL &&
513 adr->in(AddPNode::Address)->is_Proj() &&
514 adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
515 delayed_worklist->push(n); // Process it later.
516 #ifdef ASSERT
517 assert(adr->is_AddP(), "expecting an AddP");
518 if (adr_type == TypeRawPtr::NOTNULL) {
519 // Verify a raw address for a store captured by Initialize node.
520 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
521 assert(offs != Type::OffsetBot, "offset must be a constant");
522 }
523 #endif
524 } else {
525 // Ignore copy the displaced header to the BoxNode (OSR compilation).
526 if (adr->is_BoxLock())
527 break;
528 // Stored value escapes in unsafe access.
529 if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
530 // Pointer stores in G1 barriers looks like unsafe access.
531 // Ignore such stores to be able scalar replace non-escaping
532 // allocations.
533 if (UseG1GC && adr->is_AddP()) {
534 Node* base = get_addp_base(adr);
535 if (base->Opcode() == Op_LoadP &&
536 base->in(MemNode::Address)->is_AddP()) {
537 adr = base->in(MemNode::Address);
538 Node* tls = get_addp_base(adr);
539 if (tls->Opcode() == Op_ThreadLocal) {
540 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
541 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
542 PtrQueue::byte_offset_of_buf())) {
543 break; // G1 pre barier previous oop value store.
544 }
545 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
546 PtrQueue::byte_offset_of_buf())) {
547 break; // G1 post barier card address store.
548 }
549 }
550 }
551 }
552 delayed_worklist->push(n); // Process unsafe access later.
553 break;
554 }
555 #ifdef ASSERT
556 n->dump(1);
557 assert(false, "not unsafe or G1 barrier raw StoreP");
558 #endif
559 }
560 break;
561 }
562 case Op_AryEq:
563 case Op_StrComp:
564 case Op_StrEquals:
565 case Op_StrIndexOf:
566 case Op_EncodeISOArray: {
567 add_local_var(n, PointsToNode::ArgEscape);
568 delayed_worklist->push(n); // Process it later.
569 break;
570 }
571 case Op_ThreadLocal: {
572 add_java_object(n, PointsToNode::ArgEscape);
573 break;
574 }
575 default:
576 ; // Do nothing for nodes not related to EA.
577 }
578 return;
579 }
580
581 #ifdef ASSERT
582 #define ELSE_FAIL(name) \
583 /* Should not be called for not pointer type. */ \
584 n->dump(1); \
585 assert(false, name); \
586 break;
587 #else
588 #define ELSE_FAIL(name) \
589 break;
590 #endif
591
592 // Add final simple edges to graph.
593 void ConnectionGraph::add_final_edges(Node *n) {
594 PointsToNode* n_ptn = ptnode_adr(n->_idx);
595 #ifdef ASSERT
596 if (_verify && n_ptn->is_JavaObject())
597 return; // This method does not change graph for JavaObject.
598 #endif
599
600 if (n->is_Call()) {
601 process_call_arguments(n->as_Call());
602 return;
603 }
604 assert(n->is_Store() || n->is_LoadStore() ||
605 (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
606 "node should be registered already");
607 int opcode = n->Opcode();
608 switch (opcode) {
609 case Op_AddP: {
610 Node* base = get_addp_base(n);
611 PointsToNode* ptn_base = ptnode_adr(base->_idx);
612 assert(ptn_base != NULL, "field's base should be registered");
613 add_base(n_ptn->as_Field(), ptn_base);
614 break;
615 }
616 case Op_CastPP:
617 case Op_CheckCastPP:
618 case Op_EncodeP:
619 case Op_DecodeN:
620 case Op_EncodePKlass:
621 case Op_DecodeNKlass: {
622 add_local_var_and_edge(n, PointsToNode::NoEscape,
623 n->in(1), NULL);
624 break;
625 }
626 case Op_CMoveP: {
627 for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
628 Node* in = n->in(i);
629 if (in == NULL)
630 continue; // ignore NULL
631 Node* uncast_in = in->uncast();
632 if (uncast_in->is_top() || uncast_in == n)
633 continue; // ignore top or inputs which go back this node
634 PointsToNode* ptn = ptnode_adr(in->_idx);
635 assert(ptn != NULL, "node should be registered");
636 add_edge(n_ptn, ptn);
637 }
638 break;
639 }
640 case Op_LoadP:
641 case Op_LoadN:
642 case Op_LoadPLocked: {
643 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
644 // ThreadLocal has RawPtr type.
645 const Type* t = _igvn->type(n);
646 if (t->make_ptr() != NULL) {
647 Node* adr = n->in(MemNode::Address);
648 add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
649 break;
650 }
651 ELSE_FAIL("Op_LoadP");
652 }
653 case Op_Phi: {
654 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
655 // ThreadLocal has RawPtr type.
656 const Type* t = n->as_Phi()->type();
657 if (t->make_ptr() != NULL) {
658 for (uint i = 1; i < n->req(); i++) {
659 Node* in = n->in(i);
660 if (in == NULL)
661 continue; // ignore NULL
662 Node* uncast_in = in->uncast();
663 if (uncast_in->is_top() || uncast_in == n)
664 continue; // ignore top or inputs which go back this node
665 PointsToNode* ptn = ptnode_adr(in->_idx);
666 assert(ptn != NULL, "node should be registered");
667 add_edge(n_ptn, ptn);
668 }
669 break;
670 }
671 ELSE_FAIL("Op_Phi");
672 }
673 case Op_Proj: {
674 // we are only interested in the oop result projection from a call
675 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
676 n->in(0)->as_Call()->returns_pointer()) {
677 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
678 break;
679 }
680 ELSE_FAIL("Op_Proj");
681 }
682 case Op_Rethrow: // Exception object escapes
683 case Op_Return: {
684 if (n->req() > TypeFunc::Parms &&
685 _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
686 // Treat Return value as LocalVar with GlobalEscape escape state.
687 add_local_var_and_edge(n, PointsToNode::GlobalEscape,
688 n->in(TypeFunc::Parms), NULL);
689 break;
690 }
691 ELSE_FAIL("Op_Return");
692 }
693 case Op_StoreP:
694 case Op_StoreN:
695 case Op_StoreNKlass:
696 case Op_StorePConditional:
697 case Op_CompareAndSwapP:
698 case Op_CompareAndSwapN:
699 case Op_GetAndSetP:
700 case Op_GetAndSetN: {
701 Node* adr = n->in(MemNode::Address);
702 const Type *adr_type = _igvn->type(adr);
703 adr_type = adr_type->make_ptr();
704 #ifdef ASSERT
705 if (adr_type == NULL) {
706 n->dump(1);
707 assert(adr_type != NULL, "dead node should not be on list");
708 break;
709 }
710 #endif
711 if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
712 add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
713 }
714 if (adr_type->isa_oopptr() ||
715 (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
716 (adr_type == TypeRawPtr::NOTNULL &&
717 adr->in(AddPNode::Address)->is_Proj() &&
718 adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
719 // Point Address to Value
720 PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
721 assert(adr_ptn != NULL &&
722 adr_ptn->as_Field()->is_oop(), "node should be registered");
723 Node *val = n->in(MemNode::ValueIn);
724 PointsToNode* ptn = ptnode_adr(val->_idx);
725 assert(ptn != NULL, "node should be registered");
726 add_edge(adr_ptn, ptn);
727 break;
728 } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
729 // Stored value escapes in unsafe access.
730 Node *val = n->in(MemNode::ValueIn);
731 PointsToNode* ptn = ptnode_adr(val->_idx);
732 assert(ptn != NULL, "node should be registered");
733 set_escape_state(ptn, PointsToNode::GlobalEscape);
734 // Add edge to object for unsafe access with offset.
735 PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
736 assert(adr_ptn != NULL, "node should be registered");
737 if (adr_ptn->is_Field()) {
738 assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
739 add_edge(adr_ptn, ptn);
740 }
741 break;
742 }
743 ELSE_FAIL("Op_StoreP");
744 }
745 case Op_AryEq:
746 case Op_StrComp:
747 case Op_StrEquals:
748 case Op_StrIndexOf:
749 case Op_EncodeISOArray: {
750 // char[] arrays passed to string intrinsic do not escape but
751 // they are not scalar replaceable. Adjust escape state for them.
752 // Start from in(2) edge since in(1) is memory edge.
753 for (uint i = 2; i < n->req(); i++) {
754 Node* adr = n->in(i);
755 const Type* at = _igvn->type(adr);
756 if (!adr->is_top() && at->isa_ptr()) {
757 assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
758 at->isa_ptr() != NULL, "expecting a pointer");
759 if (adr->is_AddP()) {
760 adr = get_addp_base(adr);
761 }
762 PointsToNode* ptn = ptnode_adr(adr->_idx);
763 assert(ptn != NULL, "node should be registered");
764 add_edge(n_ptn, ptn);
765 }
766 }
767 break;
768 }
769 default: {
770 // This method should be called only for EA specific nodes which may
771 // miss some edges when they were created.
772 #ifdef ASSERT
773 n->dump(1);
774 #endif
775 guarantee(false, "unknown node");
776 }
777 }
778 return;
779 }
780
781 void ConnectionGraph::add_call_node(CallNode* call) {
782 assert(call->returns_pointer(), "only for call which returns pointer");
783 uint call_idx = call->_idx;
784 if (call->is_Allocate()) {
785 Node* k = call->in(AllocateNode::KlassNode);
786 const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
787 assert(kt != NULL, "TypeKlassPtr required.");
788 ciKlass* cik = kt->klass();
789 PointsToNode::EscapeState es = PointsToNode::NoEscape;
790 bool scalar_replaceable = true;
791 if (call->is_AllocateArray()) {
792 if (!cik->is_array_klass()) { // StressReflectiveCode
793 es = PointsToNode::GlobalEscape;
794 } else {
795 int length = call->in(AllocateNode::ALength)->find_int_con(-1);
796 if (length < 0 || length > EliminateAllocationArraySizeLimit) {
797 // Not scalar replaceable if the length is not constant or too big.
798 scalar_replaceable = false;
799 }
800 }
801 } else { // Allocate instance
802 if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
803 cik->is_subclass_of(_compile->env()->Reference_klass()) ||
804 !cik->is_instance_klass() || // StressReflectiveCode
805 cik->as_instance_klass()->has_finalizer()) {
806 es = PointsToNode::GlobalEscape;
807 }
808 }
809 add_java_object(call, es);
810 PointsToNode* ptn = ptnode_adr(call_idx);
811 if (!scalar_replaceable && ptn->scalar_replaceable()) {
812 ptn->set_scalar_replaceable(false);
813 }
814 } else if (call->is_CallStaticJava()) {
815 // Call nodes could be different types:
816 //
817 // 1. CallDynamicJavaNode (what happened during call is unknown):
818 //
819 // - mapped to GlobalEscape JavaObject node if oop is returned;
820 //
821 // - all oop arguments are escaping globally;
822 //
823 // 2. CallStaticJavaNode (execute bytecode analysis if possible):
824 //
825 // - the same as CallDynamicJavaNode if can't do bytecode analysis;
826 //
827 // - mapped to GlobalEscape JavaObject node if unknown oop is returned;
828 // - mapped to NoEscape JavaObject node if non-escaping object allocated
829 // during call is returned;
830 // - mapped to ArgEscape LocalVar node pointed to object arguments
831 // which are returned and does not escape during call;
832 //
833 // - oop arguments escaping status is defined by bytecode analysis;
834 //
835 // For a static call, we know exactly what method is being called.
836 // Use bytecode estimator to record whether the call's return value escapes.
837 ciMethod* meth = call->as_CallJava()->method();
838 if (meth == NULL) {
839 const char* name = call->as_CallStaticJava()->_name;
840 assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
841 // Returns a newly allocated unescaped object.
842 add_java_object(call, PointsToNode::NoEscape);
843 ptnode_adr(call_idx)->set_scalar_replaceable(false);
844 } else if (meth->is_boxing_method()) {
845 // Returns boxing object
846 PointsToNode::EscapeState es;
847 vmIntrinsics::ID intr = meth->intrinsic_id();
848 if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
849 // It does not escape if object is always allocated.
850 es = PointsToNode::NoEscape;
851 } else {
852 // It escapes globally if object could be loaded from cache.
853 es = PointsToNode::GlobalEscape;
854 }
855 add_java_object(call, es);
856 } else {
857 BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
858 call_analyzer->copy_dependencies(_compile->dependencies());
859 if (call_analyzer->is_return_allocated()) {
860 // Returns a newly allocated unescaped object, simply
861 // update dependency information.
862 // Mark it as NoEscape so that objects referenced by
863 // it's fields will be marked as NoEscape at least.
864 add_java_object(call, PointsToNode::NoEscape);
865 ptnode_adr(call_idx)->set_scalar_replaceable(false);
866 } else {
867 // Determine whether any arguments are returned.
868 const TypeTuple* d = call->tf()->domain();
869 bool ret_arg = false;
870 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
871 if (d->field_at(i)->isa_ptr() != NULL &&
872 call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
873 ret_arg = true;
874 break;
875 }
876 }
877 if (ret_arg) {
878 add_local_var(call, PointsToNode::ArgEscape);
879 } else {
880 // Returns unknown object.
