1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "nativeInst_x86.hpp"
  30 #include "oops/instanceOop.hpp"
  31 #include "oops/method.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/frame.inline.hpp"
  36 #include "runtime/handles.inline.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubCodeGenerator.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "utilities/top.hpp"
  42 #ifdef COMPILER2
  43 #include "opto/runtime.hpp"
  44 #endif
  45 
  46 // Declaration and definition of StubGenerator (no .hpp file).
  47 // For a more detailed description of the stub routine structure
  48 // see the comment in stubRoutines.hpp
  49 
  50 #define __ _masm->
  51 #define a__ ((Assembler*)_masm)->
  52 
  53 #ifdef PRODUCT
  54 #define BLOCK_COMMENT(str) /* nothing */
  55 #else
  56 #define BLOCK_COMMENT(str) __ block_comment(str)
  57 #endif
  58 
  59 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  60 
  61 const int MXCSR_MASK  = 0xFFC0;  // Mask out any pending exceptions
  62 const int FPU_CNTRL_WRD_MASK = 0xFFFF;
  63 
  64 // -------------------------------------------------------------------------------------------------------------------------
  65 // Stub Code definitions
  66 
  67 static address handle_unsafe_access() {
  68   JavaThread* thread = JavaThread::current();
  69   address pc  = thread->saved_exception_pc();
  70   // pc is the instruction which we must emulate
  71   // doing a no-op is fine:  return garbage from the load
  72   // therefore, compute npc
  73   address npc = Assembler::locate_next_instruction(pc);
  74 
  75   // request an async exception
  76   thread->set_pending_unsafe_access_error();
  77 
  78   // return address of next instruction to execute
  79   return npc;
  80 }
  81 
  82 class StubGenerator: public StubCodeGenerator {
  83  private:
  84 
  85 #ifdef PRODUCT
  86 #define inc_counter_np(counter) ((void)0)
  87 #else
  88   void inc_counter_np_(int& counter) {
  89     __ incrementl(ExternalAddress((address)&counter));
  90   }
  91 #define inc_counter_np(counter) \
  92   BLOCK_COMMENT("inc_counter " #counter); \
  93   inc_counter_np_(counter);
  94 #endif //PRODUCT
  95 
  96   void inc_copy_counter_np(BasicType t) {
  97 #ifndef PRODUCT
  98     switch (t) {
  99     case T_BYTE:    inc_counter_np(SharedRuntime::_jbyte_array_copy_ctr); return;
 100     case T_SHORT:   inc_counter_np(SharedRuntime::_jshort_array_copy_ctr); return;
 101     case T_INT:     inc_counter_np(SharedRuntime::_jint_array_copy_ctr); return;
 102     case T_LONG:    inc_counter_np(SharedRuntime::_jlong_array_copy_ctr); return;
 103     case T_OBJECT:  inc_counter_np(SharedRuntime::_oop_array_copy_ctr); return;
 104     }
 105     ShouldNotReachHere();
 106 #endif //PRODUCT
 107   }
 108 
 109   //------------------------------------------------------------------------------------------------------------------------
 110   // Call stubs are used to call Java from C
 111   //
 112   //    [ return_from_Java     ] <--- rsp
 113   //    [ argument word n      ]
 114   //      ...
 115   // -N [ argument word 1      ]
 116   // -7 [ Possible padding for stack alignment ]
 117   // -6 [ Possible padding for stack alignment ]
 118   // -5 [ Possible padding for stack alignment ]
 119   // -4 [ mxcsr save           ] <--- rsp_after_call
 120   // -3 [ saved rbx,            ]
 121   // -2 [ saved rsi            ]
 122   // -1 [ saved rdi            ]
 123   //  0 [ saved rbp,            ] <--- rbp,
 124   //  1 [ return address       ]
 125   //  2 [ ptr. to call wrapper ]
 126   //  3 [ result               ]
 127   //  4 [ result_type          ]
 128   //  5 [ method               ]
 129   //  6 [ entry_point          ]
 130   //  7 [ parameters           ]
 131   //  8 [ parameter_size       ]
 132   //  9 [ thread               ]
 133 
 134 
 135   address generate_call_stub(address& return_address) {
 136     StubCodeMark mark(this, "StubRoutines", "call_stub");
 137     address start = __ pc();
 138 
 139     // stub code parameters / addresses
 140     assert(frame::entry_frame_call_wrapper_offset == 2, "adjust this code");
 141     bool  sse_save = false;
 142     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_catch_exception()!
 143     const int     locals_count_in_bytes  (4*wordSize);
 144     const Address mxcsr_save    (rbp, -4 * wordSize);
 145     const Address saved_rbx     (rbp, -3 * wordSize);
 146     const Address saved_rsi     (rbp, -2 * wordSize);
 147     const Address saved_rdi     (rbp, -1 * wordSize);
 148     const Address result        (rbp,  3 * wordSize);
 149     const Address result_type   (rbp,  4 * wordSize);
 150     const Address method        (rbp,  5 * wordSize);
 151     const Address entry_point   (rbp,  6 * wordSize);
 152     const Address parameters    (rbp,  7 * wordSize);
 153     const Address parameter_size(rbp,  8 * wordSize);
 154     const Address thread        (rbp,  9 * wordSize); // same as in generate_catch_exception()!
 155     sse_save =  UseSSE > 0;
 156 
 157     // stub code
 158     __ enter();
 159     __ movptr(rcx, parameter_size);              // parameter counter
 160     __ shlptr(rcx, Interpreter::logStackElementSize); // convert parameter count to bytes
 161     __ addptr(rcx, locals_count_in_bytes);       // reserve space for register saves
 162     __ subptr(rsp, rcx);
 163     __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
 164 
 165     // save rdi, rsi, & rbx, according to C calling conventions
 166     __ movptr(saved_rdi, rdi);
 167     __ movptr(saved_rsi, rsi);
 168     __ movptr(saved_rbx, rbx);
 169     // save and initialize %mxcsr
 170     if (sse_save) {
 171       Label skip_ldmx;
 172       __ stmxcsr(mxcsr_save);
 173       __ movl(rax, mxcsr_save);
 174       __ andl(rax, MXCSR_MASK);    // Only check control and mask bits
 175       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
 176       __ cmp32(rax, mxcsr_std);
 177       __ jcc(Assembler::equal, skip_ldmx);
 178       __ ldmxcsr(mxcsr_std);
 179       __ bind(skip_ldmx);
 180     }
 181 
 182     // make sure the control word is correct.
 183     __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 184 
 185 #ifdef ASSERT
 186     // make sure we have no pending exceptions
 187     { Label L;
 188       __ movptr(rcx, thread);
 189       __ cmpptr(Address(rcx, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 190       __ jcc(Assembler::equal, L);
 191       __ stop("StubRoutines::call_stub: entered with pending exception");
 192       __ bind(L);
 193     }
 194 #endif
 195 
 196     // pass parameters if any
 197     BLOCK_COMMENT("pass parameters if any");
 198     Label parameters_done;
 199     __ movl(rcx, parameter_size);  // parameter counter
 200     __ testl(rcx, rcx);
 201     __ jcc(Assembler::zero, parameters_done);
 202 
 203     // parameter passing loop
 204 
 205     Label loop;
 206     // Copy Java parameters in reverse order (receiver last)
 207     // Note that the argument order is inverted in the process
 208     // source is rdx[rcx: N-1..0]
 209     // dest   is rsp[rbx: 0..N-1]
 210 
 211     __ movptr(rdx, parameters);          // parameter pointer
 212     __ xorptr(rbx, rbx);
 213 
 214     __ BIND(loop);
 215 
 216     // get parameter
 217     __ movptr(rax, Address(rdx, rcx, Interpreter::stackElementScale(), -wordSize));
 218     __ movptr(Address(rsp, rbx, Interpreter::stackElementScale(),
 219                     Interpreter::expr_offset_in_bytes(0)), rax);          // store parameter
 220     __ increment(rbx);
 221     __ decrement(rcx);
 222     __ jcc(Assembler::notZero, loop);
 223 
 224     // call Java function
 225     __ BIND(parameters_done);
 226     __ movptr(rbx, method);           // get Method*
 227     __ movptr(rax, entry_point);      // get entry_point
 228     __ mov(rsi, rsp);                 // set sender sp
 229     BLOCK_COMMENT("call Java function");
 230     __ call(rax);
 231 
 232     BLOCK_COMMENT("call_stub_return_address:");
 233     return_address = __ pc();
 234 
 235 #ifdef COMPILER2
 236     {
 237       Label L_skip;
 238       if (UseSSE >= 2) {
 239         __ verify_FPU(0, "call_stub_return");
 240       } else {
 241         for (int i = 1; i < 8; i++) {
 242           __ ffree(i);
 243         }
 244 
 245         // UseSSE <= 1 so double result should be left on TOS
 246         __ movl(rsi, result_type);
 247         __ cmpl(rsi, T_DOUBLE);
 248         __ jcc(Assembler::equal, L_skip);
 249         if (UseSSE == 0) {
 250           // UseSSE == 0 so float result should be left on TOS
 251           __ cmpl(rsi, T_FLOAT);
 252           __ jcc(Assembler::equal, L_skip);
 253         }
 254         __ ffree(0);
 255       }
 256       __ BIND(L_skip);
 257     }
 258 #endif // COMPILER2
 259 
 260     // store result depending on type
 261     // (everything that is not T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
 262     __ movptr(rdi, result);
 263     Label is_long, is_float, is_double, exit;
 264     __ movl(rsi, result_type);
 265     __ cmpl(rsi, T_LONG);
 266     __ jcc(Assembler::equal, is_long);
 267     __ cmpl(rsi, T_FLOAT);
 268     __ jcc(Assembler::equal, is_float);
 269     __ cmpl(rsi, T_DOUBLE);
 270     __ jcc(Assembler::equal, is_double);
 271 
 272     // handle T_INT case
 273     __ movl(Address(rdi, 0), rax);
 274     __ BIND(exit);
 275 
 276     // check that FPU stack is empty
 277     __ verify_FPU(0, "generate_call_stub");
 278 
 279     // pop parameters
 280     __ lea(rsp, rsp_after_call);
 281 
 282     // restore %mxcsr
 283     if (sse_save) {
 284       __ ldmxcsr(mxcsr_save);
 285     }
 286 
 287     // restore rdi, rsi and rbx,
 288     __ movptr(rbx, saved_rbx);
 289     __ movptr(rsi, saved_rsi);
 290     __ movptr(rdi, saved_rdi);
 291     __ addptr(rsp, 4*wordSize);
 292 
 293     // return
 294     __ pop(rbp);
 295     __ ret(0);
 296 
 297     // handle return types different from T_INT
 298     __ BIND(is_long);
 299     __ movl(Address(rdi, 0 * wordSize), rax);
 300     __ movl(Address(rdi, 1 * wordSize), rdx);
 301     __ jmp(exit);
 302 
 303     __ BIND(is_float);
 304     // interpreter uses xmm0 for return values
 305     if (UseSSE >= 1) {
 306       __ movflt(Address(rdi, 0), xmm0);
 307     } else {
 308       __ fstp_s(Address(rdi, 0));
 309     }
 310     __ jmp(exit);
 311 
 312     __ BIND(is_double);
 313     // interpreter uses xmm0 for return values
 314     if (UseSSE >= 2) {
 315       __ movdbl(Address(rdi, 0), xmm0);
 316     } else {
 317       __ fstp_d(Address(rdi, 0));
 318     }
 319     __ jmp(exit);
 320 
 321     return start;
 322   }
 323 
 324 
 325   //------------------------------------------------------------------------------------------------------------------------
 326   // Return point for a Java call if there's an exception thrown in Java code.
 327   // The exception is caught and transformed into a pending exception stored in
 328   // JavaThread that can be tested from within the VM.
 329   //
 330   // Note: Usually the parameters are removed by the callee. In case of an exception
 331   //       crossing an activation frame boundary, that is not the case if the callee
 332   //       is compiled code => need to setup the rsp.
 333   //
 334   // rax,: exception oop
 335 
 336   address generate_catch_exception() {
 337     StubCodeMark mark(this, "StubRoutines", "catch_exception");
 338     const Address rsp_after_call(rbp, -4 * wordSize); // same as in generate_call_stub()!
 339     const Address thread        (rbp,  9 * wordSize); // same as in generate_call_stub()!
 340     address start = __ pc();
 341 
 342     // get thread directly
 343     __ movptr(rcx, thread);
 344 #ifdef ASSERT
 345     // verify that threads correspond
 346     { Label L;
 347       __ get_thread(rbx);
 348       __ cmpptr(rbx, rcx);
 349       __ jcc(Assembler::equal, L);
 350       __ stop("StubRoutines::catch_exception: threads must correspond");
 351       __ bind(L);
 352     }
 353 #endif
 354     // set pending exception
 355     __ verify_oop(rax);
 356     __ movptr(Address(rcx, Thread::pending_exception_offset()), rax          );
 357     __ lea(Address(rcx, Thread::exception_file_offset   ()),
 358            ExternalAddress((address)__FILE__));
 359     __ movl(Address(rcx, Thread::exception_line_offset   ()), __LINE__ );
 360     // complete return to VM
 361     assert(StubRoutines::_call_stub_return_address != NULL, "_call_stub_return_address must have been generated before");
 362     __ jump(RuntimeAddress(StubRoutines::_call_stub_return_address));
 363 
 364     return start;
 365   }
 366 
 367 
 368   //------------------------------------------------------------------------------------------------------------------------
 369   // Continuation point for runtime calls returning with a pending exception.
 370   // The pending exception check happened in the runtime or native call stub.
 371   // The pending exception in Thread is converted into a Java-level exception.
 372   //
 373   // Contract with Java-level exception handlers:
 374   // rax: exception
 375   // rdx: throwing pc
 376   //
 377   // NOTE: At entry of this stub, exception-pc must be on stack !!
 378 
 379   address generate_forward_exception() {
 380     StubCodeMark mark(this, "StubRoutines", "forward exception");
 381     address start = __ pc();
 382     const Register thread = rcx;
 383 
 384     // other registers used in this stub
 385     const Register exception_oop = rax;
 386     const Register handler_addr  = rbx;
 387     const Register exception_pc  = rdx;
 388 
 389     // Upon entry, the sp points to the return address returning into Java
 390     // (interpreted or compiled) code; i.e., the return address becomes the
 391     // throwing pc.
 392     //
 393     // Arguments pushed before the runtime call are still on the stack but
 394     // the exception handler will reset the stack pointer -> ignore them.
 395     // A potential result in registers can be ignored as well.
 396 
 397 #ifdef ASSERT
 398     // make sure this code is only executed if there is a pending exception
 399     { Label L;
 400       __ get_thread(thread);
 401       __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 402       __ jcc(Assembler::notEqual, L);
 403       __ stop("StubRoutines::forward exception: no pending exception (1)");
 404       __ bind(L);
 405     }
 406 #endif
 407 
 408     // compute exception handler into rbx,
 409     __ get_thread(thread);
 410     __ movptr(exception_pc, Address(rsp, 0));
 411     BLOCK_COMMENT("call exception_handler_for_return_address");
 412     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
 413     __ mov(handler_addr, rax);
 414 
 415     // setup rax & rdx, remove return address & clear pending exception
 416     __ get_thread(thread);
 417     __ pop(exception_pc);
 418     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
 419     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
 420 
 421 #ifdef ASSERT
 422     // make sure exception is set
 423     { Label L;
 424       __ testptr(exception_oop, exception_oop);
 425       __ jcc(Assembler::notEqual, L);
 426       __ stop("StubRoutines::forward exception: no pending exception (2)");
 427       __ bind(L);
 428     }
 429 #endif
 430 
 431     // Verify that there is really a valid exception in RAX.
