1 /*
   2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "opto/c2compiler.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/compile.hpp"
  34 #include "opto/escape.hpp"
  35 #include "opto/phaseX.hpp"
  36 #include "opto/movenode.hpp"
  37 #include "opto/rootnode.hpp"
  38 
  39 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  40   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  41   _in_worklist(C->comp_arena()),
  42   _next_pidx(0),
  43   _collecting(true),
  44   _verify(false),
  45   _compile(C),
  46   _igvn(igvn),
  47   _node_map(C->comp_arena()) {
  48   // Add unknown java object.
  49   add_java_object(C->top(), PointsToNode::GlobalEscape);
  50   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  51   // Add ConP(#NULL) and ConN(#NULL) nodes.
  52   Node* oop_null = igvn->zerocon(T_OBJECT);
  53   assert(oop_null->_idx < nodes_size(), "should be created already");
  54   add_java_object(oop_null, PointsToNode::NoEscape);
  55   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  56   if (UseCompressedOops) {
  57     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  58     assert(noop_null->_idx < nodes_size(), "should be created already");
  59     map_ideal_node(noop_null, null_obj);
  60   }
  61   _pcmp_neq = NULL; // Should be initialized
  62   _pcmp_eq  = NULL;
  63 }
  64 
  65 bool ConnectionGraph::has_candidates(Compile *C) {
  66   // EA brings benefits only when the code has allocations and/or locks which
  67   // are represented by ideal Macro nodes.
  68   int cnt = C->macro_count();
  69   for (int i = 0; i < cnt; i++) {
  70     Node *n = C->macro_node(i);
  71     if (n->is_Allocate())
  72       return true;
  73     if (n->is_Lock()) {
  74       Node* obj = n->as_Lock()->obj_node()->uncast();
  75       if (!(obj->is_Parm() || obj->is_Con()))
  76         return true;
  77     }
  78     if (n->is_CallStaticJava() &&
  79         n->as_CallStaticJava()->is_boxing_method()) {
  80       return true;
  81     }
  82   }
  83   return false;
  84 }
  85 
  86 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  87   Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
  88   ResourceMark rm;
  89 
  90   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  91   // to create space for them in ConnectionGraph::_nodes[].
  92   Node* oop_null = igvn->zerocon(T_OBJECT);
  93   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  94   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
  95   // Perform escape analysis
  96   if (congraph->compute_escape()) {
  97     // There are non escaping objects.
  98     C->set_congraph(congraph);
  99   }
 100   // Cleanup.
 101   if (oop_null->outcnt() == 0)
 102     igvn->hash_delete(oop_null);
 103   if (noop_null->outcnt() == 0)
 104     igvn->hash_delete(noop_null);
 105 }
 106 
 107 bool ConnectionGraph::compute_escape() {
 108   Compile* C = _compile;
 109   PhaseGVN* igvn = _igvn;
 110 
 111   // Worklists used by EA.
 112   Unique_Node_List delayed_worklist;
 113   GrowableArray<Node*> alloc_worklist;
 114   GrowableArray<Node*> ptr_cmp_worklist;
 115   GrowableArray<Node*> storestore_worklist;
 116   GrowableArray<PointsToNode*>   ptnodes_worklist;
 117   GrowableArray<JavaObjectNode*> java_objects_worklist;
 118   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 119   GrowableArray<FieldNode*>      oop_fields_worklist;
 120   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 121 
 122   { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
 123 
 124   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 125   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 126   // Initialize worklist
 127   if (C->root() != NULL) {
 128     ideal_nodes.push(C->root());
 129   }
 130   // Processed ideal nodes are unique on ideal_nodes list
 131   // but several ideal nodes are mapped to the phantom_obj.
 132   // To avoid duplicated entries on the following worklists
 133   // add the phantom_obj only once to them.
 134   ptnodes_worklist.append(phantom_obj);
 135   java_objects_worklist.append(phantom_obj);
 136   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 137     Node* n = ideal_nodes.at(next);
 138     // Create PointsTo nodes and add them to Connection Graph. Called
 139     // only once per ideal node since ideal_nodes is Unique_Node list.
 140     add_node_to_connection_graph(n, &delayed_worklist);
 141     PointsToNode* ptn = ptnode_adr(n->_idx);
 142     if (ptn != NULL && ptn != phantom_obj) {
 143       ptnodes_worklist.append(ptn);
 144       if (ptn->is_JavaObject()) {
 145         java_objects_worklist.append(ptn->as_JavaObject());
 146         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 147             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 148           // Only allocations and java static calls results are interesting.
 149           non_escaped_worklist.append(ptn->as_JavaObject());
 150         }
 151       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 152         oop_fields_worklist.append(ptn->as_Field());
 153       }
 154     }
 155     if (n->is_MergeMem()) {
 156       // Collect all MergeMem nodes to add memory slices for
 157       // scalar replaceable objects in split_unique_types().
 158       _mergemem_worklist.append(n->as_MergeMem());
 159     } else if (OptimizePtrCompare && n->is_Cmp() &&
 160                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 161       // Collect compare pointers nodes.
 162       ptr_cmp_worklist.append(n);
 163     } else if (n->is_MemBarStoreStore()) {
 164       // Collect all MemBarStoreStore nodes so that depending on the
 165       // escape status of the associated Allocate node some of them
 166       // may be eliminated.
 167       storestore_worklist.append(n);
 168     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 169                (n->req() > MemBarNode::Precedent)) {
 170       record_for_optimizer(n);
 171 #ifdef ASSERT
 172     } else if (n->is_AddP()) {
 173       // Collect address nodes for graph verification.
 174       addp_worklist.append(n);
 175 #endif
 176     }
 177     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 178       Node* m = n->fast_out(i);   // Get user
 179       ideal_nodes.push(m);
 180     }
 181   }
 182   if (non_escaped_worklist.length() == 0) {
 183     _collecting = false;
 184     return false; // Nothing to do.
 185   }
 186   // Add final simple edges to graph.
 187   while(delayed_worklist.size() > 0) {
 188     Node* n = delayed_worklist.pop();
 189     add_final_edges(n);
 190   }
 191   int ptnodes_length = ptnodes_worklist.length();
 192 
 193 #ifdef ASSERT
 194   if (VerifyConnectionGraph) {
 195     // Verify that no new simple edges could be created and all
 196     // local vars has edges.
 197     _verify = true;
 198     for (int next = 0; next < ptnodes_length; ++next) {
 199       PointsToNode* ptn = ptnodes_worklist.at(next);
 200       add_final_edges(ptn->ideal_node());
 201       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 202         ptn->dump();
 203         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 204       }
 205     }
 206     _verify = false;
 207   }
 208 #endif
 209 
 210   // 2. Finish Graph construction by propagating references to all
 211   //    java objects through graph.
 212   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 213                                  java_objects_worklist, oop_fields_worklist)) {
 214     // All objects escaped or hit time or iterations limits.
 215     _collecting = false;
 216     return false;
 217   }
 218 
 219   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 220   //    scalar replaceable allocations on alloc_worklist for processing
 221   //    in split_unique_types().
 222   int non_escaped_length = non_escaped_worklist.length();
 223   for (int next = 0; next < non_escaped_length; next++) {
 224     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 225     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 226     Node* n = ptn->ideal_node();
 227     if (n->is_Allocate()) {
 228       n->as_Allocate()->_is_non_escaping = noescape;
 229     }
 230     if (n->is_CallStaticJava()) {
 231       n->as_CallStaticJava()->_is_non_escaping = noescape;
 232     }
 233     if (noescape && ptn->scalar_replaceable()) {
 234       adjust_scalar_replaceable_state(ptn);
 235       if (ptn->scalar_replaceable()) {
 236         alloc_worklist.append(ptn->ideal_node());
 237       }
 238     }
 239   }
 240 
 241 #ifdef ASSERT
 242   if (VerifyConnectionGraph) {
 243     // Verify that graph is complete - no new edges could be added or needed.
 244     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 245                             java_objects_worklist, addp_worklist);
 246   }
 247   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 248   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 249          null_obj->edge_count() == 0 &&
 250          !null_obj->arraycopy_src() &&
 251          !null_obj->arraycopy_dst(), "sanity");
 252 #endif
 253 
 254   _collecting = false;
 255 
 256   } // TracePhase t3("connectionGraph")
 257 
 258   // 4. Optimize ideal graph based on EA information.
 259   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 260   if (has_non_escaping_obj) {
 261     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 262   }
 263 
 264 #ifndef PRODUCT
 265   if (PrintEscapeAnalysis) {
 266     dump(ptnodes_worklist); // Dump ConnectionGraph
 267   }
 268 #endif
 269 
 270   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 271 #ifdef ASSERT
 272   if (VerifyConnectionGraph) {
 273     int alloc_length = alloc_worklist.length();
 274     for (int next = 0; next < alloc_length; ++next) {
 275       Node* n = alloc_worklist.at(next);
 276       PointsToNode* ptn = ptnode_adr(n->_idx);
 277       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 278     }
 279   }
 280 #endif
 281 
 282   // 5. Separate memory graph for scalar replaceable allcations.
 283   if (has_scalar_replaceable_candidates &&
 284       C->AliasLevel() >= 3 && EliminateAllocations) {
 285     // Now use the escape information to create unique types for
 286     // scalar replaceable objects.
 287     split_unique_types(alloc_worklist);
 288     if (C->failing())  return false;
 289     C->print_method(PHASE_AFTER_EA, 2);
 290 
 291 #ifdef ASSERT
 292   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 293     tty->print("=== No allocations eliminated for ");
 294     C->method()->print_short_name();
 295     if(!EliminateAllocations) {
 296       tty->print(" since EliminateAllocations is off ===");
 297     } else if(!has_scalar_replaceable_candidates) {
 298       tty->print(" since there are no scalar replaceable candidates ===");
 299     } else if(C->AliasLevel() < 3) {
 300       tty->print(" since AliasLevel < 3 ===");
 301     }
 302     tty->cr();
 303 #endif
 304   }
 305   return has_non_escaping_obj;
 306 }
 307 
 308 // Utility function for nodes that load an object
 309 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 310   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 311   // ThreadLocal has RawPtr type.
 312   const Type* t = _igvn->type(n);
 313   if (t->make_ptr() != NULL) {
 314     Node* adr = n->in(MemNode::Address);
 315 #ifdef ASSERT
 316     if (!adr->is_AddP()) {
 317       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 318     } else {
 319       assert((ptnode_adr(adr->_idx) == NULL ||
 320               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 321     }
 322 #endif
 323     add_local_var_and_edge(n, PointsToNode::NoEscape,
 324                            adr, delayed_worklist);
 325   }
 326 }
 327 
 328 // Populate Connection Graph with PointsTo nodes and create simple
 329 // connection graph edges.
 330 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 331   assert(!_verify, "this method sould not be called for verification");
 332   PhaseGVN* igvn = _igvn;
 333   uint n_idx = n->_idx;
 334   PointsToNode* n_ptn = ptnode_adr(n_idx);
 335   if (n_ptn != NULL)
 336     return; // No need to redefine PointsTo node during first iteration.
 337 
 338   if (n->is_Call()) {
 339     // Arguments to allocation and locking don't escape.
 340     if (n->is_AbstractLock()) {
 341       // Put Lock and Unlock nodes on IGVN worklist to process them during
 342       // first IGVN optimization when escape information is still available.
 343       record_for_optimizer(n);
 344     } else if (n->is_Allocate()) {
 345       add_call_node(n->as_Call());
 346       record_for_optimizer(n);
 347     } else {
 348       if (n->is_CallStaticJava()) {
 349         const char* name = n->as_CallStaticJava()->_name;
 350         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 351           return; // Skip uncommon traps
 352       }
 353       // Don't mark as processed since call's arguments have to be processed.
 354       delayed_worklist->push(n);
 355       // Check if a call returns an object.
 356       if ((n->as_Call()->returns_pointer() &&
 357            n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
 358           (n->is_CallStaticJava() &&
 359            n->as_CallStaticJava()->is_boxing_method())) {
 360         add_call_node(n->as_Call());
 361       }
 362     }
 363     return;
 364   }
 365   // Put this check here to process call arguments since some call nodes
 366   // point to phantom_obj.
 367   if (n_ptn == phantom_obj || n_ptn == null_obj)
 368     return; // Skip predefined nodes.
 369 
 370   int opcode = n->Opcode();
 371   switch (opcode) {
 372     case Op_AddP: {
 373       Node* base = get_addp_base(n);
 374       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 375       // Field nodes are created for all field types. They are used in
 376       // adjust_scalar_replaceable_state() and split_unique_types().
 377       // Note, non-oop fields will have only base edges in Connection
 378       // Graph because such fields are not used for oop loads and stores.
 379       int offset = address_offset(n, igvn);
 380       add_field(n, PointsToNode::NoEscape, offset);
 381       if (ptn_base == NULL) {
 382         delayed_worklist->push(n); // Process it later.
 383       } else {
 384         n_ptn = ptnode_adr(n_idx);
 385         add_base(n_ptn->as_Field(), ptn_base);
 386       }
 387       break;
 388     }
 389     case Op_CastX2P: {
 390       map_ideal_node(n, phantom_obj);
 391       break;
 392     }
 393     case Op_CastPP:
 394     case Op_CheckCastPP:
 395     case Op_EncodeP:
 396     case Op_DecodeN:
 397     case Op_EncodePKlass:
 398     case Op_DecodeNKlass: {
 399       add_local_var_and_edge(n, PointsToNode::NoEscape,
 400                              n->in(1), delayed_worklist);
 401       break;
 402     }
 403     case Op_CMoveP: {
 404       add_local_var(n, PointsToNode::NoEscape);
 405       // Do not add edges during first iteration because some could be
 406       // not defined yet.
 407       delayed_worklist->push(n);
 408       break;
 409     }
 410     case Op_ConP:
 411     case Op_ConN:
 412     case Op_ConNKlass: {
 413       // assume all oop constants globally escape except for null
 414       PointsToNode::EscapeState es;
 415       const Type* t = igvn->type(n);
 416       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 417         es = PointsToNode::NoEscape;
 418       } else {
 419         es = PointsToNode::GlobalEscape;
 420       }
 421       add_java_object(n, es);
 422       break;
 423     }
 424     case Op_CreateEx: {
 425       // assume that all exception objects globally escape
 426       map_ideal_node(n, phantom_obj);
 427       break;
 428     }
 429     case Op_LoadKlass:
 430     case Op_LoadNKlass: {
 431       // Unknown class is loaded
 432       map_ideal_node(n, phantom_obj);
 433       break;
 434     }
 435     case Op_LoadP:
 436     case Op_LoadN:
 437     case Op_LoadPLocked: {
 438       add_objload_to_connection_graph(n, delayed_worklist);
 439       break;
 440     }
 441     case Op_Parm: {
 442       map_ideal_node(n, phantom_obj);
 443       break;
 444     }
 445     case Op_PartialSubtypeCheck: {
 446       // Produces Null or notNull and is used in only in CmpP so
 447       // phantom_obj could be used.
