1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/callGenerator.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/countbitsnode.hpp"
  38 #include "opto/intrinsicnode.hpp"
  39 #include "opto/idealKit.hpp"
  40 #include "opto/mathexactnode.hpp"
  41 #include "opto/movenode.hpp"
  42 #include "opto/mulnode.hpp"
  43 #include "opto/narrowptrnode.hpp"
  44 #include "opto/parse.hpp"
  45 #include "opto/runtime.hpp"
  46 #include "opto/subnode.hpp"
  47 #include "prims/nativeLookup.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "trace/traceMacros.hpp"
  50 
  51 class LibraryIntrinsic : public InlineCallGenerator {
  52   // Extend the set of intrinsics known to the runtime:
  53  public:
  54  private:
  55   bool             _is_virtual;
  56   bool             _does_virtual_dispatch;
  57   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  58   int8_t           _last_predicate; // Last generated predicate
  59   vmIntrinsics::ID _intrinsic_id;
  60 
  61  public:
  62   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  63     : InlineCallGenerator(m),
  64       _is_virtual(is_virtual),
  65       _does_virtual_dispatch(does_virtual_dispatch),
  66       _predicates_count((int8_t)predicates_count),
  67       _last_predicate((int8_t)-1),
  68       _intrinsic_id(id)
  69   {
  70   }
  71   virtual bool is_intrinsic() const { return true; }
  72   virtual bool is_virtual()   const { return _is_virtual; }
  73   virtual bool is_predicated() const { return _predicates_count > 0; }
  74   virtual int  predicates_count() const { return _predicates_count; }
  75   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  76   virtual JVMState* generate(JVMState* jvms);
  77   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  78   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  79 };
  80 
  81 
  82 // Local helper class for LibraryIntrinsic:
  83 class LibraryCallKit : public GraphKit {
  84  private:
  85   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  86   Node*             _result;        // the result node, if any
  87   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  88 
  89   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  90 
  91  public:
  92   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  93     : GraphKit(jvms),
  94       _intrinsic(intrinsic),
  95       _result(NULL)
  96   {
  97     // Check if this is a root compile.  In that case we don't have a caller.
  98     if (!jvms->has_method()) {
  99       _reexecute_sp = sp();
 100     } else {
 101       // Find out how many arguments the interpreter needs when deoptimizing
 102       // and save the stack pointer value so it can used by uncommon_trap.
 103       // We find the argument count by looking at the declared signature.
 104       bool ignored_will_link;
 105       ciSignature* declared_signature = NULL;
 106       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 107       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 108       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 109     }
 110   }
 111 
 112   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 113 
 114   ciMethod*         caller()    const    { return jvms()->method(); }
 115   int               bci()       const    { return jvms()->bci(); }
 116   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 117   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 118   ciMethod*         callee()    const    { return _intrinsic->method(); }
 119 
 120   bool  try_to_inline(int predicate);
 121   Node* try_to_predicate(int predicate);
 122 
 123   void push_result() {
 124     // Push the result onto the stack.