 432     __ verify_oop(exception_oop);
 433 
 434     // continue at exception handler (return address removed)
 435     // rax: exception
 436     // rbx: exception handler
 437     // rdx: throwing pc
 438     __ jmp(handler_addr);
 439 
 440     return start;
 441   }
 442 
 443 
 444   //----------------------------------------------------------------------------------------------------
 445   // Support for jint Atomic::xchg(jint exchange_value, volatile jint* dest)
 446   //
 447   // xchg exists as far back as 8086, lock needed for MP only
 448   // Stack layout immediately after call:
 449   //
 450   // 0 [ret addr ] <--- rsp
 451   // 1 [  ex     ]
 452   // 2 [  dest   ]
 453   //
 454   // Result:   *dest <- ex, return (old *dest)
 455   //
 456   // Note: win32 does not currently use this code
 457 
 458   address generate_atomic_xchg() {
 459     StubCodeMark mark(this, "StubRoutines", "atomic_xchg");
 460     address start = __ pc();
 461 
 462     __ push(rdx);
 463     Address exchange(rsp, 2 * wordSize);
 464     Address dest_addr(rsp, 3 * wordSize);
 465     __ movl(rax, exchange);
 466     __ movptr(rdx, dest_addr);
 467     __ xchgl(rax, Address(rdx, 0));
 468     __ pop(rdx);
 469     __ ret(0);
 470 
 471     return start;
 472   }
 473 
 474   //----------------------------------------------------------------------------------------------------
 475   // Support for void verify_mxcsr()
 476   //
 477   // This routine is used with -Xcheck:jni to verify that native
 478   // JNI code does not return to Java code without restoring the
 479   // MXCSR register to our expected state.
 480 
 481 
 482   address generate_verify_mxcsr() {
 483     StubCodeMark mark(this, "StubRoutines", "verify_mxcsr");
 484     address start = __ pc();
 485 
 486     const Address mxcsr_save(rsp, 0);
 487 
 488     if (CheckJNICalls && UseSSE > 0 ) {
 489       Label ok_ret;
 490       ExternalAddress mxcsr_std(StubRoutines::addr_mxcsr_std());
 491       __ push(rax);
 492       __ subptr(rsp, wordSize);      // allocate a temp location
 493       __ stmxcsr(mxcsr_save);
 494       __ movl(rax, mxcsr_save);
 495       __ andl(rax, MXCSR_MASK);
 496       __ cmp32(rax, mxcsr_std);
 497       __ jcc(Assembler::equal, ok_ret);
 498 
 499       __ warn("MXCSR changed by native JNI code.");
 500 
 501       __ ldmxcsr(mxcsr_std);
 502 
 503       __ bind(ok_ret);
 504       __ addptr(rsp, wordSize);
 505       __ pop(rax);
 506     }
 507 
 508     __ ret(0);
 509 
 510     return start;
 511   }
 512 
 513 
 514   //---------------------------------------------------------------------------
 515   // Support for void verify_fpu_cntrl_wrd()
 516   //
 517   // This routine is used with -Xcheck:jni to verify that native
 518   // JNI code does not return to Java code without restoring the
 519   // FP control word to our expected state.
 520 
 521   address generate_verify_fpu_cntrl_wrd() {
 522     StubCodeMark mark(this, "StubRoutines", "verify_spcw");
 523     address start = __ pc();
 524 
 525     const Address fpu_cntrl_wrd_save(rsp, 0);
 526 
 527     if (CheckJNICalls) {
 528       Label ok_ret;
 529       __ push(rax);
 530       __ subptr(rsp, wordSize);      // allocate a temp location
 531       __ fnstcw(fpu_cntrl_wrd_save);
 532       __ movl(rax, fpu_cntrl_wrd_save);
 533       __ andl(rax, FPU_CNTRL_WRD_MASK);
 534       ExternalAddress fpu_std(StubRoutines::addr_fpu_cntrl_wrd_std());
 535       __ cmp32(rax, fpu_std);
 536       __ jcc(Assembler::equal, ok_ret);
 537 
 538       __ warn("Floating point control word changed by native JNI code.");
 539 
 540       __ fldcw(fpu_std);
 541 
 542       __ bind(ok_ret);
 543       __ addptr(rsp, wordSize);
 544       __ pop(rax);
 545     }
 546 
 547     __ ret(0);
 548 
 549     return start;
 550   }
 551 
 552   //---------------------------------------------------------------------------
 553   // Wrapper for slow-case handling of double-to-integer conversion
 554   // d2i or f2i fast case failed either because it is nan or because
 555   // of under/overflow.
 556   // Input:  FPU TOS: float value
 557   // Output: rax, (rdx): integer (long) result
 558 
 559   address generate_d2i_wrapper(BasicType t, address fcn) {
 560     StubCodeMark mark(this, "StubRoutines", "d2i_wrapper");
 561     address start = __ pc();
 562 
 563   // Capture info about frame layout
 564   enum layout { FPUState_off         = 0,
 565                 rbp_off              = FPUStateSizeInWords,
 566                 rdi_off,
 567                 rsi_off,
 568                 rcx_off,
 569                 rbx_off,
 570                 saved_argument_off,
 571                 saved_argument_off2, // 2nd half of double
 572                 framesize
 573   };
 574 
 575   assert(FPUStateSizeInWords == 27, "update stack layout");
 576 
 577     // Save outgoing argument to stack across push_FPU_state()
 578     __ subptr(rsp, wordSize * 2);
 579     __ fstp_d(Address(rsp, 0));
 580 
 581     // Save CPU & FPU state
 582     __ push(rbx);
 583     __ push(rcx);
 584     __ push(rsi);
 585     __ push(rdi);
 586     __ push(rbp);
 587     __ push_FPU_state();
 588 
 589     // push_FPU_state() resets the FP top of stack
 590     // Load original double into FP top of stack
 591     __ fld_d(Address(rsp, saved_argument_off * wordSize));
 592     // Store double into stack as outgoing argument
 593     __ subptr(rsp, wordSize*2);
 594     __ fst_d(Address(rsp, 0));
 595 
 596     // Prepare FPU for doing math in C-land
 597     __ empty_FPU_stack();
 598     // Call the C code to massage the double.  Result in EAX
 599     if (t == T_INT)
 600       { BLOCK_COMMENT("SharedRuntime::d2i"); }
 601     else if (t == T_LONG)
 602       { BLOCK_COMMENT("SharedRuntime::d2l"); }
 603     __ call_VM_leaf( fcn, 2 );
 604 
 605     // Restore CPU & FPU state
 606     __ pop_FPU_state();
 607     __ pop(rbp);
 608     __ pop(rdi);
 609     __ pop(rsi);
 610     __ pop(rcx);
 611     __ pop(rbx);
 612     __ addptr(rsp, wordSize * 2);
 613 
 614     __ ret(0);
 615 
 616     return start;
 617   }
 618 
 619 
 620   //---------------------------------------------------------------------------
 621   // The following routine generates a subroutine to throw an asynchronous
 622   // UnknownError when an unsafe access gets a fault that could not be
 623   // reasonably prevented by the programmer.  (Example: SIGBUS/OBJERR.)
 624   address generate_handler_for_unsafe_access() {
 625     StubCodeMark mark(this, "StubRoutines", "handler_for_unsafe_access");
 626     address start = __ pc();
 627 
 628     __ push(0);                       // hole for return address-to-be
 629     __ pusha();                       // push registers
 630     Address next_pc(rsp, RegisterImpl::number_of_registers * BytesPerWord);
 631     BLOCK_COMMENT("call handle_unsafe_access");
 632     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, handle_unsafe_access)));
 633     __ movptr(next_pc, rax);          // stuff next address
 634     __ popa();
 635     __ ret(0);                        // jump to next address
 636 
 637     return start;
 638   }
 639 
 640 
 641   //----------------------------------------------------------------------------------------------------
 642   // Non-destructive plausibility checks for oops
 643 
 644   address generate_verify_oop() {
 645     StubCodeMark mark(this, "StubRoutines", "verify_oop");
 646     address start = __ pc();
 647 
 648     // Incoming arguments on stack after saving rax,:
 649     //
 650     // [tos    ]: saved rdx
 651     // [tos + 1]: saved EFLAGS
 652     // [tos + 2]: return address
 653     // [tos + 3]: char* error message
 654     // [tos + 4]: oop   object to verify
 655     // [tos + 5]: saved rax, - saved by caller and bashed
 656 
 657     Label exit, error;
 658     __ pushf();
 659     __ incrementl(ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
 660     __ push(rdx);                                // save rdx
 661     // make sure object is 'reasonable'
 662     __ movptr(rax, Address(rsp, 4 * wordSize));    // get object
 663     __ testptr(rax, rax);
 664     __ jcc(Assembler::zero, exit);               // if obj is NULL it is ok
 665 
 666     // Check if the oop is in the right area of memory
 667     const int oop_mask = Universe::verify_oop_mask();
 668     const int oop_bits = Universe::verify_oop_bits();
 669     __ mov(rdx, rax);
 670     __ andptr(rdx, oop_mask);
 671     __ cmpptr(rdx, oop_bits);
 672     __ jcc(Assembler::notZero, error);
 673 
 674     // make sure klass is 'reasonable', which is not zero.
 675     __ movptr(rax, Address(rax, oopDesc::klass_offset_in_bytes())); // get klass
 676     __ testptr(rax, rax);
 677     __ jcc(Assembler::zero, error);              // if klass is NULL it is broken
 678 
 679     // return if everything seems ok
 680     __ bind(exit);
 681     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
 682     __ pop(rdx);                                 // restore rdx
 683     __ popf();                                   // restore EFLAGS
 684     __ ret(3 * wordSize);                        // pop arguments
 685 
 686     // handle errors
 687     __ bind(error);
 688     __ movptr(rax, Address(rsp, 5 * wordSize));  // get saved rax, back
 689     __ pop(rdx);                                 // get saved rdx back
 690     __ popf();                                   // get saved EFLAGS off stack -- will be ignored
 691     __ pusha();                                  // push registers (eip = return address & msg are already pushed)
 692     BLOCK_COMMENT("call MacroAssembler::debug");
 693     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 694     __ popa();
 695     __ ret(3 * wordSize);                        // pop arguments
 696     return start;
 697   }
 698 
 699   //
 700   //  Generate pre-barrier for array stores
 701   //
 702   //  Input:
 703   //     start   -  starting address
 704   //     count   -  element count
 705   void  gen_write_ref_array_pre_barrier(Register start, Register count, bool uninitialized_target) {
 706     assert_different_registers(start, count);
 707     BarrierSet* bs = Universe::heap()->barrier_set();
 708     switch (bs->kind()) {
 709       case BarrierSet::G1SATBCT:
 710       case BarrierSet::G1SATBCTLogging:
 711         // With G1, don't generate the call if we statically know that the target in uninitialized
 712         if (!uninitialized_target) {
 713            __ pusha();                      // push registers
 714            __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_pre),
 715                            start, count);
 716            __ popa();
 717          }
 718         break;
 719       case BarrierSet::CardTableModRef:
 720       case BarrierSet::CardTableExtension:
 721       case BarrierSet::ModRef:
 722         break;
 723       default      :
 724         ShouldNotReachHere();
 725 
 726     }
 727   }
 728 
 729 
 730   //
 731   // Generate a post-barrier for an array store
 732   //
 733   //     start    -  starting address
 734   //     count    -  element count
 735   //
 736   //  The two input registers are overwritten.
 737   //
 738   void  gen_write_ref_array_post_barrier(Register start, Register count) {
 739     BarrierSet* bs = Universe::heap()->barrier_set();
 740     assert_different_registers(start, count);
 741     switch (bs->kind()) {
 742       case BarrierSet::G1SATBCT:
 743       case BarrierSet::G1SATBCTLogging:
 744         {
 745           __ pusha();                      // push registers
 746           __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSet::static_write_ref_array_post),
 747                           start, count);
 748           __ popa();
 749         }
 750         break;
 751 
 752       case BarrierSet::CardTableModRef:
 753       case BarrierSet::CardTableExtension:
 754         {
 755           CardTableModRefBS* ct = (CardTableModRefBS*)bs;
 756           assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
 757 
 758           Label L_loop;
 759           const Register end = count;  // elements count; end == start+count-1
 760           assert_different_registers(start, end);
 761 
 762           __ lea(end,  Address(start, count, Address::times_ptr, -wordSize));
 763           __ shrptr(start, CardTableModRefBS::card_shift);
 764           __ shrptr(end,   CardTableModRefBS::card_shift);
 765           __ subptr(end, start); // end --> count
 766         __ BIND(L_loop);
 767           intptr_t disp = (intptr_t) ct->byte_map_base;
 768           Address cardtable(start, count, Address::times_1, disp);
 769           __ movb(cardtable, 0);
 770           __ decrement(count);
 771           __ jcc(Assembler::greaterEqual, L_loop);
 772         }
 773         break;
 774       case BarrierSet::ModRef:
 775         break;
 776       default      :
 777         ShouldNotReachHere();
 778 
 779     }
 780   }
 781 
 782 
 783   // Copy 64 bytes chunks
 784   //
 785   // Inputs:
 786   //   from        - source array address
 787   //   to_from     - destination array address - from
 788   //   qword_count - 8-bytes element count, negative
 789   //
 790   void xmm_copy_forward(Register from, Register to_from, Register qword_count) {
 791     assert( UseSSE >= 2, "supported cpu only" );
 792     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
 793     // Copy 64-byte chunks
 794     __ jmpb(L_copy_64_bytes);
 795     __ align(OptoLoopAlignment);
 796   __ BIND(L_copy_64_bytes_loop);
 797 
 798     if (UseUnalignedLoadStores) {
 799       if (UseAVX >= 2) {
 800         __ vmovdqu(xmm0, Address(from,  0));
 801         __ vmovdqu(Address(from, to_from, Address::times_1,  0), xmm0);
 802         __ vmovdqu(xmm1, Address(from, 32));
 803         __ vmovdqu(Address(from, to_from, Address::times_1, 32), xmm1);
 804       } else {
 805         __ movdqu(xmm0, Address(from, 0));
 806         __ movdqu(Address(from, to_from, Address::times_1, 0), xmm0);
 807         __ movdqu(xmm1, Address(from, 16));
 808         __ movdqu(Address(from, to_from, Address::times_1, 16), xmm1);
 809         __ movdqu(xmm2, Address(from, 32));
 810         __ movdqu(Address(from, to_from, Address::times_1, 32), xmm2);
 811         __ movdqu(xmm3, Address(from, 48));
 812         __ movdqu(Address(from, to_from, Address::times_1, 48), xmm3);
 813       }
 814     } else {
 815       __ movq(xmm0, Address(from, 0));
 816       __ movq(Address(from, to_from, Address::times_1, 0), xmm0);
 817       __ movq(xmm1, Address(from, 8));
 818       __ movq(Address(from, to_from, Address::times_1, 8), xmm1);
 819       __ movq(xmm2, Address(from, 16));
 820       __ movq(Address(from, to_from, Address::times_1, 16), xmm2);
 821       __ movq(xmm3, Address(from, 24));
 822       __ movq(Address(from, to_from, Address::times_1, 24), xmm3);
 823       __ movq(xmm4, Address(from, 32));
 824       __ movq(Address(from, to_from, Address::times_1, 32), xmm4);
 825       __ movq(xmm5, Address(from, 40));
 826       __ movq(Address(from, to_from, Address::times_1, 40), xmm5);
 827       __ movq(xmm6, Address(from, 48));
 828       __ movq(Address(from, to_from, Address::times_1, 48), xmm6);
 829       __ movq(xmm7, Address(from, 56));
 830       __ movq(Address(from, to_from, Address::times_1, 56), xmm7);
 831     }
 832 
 833     __ addl(from, 64);
 834   __ BIND(L_copy_64_bytes);
 835     __ subl(qword_count, 8);
 836     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
 837 
 838     if (UseUnalignedLoadStores && (UseAVX >= 2)) {
 839       // clean upper bits of YMM registers
 840       __ vzeroupper();
 841     }
 842     __ addl(qword_count, 8);
 843     __ jccb(Assembler::zero, L_exit);
 844     //
 845     // length is too short, just copy qwords
 846     //
 847   __ BIND(L_copy_8_bytes);
 848     __ movq(xmm0, Address(from, 0));
 849     __ movq(Address(from, to_from, Address::times_1), xmm0);
 850     __ addl(from, 8);
 851     __ decrement(qword_count);
 852     __ jcc(Assembler::greater, L_copy_8_bytes);
 853   __ BIND(L_exit);
 854   }
 855 
 856   // Copy 64 bytes chunks
 857   //
 858   // Inputs:
 859   //   from        - source array address
 860   //   to_from     - destination array address - from
 861   //   qword_count - 8-bytes element count, negative
 862   //
 863   void mmx_copy_forward(Register from, Register to_from, Register qword_count) {
 864     assert( VM_Version::supports_mmx(), "supported cpu only" );
 865     Label L_copy_64_bytes_loop, L_copy_64_bytes, L_copy_8_bytes, L_exit;
 866     // Copy 64-byte chunks
 867     __ jmpb(L_copy_64_bytes);
 868     __ align(OptoLoopAlignment);
 869   __ BIND(L_copy_64_bytes_loop);
 870     __ movq(mmx0, Address(from, 0));
 871     __ movq(mmx1, Address(from, 8));
 872     __ movq(mmx2, Address(from, 16));
 873     __ movq(Address(from, to_from, Address::times_1, 0), mmx0);
 874     __ movq(mmx3, Address(from, 24));
 875     __ movq(Address(from, to_from, Address::times_1, 8), mmx1);
 876     __ movq(mmx4, Address(from, 32));
 877     __ movq(Address(from, to_from, Address::times_1, 16), mmx2);
 878     __ movq(mmx5, Address(from, 40));
 879     __ movq(Address(from, to_from, Address::times_1, 24), mmx3);
 880     __ movq(mmx6, Address(from, 48));
 881     __ movq(Address(from, to_from, Address::times_1, 32), mmx4);
 882     __ movq(mmx7, Address(from, 56));
 883     __ movq(Address(from, to_from, Address::times_1, 40), mmx5);
 884     __ movq(Address(from, to_from, Address::times_1, 48), mmx6);
 885     __ movq(Address(from, to_from, Address::times_1, 56), mmx7);
 886     __ addptr(from, 64);
 887   __ BIND(L_copy_64_bytes);
 888     __ subl(qword_count, 8);
 889     __ jcc(Assembler::greaterEqual, L_copy_64_bytes_loop);
 890     __ addl(qword_count, 8);
 891     __ jccb(Assembler::zero, L_exit);
 892     //
 893     // length is too short, just copy qwords
 894     //
 895   __ BIND(L_copy_8_bytes);
 896     __ movq(mmx0, Address(from, 0));
 897     __ movq(Address(from, to_from, Address::times_1), mmx0);
 898     __ addptr(from, 8);
 899     __ decrement(qword_count);
 900     __ jcc(Assembler::greater, L_copy_8_bytes);
 901   __ BIND(L_exit);
 902     __ emms();
 903   }
 904 
 905   address generate_disjoint_copy(BasicType t, bool aligned,
 906                                  Address::ScaleFactor sf,
 907                                  address* entry, const char *name,
 908                                  bool dest_uninitialized = false) {
 909     __ align(CodeEntryAlignment);
 910     StubCodeMark mark(this, "StubRoutines", name);
 911     address start = __ pc();
 912 
 913     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
 914     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_64_bytes;
 915 
 916     int shift = Address::times_ptr - sf;
 917 
 918     const Register from     = rsi;  // source array address
 919     const Register to       = rdi;  // destination array address
 920     const Register count    = rcx;  // elements count
 921     const Register to_from  = to;   // (to - from)
 922     const Register saved_to = rdx;  // saved destination array address
 923 
 924     __ enter(); // required for proper stackwalking of RuntimeStub frame
 925     __ push(rsi);
 926     __ push(rdi);
 927     __ movptr(from , Address(rsp, 12+ 4));
 928     __ movptr(to   , Address(rsp, 12+ 8));
 929     __ movl(count, Address(rsp, 12+ 12));
 930 
 931     if (entry != NULL) {
 932       *entry = __ pc(); // Entry point from conjoint arraycopy stub.