 448       map_ideal_node(n, phantom_obj); // Result is unknown
 449       break;
 450     }
 451     case Op_Phi: {
 452       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 453       // ThreadLocal has RawPtr type.
 454       const Type* t = n->as_Phi()->type();
 455       if (t->make_ptr() != NULL) {
 456         add_local_var(n, PointsToNode::NoEscape);
 457         // Do not add edges during first iteration because some could be
 458         // not defined yet.
 459         delayed_worklist->push(n);
 460       }
 461       break;
 462     }
 463     case Op_Proj: {
 464       // we are only interested in the oop result projection from a call
 465       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 466           n->in(0)->as_Call()->returns_pointer()) {
 467         add_local_var_and_edge(n, PointsToNode::NoEscape,
 468                                n->in(0), delayed_worklist);
 469       }
 470       break;
 471     }
 472     case Op_Rethrow: // Exception object escapes
 473     case Op_Return: {
 474       if (n->req() > TypeFunc::Parms &&
 475           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 476         // Treat Return value as LocalVar with GlobalEscape escape state.
 477         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 478                                n->in(TypeFunc::Parms), delayed_worklist);
 479       }
 480       break;
 481     }
 482     case Op_GetAndSetP:
 483     case Op_GetAndSetN: {
 484       add_objload_to_connection_graph(n, delayed_worklist);
 485       // fallthrough
 486     }
 487     case Op_StoreP:
 488     case Op_StoreN:
 489     case Op_StoreNKlass:
 490     case Op_StorePConditional:
 491     case Op_CompareAndSwapP:
 492     case Op_CompareAndSwapN: {
 493       Node* adr = n->in(MemNode::Address);
 494       const Type *adr_type = igvn->type(adr);
 495       adr_type = adr_type->make_ptr();
 496       if (adr_type == NULL) {
 497         break; // skip dead nodes
 498       }
 499       if (adr_type->isa_oopptr() ||
 500           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 501                         (adr_type == TypeRawPtr::NOTNULL &&
 502                          adr->in(AddPNode::Address)->is_Proj() &&
 503                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 504         delayed_worklist->push(n); // Process it later.
 505 #ifdef ASSERT
 506         assert(adr->is_AddP(), "expecting an AddP");
 507         if (adr_type == TypeRawPtr::NOTNULL) {
 508           // Verify a raw address for a store captured by Initialize node.
 509           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 510           assert(offs != Type::OffsetBot, "offset must be a constant");
 511         }
 512 #endif
 513       } else {
 514         // Ignore copy the displaced header to the BoxNode (OSR compilation).
 515         if (adr->is_BoxLock())
 516           break;
 517         // Stored value escapes in unsafe access.
 518         if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
 519           // Pointer stores in G1 barriers looks like unsafe access.
 520           // Ignore such stores to be able scalar replace non-escaping
 521           // allocations.
 522           if (UseG1GC && adr->is_AddP()) {
 523             Node* base = get_addp_base(adr);
 524             if (base->Opcode() == Op_LoadP &&
 525                 base->in(MemNode::Address)->is_AddP()) {
 526               adr = base->in(MemNode::Address);
 527               Node* tls = get_addp_base(adr);
 528               if (tls->Opcode() == Op_ThreadLocal) {
 529                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 530                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
 531                                      PtrQueue::byte_offset_of_buf())) {
 532                   break; // G1 pre barier previous oop value store.
 533                 }
 534                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
 535                                      PtrQueue::byte_offset_of_buf())) {
 536                   break; // G1 post barier card address store.
 537                 }
 538               }
 539             }
 540           }
 541           delayed_worklist->push(n); // Process unsafe access later.
 542           break;
 543         }
 544 #ifdef ASSERT
 545         n->dump(1);
 546         assert(false, "not unsafe or G1 barrier raw StoreP");
 547 #endif
 548       }
 549       break;
 550     }
 551     case Op_AryEq:
 552     case Op_StrComp:
 553     case Op_StrEquals:
 554     case Op_StrIndexOf:
 555     case Op_EncodeISOArray: {
 556       add_local_var(n, PointsToNode::ArgEscape);
 557       delayed_worklist->push(n); // Process it later.
 558       break;
 559     }
 560     case Op_ThreadLocal: {
 561       add_java_object(n, PointsToNode::ArgEscape);
 562       break;
 563     }
 564     default:
 565       ; // Do nothing for nodes not related to EA.
 566   }
 567   return;
 568 }
 569 
 570 #ifdef ASSERT
 571 #define ELSE_FAIL(name)                               \
 572       /* Should not be called for not pointer type. */  \
 573       n->dump(1);                                       \
 574       assert(false, name);                              \
 575       break;
 576 #else
 577 #define ELSE_FAIL(name) \
 578       break;
 579 #endif
 580 
 581 // Add final simple edges to graph.
 582 void ConnectionGraph::add_final_edges(Node *n) {
 583   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 584 #ifdef ASSERT
 585   if (_verify && n_ptn->is_JavaObject())
 586     return; // This method does not change graph for JavaObject.
 587 #endif
 588 
 589   if (n->is_Call()) {
 590     process_call_arguments(n->as_Call());
 591     return;
 592   }
 593   assert(n->is_Store() || n->is_LoadStore() ||
 594          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 595          "node should be registered already");
 596   int opcode = n->Opcode();
 597   switch (opcode) {
 598     case Op_AddP: {
 599       Node* base = get_addp_base(n);
 600       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 601       assert(ptn_base != NULL, "field's base should be registered");
 602       add_base(n_ptn->as_Field(), ptn_base);
 603       break;
 604     }
 605     case Op_CastPP:
 606     case Op_CheckCastPP:
 607     case Op_EncodeP:
 608     case Op_DecodeN:
 609     case Op_EncodePKlass:
 610     case Op_DecodeNKlass: {
 611       add_local_var_and_edge(n, PointsToNode::NoEscape,
 612                              n->in(1), NULL);
 613       break;
 614     }
 615     case Op_CMoveP: {
 616       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 617         Node* in = n->in(i);
 618         if (in == NULL)
 619           continue;  // ignore NULL
 620         Node* uncast_in = in->uncast();
 621         if (uncast_in->is_top() || uncast_in == n)
 622           continue;  // ignore top or inputs which go back this node
 623         PointsToNode* ptn = ptnode_adr(in->_idx);
 624         assert(ptn != NULL, "node should be registered");
 625         add_edge(n_ptn, ptn);
 626       }
 627       break;
 628     }
 629     case Op_LoadP:
 630     case Op_LoadN:
 631     case Op_LoadPLocked: {
 632       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 633       // ThreadLocal has RawPtr type.
 634       const Type* t = _igvn->type(n);
 635       if (t->make_ptr() != NULL) {
 636         Node* adr = n->in(MemNode::Address);
 637         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 638         break;
 639       }
 640       ELSE_FAIL("Op_LoadP");
 641     }
 642     case Op_Phi: {
 643       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 644       // ThreadLocal has RawPtr type.
 645       const Type* t = n->as_Phi()->type();
 646       if (t->make_ptr() != NULL) {
 647         for (uint i = 1; i < n->req(); i++) {
 648           Node* in = n->in(i);
 649           if (in == NULL)
 650             continue;  // ignore NULL
 651           Node* uncast_in = in->uncast();
 652           if (uncast_in->is_top() || uncast_in == n)
 653             continue;  // ignore top or inputs which go back this node
 654           PointsToNode* ptn = ptnode_adr(in->_idx);
 655           assert(ptn != NULL, "node should be registered");
 656           add_edge(n_ptn, ptn);
 657         }
 658         break;
 659       }
 660       ELSE_FAIL("Op_Phi");
 661     }
 662     case Op_Proj: {
 663       // we are only interested in the oop result projection from a call
 664       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 665           n->in(0)->as_Call()->returns_pointer()) {
 666         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 667         break;
 668       }
 669       ELSE_FAIL("Op_Proj");
 670     }
 671     case Op_Rethrow: // Exception object escapes
 672     case Op_Return: {
 673       if (n->req() > TypeFunc::Parms &&
 674           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 675         // Treat Return value as LocalVar with GlobalEscape escape state.
 676         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 677                                n->in(TypeFunc::Parms), NULL);
 678         break;
 679       }
 680       ELSE_FAIL("Op_Return");
 681     }
 682     case Op_StoreP:
 683     case Op_StoreN:
 684     case Op_StoreNKlass:
 685     case Op_StorePConditional:
 686     case Op_CompareAndSwapP:
 687     case Op_CompareAndSwapN:
 688     case Op_GetAndSetP:
 689     case Op_GetAndSetN: {
 690       Node* adr = n->in(MemNode::Address);
 691       const Type *adr_type = _igvn->type(adr);
 692       adr_type = adr_type->make_ptr();
 693 #ifdef ASSERT
 694       if (adr_type == NULL) {
 695         n->dump(1);
 696         assert(adr_type != NULL, "dead node should not be on list");
 697         break;
 698       }
 699 #endif
 700       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
 701         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 702       }
 703       if (adr_type->isa_oopptr() ||
 704           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 705                         (adr_type == TypeRawPtr::NOTNULL &&
 706                          adr->in(AddPNode::Address)->is_Proj() &&
 707                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 708         // Point Address to Value
 709         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 710         assert(adr_ptn != NULL &&
 711                adr_ptn->as_Field()->is_oop(), "node should be registered");
 712         Node *val = n->in(MemNode::ValueIn);
 713         PointsToNode* ptn = ptnode_adr(val->_idx);
 714         assert(ptn != NULL, "node should be registered");
 715         add_edge(adr_ptn, ptn);
 716         break;
 717       } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
 718         // Stored value escapes in unsafe access.
 719         Node *val = n->in(MemNode::ValueIn);
 720         PointsToNode* ptn = ptnode_adr(val->_idx);
 721         assert(ptn != NULL, "node should be registered");
 722         set_escape_state(ptn, PointsToNode::GlobalEscape);
 723         // Add edge to object for unsafe access with offset.
 724         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 725         assert(adr_ptn != NULL, "node should be registered");
 726         if (adr_ptn->is_Field()) {
 727           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 728           add_edge(adr_ptn, ptn);
 729         }
 730         break;
 731       }
 732       ELSE_FAIL("Op_StoreP");
 733     }
 734     case Op_AryEq:
 735     case Op_StrComp:
 736     case Op_StrEquals:
 737     case Op_StrIndexOf:
 738     case Op_EncodeISOArray: {
 739       // char[] arrays passed to string intrinsic do not escape but
 740       // they are not scalar replaceable. Adjust escape state for them.
 741       // Start from in(2) edge since in(1) is memory edge.
 742       for (uint i = 2; i < n->req(); i++) {
 743         Node* adr = n->in(i);
 744         const Type* at = _igvn->type(adr);
 745         if (!adr->is_top() && at->isa_ptr()) {
 746           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 747                  at->isa_ptr() != NULL, "expecting a pointer");
 748           if (adr->is_AddP()) {
 749             adr = get_addp_base(adr);
 750           }
 751           PointsToNode* ptn = ptnode_adr(adr->_idx);
 752           assert(ptn != NULL, "node should be registered");
 753           add_edge(n_ptn, ptn);
 754         }
 755       }
 756       break;
 757     }
 758     default: {
 759       // This method should be called only for EA specific nodes which may
 760       // miss some edges when they were created.
 761 #ifdef ASSERT
 762       n->dump(1);
 763 #endif
 764       guarantee(false, "unknown node");
 765     }
 766   }
 767   return;
 768 }
 769 
 770 void ConnectionGraph::add_call_node(CallNode* call) {
 771   assert(call->returns_pointer(), "only for call which returns pointer");
 772   uint call_idx = call->_idx;
 773   if (call->is_Allocate()) {
 774     Node* k = call->in(AllocateNode::KlassNode);
 775     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 776     assert(kt != NULL, "TypeKlassPtr  required.");
 777     ciKlass* cik = kt->klass();
 778     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 779     bool scalar_replaceable = true;
 780     if (call->is_AllocateArray()) {
 781       if (!cik->is_array_klass()) { // StressReflectiveCode
 782         es = PointsToNode::GlobalEscape;
 783       } else {
 784         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 785         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 786           // Not scalar replaceable if the length is not constant or too big.
 787           scalar_replaceable = false;
 788         }
 789       }
 790     } else {  // Allocate instance
 791       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 792           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
 793          !cik->is_instance_klass() || // StressReflectiveCode
 794           cik->as_instance_klass()->has_finalizer()) {
 795         es = PointsToNode::GlobalEscape;
 796       }
 797     }
 798     add_java_object(call, es);
 799     PointsToNode* ptn = ptnode_adr(call_idx);
 800     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 801       ptn->set_scalar_replaceable(false);
 802     }
 803   } else if (call->is_CallStaticJava()) {
 804     // Call nodes could be different types:
 805     //
 806     // 1. CallDynamicJavaNode (what happened during call is unknown):
 807     //
 808     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 809     //
 810     //    - all oop arguments are escaping globally;
 811     //
 812     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 813     //
 814     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 815     //
 816     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 817     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 818     //      during call is returned;
 819     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 820     //      which are returned and does not escape during call;
 821     //
 822     //    - oop arguments escaping status is defined by bytecode analysis;
 823     //
 824     // For a static call, we know exactly what method is being called.
 825     // Use bytecode estimator to record whether the call's return value escapes.
 826     ciMethod* meth = call->as_CallJava()->method();
 827     if (meth == NULL) {
 828       const char* name = call->as_CallStaticJava()->_name;
 829       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 830       // Returns a newly allocated unescaped object.
 831       add_java_object(call, PointsToNode::NoEscape);
 832       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 833     } else if (meth->is_boxing_method()) {
 834       // Returns boxing object
 835       PointsToNode::EscapeState es;
 836       vmIntrinsics::ID intr = meth->intrinsic_id();
 837       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
 838         // It does not escape if object is always allocated.
 839         es = PointsToNode::NoEscape;
 840       } else {
 841         // It escapes globally if object could be loaded from cache.
 842         es = PointsToNode::GlobalEscape;
 843       }
 844       add_java_object(call, es);
 845     } else {
 846       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 847       call_analyzer->copy_dependencies(_compile->dependencies());
 848       if (call_analyzer->is_return_allocated()) {
 849         // Returns a newly allocated unescaped object, simply
 850         // update dependency information.