 125     if (!stopped() && result() != NULL) {
 126       BasicType bt = result()->bottom_type()->basic_type();
 127       push_node(bt, result());
 128     }
 129   }
 130 
 131  private:
 132   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 133     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 134   }
 135 
 136   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 137   void  set_result(RegionNode* region, PhiNode* value);
 138   Node*     result() { return _result; }
 139 
 140   virtual int reexecute_sp() { return _reexecute_sp; }
 141 
 142   // Helper functions to inline natives
 143   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 144   Node* generate_slow_guard(Node* test, RegionNode* region);
 145   Node* generate_fair_guard(Node* test, RegionNode* region);
 146   Node* generate_negative_guard(Node* index, RegionNode* region,
 147                                 // resulting CastII of index:
 148                                 Node* *pos_index = NULL);
 149   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 150                              Node* array_length,
 151                              RegionNode* region);
 152   Node* generate_current_thread(Node* &tls_output);
 153   Node* load_mirror_from_klass(Node* klass);
 154   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 155                                       RegionNode* region, int null_path,
 156                                       int offset);
 157   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 158                                RegionNode* region, int null_path) {
 159     int offset = java_lang_Class::klass_offset_in_bytes();
 160     return load_klass_from_mirror_common(mirror, never_see_null,
 161                                          region, null_path,
 162                                          offset);
 163   }
 164   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 165                                      RegionNode* region, int null_path) {
 166     int offset = java_lang_Class::array_klass_offset_in_bytes();
 167     return load_klass_from_mirror_common(mirror, never_see_null,
 168                                          region, null_path,
 169                                          offset);
 170   }
 171   Node* generate_access_flags_guard(Node* kls,
 172                                     int modifier_mask, int modifier_bits,
 173                                     RegionNode* region);
 174   Node* generate_interface_guard(Node* kls, RegionNode* region);
 175   Node* generate_array_guard(Node* kls, RegionNode* region) {
 176     return generate_array_guard_common(kls, region, false, false);
 177   }
 178   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 179     return generate_array_guard_common(kls, region, false, true);
 180   }
 181   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 182     return generate_array_guard_common(kls, region, true, false);
 183   }
 184   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 185     return generate_array_guard_common(kls, region, true, true);
 186   }
 187   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 188                                     bool obj_array, bool not_array);
 189   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 190   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 191                                      bool is_virtual = false, bool is_static = false);
 192   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 193     return generate_method_call(method_id, false, true);
 194   }
 195   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 196     return generate_method_call(method_id, true, false);
 197   }
 198   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 199 
 200   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 201   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 202   bool inline_string_compareTo();
 203   bool inline_string_indexOf();
 204   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 205   bool inline_string_equals();
 206   Node* round_double_node(Node* n);
 207   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 208   bool inline_math_native(vmIntrinsics::ID id);
 209   bool inline_trig(vmIntrinsics::ID id);
 210   bool inline_math(vmIntrinsics::ID id);
 211   template <typename OverflowOp>
 212   bool inline_math_overflow(Node* arg1, Node* arg2);
 213   void inline_math_mathExact(Node* math, Node* test);
 214   bool inline_math_addExactI(bool is_increment);
 215   bool inline_math_addExactL(bool is_increment);
 216   bool inline_math_multiplyExactI();
 217   bool inline_math_multiplyExactL();
 218   bool inline_math_negateExactI();
 219   bool inline_math_negateExactL();
 220   bool inline_math_subtractExactI(bool is_decrement);
 221   bool inline_math_subtractExactL(bool is_decrement);
 222   bool inline_exp();
 223   bool inline_pow();
 224   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 225   bool inline_min_max(vmIntrinsics::ID id);
 226   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 227   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 228   int classify_unsafe_addr(Node* &base, Node* &offset);
 229   Node* make_unsafe_address(Node* base, Node* offset);
 230   // Helper for inline_unsafe_access.
 231   // Generates the guards that check whether the result of
 232   // Unsafe.getObject should be recorded in an SATB log buffer.
 233   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 234   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 235   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 236   static bool klass_needs_init_guard(Node* kls);
 237   bool inline_unsafe_allocate();
 238   bool inline_unsafe_copyMemory();
 239   bool inline_native_currentThread();
 240 #ifdef TRACE_HAVE_INTRINSICS
 241   bool inline_native_classID();
 242   bool inline_native_threadID();
 243 #endif
 244   bool inline_native_time_funcs(address method, const char* funcName);
 245   bool inline_native_isInterrupted();
 246   bool inline_native_Class_query(vmIntrinsics::ID id);
 247   bool inline_native_subtype_check();