 933       BLOCK_COMMENT("Entry:");
 934     }
 935 
 936     if (t == T_OBJECT) {
 937       __ testl(count, count);
 938       __ jcc(Assembler::zero, L_0_count);
 939       gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
 940       __ mov(saved_to, to);          // save 'to'
 941     }
 942 
 943     __ subptr(to, from); // to --> to_from
 944     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
 945     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
 946     if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
 947       // align source address at 4 bytes address boundary
 948       if (t == T_BYTE) {
 949         // One byte misalignment happens only for byte arrays
 950         __ testl(from, 1);
 951         __ jccb(Assembler::zero, L_skip_align1);
 952         __ movb(rax, Address(from, 0));
 953         __ movb(Address(from, to_from, Address::times_1, 0), rax);
 954         __ increment(from);
 955         __ decrement(count);
 956       __ BIND(L_skip_align1);
 957       }
 958       // Two bytes misalignment happens only for byte and short (char) arrays
 959       __ testl(from, 2);
 960       __ jccb(Assembler::zero, L_skip_align2);
 961       __ movw(rax, Address(from, 0));
 962       __ movw(Address(from, to_from, Address::times_1, 0), rax);
 963       __ addptr(from, 2);
 964       __ subl(count, 1<<(shift-1));
 965     __ BIND(L_skip_align2);
 966     }
 967     if (!VM_Version::supports_mmx()) {
 968       __ mov(rax, count);      // save 'count'
 969       __ shrl(count, shift); // bytes count
 970       __ addptr(to_from, from);// restore 'to'
 971       __ rep_mov();
 972       __ subptr(to_from, from);// restore 'to_from'
 973       __ mov(count, rax);      // restore 'count'
 974       __ jmpb(L_copy_2_bytes); // all dwords were copied
 975     } else {
 976       if (!UseUnalignedLoadStores) {
 977         // align to 8 bytes, we know we are 4 byte aligned to start
 978         __ testptr(from, 4);
 979         __ jccb(Assembler::zero, L_copy_64_bytes);
 980         __ movl(rax, Address(from, 0));
 981         __ movl(Address(from, to_from, Address::times_1, 0), rax);
 982         __ addptr(from, 4);
 983         __ subl(count, 1<<shift);
 984       }
 985     __ BIND(L_copy_64_bytes);
 986       __ mov(rax, count);
 987       __ shrl(rax, shift+1);  // 8 bytes chunk count
 988       //
 989       // Copy 8-byte chunks through MMX registers, 8 per iteration of the loop
 990       //
 991       if (UseXMMForArrayCopy) {
 992         xmm_copy_forward(from, to_from, rax);
 993       } else {
 994         mmx_copy_forward(from, to_from, rax);
 995       }
 996     }
 997     // copy tailing dword
 998   __ BIND(L_copy_4_bytes);
 999     __ testl(count, 1<<shift);
1000     __ jccb(Assembler::zero, L_copy_2_bytes);
1001     __ movl(rax, Address(from, 0));
1002     __ movl(Address(from, to_from, Address::times_1, 0), rax);
1003     if (t == T_BYTE || t == T_SHORT) {
1004       __ addptr(from, 4);
1005     __ BIND(L_copy_2_bytes);
1006       // copy tailing word
1007       __ testl(count, 1<<(shift-1));
1008       __ jccb(Assembler::zero, L_copy_byte);
1009       __ movw(rax, Address(from, 0));
1010       __ movw(Address(from, to_from, Address::times_1, 0), rax);
1011       if (t == T_BYTE) {
1012         __ addptr(from, 2);
1013       __ BIND(L_copy_byte);
1014         // copy tailing byte
1015         __ testl(count, 1);
1016         __ jccb(Assembler::zero, L_exit);
1017         __ movb(rax, Address(from, 0));
1018         __ movb(Address(from, to_from, Address::times_1, 0), rax);
1019       __ BIND(L_exit);
1020       } else {
1021       __ BIND(L_copy_byte);
1022       }
1023     } else {
1024     __ BIND(L_copy_2_bytes);
1025     }
1026 
1027     if (t == T_OBJECT) {
1028       __ movl(count, Address(rsp, 12+12)); // reread 'count'
1029       __ mov(to, saved_to); // restore 'to'
1030       gen_write_ref_array_post_barrier(to, count);
1031     __ BIND(L_0_count);
1032     }
1033     inc_copy_counter_np(t);
1034     __ pop(rdi);
1035     __ pop(rsi);
1036     __ leave(); // required for proper stackwalking of RuntimeStub frame
1037     __ xorptr(rax, rax); // return 0
1038     __ ret(0);
1039     return start;
1040   }
1041 
1042 
1043   address generate_fill(BasicType t, bool aligned, const char *name) {
1044     __ align(CodeEntryAlignment);
1045     StubCodeMark mark(this, "StubRoutines", name);
1046     address start = __ pc();
1047 
1048     BLOCK_COMMENT("Entry:");
1049 
1050     const Register to       = rdi;  // source array address
1051     const Register value    = rdx;  // value
1052     const Register count    = rsi;  // elements count
1053 
1054     __ enter(); // required for proper stackwalking of RuntimeStub frame
1055     __ push(rsi);
1056     __ push(rdi);
1057     __ movptr(to   , Address(rsp, 12+ 4));
1058     __ movl(value, Address(rsp, 12+ 8));
1059     __ movl(count, Address(rsp, 12+ 12));
1060 
1061     __ generate_fill(t, aligned, to, value, count, rax, xmm0);
1062 
1063     __ pop(rdi);
1064     __ pop(rsi);
1065     __ leave(); // required for proper stackwalking of RuntimeStub frame
1066     __ ret(0);
1067     return start;
1068   }
1069 
1070   address generate_conjoint_copy(BasicType t, bool aligned,
1071                                  Address::ScaleFactor sf,
1072                                  address nooverlap_target,
1073                                  address* entry, const char *name,
1074                                  bool dest_uninitialized = false) {
1075     __ align(CodeEntryAlignment);
1076     StubCodeMark mark(this, "StubRoutines", name);
1077     address start = __ pc();
1078 
1079     Label L_0_count, L_exit, L_skip_align1, L_skip_align2, L_copy_byte;
1080     Label L_copy_2_bytes, L_copy_4_bytes, L_copy_8_bytes, L_copy_8_bytes_loop;
1081 
1082     int shift = Address::times_ptr - sf;
1083 
1084     const Register src   = rax;  // source array address
1085     const Register dst   = rdx;  // destination array address
1086     const Register from  = rsi;  // source array address
1087     const Register to    = rdi;  // destination array address
1088     const Register count = rcx;  // elements count
1089     const Register end   = rax;  // array end address
1090 
1091     __ enter(); // required for proper stackwalking of RuntimeStub frame
1092     __ push(rsi);
1093     __ push(rdi);
1094     __ movptr(src  , Address(rsp, 12+ 4));   // from
1095     __ movptr(dst  , Address(rsp, 12+ 8));   // to
1096     __ movl2ptr(count, Address(rsp, 12+12)); // count
1097 
1098     if (entry != NULL) {
1099       *entry = __ pc(); // Entry point from generic arraycopy stub.
1100       BLOCK_COMMENT("Entry:");
1101     }
1102 
1103     // nooverlap_target expects arguments in rsi and rdi.
1104     __ mov(from, src);
1105     __ mov(to  , dst);
1106 
1107     // arrays overlap test: dispatch to disjoint stub if necessary.
1108     RuntimeAddress nooverlap(nooverlap_target);
1109     __ cmpptr(dst, src);
1110     __ lea(end, Address(src, count, sf, 0)); // src + count * elem_size
1111     __ jump_cc(Assembler::belowEqual, nooverlap);
1112     __ cmpptr(dst, end);
1113     __ jump_cc(Assembler::aboveEqual, nooverlap);
1114 
1115     if (t == T_OBJECT) {
1116       __ testl(count, count);
1117       __ jcc(Assembler::zero, L_0_count);
1118       gen_write_ref_array_pre_barrier(dst, count, dest_uninitialized);
1119     }
1120 
1121     // copy from high to low
1122     __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
1123     __ jcc(Assembler::below, L_copy_4_bytes); // use unsigned cmp
1124     if (t == T_BYTE || t == T_SHORT) {
1125       // Align the end of destination array at 4 bytes address boundary
1126       __ lea(end, Address(dst, count, sf, 0));
1127       if (t == T_BYTE) {
1128         // One byte misalignment happens only for byte arrays
1129         __ testl(end, 1);
1130         __ jccb(Assembler::zero, L_skip_align1);
1131         __ decrement(count);
1132         __ movb(rdx, Address(from, count, sf, 0));
1133         __ movb(Address(to, count, sf, 0), rdx);
1134       __ BIND(L_skip_align1);
1135       }
1136       // Two bytes misalignment happens only for byte and short (char) arrays
1137       __ testl(end, 2);
1138       __ jccb(Assembler::zero, L_skip_align2);
1139       __ subptr(count, 1<<(shift-1));
1140       __ movw(rdx, Address(from, count, sf, 0));
1141       __ movw(Address(to, count, sf, 0), rdx);
1142     __ BIND(L_skip_align2);
1143       __ cmpl(count, 2<<shift); // Short arrays (< 8 bytes) copy by element
1144       __ jcc(Assembler::below, L_copy_4_bytes);
1145     }
1146 
1147     if (!VM_Version::supports_mmx()) {
1148       __ std();
1149       __ mov(rax, count); // Save 'count'
1150       __ mov(rdx, to);    // Save 'to'
1151       __ lea(rsi, Address(from, count, sf, -4));
1152       __ lea(rdi, Address(to  , count, sf, -4));
1153       __ shrptr(count, shift); // bytes count
1154       __ rep_mov();
1155       __ cld();
1156       __ mov(count, rax); // restore 'count'
1157       __ andl(count, (1<<shift)-1);      // mask the number of rest elements
1158       __ movptr(from, Address(rsp, 12+4)); // reread 'from'
1159       __ mov(to, rdx);   // restore 'to'
1160       __ jmpb(L_copy_2_bytes); // all dword were copied
1161    } else {
1162       // Align to 8 bytes the end of array. It is aligned to 4 bytes already.
1163       __ testptr(end, 4);
1164       __ jccb(Assembler::zero, L_copy_8_bytes);
1165       __ subl(count, 1<<shift);
1166       __ movl(rdx, Address(from, count, sf, 0));
1167       __ movl(Address(to, count, sf, 0), rdx);
1168       __ jmpb(L_copy_8_bytes);
1169 
1170       __ align(OptoLoopAlignment);
1171       // Move 8 bytes
1172     __ BIND(L_copy_8_bytes_loop);
1173       if (UseXMMForArrayCopy) {
1174         __ movq(xmm0, Address(from, count, sf, 0));
1175         __ movq(Address(to, count, sf, 0), xmm0);
1176       } else {
1177         __ movq(mmx0, Address(from, count, sf, 0));
1178         __ movq(Address(to, count, sf, 0), mmx0);
1179       }
1180     __ BIND(L_copy_8_bytes);
1181       __ subl(count, 2<<shift);
1182       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1183       __ addl(count, 2<<shift);
1184       if (!UseXMMForArrayCopy) {
1185         __ emms();
1186       }
1187     }
1188   __ BIND(L_copy_4_bytes);
1189     // copy prefix qword
1190     __ testl(count, 1<<shift);
1191     __ jccb(Assembler::zero, L_copy_2_bytes);
1192     __ movl(rdx, Address(from, count, sf, -4));
1193     __ movl(Address(to, count, sf, -4), rdx);
1194 
1195     if (t == T_BYTE || t == T_SHORT) {
1196         __ subl(count, (1<<shift));
1197       __ BIND(L_copy_2_bytes);
1198         // copy prefix dword
1199         __ testl(count, 1<<(shift-1));
1200         __ jccb(Assembler::zero, L_copy_byte);
1201         __ movw(rdx, Address(from, count, sf, -2));
1202         __ movw(Address(to, count, sf, -2), rdx);
1203         if (t == T_BYTE) {
1204           __ subl(count, 1<<(shift-1));
1205         __ BIND(L_copy_byte);
1206           // copy prefix byte
1207           __ testl(count, 1);
1208           __ jccb(Assembler::zero, L_exit);
1209           __ movb(rdx, Address(from, 0));
1210           __ movb(Address(to, 0), rdx);
1211         __ BIND(L_exit);
1212         } else {
1213         __ BIND(L_copy_byte);
1214         }
1215     } else {
1216     __ BIND(L_copy_2_bytes);
1217     }
1218     if (t == T_OBJECT) {
1219       __ movl2ptr(count, Address(rsp, 12+12)); // reread count
1220       gen_write_ref_array_post_barrier(to, count);
1221     __ BIND(L_0_count);
1222     }
1223     inc_copy_counter_np(t);
1224     __ pop(rdi);
1225     __ pop(rsi);
1226     __ leave(); // required for proper stackwalking of RuntimeStub frame
1227     __ xorptr(rax, rax); // return 0
1228     __ ret(0);
1229     return start;
1230   }
1231 
1232 
1233   address generate_disjoint_long_copy(address* entry, const char *name) {
1234     __ align(CodeEntryAlignment);
1235     StubCodeMark mark(this, "StubRoutines", name);
1236     address start = __ pc();
1237 
1238     Label L_copy_8_bytes, L_copy_8_bytes_loop;
1239     const Register from       = rax;  // source array address
1240     const Register to         = rdx;  // destination array address
1241     const Register count      = rcx;  // elements count
1242     const Register to_from    = rdx;  // (to - from)
1243 
1244     __ enter(); // required for proper stackwalking of RuntimeStub frame
1245     __ movptr(from , Address(rsp, 8+0));       // from
1246     __ movptr(to   , Address(rsp, 8+4));       // to
1247     __ movl2ptr(count, Address(rsp, 8+8));     // count
1248 
1249     *entry = __ pc(); // Entry point from conjoint arraycopy stub.