 851         // Mark it as NoEscape so that objects referenced by
 852         // it's fields will be marked as NoEscape at least.
 853         add_java_object(call, PointsToNode::NoEscape);
 854         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 855       } else {
 856         // Determine whether any arguments are returned.
 857         const TypeTuple* d = call->tf()->domain();
 858         bool ret_arg = false;
 859         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 860           if (d->field_at(i)->isa_ptr() != NULL &&
 861               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 862             ret_arg = true;
 863             break;
 864           }
 865         }
 866         if (ret_arg) {
 867           add_local_var(call, PointsToNode::ArgEscape);
 868         } else {
 869           // Returns unknown object.
 870           map_ideal_node(call, phantom_obj);
 871         }
 872       }
 873     }
 874   } else {
 875     // An other type of call, assume the worst case:
 876     // returned value is unknown and globally escapes.
 877     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 878     map_ideal_node(call, phantom_obj);
 879   }
 880 }
 881 
 882 void ConnectionGraph::process_call_arguments(CallNode *call) {
 883     bool is_arraycopy = false;
 884     switch (call->Opcode()) {
 885 #ifdef ASSERT
 886     case Op_Allocate:
 887     case Op_AllocateArray:
 888     case Op_Lock:
 889     case Op_Unlock:
 890       assert(false, "should be done already");
 891       break;
 892 #endif
 893     case Op_ArrayCopy:
 894     case Op_CallLeafNoFP:
 895       // Most array copies are ArrayCopy nodes at this point but there
 896       // are still a few direct calls to the copy subroutines (See
 897       // PhaseStringOpts::copy_string())
 898       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
 899         (call->as_CallLeaf()->_name != NULL &&
 900          strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
 901       // fall through
 902     case Op_CallLeaf: {
 903       // Stub calls, objects do not escape but they are not scale replaceable.
 904       // Adjust escape state for outgoing arguments.
 905       const TypeTuple * d = call->tf()->domain();
 906       bool src_has_oops = false;
 907       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 908         const Type* at = d->field_at(i);
 909         Node *arg = call->in(i);
 910         if (arg == NULL) {
 911           continue;
 912         }
 913         const Type *aat = _igvn->type(arg);
 914         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 915           continue;
 916         if (arg->is_AddP()) {
 917           //
 918           // The inline_native_clone() case when the arraycopy stub is called
 919           // after the allocation before Initialize and CheckCastPP nodes.
 920           // Or normal arraycopy for object arrays case.
 921           //
 922           // Set AddP's base (Allocate) as not scalar replaceable since
 923           // pointer to the base (with offset) is passed as argument.
 924           //
 925           arg = get_addp_base(arg);
 926         }
 927         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 928         assert(arg_ptn != NULL, "should be registered");
 929         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 930         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 931           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 932                  aat->isa_ptr() != NULL, "expecting an Ptr");
 933           bool arg_has_oops = aat->isa_oopptr() &&
 934                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 935                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 936           if (i == TypeFunc::Parms) {
 937             src_has_oops = arg_has_oops;
 938           }
 939           //
 940           // src or dst could be j.l.Object when other is basic type array:
 941           //
 942           //   arraycopy(char[],0,Object*,0,size);
 943           //   arraycopy(Object*,0,char[],0,size);
 944           //
 945           // Don't add edges in such cases.
 946           //
 947           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 948                                        arg_has_oops && (i > TypeFunc::Parms);
 949 #ifdef ASSERT
 950           if (!(is_arraycopy ||
 951                 (call->as_CallLeaf()->_name != NULL &&
 952                  (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
 953                   strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
 954                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
 955                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
 956                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
 957                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
 958                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
 959                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
 960                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
 961                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
 962                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
 963                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
 964                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
 965                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
 966                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0)
 967                   ))) {
 968             call->dump();
 969             fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
 970           }
 971 #endif
 972           // Always process arraycopy's destination object since
 973           // we need to add all possible edges to references in
 974           // source object.
 975           if (arg_esc >= PointsToNode::ArgEscape &&
 976               !arg_is_arraycopy_dest) {
 977             continue;
 978           }
 979           set_escape_state(arg_ptn, PointsToNode::ArgEscape);
 980           if (arg_is_arraycopy_dest) {
 981             Node* src = call->in(TypeFunc::Parms);
 982             if (src->is_AddP()) {
 983               src = get_addp_base(src);
 984             }
 985             PointsToNode* src_ptn = ptnode_adr(src->_idx);
 986             assert(src_ptn != NULL, "should be registered");
 987             if (arg_ptn != src_ptn) {
 988               // Special arraycopy edge:
 989               // A destination object's field can't have the source object
 990               // as base since objects escape states are not related.
 991               // Only escape state of destination object's fields affects
 992               // escape state of fields in source object.
 993               add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
 994             }
 995           }
 996         }
 997       }
 998       break;
 999     }
1000     case Op_CallStaticJava: {
1001       // For a static call, we know exactly what method is being called.
1002       // Use bytecode estimator to record the call's escape affects
1003 #ifdef ASSERT
1004       const char* name = call->as_CallStaticJava()->_name;
1005       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1006 #endif
1007       ciMethod* meth = call->as_CallJava()->method();
1008       if ((meth != NULL) && meth->is_boxing_method()) {
1009         break; // Boxing methods do not modify any oops.
1010       }
1011       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1012       // fall-through if not a Java method or no analyzer information
1013       if (call_analyzer != NULL) {
1014         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1015         const TypeTuple* d = call->tf()->domain();
1016         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1017           const Type* at = d->field_at(i);
1018           int k = i - TypeFunc::Parms;
1019           Node* arg = call->in(i);
1020           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1021           if (at->isa_ptr() != NULL &&
1022               call_analyzer->is_arg_returned(k)) {
1023             // The call returns arguments.
1024             if (call_ptn != NULL) { // Is call's result used?
1025               assert(call_ptn->is_LocalVar(), "node should be registered");
1026               assert(arg_ptn != NULL, "node should be registered");
1027               add_edge(call_ptn, arg_ptn);
1028             }
1029           }
1030           if (at->isa_oopptr() != NULL &&
1031               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1032             if (!call_analyzer->is_arg_stack(k)) {
1033               // The argument global escapes
1034               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1035             } else {
1036               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1037               if (!call_analyzer->is_arg_local(k)) {
1038                 // The argument itself doesn't escape, but any fields might
1039                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1040               }
1041             }
1042           }
1043         }
1044         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1045           // The call returns arguments.
1046           assert(call_ptn->edge_count() > 0, "sanity");
1047           if (!call_analyzer->is_return_local()) {
1048             // Returns also unknown object.
1049             add_edge(call_ptn, phantom_obj);
1050           }
1051         }
1052         break;
1053       }
1054     }
1055     default: {
1056       // Fall-through here if not a Java method or no analyzer information
1057       // or some other type of call, assume the worst case: all arguments
1058       // globally escape.
1059       const TypeTuple* d = call->tf()->domain();
1060       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1061         const Type* at = d->field_at(i);
1062         if (at->isa_oopptr() != NULL) {
1063           Node* arg = call->in(i);
1064           if (arg->is_AddP()) {
1065             arg = get_addp_base(arg);
1066           }
1067           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1068           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1069         }
1070       }
1071     }
1072   }
1073 }
1074 
1075 
1076 // Finish Graph construction.
1077 bool ConnectionGraph::complete_connection_graph(
1078                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1079                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1080                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1081                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1082   // Normally only 1-3 passes needed to build Connection Graph depending
1083   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1084   // Set limit to 20 to catch situation when something did go wrong and
1085   // bailout Escape Analysis.
1086   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1087 #define CG_BUILD_ITER_LIMIT 20
1088 
1089   // Propagate GlobalEscape and ArgEscape escape states and check that
1090   // we still have non-escaping objects. The method pushs on _worklist
1091   // Field nodes which reference phantom_object.
1092   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1093     return false; // Nothing to do.
1094   }
1095   // Now propagate references to all JavaObject nodes.
1096   int java_objects_length = java_objects_worklist.length();
1097   elapsedTimer time;
1098   bool timeout = false;
1099   int new_edges = 1;
1100   int iterations = 0;
1101   do {
1102     while ((new_edges > 0) &&
1103            (iterations++ < CG_BUILD_ITER_LIMIT)) {
1104       double start_time = time.seconds();
1105       time.start();
1106       new_edges = 0;
1107       // Propagate references to phantom_object for nodes pushed on _worklist
1108       // by find_non_escaped_objects() and find_field_value().
1109       new_edges += add_java_object_edges(phantom_obj, false);
1110       for (int next = 0; next < java_objects_length; ++next) {
1111         JavaObjectNode* ptn = java_objects_worklist.at(next);
1112         new_edges += add_java_object_edges(ptn, true);
1113 
1114 #define SAMPLE_SIZE 4
1115         if ((next % SAMPLE_SIZE) == 0) {
1116           // Each 4 iterations calculate how much time it will take
1117           // to complete graph construction.
1118           time.stop();
1119           // Poll for requests from shutdown mechanism to quiesce compiler
1120           // because Connection graph construction may take long time.
1121           CompileBroker::maybe_block();
1122           double stop_time = time.seconds();
1123           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1124           double time_until_end = time_per_iter * (double)(java_objects_length - next);
1125           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1126             timeout = true;
1127             break; // Timeout
1128           }
1129           start_time = stop_time;
1130           time.start();
1131         }
1132 #undef SAMPLE_SIZE
1133 
1134       }
1135       if (timeout) break;
1136       if (new_edges > 0) {
1137         // Update escape states on each iteration if graph was updated.
1138         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1139           return false; // Nothing to do.
1140         }
1141       }
1142       time.stop();
1143       if (time.seconds() >= EscapeAnalysisTimeout) {
1144         timeout = true;
1145         break;
1146       }
1147     }
1148     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1149       time.start();
1150       // Find fields which have unknown value.
1151       int fields_length = oop_fields_worklist.length();
1152       for (int next = 0; next < fields_length; next++) {
1153         FieldNode* field = oop_fields_worklist.at(next);
1154         if (field->edge_count() == 0) {
1155           new_edges += find_field_value(field);
1156           // This code may added new edges to phantom_object.
1157           // Need an other cycle to propagate references to phantom_object.
1158         }
1159       }
1160       time.stop();
1161       if (time.seconds() >= EscapeAnalysisTimeout) {
1162         timeout = true;
1163         break;
1164       }
1165     } else {
1166       new_edges = 0; // Bailout
1167     }
1168   } while (new_edges > 0);
1169 
1170   // Bailout if passed limits.
1171   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1172     Compile* C = _compile;
1173     if (C->log() != NULL) {
1174       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1175       C->log()->text("%s", timeout ? "time" : "iterations");
1176       C->log()->end_elem(" limit'");
1177     }
1178     assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1179            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
1180     // Possible infinite build_connection_graph loop,
1181     // bailout (no changes to ideal graph were made).
1182     return false;
1183   }
1184 #ifdef ASSERT
1185   if (Verbose && PrintEscapeAnalysis) {
1186     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1187                   iterations, nodes_size(), ptnodes_worklist.length());
1188   }
1189 #endif
1190 
1191 #undef CG_BUILD_ITER_LIMIT
1192 
1193   // Find fields initialized by NULL for non-escaping Allocations.
1194   int non_escaped_length = non_escaped_worklist.length();
1195   for (int next = 0; next < non_escaped_length; next++) {
1196     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1197     PointsToNode::EscapeState es = ptn->escape_state();
1198     assert(es <= PointsToNode::ArgEscape, "sanity");
1199     if (es == PointsToNode::NoEscape) {
1200       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1201         // Adding references to NULL object does not change escape states
1202         // since it does not escape. Also no fields are added to NULL object.
1203         add_java_object_edges(null_obj, false);
1204       }
1205     }
1206     Node* n = ptn->ideal_node();
1207     if (n->is_Allocate()) {
1208       // The object allocated by this Allocate node will never be
1209       // seen by an other thread. Mark it so that when it is
1210       // expanded no MemBarStoreStore is added.
1211       InitializeNode* ini = n->as_Allocate()->initialization();
1212       if (ini != NULL)
1213         ini->set_does_not_escape();
1214     }
1215   }
1216   return true; // Finished graph construction.
1217 }
1218 
1219 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1220 // and check that we still have non-escaping java objects.
1221 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1222                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1223   GrowableArray<PointsToNode*> escape_worklist;
1224   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1225   int ptnodes_length = ptnodes_worklist.length();
1226   for (int next = 0; next < ptnodes_length; ++next) {
1227     PointsToNode* ptn = ptnodes_worklist.at(next);
1228     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1229         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1230       escape_worklist.push(ptn);
1231     }
1232   }
1233   // Set escape states to referenced nodes (edges list).
1234   while (escape_worklist.length() > 0) {
1235     PointsToNode* ptn = escape_worklist.pop();
1236     PointsToNode::EscapeState es  = ptn->escape_state();
1237     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1238     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1239         es >= PointsToNode::ArgEscape) {
1240       // GlobalEscape or ArgEscape state of field means it has unknown value.
1241       if (add_edge(ptn, phantom_obj)) {
1242         // New edge was added
1243         add_field_uses_to_worklist(ptn->as_Field());
1244       }
1245     }
1246     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1247       PointsToNode* e = i.get();
1248       if (e->is_Arraycopy()) {
1249         assert(ptn->arraycopy_dst(), "sanity");
1250         // Propagate only fields escape state through arraycopy edge.
1251         if (e->fields_escape_state() < field_es) {
1252           set_fields_escape_state(e, field_es);
1253           escape_worklist.push(e);
1254         }
1255       } else if (es >= field_es) {
1256         // fields_escape_state is also set to 'es' if it is less than 'es'.
1257         if (e->escape_state() < es) {
1258           set_escape_state(e, es);
1259           escape_worklist.push(e);
1260         }
1261       } else {
1262         // Propagate field escape state.
1263         bool es_changed = false;
1264         if (e->fields_escape_state() < field_es) {
1265           set_fields_escape_state(e, field_es);
1266           es_changed = true;
1267         }
1268         if ((e->escape_state() < field_es) &&
1269             e->is_Field() && ptn->is_JavaObject() &&
1270             e->as_Field()->is_oop()) {
1271           // Change escape state of referenced fileds.
1272           set_escape_state(e, field_es);
1273           es_changed = true;;
1274         } else if (e->escape_state() < es) {
1275           set_escape_state(e, es);
1276           es_changed = true;;
1277         }
1278         if (es_changed) {
1279           escape_worklist.push(e);
1280         }
1281       }
1282     }
1283   }
1284   // Remove escaped objects from non_escaped list.
1285   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1286     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1287     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1288       non_escaped_worklist.delete_at(next);
1289     }
1290     if (ptn->escape_state() == PointsToNode::NoEscape) {
1291       // Find fields in non-escaped allocations which have unknown value.