881 map_ideal_node(call, phantom_obj);
882 }
883 }
884 }
885 } else {
886 // An other type of call, assume the worst case:
887 // returned value is unknown and globally escapes.
888 assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
889 map_ideal_node(call, phantom_obj);
890 }
891 }
892
893 void ConnectionGraph::process_call_arguments(CallNode *call) {
894 bool is_arraycopy = false;
895 switch (call->Opcode()) {
896 #ifdef ASSERT
897 case Op_Allocate:
898 case Op_AllocateArray:
899 case Op_Lock:
900 case Op_Unlock:
901 assert(false, "should be done already");
902 break;
903 #endif
904 case Op_ArrayCopy:
905 case Op_CallLeafNoFP:
906 // Most array copies are ArrayCopy nodes at this point but there
907 // are still a few direct calls to the copy subroutines (See
908 // PhaseStringOpts::copy_string())
909 is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
910 call->as_CallLeaf()->is_call_to_arraycopystub();
911 // fall through
912 case Op_CallLeaf: {
913 // Stub calls, objects do not escape but they are not scale replaceable.
914 // Adjust escape state for outgoing arguments.
915 const TypeTuple * d = call->tf()->domain();
916 bool src_has_oops = false;
917 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
918 const Type* at = d->field_at(i);
919 Node *arg = call->in(i);
920 if (arg == NULL) {
921 continue;
922 }
923 const Type *aat = _igvn->type(arg);
924 if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
925 continue;
926 if (arg->is_AddP()) {
927 //
928 // The inline_native_clone() case when the arraycopy stub is called
929 // after the allocation before Initialize and CheckCastPP nodes.
930 // Or normal arraycopy for object arrays case.
931 //
932 // Set AddP's base (Allocate) as not scalar replaceable since
933 // pointer to the base (with offset) is passed as argument.
934 //
935 arg = get_addp_base(arg);
936 }
937 PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
938 assert(arg_ptn != NULL, "should be registered");
939 PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
940 if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
941 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
942 aat->isa_ptr() != NULL, "expecting an Ptr");
943 bool arg_has_oops = aat->isa_oopptr() &&
944 (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
945 (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
946 if (i == TypeFunc::Parms) {
947 src_has_oops = arg_has_oops;
948 }
949 //
950 // src or dst could be j.l.Object when other is basic type array:
951 //
952 // arraycopy(char[],0,Object*,0,size);
953 // arraycopy(Object*,0,char[],0,size);
954 //
955 // Don't add edges in such cases.
956 //
957 bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
958 arg_has_oops && (i > TypeFunc::Parms);
959 #ifdef ASSERT
960 if (!(is_arraycopy ||
961 (call->as_CallLeaf()->_name != NULL &&
962 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre") == 0 ||
963 strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
964 strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
965 strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
966 strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
967 strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
968 strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
969 strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
970 strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
971 strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
972 strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
973 strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
974 strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
975 strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
976 strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
977 strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
978 strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0)
979 ))) {
980 call->dump();
981 fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
982 }
983 #endif
984 // Always process arraycopy's destination object since
985 // we need to add all possible edges to references in
986 // source object.
987 if (arg_esc >= PointsToNode::ArgEscape &&
988 !arg_is_arraycopy_dest) {
989 continue;
990 }
991 PointsToNode::EscapeState es = PointsToNode::ArgEscape;
992 if (call->is_ArrayCopy()) {
993 ArrayCopyNode* ac = call->as_ArrayCopy();
994 if (ac->is_clonebasic() ||
995 ac->is_arraycopy_validated() ||
996 ac->is_copyof_validated() ||
997 ac->is_copyofrange_validated()) {
998 es = PointsToNode::NoEscape;
999 }
1000 }
1001 set_escape_state(arg_ptn, es);
1002 if (arg_is_arraycopy_dest) {
1003 Node* src = call->in(TypeFunc::Parms);
1004 if (src->is_AddP()) {
1005 src = get_addp_base(src);
1006 }
1007 PointsToNode* src_ptn = ptnode_adr(src->_idx);
1008 assert(src_ptn != NULL, "should be registered");
1009 if (arg_ptn != src_ptn) {
1010 // Special arraycopy edge:
1011 // A destination object's field can't have the source object
1012 // as base since objects escape states are not related.
1013 // Only escape state of destination object's fields affects
1014 // escape state of fields in source object.
1015 add_arraycopy(call, es, src_ptn, arg_ptn);
1016 }
1017 }
1018 }
1019 }
1020 break;
1021 }
1022 case Op_CallStaticJava: {
1023 // For a static call, we know exactly what method is being called.
1024 // Use bytecode estimator to record the call's escape affects
1025 #ifdef ASSERT
1026 const char* name = call->as_CallStaticJava()->_name;
1027 assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1028 #endif
1029 ciMethod* meth = call->as_CallJava()->method();
1030 if ((meth != NULL) && meth->is_boxing_method()) {
1031 break; // Boxing methods do not modify any oops.
1032 }
1033 BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1034 // fall-through if not a Java method or no analyzer information
1035 if (call_analyzer != NULL) {
1036 PointsToNode* call_ptn = ptnode_adr(call->_idx);
1037 const TypeTuple* d = call->tf()->domain();
1038 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1039 const Type* at = d->field_at(i);
1040 int k = i - TypeFunc::Parms;
1041 Node* arg = call->in(i);
1042 PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1043 if (at->isa_ptr() != NULL &&
1044 call_analyzer->is_arg_returned(k)) {
1045 // The call returns arguments.
1046 if (call_ptn != NULL) { // Is call's result used?
1047 assert(call_ptn->is_LocalVar(), "node should be registered");
1048 assert(arg_ptn != NULL, "node should be registered");
1049 add_edge(call_ptn, arg_ptn);
1050 }
1051 }
1052 if (at->isa_oopptr() != NULL &&
1053 arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1054 if (!call_analyzer->is_arg_stack(k)) {
1055 // The argument global escapes
1056 set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1057 } else {
1058 set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1059 if (!call_analyzer->is_arg_local(k)) {
1060 // The argument itself doesn't escape, but any fields might
1061 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1062 }
1063 }
1064 }
1065 }
1066 if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1067 // The call returns arguments.
1068 assert(call_ptn->edge_count() > 0, "sanity");
1069 if (!call_analyzer->is_return_local()) {
1070 // Returns also unknown object.
1071 add_edge(call_ptn, phantom_obj);
1072 }
1073 }
1074 break;
1075 }
1076 }
1077 default: {
1078 // Fall-through here if not a Java method or no analyzer information
1079 // or some other type of call, assume the worst case: all arguments
1080 // globally escape.
1081 const TypeTuple* d = call->tf()->domain();
1082 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1083 const Type* at = d->field_at(i);
1084 if (at->isa_oopptr() != NULL) {
1085 Node* arg = call->in(i);
1086 if (arg->is_AddP()) {
1087 arg = get_addp_base(arg);
1088 }
1089 assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1090 set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1091 }
1092 }
1093 }
1094 }
1095 }
1096
1097
1098 // Finish Graph construction.
1099 bool ConnectionGraph::complete_connection_graph(
1100 GrowableArray<PointsToNode*>& ptnodes_worklist,
1101 GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1102 GrowableArray<JavaObjectNode*>& java_objects_worklist,
1103 GrowableArray<FieldNode*>& oop_fields_worklist) {
1104 // Normally only 1-3 passes needed to build Connection Graph depending
1105 // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1106 // Set limit to 20 to catch situation when something did go wrong and
1107 // bailout Escape Analysis.
1108 // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1109 #define CG_BUILD_ITER_LIMIT 20
1110
1111 // Propagate GlobalEscape and ArgEscape escape states and check that
1112 // we still have non-escaping objects. The method pushs on _worklist
1113 // Field nodes which reference phantom_object.
1114 if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1115 return false; // Nothing to do.
1116 }
1117 // Now propagate references to all JavaObject nodes.
1118 int java_objects_length = java_objects_worklist.length();
1119 elapsedTimer time;
1120 bool timeout = false;
1121 int new_edges = 1;
1122 int iterations = 0;
1123 do {
1124 while ((new_edges > 0) &&
1125 (iterations++ < CG_BUILD_ITER_LIMIT)) {
1126 double start_time = time.seconds();
1127 time.start();
1128 new_edges = 0;
1129 // Propagate references to phantom_object for nodes pushed on _worklist
1130 // by find_non_escaped_objects() and find_field_value().
1131 new_edges += add_java_object_edges(phantom_obj, false);
1132 for (int next = 0; next < java_objects_length; ++next) {
1133 JavaObjectNode* ptn = java_objects_worklist.at(next);
1134 new_edges += add_java_object_edges(ptn, true);
1135
1136 #define SAMPLE_SIZE 4
1137 if ((next % SAMPLE_SIZE) == 0) {
1138 // Each 4 iterations calculate how much time it will take
1139 // to complete graph construction.
1140 time.stop();
1141 // Poll for requests from shutdown mechanism to quiesce compiler
1142 // because Connection graph construction may take long time.
1143 CompileBroker::maybe_block();
1144 double stop_time = time.seconds();
1145 double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1146 double time_until_end = time_per_iter * (double)(java_objects_length - next);
1147 if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1148 timeout = true;
1149 break; // Timeout
1150 }
1151 start_time = stop_time;
1152 time.start();
1153 }
1154 #undef SAMPLE_SIZE
1155
1156 }
1157 if (timeout) break;
1158 if (new_edges > 0) {
1159 // Update escape states on each iteration if graph was updated.
1160 if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1161 return false; // Nothing to do.
1162 }
1163 }
1164 time.stop();
1165 if (time.seconds() >= EscapeAnalysisTimeout) {
1166 timeout = true;
1167 break;
1168 }
1169 }
1170 if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1171 time.start();
1172 // Find fields which have unknown value.
1173 int fields_length = oop_fields_worklist.length();
1174 for (int next = 0; next < fields_length; next++) {
1175 FieldNode* field = oop_fields_worklist.at(next);
1176 if (field->edge_count() == 0) {
1177 new_edges += find_field_value(field);
1178 // This code may added new edges to phantom_object.
1179 // Need an other cycle to propagate references to phantom_object.
1180 }
1181 }
1182 time.stop();
1183 if (time.seconds() >= EscapeAnalysisTimeout) {
1184 timeout = true;
1185 break;
1186 }
1187 } else {
1188 new_edges = 0; // Bailout
1189 }
1190 } while (new_edges > 0);
1191
1192 // Bailout if passed limits.
1193 if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1194 Compile* C = _compile;
1195 if (C->log() != NULL) {
1196 C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1197 C->log()->text("%s", timeout ? "time" : "iterations");
1198 C->log()->end_elem(" limit'");
1199 }
1200 assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1201 time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
1202 // Possible infinite build_connection_graph loop,
1203 // bailout (no changes to ideal graph were made).
1204 return false;
1205 }
1206 #ifdef ASSERT
1207 if (Verbose && PrintEscapeAnalysis) {
1208 tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1209 iterations, nodes_size(), ptnodes_worklist.length());
1210 }
1211 #endif
1212
1213 #undef CG_BUILD_ITER_LIMIT
1214
1215 // Find fields initialized by NULL for non-escaping Allocations.
1216 int non_escaped_length = non_escaped_worklist.length();
1217 for (int next = 0; next < non_escaped_length; next++) {
1218 JavaObjectNode* ptn = non_escaped_worklist.at(next);
1219 PointsToNode::EscapeState es = ptn->escape_state();
1220 assert(es <= PointsToNode::ArgEscape, "sanity");
1221 if (es == PointsToNode::NoEscape) {
1222 if (find_init_values(ptn, null_obj, _igvn) > 0) {
1223 // Adding references to NULL object does not change escape states
1224 // since it does not escape. Also no fields are added to NULL object.
1225 add_java_object_edges(null_obj, false);
1226 }
1227 }
1228 Node* n = ptn->ideal_node();
1229 if (n->is_Allocate()) {
1230 // The object allocated by this Allocate node will never be
1231 // seen by an other thread. Mark it so that when it is
1232 // expanded no MemBarStoreStore is added.
1233 InitializeNode* ini = n->as_Allocate()->initialization();
1234 if (ini != NULL)
1235 ini->set_does_not_escape();
1236 }
1237 }
1238 return true; // Finished graph construction.
1239 }
1240
1241 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1242 // and check that we still have non-escaping java objects.
1243 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1244 GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1245 GrowableArray<PointsToNode*> escape_worklist;
1246 // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1247 int ptnodes_length = ptnodes_worklist.length();
1248 for (int next = 0; next < ptnodes_length; ++next) {
1249 PointsToNode* ptn = ptnodes_worklist.at(next);
1250 if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1251 ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1252 escape_worklist.push(ptn);
1253 }
1254 }
1255 // Set escape states to referenced nodes (edges list).
1256 while (escape_worklist.length() > 0) {
1257 PointsToNode* ptn = escape_worklist.pop();
1258 PointsToNode::EscapeState es = ptn->escape_state();
1259 PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1260 if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1261 es >= PointsToNode::ArgEscape) {
1262 // GlobalEscape or ArgEscape state of field means it has unknown value.