1250     BLOCK_COMMENT("Entry:");
1251 
1252     __ subptr(to, from); // to --> to_from
1253     if (VM_Version::supports_mmx()) {
1254       if (UseXMMForArrayCopy) {
1255         xmm_copy_forward(from, to_from, count);
1256       } else {
1257         mmx_copy_forward(from, to_from, count);
1258       }
1259     } else {
1260       __ jmpb(L_copy_8_bytes);
1261       __ align(OptoLoopAlignment);
1262     __ BIND(L_copy_8_bytes_loop);
1263       __ fild_d(Address(from, 0));
1264       __ fistp_d(Address(from, to_from, Address::times_1));
1265       __ addptr(from, 8);
1266     __ BIND(L_copy_8_bytes);
1267       __ decrement(count);
1268       __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1269     }
1270     inc_copy_counter_np(T_LONG);
1271     __ leave(); // required for proper stackwalking of RuntimeStub frame
1272     __ xorptr(rax, rax); // return 0
1273     __ ret(0);
1274     return start;
1275   }
1276 
1277   address generate_conjoint_long_copy(address nooverlap_target,
1278                                       address* entry, const char *name) {
1279     __ align(CodeEntryAlignment);
1280     StubCodeMark mark(this, "StubRoutines", name);
1281     address start = __ pc();
1282 
1283     Label L_copy_8_bytes, L_copy_8_bytes_loop;
1284     const Register from       = rax;  // source array address
1285     const Register to         = rdx;  // destination array address
1286     const Register count      = rcx;  // elements count
1287     const Register end_from   = rax;  // source array end address
1288 
1289     __ enter(); // required for proper stackwalking of RuntimeStub frame
1290     __ movptr(from , Address(rsp, 8+0));       // from
1291     __ movptr(to   , Address(rsp, 8+4));       // to
1292     __ movl2ptr(count, Address(rsp, 8+8));     // count
1293 
1294     *entry = __ pc(); // Entry point from generic arraycopy stub.
1295     BLOCK_COMMENT("Entry:");
1296 
1297     // arrays overlap test
1298     __ cmpptr(to, from);
1299     RuntimeAddress nooverlap(nooverlap_target);
1300     __ jump_cc(Assembler::belowEqual, nooverlap);
1301     __ lea(end_from, Address(from, count, Address::times_8, 0));
1302     __ cmpptr(to, end_from);
1303     __ movptr(from, Address(rsp, 8));  // from
1304     __ jump_cc(Assembler::aboveEqual, nooverlap);
1305 
1306     __ jmpb(L_copy_8_bytes);
1307 
1308     __ align(OptoLoopAlignment);
1309   __ BIND(L_copy_8_bytes_loop);
1310     if (VM_Version::supports_mmx()) {
1311       if (UseXMMForArrayCopy) {
1312         __ movq(xmm0, Address(from, count, Address::times_8));
1313         __ movq(Address(to, count, Address::times_8), xmm0);
1314       } else {
1315         __ movq(mmx0, Address(from, count, Address::times_8));
1316         __ movq(Address(to, count, Address::times_8), mmx0);
1317       }
1318     } else {
1319       __ fild_d(Address(from, count, Address::times_8));
1320       __ fistp_d(Address(to, count, Address::times_8));
1321     }
1322   __ BIND(L_copy_8_bytes);
1323     __ decrement(count);
1324     __ jcc(Assembler::greaterEqual, L_copy_8_bytes_loop);
1325 
1326     if (VM_Version::supports_mmx() && !UseXMMForArrayCopy) {
1327       __ emms();
1328     }
1329     inc_copy_counter_np(T_LONG);
1330     __ leave(); // required for proper stackwalking of RuntimeStub frame
1331     __ xorptr(rax, rax); // return 0
1332     __ ret(0);
1333     return start;
1334   }
1335 
1336 
1337   // Helper for generating a dynamic type check.
1338   // The sub_klass must be one of {rbx, rdx, rsi}.
1339   // The temp is killed.
1340   void generate_type_check(Register sub_klass,
1341                            Address& super_check_offset_addr,
1342                            Address& super_klass_addr,
1343                            Register temp,
1344                            Label* L_success, Label* L_failure) {
1345     BLOCK_COMMENT("type_check:");
1346 
1347     Label L_fallthrough;
1348 #define LOCAL_JCC(assembler_con, label_ptr)                             \
1349     if (label_ptr != NULL)  __ jcc(assembler_con, *(label_ptr));        \
1350     else                    __ jcc(assembler_con, L_fallthrough) /*omit semi*/
1351 
1352     // The following is a strange variation of the fast path which requires
1353     // one less register, because needed values are on the argument stack.
1354     // __ check_klass_subtype_fast_path(sub_klass, *super_klass*, temp,
1355     //                                  L_success, L_failure, NULL);
1356     assert_different_registers(sub_klass, temp);
1357 
1358     int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1359 
1360     // if the pointers are equal, we are done (e.g., String[] elements)
1361     __ cmpptr(sub_klass, super_klass_addr);
1362     LOCAL_JCC(Assembler::equal, L_success);
1363 
1364     // check the supertype display:
1365     __ movl2ptr(temp, super_check_offset_addr);
1366     Address super_check_addr(sub_klass, temp, Address::times_1, 0);
1367     __ movptr(temp, super_check_addr); // load displayed supertype
1368     __ cmpptr(temp, super_klass_addr); // test the super type
1369     LOCAL_JCC(Assembler::equal, L_success);
1370 
1371     // if it was a primary super, we can just fail immediately
1372     __ cmpl(super_check_offset_addr, sc_offset);
1373     LOCAL_JCC(Assembler::notEqual, L_failure);
1374 
1375     // The repne_scan instruction uses fixed registers, which will get spilled.
1376     // We happen to know this works best when super_klass is in rax.
1377     Register super_klass = temp;
1378     __ movptr(super_klass, super_klass_addr);
1379     __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg,
1380                                      L_success, L_failure);
1381 
1382     __ bind(L_fallthrough);
1383 
1384     if (L_success == NULL) { BLOCK_COMMENT("L_success:"); }
1385     if (L_failure == NULL) { BLOCK_COMMENT("L_failure:"); }
1386 
1387 #undef LOCAL_JCC
1388   }
1389 
1390   //
1391   //  Generate checkcasting array copy stub
1392   //
1393   //  Input:
1394   //    4(rsp)   - source array address
1395   //    8(rsp)   - destination array address
1396   //   12(rsp)   - element count, can be zero
1397   //   16(rsp)   - size_t ckoff (super_check_offset)
1398   //   20(rsp)   - oop ckval (super_klass)
1399   //
1400   //  Output:
1401   //    rax, ==  0  -  success
1402   //    rax, == -1^K - failure, where K is partial transfer count
1403   //
1404   address generate_checkcast_copy(const char *name, address* entry, bool dest_uninitialized = false) {
1405     __ align(CodeEntryAlignment);
1406     StubCodeMark mark(this, "StubRoutines", name);
1407     address start = __ pc();
1408 
1409     Label L_load_element, L_store_element, L_do_card_marks, L_done;
1410 
1411     // register use:
1412     //  rax, rdx, rcx -- loop control (end_from, end_to, count)
1413     //  rdi, rsi      -- element access (oop, klass)
1414     //  rbx,           -- temp
1415     const Register from       = rax;    // source array address
1416     const Register to         = rdx;    // destination array address
1417     const Register length     = rcx;    // elements count
1418     const Register elem       = rdi;    // each oop copied
1419     const Register elem_klass = rsi;    // each elem._klass (sub_klass)
1420     const Register temp       = rbx;    // lone remaining temp
1421 
1422     __ enter(); // required for proper stackwalking of RuntimeStub frame
1423 
1424     __ push(rsi);
1425     __ push(rdi);
1426     __ push(rbx);
1427 
1428     Address   from_arg(rsp, 16+ 4);     // from
1429     Address     to_arg(rsp, 16+ 8);     // to
1430     Address length_arg(rsp, 16+12);     // elements count
1431     Address  ckoff_arg(rsp, 16+16);     // super_check_offset
1432     Address  ckval_arg(rsp, 16+20);     // super_klass
1433 
1434     // Load up:
1435     __ movptr(from,     from_arg);
1436     __ movptr(to,         to_arg);
1437     __ movl2ptr(length, length_arg);
1438 
1439     if (entry != NULL) {
1440       *entry = __ pc(); // Entry point from generic arraycopy stub.
1441       BLOCK_COMMENT("Entry:");
1442     }
1443 
1444     //---------------------------------------------------------------
1445     // Assembler stub will be used for this call to arraycopy
1446     // if the two arrays are subtypes of Object[] but the
1447     // destination array type is not equal to or a supertype
1448     // of the source type.  Each element must be separately
1449     // checked.
1450 
1451     // Loop-invariant addresses.  They are exclusive end pointers.
1452     Address end_from_addr(from, length, Address::times_ptr, 0);
1453     Address   end_to_addr(to,   length, Address::times_ptr, 0);
1454 
1455     Register end_from = from;           // re-use
1456     Register end_to   = to;             // re-use
1457     Register count    = length;         // re-use
1458 
1459     // Loop-variant addresses.  They assume post-incremented count < 0.
1460     Address from_element_addr(end_from, count, Address::times_ptr, 0);
1461     Address   to_element_addr(end_to,   count, Address::times_ptr, 0);
1462     Address elem_klass_addr(elem, oopDesc::klass_offset_in_bytes());
1463 
1464     // Copy from low to high addresses, indexed from the end of each array.
1465     gen_write_ref_array_pre_barrier(to, count, dest_uninitialized);
1466     __ lea(end_from, end_from_addr);
1467     __ lea(end_to,   end_to_addr);
1468     assert(length == count, "");        // else fix next line:
1469     __ negptr(count);                   // negate and test the length
1470     __ jccb(Assembler::notZero, L_load_element);
1471 
1472     // Empty array:  Nothing to do.
1473     __ xorptr(rax, rax);                  // return 0 on (trivial) success
1474     __ jmp(L_done);
1475 
1476     // ======== begin loop ========
1477     // (Loop is rotated; its entry is L_load_element.)
1478     // Loop control:
1479     //   for (count = -count; count != 0; count++)
1480     // Base pointers src, dst are biased by 8*count,to last element.
1481     __ align(OptoLoopAlignment);
1482 
1483     __ BIND(L_store_element);
1484     __ movptr(to_element_addr, elem);     // store the oop
1485     __ increment(count);                // increment the count toward zero
1486     __ jccb(Assembler::zero, L_do_card_marks);
1487 
1488     // ======== loop entry is here ========
1489     __ BIND(L_load_element);
1490     __ movptr(elem, from_element_addr);   // load the oop
1491     __ testptr(elem, elem);
1492     __ jccb(Assembler::zero, L_store_element);
1493 
1494     // (Could do a trick here:  Remember last successful non-null
1495     // element stored and make a quick oop equality check on it.)
1496 
1497     __ movptr(elem_klass, elem_klass_addr); // query the object klass
1498     generate_type_check(elem_klass, ckoff_arg, ckval_arg, temp,
1499                         &L_store_element, NULL);
1500     // (On fall-through, we have failed the element type check.)
1501     // ======== end loop ========
1502 
1503     // It was a real error; we must depend on the caller to finish the job.
1504     // Register "count" = -1 * number of *remaining* oops, length_arg = *total* oops.
1505     // Emit GC store barriers for the oops we have copied (length_arg + count),
1506     // and report their number to the caller.
1507     assert_different_registers(to, count, rax);
1508     Label L_post_barrier;
1509     __ addl(count, length_arg);         // transfers = (length - remaining)
1510     __ movl2ptr(rax, count);            // save the value
1511     __ notptr(rax);                     // report (-1^K) to caller (does not affect flags)
1512     __ jccb(Assembler::notZero, L_post_barrier);
1513     __ jmp(L_done); // K == 0, nothing was copied, skip post barrier
1514 
1515     // Come here on success only.
1516     __ BIND(L_do_card_marks);
1517     __ xorptr(rax, rax);                // return 0 on success
1518     __ movl2ptr(count, length_arg);
1519 
1520     __ BIND(L_post_barrier);
1521     __ movptr(to, to_arg);              // reload
1522     gen_write_ref_array_post_barrier(to, count);
1523 
1524     // Common exit point (success or failure).
1525     __ BIND(L_done);
1526     __ pop(rbx);
1527     __ pop(rdi);
1528     __ pop(rsi);
1529     inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
1530     __ leave(); // required for proper stackwalking of RuntimeStub frame
1531     __ ret(0);
1532 
1533     return start;
1534   }
1535 
1536   //
1537   //  Generate 'unsafe' array copy stub
1538   //  Though just as safe as the other stubs, it takes an unscaled
1539   //  size_t argument instead of an element count.
1540   //
1541   //  Input:
1542   //    4(rsp)   - source array address
1543   //    8(rsp)   - destination array address
1544   //   12(rsp)   - byte count, can be zero
1545   //
1546   //  Output:
1547   //    rax, ==  0  -  success
1548   //    rax, == -1  -  need to call System.arraycopy
1549   //
1550   // Examines the alignment of the operands and dispatches
1551   // to a long, int, short, or byte copy loop.
1552   //
1553   address generate_unsafe_copy(const char *name,
1554                                address byte_copy_entry,
1555                                address short_copy_entry,
1556                                address int_copy_entry,
1557                                address long_copy_entry) {
1558 
1559     Label L_long_aligned, L_int_aligned, L_short_aligned;
1560 
1561     __ align(CodeEntryAlignment);
1562     StubCodeMark mark(this, "StubRoutines", name);
1563     address start = __ pc();
1564 
1565     const Register from       = rax;  // source array address
1566     const Register to         = rdx;  // destination array address
1567     const Register count      = rcx;  // elements count
1568 
1569     __ enter(); // required for proper stackwalking of RuntimeStub frame
1570     __ push(rsi);
1571     __ push(rdi);
1572     Address  from_arg(rsp, 12+ 4);      // from
1573     Address    to_arg(rsp, 12+ 8);      // to
1574     Address count_arg(rsp, 12+12);      // byte count
1575 
1576     // Load up:
1577     __ movptr(from ,  from_arg);
1578     __ movptr(to   ,    to_arg);
1579     __ movl2ptr(count, count_arg);
1580 
1581     // bump this on entry, not on exit:
1582     inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
1583 
1584     const Register bits = rsi;
1585     __ mov(bits, from);
1586     __ orptr(bits, to);
1587     __ orptr(bits, count);
1588 
1589     __ testl(bits, BytesPerLong-1);
1590     __ jccb(Assembler::zero, L_long_aligned);
1591 
1592     __ testl(bits, BytesPerInt-1);
1593     __ jccb(Assembler::zero, L_int_aligned);
1594 
1595     __ testl(bits, BytesPerShort-1);
1596     __ jump_cc(Assembler::notZero, RuntimeAddress(byte_copy_entry));
1597 
1598     __ BIND(L_short_aligned);
1599     __ shrptr(count, LogBytesPerShort); // size => short_count
1600     __ movl(count_arg, count);          // update 'count'
1601     __ jump(RuntimeAddress(short_copy_entry));
1602 
1603     __ BIND(L_int_aligned);
1604     __ shrptr(count, LogBytesPerInt); // size => int_count
1605     __ movl(count_arg, count);          // update 'count'
1606     __ jump(RuntimeAddress(int_copy_entry));
1607 
1608     __ BIND(L_long_aligned);
1609     __ shrptr(count, LogBytesPerLong); // size => qword_count
1610     __ movl(count_arg, count);          // update 'count'
1611     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
1612     __ pop(rsi);
1613     __ jump(RuntimeAddress(long_copy_entry));
1614 
1615     return start;
1616   }
1617 
1618 
1619   // Perform range checks on the proposed arraycopy.