1292       find_init_values(ptn, phantom_obj, NULL);
1293     }
1294   }
1295   return (non_escaped_worklist.length() > 0);
1296 }
1297 
1298 // Add all references to JavaObject node by walking over all uses.
1299 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1300   int new_edges = 0;
1301   if (populate_worklist) {
1302     // Populate _worklist by uses of jobj's uses.
1303     for (UseIterator i(jobj); i.has_next(); i.next()) {
1304       PointsToNode* use = i.get();
1305       if (use->is_Arraycopy())
1306         continue;
1307       add_uses_to_worklist(use);
1308       if (use->is_Field() && use->as_Field()->is_oop()) {
1309         // Put on worklist all field's uses (loads) and
1310         // related field nodes (same base and offset).
1311         add_field_uses_to_worklist(use->as_Field());
1312       }
1313     }
1314   }
1315   for (int l = 0; l < _worklist.length(); l++) {
1316     PointsToNode* use = _worklist.at(l);
1317     if (PointsToNode::is_base_use(use)) {
1318       // Add reference from jobj to field and from field to jobj (field's base).
1319       use = PointsToNode::get_use_node(use)->as_Field();
1320       if (add_base(use->as_Field(), jobj)) {
1321         new_edges++;
1322       }
1323       continue;
1324     }
1325     assert(!use->is_JavaObject(), "sanity");
1326     if (use->is_Arraycopy()) {
1327       if (jobj == null_obj) // NULL object does not have field edges
1328         continue;
1329       // Added edge from Arraycopy node to arraycopy's source java object
1330       if (add_edge(use, jobj)) {
1331         jobj->set_arraycopy_src();
1332         new_edges++;
1333       }
1334       // and stop here.
1335       continue;
1336     }
1337     if (!add_edge(use, jobj))
1338       continue; // No new edge added, there was such edge already.
1339     new_edges++;
1340     if (use->is_LocalVar()) {
1341       add_uses_to_worklist(use);
1342       if (use->arraycopy_dst()) {
1343         for (EdgeIterator i(use); i.has_next(); i.next()) {
1344           PointsToNode* e = i.get();
1345           if (e->is_Arraycopy()) {
1346             if (jobj == null_obj) // NULL object does not have field edges
1347               continue;
1348             // Add edge from arraycopy's destination java object to Arraycopy node.
1349             if (add_edge(jobj, e)) {
1350               new_edges++;
1351               jobj->set_arraycopy_dst();
1352             }
1353           }
1354         }
1355       }
1356     } else {
1357       // Added new edge to stored in field values.
1358       // Put on worklist all field's uses (loads) and
1359       // related field nodes (same base and offset).
1360       add_field_uses_to_worklist(use->as_Field());
1361     }
1362   }
1363   _worklist.clear();
1364   _in_worklist.Reset();
1365   return new_edges;
1366 }
1367 
1368 // Put on worklist all related field nodes.
1369 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1370   assert(field->is_oop(), "sanity");
1371   int offset = field->offset();
1372   add_uses_to_worklist(field);
1373   // Loop over all bases of this field and push on worklist Field nodes
1374   // with the same offset and base (since they may reference the same field).
1375   for (BaseIterator i(field); i.has_next(); i.next()) {
1376     PointsToNode* base = i.get();
1377     add_fields_to_worklist(field, base);
1378     // Check if the base was source object of arraycopy and go over arraycopy's
1379     // destination objects since values stored to a field of source object are
1380     // accessable by uses (loads) of fields of destination objects.
1381     if (base->arraycopy_src()) {
1382       for (UseIterator j(base); j.has_next(); j.next()) {
1383         PointsToNode* arycp = j.get();
1384         if (arycp->is_Arraycopy()) {
1385           for (UseIterator k(arycp); k.has_next(); k.next()) {
1386             PointsToNode* abase = k.get();
1387             if (abase->arraycopy_dst() && abase != base) {
1388               // Look for the same arracopy reference.
1389               add_fields_to_worklist(field, abase);
1390             }
1391           }
1392         }
1393       }
1394     }
1395   }
1396 }
1397 
1398 // Put on worklist all related field nodes.
1399 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1400   int offset = field->offset();
1401   if (base->is_LocalVar()) {
1402     for (UseIterator j(base); j.has_next(); j.next()) {
1403       PointsToNode* f = j.get();
1404       if (PointsToNode::is_base_use(f)) { // Field
1405         f = PointsToNode::get_use_node(f);
1406         if (f == field || !f->as_Field()->is_oop())
1407           continue;
1408         int offs = f->as_Field()->offset();
1409         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1410           add_to_worklist(f);
1411         }
1412       }
1413     }
1414   } else {
1415     assert(base->is_JavaObject(), "sanity");
1416     if (// Skip phantom_object since it is only used to indicate that
1417         // this field's content globally escapes.
1418         (base != phantom_obj) &&
1419         // NULL object node does not have fields.
1420         (base != null_obj)) {
1421       for (EdgeIterator i(base); i.has_next(); i.next()) {
1422         PointsToNode* f = i.get();
1423         // Skip arraycopy edge since store to destination object field
1424         // does not update value in source object field.
1425         if (f->is_Arraycopy()) {
1426           assert(base->arraycopy_dst(), "sanity");
1427           continue;
1428         }
1429         if (f == field || !f->as_Field()->is_oop())
1430           continue;
1431         int offs = f->as_Field()->offset();
1432         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1433           add_to_worklist(f);
1434         }
1435       }
1436     }
1437   }
1438 }
1439 
1440 // Find fields which have unknown value.
1441 int ConnectionGraph::find_field_value(FieldNode* field) {
1442   // Escaped fields should have init value already.
1443   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1444   int new_edges = 0;
1445   for (BaseIterator i(field); i.has_next(); i.next()) {
1446     PointsToNode* base = i.get();
1447     if (base->is_JavaObject()) {
1448       // Skip Allocate's fields which will be processed later.
1449       if (base->ideal_node()->is_Allocate())
1450         return 0;
1451       assert(base == null_obj, "only NULL ptr base expected here");
1452     }
1453   }
1454   if (add_edge(field, phantom_obj)) {
1455     // New edge was added
1456     new_edges++;
1457     add_field_uses_to_worklist(field);
1458   }
1459   return new_edges;
1460 }
1461 
1462 // Find fields initializing values for allocations.
1463 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1464   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1465   int new_edges = 0;
1466   Node* alloc = pta->ideal_node();
1467   if (init_val == phantom_obj) {
1468     // Do nothing for Allocate nodes since its fields values are "known".
1469     if (alloc->is_Allocate())
1470       return 0;
1471     assert(alloc->as_CallStaticJava(), "sanity");
1472 #ifdef ASSERT
1473     if (alloc->as_CallStaticJava()->method() == NULL) {
1474       const char* name = alloc->as_CallStaticJava()->_name;
1475       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1476     }
1477 #endif
1478     // Non-escaped allocation returned from Java or runtime call have
1479     // unknown values in fields.
1480     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1481       PointsToNode* field = i.get();
1482       if (field->is_Field() && field->as_Field()->is_oop()) {
1483         if (add_edge(field, phantom_obj)) {
1484           // New edge was added
1485           new_edges++;
1486           add_field_uses_to_worklist(field->as_Field());
1487         }
1488       }
1489     }
1490     return new_edges;
1491   }
1492   assert(init_val == null_obj, "sanity");
1493   // Do nothing for Call nodes since its fields values are unknown.
1494   if (!alloc->is_Allocate())
1495     return 0;
1496 
1497   InitializeNode* ini = alloc->as_Allocate()->initialization();
1498   bool visited_bottom_offset = false;
1499   GrowableArray<int> offsets_worklist;
1500 
1501   // Check if an oop field's initializing value is recorded and add
1502   // a corresponding NULL if field's value if it is not recorded.
1503   // Connection Graph does not record a default initialization by NULL
1504   // captured by Initialize node.
1505   //
1506   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1507     PointsToNode* field = i.get(); // Field (AddP)
1508     if (!field->is_Field() || !field->as_Field()->is_oop())
1509       continue; // Not oop field
1510     int offset = field->as_Field()->offset();
1511     if (offset == Type::OffsetBot) {
1512       if (!visited_bottom_offset) {
1513         // OffsetBot is used to reference array's element,
1514         // always add reference to NULL to all Field nodes since we don't
1515         // known which element is referenced.
1516         if (add_edge(field, null_obj)) {
1517           // New edge was added
1518           new_edges++;
1519           add_field_uses_to_worklist(field->as_Field());
1520           visited_bottom_offset = true;
1521         }
1522       }
1523     } else {
1524       // Check only oop fields.
1525       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1526       if (adr_type->isa_rawptr()) {
1527 #ifdef ASSERT
1528         // Raw pointers are used for initializing stores so skip it
1529         // since it should be recorded already
1530         Node* base = get_addp_base(field->ideal_node());
1531         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1532                (base->in(0) == alloc),"unexpected pointer type");
1533 #endif
1534         continue;
1535       }
1536       if (!offsets_worklist.contains(offset)) {
1537         offsets_worklist.append(offset);
1538         Node* value = NULL;
1539         if (ini != NULL) {
1540           // StoreP::memory_type() == T_ADDRESS
1541           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1542           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1543           // Make sure initializing store has the same type as this AddP.
1544           // This AddP may reference non existing field because it is on a
1545           // dead branch of bimorphic call which is not eliminated yet.
1546           if (store != NULL && store->is_Store() &&
1547               store->as_Store()->memory_type() == ft) {
1548             value = store->in(MemNode::ValueIn);
1549 #ifdef ASSERT
1550             if (VerifyConnectionGraph) {
1551               // Verify that AddP already points to all objects the value points to.
1552               PointsToNode* val = ptnode_adr(value->_idx);
1553               assert((val != NULL), "should be processed already");
1554               PointsToNode* missed_obj = NULL;
1555               if (val->is_JavaObject()) {
1556                 if (!field->points_to(val->as_JavaObject())) {
1557                   missed_obj = val;
1558                 }
1559               } else {
1560                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1561                   tty->print_cr("----------init store has invalid value -----");
1562                   store->dump();
1563                   val->dump();
1564                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1565                 }
1566                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1567                   PointsToNode* obj = j.get();
1568                   if (obj->is_JavaObject()) {
1569                     if (!field->points_to(obj->as_JavaObject())) {
1570                       missed_obj = obj;
1571                       break;
1572                     }
1573                   }
1574                 }
1575               }
1576               if (missed_obj != NULL) {
1577                 tty->print_cr("----------field---------------------------------");
1578                 field->dump();
1579                 tty->print_cr("----------missed referernce to object-----------");
1580                 missed_obj->dump();
1581                 tty->print_cr("----------object referernced by init store -----");
1582                 store->dump();
1583                 val->dump();
1584                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1585               }
1586             }
1587 #endif
1588           } else {
1589             // There could be initializing stores which follow allocation.
1590             // For example, a volatile field store is not collected
1591             // by Initialize node.
1592             //
1593             // Need to check for dependent loads to separate such stores from
1594             // stores which follow loads. For now, add initial value NULL so
1595             // that compare pointers optimization works correctly.
1596           }
1597         }
1598         if (value == NULL) {
1599           // A field's initializing value was not recorded. Add NULL.
1600           if (add_edge(field, null_obj)) {
1601             // New edge was added
1602             new_edges++;
1603             add_field_uses_to_worklist(field->as_Field());
1604           }
1605         }
1606       }
1607     }
1608   }
1609   return new_edges;
1610 }
1611 
1612 // Adjust scalar_replaceable state after Connection Graph is built.
1613 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1614   // Search for non-escaping objects which are not scalar replaceable
1615   // and mark them to propagate the state to referenced objects.
1616 
1617   // 1. An object is not scalar replaceable if the field into which it is
1618   // stored has unknown offset (stored into unknown element of an array).
1619   //
1620   for (UseIterator i(jobj); i.has_next(); i.next()) {
1621     PointsToNode* use = i.get();
1622     assert(!use->is_Arraycopy(), "sanity");
1623     if (use->is_Field()) {
1624       FieldNode* field = use->as_Field();
1625       assert(field->is_oop() && field->scalar_replaceable() &&
1626              field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
1627       if (field->offset() == Type::OffsetBot) {
1628         jobj->set_scalar_replaceable(false);
1629         return;
1630       }
1631       // 2. An object is not scalar replaceable if the field into which it is
1632       // stored has multiple bases one of which is null.
1633       if (field->base_count() > 1) {
1634         for (BaseIterator i(field); i.has_next(); i.next()) {
1635           PointsToNode* base = i.get();
1636           if (base == null_obj) {
1637             jobj->set_scalar_replaceable(false);
1638             return;
1639           }
1640         }
1641       }
1642     }
1643     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1644     // 3. An object is not scalar replaceable if it is merged with other objects.
1645     for (EdgeIterator j(use); j.has_next(); j.next()) {
1646       PointsToNode* ptn = j.get();
1647       if (ptn->is_JavaObject() && ptn != jobj) {
1648         // Mark all objects.
1649         jobj->set_scalar_replaceable(false);
1650          ptn->set_scalar_replaceable(false);
1651       }
1652     }
1653     if (!jobj->scalar_replaceable()) {
1654       return;
1655     }
1656   }
1657 
1658   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1659     // Non-escaping object node should point only to field nodes.
1660     FieldNode* field = j.get()->as_Field();
1661     int offset = field->as_Field()->offset();
1662 
1663     // 4. An object is not scalar replaceable if it has a field with unknown
1664     // offset (array's element is accessed in loop).
1665     if (offset == Type::OffsetBot) {
1666       jobj->set_scalar_replaceable(false);
1667       return;
1668     }
1669     // 5. Currently an object is not scalar replaceable if a LoadStore node
1670     // access its field since the field value is unknown after it.
1671     //
1672     Node* n = field->ideal_node();
1673     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1674       if (n->fast_out(i)->is_LoadStore()) {
1675         jobj->set_scalar_replaceable(false);
1676         return;
1677       }
1678     }
1679 
1680     // 6. Or the address may point to more then one object. This may produce
1681     // the false positive result (set not scalar replaceable)
1682     // since the flow-insensitive escape analysis can't separate
1683     // the case when stores overwrite the field's value from the case
1684     // when stores happened on different control branches.
1685     //
1686     // Note: it will disable scalar replacement in some cases:
1687     //
1688     //    Point p[] = new Point[1];
1689     //    p[0] = new Point(); // Will be not scalar replaced
1690     //
1691     // but it will save us from incorrect optimizations in next cases:
1692     //
1693     //    Point p[] = new Point[1];
1694     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1695     //
1696     if (field->base_count() > 1) {
1697       for (BaseIterator i(field); i.has_next(); i.next()) {
1698         PointsToNode* base = i.get();
1699         // Don't take into account LocalVar nodes which
1700         // may point to only one object which should be also
1701         // this field's base by now.