1263 if (add_edge(ptn, phantom_obj)) {
1264 // New edge was added
1265 add_field_uses_to_worklist(ptn->as_Field());
1266 }
1267 }
1268 for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1269 PointsToNode* e = i.get();
1270 if (e->is_Arraycopy()) {
1271 assert(ptn->arraycopy_dst(), "sanity");
1272 // Propagate only fields escape state through arraycopy edge.
1273 if (e->fields_escape_state() < field_es) {
1274 set_fields_escape_state(e, field_es);
1275 escape_worklist.push(e);
1276 }
1277 } else if (es >= field_es) {
1278 // fields_escape_state is also set to 'es' if it is less than 'es'.
1279 if (e->escape_state() < es) {
1280 set_escape_state(e, es);
1281 escape_worklist.push(e);
1282 }
1283 } else {
1284 // Propagate field escape state.
1285 bool es_changed = false;
1286 if (e->fields_escape_state() < field_es) {
1287 set_fields_escape_state(e, field_es);
1288 es_changed = true;
1289 }
1290 if ((e->escape_state() < field_es) &&
1291 e->is_Field() && ptn->is_JavaObject() &&
1292 e->as_Field()->is_oop()) {
1293 // Change escape state of referenced fields.
1294 set_escape_state(e, field_es);
1295 es_changed = true;
1296 } else if (e->escape_state() < es) {
1297 set_escape_state(e, es);
1298 es_changed = true;
1299 }
1300 if (es_changed) {
1301 escape_worklist.push(e);
1302 }
1303 }
1304 }
1305 }
1306 // Remove escaped objects from non_escaped list.
1307 for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1308 JavaObjectNode* ptn = non_escaped_worklist.at(next);
1309 if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1310 non_escaped_worklist.delete_at(next);
1311 }
1312 if (ptn->escape_state() == PointsToNode::NoEscape) {
1313 // Find fields in non-escaped allocations which have unknown value.
1314 find_init_values(ptn, phantom_obj, NULL);
1315 }
1316 }
1317 return (non_escaped_worklist.length() > 0);
1318 }
1319
1320 // Add all references to JavaObject node by walking over all uses.
1321 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1322 int new_edges = 0;
1323 if (populate_worklist) {
1324 // Populate _worklist by uses of jobj's uses.
1325 for (UseIterator i(jobj); i.has_next(); i.next()) {
1326 PointsToNode* use = i.get();
1327 if (use->is_Arraycopy())
1328 continue;
1329 add_uses_to_worklist(use);
1330 if (use->is_Field() && use->as_Field()->is_oop()) {
1331 // Put on worklist all field's uses (loads) and
1332 // related field nodes (same base and offset).
1333 add_field_uses_to_worklist(use->as_Field());
1334 }
1335 }
1336 }
1337 for (int l = 0; l < _worklist.length(); l++) {
1338 PointsToNode* use = _worklist.at(l);
1339 if (PointsToNode::is_base_use(use)) {
1340 // Add reference from jobj to field and from field to jobj (field's base).
1341 use = PointsToNode::get_use_node(use)->as_Field();
1342 if (add_base(use->as_Field(), jobj)) {
1343 new_edges++;
1344 }
1345 continue;
1346 }
1347 assert(!use->is_JavaObject(), "sanity");
1348 if (use->is_Arraycopy()) {
1349 if (jobj == null_obj) // NULL object does not have field edges
1350 continue;
1351 // Added edge from Arraycopy node to arraycopy's source java object
1352 if (add_edge(use, jobj)) {
1353 jobj->set_arraycopy_src();
1354 new_edges++;
1355 }
1356 // and stop here.
1357 continue;
1358 }
1359 if (!add_edge(use, jobj))
1360 continue; // No new edge added, there was such edge already.
1361 new_edges++;
1362 if (use->is_LocalVar()) {
1363 add_uses_to_worklist(use);
1364 if (use->arraycopy_dst()) {
1365 for (EdgeIterator i(use); i.has_next(); i.next()) {
1366 PointsToNode* e = i.get();
1367 if (e->is_Arraycopy()) {
1368 if (jobj == null_obj) // NULL object does not have field edges
1369 continue;
1370 // Add edge from arraycopy's destination java object to Arraycopy node.
1371 if (add_edge(jobj, e)) {
1372 new_edges++;
1373 jobj->set_arraycopy_dst();
1374 }
1375 }
1376 }
1377 }
1378 } else {
1379 // Added new edge to stored in field values.
1380 // Put on worklist all field's uses (loads) and
1381 // related field nodes (same base and offset).
1382 add_field_uses_to_worklist(use->as_Field());
1383 }
1384 }
1385 _worklist.clear();
1386 _in_worklist.Reset();
1387 return new_edges;
1388 }
1389
1390 // Put on worklist all related field nodes.
1391 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1392 assert(field->is_oop(), "sanity");
1393 int offset = field->offset();
1394 add_uses_to_worklist(field);
1395 // Loop over all bases of this field and push on worklist Field nodes
1396 // with the same offset and base (since they may reference the same field).
1397 for (BaseIterator i(field); i.has_next(); i.next()) {
1398 PointsToNode* base = i.get();
1399 add_fields_to_worklist(field, base);
1400 // Check if the base was source object of arraycopy and go over arraycopy's
1401 // destination objects since values stored to a field of source object are
1402 // accessable by uses (loads) of fields of destination objects.
1403 if (base->arraycopy_src()) {
1404 for (UseIterator j(base); j.has_next(); j.next()) {
1405 PointsToNode* arycp = j.get();
1406 if (arycp->is_Arraycopy()) {
1407 for (UseIterator k(arycp); k.has_next(); k.next()) {
1408 PointsToNode* abase = k.get();
1409 if (abase->arraycopy_dst() && abase != base) {
1410 // Look for the same arraycopy reference.
1411 add_fields_to_worklist(field, abase);
1412 }
1413 }
1414 }
1415 }
1416 }
1417 }
1418 }
1419
1420 // Put on worklist all related field nodes.
1421 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1422 int offset = field->offset();
1423 if (base->is_LocalVar()) {
1424 for (UseIterator j(base); j.has_next(); j.next()) {
1425 PointsToNode* f = j.get();
1426 if (PointsToNode::is_base_use(f)) { // Field
1427 f = PointsToNode::get_use_node(f);
1428 if (f == field || !f->as_Field()->is_oop())
1429 continue;
1430 int offs = f->as_Field()->offset();
1431 if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1432 add_to_worklist(f);
1433 }
1434 }
1435 }
1436 } else {
1437 assert(base->is_JavaObject(), "sanity");
1438 if (// Skip phantom_object since it is only used to indicate that
1439 // this field's content globally escapes.
1440 (base != phantom_obj) &&
1441 // NULL object node does not have fields.
1442 (base != null_obj)) {
1443 for (EdgeIterator i(base); i.has_next(); i.next()) {
1444 PointsToNode* f = i.get();
1445 // Skip arraycopy edge since store to destination object field
1446 // does not update value in source object field.
1447 if (f->is_Arraycopy()) {
1448 assert(base->arraycopy_dst(), "sanity");
1449 continue;
1450 }
1451 if (f == field || !f->as_Field()->is_oop())
1452 continue;
1453 int offs = f->as_Field()->offset();
1454 if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1455 add_to_worklist(f);
1456 }
1457 }
1458 }
1459 }
1460 }
1461
1462 // Find fields which have unknown value.
1463 int ConnectionGraph::find_field_value(FieldNode* field) {
1464 // Escaped fields should have init value already.
1465 assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1466 int new_edges = 0;
1467 for (BaseIterator i(field); i.has_next(); i.next()) {
1468 PointsToNode* base = i.get();
1469 if (base->is_JavaObject()) {
1470 // Skip Allocate's fields which will be processed later.
1471 if (base->ideal_node()->is_Allocate())
1472 return 0;
1473 assert(base == null_obj, "only NULL ptr base expected here");
1474 }
1475 }
1476 if (add_edge(field, phantom_obj)) {
1477 // New edge was added
1478 new_edges++;
1479 add_field_uses_to_worklist(field);
1480 }
1481 return new_edges;
1482 }
1483
1484 // Find fields initializing values for allocations.
1485 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1486 assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1487 int new_edges = 0;
1488 Node* alloc = pta->ideal_node();
1489 if (init_val == phantom_obj) {
1490 // Do nothing for Allocate nodes since its fields values are
1491 // "known" unless they are initialized by arraycopy/clone.
1492 if (alloc->is_Allocate() && !pta->arraycopy_dst())
1493 return 0;
1494 assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
1495 #ifdef ASSERT
1496 if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == NULL) {
1497 const char* name = alloc->as_CallStaticJava()->_name;
1498 assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1499 }
1500 #endif
1501 // Non-escaped allocation returned from Java or runtime call have
1502 // unknown values in fields.
1503 for (EdgeIterator i(pta); i.has_next(); i.next()) {
1504 PointsToNode* field = i.get();
1505 if (field->is_Field() && field->as_Field()->is_oop()) {
1506 if (add_edge(field, phantom_obj)) {
1507 // New edge was added
1508 new_edges++;
1509 add_field_uses_to_worklist(field->as_Field());
1510 }
1511 }
1512 }
1513 return new_edges;
1514 }
1515 assert(init_val == null_obj, "sanity");
1516 // Do nothing for Call nodes since its fields values are unknown.
1517 if (!alloc->is_Allocate())
1518 return 0;
1519
1520 InitializeNode* ini = alloc->as_Allocate()->initialization();
1521 bool visited_bottom_offset = false;
1522 GrowableArray<int> offsets_worklist;
1523
1524 // Check if an oop field's initializing value is recorded and add
1525 // a corresponding NULL if field's value if it is not recorded.
1526 // Connection Graph does not record a default initialization by NULL
1527 // captured by Initialize node.
1528 //
1529 for (EdgeIterator i(pta); i.has_next(); i.next()) {
1530 PointsToNode* field = i.get(); // Field (AddP)
1531 if (!field->is_Field() || !field->as_Field()->is_oop())
1532 continue; // Not oop field
1533 int offset = field->as_Field()->offset();
1534 if (offset == Type::OffsetBot) {
1535 if (!visited_bottom_offset) {
1536 // OffsetBot is used to reference array's element,
1537 // always add reference to NULL to all Field nodes since we don't
1538 // known which element is referenced.
1539 if (add_edge(field, null_obj)) {
1540 // New edge was added
1541 new_edges++;
1542 add_field_uses_to_worklist(field->as_Field());
1543 visited_bottom_offset = true;
1544 }
1545 }
1546 } else {
1547 // Check only oop fields.
1548 const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1549 if (adr_type->isa_rawptr()) {
1550 #ifdef ASSERT
1551 // Raw pointers are used for initializing stores so skip it
1552 // since it should be recorded already
1553 Node* base = get_addp_base(field->ideal_node());
1554 assert(adr_type->isa_rawptr() && base->is_Proj() &&
1555 (base->in(0) == alloc),"unexpected pointer type");
1556 #endif
1557 continue;
1558 }
1559 if (!offsets_worklist.contains(offset)) {
1560 offsets_worklist.append(offset);
1561 Node* value = NULL;
1562 if (ini != NULL) {
1563 // StoreP::memory_type() == T_ADDRESS
1564 BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1565 Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1566 // Make sure initializing store has the same type as this AddP.
1567 // This AddP may reference non existing field because it is on a
1568 // dead branch of bimorphic call which is not eliminated yet.
1569 if (store != NULL && store->is_Store() &&
1570 store->as_Store()->memory_type() == ft) {
1571 value = store->in(MemNode::ValueIn);
1572 #ifdef ASSERT
1573 if (VerifyConnectionGraph) {
1574 // Verify that AddP already points to all objects the value points to.
1575 PointsToNode* val = ptnode_adr(value->_idx);
1576 assert((val != NULL), "should be processed already");
1577 PointsToNode* missed_obj = NULL;
1578 if (val->is_JavaObject()) {
1579 if (!field->points_to(val->as_JavaObject())) {
1580 missed_obj = val;
1581 }
1582 } else {
1583 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1584 tty->print_cr("----------init store has invalid value -----");
1585 store->dump();
1586 val->dump();
1587 assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1588 }
1589 for (EdgeIterator j(val); j.has_next(); j.next()) {
1590 PointsToNode* obj = j.get();
1591 if (obj->is_JavaObject()) {
1592 if (!field->points_to(obj->as_JavaObject())) {
1593 missed_obj = obj;
1594 break;
1595 }
1596 }
1597 }
1598 }
1599 if (missed_obj != NULL) {
1600 tty->print_cr("----------field---------------------------------");
1601 field->dump();
1602 tty->print_cr("----------missed referernce to object-----------");
1603 missed_obj->dump();
1604 tty->print_cr("----------object referernced by init store -----");
1605 store->dump();
1606 val->dump();
1607 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1608 }
1609 }
1610 #endif
1611 } else {
1612 // There could be initializing stores which follow allocation.
1613 // For example, a volatile field store is not collected
1614 // by Initialize node.
1615 //
1616 // Need to check for dependent loads to separate such stores from
1617 // stores which follow loads. For now, add initial value NULL so
1618 // that compare pointers optimization works correctly.
1619 }
1620 }
1621 if (value == NULL) {
1622 // A field's initializing value was not recorded. Add NULL.