1620   // Smashes src_pos and dst_pos.  (Uses them up for temps.)
1621   void arraycopy_range_checks(Register src,
1622                               Register src_pos,
1623                               Register dst,
1624                               Register dst_pos,
1625                               Address& length,
1626                               Label& L_failed) {
1627     BLOCK_COMMENT("arraycopy_range_checks:");
1628     const Register src_end = src_pos;   // source array end position
1629     const Register dst_end = dst_pos;   // destination array end position
1630     __ addl(src_end, length); // src_pos + length
1631     __ addl(dst_end, length); // dst_pos + length
1632 
1633     //  if (src_pos + length > arrayOop(src)->length() ) FAIL;
1634     __ cmpl(src_end, Address(src, arrayOopDesc::length_offset_in_bytes()));
1635     __ jcc(Assembler::above, L_failed);
1636 
1637     //  if (dst_pos + length > arrayOop(dst)->length() ) FAIL;
1638     __ cmpl(dst_end, Address(dst, arrayOopDesc::length_offset_in_bytes()));
1639     __ jcc(Assembler::above, L_failed);
1640 
1641     BLOCK_COMMENT("arraycopy_range_checks done");
1642   }
1643 
1644 
1645   //
1646   //  Generate generic array copy stubs
1647   //
1648   //  Input:
1649   //     4(rsp)    -  src oop
1650   //     8(rsp)    -  src_pos
1651   //    12(rsp)    -  dst oop
1652   //    16(rsp)    -  dst_pos
1653   //    20(rsp)    -  element count
1654   //
1655   //  Output:
1656   //    rax, ==  0  -  success
1657   //    rax, == -1^K - failure, where K is partial transfer count
1658   //
1659   address generate_generic_copy(const char *name,
1660                                 address entry_jbyte_arraycopy,
1661                                 address entry_jshort_arraycopy,
1662                                 address entry_jint_arraycopy,
1663                                 address entry_oop_arraycopy,
1664                                 address entry_jlong_arraycopy,
1665                                 address entry_checkcast_arraycopy) {
1666     Label L_failed, L_failed_0, L_objArray;
1667 
1668     { int modulus = CodeEntryAlignment;
1669       int target  = modulus - 5; // 5 = sizeof jmp(L_failed)
1670       int advance = target - (__ offset() % modulus);
1671       if (advance < 0)  advance += modulus;
1672       if (advance > 0)  __ nop(advance);
1673     }
1674     StubCodeMark mark(this, "StubRoutines", name);
1675 
1676     // Short-hop target to L_failed.  Makes for denser prologue code.
1677     __ BIND(L_failed_0);
1678     __ jmp(L_failed);
1679     assert(__ offset() % CodeEntryAlignment == 0, "no further alignment needed");
1680 
1681     __ align(CodeEntryAlignment);
1682     address start = __ pc();
1683 
1684     __ enter(); // required for proper stackwalking of RuntimeStub frame
1685     __ push(rsi);
1686     __ push(rdi);
1687 
1688     // bump this on entry, not on exit:
1689     inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
1690 
1691     // Input values
1692     Address SRC     (rsp, 12+ 4);
1693     Address SRC_POS (rsp, 12+ 8);
1694     Address DST     (rsp, 12+12);
1695     Address DST_POS (rsp, 12+16);
1696     Address LENGTH  (rsp, 12+20);
1697 
1698     //-----------------------------------------------------------------------
1699     // Assembler stub will be used for this call to arraycopy
1700     // if the following conditions are met:
1701     //
1702     // (1) src and dst must not be null.
1703     // (2) src_pos must not be negative.
1704     // (3) dst_pos must not be negative.
1705     // (4) length  must not be negative.
1706     // (5) src klass and dst klass should be the same and not NULL.
1707     // (6) src and dst should be arrays.
1708     // (7) src_pos + length must not exceed length of src.
1709     // (8) dst_pos + length must not exceed length of dst.
1710     //
1711 
1712     const Register src     = rax;       // source array oop
1713     const Register src_pos = rsi;
1714     const Register dst     = rdx;       // destination array oop
1715     const Register dst_pos = rdi;
1716     const Register length  = rcx;       // transfer count
1717 
1718     //  if (src == NULL) return -1;
1719     __ movptr(src, SRC);      // src oop
1720     __ testptr(src, src);
1721     __ jccb(Assembler::zero, L_failed_0);
1722 
1723     //  if (src_pos < 0) return -1;
1724     __ movl2ptr(src_pos, SRC_POS);  // src_pos
1725     __ testl(src_pos, src_pos);
1726     __ jccb(Assembler::negative, L_failed_0);
1727 
1728     //  if (dst == NULL) return -1;
1729     __ movptr(dst, DST);      // dst oop
1730     __ testptr(dst, dst);
1731     __ jccb(Assembler::zero, L_failed_0);
1732 
1733     //  if (dst_pos < 0) return -1;
1734     __ movl2ptr(dst_pos, DST_POS);  // dst_pos
1735     __ testl(dst_pos, dst_pos);
1736     __ jccb(Assembler::negative, L_failed_0);
1737 
1738     //  if (length < 0) return -1;
1739     __ movl2ptr(length, LENGTH);   // length
1740     __ testl(length, length);
1741     __ jccb(Assembler::negative, L_failed_0);
1742 
1743     //  if (src->klass() == NULL) return -1;
1744     Address src_klass_addr(src, oopDesc::klass_offset_in_bytes());
1745     Address dst_klass_addr(dst, oopDesc::klass_offset_in_bytes());
1746     const Register rcx_src_klass = rcx;    // array klass
1747     __ movptr(rcx_src_klass, Address(src, oopDesc::klass_offset_in_bytes()));
1748 
1749 #ifdef ASSERT
1750     //  assert(src->klass() != NULL);
1751     BLOCK_COMMENT("assert klasses not null");
1752     { Label L1, L2;
1753       __ testptr(rcx_src_klass, rcx_src_klass);
1754       __ jccb(Assembler::notZero, L2);   // it is broken if klass is NULL
1755       __ bind(L1);
1756       __ stop("broken null klass");
1757       __ bind(L2);
1758       __ cmpptr(dst_klass_addr, (int32_t)NULL_WORD);
1759       __ jccb(Assembler::equal, L1);      // this would be broken also
1760       BLOCK_COMMENT("assert done");
1761     }
1762 #endif //ASSERT
1763 
1764     // Load layout helper (32-bits)
1765     //
1766     //  |array_tag|     | header_size | element_type |     |log2_element_size|
1767     // 32        30    24            16              8     2                 0
1768     //
1769     //   array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
1770     //
1771 
1772     int lh_offset = in_bytes(Klass::layout_helper_offset());
1773     Address src_klass_lh_addr(rcx_src_klass, lh_offset);
1774 
1775     // Handle objArrays completely differently...
1776     jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
1777     __ cmpl(src_klass_lh_addr, objArray_lh);
1778     __ jcc(Assembler::equal, L_objArray);
1779 
1780     //  if (src->klass() != dst->klass()) return -1;
1781     __ cmpptr(rcx_src_klass, dst_klass_addr);
1782     __ jccb(Assembler::notEqual, L_failed_0);
1783 
1784     const Register rcx_lh = rcx;  // layout helper
1785     assert(rcx_lh == rcx_src_klass, "known alias");
1786     __ movl(rcx_lh, src_klass_lh_addr);
1787 
1788     //  if (!src->is_Array()) return -1;
1789     __ cmpl(rcx_lh, Klass::_lh_neutral_value);
1790     __ jcc(Assembler::greaterEqual, L_failed_0); // signed cmp
1791 
1792     // At this point, it is known to be a typeArray (array_tag 0x3).
1793 #ifdef ASSERT
1794     { Label L;
1795       __ cmpl(rcx_lh, (Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
1796       __ jcc(Assembler::greaterEqual, L); // signed cmp
1797       __ stop("must be a primitive array");
1798       __ bind(L);
1799     }
1800 #endif
1801 
1802     assert_different_registers(src, src_pos, dst, dst_pos, rcx_lh);
1803     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1804 
1805     // TypeArrayKlass
1806     //
1807     // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize);
1808     // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize);
1809     //
1810     const Register rsi_offset = rsi; // array offset
1811     const Register src_array  = src; // src array offset
1812     const Register dst_array  = dst; // dst array offset
1813     const Register rdi_elsize = rdi; // log2 element size
1814 
1815     __ mov(rsi_offset, rcx_lh);
1816     __ shrptr(rsi_offset, Klass::_lh_header_size_shift);
1817     __ andptr(rsi_offset, Klass::_lh_header_size_mask);   // array_offset
1818     __ addptr(src_array, rsi_offset);  // src array offset
1819     __ addptr(dst_array, rsi_offset);  // dst array offset
1820     __ andptr(rcx_lh, Klass::_lh_log2_element_size_mask); // log2 elsize
1821 
1822     // next registers should be set before the jump to corresponding stub
1823     const Register from       = src; // source array address
1824     const Register to         = dst; // destination array address
1825     const Register count      = rcx; // elements count
1826     // some of them should be duplicated on stack
1827 #define FROM   Address(rsp, 12+ 4)
1828 #define TO     Address(rsp, 12+ 8)   // Not used now
1829 #define COUNT  Address(rsp, 12+12)   // Only for oop arraycopy
1830 
1831     BLOCK_COMMENT("scale indexes to element size");
1832     __ movl2ptr(rsi, SRC_POS);  // src_pos
1833     __ shlptr(rsi);             // src_pos << rcx (log2 elsize)
1834     assert(src_array == from, "");
1835     __ addptr(from, rsi);       // from = src_array + SRC_POS << log2 elsize
1836     __ movl2ptr(rdi, DST_POS);  // dst_pos
1837     __ shlptr(rdi);             // dst_pos << rcx (log2 elsize)
1838     assert(dst_array == to, "");
1839     __ addptr(to,  rdi);        // to   = dst_array + DST_POS << log2 elsize
1840     __ movptr(FROM, from);      // src_addr
1841     __ mov(rdi_elsize, rcx_lh); // log2 elsize
1842     __ movl2ptr(count, LENGTH); // elements count
1843 
1844     BLOCK_COMMENT("choose copy loop based on element size");
1845     __ cmpl(rdi_elsize, 0);
1846 
1847     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jbyte_arraycopy));
1848     __ cmpl(rdi_elsize, LogBytesPerShort);
1849     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jshort_arraycopy));
1850     __ cmpl(rdi_elsize, LogBytesPerInt);
1851     __ jump_cc(Assembler::equal, RuntimeAddress(entry_jint_arraycopy));
1852 #ifdef ASSERT
1853     __ cmpl(rdi_elsize, LogBytesPerLong);
1854     __ jccb(Assembler::notEqual, L_failed);
1855 #endif
1856     __ pop(rdi); // Do pops here since jlong_arraycopy stub does not do it.
1857     __ pop(rsi);
1858     __ jump(RuntimeAddress(entry_jlong_arraycopy));
1859 
1860   __ BIND(L_failed);
1861     __ xorptr(rax, rax);
1862     __ notptr(rax); // return -1
1863     __ pop(rdi);
1864     __ pop(rsi);
1865     __ leave(); // required for proper stackwalking of RuntimeStub frame
1866     __ ret(0);
1867 
1868     // ObjArrayKlass
1869   __ BIND(L_objArray);
1870     // live at this point:  rcx_src_klass, src[_pos], dst[_pos]
1871 
1872     Label L_plain_copy, L_checkcast_copy;
1873     //  test array classes for subtyping
1874     __ cmpptr(rcx_src_klass, dst_klass_addr); // usual case is exact equality
1875     __ jccb(Assembler::notEqual, L_checkcast_copy);
1876 
1877     // Identically typed arrays can be copied without element-wise checks.
1878     assert_different_registers(src, src_pos, dst, dst_pos, rcx_src_klass);
1879     arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1880 
1881   __ BIND(L_plain_copy);
1882     __ movl2ptr(count, LENGTH); // elements count
1883     __ movl2ptr(src_pos, SRC_POS);  // reload src_pos
1884     __ lea(from, Address(src, src_pos, Address::times_ptr,
1885                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // src_addr
1886     __ movl2ptr(dst_pos, DST_POS);  // reload dst_pos
1887     __ lea(to,   Address(dst, dst_pos, Address::times_ptr,
1888                  arrayOopDesc::base_offset_in_bytes(T_OBJECT))); // dst_addr
1889     __ movptr(FROM,  from);   // src_addr
1890     __ movptr(TO,    to);     // dst_addr
1891     __ movl(COUNT, count);  // count
1892     __ jump(RuntimeAddress(entry_oop_arraycopy));
1893 
1894   __ BIND(L_checkcast_copy);
1895     // live at this point:  rcx_src_klass, dst[_pos], src[_pos]
1896     {
1897       // Handy offsets:
1898       int  ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
1899       int sco_offset = in_bytes(Klass::super_check_offset_offset());
1900 
1901       Register rsi_dst_klass = rsi;
1902       Register rdi_temp      = rdi;
1903       assert(rsi_dst_klass == src_pos, "expected alias w/ src_pos");
1904       assert(rdi_temp      == dst_pos, "expected alias w/ dst_pos");
1905       Address dst_klass_lh_addr(rsi_dst_klass, lh_offset);
1906 
1907       // Before looking at dst.length, make sure dst is also an objArray.
1908       __ movptr(rsi_dst_klass, dst_klass_addr);
1909       __ cmpl(dst_klass_lh_addr, objArray_lh);
1910       __ jccb(Assembler::notEqual, L_failed);
1911 
1912       // It is safe to examine both src.length and dst.length.
1913       __ movl2ptr(src_pos, SRC_POS);        // reload rsi
1914       arraycopy_range_checks(src, src_pos, dst, dst_pos, LENGTH, L_failed);
1915       // (Now src_pos and dst_pos are killed, but not src and dst.)
1916 
1917       // We'll need this temp (don't forget to pop it after the type check).
1918       __ push(rbx);
1919       Register rbx_src_klass = rbx;
1920 
1921       __ mov(rbx_src_klass, rcx_src_klass); // spill away from rcx
1922       __ movptr(rsi_dst_klass, dst_klass_addr);
1923       Address super_check_offset_addr(rsi_dst_klass, sco_offset);
1924       Label L_fail_array_check;
1925       generate_type_check(rbx_src_klass,
1926                           super_check_offset_addr, dst_klass_addr,
1927                           rdi_temp, NULL, &L_fail_array_check);
1928       // (On fall-through, we have passed the array type check.)
1929       __ pop(rbx);
1930       __ jmp(L_plain_copy);
1931 
1932       __ BIND(L_fail_array_check);
1933       // Reshuffle arguments so we can call checkcast_arraycopy:
1934 
1935       // match initial saves for checkcast_arraycopy
1936       // push(rsi);    // already done; see above
1937       // push(rdi);    // already done; see above
1938       // push(rbx);    // already done; see above
1939 
1940       // Marshal outgoing arguments now, freeing registers.
1941       Address   from_arg(rsp, 16+ 4);   // from
1942       Address     to_arg(rsp, 16+ 8);   // to
1943       Address length_arg(rsp, 16+12);   // elements count
1944       Address  ckoff_arg(rsp, 16+16);   // super_check_offset
1945       Address  ckval_arg(rsp, 16+20);   // super_klass
1946 
1947       Address SRC_POS_arg(rsp, 16+ 8);
1948       Address DST_POS_arg(rsp, 16+16);
1949       Address  LENGTH_arg(rsp, 16+20);
1950       // push rbx, changed the incoming offsets (why not just use rbp,??)