 248 
 249   bool inline_native_newArray();
 250   bool inline_native_getLength();
 251   bool inline_array_copyOf(bool is_copyOfRange);
 252   bool inline_array_equals();
 253   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 254   bool inline_native_clone(bool is_virtual);
 255   bool inline_native_Reflection_getCallerClass();
 256   // Helper function for inlining native object hash method
 257   bool inline_native_hashcode(bool is_virtual, bool is_static);
 258   bool inline_native_getClass();
 259 
 260   // Helper functions for inlining arraycopy
 261   bool inline_arraycopy();
 262   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 263                                                 RegionNode* slow_region);
 264   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 265   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 266   bool inline_unsafe_ordered_store(BasicType type);
 267   bool inline_unsafe_fence(vmIntrinsics::ID id);
 268   bool inline_fp_conversions(vmIntrinsics::ID id);
 269   bool inline_number_methods(vmIntrinsics::ID id);
 270   bool inline_reference_get();
 271   bool inline_Class_cast();
 272   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 273   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 274   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 275   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 276   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 277   bool inline_ghash_processBlocks(vmIntrinsics::ID id);
 278   Node* get_vars_from_ghash_object(Node *ghash_object, const char *var_name);
 279   bool inline_sha_implCompress(vmIntrinsics::ID id);
 280   bool inline_digestBase_implCompressMB(int predicate);
 281   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 282                                  bool long_state, address stubAddr, const char *stubName,
 283                                  Node* src_start, Node* ofs, Node* limit);
 284   Node* get_state_from_sha_object(Node *sha_object);
 285   Node* get_state_from_sha5_object(Node *sha_object);
 286   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 287   bool inline_encodeISOArray();
 288   bool inline_updateCRC32();
 289   bool inline_updateBytesCRC32();
 290   bool inline_updateByteBufferCRC32();
 291   bool inline_multiplyToLen();
 292 };
 293 
 294 
 295 //---------------------------make_vm_intrinsic----------------------------
 296 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 297   vmIntrinsics::ID id = m->intrinsic_id();
 298   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 299 
 300   ccstr disable_intr = NULL;
 301 
 302   if ((DisableIntrinsic[0] != '\0'
 303        && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) ||
 304       (method_has_option_value("DisableIntrinsic", disable_intr)
 305        && strstr(disable_intr, vmIntrinsics::name_at(id)) != NULL)) {
 306     // disabled by a user request on the command line:
 307     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 308     return NULL;
 309   }
 310 
 311   if (!m->is_loaded()) {
 312     // do not attempt to inline unloaded methods
 313     return NULL;
 314   }
 315 
 316   // Only a few intrinsics implement a virtual dispatch.
 317   // They are expensive calls which are also frequently overridden.
 318   if (is_virtual) {
 319     switch (id) {
 320     case vmIntrinsics::_hashCode:
 321     case vmIntrinsics::_clone:
 322       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 323       break;
 324     default:
 325       return NULL;
 326     }
 327   }
 328 
 329   // -XX:-InlineNatives disables nearly all intrinsics:
 330   if (!InlineNatives) {
 331     switch (id) {
 332     case vmIntrinsics::_indexOf:
 333     case vmIntrinsics::_compareTo:
 334     case vmIntrinsics::_equals:
 335     case vmIntrinsics::_equalsC:
 336     case vmIntrinsics::_getAndAddInt:
 337     case vmIntrinsics::_getAndAddLong:
 338     case vmIntrinsics::_getAndSetInt:
 339     case vmIntrinsics::_getAndSetLong:
 340     case vmIntrinsics::_getAndSetObject:
 341     case vmIntrinsics::_loadFence:
 342     case vmIntrinsics::_storeFence:
 343     case vmIntrinsics::_fullFence:
 344       break;  // InlineNatives does not control String.compareTo
 345     case vmIntrinsics::_Reference_get:
 346       break;  // InlineNatives does not control Reference.get
 347     default:
 348       return NULL;
 349     }
 350   }
 351 
 352   int predicates = 0;
 353   bool does_virtual_dispatch = false;
 354 
 355   switch (id) {
 356   case vmIntrinsics::_compareTo:
 357     if (!SpecialStringCompareTo)  return NULL;
 358     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 359     break;
 360   case vmIntrinsics::_indexOf:
 361     if (!SpecialStringIndexOf)  return NULL;
 362     break;
 363   case vmIntrinsics::_equals:
 364     if (!SpecialStringEquals)  return NULL;
 365     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 366     break;
 367   case vmIntrinsics::_equalsC:
 368     if (!SpecialArraysEquals)  return NULL;
 369     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 370     break;
 371   case vmIntrinsics::_arraycopy:
 372     if (!InlineArrayCopy)  return NULL;
 373     break;
 374   case vmIntrinsics::_copyMemory:
 375     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 376     if (!InlineArrayCopy)  return NULL;
 377     break;
 378   case vmIntrinsics::_hashCode:
 379     if (!InlineObjectHash)  return NULL;
 380     does_virtual_dispatch = true;
 381     break;
 382   case vmIntrinsics::_clone:
 383     does_virtual_dispatch = true;
 384   case vmIntrinsics::_copyOf:
 385   case vmIntrinsics::_copyOfRange:
 386     if (!InlineObjectCopy)  return NULL;
 387     // These also use the arraycopy intrinsic mechanism:
 388     if (!InlineArrayCopy)  return NULL;
 389     break;
 390   case vmIntrinsics::_encodeISOArray:
 391     if (!SpecialEncodeISOArray)  return NULL;
 392     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 393     break;
 394   case vmIntrinsics::_checkIndex:
 395     // We do not intrinsify this.  The optimizer does fine with it.