1623 if (add_edge(field, null_obj)) {
1624 // New edge was added
1625 new_edges++;
1626 add_field_uses_to_worklist(field->as_Field());
1627 }
1628 }
1629 }
1630 }
1631 }
1632 return new_edges;
1633 }
1634
1635 // Adjust scalar_replaceable state after Connection Graph is built.
1636 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1637 // Search for non-escaping objects which are not scalar replaceable
1638 // and mark them to propagate the state to referenced objects.
1639
1640 // 1. An object is not scalar replaceable if the field into which it is
1641 // stored has unknown offset (stored into unknown element of an array).
1642 //
1643 for (UseIterator i(jobj); i.has_next(); i.next()) {
1644 PointsToNode* use = i.get();
1645 if (use->is_Arraycopy()) {
1646 continue;
1647 }
1648 if (use->is_Field()) {
1649 FieldNode* field = use->as_Field();
1650 assert(field->is_oop() && field->scalar_replaceable(), "sanity");
1651 if (field->offset() == Type::OffsetBot) {
1652 jobj->set_scalar_replaceable(false);
1653 return;
1654 }
1655 // 2. An object is not scalar replaceable if the field into which it is
1656 // stored has multiple bases one of which is null.
1657 if (field->base_count() > 1) {
1658 for (BaseIterator i(field); i.has_next(); i.next()) {
1659 PointsToNode* base = i.get();
1660 if (base == null_obj) {
1661 jobj->set_scalar_replaceable(false);
1662 return;
1663 }
1664 }
1665 }
1666 }
1667 assert(use->is_Field() || use->is_LocalVar(), "sanity");
1668 // 3. An object is not scalar replaceable if it is merged with other objects.
1669 for (EdgeIterator j(use); j.has_next(); j.next()) {
1670 PointsToNode* ptn = j.get();
1671 if (ptn->is_JavaObject() && ptn != jobj) {
1672 // Mark all objects.
1673 jobj->set_scalar_replaceable(false);
1674 ptn->set_scalar_replaceable(false);
1675 }
1676 }
1677 if (!jobj->scalar_replaceable()) {
1678 return;
1679 }
1680 }
1681
1682 for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1683 if (j.get()->is_Arraycopy()) {
1684 continue;
1685 }
1686
1687 // Non-escaping object node should point only to field nodes.
1688 FieldNode* field = j.get()->as_Field();
1689 int offset = field->as_Field()->offset();
1690
1691 // 4. An object is not scalar replaceable if it has a field with unknown
1692 // offset (array's element is accessed in loop).
1693 if (offset == Type::OffsetBot) {
1694 jobj->set_scalar_replaceable(false);
1695 return;
1696 }
1697 // 5. Currently an object is not scalar replaceable if a LoadStore node
1698 // access its field since the field value is unknown after it.
1699 //
1700 Node* n = field->ideal_node();
1701 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1702 if (n->fast_out(i)->is_LoadStore()) {
1703 jobj->set_scalar_replaceable(false);
1704 return;
1705 }
1706 }
1707
1708 // 6. Or the address may point to more then one object. This may produce
1709 // the false positive result (set not scalar replaceable)
1710 // since the flow-insensitive escape analysis can't separate
1711 // the case when stores overwrite the field's value from the case
1712 // when stores happened on different control branches.
1713 //
1714 // Note: it will disable scalar replacement in some cases:
1715 //
1716 // Point p[] = new Point[1];
1717 // p[0] = new Point(); // Will be not scalar replaced
1718 //
1719 // but it will save us from incorrect optimizations in next cases:
1720 //
1721 // Point p[] = new Point[1];
1722 // if ( x ) p[0] = new Point(); // Will be not scalar replaced
1723 //
1724 if (field->base_count() > 1) {
1725 for (BaseIterator i(field); i.has_next(); i.next()) {
1726 PointsToNode* base = i.get();
1727 // Don't take into account LocalVar nodes which
1728 // may point to only one object which should be also
1729 // this field's base by now.
1730 if (base->is_JavaObject() && base != jobj) {
1731 // Mark all bases.
1732 jobj->set_scalar_replaceable(false);
1733 base->set_scalar_replaceable(false);
1734 }
1735 }
1736 }
1737 }
1738 }
1739
1740 #ifdef ASSERT
1741 void ConnectionGraph::verify_connection_graph(
1742 GrowableArray<PointsToNode*>& ptnodes_worklist,
1743 GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1744 GrowableArray<JavaObjectNode*>& java_objects_worklist,
1745 GrowableArray<Node*>& addp_worklist) {
1746 // Verify that graph is complete - no new edges could be added.
1747 int java_objects_length = java_objects_worklist.length();
1748 int non_escaped_length = non_escaped_worklist.length();
1749 int new_edges = 0;
1750 for (int next = 0; next < java_objects_length; ++next) {
1751 JavaObjectNode* ptn = java_objects_worklist.at(next);
1752 new_edges += add_java_object_edges(ptn, true);
1753 }
1754 assert(new_edges == 0, "graph was not complete");
1755 // Verify that escape state is final.
1756 int length = non_escaped_worklist.length();
1757 find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1758 assert((non_escaped_length == non_escaped_worklist.length()) &&
1759 (non_escaped_length == length) &&
1760 (_worklist.length() == 0), "escape state was not final");
1761
1762 // Verify fields information.
1763 int addp_length = addp_worklist.length();
1764 for (int next = 0; next < addp_length; ++next ) {
1765 Node* n = addp_worklist.at(next);
1766 FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1767 if (field->is_oop()) {
1768 // Verify that field has all bases
1769 Node* base = get_addp_base(n);
1770 PointsToNode* ptn = ptnode_adr(base->_idx);
1771 if (ptn->is_JavaObject()) {
1772 assert(field->has_base(ptn->as_JavaObject()), "sanity");
1773 } else {
1774 assert(ptn->is_LocalVar(), "sanity");
1775 for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1776 PointsToNode* e = i.get();
1777 if (e->is_JavaObject()) {
1778 assert(field->has_base(e->as_JavaObject()), "sanity");
1779 }
1780 }
1781 }
1782 // Verify that all fields have initializing values.
1783 if (field->edge_count() == 0) {
1784 tty->print_cr("----------field does not have references----------");
1785 field->dump();
1786 for (BaseIterator i(field); i.has_next(); i.next()) {
1787 PointsToNode* base = i.get();
1788 tty->print_cr("----------field has next base---------------------");
1789 base->dump();
1790 if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1791 tty->print_cr("----------base has fields-------------------------");
1792 for (EdgeIterator j(base); j.has_next(); j.next()) {
1793 j.get()->dump();
1794 }
1795 tty->print_cr("----------base has references---------------------");
1796 for (UseIterator j(base); j.has_next(); j.next()) {
1797 j.get()->dump();
1798 }
1799 }
1800 }
1801 for (UseIterator i(field); i.has_next(); i.next()) {
1802 i.get()->dump();
1803 }
1804 assert(field->edge_count() > 0, "sanity");
1805 }
1806 }
1807 }
1808 }
1809 #endif
1810
1811 // Optimize ideal graph.
1812 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1813 GrowableArray<Node*>& storestore_worklist) {
1814 Compile* C = _compile;
1815 PhaseIterGVN* igvn = _igvn;
1816 if (EliminateLocks) {
1817 // Mark locks before changing ideal graph.
1818 int cnt = C->macro_count();
1819 for( int i=0; i < cnt; i++ ) {
1820 Node *n = C->macro_node(i);
1821 if (n->is_AbstractLock()) { // Lock and Unlock nodes
1822 AbstractLockNode* alock = n->as_AbstractLock();
1823 if (!alock->is_non_esc_obj()) {
1824 if (not_global_escape(alock->obj_node())) {
1825 assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1826 // The lock could be marked eliminated by lock coarsening
1827 // code during first IGVN before EA. Replace coarsened flag
1828 // to eliminate all associated locks/unlocks.
1829 #ifdef ASSERT
1830 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
1831 #endif
1832 alock->set_non_esc_obj();
1833 }
1834 }
1835 }
1836 }
1837 }
1838
1839 if (OptimizePtrCompare) {
1840 // Add ConI(#CC_GT) and ConI(#CC_EQ).
1841 _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1842 _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1843 // Optimize objects compare.
1844 while (ptr_cmp_worklist.length() != 0) {
1845 Node *n = ptr_cmp_worklist.pop();
1846 Node *res = optimize_ptr_compare(n);
1847 if (res != NULL) {
1848 #ifndef PRODUCT
1849 if (PrintOptimizePtrCompare) {
1850 tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1851 if (Verbose) {
1852 n->dump(1);
1853 }
1854 }
1855 #endif
1856 igvn->replace_node(n, res);
1857 }
1858 }
1859 // cleanup
1860 if (_pcmp_neq->outcnt() == 0)
1861 igvn->hash_delete(_pcmp_neq);
1862 if (_pcmp_eq->outcnt() == 0)
1863 igvn->hash_delete(_pcmp_eq);
1864 }
1865
1866 // For MemBarStoreStore nodes added in library_call.cpp, check
1867 // escape status of associated AllocateNode and optimize out
1868 // MemBarStoreStore node if the allocated object never escapes.
1869 while (storestore_worklist.length() != 0) {
1870 Node *n = storestore_worklist.pop();
1871 MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1872 Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1873 assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1874 if (not_global_escape(alloc)) {
1875 MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1876 mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1877 mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1878 igvn->register_new_node_with_optimizer(mb);
1879 igvn->replace_node(storestore, mb);
1880 }
1881 }
1882 }
1883
1884 // Optimize objects compare.
1885 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1886 assert(OptimizePtrCompare, "sanity");
1887 PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1888 PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1889 JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1890 JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1891 assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1892 assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1893
1894 // Check simple cases first.
1895 if (jobj1 != NULL) {
1896 if (jobj1->escape_state() == PointsToNode::NoEscape) {
1897 if (jobj1 == jobj2) {
1898 // Comparing the same not escaping object.
1899 return _pcmp_eq;
1900 }
1901 Node* obj = jobj1->ideal_node();
1902 // Comparing not escaping allocation.
1903 if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1904 !ptn2->points_to(jobj1)) {
1905 return _pcmp_neq; // This includes nullness check.
1906 }
1907 }
1908 }
1909 if (jobj2 != NULL) {
1910 if (jobj2->escape_state() == PointsToNode::NoEscape) {
1911 Node* obj = jobj2->ideal_node();
1912 // Comparing not escaping allocation.
1913 if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1914 !ptn1->points_to(jobj2)) {
1915 return _pcmp_neq; // This includes nullness check.
1916 }
1917 }
1918 }
1919 if (jobj1 != NULL && jobj1 != phantom_obj &&
1920 jobj2 != NULL && jobj2 != phantom_obj &&
1921 jobj1->ideal_node()->is_Con() &&
1922 jobj2->ideal_node()->is_Con()) {
1923 // Klass or String constants compare. Need to be careful with
1924 // compressed pointers - compare types of ConN and ConP instead of nodes.
1925 const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1926 const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1927 if (t1->make_ptr() == t2->make_ptr()) {
1928 return _pcmp_eq;
1929 } else {
1930 return _pcmp_neq;
1931 }
1932 }
1933 if (ptn1->meet(ptn2)) {
1934 return NULL; // Sets are not disjoint
1935 }
1936
1937 // Sets are disjoint.
1938 bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1939 bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1940 bool set1_has_null_ptr = ptn1->points_to(null_obj);
1941 bool set2_has_null_ptr = ptn2->points_to(null_obj);
1942 if (set1_has_unknown_ptr && set2_has_null_ptr ||
1943 set2_has_unknown_ptr && set1_has_null_ptr) {
1944 // Check nullness of unknown object.
1945 return NULL;
1946 }
1947
1948 // Disjointness by itself is not sufficient since
1949 // alias analysis is not complete for escaped objects.
1950 // Disjoint sets are definitely unrelated only when
1951 // at least one set has only not escaping allocations.
1952 if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1953 if (ptn1->non_escaping_allocation()) {
1954 return _pcmp_neq;
1955 }
1956 }
1957 if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
1958 if (ptn2->non_escaping_allocation()) {
1959 return _pcmp_neq;
1960 }
1961 }
1962 return NULL;
1963 }
1964
1965 // Connection Graph constuction functions.
1966
1967 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
1968 PointsToNode* ptadr = _nodes.at(n->_idx);
1969 if (ptadr != NULL) {
1970 assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
1971 return;
1972 }
1973 Compile* C = _compile;
1974 ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
1975 _nodes.at_put(n->_idx, ptadr);
1976 }
1977
1978 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
1979 PointsToNode* ptadr = _nodes.at(n->_idx);
1980 if (ptadr != NULL) {
1981 assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
1982 return;
1983 }
1984 Compile* C = _compile;
1985 ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
1986 _nodes.at_put(n->_idx, ptadr);
1987 }
1988
1989 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
1990 PointsToNode* ptadr = _nodes.at(n->_idx);
1991 if (ptadr != NULL) {
1992 assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
1993 return;
1994 }
1995 bool unsafe = false;
1996 bool is_oop = is_oop_field(n, offset, &unsafe);
1997 if (unsafe) {
1998 es = PointsToNode::GlobalEscape;
1999 }
2000 Compile* C = _compile;
2001 FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
2002 _nodes.at_put(n->_idx, field);
2003 }
2004
2005 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
2006 PointsToNode* src, PointsToNode* dst) {
2007 assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
2008 assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
2009 PointsToNode* ptadr = _nodes.at(n->_idx);
2010 if (ptadr != NULL) {
2011 assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
2012 return;
2013 }
2014 Compile* C = _compile;
2015 ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
2016 _nodes.at_put(n->_idx, ptadr);
2017 // Add edge from arraycopy node to source object.