1951       // assert(SRC_POS_arg.disp() == SRC_POS.disp() + 4, "");
1952 
1953       __ movptr(rbx, Address(rsi_dst_klass, ek_offset));
1954       __ movl2ptr(length, LENGTH_arg);    // reload elements count
1955       __ movl2ptr(src_pos, SRC_POS_arg);  // reload src_pos
1956       __ movl2ptr(dst_pos, DST_POS_arg);  // reload dst_pos
1957 
1958       __ movptr(ckval_arg, rbx);          // destination element type
1959       __ movl(rbx, Address(rbx, sco_offset));
1960       __ movl(ckoff_arg, rbx);          // corresponding class check offset
1961 
1962       __ movl(length_arg, length);      // outgoing length argument
1963 
1964       __ lea(from, Address(src, src_pos, Address::times_ptr,
1965                             arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1966       __ movptr(from_arg, from);
1967 
1968       __ lea(to, Address(dst, dst_pos, Address::times_ptr,
1969                           arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
1970       __ movptr(to_arg, to);
1971       __ jump(RuntimeAddress(entry_checkcast_arraycopy));
1972     }
1973 
1974     return start;
1975   }
1976 
1977   void generate_arraycopy_stubs() {
1978     address entry;
1979     address entry_jbyte_arraycopy;
1980     address entry_jshort_arraycopy;
1981     address entry_jint_arraycopy;
1982     address entry_oop_arraycopy;
1983     address entry_jlong_arraycopy;
1984     address entry_checkcast_arraycopy;
1985 
1986     StubRoutines::_arrayof_jbyte_disjoint_arraycopy =
1987         generate_disjoint_copy(T_BYTE,  true, Address::times_1, &entry,
1988                                "arrayof_jbyte_disjoint_arraycopy");
1989     StubRoutines::_arrayof_jbyte_arraycopy =
1990         generate_conjoint_copy(T_BYTE,  true, Address::times_1,  entry,
1991                                NULL, "arrayof_jbyte_arraycopy");
1992     StubRoutines::_jbyte_disjoint_arraycopy =
1993         generate_disjoint_copy(T_BYTE, false, Address::times_1, &entry,
1994                                "jbyte_disjoint_arraycopy");
1995     StubRoutines::_jbyte_arraycopy =
1996         generate_conjoint_copy(T_BYTE, false, Address::times_1,  entry,
1997                                &entry_jbyte_arraycopy, "jbyte_arraycopy");
1998 
1999     StubRoutines::_arrayof_jshort_disjoint_arraycopy =
2000         generate_disjoint_copy(T_SHORT,  true, Address::times_2, &entry,
2001                                "arrayof_jshort_disjoint_arraycopy");
2002     StubRoutines::_arrayof_jshort_arraycopy =
2003         generate_conjoint_copy(T_SHORT,  true, Address::times_2,  entry,
2004                                NULL, "arrayof_jshort_arraycopy");
2005     StubRoutines::_jshort_disjoint_arraycopy =
2006         generate_disjoint_copy(T_SHORT, false, Address::times_2, &entry,
2007                                "jshort_disjoint_arraycopy");
2008     StubRoutines::_jshort_arraycopy =
2009         generate_conjoint_copy(T_SHORT, false, Address::times_2,  entry,
2010                                &entry_jshort_arraycopy, "jshort_arraycopy");
2011 
2012     // Next arrays are always aligned on 4 bytes at least.
2013     StubRoutines::_jint_disjoint_arraycopy =
2014         generate_disjoint_copy(T_INT, true, Address::times_4, &entry,
2015                                "jint_disjoint_arraycopy");
2016     StubRoutines::_jint_arraycopy =
2017         generate_conjoint_copy(T_INT, true, Address::times_4,  entry,
2018                                &entry_jint_arraycopy, "jint_arraycopy");
2019 
2020     StubRoutines::_oop_disjoint_arraycopy =
2021         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
2022                                "oop_disjoint_arraycopy");
2023     StubRoutines::_oop_arraycopy =
2024         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
2025                                &entry_oop_arraycopy, "oop_arraycopy");
2026 
2027     StubRoutines::_oop_disjoint_arraycopy_uninit =
2028         generate_disjoint_copy(T_OBJECT, true, Address::times_ptr, &entry,
2029                                "oop_disjoint_arraycopy_uninit",
2030                                /*dest_uninitialized*/true);
2031     StubRoutines::_oop_arraycopy_uninit =
2032         generate_conjoint_copy(T_OBJECT, true, Address::times_ptr,  entry,
2033                                NULL, "oop_arraycopy_uninit",
2034                                /*dest_uninitialized*/true);
2035 
2036     StubRoutines::_jlong_disjoint_arraycopy =
2037         generate_disjoint_long_copy(&entry, "jlong_disjoint_arraycopy");
2038     StubRoutines::_jlong_arraycopy =
2039         generate_conjoint_long_copy(entry, &entry_jlong_arraycopy,
2040                                     "jlong_arraycopy");
2041 
2042     StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
2043     StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
2044     StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
2045     StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
2046     StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
2047     StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
2048 
2049     StubRoutines::_arrayof_jint_disjoint_arraycopy       = StubRoutines::_jint_disjoint_arraycopy;
2050     StubRoutines::_arrayof_oop_disjoint_arraycopy        = StubRoutines::_oop_disjoint_arraycopy;
2051     StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit = StubRoutines::_oop_disjoint_arraycopy_uninit;
2052     StubRoutines::_arrayof_jlong_disjoint_arraycopy      = StubRoutines::_jlong_disjoint_arraycopy;
2053 
2054     StubRoutines::_arrayof_jint_arraycopy       = StubRoutines::_jint_arraycopy;
2055     StubRoutines::_arrayof_oop_arraycopy        = StubRoutines::_oop_arraycopy;
2056     StubRoutines::_arrayof_oop_arraycopy_uninit = StubRoutines::_oop_arraycopy_uninit;
2057     StubRoutines::_arrayof_jlong_arraycopy      = StubRoutines::_jlong_arraycopy;
2058 
2059     StubRoutines::_checkcast_arraycopy =
2060         generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
2061     StubRoutines::_checkcast_arraycopy_uninit =
2062         generate_checkcast_copy("checkcast_arraycopy_uninit", NULL, /*dest_uninitialized*/true);
2063 
2064     StubRoutines::_unsafe_arraycopy =
2065         generate_unsafe_copy("unsafe_arraycopy",
2066                                entry_jbyte_arraycopy,
2067                                entry_jshort_arraycopy,
2068                                entry_jint_arraycopy,
2069                                entry_jlong_arraycopy);
2070 
2071     StubRoutines::_generic_arraycopy =
2072         generate_generic_copy("generic_arraycopy",
2073                                entry_jbyte_arraycopy,
2074                                entry_jshort_arraycopy,
2075                                entry_jint_arraycopy,
2076                                entry_oop_arraycopy,
2077                                entry_jlong_arraycopy,
2078                                entry_checkcast_arraycopy);
2079   }
2080 
2081   void generate_math_stubs() {
2082     {
2083       StubCodeMark mark(this, "StubRoutines", "log");
2084       StubRoutines::_intrinsic_log = (double (*)(double)) __ pc();
2085 
2086       __ fld_d(Address(rsp, 4));
2087       __ flog();
2088       __ ret(0);
2089     }
2090     {
2091       StubCodeMark mark(this, "StubRoutines", "log10");
2092       StubRoutines::_intrinsic_log10 = (double (*)(double)) __ pc();
2093 
2094       __ fld_d(Address(rsp, 4));
2095       __ flog10();
2096       __ ret(0);
2097     }
2098     {
2099       StubCodeMark mark(this, "StubRoutines", "sin");
2100       StubRoutines::_intrinsic_sin = (double (*)(double))  __ pc();
2101 
2102       __ fld_d(Address(rsp, 4));
2103       __ trigfunc('s');
2104       __ ret(0);
2105     }
2106     {
2107       StubCodeMark mark(this, "StubRoutines", "cos");
2108       StubRoutines::_intrinsic_cos = (double (*)(double)) __ pc();
2109 
2110       __ fld_d(Address(rsp, 4));
2111       __ trigfunc('c');
2112       __ ret(0);
2113     }
2114     {
2115       StubCodeMark mark(this, "StubRoutines", "tan");
2116       StubRoutines::_intrinsic_tan = (double (*)(double)) __ pc();
2117 
2118       __ fld_d(Address(rsp, 4));
2119       __ trigfunc('t');
2120       __ ret(0);
2121     }
2122     {
2123       StubCodeMark mark(this, "StubRoutines", "exp");
2124       StubRoutines::_intrinsic_exp = (double (*)(double)) __ pc();
2125 
2126       __ fld_d(Address(rsp, 4));
2127       __ exp_with_fallback(0);
2128       __ ret(0);
2129     }
2130     {
2131       StubCodeMark mark(this, "StubRoutines", "pow");
2132       StubRoutines::_intrinsic_pow = (double (*)(double,double)) __ pc();
2133 
2134       __ fld_d(Address(rsp, 12));
2135       __ fld_d(Address(rsp, 4));
2136       __ pow_with_fallback(0);
2137       __ ret(0);
2138     }
2139   }
2140 
2141   // AES intrinsic stubs
2142   enum {AESBlockSize = 16};
2143 
2144   address generate_key_shuffle_mask() {
2145     __ align(16);
2146     StubCodeMark mark(this, "StubRoutines", "key_shuffle_mask");
2147     address start = __ pc();
2148     __ emit_data(0x00010203, relocInfo::none, 0 );
2149     __ emit_data(0x04050607, relocInfo::none, 0 );
2150     __ emit_data(0x08090a0b, relocInfo::none, 0 );
2151     __ emit_data(0x0c0d0e0f, relocInfo::none, 0 );
2152     return start;
2153   }
2154 
2155   // Utility routine for loading a 128-bit key word in little endian format
2156   // can optionally specify that the shuffle mask is already in an xmmregister
2157   void load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2158     __ movdqu(xmmdst, Address(key, offset));
2159     if (xmm_shuf_mask != NULL) {
2160       __ pshufb(xmmdst, xmm_shuf_mask);
2161     } else {
2162       __ pshufb(xmmdst, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2163     }
2164   }
2165 
2166   // aesenc using specified key+offset
2167   // can optionally specify that the shuffle mask is already in an xmmregister
2168   void aes_enc_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2169     load_key(xmmtmp, key, offset, xmm_shuf_mask);
2170     __ aesenc(xmmdst, xmmtmp);
2171   }
2172 
2173   // aesdec using specified key+offset
2174   // can optionally specify that the shuffle mask is already in an xmmregister
2175   void aes_dec_key(XMMRegister xmmdst, XMMRegister xmmtmp, Register key, int offset, XMMRegister xmm_shuf_mask=NULL) {
2176     load_key(xmmtmp, key, offset, xmm_shuf_mask);
2177     __ aesdec(xmmdst, xmmtmp);
2178   }
2179 
2180 
2181   // Arguments:
2182   //
2183   // Inputs:
2184   //   c_rarg0   - source byte array address
2185   //   c_rarg1   - destination byte array address
2186   //   c_rarg2   - K (key) in little endian int array
2187   //
2188   address generate_aescrypt_encryptBlock() {
2189     assert(UseAES, "need AES instructions and misaligned SSE support");
2190     __ align(CodeEntryAlignment);
2191     StubCodeMark mark(this, "StubRoutines", "aescrypt_encryptBlock");
2192     Label L_doLast;
2193     address start = __ pc();
2194 
2195     const Register from        = rdx;      // source array address
2196     const Register to          = rdx;      // destination array address
2197     const Register key         = rcx;      // key array address
2198     const Register keylen      = rax;
2199     const Address  from_param(rbp, 8+0);
2200     const Address  to_param  (rbp, 8+4);
2201     const Address  key_param (rbp, 8+8);
2202 
2203     const XMMRegister xmm_result = xmm0;
2204     const XMMRegister xmm_key_shuf_mask = xmm1;
2205     const XMMRegister xmm_temp1  = xmm2;
2206     const XMMRegister xmm_temp2  = xmm3;
2207     const XMMRegister xmm_temp3  = xmm4;
2208     const XMMRegister xmm_temp4  = xmm5;
2209 
2210     __ enter();   // required for proper stackwalking of RuntimeStub frame
2211     __ movptr(from, from_param);
2212     __ movptr(key, key_param);
2213 
2214     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
2215     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2216 
2217     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2218     __ movdqu(xmm_result, Address(from, 0));  // get 16 bytes of input
2219     __ movptr(to, to_param);
2220 
2221     // For encryption, the java expanded key ordering is just what we need
2222 
2223     load_key(xmm_temp1, key, 0x00, xmm_key_shuf_mask);
2224     __ pxor(xmm_result, xmm_temp1);
2225 
2226     load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
2227     load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
2228     load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
2229     load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
2230 
2231     __ aesenc(xmm_result, xmm_temp1);
2232     __ aesenc(xmm_result, xmm_temp2);
2233     __ aesenc(xmm_result, xmm_temp3);
2234     __ aesenc(xmm_result, xmm_temp4);
2235 
2236     load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
2237     load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
2238     load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
2239     load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
2240 
2241     __ aesenc(xmm_result, xmm_temp1);
2242     __ aesenc(xmm_result, xmm_temp2);
2243     __ aesenc(xmm_result, xmm_temp3);
2244     __ aesenc(xmm_result, xmm_temp4);
2245 
2246     load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
2247     load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
2248 
2249     __ cmpl(keylen, 44);
2250     __ jccb(Assembler::equal, L_doLast);
2251 
2252     __ aesenc(xmm_result, xmm_temp1);
2253     __ aesenc(xmm_result, xmm_temp2);
2254 
2255     load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
2256     load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
2257 
2258     __ cmpl(keylen, 52);
2259     __ jccb(Assembler::equal, L_doLast);
2260 
2261     __ aesenc(xmm_result, xmm_temp1);
2262     __ aesenc(xmm_result, xmm_temp2);
2263 
2264     load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
2265     load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
2266 
2267     __ BIND(L_doLast);
2268     __ aesenc(xmm_result, xmm_temp1);
2269     __ aesenclast(xmm_result, xmm_temp2);
2270     __ movdqu(Address(to, 0), xmm_result);        // store the result
2271     __ xorptr(rax, rax); // return 0
2272     __ leave(); // required for proper stackwalking of RuntimeStub frame
2273     __ ret(0);
2274 
2275     return start;
2276   }
2277 
2278 
2279   // Arguments:
2280   //
2281   // Inputs:
2282   //   c_rarg0   - source byte array address
2283   //   c_rarg1   - destination byte array address
2284   //   c_rarg2   - K (key) in little endian int array
2285   //
2286   address generate_aescrypt_decryptBlock() {
2287     assert(UseAES, "need AES instructions and misaligned SSE support");
2288     __ align(CodeEntryAlignment);
2289     StubCodeMark mark(this, "StubRoutines", "aescrypt_decryptBlock");
2290     Label L_doLast;
2291     address start = __ pc();
2292 
2293     const Register from        = rdx;      // source array address