1702         if (base->is_JavaObject() && base != jobj) {
1703           // Mark all bases.
1704           jobj->set_scalar_replaceable(false);
1705           base->set_scalar_replaceable(false);
1706         }
1707       }
1708     }
1709   }
1710 }
1711 
1712 #ifdef ASSERT
1713 void ConnectionGraph::verify_connection_graph(
1714                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1715                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1716                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1717                          GrowableArray<Node*>& addp_worklist) {
1718   // Verify that graph is complete - no new edges could be added.
1719   int java_objects_length = java_objects_worklist.length();
1720   int non_escaped_length  = non_escaped_worklist.length();
1721   int new_edges = 0;
1722   for (int next = 0; next < java_objects_length; ++next) {
1723     JavaObjectNode* ptn = java_objects_worklist.at(next);
1724     new_edges += add_java_object_edges(ptn, true);
1725   }
1726   assert(new_edges == 0, "graph was not complete");
1727   // Verify that escape state is final.
1728   int length = non_escaped_worklist.length();
1729   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1730   assert((non_escaped_length == non_escaped_worklist.length()) &&
1731          (non_escaped_length == length) &&
1732          (_worklist.length() == 0), "escape state was not final");
1733 
1734   // Verify fields information.
1735   int addp_length = addp_worklist.length();
1736   for (int next = 0; next < addp_length; ++next ) {
1737     Node* n = addp_worklist.at(next);
1738     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1739     if (field->is_oop()) {
1740       // Verify that field has all bases
1741       Node* base = get_addp_base(n);
1742       PointsToNode* ptn = ptnode_adr(base->_idx);
1743       if (ptn->is_JavaObject()) {
1744         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1745       } else {
1746         assert(ptn->is_LocalVar(), "sanity");
1747         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1748           PointsToNode* e = i.get();
1749           if (e->is_JavaObject()) {
1750             assert(field->has_base(e->as_JavaObject()), "sanity");
1751           }
1752         }
1753       }
1754       // Verify that all fields have initializing values.
1755       if (field->edge_count() == 0) {
1756         tty->print_cr("----------field does not have references----------");
1757         field->dump();
1758         for (BaseIterator i(field); i.has_next(); i.next()) {
1759           PointsToNode* base = i.get();
1760           tty->print_cr("----------field has next base---------------------");
1761           base->dump();
1762           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1763             tty->print_cr("----------base has fields-------------------------");
1764             for (EdgeIterator j(base); j.has_next(); j.next()) {
1765               j.get()->dump();
1766             }
1767             tty->print_cr("----------base has references---------------------");
1768             for (UseIterator j(base); j.has_next(); j.next()) {
1769               j.get()->dump();
1770             }
1771           }
1772         }
1773         for (UseIterator i(field); i.has_next(); i.next()) {
1774           i.get()->dump();
1775         }
1776         assert(field->edge_count() > 0, "sanity");
1777       }
1778     }
1779   }
1780 }
1781 #endif
1782 
1783 // Optimize ideal graph.
1784 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1785                                            GrowableArray<Node*>& storestore_worklist) {
1786   Compile* C = _compile;
1787   PhaseIterGVN* igvn = _igvn;
1788   if (EliminateLocks) {
1789     // Mark locks before changing ideal graph.
1790     int cnt = C->macro_count();
1791     for( int i=0; i < cnt; i++ ) {
1792       Node *n = C->macro_node(i);
1793       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1794         AbstractLockNode* alock = n->as_AbstractLock();
1795         if (!alock->is_non_esc_obj()) {
1796           if (not_global_escape(alock->obj_node())) {
1797             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1798             // The lock could be marked eliminated by lock coarsening
1799             // code during first IGVN before EA. Replace coarsened flag
1800             // to eliminate all associated locks/unlocks.
1801             alock->set_non_esc_obj();
1802           }
1803         }
1804       }
1805     }
1806   }
1807 
1808   if (OptimizePtrCompare) {
1809     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1810     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1811     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1812     // Optimize objects compare.
1813     while (ptr_cmp_worklist.length() != 0) {
1814       Node *n = ptr_cmp_worklist.pop();
1815       Node *res = optimize_ptr_compare(n);
1816       if (res != NULL) {
1817 #ifndef PRODUCT
1818         if (PrintOptimizePtrCompare) {
1819           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1820           if (Verbose) {
1821             n->dump(1);
1822           }
1823         }
1824 #endif
1825         igvn->replace_node(n, res);
1826       }
1827     }
1828     // cleanup
1829     if (_pcmp_neq->outcnt() == 0)
1830       igvn->hash_delete(_pcmp_neq);
1831     if (_pcmp_eq->outcnt()  == 0)
1832       igvn->hash_delete(_pcmp_eq);
1833   }
1834 
1835   // For MemBarStoreStore nodes added in library_call.cpp, check
1836   // escape status of associated AllocateNode and optimize out
1837   // MemBarStoreStore node if the allocated object never escapes.
1838   while (storestore_worklist.length() != 0) {
1839     Node *n = storestore_worklist.pop();
1840     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1841     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1842     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1843     if (not_global_escape(alloc)) {
1844       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1845       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1846       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1847       igvn->register_new_node_with_optimizer(mb);
1848       igvn->replace_node(storestore, mb);
1849     }
1850   }
1851 }
1852 
1853 // Optimize objects compare.
1854 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1855   assert(OptimizePtrCompare, "sanity");
1856   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1857   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1858   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1859   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1860   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1861   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1862 
1863   // Check simple cases first.
1864   if (jobj1 != NULL) {
1865     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1866       if (jobj1 == jobj2) {
1867         // Comparing the same not escaping object.
1868         return _pcmp_eq;
1869       }
1870       Node* obj = jobj1->ideal_node();
1871       // Comparing not escaping allocation.
1872       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1873           !ptn2->points_to(jobj1)) {
1874         return _pcmp_neq; // This includes nullness check.
1875       }
1876     }
1877   }
1878   if (jobj2 != NULL) {
1879     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1880       Node* obj = jobj2->ideal_node();
1881       // Comparing not escaping allocation.
1882       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1883           !ptn1->points_to(jobj2)) {
1884         return _pcmp_neq; // This includes nullness check.
1885       }
1886     }
1887   }
1888   if (jobj1 != NULL && jobj1 != phantom_obj &&
1889       jobj2 != NULL && jobj2 != phantom_obj &&
1890       jobj1->ideal_node()->is_Con() &&
1891       jobj2->ideal_node()->is_Con()) {
1892     // Klass or String constants compare. Need to be careful with
1893     // compressed pointers - compare types of ConN and ConP instead of nodes.
1894     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1895     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1896     if (t1->make_ptr() == t2->make_ptr()) {
1897       return _pcmp_eq;
1898     } else {
1899       return _pcmp_neq;
1900     }
1901   }
1902   if (ptn1->meet(ptn2)) {
1903     return NULL; // Sets are not disjoint
1904   }
1905 
1906   // Sets are disjoint.
1907   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1908   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1909   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1910   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1911   if (set1_has_unknown_ptr && set2_has_null_ptr ||
1912       set2_has_unknown_ptr && set1_has_null_ptr) {
1913     // Check nullness of unknown object.
1914     return NULL;
1915   }
1916 
1917   // Disjointness by itself is not sufficient since
1918   // alias analysis is not complete for escaped objects.
1919   // Disjoint sets are definitely unrelated only when
1920   // at least one set has only not escaping allocations.
1921   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1922     if (ptn1->non_escaping_allocation()) {
1923       return _pcmp_neq;
1924     }
1925   }
1926   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
1927     if (ptn2->non_escaping_allocation()) {
1928       return _pcmp_neq;
1929     }
1930   }
1931   return NULL;
1932 }
1933 
1934 // Connection Graph constuction functions.
1935 
1936 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
1937   PointsToNode* ptadr = _nodes.at(n->_idx);
1938   if (ptadr != NULL) {
1939     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
1940     return;
1941   }
1942   Compile* C = _compile;
1943   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
1944   _nodes.at_put(n->_idx, ptadr);
1945 }
1946 
1947 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
1948   PointsToNode* ptadr = _nodes.at(n->_idx);
1949   if (ptadr != NULL) {
1950     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
1951     return;
1952   }
1953   Compile* C = _compile;
1954   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
1955   _nodes.at_put(n->_idx, ptadr);
1956 }
1957 
1958 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
1959   PointsToNode* ptadr = _nodes.at(n->_idx);
1960   if (ptadr != NULL) {
1961     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
1962     return;
1963   }
1964   bool unsafe = false;
1965   bool is_oop = is_oop_field(n, offset, &unsafe);
1966   if (unsafe) {
1967     es = PointsToNode::GlobalEscape;
1968   }
1969   Compile* C = _compile;
1970   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
1971   _nodes.at_put(n->_idx, field);
1972 }
1973 
1974 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
1975                                     PointsToNode* src, PointsToNode* dst) {
1976   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
1977   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
1978   PointsToNode* ptadr = _nodes.at(n->_idx);
1979   if (ptadr != NULL) {
1980     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
1981     return;
1982   }
1983   Compile* C = _compile;
1984   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
1985   _nodes.at_put(n->_idx, ptadr);
1986   // Add edge from arraycopy node to source object.
1987   (void)add_edge(ptadr, src);
1988   src->set_arraycopy_src();
1989   // Add edge from destination object to arraycopy node.
1990   (void)add_edge(dst, ptadr);
1991   dst->set_arraycopy_dst();
1992 }
1993 
1994 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
1995   const Type* adr_type = n->as_AddP()->bottom_type();
1996   BasicType bt = T_INT;
1997   if (offset == Type::OffsetBot) {
1998     // Check only oop fields.
1999     if (!adr_type->isa_aryptr() ||
2000         (adr_type->isa_aryptr()->klass() == NULL) ||
2001          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2002       // OffsetBot is used to reference array's element. Ignore first AddP.
2003       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2004         bt = T_OBJECT;
2005       }
2006     }
2007   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2008     if (adr_type->isa_instptr()) {
2009       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
2010       if (field != NULL) {
2011         bt = field->layout_type();
2012       } else {
2013         // Check for unsafe oop field access
2014         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN)) {
2015           bt = T_OBJECT;
2016           (*unsafe) = true;
2017         }
2018       }
2019     } else if (adr_type->isa_aryptr()) {
2020       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2021         // Ignore array length load.
2022       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2023         // Ignore first AddP.
2024       } else {
2025         const Type* elemtype = adr_type->isa_aryptr()->elem();
2026         bt = elemtype->array_element_basic_type();
2027       }
2028     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2029       // Allocation initialization, ThreadLocal field access, unsafe access
2030       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN)) {
2031         bt = T_OBJECT;
2032       }
2033     }
2034   }
2035   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
2036 }
2037 
2038 // Returns unique pointed java object or NULL.
2039 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2040   assert(!_collecting, "should not call when contructed graph");
2041   // If the node was created after the escape computation we can't answer.
2042   uint idx = n->_idx;
2043   if (idx >= nodes_size()) {
2044     return NULL;
2045   }
2046   PointsToNode* ptn = ptnode_adr(idx);
2047   if (ptn->is_JavaObject()) {
2048     return ptn->as_JavaObject();
2049   }
2050   assert(ptn->is_LocalVar(), "sanity");
2051   // Check all java objects it points to.
2052   JavaObjectNode* jobj = NULL;
2053   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2054     PointsToNode* e = i.get();
2055     if (e->is_JavaObject()) {
2056       if (jobj == NULL) {
2057         jobj = e->as_JavaObject();
2058       } else if (jobj != e) {
2059         return NULL;
2060       }
2061     }
2062   }
2063   return jobj;
2064 }
2065 
2066 // Return true if this node points only to non-escaping allocations.
2067 bool PointsToNode::non_escaping_allocation() {
2068   if (is_JavaObject()) {
2069     Node* n = ideal_node();
2070     if (n->is_Allocate() || n->is_CallStaticJava()) {
2071       return (escape_state() == PointsToNode::NoEscape);
2072     } else {
2073       return false;
2074     }
2075   }
2076   assert(is_LocalVar(), "sanity");
2077   // Check all java objects it points to.
2078   for (EdgeIterator i(this); i.has_next(); i.next()) {
2079     PointsToNode* e = i.get();
2080     if (e->is_JavaObject()) {
2081       Node* n = e->ideal_node();
2082       if ((e->escape_state() != PointsToNode::NoEscape) ||
2083           !(n->is_Allocate() || n->is_CallStaticJava())) {
2084         return false;
2085       }
2086     }
2087   }
2088   return true;
2089 }
2090 
2091 // Return true if we know the node does not escape globally.
2092 bool ConnectionGraph::not_global_escape(Node *n) {
2093   assert(!_collecting, "should not call during graph construction");
2094   // If the node was created after the escape computation we can't answer.
2095   uint idx = n->_idx;
2096   if (idx >= nodes_size()) {
2097     return false;
2098   }
2099   PointsToNode* ptn = ptnode_adr(idx);
2100   PointsToNode::EscapeState es = ptn->escape_state();
2101   // If we have already computed a value, return it.
2102   if (es >= PointsToNode::GlobalEscape)
2103     return false;
2104   if (ptn->is_JavaObject()) {
2105     return true; // (es < PointsToNode::GlobalEscape);
2106   }
2107   assert(ptn->is_LocalVar(), "sanity");
2108   // Check all java objects it points to.
2109   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2110     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2111       return false;
2112   }
2113   return true;
2114 }
2115 
2116 
2117 // Helper functions
2118 
2119 // Return true if this node points to specified node or nodes it points to.
2120 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2121   if (is_JavaObject()) {
2122     return (this == ptn);
2123   }
2124   assert(is_LocalVar() || is_Field(), "sanity");
2125   for (EdgeIterator i(this); i.has_next(); i.next()) {
2126     if (i.get() == ptn)
2127       return true;
2128   }
2129   return false;
2130 }
2131 
2132 // Return true if one node points to an other.
2133 bool PointsToNode::meet(PointsToNode* ptn) {
2134   if (this == ptn) {
2135     return true;
2136   } else if (ptn->is_JavaObject()) {
2137     return this->points_to(ptn->as_JavaObject());
2138   } else if (this->is_JavaObject()) {
2139     return ptn->points_to(this->as_JavaObject());
2140   }
2141   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2142   int ptn_count =  ptn->edge_count();
2143   for (EdgeIterator i(this); i.has_next(); i.next()) {
2144     PointsToNode* this_e = i.get();
2145     for (int j = 0; j < ptn_count; j++) {
2146       if (this_e == ptn->edge(j))
2147         return true;
2148     }
2149   }
2150   return false;
2151 }
2152 
2153 #ifdef ASSERT
2154 // Return true if bases point to this java object.