 396     return NULL;
 397 
 398   case vmIntrinsics::_getCallerClass:
 399     if (!InlineReflectionGetCallerClass)  return NULL;
 400     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 401     break;
 402 
 403   case vmIntrinsics::_bitCount_i:
 404     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 405     break;
 406 
 407   case vmIntrinsics::_bitCount_l:
 408     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 409     break;
 410 
 411   case vmIntrinsics::_numberOfLeadingZeros_i:
 412     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 413     break;
 414 
 415   case vmIntrinsics::_numberOfLeadingZeros_l:
 416     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 417     break;
 418 
 419   case vmIntrinsics::_numberOfTrailingZeros_i:
 420     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 421     break;
 422 
 423   case vmIntrinsics::_numberOfTrailingZeros_l:
 424     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 425     break;
 426 
 427   case vmIntrinsics::_reverseBytes_c:
 428     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 429     break;
 430   case vmIntrinsics::_reverseBytes_s:
 431     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 432     break;
 433   case vmIntrinsics::_reverseBytes_i:
 434     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 435     break;
 436   case vmIntrinsics::_reverseBytes_l:
 437     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 438     break;
 439 
 440   case vmIntrinsics::_Reference_get:
 441     // Use the intrinsic version of Reference.get() so that the value in
 442     // the referent field can be registered by the G1 pre-barrier code.
 443     // Also add memory barrier to prevent commoning reads from this field
 444     // across safepoint since GC can change it value.
 445     break;
 446 
 447   case vmIntrinsics::_compareAndSwapObject:
 448 #ifdef _LP64
 449     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 450 #endif
 451     break;
 452 
 453   case vmIntrinsics::_compareAndSwapLong:
 454     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 455     break;
 456 
 457   case vmIntrinsics::_getAndAddInt:
 458     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 459     break;
 460 
 461   case vmIntrinsics::_getAndAddLong:
 462     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 463     break;
 464 
 465   case vmIntrinsics::_getAndSetInt:
 466     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 467     break;
 468 
 469   case vmIntrinsics::_getAndSetLong:
 470     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 471     break;
 472 
 473   case vmIntrinsics::_getAndSetObject:
 474 #ifdef _LP64
 475     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 476     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 477     break;
 478 #else
 479     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 480     break;
 481 #endif
 482 
 483   case vmIntrinsics::_aescrypt_encryptBlock:
 484   case vmIntrinsics::_aescrypt_decryptBlock:
 485     if (!UseAESIntrinsics) return NULL;
 486     break;
 487 
 488   case vmIntrinsics::_multiplyToLen:
 489     if (!UseMultiplyToLenIntrinsic) return NULL;
 490     break;
 491 
 492   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 493   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 494     if (!UseAESIntrinsics) return NULL;
 495     // these two require the predicated logic
 496     predicates = 1;
 497     break;
 498 
 499   case vmIntrinsics::_sha_implCompress:
 500     if (!UseSHA1Intrinsics) return NULL;
 501     break;
 502 
 503   case vmIntrinsics::_sha2_implCompress:
 504     if (!UseSHA256Intrinsics) return NULL;
 505     break;
 506 
 507   case vmIntrinsics::_sha5_implCompress:
 508     if (!UseSHA512Intrinsics) return NULL;
 509     break;
 510 
 511   case vmIntrinsics::_digestBase_implCompressMB:
 512     if (!(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics)) return NULL;
 513     predicates = 3;
 514     break;
 515 
 516   case vmIntrinsics::_ghash_processBlocks:
 517     if (!UseGHASHIntrinsics) return NULL;
 518     break;
 519 
 520   case vmIntrinsics::_updateCRC32:
 521   case vmIntrinsics::_updateBytesCRC32:
 522   case vmIntrinsics::_updateByteBufferCRC32:
 523     if (!UseCRC32Intrinsics) return NULL;
 524     break;
 525 
 526   case vmIntrinsics::_incrementExactI:
 527   case vmIntrinsics::_addExactI:
 528     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 529     break;
 530   case vmIntrinsics::_incrementExactL:
 531   case vmIntrinsics::_addExactL:
 532     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 533     break;
 534   case vmIntrinsics::_decrementExactI:
 535   case vmIntrinsics::_subtractExactI:
 536     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 537     break;
 538   case vmIntrinsics::_decrementExactL:
 539   case vmIntrinsics::_subtractExactL:
 540     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 541     break;
 542   case vmIntrinsics::_negateExactI:
 543     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 544     break;
 545   case vmIntrinsics::_negateExactL:
 546     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 547     break;
 548   case vmIntrinsics::_multiplyExactI:
 549     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 550     break;
 551   case vmIntrinsics::_multiplyExactL:
 552     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 553     break;
 554 
 555  default:
 556     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 557     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 558     break;
 559   }
 560 
 561   // -XX:-InlineClassNatives disables natives from the Class class.
 562   // The flag applies to all reflective calls, notably Array.newArray
 563   // (visible to Java programmers as Array.newInstance).
 564   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 565       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 566     if (!InlineClassNatives)  return NULL;
 567   }
 568 
 569   // -XX:-InlineThreadNatives disables natives from the Thread class.
 570   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 571     if (!InlineThreadNatives)  return NULL;
 572   }
 573 
 574   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 575   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 576       m->holder()->name() == ciSymbol::java_lang_Float() ||
 577       m->holder()->name() == ciSymbol::java_lang_Double()) {
 578     if (!InlineMathNatives)  return NULL;
 579   }
 580 
 581   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 582   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 583     if (!InlineUnsafeOps)  return NULL;
 584   }
 585 
 586   return new LibraryIntrinsic(m, is_virtual, predicates, does_virtual_dispatch, (vmIntrinsics::ID) id);
 587 }
 588 
 589 //----------------------register_library_intrinsics-----------------------
 590 // Initialize this file's data structures, for each Compile instance.
 591 void Compile::register_library_intrinsics() {
 592   // Nothing to do here.
 593 }
 594 
 595 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 596   LibraryCallKit kit(jvms, this);
 597   Compile* C = kit.C;
 598   int nodes = C->unique();
 599 #ifndef PRODUCT
 600   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 601     char buf[1000];
 602     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 603     tty->print_cr("Intrinsic %s", str);
 604   }
 605 #endif
 606   ciMethod* callee = kit.callee();
 607   const int bci    = kit.bci();
 608 
 609   // Try to inline the intrinsic.
 610   if (kit.try_to_inline(_last_predicate)) {
 611     if (C->print_intrinsics() || C->print_inlining()) {
 612       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 613     }
 614     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 615     if (C->log()) {
 616       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 617                      vmIntrinsics::name_at(intrinsic_id()),
 618                      (is_virtual() ? " virtual='1'" : ""),
 619                      C->unique() - nodes);
 620     }
 621     // Push the result from the inlined method onto the stack.
 622     kit.push_result();
 623     C->print_inlining_update(this);
 624     return kit.transfer_exceptions_into_jvms();
 625   }
 626 
 627   // The intrinsic bailed out
 628   if (C->print_intrinsics() || C->print_inlining()) {
 629     if (jvms->has_method()) {
 630       // Not a root compile.