2294     const Register to          = rdx;      // destination array address
2295     const Register key         = rcx;      // key array address
2296     const Register keylen      = rax;
2297     const Address  from_param(rbp, 8+0);
2298     const Address  to_param  (rbp, 8+4);
2299     const Address  key_param (rbp, 8+8);
2300 
2301     const XMMRegister xmm_result = xmm0;
2302     const XMMRegister xmm_key_shuf_mask = xmm1;
2303     const XMMRegister xmm_temp1  = xmm2;
2304     const XMMRegister xmm_temp2  = xmm3;
2305     const XMMRegister xmm_temp3  = xmm4;
2306     const XMMRegister xmm_temp4  = xmm5;
2307 
2308     __ enter(); // required for proper stackwalking of RuntimeStub frame
2309     __ movptr(from, from_param);
2310     __ movptr(key, key_param);
2311 
2312     // keylen could be only {11, 13, 15} * 4 = {44, 52, 60}
2313     __ movl(keylen, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2314 
2315     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2316     __ movdqu(xmm_result, Address(from, 0));
2317     __ movptr(to, to_param);
2318 
2319     // for decryption java expanded key ordering is rotated one position from what we want
2320     // so we start from 0x10 here and hit 0x00 last
2321     // we don't know if the key is aligned, hence not using load-execute form
2322     load_key(xmm_temp1, key, 0x10, xmm_key_shuf_mask);
2323     load_key(xmm_temp2, key, 0x20, xmm_key_shuf_mask);
2324     load_key(xmm_temp3, key, 0x30, xmm_key_shuf_mask);
2325     load_key(xmm_temp4, key, 0x40, xmm_key_shuf_mask);
2326 
2327     __ pxor  (xmm_result, xmm_temp1);
2328     __ aesdec(xmm_result, xmm_temp2);
2329     __ aesdec(xmm_result, xmm_temp3);
2330     __ aesdec(xmm_result, xmm_temp4);
2331 
2332     load_key(xmm_temp1, key, 0x50, xmm_key_shuf_mask);
2333     load_key(xmm_temp2, key, 0x60, xmm_key_shuf_mask);
2334     load_key(xmm_temp3, key, 0x70, xmm_key_shuf_mask);
2335     load_key(xmm_temp4, key, 0x80, xmm_key_shuf_mask);
2336 
2337     __ aesdec(xmm_result, xmm_temp1);
2338     __ aesdec(xmm_result, xmm_temp2);
2339     __ aesdec(xmm_result, xmm_temp3);
2340     __ aesdec(xmm_result, xmm_temp4);
2341 
2342     load_key(xmm_temp1, key, 0x90, xmm_key_shuf_mask);
2343     load_key(xmm_temp2, key, 0xa0, xmm_key_shuf_mask);
2344     load_key(xmm_temp3, key, 0x00, xmm_key_shuf_mask);
2345 
2346     __ cmpl(keylen, 44);
2347     __ jccb(Assembler::equal, L_doLast);
2348 
2349     __ aesdec(xmm_result, xmm_temp1);
2350     __ aesdec(xmm_result, xmm_temp2);
2351 
2352     load_key(xmm_temp1, key, 0xb0, xmm_key_shuf_mask);
2353     load_key(xmm_temp2, key, 0xc0, xmm_key_shuf_mask);
2354 
2355     __ cmpl(keylen, 52);
2356     __ jccb(Assembler::equal, L_doLast);
2357 
2358     __ aesdec(xmm_result, xmm_temp1);
2359     __ aesdec(xmm_result, xmm_temp2);
2360 
2361     load_key(xmm_temp1, key, 0xd0, xmm_key_shuf_mask);
2362     load_key(xmm_temp2, key, 0xe0, xmm_key_shuf_mask);
2363 
2364     __ BIND(L_doLast);
2365     __ aesdec(xmm_result, xmm_temp1);
2366     __ aesdec(xmm_result, xmm_temp2);
2367 
2368     // for decryption the aesdeclast operation is always on key+0x00
2369     __ aesdeclast(xmm_result, xmm_temp3);
2370     __ movdqu(Address(to, 0), xmm_result);  // store the result
2371     __ xorptr(rax, rax); // return 0
2372     __ leave(); // required for proper stackwalking of RuntimeStub frame
2373     __ ret(0);
2374 
2375     return start;
2376   }
2377 
2378   void handleSOERegisters(bool saving) {
2379     const int saveFrameSizeInBytes = 4 * wordSize;
2380     const Address saved_rbx     (rbp, -3 * wordSize);
2381     const Address saved_rsi     (rbp, -2 * wordSize);
2382     const Address saved_rdi     (rbp, -1 * wordSize);
2383 
2384     if (saving) {
2385       __ subptr(rsp, saveFrameSizeInBytes);
2386       __ movptr(saved_rsi, rsi);
2387       __ movptr(saved_rdi, rdi);
2388       __ movptr(saved_rbx, rbx);
2389     } else {
2390       // restoring
2391       __ movptr(rsi, saved_rsi);
2392       __ movptr(rdi, saved_rdi);
2393       __ movptr(rbx, saved_rbx);
2394     }
2395   }
2396 
2397   // Arguments:
2398   //
2399   // Inputs:
2400   //   c_rarg0   - source byte array address
2401   //   c_rarg1   - destination byte array address
2402   //   c_rarg2   - K (key) in little endian int array
2403   //   c_rarg3   - r vector byte array address
2404   //   c_rarg4   - input length
2405   //
2406   // Output:
2407   //   rax       - input length
2408   //
2409   address generate_cipherBlockChaining_encryptAESCrypt() {
2410     assert(UseAES, "need AES instructions and misaligned SSE support");
2411     __ align(CodeEntryAlignment);
2412     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_encryptAESCrypt");
2413     address start = __ pc();
2414 
2415     Label L_exit, L_key_192_256, L_key_256, L_loopTop_128, L_loopTop_192, L_loopTop_256;
2416     const Register from        = rsi;      // source array address
2417     const Register to          = rdx;      // destination array address
2418     const Register key         = rcx;      // key array address
2419     const Register rvec        = rdi;      // r byte array initialized from initvector array address
2420                                            // and left with the results of the last encryption block
2421     const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
2422     const Register pos         = rax;
2423 
2424     // xmm register assignments for the loops below
2425     const XMMRegister xmm_result = xmm0;
2426     const XMMRegister xmm_temp   = xmm1;
2427     // first 6 keys preloaded into xmm2-xmm7
2428     const int XMM_REG_NUM_KEY_FIRST = 2;
2429     const int XMM_REG_NUM_KEY_LAST  = 7;
2430     const XMMRegister xmm_key0   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
2431 
2432     __ enter(); // required for proper stackwalking of RuntimeStub frame
2433     handleSOERegisters(true /*saving*/);
2434 
2435     // load registers from incoming parameters
2436     const Address  from_param(rbp, 8+0);
2437     const Address  to_param  (rbp, 8+4);
2438     const Address  key_param (rbp, 8+8);
2439     const Address  rvec_param (rbp, 8+12);
2440     const Address  len_param  (rbp, 8+16);
2441     __ movptr(from , from_param);
2442     __ movptr(to   , to_param);
2443     __ movptr(key  , key_param);
2444     __ movptr(rvec , rvec_param);
2445     __ movptr(len_reg , len_param);
2446 
2447     const XMMRegister xmm_key_shuf_mask = xmm_temp;  // used temporarily to swap key bytes up front
2448     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2449     // load up xmm regs 2 thru 7 with keys 0-5
2450     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x00; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2451       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
2452       offset += 0x10;
2453     }
2454 
2455     __ movdqu(xmm_result, Address(rvec, 0x00));   // initialize xmm_result with r vec
2456 
2457     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
2458     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2459     __ cmpl(rax, 44);
2460     __ jcc(Assembler::notEqual, L_key_192_256);
2461 
2462     // 128 bit code follows here
2463     __ movl(pos, 0);
2464     __ align(OptoLoopAlignment);
2465     __ BIND(L_loopTop_128);
2466     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
2467     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
2468 
2469     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
2470     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2471       __ aesenc(xmm_result, as_XMMRegister(rnum));
2472     }
2473     for (int key_offset = 0x60; key_offset <= 0x90; key_offset += 0x10) {
2474       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
2475     }
2476     load_key(xmm_temp, key, 0xa0);
2477     __ aesenclast(xmm_result, xmm_temp);
2478 
2479     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2480     // no need to store r to memory until we exit
2481     __ addptr(pos, AESBlockSize);
2482     __ subptr(len_reg, AESBlockSize);
2483     __ jcc(Assembler::notEqual, L_loopTop_128);
2484 
2485     __ BIND(L_exit);
2486     __ movdqu(Address(rvec, 0), xmm_result);     // final value of r stored in rvec of CipherBlockChaining object
2487 
2488     handleSOERegisters(false /*restoring*/);
2489     __ movptr(rax, len_param); // return length
2490     __ leave();                                  // required for proper stackwalking of RuntimeStub frame
2491     __ ret(0);
2492 
2493     __ BIND(L_key_192_256);
2494     // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
2495     __ cmpl(rax, 52);
2496     __ jcc(Assembler::notEqual, L_key_256);
2497 
2498     // 192-bit code follows here (could be changed to use more xmm registers)
2499     __ movl(pos, 0);
2500     __ align(OptoLoopAlignment);
2501     __ BIND(L_loopTop_192);
2502     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
2503     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
2504 
2505     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
2506     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2507       __ aesenc(xmm_result, as_XMMRegister(rnum));
2508     }
2509     for (int key_offset = 0x60; key_offset <= 0xb0; key_offset += 0x10) {
2510       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
2511     }
2512     load_key(xmm_temp, key, 0xc0);
2513     __ aesenclast(xmm_result, xmm_temp);
2514 
2515     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
2516     // no need to store r to memory until we exit
2517     __ addptr(pos, AESBlockSize);
2518     __ subptr(len_reg, AESBlockSize);
2519     __ jcc(Assembler::notEqual, L_loopTop_192);
2520     __ jmp(L_exit);
2521 
2522     __ BIND(L_key_256);
2523     // 256-bit code follows here (could be changed to use more xmm registers)
2524     __ movl(pos, 0);
2525     __ align(OptoLoopAlignment);
2526     __ BIND(L_loopTop_256);
2527     __ movdqu(xmm_temp, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of input
2528     __ pxor  (xmm_result, xmm_temp);                                // xor with the current r vector
2529 
2530     __ pxor  (xmm_result, xmm_key0);                                // do the aes rounds
2531     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2532       __ aesenc(xmm_result, as_XMMRegister(rnum));
2533     }
2534     for (int key_offset = 0x60; key_offset <= 0xd0; key_offset += 0x10) {
2535       aes_enc_key(xmm_result, xmm_temp, key, key_offset);
2536     }
2537     load_key(xmm_temp, key, 0xe0);
2538     __ aesenclast(xmm_result, xmm_temp);
2539 
2540     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);   // store into the next 16 bytes of output
2541     // no need to store r to memory until we exit
2542     __ addptr(pos, AESBlockSize);
2543     __ subptr(len_reg, AESBlockSize);
2544     __ jcc(Assembler::notEqual, L_loopTop_256);
2545     __ jmp(L_exit);
2546 
2547     return start;
2548   }
2549 
2550 
2551   // CBC AES Decryption.
2552   // In 32-bit stub, because of lack of registers we do not try to parallelize 4 blocks at a time.
2553   //
2554   // Arguments:
2555   //
2556   // Inputs:
2557   //   c_rarg0   - source byte array address
2558   //   c_rarg1   - destination byte array address
2559   //   c_rarg2   - K (key) in little endian int array
2560   //   c_rarg3   - r vector byte array address
2561   //   c_rarg4   - input length
2562   //
2563   // Output:
2564   //   rax       - input length
2565   //
2566 
2567   address generate_cipherBlockChaining_decryptAESCrypt() {
2568     assert(UseAES, "need AES instructions and misaligned SSE support");
2569     __ align(CodeEntryAlignment);
2570     StubCodeMark mark(this, "StubRoutines", "cipherBlockChaining_decryptAESCrypt");
2571     address start = __ pc();
2572 
2573     Label L_exit, L_key_192_256, L_key_256;
2574     Label L_singleBlock_loopTop_128;
2575     Label L_singleBlock_loopTop_192, L_singleBlock_loopTop_256;
2576     const Register from        = rsi;      // source array address
2577     const Register to          = rdx;      // destination array address
2578     const Register key         = rcx;      // key array address
2579     const Register rvec        = rdi;      // r byte array initialized from initvector array address
2580                                            // and left with the results of the last encryption block
2581     const Register len_reg     = rbx;      // src len (must be multiple of blocksize 16)
2582     const Register pos         = rax;
2583 
2584     // xmm register assignments for the loops below
2585     const XMMRegister xmm_result = xmm0;
2586     const XMMRegister xmm_temp   = xmm1;
2587     // first 6 keys preloaded into xmm2-xmm7
2588     const int XMM_REG_NUM_KEY_FIRST = 2;
2589     const int XMM_REG_NUM_KEY_LAST  = 7;
2590     const int FIRST_NON_REG_KEY_offset = 0x70;
2591     const XMMRegister xmm_key_first   = as_XMMRegister(XMM_REG_NUM_KEY_FIRST);
2592 
2593     __ enter(); // required for proper stackwalking of RuntimeStub frame
2594     handleSOERegisters(true /*saving*/);
2595 
2596     // load registers from incoming parameters
2597     const Address  from_param(rbp, 8+0);
2598     const Address  to_param  (rbp, 8+4);
2599     const Address  key_param (rbp, 8+8);
2600     const Address  rvec_param (rbp, 8+12);
2601     const Address  len_param  (rbp, 8+16);
2602     __ movptr(from , from_param);
2603     __ movptr(to   , to_param);
2604     __ movptr(key  , key_param);
2605     __ movptr(rvec , rvec_param);
2606     __ movptr(len_reg , len_param);
2607 
2608     // the java expanded key ordering is rotated one position from what we want
2609     // so we start from 0x10 here and hit 0x00 last
2610     const XMMRegister xmm_key_shuf_mask = xmm1;  // used temporarily to swap key bytes up front
2611     __ movdqu(xmm_key_shuf_mask, ExternalAddress(StubRoutines::x86::key_shuffle_mask_addr()));
2612     // load up xmm regs 2 thru 6 with first 5 keys
2613     for (int rnum = XMM_REG_NUM_KEY_FIRST, offset = 0x10; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2614       load_key(as_XMMRegister(rnum), key, offset, xmm_key_shuf_mask);
2615       offset += 0x10;
2616     }
2617 
2618     // inside here, use the rvec register to point to previous block cipher
2619     // with which we xor at the end of each newly decrypted block
2620     const Register  prev_block_cipher_ptr = rvec;
2621 
2622     // now split to different paths depending on the keylen (len in ints of AESCrypt.KLE array (52=192, or 60=256))
2623     __ movl(rax, Address(key, arrayOopDesc::length_offset_in_bytes() - arrayOopDesc::base_offset_in_bytes(T_INT)));
2624     __ cmpl(rax, 44);
2625     __ jcc(Assembler::notEqual, L_key_192_256);
2626 
2627 
2628     // 128-bit code follows here, parallelized
2629     __ movl(pos, 0);
2630     __ align(OptoLoopAlignment);
2631     __ BIND(L_singleBlock_loopTop_128);
2632     __ cmpptr(len_reg, 0);           // any blocks left??