2155 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2156   for (BaseIterator i(this); i.has_next(); i.next()) {
2157     if (i.get() == jobj)
2158       return true;
2159   }
2160   return false;
2161 }
2162 #endif
2163 
2164 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2165   const Type *adr_type = phase->type(adr);
2166   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2167       adr->in(AddPNode::Address)->is_Proj() &&
2168       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2169     // We are computing a raw address for a store captured by an Initialize
2170     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2171     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2172     assert(offs != Type::OffsetBot ||
2173            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2174            "offset must be a constant or it is initialization of array");
2175     return offs;
2176   }
2177   const TypePtr *t_ptr = adr_type->isa_ptr();
2178   assert(t_ptr != NULL, "must be a pointer type");
2179   return t_ptr->offset();
2180 }
2181 
2182 Node* ConnectionGraph::get_addp_base(Node *addp) {
2183   assert(addp->is_AddP(), "must be AddP");
2184   //
2185   // AddP cases for Base and Address inputs:
2186   // case #1. Direct object's field reference:
2187   //     Allocate
2188   //       |
2189   //     Proj #5 ( oop result )
2190   //       |
2191   //     CheckCastPP (cast to instance type)
2192   //      | |
2193   //     AddP  ( base == address )
2194   //
2195   // case #2. Indirect object's field reference:
2196   //      Phi
2197   //       |
2198   //     CastPP (cast to instance type)
2199   //      | |
2200   //     AddP  ( base == address )
2201   //
2202   // case #3. Raw object's field reference for Initialize node:
2203   //      Allocate
2204   //        |
2205   //      Proj #5 ( oop result )
2206   //  top   |
2207   //     \  |
2208   //     AddP  ( base == top )
2209   //
2210   // case #4. Array's element reference:
2211   //   {CheckCastPP | CastPP}
2212   //     |  | |
2213   //     |  AddP ( array's element offset )
2214   //     |  |
2215   //     AddP ( array's offset )
2216   //
2217   // case #5. Raw object's field reference for arraycopy stub call:
2218   //          The inline_native_clone() case when the arraycopy stub is called
2219   //          after the allocation before Initialize and CheckCastPP nodes.
2220   //      Allocate
2221   //        |
2222   //      Proj #5 ( oop result )
2223   //       | |
2224   //       AddP  ( base == address )
2225   //
2226   // case #6. Constant Pool, ThreadLocal, CastX2P or
2227   //          Raw object's field reference:
2228   //      {ConP, ThreadLocal, CastX2P, raw Load}
2229   //  top   |
2230   //     \  |
2231   //     AddP  ( base == top )
2232   //
2233   // case #7. Klass's field reference.
2234   //      LoadKlass
2235   //       | |
2236   //       AddP  ( base == address )
2237   //
2238   // case #8. narrow Klass's field reference.
2239   //      LoadNKlass
2240   //       |
2241   //      DecodeN
2242   //       | |
2243   //       AddP  ( base == address )
2244   //
2245   Node *base = addp->in(AddPNode::Base);
2246   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
2247     base = addp->in(AddPNode::Address);
2248     while (base->is_AddP()) {
2249       // Case #6 (unsafe access) may have several chained AddP nodes.
2250       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2251       base = base->in(AddPNode::Address);
2252     }
2253     Node* uncast_base = base->uncast();
2254     int opcode = uncast_base->Opcode();
2255     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2256            opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2257            (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2258            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
2259   }
2260   return base;
2261 }
2262 
2263 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2264   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2265   Node* addp2 = addp->raw_out(0);
2266   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2267       addp2->in(AddPNode::Base) == n &&
2268       addp2->in(AddPNode::Address) == addp) {
2269     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2270     //
2271     // Find array's offset to push it on worklist first and
2272     // as result process an array's element offset first (pushed second)
2273     // to avoid CastPP for the array's offset.
2274     // Otherwise the inserted CastPP (LocalVar) will point to what
2275     // the AddP (Field) points to. Which would be wrong since
2276     // the algorithm expects the CastPP has the same point as
2277     // as AddP's base CheckCastPP (LocalVar).
2278     //
2279     //    ArrayAllocation
2280     //     |
2281     //    CheckCastPP
2282     //     |
2283     //    memProj (from ArrayAllocation CheckCastPP)
2284     //     |  ||
2285     //     |  ||   Int (element index)
2286     //     |  ||    |   ConI (log(element size))
2287     //     |  ||    |   /
2288     //     |  ||   LShift
2289     //     |  ||  /
2290     //     |  AddP (array's element offset)
2291     //     |  |
2292     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2293     //     | / /
2294     //     AddP (array's offset)
2295     //      |
2296     //     Load/Store (memory operation on array's element)
2297     //
2298     return addp2;
2299   }
2300   return NULL;
2301 }
2302 
2303 //
2304 // Adjust the type and inputs of an AddP which computes the
2305 // address of a field of an instance
2306 //
2307 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2308   PhaseGVN* igvn = _igvn;
2309   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2310   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2311   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2312   if (t == NULL) {
2313     // We are computing a raw address for a store captured by an Initialize
2314     // compute an appropriate address type (cases #3 and #5).
2315     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2316     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2317     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2318     assert(offs != Type::OffsetBot, "offset must be a constant");
2319     t = base_t->add_offset(offs)->is_oopptr();
2320   }
2321   int inst_id =  base_t->instance_id();
2322   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2323                              "old type must be non-instance or match new type");
2324 
2325   // The type 't' could be subclass of 'base_t'.
2326   // As result t->offset() could be large then base_t's size and it will
2327   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2328   // constructor verifies correctness of the offset.
2329   //
2330   // It could happened on subclass's branch (from the type profiling
2331   // inlining) which was not eliminated during parsing since the exactness
2332   // of the allocation type was not propagated to the subclass type check.
2333   //
2334   // Or the type 't' could be not related to 'base_t' at all.
2335   // It could happened when CHA type is different from MDO type on a dead path
2336   // (for example, from instanceof check) which is not collapsed during parsing.
2337   //
2338   // Do nothing for such AddP node and don't process its users since
2339   // this code branch will go away.
2340   //
2341   if (!t->is_known_instance() &&
2342       !base_t->klass()->is_subtype_of(t->klass())) {
2343      return false; // bail out
2344   }
2345   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2346   // Do NOT remove the next line: ensure a new alias index is allocated
2347   // for the instance type. Note: C++ will not remove it since the call
2348   // has side effect.
2349   int alias_idx = _compile->get_alias_index(tinst);
2350   igvn->set_type(addp, tinst);
2351   // record the allocation in the node map
2352   set_map(addp, get_map(base->_idx));
2353   // Set addp's Base and Address to 'base'.
2354   Node *abase = addp->in(AddPNode::Base);
2355   Node *adr   = addp->in(AddPNode::Address);
2356   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2357       adr->in(0)->_idx == (uint)inst_id) {
2358     // Skip AddP cases #3 and #5.
2359   } else {
2360     assert(!abase->is_top(), "sanity"); // AddP case #3
2361     if (abase != base) {
2362       igvn->hash_delete(addp);
2363       addp->set_req(AddPNode::Base, base);
2364       if (abase == adr) {
2365         addp->set_req(AddPNode::Address, base);
2366       } else {
2367         // AddP case #4 (adr is array's element offset AddP node)
2368 #ifdef ASSERT
2369         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2370         assert(adr->is_AddP() && atype != NULL &&
2371                atype->instance_id() == inst_id, "array's element offset should be processed first");
2372 #endif
2373       }
2374       igvn->hash_insert(addp);
2375     }
2376   }
2377   // Put on IGVN worklist since at least addp's type was changed above.
2378   record_for_optimizer(addp);
2379   return true;
2380 }
2381 
2382 //
2383 // Create a new version of orig_phi if necessary. Returns either the newly
2384 // created phi or an existing phi.  Sets create_new to indicate whether a new
2385 // phi was created.  Cache the last newly created phi in the node map.
2386 //
2387 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2388   Compile *C = _compile;
2389   PhaseGVN* igvn = _igvn;
2390   new_created = false;
2391   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2392   // nothing to do if orig_phi is bottom memory or matches alias_idx
2393   if (phi_alias_idx == alias_idx) {
2394     return orig_phi;
2395   }
2396   // Have we recently created a Phi for this alias index?
2397   PhiNode *result = get_map_phi(orig_phi->_idx);
2398   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2399     return result;
2400   }
2401   // Previous check may fail when the same wide memory Phi was split into Phis
2402   // for different memory slices. Search all Phis for this region.
2403   if (result != NULL) {
2404     Node* region = orig_phi->in(0);
2405     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2406       Node* phi = region->fast_out(i);
2407       if (phi->is_Phi() &&
2408           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2409         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2410         return phi->as_Phi();
2411       }
2412     }
2413   }
2414   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2415     if (C->do_escape_analysis() == true && !C->failing()) {
2416       // Retry compilation without escape analysis.
2417       // If this is the first failure, the sentinel string will "stick"
2418       // to the Compile object, and the C2Compiler will see it and retry.
2419       C->record_failure(C2Compiler::retry_no_escape_analysis());
2420     }
2421     return NULL;
2422   }
2423   orig_phi_worklist.append_if_missing(orig_phi);
2424   const TypePtr *atype = C->get_adr_type(alias_idx);
2425   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2426   C->copy_node_notes_to(result, orig_phi);
2427   igvn->set_type(result, result->bottom_type());
2428   record_for_optimizer(result);
2429   set_map(orig_phi, result);
2430   new_created = true;
2431   return result;
2432 }
2433 
2434 //
2435 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2436 // specified alias index.
2437 //
2438 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2439   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2440   Compile *C = _compile;
2441   PhaseGVN* igvn = _igvn;
2442   bool new_phi_created;
2443   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2444   if (!new_phi_created) {
2445     return result;
2446   }
2447   GrowableArray<PhiNode *>  phi_list;
2448   GrowableArray<uint>  cur_input;
2449   PhiNode *phi = orig_phi;
2450   uint idx = 1;
2451   bool finished = false;
2452   while(!finished) {
2453     while (idx < phi->req()) {
2454       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2455       if (mem != NULL && mem->is_Phi()) {
2456         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2457         if (new_phi_created) {
2458           // found an phi for which we created a new split, push current one on worklist and begin
2459           // processing new one
2460           phi_list.push(phi);
2461           cur_input.push(idx);
2462           phi = mem->as_Phi();
2463           result = newphi;
2464           idx = 1;
2465           continue;
2466         } else {
2467           mem = newphi;
2468         }
2469       }
2470       if (C->failing()) {
2471         return NULL;
2472       }
2473       result->set_req(idx++, mem);
2474     }
2475 #ifdef ASSERT
2476     // verify that the new Phi has an input for each input of the original
2477     assert( phi->req() == result->req(), "must have same number of inputs.");
2478     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2479 #endif
2480     // Check if all new phi's inputs have specified alias index.
2481     // Otherwise use old phi.
2482     for (uint i = 1; i < phi->req(); i++) {
2483       Node* in = result->in(i);
2484       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2485     }
2486     // we have finished processing a Phi, see if there are any more to do
2487     finished = (phi_list.length() == 0 );
2488     if (!finished) {
2489       phi = phi_list.pop();
2490       idx = cur_input.pop();
2491       PhiNode *prev_result = get_map_phi(phi->_idx);
2492       prev_result->set_req(idx++, result);
2493       result = prev_result;
2494     }
2495   }
2496   return result;
2497 }
2498 
2499 //
2500 // The next methods are derived from methods in MemNode.
2501 //
2502 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2503   Node *mem = mmem;
2504   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2505   // means an array I have not precisely typed yet.  Do not do any
2506   // alias stuff with it any time soon.
2507   if (toop->base() != Type::AnyPtr &&
2508       !(toop->klass() != NULL &&
2509         toop->klass()->is_java_lang_Object() &&
2510         toop->offset() == Type::OffsetBot)) {
2511     mem = mmem->memory_at(alias_idx);
2512     // Update input if it is progress over what we have now
2513   }
2514   return mem;
2515 }
2516 
2517 //
2518 // Move memory users to their memory slices.
2519 //
2520 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2521   Compile* C = _compile;
2522   PhaseGVN* igvn = _igvn;
2523   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2524   assert(tp != NULL, "ptr type");
2525   int alias_idx = C->get_alias_index(tp);
2526   int general_idx = C->get_general_index(alias_idx);
2527 
2528   // Move users first
2529   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2530     Node* use = n->fast_out(i);
2531     if (use->is_MergeMem()) {
2532       MergeMemNode* mmem = use->as_MergeMem();
2533       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2534       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2535         continue; // Nothing to do
2536       }
2537       // Replace previous general reference to mem node.
2538       uint orig_uniq = C->unique();
2539       Node* m = find_inst_mem(n, general_idx, orig_phis);
2540       assert(orig_uniq == C->unique(), "no new nodes");
2541       mmem->set_memory_at(general_idx, m);
2542       --imax;
2543       --i;
2544     } else if (use->is_MemBar()) {
2545       assert(!use->is_Initialize(), "initializing stores should not be moved");
2546       if (use->req() > MemBarNode::Precedent &&
2547           use->in(MemBarNode::Precedent) == n) {
2548         // Don't move related membars.
2549         record_for_optimizer(use);
2550         continue;
2551       }
2552       tp = use->as_MemBar()->adr_type()->isa_ptr();
2553       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
2554           alias_idx == general_idx) {
2555         continue; // Nothing to do
2556       }
2557       // Move to general memory slice.
2558       uint orig_uniq = C->unique();
2559       Node* m = find_inst_mem(n, general_idx, orig_phis);
2560       assert(orig_uniq == C->unique(), "no new nodes");
2561       igvn->hash_delete(use);
2562       imax -= use->replace_edge(n, m);
2563       igvn->hash_insert(use);
2564       record_for_optimizer(use);
2565       --i;
2566 #ifdef ASSERT
2567     } else if (use->is_Mem()) {
2568       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2569         // Don't move related cardmark.
2570         continue;
2571       }
2572       // Memory nodes should have new memory input.
2573       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2574       assert(tp != NULL, "ptr type");
2575       int idx = C->get_alias_index(tp);
2576       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2577              "Following memory nodes should have new memory input or be on the same memory slice");
2578     } else if (use->is_Phi()) {
2579       // Phi nodes should be split and moved already.