 631       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 632       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 633     } else {
 634       // Root compile
 635       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 636                vmIntrinsics::name_at(intrinsic_id()),
 637                (is_virtual() ? " (virtual)" : ""), bci);
 638     }
 639   }
 640   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 641   C->print_inlining_update(this);
 642   return NULL;
 643 }
 644 
 645 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 646   LibraryCallKit kit(jvms, this);
 647   Compile* C = kit.C;
 648   int nodes = C->unique();
 649   _last_predicate = predicate;
 650 #ifndef PRODUCT
 651   assert(is_predicated() && predicate < predicates_count(), "sanity");
 652   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 653     char buf[1000];
 654     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 655     tty->print_cr("Predicate for intrinsic %s", str);
 656   }
 657 #endif
 658   ciMethod* callee = kit.callee();
 659   const int bci    = kit.bci();
 660 
 661   Node* slow_ctl = kit.try_to_predicate(predicate);
 662   if (!kit.failing()) {
 663     if (C->print_intrinsics() || C->print_inlining()) {
 664       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual, predicate)" : "(intrinsic, predicate)");
 665     }
 666     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 667     if (C->log()) {
 668       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 669                      vmIntrinsics::name_at(intrinsic_id()),
 670                      (is_virtual() ? " virtual='1'" : ""),
 671                      C->unique() - nodes);
 672     }
 673     return slow_ctl; // Could be NULL if the check folds.
 674   }
 675 
 676   // The intrinsic bailed out
 677   if (C->print_intrinsics() || C->print_inlining()) {
 678     if (jvms->has_method()) {
 679       // Not a root compile.
 680       const char* msg = "failed to generate predicate for intrinsic";
 681       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 682     } else {
 683       // Root compile
 684       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 685                                         vmIntrinsics::name_at(intrinsic_id()),
 686                                         (is_virtual() ? " (virtual)" : ""), bci);
 687     }
 688   }
 689   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 690   return NULL;
 691 }
 692 
 693 bool LibraryCallKit::try_to_inline(int predicate) {
 694   // Handle symbolic names for otherwise undistinguished boolean switches:
 695   const bool is_store       = true;
 696   const bool is_native_ptr  = true;
 697   const bool is_static      = true;
 698   const bool is_volatile    = true;
 699 
 700   if (!jvms()->has_method()) {
 701     // Root JVMState has a null method.
 702     assert(map()->memory()->Opcode() == Op_Parm, "");
 703     // Insert the memory aliasing node
 704     set_all_memory(reset_memory());
 705   }
 706   assert(merged_memory(), "");
 707 
 708   switch (intrinsic_id()) {
 709   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 710   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 711   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 712 
 713   case vmIntrinsics::_dsin:
 714   case vmIntrinsics::_dcos:
 715   case vmIntrinsics::_dtan:
 716   case vmIntrinsics::_dabs:
 717   case vmIntrinsics::_datan2:
 718   case vmIntrinsics::_dsqrt:
 719   case vmIntrinsics::_dexp:
 720   case vmIntrinsics::_dlog:
 721   case vmIntrinsics::_dlog10:
 722   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 723 
 724   case vmIntrinsics::_min:
 725   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 726 
 727   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 728   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 729   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 730   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 731   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 732   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 733   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 734   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 735   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 736   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 737   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 738   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 739 
 740   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 741 
 742   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 743   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 744   case vmIntrinsics::_equals:                   return inline_string_equals();
 745 
 746   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 747   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 748   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 749   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 750   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 751   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 752   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 753   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 754   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 755 
 756   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 757   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 758   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 759   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 760   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 761   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 762   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 763   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 764   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 765 
 766   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 767   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 768   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 769   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 770   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 771   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 772   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 773   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 774 
 775   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 776   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 777   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 778   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 779   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 780   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 781   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 782   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 783 