2018 (void)add_edge(ptadr, src);
2019 src->set_arraycopy_src();
2020 // Add edge from destination object to arraycopy node.
2021 (void)add_edge(dst, ptadr);
2022 dst->set_arraycopy_dst();
2023 }
2024
2025 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
2026 const Type* adr_type = n->as_AddP()->bottom_type();
2027 BasicType bt = T_INT;
2028 if (offset == Type::OffsetBot) {
2029 // Check only oop fields.
2030 if (!adr_type->isa_aryptr() ||
2031 (adr_type->isa_aryptr()->klass() == NULL) ||
2032 adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2033 // OffsetBot is used to reference array's element. Ignore first AddP.
2034 if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2035 bt = T_OBJECT;
2036 }
2037 }
2038 } else if (offset != oopDesc::klass_offset_in_bytes()) {
2039 if (adr_type->isa_instptr()) {
2040 ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
2041 if (field != NULL) {
2042 bt = field->layout_type();
2043 } else {
2044 // Check for unsafe oop field access
2045 if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN)) {
2046 bt = T_OBJECT;
2047 (*unsafe) = true;
2048 }
2049 }
2050 } else if (adr_type->isa_aryptr()) {
2051 if (offset == arrayOopDesc::length_offset_in_bytes()) {
2052 // Ignore array length load.
2053 } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2054 // Ignore first AddP.
2055 } else {
2056 const Type* elemtype = adr_type->isa_aryptr()->elem();
2057 bt = elemtype->array_element_basic_type();
2058 }
2059 } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2060 // Allocation initialization, ThreadLocal field access, unsafe access
2061 if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN)) {
2062 bt = T_OBJECT;
2063 }
2064 }
2065 }
2066 return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
2067 }
2068
2069 // Returns unique pointed java object or NULL.
2070 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2071 assert(!_collecting, "should not call when contructed graph");
2072 // If the node was created after the escape computation we can't answer.
2073 uint idx = n->_idx;
2074 if (idx >= nodes_size()) {
2075 return NULL;
2076 }
2077 PointsToNode* ptn = ptnode_adr(idx);
2078 if (ptn->is_JavaObject()) {
2079 return ptn->as_JavaObject();
2080 }
2081 assert(ptn->is_LocalVar(), "sanity");
2082 // Check all java objects it points to.
2083 JavaObjectNode* jobj = NULL;
2084 for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2085 PointsToNode* e = i.get();
2086 if (e->is_JavaObject()) {
2087 if (jobj == NULL) {
2088 jobj = e->as_JavaObject();
2089 } else if (jobj != e) {
2090 return NULL;
2091 }
2092 }
2093 }
2094 return jobj;
2095 }
2096
2097 // Return true if this node points only to non-escaping allocations.
2098 bool PointsToNode::non_escaping_allocation() {
2099 if (is_JavaObject()) {
2100 Node* n = ideal_node();
2101 if (n->is_Allocate() || n->is_CallStaticJava()) {
2102 return (escape_state() == PointsToNode::NoEscape);
2103 } else {
2104 return false;
2105 }
2106 }
2107 assert(is_LocalVar(), "sanity");
2108 // Check all java objects it points to.
2109 for (EdgeIterator i(this); i.has_next(); i.next()) {
2110 PointsToNode* e = i.get();
2111 if (e->is_JavaObject()) {
2112 Node* n = e->ideal_node();
2113 if ((e->escape_state() != PointsToNode::NoEscape) ||
2114 !(n->is_Allocate() || n->is_CallStaticJava())) {
2115 return false;
2116 }
2117 }
2118 }
2119 return true;
2120 }
2121
2122 // Return true if we know the node does not escape globally.
2123 bool ConnectionGraph::not_global_escape(Node *n) {
2124 assert(!_collecting, "should not call during graph construction");
2125 // If the node was created after the escape computation we can't answer.
2126 uint idx = n->_idx;
2127 if (idx >= nodes_size()) {
2128 return false;
2129 }
2130 PointsToNode* ptn = ptnode_adr(idx);
2131 PointsToNode::EscapeState es = ptn->escape_state();
2132 // If we have already computed a value, return it.
2133 if (es >= PointsToNode::GlobalEscape)
2134 return false;
2135 if (ptn->is_JavaObject()) {
2136 return true; // (es < PointsToNode::GlobalEscape);
2137 }
2138 assert(ptn->is_LocalVar(), "sanity");
2139 // Check all java objects it points to.
2140 for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2141 if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2142 return false;
2143 }
2144 return true;
2145 }
2146
2147
2148 // Helper functions
2149
2150 // Return true if this node points to specified node or nodes it points to.
2151 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2152 if (is_JavaObject()) {
2153 return (this == ptn);
2154 }
2155 assert(is_LocalVar() || is_Field(), "sanity");
2156 for (EdgeIterator i(this); i.has_next(); i.next()) {
2157 if (i.get() == ptn)
2158 return true;
2159 }
2160 return false;
2161 }
2162
2163 // Return true if one node points to an other.
2164 bool PointsToNode::meet(PointsToNode* ptn) {
2165 if (this == ptn) {
2166 return true;
2167 } else if (ptn->is_JavaObject()) {
2168 return this->points_to(ptn->as_JavaObject());
2169 } else if (this->is_JavaObject()) {
2170 return ptn->points_to(this->as_JavaObject());
2171 }
2172 assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2173 int ptn_count = ptn->edge_count();
2174 for (EdgeIterator i(this); i.has_next(); i.next()) {
2175 PointsToNode* this_e = i.get();
2176 for (int j = 0; j < ptn_count; j++) {
2177 if (this_e == ptn->edge(j))
2178 return true;
2179 }
2180 }
2181 return false;
2182 }
2183
2184 #ifdef ASSERT
2185 // Return true if bases point to this java object.
2186 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2187 for (BaseIterator i(this); i.has_next(); i.next()) {
2188 if (i.get() == jobj)
2189 return true;
2190 }
2191 return false;
2192 }
2193 #endif
2194
2195 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2196 const Type *adr_type = phase->type(adr);
2197 if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2198 adr->in(AddPNode::Address)->is_Proj() &&
2199 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2200 // We are computing a raw address for a store captured by an Initialize
2201 // compute an appropriate address type. AddP cases #3 and #5 (see below).
2202 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2203 assert(offs != Type::OffsetBot ||
2204 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2205 "offset must be a constant or it is initialization of array");
2206 return offs;
2207 }
2208 const TypePtr *t_ptr = adr_type->isa_ptr();
2209 assert(t_ptr != NULL, "must be a pointer type");
2210 return t_ptr->offset();
2211 }
2212
2213 Node* ConnectionGraph::get_addp_base(Node *addp) {
2214 assert(addp->is_AddP(), "must be AddP");
2215 //
2216 // AddP cases for Base and Address inputs:
2217 // case #1. Direct object's field reference:
2218 // Allocate
2219 // |
2220 // Proj #5 ( oop result )
2221 // |
2222 // CheckCastPP (cast to instance type)
2223 // | |
2224 // AddP ( base == address )
2225 //
2226 // case #2. Indirect object's field reference:
2227 // Phi
2228 // |
2229 // CastPP (cast to instance type)
2230 // | |
2231 // AddP ( base == address )
2232 //
2233 // case #3. Raw object's field reference for Initialize node:
2234 // Allocate
2235 // |
2236 // Proj #5 ( oop result )
2237 // top |
2238 // \ |
2239 // AddP ( base == top )
2240 //
2241 // case #4. Array's element reference:
2242 // {CheckCastPP | CastPP}
2243 // | | |
2244 // | AddP ( array's element offset )
2245 // | |
2246 // AddP ( array's offset )
2247 //
2248 // case #5. Raw object's field reference for arraycopy stub call:
2249 // The inline_native_clone() case when the arraycopy stub is called
2250 // after the allocation before Initialize and CheckCastPP nodes.
2251 // Allocate
2252 // |
2253 // Proj #5 ( oop result )
2254 // | |
2255 // AddP ( base == address )
2256 //
2257 // case #6. Constant Pool, ThreadLocal, CastX2P or
2258 // Raw object's field reference:
2259 // {ConP, ThreadLocal, CastX2P, raw Load}
2260 // top |
2261 // \ |
2262 // AddP ( base == top )
2263 //
2264 // case #7. Klass's field reference.
2265 // LoadKlass
2266 // | |
2267 // AddP ( base == address )
2268 //
2269 // case #8. narrow Klass's field reference.
2270 // LoadNKlass
2271 // |
2272 // DecodeN
2273 // | |
2274 // AddP ( base == address )
2275 //
2276 Node *base = addp->in(AddPNode::Base);
2277 if (base->uncast()->is_top()) { // The AddP case #3 and #6.
2278 base = addp->in(AddPNode::Address);
2279 while (base->is_AddP()) {
2280 // Case #6 (unsafe access) may have several chained AddP nodes.
2281 assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2282 base = base->in(AddPNode::Address);
2283 }
2284 Node* uncast_base = base->uncast();
2285 int opcode = uncast_base->Opcode();
2286 assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2287 opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2288 (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2289 (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
2290 }
2291 return base;
2292 }
2293
2294 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2295 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2296 Node* addp2 = addp->raw_out(0);
2297 if (addp->outcnt() == 1 && addp2->is_AddP() &&
2298 addp2->in(AddPNode::Base) == n &&
2299 addp2->in(AddPNode::Address) == addp) {
2300 assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2301 //
2302 // Find array's offset to push it on worklist first and
2303 // as result process an array's element offset first (pushed second)
2304 // to avoid CastPP for the array's offset.
2305 // Otherwise the inserted CastPP (LocalVar) will point to what
2306 // the AddP (Field) points to. Which would be wrong since
2307 // the algorithm expects the CastPP has the same point as
2308 // as AddP's base CheckCastPP (LocalVar).
2309 //
2310 // ArrayAllocation
2311 // |
2312 // CheckCastPP
2313 // |
2314 // memProj (from ArrayAllocation CheckCastPP)
2315 // | ||
2316 // | || Int (element index)
2317 // | || | ConI (log(element size))
2318 // | || | /
2319 // | || LShift
2320 // | || /
2321 // | AddP (array's element offset)
2322 // | |
2323 // | | ConI (array's offset: #12(32-bits) or #24(64-bits))
2324 // | / /
2325 // AddP (array's offset)
2326 // |
2327 // Load/Store (memory operation on array's element)
2328 //
2329 return addp2;
2330 }
2331 return NULL;
2332 }
2333
2334 //
2335 // Adjust the type and inputs of an AddP which computes the
2336 // address of a field of an instance
2337 //
2338 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2339 PhaseGVN* igvn = _igvn;
2340 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2341 assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2342 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2343 if (t == NULL) {
2344 // We are computing a raw address for a store captured by an Initialize
2345 // compute an appropriate address type (cases #3 and #5).
2346 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2347 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2348 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2349 assert(offs != Type::OffsetBot, "offset must be a constant");
2350 t = base_t->add_offset(offs)->is_oopptr();
2351 }
2352 int inst_id = base_t->instance_id();
2353 assert(!t->is_known_instance() || t->instance_id() == inst_id,
2354 "old type must be non-instance or match new type");
2355
2356 // The type 't' could be subclass of 'base_t'.
2357 // As result t->offset() could be large then base_t's size and it will
2358 // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2359 // constructor verifies correctness of the offset.
2360 //
2361 // It could happened on subclass's branch (from the type profiling
2362 // inlining) which was not eliminated during parsing since the exactness
2363 // of the allocation type was not propagated to the subclass type check.
2364 //
2365 // Or the type 't' could be not related to 'base_t' at all.
2366 // It could happened when CHA type is different from MDO type on a dead path
2367 // (for example, from instanceof check) which is not collapsed during parsing.
2368 //
2369 // Do nothing for such AddP node and don't process its users since
2370 // this code branch will go away.
2371 //
2372 if (!t->is_known_instance() &&
2373 !base_t->klass()->is_subtype_of(t->klass())) {
2374 return false; // bail out
2375 }
2376 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2377 // Do NOT remove the next line: ensure a new alias index is allocated
2378 // for the instance type. Note: C++ will not remove it since the call
2379 // has side effect.
2380 int alias_idx = _compile->get_alias_index(tinst);
2381 igvn->set_type(addp, tinst);
2382 // record the allocation in the node map
2383 set_map(addp, get_map(base->_idx));
2384 // Set addp's Base and Address to 'base'.
2385 Node *abase = addp->in(AddPNode::Base);
2386 Node *adr = addp->in(AddPNode::Address);
2387 if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2388 adr->in(0)->_idx == (uint)inst_id) {
2389 // Skip AddP cases #3 and #5.