2633     __ jcc(Assembler::equal, L_exit);
2634     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
2635     __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
2636     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum  <= XMM_REG_NUM_KEY_LAST; rnum++) {
2637       __ aesdec(xmm_result, as_XMMRegister(rnum));
2638     }
2639     for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xa0; key_offset += 0x10) {   // 128-bit runs up to key offset a0
2640       aes_dec_key(xmm_result, xmm_temp, key, key_offset);
2641     }
2642     load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
2643     __ aesdeclast(xmm_result, xmm_temp);
2644     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2645     __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
2646     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2647     // no need to store r to memory until we exit
2648     __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
2649     __ addptr(pos, AESBlockSize);
2650     __ subptr(len_reg, AESBlockSize);
2651     __ jmp(L_singleBlock_loopTop_128);
2652 
2653 
2654     __ BIND(L_exit);
2655     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2656     __ movptr(rvec , rvec_param);                                     // restore this since used in loop
2657     __ movdqu(Address(rvec, 0), xmm_temp);                            // final value of r stored in rvec of CipherBlockChaining object
2658     handleSOERegisters(false /*restoring*/);
2659     __ movptr(rax, len_param); // return length
2660     __ leave();                                                       // required for proper stackwalking of RuntimeStub frame
2661     __ ret(0);
2662 
2663 
2664     __ BIND(L_key_192_256);
2665     // here rax = len in ints of AESCrypt.KLE array (52=192, or 60=256)
2666     __ cmpl(rax, 52);
2667     __ jcc(Assembler::notEqual, L_key_256);
2668 
2669     // 192-bit code follows here (could be optimized to use parallelism)
2670     __ movl(pos, 0);
2671     __ align(OptoLoopAlignment);
2672     __ BIND(L_singleBlock_loopTop_192);
2673     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
2674     __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
2675     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
2676       __ aesdec(xmm_result, as_XMMRegister(rnum));
2677     }
2678     for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xc0; key_offset += 0x10) {   // 192-bit runs up to key offset c0
2679       aes_dec_key(xmm_result, xmm_temp, key, key_offset);
2680     }
2681     load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
2682     __ aesdeclast(xmm_result, xmm_temp);
2683     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2684     __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
2685     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2686     // no need to store r to memory until we exit
2687     __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
2688     __ addptr(pos, AESBlockSize);
2689     __ subptr(len_reg, AESBlockSize);
2690     __ jcc(Assembler::notEqual,L_singleBlock_loopTop_192);
2691     __ jmp(L_exit);
2692 
2693     __ BIND(L_key_256);
2694     // 256-bit code follows here (could be optimized to use parallelism)
2695     __ movl(pos, 0);
2696     __ align(OptoLoopAlignment);
2697     __ BIND(L_singleBlock_loopTop_256);
2698     __ movdqu(xmm_result, Address(from, pos, Address::times_1, 0));   // get next 16 bytes of cipher input
2699     __ pxor  (xmm_result, xmm_key_first);                             // do the aes dec rounds
2700     for (int rnum = XMM_REG_NUM_KEY_FIRST + 1; rnum <= XMM_REG_NUM_KEY_LAST; rnum++) {
2701       __ aesdec(xmm_result, as_XMMRegister(rnum));
2702     }
2703     for (int key_offset = FIRST_NON_REG_KEY_offset; key_offset <= 0xe0; key_offset += 0x10) {   // 256-bit runs up to key offset e0
2704       aes_dec_key(xmm_result, xmm_temp, key, key_offset);
2705     }
2706     load_key(xmm_temp, key, 0x00);                                     // final key is stored in java expanded array at offset 0
2707     __ aesdeclast(xmm_result, xmm_temp);
2708     __ movdqu(xmm_temp, Address(prev_block_cipher_ptr, 0x00));
2709     __ pxor  (xmm_result, xmm_temp);                                  // xor with the current r vector
2710     __ movdqu(Address(to, pos, Address::times_1, 0), xmm_result);     // store into the next 16 bytes of output
2711     // no need to store r to memory until we exit
2712     __ lea(prev_block_cipher_ptr, Address(from, pos, Address::times_1, 0));     // set up new ptr
2713     __ addptr(pos, AESBlockSize);
2714     __ subptr(len_reg, AESBlockSize);
2715     __ jcc(Assembler::notEqual,L_singleBlock_loopTop_256);
2716     __ jmp(L_exit);
2717 
2718     return start;
2719   }
2720 
2721   /**
2722    *  Arguments:
2723    *
2724    * Inputs:
2725    *   rsp(4)   - int crc
2726    *   rsp(8)   - byte* buf
2727    *   rsp(12)  - int length
2728    *
2729    * Ouput:
2730    *       rax   - int crc result
2731    */
2732   address generate_updateBytesCRC32() {
2733     assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions");
2734 
2735     __ align(CodeEntryAlignment);
2736     StubCodeMark mark(this, "StubRoutines", "updateBytesCRC32");
2737 
2738     address start = __ pc();
2739 
2740     const Register crc   = rdx;  // crc
2741     const Register buf   = rsi;  // source java byte array address
2742     const Register len   = rcx;  // length
2743     const Register table = rdi;  // crc_table address (reuse register)
2744     const Register tmp   = rbx;
2745     assert_different_registers(crc, buf, len, table, tmp, rax);
2746 
2747     BLOCK_COMMENT("Entry:");
2748     __ enter(); // required for proper stackwalking of RuntimeStub frame
2749     __ push(rsi);
2750     __ push(rdi);
2751     __ push(rbx);
2752 
2753     Address crc_arg(rbp, 8 + 0);
2754     Address buf_arg(rbp, 8 + 4);
2755     Address len_arg(rbp, 8 + 8);
2756 
2757     // Load up:
2758     __ movl(crc,   crc_arg);
2759     __ movptr(buf, buf_arg);
2760     __ movl(len,   len_arg);
2761 
2762     __ kernel_crc32(crc, buf, len, table, tmp);
2763 
2764     __ movl(rax, crc);
2765     __ pop(rbx);
2766     __ pop(rdi);
2767     __ pop(rsi);
2768     __ leave(); // required for proper stackwalking of RuntimeStub frame
2769     __ ret(0);
2770 
2771     return start;
2772   }
2773 
2774   // Safefetch stubs.
2775   void generate_safefetch(const char* name, int size, address* entry,
2776                           address* fault_pc, address* continuation_pc) {
2777     // safefetch signatures:
2778     //   int      SafeFetch32(int*      adr, int      errValue);
2779     //   intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue);
2780 
2781     StubCodeMark mark(this, "StubRoutines", name);
2782 
2783     // Entry point, pc or function descriptor.
2784     *entry = __ pc();
2785 
2786     __ movl(rax, Address(rsp, 0x8));
2787     __ movl(rcx, Address(rsp, 0x4));
2788     // Load *adr into eax, may fault.
2789     *fault_pc = __ pc();
2790     switch (size) {
2791       case 4:
2792         // int32_t
2793         __ movl(rax, Address(rcx, 0));
2794         break;
2795       case 8:
2796         // int64_t
2797         Unimplemented();
2798         break;
2799       default:
2800         ShouldNotReachHere();
2801     }
2802 
2803     // Return errValue or *adr.
2804     *continuation_pc = __ pc();
2805     __ ret(0);
2806   }
2807 
2808  public:
2809   // Information about frame layout at time of blocking runtime call.
2810   // Note that we only have to preserve callee-saved registers since
2811   // the compilers are responsible for supplying a continuation point
2812   // if they expect all registers to be preserved.
2813   enum layout {
2814     thread_off,    // last_java_sp
2815     arg1_off,
2816     arg2_off,
2817     rbp_off,       // callee saved register
2818     ret_pc,
2819     framesize
2820   };
2821 
2822  private:
2823 
2824 #undef  __
2825 #define __ masm->
2826 
2827   //------------------------------------------------------------------------------------------------------------------------
2828   // Continuation point for throwing of implicit exceptions that are not handled in
2829   // the current activation. Fabricates an exception oop and initiates normal
2830   // exception dispatching in this frame.
2831   //
2832   // Previously the compiler (c2) allowed for callee save registers on Java calls.
2833   // This is no longer true after adapter frames were removed but could possibly
2834   // be brought back in the future if the interpreter code was reworked and it
2835   // was deemed worthwhile. The comment below was left to describe what must
2836   // happen here if callee saves were resurrected. As it stands now this stub
2837   // could actually be a vanilla BufferBlob and have now oopMap at all.
2838   // Since it doesn't make much difference we've chosen to leave it the
2839   // way it was in the callee save days and keep the comment.
2840 
2841   // If we need to preserve callee-saved values we need a callee-saved oop map and
2842   // therefore have to make these stubs into RuntimeStubs rather than BufferBlobs.
2843   // If the compiler needs all registers to be preserved between the fault
2844   // point and the exception handler then it must assume responsibility for that in
2845   // AbstractCompiler::continuation_for_implicit_null_exception or
2846   // continuation_for_implicit_division_by_zero_exception. All other implicit
2847   // exceptions (e.g., NullPointerException or AbstractMethodError on entry) are
2848   // either at call sites or otherwise assume that stack unwinding will be initiated,
2849   // so caller saved registers were assumed volatile in the compiler.
2850   address generate_throw_exception(const char* name, address runtime_entry,
2851                                    Register arg1 = noreg, Register arg2 = noreg) {
2852 
2853     int insts_size = 256;
2854     int locs_size  = 32;
2855 
2856     CodeBuffer code(name, insts_size, locs_size);
2857     OopMapSet* oop_maps  = new OopMapSet();
2858     MacroAssembler* masm = new MacroAssembler(&code);
2859 
2860     address start = __ pc();
2861 
2862     // This is an inlined and slightly modified version of call_VM
2863     // which has the ability to fetch the return PC out of
2864     // thread-local storage and also sets up last_Java_sp slightly
2865     // differently than the real call_VM
2866     Register java_thread = rbx;
2867     __ get_thread(java_thread);
2868 
2869     __ enter(); // required for proper stackwalking of RuntimeStub frame
2870 
2871     // pc and rbp, already pushed
2872     __ subptr(rsp, (framesize-2) * wordSize); // prolog
2873 
2874     // Frame is now completed as far as size and linkage.
2875 
2876     int frame_complete = __ pc() - start;
2877 
2878     // push java thread (becomes first argument of C function)
2879     __ movptr(Address(rsp, thread_off * wordSize), java_thread);
2880     if (arg1 != noreg) {
2881       __ movptr(Address(rsp, arg1_off * wordSize), arg1);
2882     }
2883     if (arg2 != noreg) {
2884       assert(arg1 != noreg, "missing reg arg");
2885       __ movptr(Address(rsp, arg2_off * wordSize), arg2);
2886     }
2887 
2888     // Set up last_Java_sp and last_Java_fp
2889     __ set_last_Java_frame(java_thread, rsp, rbp, NULL);
2890 
2891     // Call runtime
2892     BLOCK_COMMENT("call runtime_entry");
2893     __ call(RuntimeAddress(runtime_entry));
2894     // Generate oop map
2895     OopMap* map =  new OopMap(framesize, 0);
2896     oop_maps->add_gc_map(__ pc() - start, map);
2897 
2898     // restore the thread (cannot use the pushed argument since arguments
2899     // may be overwritten by C code generated by an optimizing compiler);
2900     // however can use the register value directly if it is callee saved.
2901     __ get_thread(java_thread);
2902 
2903     __ reset_last_Java_frame(java_thread, true, false);
2904 
2905     __ leave(); // required for proper stackwalking of RuntimeStub frame
2906 
2907     // check for pending exceptions
2908 #ifdef ASSERT
2909     Label L;
2910     __ cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
2911     __ jcc(Assembler::notEqual, L);
2912     __ should_not_reach_here();
2913     __ bind(L);
2914 #endif /* ASSERT */
2915     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2916 
2917 
2918     RuntimeStub* stub = RuntimeStub::new_runtime_stub(name, &code, frame_complete, framesize, oop_maps, false);
2919     return stub->entry_point();
2920   }
2921 
2922 
2923   void create_control_words() {
2924     // Round to nearest, 53-bit mode, exceptions masked
2925     StubRoutines::_fpu_cntrl_wrd_std   = 0x027F;
2926     // Round to zero, 53-bit mode, exception mased
2927     StubRoutines::_fpu_cntrl_wrd_trunc = 0x0D7F;
2928     // Round to nearest, 24-bit mode, exceptions masked
2929     StubRoutines::_fpu_cntrl_wrd_24    = 0x007F;
2930     // Round to nearest, 64-bit mode, exceptions masked
2931     StubRoutines::_fpu_cntrl_wrd_64    = 0x037F;
2932     // Round to nearest, 64-bit mode, exceptions masked
2933     StubRoutines::_mxcsr_std           = 0x1F80;
2934     // Note: the following two constants are 80-bit values
2935     //       layout is critical for correct loading by FPU.
2936     // Bias for strict fp multiply/divide
2937     StubRoutines::_fpu_subnormal_bias1[0]= 0x00000000; // 2^(-15360) == 0x03ff 8000 0000 0000 0000
2938     StubRoutines::_fpu_subnormal_bias1[1]= 0x80000000;
2939     StubRoutines::_fpu_subnormal_bias1[2]= 0x03ff;
2940     // Un-Bias for strict fp multiply/divide
2941     StubRoutines::_fpu_subnormal_bias2[0]= 0x00000000; // 2^(+15360) == 0x7bff 8000 0000 0000 0000
2942     StubRoutines::_fpu_subnormal_bias2[1]= 0x80000000;
2943     StubRoutines::_fpu_subnormal_bias2[2]= 0x7bff;
2944   }
2945 
2946   //---------------------------------------------------------------------------
2947   // Initialization
2948 
2949   void generate_initial() {
2950     // Generates all stubs and initializes the entry points
2951 
2952     //------------------------------------------------------------------------------------------------------------------------
2953     // entry points that exist in all platforms
2954     // Note: This is code that could be shared among different platforms - however the benefit seems to be smaller than
2955     //       the disadvantage of having a much more complicated generator structure. See also comment in stubRoutines.hpp.
2956     StubRoutines::_forward_exception_entry      = generate_forward_exception();
2957 
2958     StubRoutines::_call_stub_entry              =
2959       generate_call_stub(StubRoutines::_call_stub_return_address);
2960     // is referenced by megamorphic call
2961     StubRoutines::_catch_exception_entry        = generate_catch_exception();
2962 
2963     // These are currently used by Solaris/Intel
2964     StubRoutines::_atomic_xchg_entry            = generate_atomic_xchg();
2965 
2966     StubRoutines::_handler_for_unsafe_access_entry =
2967       generate_handler_for_unsafe_access();
2968 
2969     // platform dependent
2970     create_control_words();
2971 
2972     StubRoutines::x86::_verify_mxcsr_entry                 = generate_verify_mxcsr();
2973     StubRoutines::x86::_verify_fpu_cntrl_wrd_entry         = generate_verify_fpu_cntrl_wrd();
2974     StubRoutines::_d2i_wrapper                              = generate_d2i_wrapper(T_INT,
2975                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
2976     StubRoutines::_d2l_wrapper                              = generate_d2i_wrapper(T_LONG,
2977                                                                                    CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
2978 
2979     // Build this early so it's available for the interpreter
2980     StubRoutines::_throw_StackOverflowError_entry          = generate_throw_exception("StackOverflowError throw_exception",           CAST_FROM_FN_PTR(address, SharedRuntime::throw_StackOverflowError));
2981 
2982     if (UseCRC32Intrinsics) {
2983       // set table address before stub generation which use it
2984       StubRoutines::_crc_table_adr = (address)StubRoutines::x86::_crc_table;
2985       StubRoutines::_updateBytesCRC32 = generate_updateBytesCRC32();
2986     }
2987   }
2988 
2989 
2990   void generate_all() {
2991     // Generates all stubs and initializes the entry points
2992 
2993     // These entry points require SharedInfo::stack0 to be set up in non-core builds
2994     // and need to be relocatable, so they each fabricate a RuntimeStub internally.
2995     StubRoutines::_throw_AbstractMethodError_entry         = generate_throw_exception("AbstractMethodError throw_exception",          CAST_FROM_FN_PTR(address, SharedRuntime::throw_AbstractMethodError));
2996     StubRoutines::_throw_IncompatibleClassChangeError_entry= generate_throw_exception("IncompatibleClassChangeError throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_IncompatibleClassChangeError));
2997     StubRoutines::_throw_NullPointerException_at_call_entry= generate_throw_exception("NullPointerException at call throw_exception", CAST_FROM_FN_PTR(address, SharedRuntime::throw_NullPointerException_at_call));
2998 
2999     //------------------------------------------------------------------------------------------------------------------------
3000     // entry points that are platform specific
3001 
3002     // support for verify_oop (must happen after universe_init)
3003     StubRoutines::_verify_oop_subroutine_entry     = generate_verify_oop();
3004 
3005     // arraycopy stubs used by compilers
3006     generate_arraycopy_stubs();
3007 
3008     generate_math_stubs();
3009 
3010     // don't bother generating these AES intrinsic stubs unless global flag is set
3011     if (UseAESIntrinsics) {
3012       StubRoutines::x86::_key_shuffle_mask_addr = generate_key_shuffle_mask();  // might be needed by the others
3013 
3014       StubRoutines::_aescrypt_encryptBlock = generate_aescrypt_encryptBlock();
3015       StubRoutines::_aescrypt_decryptBlock = generate_aescrypt_decryptBlock();
3016       StubRoutines::_cipherBlockChaining_encryptAESCrypt = generate_cipherBlockChaining_encryptAESCrypt();
3017       StubRoutines::_cipherBlockChaining_decryptAESCrypt = generate_cipherBlockChaining_decryptAESCrypt();
3018     }
3019 
3020     // Safefetch stubs.
3021     generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
3022                                                    &StubRoutines::_safefetch32_fault_pc,
3023                                                    &StubRoutines::_safefetch32_continuation_pc);
3024     StubRoutines::_safefetchN_entry           = StubRoutines::_safefetch32_entry;
3025     StubRoutines::_safefetchN_fault_pc        = StubRoutines::_safefetch32_fault_pc;
3026     StubRoutines::_safefetchN_continuation_pc = StubRoutines::_safefetch32_continuation_pc;
3027   }
3028 
3029 
3030  public:
3031   StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
3032     if (all) {
3033       generate_all();
3034     } else {
3035       generate_initial();
3036     }
3037   }
3038 }; // end class declaration
3039 
3040 
3041 void StubGenerator_generate(CodeBuffer* code, bool all) {
3042   StubGenerator g(code, all);
3043 }