2580       tp = use->as_Phi()->adr_type()->isa_ptr();
2581       assert(tp != NULL, "ptr type");
2582       int idx = C->get_alias_index(tp);
2583       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2584     } else {
2585       use->dump();
2586       assert(false, "should not be here");
2587 #endif
2588     }
2589   }
2590 }
2591 
2592 //
2593 // Search memory chain of "mem" to find a MemNode whose address
2594 // is the specified alias index.
2595 //
2596 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2597   if (orig_mem == NULL)
2598     return orig_mem;
2599   Compile* C = _compile;
2600   PhaseGVN* igvn = _igvn;
2601   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2602   bool is_instance = (toop != NULL) && toop->is_known_instance();
2603   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
2604   Node *prev = NULL;
2605   Node *result = orig_mem;
2606   while (prev != result) {
2607     prev = result;
2608     if (result == start_mem)
2609       break;  // hit one of our sentinels
2610     if (result->is_Mem()) {
2611       const Type *at = igvn->type(result->in(MemNode::Address));
2612       if (at == Type::TOP)
2613         break; // Dead
2614       assert (at->isa_ptr() != NULL, "pointer type required.");
2615       int idx = C->get_alias_index(at->is_ptr());
2616       if (idx == alias_idx)
2617         break; // Found
2618       if (!is_instance && (at->isa_oopptr() == NULL ||
2619                            !at->is_oopptr()->is_known_instance())) {
2620         break; // Do not skip store to general memory slice.
2621       }
2622       result = result->in(MemNode::Memory);
2623     }
2624     if (!is_instance)
2625       continue;  // don't search further for non-instance types
2626     // skip over a call which does not affect this memory slice
2627     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2628       Node *proj_in = result->in(0);
2629       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2630         break;  // hit one of our sentinels
2631       } else if (proj_in->is_Call()) {
2632         CallNode *call = proj_in->as_Call();
2633         if (!call->may_modify(toop, igvn)) {
2634           result = call->in(TypeFunc::Memory);
2635         }
2636       } else if (proj_in->is_Initialize()) {
2637         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2638         // Stop if this is the initialization for the object instance which
2639         // which contains this memory slice, otherwise skip over it.
2640         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2641           result = proj_in->in(TypeFunc::Memory);
2642         }
2643       } else if (proj_in->is_MemBar()) {
2644         result = proj_in->in(TypeFunc::Memory);
2645       }
2646     } else if (result->is_MergeMem()) {
2647       MergeMemNode *mmem = result->as_MergeMem();
2648       result = step_through_mergemem(mmem, alias_idx, toop);
2649       if (result == mmem->base_memory()) {
2650         // Didn't find instance memory, search through general slice recursively.
2651         result = mmem->memory_at(C->get_general_index(alias_idx));
2652         result = find_inst_mem(result, alias_idx, orig_phis);
2653         if (C->failing()) {
2654           return NULL;
2655         }
2656         mmem->set_memory_at(alias_idx, result);
2657       }
2658     } else if (result->is_Phi() &&
2659                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2660       Node *un = result->as_Phi()->unique_input(igvn);
2661       if (un != NULL) {
2662         orig_phis.append_if_missing(result->as_Phi());
2663         result = un;
2664       } else {
2665         break;
2666       }
2667     } else if (result->is_ClearArray()) {
2668       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2669         // Can not bypass initialization of the instance
2670         // we are looking for.
2671         break;
2672       }
2673       // Otherwise skip it (the call updated 'result' value).
2674     } else if (result->Opcode() == Op_SCMemProj) {
2675       Node* mem = result->in(0);
2676       Node* adr = NULL;
2677       if (mem->is_LoadStore()) {
2678         adr = mem->in(MemNode::Address);
2679       } else {
2680         assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
2681         adr = mem->in(3); // Memory edge corresponds to destination array
2682       }
2683       const Type *at = igvn->type(adr);
2684       if (at != Type::TOP) {
2685         assert (at->isa_ptr() != NULL, "pointer type required.");
2686         int idx = C->get_alias_index(at->is_ptr());
2687         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
2688         break;
2689       }
2690       result = mem->in(MemNode::Memory);
2691     }
2692   }
2693   if (result->is_Phi()) {
2694     PhiNode *mphi = result->as_Phi();
2695     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2696     const TypePtr *t = mphi->adr_type();
2697     if (!is_instance) {
2698       // Push all non-instance Phis on the orig_phis worklist to update inputs
2699       // during Phase 4 if needed.
2700       orig_phis.append_if_missing(mphi);
2701     } else if (C->get_alias_index(t) != alias_idx) {
2702       // Create a new Phi with the specified alias index type.
2703       result = split_memory_phi(mphi, alias_idx, orig_phis);
2704     }
2705   }
2706   // the result is either MemNode, PhiNode, InitializeNode.
2707   return result;
2708 }
2709 
2710 //
2711 //  Convert the types of unescaped object to instance types where possible,
2712 //  propagate the new type information through the graph, and update memory
2713 //  edges and MergeMem inputs to reflect the new type.
2714 //
2715 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2716 //  The processing is done in 4 phases:
2717 //
2718 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2719 //            types for the CheckCastPP for allocations where possible.
2720 //            Propagate the the new types through users as follows:
2721 //               casts and Phi:  push users on alloc_worklist
2722 //               AddP:  cast Base and Address inputs to the instance type
2723 //                      push any AddP users on alloc_worklist and push any memnode
2724 //                      users onto memnode_worklist.
2725 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2726 //            search the Memory chain for a store with the appropriate type
2727 //            address type.  If a Phi is found, create a new version with
2728 //            the appropriate memory slices from each of the Phi inputs.
2729 //            For stores, process the users as follows:
2730 //               MemNode:  push on memnode_worklist
2731 //               MergeMem: push on mergemem_worklist
2732 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2733 //            moving the first node encountered of each  instance type to the
2734 //            the input corresponding to its alias index.
2735 //            appropriate memory slice.
2736 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2737 //
2738 // In the following example, the CheckCastPP nodes are the cast of allocation
2739 // results and the allocation of node 29 is unescaped and eligible to be an
2740 // instance type.
2741 //
2742 // We start with:
2743 //
2744 //     7 Parm #memory
2745 //    10  ConI  "12"
2746 //    19  CheckCastPP   "Foo"
2747 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2748 //    29  CheckCastPP   "Foo"
2749 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2750 //
2751 //    40  StoreP  25   7  20   ... alias_index=4
2752 //    50  StoreP  35  40  30   ... alias_index=4
2753 //    60  StoreP  45  50  20   ... alias_index=4
2754 //    70  LoadP    _  60  30   ... alias_index=4
2755 //    80  Phi     75  50  60   Memory alias_index=4
2756 //    90  LoadP    _  80  30   ... alias_index=4
2757 //   100  LoadP    _  80  20   ... alias_index=4
2758 //
2759 //
2760 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2761 // and creating a new alias index for node 30.  This gives:
2762 //
2763 //     7 Parm #memory
2764 //    10  ConI  "12"
2765 //    19  CheckCastPP   "Foo"
2766 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2767 //    29  CheckCastPP   "Foo"  iid=24
2768 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2769 //
2770 //    40  StoreP  25   7  20   ... alias_index=4
2771 //    50  StoreP  35  40  30   ... alias_index=6
2772 //    60  StoreP  45  50  20   ... alias_index=4
2773 //    70  LoadP    _  60  30   ... alias_index=6
2774 //    80  Phi     75  50  60   Memory alias_index=4
2775 //    90  LoadP    _  80  30   ... alias_index=6
2776 //   100  LoadP    _  80  20   ... alias_index=4
2777 //
2778 // In phase 2, new memory inputs are computed for the loads and stores,
2779 // And a new version of the phi is created.  In phase 4, the inputs to
2780 // node 80 are updated and then the memory nodes are updated with the
2781 // values computed in phase 2.  This results in:
2782 //
2783 //     7 Parm #memory
2784 //    10  ConI  "12"
2785 //    19  CheckCastPP   "Foo"
2786 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2787 //    29  CheckCastPP   "Foo"  iid=24
2788 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2789 //
2790 //    40  StoreP  25  7   20   ... alias_index=4
2791 //    50  StoreP  35  7   30   ... alias_index=6
2792 //    60  StoreP  45  40  20   ... alias_index=4
2793 //    70  LoadP    _  50  30   ... alias_index=6
2794 //    80  Phi     75  40  60   Memory alias_index=4
2795 //   120  Phi     75  50  50   Memory alias_index=6
2796 //    90  LoadP    _ 120  30   ... alias_index=6
2797 //   100  LoadP    _  80  20   ... alias_index=4
2798 //
2799 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
2800   GrowableArray<Node *>  memnode_worklist;
2801   GrowableArray<PhiNode *>  orig_phis;
2802   PhaseIterGVN  *igvn = _igvn;
2803   uint new_index_start = (uint) _compile->num_alias_types();
2804   Arena* arena = Thread::current()->resource_area();
2805   VectorSet visited(arena);
2806   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2807   uint unique_old = _compile->unique();
2808 
2809   //  Phase 1:  Process possible allocations from alloc_worklist.
2810   //  Create instance types for the CheckCastPP for allocations where possible.
2811   //
2812   // (Note: don't forget to change the order of the second AddP node on
2813   //  the alloc_worklist if the order of the worklist processing is changed,
2814   //  see the comment in find_second_addp().)
2815   //
2816   while (alloc_worklist.length() != 0) {
2817     Node *n = alloc_worklist.pop();
2818     uint ni = n->_idx;
2819     if (n->is_Call()) {
2820       CallNode *alloc = n->as_Call();
2821       // copy escape information to call node
2822       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2823       PointsToNode::EscapeState es = ptn->escape_state();
2824       // We have an allocation or call which returns a Java object,
2825       // see if it is unescaped.
2826       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2827         continue;
2828       // Find CheckCastPP for the allocate or for the return value of a call
2829       n = alloc->result_cast();
2830       if (n == NULL) {            // No uses except Initialize node
2831         if (alloc->is_Allocate()) {
2832           // Set the scalar_replaceable flag for allocation
2833           // so it could be eliminated if it has no uses.
2834           alloc->as_Allocate()->_is_scalar_replaceable = true;
2835         }
2836         if (alloc->is_CallStaticJava()) {
2837           // Set the scalar_replaceable flag for boxing method
2838           // so it could be eliminated if it has no uses.
2839           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2840         }
2841         continue;
2842       }
2843       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2844         assert(!alloc->is_Allocate(), "allocation should have unique type");
2845         continue;
2846       }
2847 
2848       // The inline code for Object.clone() casts the allocation result to
2849       // java.lang.Object and then to the actual type of the allocated
2850       // object. Detect this case and use the second cast.
2851       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2852       // the allocation result is cast to java.lang.Object and then
2853       // to the actual Array type.
2854       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2855           && (alloc->is_AllocateArray() ||
2856               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2857         Node *cast2 = NULL;
2858         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2859           Node *use = n->fast_out(i);
2860           if (use->is_CheckCastPP()) {
2861             cast2 = use;
2862             break;
2863           }
2864         }
2865         if (cast2 != NULL) {
2866           n = cast2;
2867         } else {
2868           // Non-scalar replaceable if the allocation type is unknown statically
2869           // (reflection allocation), the object can't be restored during
2870           // deoptimization without precise type.
2871           continue;
2872         }
2873       }
2874 
2875       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
2876       if (t == NULL)
2877         continue;  // not a TypeOopPtr
2878       if (!t->klass_is_exact())
2879         continue; // not an unique type
2880 
2881       if (alloc->is_Allocate()) {
2882         // Set the scalar_replaceable flag for allocation
2883         // so it could be eliminated.
2884         alloc->as_Allocate()->_is_scalar_replaceable = true;
2885       }
2886       if (alloc->is_CallStaticJava()) {
2887         // Set the scalar_replaceable flag for boxing method
2888         // so it could be eliminated.
2889         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2890       }
2891       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
2892       // in order for an object to be scalar-replaceable, it must be:
2893       //   - a direct allocation (not a call returning an object)
2894       //   - non-escaping
2895       //   - eligible to be a unique type
2896       //   - not determined to be ineligible by escape analysis
2897       set_map(alloc, n);
2898       set_map(n, alloc);
2899       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
2900       igvn->hash_delete(n);
2901       igvn->set_type(n,  tinst);
2902       n->raise_bottom_type(tinst);
2903       igvn->hash_insert(n);
2904       record_for_optimizer(n);
2905       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
2906 
2907         // First, put on the worklist all Field edges from Connection Graph
2908         // which is more accurate then putting immediate users from Ideal Graph.
2909         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
2910           PointsToNode* tgt = e.get();
2911           Node* use = tgt->ideal_node();
2912           assert(tgt->is_Field() && use->is_AddP(),
2913                  "only AddP nodes are Field edges in CG");
2914           if (use->outcnt() > 0) { // Don't process dead nodes
2915             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
2916             if (addp2 != NULL) {
2917               assert(alloc->is_AllocateArray(),"array allocation was expected");
2918               alloc_worklist.append_if_missing(addp2);
2919             }
2920             alloc_worklist.append_if_missing(use);
2921           }
2922         }
2923 
2924         // An allocation may have an Initialize which has raw stores. Scan
2925         // the users of the raw allocation result and push AddP users
2926         // on alloc_worklist.