2390 } else {
2391 assert(!abase->is_top(), "sanity"); // AddP case #3
2392 if (abase != base) {
2393 igvn->hash_delete(addp);
2394 addp->set_req(AddPNode::Base, base);
2395 if (abase == adr) {
2396 addp->set_req(AddPNode::Address, base);
2397 } else {
2398 // AddP case #4 (adr is array's element offset AddP node)
2399 #ifdef ASSERT
2400 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2401 assert(adr->is_AddP() && atype != NULL &&
2402 atype->instance_id() == inst_id, "array's element offset should be processed first");
2403 #endif
2404 }
2405 igvn->hash_insert(addp);
2406 }
2407 }
2408 // Put on IGVN worklist since at least addp's type was changed above.
2409 record_for_optimizer(addp);
2410 return true;
2411 }
2412
2413 //
2414 // Create a new version of orig_phi if necessary. Returns either the newly
2415 // created phi or an existing phi. Sets create_new to indicate whether a new
2416 // phi was created. Cache the last newly created phi in the node map.
2417 //
2418 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, bool &new_created) {
2419 Compile *C = _compile;
2420 PhaseGVN* igvn = _igvn;
2421 new_created = false;
2422 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2423 // nothing to do if orig_phi is bottom memory or matches alias_idx
2424 if (phi_alias_idx == alias_idx) {
2425 return orig_phi;
2426 }
2427 // Have we recently created a Phi for this alias index?
2428 PhiNode *result = get_map_phi(orig_phi->_idx);
2429 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2430 return result;
2431 }
2432 // Previous check may fail when the same wide memory Phi was split into Phis
2433 // for different memory slices. Search all Phis for this region.
2434 if (result != NULL) {
2435 Node* region = orig_phi->in(0);
2436 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2437 Node* phi = region->fast_out(i);
2438 if (phi->is_Phi() &&
2439 C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2440 assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2441 return phi->as_Phi();
2442 }
2443 }
2444 }
2445 if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2446 if (C->do_escape_analysis() == true && !C->failing()) {
2447 // Retry compilation without escape analysis.
2448 // If this is the first failure, the sentinel string will "stick"
2449 // to the Compile object, and the C2Compiler will see it and retry.
2450 C->record_failure(C2Compiler::retry_no_escape_analysis());
2451 }
2452 return NULL;
2453 }
2454 orig_phi_worklist.append_if_missing(orig_phi);
2455 const TypePtr *atype = C->get_adr_type(alias_idx);
2456 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2457 C->copy_node_notes_to(result, orig_phi);
2458 igvn->set_type(result, result->bottom_type());
2459 record_for_optimizer(result);
2460 set_map(orig_phi, result);
2461 new_created = true;
2462 return result;
2463 }
2464
2465 //
2466 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2467 // specified alias index.
2468 //
2469 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist) {
2470 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2471 Compile *C = _compile;
2472 PhaseGVN* igvn = _igvn;
2473 bool new_phi_created;
2474 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2475 if (!new_phi_created) {
2476 return result;
2477 }
2478 GrowableArray<PhiNode *> phi_list;
2479 GrowableArray<uint> cur_input;
2480 PhiNode *phi = orig_phi;
2481 uint idx = 1;
2482 bool finished = false;
2483 while(!finished) {
2484 while (idx < phi->req()) {
2485 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2486 if (mem != NULL && mem->is_Phi()) {
2487 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2488 if (new_phi_created) {
2489 // found an phi for which we created a new split, push current one on worklist and begin
2490 // processing new one
2491 phi_list.push(phi);
2492 cur_input.push(idx);
2493 phi = mem->as_Phi();
2494 result = newphi;
2495 idx = 1;
2496 continue;
2497 } else {
2498 mem = newphi;
2499 }
2500 }
2501 if (C->failing()) {
2502 return NULL;
2503 }
2504 result->set_req(idx++, mem);
2505 }
2506 #ifdef ASSERT
2507 // verify that the new Phi has an input for each input of the original
2508 assert( phi->req() == result->req(), "must have same number of inputs.");
2509 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2510 #endif
2511 // Check if all new phi's inputs have specified alias index.
2512 // Otherwise use old phi.
2513 for (uint i = 1; i < phi->req(); i++) {
2514 Node* in = result->in(i);
2515 assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2516 }
2517 // we have finished processing a Phi, see if there are any more to do
2518 finished = (phi_list.length() == 0 );
2519 if (!finished) {
2520 phi = phi_list.pop();
2521 idx = cur_input.pop();
2522 PhiNode *prev_result = get_map_phi(phi->_idx);
2523 prev_result->set_req(idx++, result);
2524 result = prev_result;
2525 }
2526 }
2527 return result;
2528 }
2529
2530 //
2531 // The next methods are derived from methods in MemNode.
2532 //
2533 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2534 Node *mem = mmem;
2535 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2536 // means an array I have not precisely typed yet. Do not do any
2537 // alias stuff with it any time soon.
2538 if (toop->base() != Type::AnyPtr &&
2539 !(toop->klass() != NULL &&
2540 toop->klass()->is_java_lang_Object() &&
2541 toop->offset() == Type::OffsetBot)) {
2542 mem = mmem->memory_at(alias_idx);
2543 // Update input if it is progress over what we have now
2544 }
2545 return mem;
2546 }
2547
2548 //
2549 // Move memory users to their memory slices.
2550 //
2551 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *> &orig_phis) {
2552 Compile* C = _compile;
2553 PhaseGVN* igvn = _igvn;
2554 const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2555 assert(tp != NULL, "ptr type");
2556 int alias_idx = C->get_alias_index(tp);
2557 int general_idx = C->get_general_index(alias_idx);
2558
2559 // Move users first
2560 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2561 Node* use = n->fast_out(i);
2562 if (use->is_MergeMem()) {
2563 MergeMemNode* mmem = use->as_MergeMem();
2564 assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2565 if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2566 continue; // Nothing to do
2567 }
2568 // Replace previous general reference to mem node.
2569 uint orig_uniq = C->unique();
2570 Node* m = find_inst_mem(n, general_idx, orig_phis);
2571 assert(orig_uniq == C->unique(), "no new nodes");
2572 mmem->set_memory_at(general_idx, m);
2573 --imax;
2574 --i;
2575 } else if (use->is_MemBar()) {
2576 assert(!use->is_Initialize(), "initializing stores should not be moved");
2577 if (use->req() > MemBarNode::Precedent &&
2578 use->in(MemBarNode::Precedent) == n) {
2579 // Don't move related membars.
2580 record_for_optimizer(use);
2581 continue;
2582 }
2583 tp = use->as_MemBar()->adr_type()->isa_ptr();
2584 if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
2585 alias_idx == general_idx) {
2586 continue; // Nothing to do
2587 }
2588 // Move to general memory slice.
2589 uint orig_uniq = C->unique();
2590 Node* m = find_inst_mem(n, general_idx, orig_phis);
2591 assert(orig_uniq == C->unique(), "no new nodes");
2592 igvn->hash_delete(use);
2593 imax -= use->replace_edge(n, m);
2594 igvn->hash_insert(use);
2595 record_for_optimizer(use);
2596 --i;
2597 #ifdef ASSERT
2598 } else if (use->is_Mem()) {
2599 if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2600 // Don't move related cardmark.
2601 continue;
2602 }
2603 // Memory nodes should have new memory input.
2604 tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2605 assert(tp != NULL, "ptr type");
2606 int idx = C->get_alias_index(tp);
2607 assert(get_map(use->_idx) != NULL || idx == alias_idx,
2608 "Following memory nodes should have new memory input or be on the same memory slice");
2609 } else if (use->is_Phi()) {
2610 // Phi nodes should be split and moved already.
2611 tp = use->as_Phi()->adr_type()->isa_ptr();
2612 assert(tp != NULL, "ptr type");
2613 int idx = C->get_alias_index(tp);
2614 assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2615 } else {
2616 use->dump();
2617 assert(false, "should not be here");
2618 #endif
2619 }
2620 }
2621 }
2622
2623 //
2624 // Search memory chain of "mem" to find a MemNode whose address
2625 // is the specified alias index.
2626 //
2627 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis) {
2628 if (orig_mem == NULL)
2629 return orig_mem;
2630 Compile* C = _compile;
2631 PhaseGVN* igvn = _igvn;
2632 const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2633 bool is_instance = (toop != NULL) && toop->is_known_instance();
2634 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
2635 Node *prev = NULL;
2636 Node *result = orig_mem;
2637 while (prev != result) {
2638 prev = result;
2639 if (result == start_mem)
2640 break; // hit one of our sentinels
2641 if (result->is_Mem()) {
2642 const Type *at = igvn->type(result->in(MemNode::Address));
2643 if (at == Type::TOP)
2644 break; // Dead
2645 assert (at->isa_ptr() != NULL, "pointer type required.");
2646 int idx = C->get_alias_index(at->is_ptr());
2647 if (idx == alias_idx)
2648 break; // Found
2649 if (!is_instance && (at->isa_oopptr() == NULL ||
2650 !at->is_oopptr()->is_known_instance())) {
2651 break; // Do not skip store to general memory slice.
2652 }
2653 result = result->in(MemNode::Memory);
2654 }
2655 if (!is_instance)
2656 continue; // don't search further for non-instance types
2657 // skip over a call which does not affect this memory slice
2658 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2659 Node *proj_in = result->in(0);
2660 if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2661 break; // hit one of our sentinels
2662 } else if (proj_in->is_Call()) {
2663 // ArrayCopy node processed here as well
2664 CallNode *call = proj_in->as_Call();
2665 if (!call->may_modify(toop, igvn)) {
2666 result = call->in(TypeFunc::Memory);
2667 }
2668 } else if (proj_in->is_Initialize()) {
2669 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2670 // Stop if this is the initialization for the object instance which
2671 // which contains this memory slice, otherwise skip over it.
2672 if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2673 result = proj_in->in(TypeFunc::Memory);
2674 }
2675 } else if (proj_in->is_MemBar()) {
2676 if (proj_in->in(TypeFunc::Memory)->is_MergeMem() &&
2677 proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->is_Proj() &&
2678 proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->is_ArrayCopy()) {
2679 // clone
2680 ArrayCopyNode* ac = proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->as_ArrayCopy();
2681 if (ac->may_modify(toop, igvn)) {
2682 break;
2683 }
2684 }
2685 result = proj_in->in(TypeFunc::Memory);
2686 }
2687 } else if (result->is_MergeMem()) {
2688 MergeMemNode *mmem = result->as_MergeMem();
2689 result = step_through_mergemem(mmem, alias_idx, toop);
2690 if (result == mmem->base_memory()) {
2691 // Didn't find instance memory, search through general slice recursively.
2692 result = mmem->memory_at(C->get_general_index(alias_idx));
2693 result = find_inst_mem(result, alias_idx, orig_phis);
2694 if (C->failing()) {
2695 return NULL;
2696 }
2697 mmem->set_memory_at(alias_idx, result);
2698 }
2699 } else if (result->is_Phi() &&
2700 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2701 Node *un = result->as_Phi()->unique_input(igvn);
2702 if (un != NULL) {
2703 orig_phis.append_if_missing(result->as_Phi());
2704 result = un;
2705 } else {
2706 break;
2707 }
2708 } else if (result->is_ClearArray()) {
2709 if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2710 // Can not bypass initialization of the instance
2711 // we are looking for.
2712 break;
2713 }
2714 // Otherwise skip it (the call updated 'result' value).
2715 } else if (result->Opcode() == Op_SCMemProj) {
2716 Node* mem = result->in(0);
2717 Node* adr = NULL;
2718 if (mem->is_LoadStore()) {
2719 adr = mem->in(MemNode::Address);
2720 } else {
2721 assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
2722 adr = mem->in(3); // Memory edge corresponds to destination array
2723 }
2724 const Type *at = igvn->type(adr);
2725 if (at != Type::TOP) {
2726 assert (at->isa_ptr() != NULL, "pointer type required.");
2727 int idx = C->get_alias_index(at->is_ptr());
2728 assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
2729 break;
2730 }
2731 result = mem->in(MemNode::Memory);
2732 }
2733 }
2734 if (result->is_Phi()) {
2735 PhiNode *mphi = result->as_Phi();
2736 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2737 const TypePtr *t = mphi->adr_type();
2738 if (!is_instance) {
2739 // Push all non-instance Phis on the orig_phis worklist to update inputs
2740 // during Phase 4 if needed.
2741 orig_phis.append_if_missing(mphi);
2742 } else if (C->get_alias_index(t) != alias_idx) {
2743 // Create a new Phi with the specified alias index type.
2744 result = split_memory_phi(mphi, alias_idx, orig_phis);
2745 }
2746 }
2747 // the result is either MemNode, PhiNode, InitializeNode.
2748 return result;
2749 }
2750
2751 //
2752 // Convert the types of unescaped object to instance types where possible,
2753 // propagate the new type information through the graph, and update memory
2754 // edges and MergeMem inputs to reflect the new type.
2755 //
2756 // We start with allocations (and calls which may be allocations) on alloc_worklist.
2757 // The processing is done in 4 phases:
2758 //
2759 // Phase 1: Process possible allocations from alloc_worklist. Create instance
2760 // types for the CheckCastPP for allocations where possible.
2761 // Propagate the new types through users as follows:
2762 // casts and Phi: push users on alloc_worklist
2763 // AddP: cast Base and Address inputs to the instance type
2764 // push any AddP users on alloc_worklist and push any memnode
2765 // users onto memnode_worklist.
2766 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
2767 // search the Memory chain for a store with the appropriate type
2768 // address type. If a Phi is found, create a new version with
2769 // the appropriate memory slices from each of the Phi inputs.
2770 // For stores, process the users as follows:
2771 // MemNode: push on memnode_worklist
2772 // MergeMem: push on mergemem_worklist
2773 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
2774 // moving the first node encountered of each instance type to the
2775 // the input corresponding to its alias index.
2776 // appropriate memory slice.
2777 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2778 //
2779 // In the following example, the CheckCastPP nodes are the cast of allocation
2780 // results and the allocation of node 29 is unescaped and eligible to be an
2781 // instance type.
2782 //
2783 // We start with:
2784 //
2785 // 7 Parm #memory
2786 // 10 ConI "12"
2787 // 19 CheckCastPP "Foo"
2788 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
2789 // 29 CheckCastPP "Foo"
2790 // 30 AddP _ 29 29 10 Foo+12 alias_index=4
2791 //
2792 // 40 StoreP 25 7 20 ... alias_index=4
2793 // 50 StoreP 35 40 30 ... alias_index=4
2794 // 60 StoreP 45 50 20 ... alias_index=4
2795 // 70 LoadP _ 60 30 ... alias_index=4
2796 // 80 Phi 75 50 60 Memory alias_index=4
2797 // 90 LoadP _ 80 30 ... alias_index=4
2798 // 100 LoadP _ 80 20 ... alias_index=4
2799 //
2800 //
2801 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2802 // and creating a new alias index for node 30. This gives:
2803 //
2804 // 7 Parm #memory
2805 // 10 ConI "12"
2806 // 19 CheckCastPP "Foo"
2807 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
2808 // 29 CheckCastPP "Foo" iid=24
2809 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
2810 //
2811 // 40 StoreP 25 7 20 ... alias_index=4
2812 // 50 StoreP 35 40 30 ... alias_index=6
2813 // 60 StoreP 45 50 20 ... alias_index=4
2814 // 70 LoadP _ 60 30 ... alias_index=6
2815 // 80 Phi 75 50 60 Memory alias_index=4
2816 // 90 LoadP _ 80 30 ... alias_index=6
2817 // 100 LoadP _ 80 20 ... alias_index=4
2818 //
2819 // In phase 2, new memory inputs are computed for the loads and stores,
2820 // And a new version of the phi is created. In phase 4, the inputs to
2821 // node 80 are updated and then the memory nodes are updated with the
2822 // values computed in phase 2. This results in:
2823 //
2824 // 7 Parm #memory
2825 // 10 ConI "12"
2826 // 19 CheckCastPP "Foo"
2827 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
2828 // 29 CheckCastPP "Foo" iid=24
2829 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
2830 //
2831 // 40 StoreP 25 7 20 ... alias_index=4
2832 // 50 StoreP 35 7 30 ... alias_index=6
2833 // 60 StoreP 45 40 20 ... alias_index=4
2834 // 70 LoadP _ 50 30 ... alias_index=6
2835 // 80 Phi 75 40 60 Memory alias_index=4
2836 // 120 Phi 75 50 50 Memory alias_index=6
2837 // 90 LoadP _ 120 30 ... alias_index=6
2838 // 100 LoadP _ 80 20 ... alias_index=4
2839 //
2840 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist, GrowableArray<ArrayCopyNode*> &arraycopy_worklist) {
2841 GrowableArray<Node *> memnode_worklist;
2842 GrowableArray<PhiNode *> orig_phis;
2843 PhaseIterGVN *igvn = _igvn;
2844 uint new_index_start = (uint) _compile->num_alias_types();
2845 Arena* arena = Thread::current()->resource_area();
2846 VectorSet visited(arena);
2847 ideal_nodes.clear(); // Reset for use with set_map/get_map.
2848 uint unique_old = _compile->unique();
2849
2850 // Phase 1: Process possible allocations from alloc_worklist.
2851 // Create instance types for the CheckCastPP for allocations where possible.
2852 //
2853 // (Note: don't forget to change the order of the second AddP node on
2854 // the alloc_worklist if the order of the worklist processing is changed,
2855 // see the comment in find_second_addp().)
2856 //
2857 while (alloc_worklist.length() != 0) {
2858 Node *n = alloc_worklist.pop();
2859 uint ni = n->_idx;
2860 if (n->is_Call()) {
2861 CallNode *alloc = n->as_Call();
2862 // copy escape information to call node
2863 PointsToNode* ptn = ptnode_adr(alloc->_idx);
2864 PointsToNode::EscapeState es = ptn->escape_state();
2865 // We have an allocation or call which returns a Java object,
2866 // see if it is unescaped.
2867 if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2868 continue;
2869 // Find CheckCastPP for the allocate or for the return value of a call
2870 n = alloc->result_cast();
2871 if (n == NULL) { // No uses except Initialize node
2872 if (alloc->is_Allocate()) {
2873 // Set the scalar_replaceable flag for allocation
2874 // so it could be eliminated if it has no uses.
2875 alloc->as_Allocate()->_is_scalar_replaceable = true;
2876 }
2877 if (alloc->is_CallStaticJava()) {
2878 // Set the scalar_replaceable flag for boxing method
2879 // so it could be eliminated if it has no uses.
2880 alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2881 }
2882 continue;
2883 }
2884 if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2885 assert(!alloc->is_Allocate(), "allocation should have unique type");
2886 continue;
2887 }
2888
2889 // The inline code for Object.clone() casts the allocation result to
2890 // java.lang.Object and then to the actual type of the allocated
2891 // object. Detect this case and use the second cast.
2892 // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2893 // the allocation result is cast to java.lang.Object and then
2894 // to the actual Array type.
2895 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2896 && (alloc->is_AllocateArray() ||
2897 igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2898 Node *cast2 = NULL;
2899 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2900 Node *use = n->fast_out(i);
2901 if (use->is_CheckCastPP()) {
2902 cast2 = use;
2903 break;
2904 }
2905 }
2906 if (cast2 != NULL) {
2907 n = cast2;
2908 } else {
2909 // Non-scalar replaceable if the allocation type is unknown statically
2910 // (reflection allocation), the object can't be restored during
2911 // deoptimization without precise type.
2912 continue;
2913 }
2914 }
2915
2916 const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
2917 if (t == NULL)
2918 continue; // not a TypeOopPtr
2919 if (!t->klass_is_exact())
2920 continue; // not an unique type
2921
2922 if (alloc->is_Allocate()) {
2923 // Set the scalar_replaceable flag for allocation
2924 // so it could be eliminated.
2925 alloc->as_Allocate()->_is_scalar_replaceable = true;
2926 }
2927 if (alloc->is_CallStaticJava()) {
2928 // Set the scalar_replaceable flag for boxing method
2929 // so it could be eliminated.
2930 alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2931 }
2932 set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
2933 // in order for an object to be scalar-replaceable, it must be:
2934 // - a direct allocation (not a call returning an object)
2935 // - non-escaping
2936 // - eligible to be a unique type
2937 // - not determined to be ineligible by escape analysis
2938 set_map(alloc, n);
2939 set_map(n, alloc);
2940 const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
2941 igvn->hash_delete(n);
2942 igvn->set_type(n, tinst);
2943 n->raise_bottom_type(tinst);
2944 igvn->hash_insert(n);
2945 record_for_optimizer(n);
2946 if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
2947
2948 // First, put on the worklist all Field edges from Connection Graph
2949 // which is more accurate than putting immediate users from Ideal Graph.
2950 for (EdgeIterator e(ptn); e.has_next(); e.next()) {
2951 PointsToNode* tgt = e.get();
2952 if (tgt->is_Arraycopy()) {
2953 continue;
2954 }
2955 Node* use = tgt->ideal_node();
2956 assert(tgt->is_Field() && use->is_AddP(),
2957 "only AddP nodes are Field edges in CG");
2958 if (use->outcnt() > 0) { // Don't process dead nodes
2959 Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
2960 if (addp2 != NULL) {
2961 assert(alloc->is_AllocateArray(),"array allocation was expected");
2962 alloc_worklist.append_if_missing(addp2);
2963 }
2964 alloc_worklist.append_if_missing(use);
2965 }
2966 }
2967
2968 // An allocation may have an Initialize which has raw stores. Scan
2969 // the users of the raw allocation result and push AddP users
2970 // on alloc_worklist.
2971 Node *raw_result = alloc->proj_out(TypeFunc::Parms);
2972 assert (raw_result != NULL, "must have an allocation result");
2973 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
2974 Node *use = raw_result->fast_out(i);
2975 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
2976 Node* addp2 = find_second_addp(use, raw_result);
2977 if (addp2 != NULL) {
2978 assert(alloc->is_AllocateArray(),"array allocation was expected");
2979 alloc_worklist.append_if_missing(addp2);
2980 }
2981 alloc_worklist.append_if_missing(use);
2982 } else if (use->is_MemBar()) {
2983 memnode_worklist.append_if_missing(use);
2984 }
2985 }
2986 }
2987 } else if (n->is_AddP()) {
2988 JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
2989 if (jobj == NULL || jobj == phantom_obj) {
2990 #ifdef ASSERT
2991 ptnode_adr(get_addp_base(n)->_idx)->dump();
2992 ptnode_adr(n->_idx)->dump();
2993 assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2994 #endif
2995 _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2996 return;
2997 }
2998 Node *base = get_map(jobj->idx()); // CheckCastPP node
2999 if (!split_AddP(n, base)) continue; // wrong type from dead path
3000 } else if (n->is_Phi() ||
3001 n->is_CheckCastPP() ||
3002 n->is_EncodeP() ||
3003 n->is_DecodeN() ||
3004 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
3005 if (visited.test_set(n->_idx)) {
3006 assert(n->is_Phi(), "loops only through Phi's");
3007 continue; // already processed
3008 }
3009 JavaObjectNode* jobj = unique_java_object(n);
3010 if (jobj == NULL || jobj == phantom_obj) {
3011 #ifdef ASSERT
3012 ptnode_adr(n->_idx)->dump();
3013 assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3014 #endif
3015 _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3016 return;
3017 } else {
3018 Node *val = get_map(jobj->idx()); // CheckCastPP node
3019 TypeNode *tn = n->as_Type();
3020 const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
3021 assert(tinst != NULL && tinst->is_known_instance() &&
3022 tinst->instance_id() == jobj->idx() , "instance type expected.");
3023
3024 const Type *tn_type = igvn->type(tn);
3025 const TypeOopPtr *tn_t;
3026 if (tn_type->isa_narrowoop()) {
3027 tn_t = tn_type->make_ptr()->isa_oopptr();
3028 } else {
3029 tn_t = tn_type->isa_oopptr();
3030 }
3031 if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
3032 if (tn_type->isa_narrowoop()) {
3033 tn_type = tinst->make_narrowoop();
3034 } else {
3035 tn_type = tinst;
3036 }
3037 igvn->hash_delete(tn);
3038 igvn->set_type(tn, tn_type);
3039 tn->set_type(tn_type);
3040 igvn->hash_insert(tn);
3041 record_for_optimizer(n);
3042 } else {
3043 assert(tn_type == TypePtr::NULL_PTR ||
3044 tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3045 "unexpected type");
3046 continue; // Skip dead path with different type
3047 }
3048 }
3049 } else {
3050 debug_only(n->dump();)
3051 assert(false, "EA: unexpected node");
3052 continue;
3053 }
3054 // push allocation's users on appropriate worklist
3055 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3056 Node *use = n->fast_out(i);
3057 if(use->is_Mem() && use->in(MemNode::Address) == n) {
3058 // Load/store to instance's field
3059 memnode_worklist.append_if_missing(use);
3060 } else if (use->is_MemBar()) {
3061 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3062 memnode_worklist.append_if_missing(use);
3063 }
3064 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3065 Node* addp2 = find_second_addp(use, n);
3066 if (addp2 != NULL) {
3067 alloc_worklist.append_if_missing(addp2);
3068 }
3069 alloc_worklist.append_if_missing(use);
3070 } else if (use->is_Phi() ||
3071 use->is_CheckCastPP() ||
3072 use->is_EncodeNarrowPtr() ||
3073 use->is_DecodeNarrowPtr() ||
3074 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3075 alloc_worklist.append_if_missing(use);
3076 #ifdef ASSERT
3077 } else if (use->is_Mem()) {
3078 assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3079 } else if (use->is_MergeMem()) {
3080 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3081 } else if (use->is_SafePoint()) {
3082 // Look for MergeMem nodes for calls which reference unique allocation
3083 // (through CheckCastPP nodes) even for debug info.
3084 Node* m = use->in(TypeFunc::Memory);
3085 if (m->is_MergeMem()) {
3086 assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3087 }
3088 } else if (use->Opcode() == Op_EncodeISOArray) {
3089 if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3090 // EncodeISOArray overwrites destination array
3091 memnode_worklist.append_if_missing(use);
3092 }
3093 } else {
3094 uint op = use->Opcode();
3095 if (!(op == Op_CmpP || op == Op_Conv2B ||
3096 op == Op_CastP2X || op == Op_StoreCM ||
3097 op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
3098 op == Op_StrEquals || op == Op_StrIndexOf)) {
3099 n->dump();
3100 use->dump();
3101 assert(false, "EA: missing allocation reference path");
3102 }
3103 #endif
3104 }
3105 }
3106
3107 }
3108
3109 // Go over all ArrayCopy nodes and if one of the inputs has a unique
3110 // type, record it in the ArrayCopy node so we know what memory this
3111 // node uses/modified.