2927         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
2928         assert (raw_result != NULL, "must have an allocation result");
2929         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
2930           Node *use = raw_result->fast_out(i);
2931           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
2932             Node* addp2 = find_second_addp(use, raw_result);
2933             if (addp2 != NULL) {
2934               assert(alloc->is_AllocateArray(),"array allocation was expected");
2935               alloc_worklist.append_if_missing(addp2);
2936             }
2937             alloc_worklist.append_if_missing(use);
2938           } else if (use->is_MemBar()) {
2939             memnode_worklist.append_if_missing(use);
2940           }
2941         }
2942       }
2943     } else if (n->is_AddP()) {
2944       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
2945       if (jobj == NULL || jobj == phantom_obj) {
2946 #ifdef ASSERT
2947         ptnode_adr(get_addp_base(n)->_idx)->dump();
2948         ptnode_adr(n->_idx)->dump();
2949         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2950 #endif
2951         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2952         return;
2953       }
2954       Node *base = get_map(jobj->idx());  // CheckCastPP node
2955       if (!split_AddP(n, base)) continue; // wrong type from dead path
2956     } else if (n->is_Phi() ||
2957                n->is_CheckCastPP() ||
2958                n->is_EncodeP() ||
2959                n->is_DecodeN() ||
2960                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
2961       if (visited.test_set(n->_idx)) {
2962         assert(n->is_Phi(), "loops only through Phi's");
2963         continue;  // already processed
2964       }
2965       JavaObjectNode* jobj = unique_java_object(n);
2966       if (jobj == NULL || jobj == phantom_obj) {
2967 #ifdef ASSERT
2968         ptnode_adr(n->_idx)->dump();
2969         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2970 #endif
2971         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2972         return;
2973       } else {
2974         Node *val = get_map(jobj->idx());   // CheckCastPP node
2975         TypeNode *tn = n->as_Type();
2976         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
2977         assert(tinst != NULL && tinst->is_known_instance() &&
2978                tinst->instance_id() == jobj->idx() , "instance type expected.");
2979 
2980         const Type *tn_type = igvn->type(tn);
2981         const TypeOopPtr *tn_t;
2982         if (tn_type->isa_narrowoop()) {
2983           tn_t = tn_type->make_ptr()->isa_oopptr();
2984         } else {
2985           tn_t = tn_type->isa_oopptr();
2986         }
2987         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
2988           if (tn_type->isa_narrowoop()) {
2989             tn_type = tinst->make_narrowoop();
2990           } else {
2991             tn_type = tinst;
2992           }
2993           igvn->hash_delete(tn);
2994           igvn->set_type(tn, tn_type);
2995           tn->set_type(tn_type);
2996           igvn->hash_insert(tn);
2997           record_for_optimizer(n);
2998         } else {
2999           assert(tn_type == TypePtr::NULL_PTR ||
3000                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3001                  "unexpected type");
3002           continue; // Skip dead path with different type
3003         }
3004       }
3005     } else {
3006       debug_only(n->dump();)
3007       assert(false, "EA: unexpected node");
3008       continue;
3009     }
3010     // push allocation's users on appropriate worklist
3011     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3012       Node *use = n->fast_out(i);
3013       if(use->is_Mem() && use->in(MemNode::Address) == n) {
3014         // Load/store to instance's field
3015         memnode_worklist.append_if_missing(use);
3016       } else if (use->is_MemBar()) {
3017         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3018           memnode_worklist.append_if_missing(use);
3019         }
3020       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3021         Node* addp2 = find_second_addp(use, n);
3022         if (addp2 != NULL) {
3023           alloc_worklist.append_if_missing(addp2);
3024         }
3025         alloc_worklist.append_if_missing(use);
3026       } else if (use->is_Phi() ||
3027                  use->is_CheckCastPP() ||
3028                  use->is_EncodeNarrowPtr() ||
3029                  use->is_DecodeNarrowPtr() ||
3030                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3031         alloc_worklist.append_if_missing(use);
3032 #ifdef ASSERT
3033       } else if (use->is_Mem()) {
3034         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3035       } else if (use->is_MergeMem()) {
3036         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3037       } else if (use->is_SafePoint()) {
3038         // Look for MergeMem nodes for calls which reference unique allocation
3039         // (through CheckCastPP nodes) even for debug info.
3040         Node* m = use->in(TypeFunc::Memory);
3041         if (m->is_MergeMem()) {
3042           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3043         }
3044       } else if (use->Opcode() == Op_EncodeISOArray) {
3045         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3046           // EncodeISOArray overwrites destination array
3047           memnode_worklist.append_if_missing(use);
3048         }
3049       } else {
3050         uint op = use->Opcode();
3051         if (!(op == Op_CmpP || op == Op_Conv2B ||
3052               op == Op_CastP2X || op == Op_StoreCM ||
3053               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
3054               op == Op_StrEquals || op == Op_StrIndexOf)) {
3055           n->dump();
3056           use->dump();
3057           assert(false, "EA: missing allocation reference path");
3058         }
3059 #endif
3060       }
3061     }
3062 
3063   }
3064   // New alias types were created in split_AddP().
3065   uint new_index_end = (uint) _compile->num_alias_types();
3066   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3067 
3068   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3069   //            compute new values for Memory inputs  (the Memory inputs are not
3070   //            actually updated until phase 4.)
3071   if (memnode_worklist.length() == 0)
3072     return;  // nothing to do
3073   while (memnode_worklist.length() != 0) {
3074     Node *n = memnode_worklist.pop();
3075     if (visited.test_set(n->_idx))
3076       continue;
3077     if (n->is_Phi() || n->is_ClearArray()) {
3078       // we don't need to do anything, but the users must be pushed
3079     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3080       // we don't need to do anything, but the users must be pushed
3081       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
3082       if (n == NULL)
3083         continue;
3084     } else if (n->Opcode() == Op_EncodeISOArray) {
3085       // get the memory projection
3086       n = n->find_out_with(Op_SCMemProj);
3087       assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3088     } else {
3089       assert(n->is_Mem(), "memory node required.");
3090       Node *addr = n->in(MemNode::Address);
3091       const Type *addr_t = igvn->type(addr);
3092       if (addr_t == Type::TOP)
3093         continue;
3094       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3095       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3096       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3097       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3098       if (_compile->failing()) {
3099         return;
3100       }
3101       if (mem != n->in(MemNode::Memory)) {
3102         // We delay the memory edge update since we need old one in
3103         // MergeMem code below when instances memory slices are separated.
3104         set_map(n, mem);
3105       }
3106       if (n->is_Load()) {
3107         continue;  // don't push users
3108       } else if (n->is_LoadStore()) {
3109         // get the memory projection
3110         n = n->find_out_with(Op_SCMemProj);
3111         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
3112       }
3113     }
3114     // push user on appropriate worklist
3115     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3116       Node *use = n->fast_out(i);
3117       if (use->is_Phi() || use->is_ClearArray()) {
3118         memnode_worklist.append_if_missing(use);
3119       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3120         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3121           continue;
3122         memnode_worklist.append_if_missing(use);
3123       } else if (use->is_MemBar()) {
3124         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3125           memnode_worklist.append_if_missing(use);
3126         }
3127 #ifdef ASSERT
3128       } else if(use->is_Mem()) {
3129         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3130       } else if (use->is_MergeMem()) {
3131         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3132       } else if (use->Opcode() == Op_EncodeISOArray) {
3133         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3134           // EncodeISOArray overwrites destination array
3135           memnode_worklist.append_if_missing(use);
3136         }
3137       } else {
3138         uint op = use->Opcode();
3139         if (!(op == Op_StoreCM ||
3140               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
3141                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
3142               op == Op_AryEq || op == Op_StrComp ||
3143               op == Op_StrEquals || op == Op_StrIndexOf)) {
3144           n->dump();
3145           use->dump();
3146           assert(false, "EA: missing memory path");
3147         }
3148 #endif
3149       }
3150     }
3151   }
3152 
3153   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3154   //            Walk each memory slice moving the first node encountered of each
3155   //            instance type to the the input corresponding to its alias index.
3156   uint length = _mergemem_worklist.length();
3157   for( uint next = 0; next < length; ++next ) {
3158     MergeMemNode* nmm = _mergemem_worklist.at(next);
3159     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3160     // Note: we don't want to use MergeMemStream here because we only want to
3161     // scan inputs which exist at the start, not ones we add during processing.
3162     // Note 2: MergeMem may already contains instance memory slices added
3163     // during find_inst_mem() call when memory nodes were processed above.
3164     igvn->hash_delete(nmm);
3165     uint nslices = nmm->req();
3166     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3167       Node* mem = nmm->in(i);
3168       Node* cur = NULL;
3169       if (mem == NULL || mem->is_top())
3170         continue;
3171       // First, update mergemem by moving memory nodes to corresponding slices
3172       // if their type became more precise since this mergemem was created.
3173       while (mem->is_Mem()) {
3174         const Type *at = igvn->type(mem->in(MemNode::Address));
3175         if (at != Type::TOP) {
3176           assert (at->isa_ptr() != NULL, "pointer type required.");
3177           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3178           if (idx == i) {
3179             if (cur == NULL)
3180               cur = mem;
3181           } else {
3182             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3183               nmm->set_memory_at(idx, mem);
3184             }
3185           }
3186         }
3187         mem = mem->in(MemNode::Memory);
3188       }
3189       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3190       // Find any instance of the current type if we haven't encountered
3191       // already a memory slice of the instance along the memory chain.
3192       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3193         if((uint)_compile->get_general_index(ni) == i) {
3194           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3195           if (nmm->is_empty_memory(m)) {
3196             Node* result = find_inst_mem(mem, ni, orig_phis);
3197             if (_compile->failing()) {
3198               return;
3199             }
3200             nmm->set_memory_at(ni, result);
3201           }
3202         }
3203       }
3204     }
3205     // Find the rest of instances values
3206     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3207       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3208       Node* result = step_through_mergemem(nmm, ni, tinst);
3209       if (result == nmm->base_memory()) {
3210         // Didn't find instance memory, search through general slice recursively.
3211         result = nmm->memory_at(_compile->get_general_index(ni));
3212         result = find_inst_mem(result, ni, orig_phis);
3213         if (_compile->failing()) {
3214           return;
3215         }
3216         nmm->set_memory_at(ni, result);
3217       }
3218     }
3219     igvn->hash_insert(nmm);
3220     record_for_optimizer(nmm);
3221   }
3222 
3223   //  Phase 4:  Update the inputs of non-instance memory Phis and
3224   //            the Memory input of memnodes
3225   // First update the inputs of any non-instance Phi's from
3226   // which we split out an instance Phi.  Note we don't have
3227   // to recursively process Phi's encounted on the input memory
3228   // chains as is done in split_memory_phi() since they  will
3229   // also be processed here.
3230   for (int j = 0; j < orig_phis.length(); j++) {
3231     PhiNode *phi = orig_phis.at(j);
3232     int alias_idx = _compile->get_alias_index(phi->adr_type());
3233     igvn->hash_delete(phi);
3234     for (uint i = 1; i < phi->req(); i++) {
3235       Node *mem = phi->in(i);
3236       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3237       if (_compile->failing()) {
3238         return;
3239       }
3240       if (mem != new_mem) {
3241         phi->set_req(i, new_mem);
3242       }
3243     }
3244     igvn->hash_insert(phi);
3245     record_for_optimizer(phi);
3246   }
3247 
3248   // Update the memory inputs of MemNodes with the value we computed
3249   // in Phase 2 and move stores memory users to corresponding memory slices.
3250   // Disable memory split verification code until the fix for 6984348.
3251   // Currently it produces false negative results since it does not cover all cases.
3252 #if 0 // ifdef ASSERT
3253   visited.Reset();
3254   Node_Stack old_mems(arena, _compile->unique() >> 2);
3255 #endif
3256   for (uint i = 0; i < ideal_nodes.size(); i++) {
3257     Node*    n = ideal_nodes.at(i);
3258     Node* nmem = get_map(n->_idx);
3259     assert(nmem != NULL, "sanity");
3260     if (n->is_Mem()) {
3261 #if 0 // ifdef ASSERT
3262       Node* old_mem = n->in(MemNode::Memory);
3263       if (!visited.test_set(old_mem->_idx)) {
3264         old_mems.push(old_mem, old_mem->outcnt());
3265       }
3266 #endif
3267       assert(n->in(MemNode::Memory) != nmem, "sanity");
3268       if (!n->is_Load()) {
3269         // Move memory users of a store first.
3270         move_inst_mem(n, orig_phis);
3271       }
3272       // Now update memory input
3273       igvn->hash_delete(n);
3274       n->set_req(MemNode::Memory, nmem);
3275       igvn->hash_insert(n);
3276       record_for_optimizer(n);
3277     } else {
3278       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3279              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3280     }
3281   }
3282 #if 0 // ifdef ASSERT
3283   // Verify that memory was split correctly
3284   while (old_mems.is_nonempty()) {
3285     Node* old_mem = old_mems.node();
3286     uint  old_cnt = old_mems.index();
3287     old_mems.pop();
3288     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3289   }
3290 #endif
3291 }
3292 
3293 #ifndef PRODUCT
3294 static const char *node_type_names[] = {
3295   "UnknownType",
3296   "JavaObject",
3297   "LocalVar",
3298   "Field",
3299   "Arraycopy"
3300 };
3301 
3302 static const char *esc_names[] = {
3303   "UnknownEscape",
3304   "NoEscape",
3305   "ArgEscape",
3306   "GlobalEscape"
3307 };
3308 
3309 void PointsToNode::dump(bool print_state) const {
3310   NodeType nt = node_type();
3311   tty->print("%s ", node_type_names[(int) nt]);
3312   if (print_state) {
3313     EscapeState es = escape_state();
3314     EscapeState fields_es = fields_escape_state();
3315     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3316     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3317       tty->print("NSR ");
3318   }
3319   if (is_Field()) {
3320     FieldNode* f = (FieldNode*)this;
3321     if (f->is_oop())
3322       tty->print("oop ");
3323     if (f->offset() > 0)
3324       tty->print("+%d ", f->offset());
3325     tty->print("(");
3326     for (BaseIterator i(f); i.has_next(); i.next()) {
3327       PointsToNode* b = i.get();
3328       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3329     }
3330     tty->print(" )");
3331   }
3332   tty->print("[");
3333   for (EdgeIterator i(this); i.has_next(); i.next()) {
3334     PointsToNode* e = i.get();
3335     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3336   }
3337   tty->print(" [");
3338   for (UseIterator i(this); i.has_next(); i.next()) {
3339     PointsToNode* u = i.get();
3340     bool is_base = false;
3341     if (PointsToNode::is_base_use(u)) {
3342       is_base = true;
3343       u = PointsToNode::get_use_node(u)->as_Field();
3344     }
3345     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3346   }
3347   tty->print(" ]]  ");
3348   if (_node == NULL)
3349     tty->print_cr("<null>");
3350   else
3351     _node->dump();
3352 }
3353 
3354 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3355   bool first = true;
3356   int ptnodes_length = ptnodes_worklist.length();
3357   for (int i = 0; i < ptnodes_length; i++) {
3358     PointsToNode *ptn = ptnodes_worklist.at(i);
3359     if (ptn == NULL || !ptn->is_JavaObject())
3360       continue;
3361     PointsToNode::EscapeState es = ptn->escape_state();
3362     if ((es != PointsToNode::NoEscape) && !Verbose) {
3363       continue;
3364     }
3365     Node* n = ptn->ideal_node();
3366     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3367                              n->as_CallStaticJava()->is_boxing_method())) {
3368       if (first) {
3369         tty->cr();
3370         tty->print("======== Connection graph for ");
3371         _compile->method()->print_short_name();
3372         tty->cr();
3373         first = false;
3374       }
3375       ptn->dump();
3376       // Print all locals and fields which reference this allocation
3377       for (UseIterator j(ptn); j.has_next(); j.next()) {
3378         PointsToNode* use = j.get();
3379         if (use->is_LocalVar()) {
3380           use->dump(Verbose);
3381         } else if (Verbose) {
3382           use->dump();
3383         }
3384       }
3385       tty->cr();
3386     }
3387   }
3388 }
3389 #endif