3112 for (int next = 0; next < arraycopy_worklist.length(); next++) {
3113 ArrayCopyNode* ac = arraycopy_worklist.at(next);
3114 Node* dest = ac->in(ArrayCopyNode::Dest);
3115 if (dest->is_AddP()) {
3116 dest = get_addp_base(dest);
3117 }
3118 JavaObjectNode* jobj = unique_java_object(dest);
3119 if (jobj != NULL) {
3120 Node *base = get_map(jobj->idx());
3121 if (base != NULL) {
3122 const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3123 ac->_dest_type = base_t;
3124 }
3125 }
3126 Node* src = ac->in(ArrayCopyNode::Src);
3127 if (src->is_AddP()) {
3128 src = get_addp_base(src);
3129 }
3130 jobj = unique_java_object(src);
3131 if (jobj != NULL) {
3132 Node* base = get_map(jobj->idx());
3133 if (base != NULL) {
3134 const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3135 ac->_src_type = base_t;
3136 }
3137 }
3138 }
3139
3140 // New alias types were created in split_AddP().
3141 uint new_index_end = (uint) _compile->num_alias_types();
3142 assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3143
3144 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
3145 // compute new values for Memory inputs (the Memory inputs are not
3146 // actually updated until phase 4.)
3147 if (memnode_worklist.length() == 0)
3148 return; // nothing to do
3149 while (memnode_worklist.length() != 0) {
3150 Node *n = memnode_worklist.pop();
3151 if (visited.test_set(n->_idx))
3152 continue;
3153 if (n->is_Phi() || n->is_ClearArray()) {
3154 // we don't need to do anything, but the users must be pushed
3155 } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3156 // we don't need to do anything, but the users must be pushed
3157 n = n->as_MemBar()->proj_out(TypeFunc::Memory);
3158 if (n == NULL)
3159 continue;
3160 } else if (n->Opcode() == Op_EncodeISOArray) {
3161 // get the memory projection
3162 n = n->find_out_with(Op_SCMemProj);
3163 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3164 } else {
3165 assert(n->is_Mem(), "memory node required.");
3166 Node *addr = n->in(MemNode::Address);
3167 const Type *addr_t = igvn->type(addr);
3168 if (addr_t == Type::TOP)
3169 continue;
3170 assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3171 int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3172 assert ((uint)alias_idx < new_index_end, "wrong alias index");
3173 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3174 if (_compile->failing()) {
3175 return;
3176 }
3177 if (mem != n->in(MemNode::Memory)) {
3178 // We delay the memory edge update since we need old one in
3179 // MergeMem code below when instances memory slices are separated.
3180 set_map(n, mem);
3181 }
3182 if (n->is_Load()) {
3183 continue; // don't push users
3184 } else if (n->is_LoadStore()) {
3185 // get the memory projection
3186 n = n->find_out_with(Op_SCMemProj);
3187 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3188 }
3189 }
3190 // push user on appropriate worklist
3191 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3192 Node *use = n->fast_out(i);
3193 if (use->is_Phi() || use->is_ClearArray()) {
3194 memnode_worklist.append_if_missing(use);
3195 } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3196 if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3197 continue;
3198 memnode_worklist.append_if_missing(use);
3199 } else if (use->is_MemBar()) {
3200 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3201 memnode_worklist.append_if_missing(use);
3202 }
3203 #ifdef ASSERT
3204 } else if(use->is_Mem()) {
3205 assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3206 } else if (use->is_MergeMem()) {
3207 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3208 } else if (use->Opcode() == Op_EncodeISOArray) {
3209 if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3210 // EncodeISOArray overwrites destination array
3211 memnode_worklist.append_if_missing(use);
3212 }
3213 } else {
3214 uint op = use->Opcode();
3215 if (!(op == Op_StoreCM ||
3216 (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
3217 strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
3218 op == Op_AryEq || op == Op_StrComp ||
3219 op == Op_StrEquals || op == Op_StrIndexOf)) {
3220 n->dump();
3221 use->dump();
3222 assert(false, "EA: missing memory path");
3223 }
3224 #endif
3225 }
3226 }
3227 }
3228
3229 // Phase 3: Process MergeMem nodes from mergemem_worklist.
3230 // Walk each memory slice moving the first node encountered of each
3231 // instance type to the the input corresponding to its alias index.
3232 uint length = _mergemem_worklist.length();
3233 for( uint next = 0; next < length; ++next ) {
3234 MergeMemNode* nmm = _mergemem_worklist.at(next);
3235 assert(!visited.test_set(nmm->_idx), "should not be visited before");
3236 // Note: we don't want to use MergeMemStream here because we only want to
3237 // scan inputs which exist at the start, not ones we add during processing.
3238 // Note 2: MergeMem may already contains instance memory slices added
3239 // during find_inst_mem() call when memory nodes were processed above.
3240 igvn->hash_delete(nmm);
3241 uint nslices = nmm->req();
3242 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3243 Node* mem = nmm->in(i);
3244 Node* cur = NULL;
3245 if (mem == NULL || mem->is_top())
3246 continue;
3247 // First, update mergemem by moving memory nodes to corresponding slices
3248 // if their type became more precise since this mergemem was created.
3249 while (mem->is_Mem()) {
3250 const Type *at = igvn->type(mem->in(MemNode::Address));
3251 if (at != Type::TOP) {
3252 assert (at->isa_ptr() != NULL, "pointer type required.");
3253 uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3254 if (idx == i) {
3255 if (cur == NULL)
3256 cur = mem;
3257 } else {
3258 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3259 nmm->set_memory_at(idx, mem);
3260 }
3261 }
3262 }
3263 mem = mem->in(MemNode::Memory);
3264 }
3265 nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3266 // Find any instance of the current type if we haven't encountered
3267 // already a memory slice of the instance along the memory chain.
3268 for (uint ni = new_index_start; ni < new_index_end; ni++) {
3269 if((uint)_compile->get_general_index(ni) == i) {
3270 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3271 if (nmm->is_empty_memory(m)) {
3272 Node* result = find_inst_mem(mem, ni, orig_phis);
3273 if (_compile->failing()) {
3274 return;
3275 }
3276 nmm->set_memory_at(ni, result);
3277 }
3278 }
3279 }
3280 }
3281 // Find the rest of instances values
3282 for (uint ni = new_index_start; ni < new_index_end; ni++) {
3283 const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3284 Node* result = step_through_mergemem(nmm, ni, tinst);
3285 if (result == nmm->base_memory()) {
3286 // Didn't find instance memory, search through general slice recursively.
3287 result = nmm->memory_at(_compile->get_general_index(ni));
3288 result = find_inst_mem(result, ni, orig_phis);
3289 if (_compile->failing()) {
3290 return;
3291 }
3292 nmm->set_memory_at(ni, result);
3293 }
3294 }
3295 igvn->hash_insert(nmm);
3296 record_for_optimizer(nmm);
3297 }
3298
3299 // Phase 4: Update the inputs of non-instance memory Phis and
3300 // the Memory input of memnodes
3301 // First update the inputs of any non-instance Phi's from
3302 // which we split out an instance Phi. Note we don't have
3303 // to recursively process Phi's encounted on the input memory
3304 // chains as is done in split_memory_phi() since they will
3305 // also be processed here.
3306 for (int j = 0; j < orig_phis.length(); j++) {
3307 PhiNode *phi = orig_phis.at(j);
3308 int alias_idx = _compile->get_alias_index(phi->adr_type());
3309 igvn->hash_delete(phi);
3310 for (uint i = 1; i < phi->req(); i++) {
3311 Node *mem = phi->in(i);
3312 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3313 if (_compile->failing()) {
3314 return;
3315 }
3316 if (mem != new_mem) {
3317 phi->set_req(i, new_mem);
3318 }
3319 }
3320 igvn->hash_insert(phi);
3321 record_for_optimizer(phi);
3322 }
3323
3324 // Update the memory inputs of MemNodes with the value we computed
3325 // in Phase 2 and move stores memory users to corresponding memory slices.
3326 // Disable memory split verification code until the fix for 6984348.
3327 // Currently it produces false negative results since it does not cover all cases.
3328 #if 0 // ifdef ASSERT
3329 visited.Reset();
3330 Node_Stack old_mems(arena, _compile->unique() >> 2);
3331 #endif
3332 for (uint i = 0; i < ideal_nodes.size(); i++) {
3333 Node* n = ideal_nodes.at(i);
3334 Node* nmem = get_map(n->_idx);
3335 assert(nmem != NULL, "sanity");
3336 if (n->is_Mem()) {
3337 #if 0 // ifdef ASSERT
3338 Node* old_mem = n->in(MemNode::Memory);
3339 if (!visited.test_set(old_mem->_idx)) {
3340 old_mems.push(old_mem, old_mem->outcnt());
3341 }
3342 #endif
3343 assert(n->in(MemNode::Memory) != nmem, "sanity");
3344 if (!n->is_Load()) {
3345 // Move memory users of a store first.
3346 move_inst_mem(n, orig_phis);
3347 }
3348 // Now update memory input
3349 igvn->hash_delete(n);
3350 n->set_req(MemNode::Memory, nmem);
3351 igvn->hash_insert(n);
3352 record_for_optimizer(n);
3353 } else {
3354 assert(n->is_Allocate() || n->is_CheckCastPP() ||
3355 n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3356 }
3357 }
3358 #if 0 // ifdef ASSERT
3359 // Verify that memory was split correctly
3360 while (old_mems.is_nonempty()) {
3361 Node* old_mem = old_mems.node();
3362 uint old_cnt = old_mems.index();
3363 old_mems.pop();
3364 assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3365 }
3366 #endif
3367 }
3368
3369 #ifndef PRODUCT
3370 static const char *node_type_names[] = {
3371 "UnknownType",
3372 "JavaObject",
3373 "LocalVar",
3374 "Field",
3375 "Arraycopy"
3376 };
3377
3378 static const char *esc_names[] = {
3379 "UnknownEscape",
3380 "NoEscape",
3381 "ArgEscape",
3382 "GlobalEscape"
3383 };
3384
3385 void PointsToNode::dump(bool print_state) const {
3386 NodeType nt = node_type();
3387 tty->print("%s ", node_type_names[(int) nt]);
3388 if (print_state) {
3389 EscapeState es = escape_state();
3390 EscapeState fields_es = fields_escape_state();
3391 tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3392 if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3393 tty->print("NSR ");
3394 }
3395 if (is_Field()) {
3396 FieldNode* f = (FieldNode*)this;
3397 if (f->is_oop())
3398 tty->print("oop ");
3399 if (f->offset() > 0)
3400 tty->print("+%d ", f->offset());
3401 tty->print("(");
3402 for (BaseIterator i(f); i.has_next(); i.next()) {
3403 PointsToNode* b = i.get();
3404 tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3405 }
3406 tty->print(" )");
3407 }
3408 tty->print("[");
3409 for (EdgeIterator i(this); i.has_next(); i.next()) {
3410 PointsToNode* e = i.get();
3411 tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3412 }
3413 tty->print(" [");
3414 for (UseIterator i(this); i.has_next(); i.next()) {
3415 PointsToNode* u = i.get();
3416 bool is_base = false;
3417 if (PointsToNode::is_base_use(u)) {
3418 is_base = true;
3419 u = PointsToNode::get_use_node(u)->as_Field();
3420 }
3421 tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3422 }
3423 tty->print(" ]] ");
3424 if (_node == NULL)
3425 tty->print_cr("<null>");
3426 else
3427 _node->dump();
3428 }
3429
3430 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3431 bool first = true;
3432 int ptnodes_length = ptnodes_worklist.length();
3433 for (int i = 0; i < ptnodes_length; i++) {
3434 PointsToNode *ptn = ptnodes_worklist.at(i);
3435 if (ptn == NULL || !ptn->is_JavaObject())
3436 continue;
3437 PointsToNode::EscapeState es = ptn->escape_state();
3438 if ((es != PointsToNode::NoEscape) && !Verbose) {
3439 continue;
3440 }
3441 Node* n = ptn->ideal_node();
3442 if (n->is_Allocate() || (n->is_CallStaticJava() &&
3443 n->as_CallStaticJava()->is_boxing_method())) {
3444 if (first) {
3445 tty->cr();
3446 tty->print("======== Connection graph for ");
3447 _compile->method()->print_short_name();
3448 tty->cr();
3449 first = false;
3450 }
3451 ptn->dump();
3452 // Print all locals and fields which reference this allocation
3453 for (UseIterator j(ptn); j.has_next(); j.next()) {
3454 PointsToNode* use = j.get();
3455 if (use->is_LocalVar()) {
3456 use->dump(Verbose);
3457 } else if (Verbose) {
3458 use->dump();
3459 }
3460 }
3461 tty->cr();
3462 }
3463 }
3464 }
3465 #endif
--- EOF ---