 784   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 785   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 786   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 787   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 788   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 789   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 790   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 791   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 792   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 793 
 794   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 795   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 796   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 797   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 798   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 799   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 800   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 801   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 802   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 803 
 804   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 805   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 806   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 807   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 808 
 809   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 810   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 811   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 812 
 813   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 814   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 815   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 816 
 817   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 818   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 819   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 820   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 821   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 822 
 823   case vmIntrinsics::_loadFence:
 824   case vmIntrinsics::_storeFence:
 825   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 826 
 827   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 828   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 829 
 830 #ifdef TRACE_HAVE_INTRINSICS
 831   case vmIntrinsics::_classID:                  return inline_native_classID();
 832   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 833   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 834 #endif
 835   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 836   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 837   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 838   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 839   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 840   case vmIntrinsics::_getLength:                return inline_native_getLength();
 841   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 842   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 843   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 844   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 845 
 846   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 847 
 848   case vmIntrinsics::_isInstance:
 849   case vmIntrinsics::_getModifiers:
 850   case vmIntrinsics::_isInterface:
 851   case vmIntrinsics::_isArray:
 852   case vmIntrinsics::_isPrimitive:
 853   case vmIntrinsics::_getSuperclass:
 854   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 855 
 856   case vmIntrinsics::_floatToRawIntBits:
 857   case vmIntrinsics::_floatToIntBits:
 858   case vmIntrinsics::_intBitsToFloat:
 859   case vmIntrinsics::_doubleToRawLongBits:
 860   case vmIntrinsics::_doubleToLongBits:
 861   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 862 
 863   case vmIntrinsics::_numberOfLeadingZeros_i:
 864   case vmIntrinsics::_numberOfLeadingZeros_l:
 865   case vmIntrinsics::_numberOfTrailingZeros_i:
 866   case vmIntrinsics::_numberOfTrailingZeros_l:
 867   case vmIntrinsics::_bitCount_i:
 868   case vmIntrinsics::_bitCount_l:
 869   case vmIntrinsics::_reverseBytes_i:
 870   case vmIntrinsics::_reverseBytes_l:
 871   case vmIntrinsics::_reverseBytes_s:
 872   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 873 
 874   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 875 
 876   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 877 
 878   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 879 
 880   case vmIntrinsics::_aescrypt_encryptBlock:
 881   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 882 
 883   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 884   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 885     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 886 
 887   case vmIntrinsics::_sha_implCompress:
 888   case vmIntrinsics::_sha2_implCompress:
 889   case vmIntrinsics::_sha5_implCompress:
 890     return inline_sha_implCompress(intrinsic_id());
 891 
 892   case vmIntrinsics::_digestBase_implCompressMB:
 893     return inline_digestBase_implCompressMB(predicate);
 894 
 895   case vmIntrinsics::_multiplyToLen:
 896     return inline_multiplyToLen();
 897 
 898   case vmIntrinsics::_ghash_processBlocks:
 899     return inline_ghash_processBlocks(intrinsic_id());
 900 
 901   case vmIntrinsics::_encodeISOArray:
 902     return inline_encodeISOArray();
 903 
 904   case vmIntrinsics::_updateCRC32:
 905     return inline_updateCRC32();
 906   case vmIntrinsics::_updateBytesCRC32:
 907     return inline_updateBytesCRC32();
 908   case vmIntrinsics::_updateByteBufferCRC32:
 909     return inline_updateByteBufferCRC32();
 910 
 911   default:
 912     // If you get here, it may be that someone has added a new intrinsic
 913     // to the list in vmSymbols.hpp without implementing it here.
 914 #ifndef PRODUCT
 915     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 916       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 917                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 918     }
 919 #endif
 920     return false;
 921   }
 922 }
 923 
 924 Node* LibraryCallKit::try_to_predicate(int predicate) {
 925   if (!jvms()->has_method()) {
 926     // Root JVMState has a null method.
 927     assert(map()->memory()->Opcode() == Op_Parm, "");
 928     // Insert the memory aliasing node
 929     set_all_memory(reset_memory());
 930   }
 931   assert(merged_memory(), "");
 932 
 933   switch (intrinsic_id()) {
 934   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 935     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 936   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 937     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 938   case vmIntrinsics::_digestBase_implCompressMB:
 939     return inline_digestBase_implCompressMB_predicate(predicate);
 940 
 941   default:
 942     // If you get here, it may be that someone has added a new intrinsic
 943     // to the list in vmSymbols.hpp without implementing it here.
 944 #ifndef PRODUCT
 945     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 946       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 947                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 948     }
 949 #endif
 950     Node* slow_ctl = control();
 951     set_control(top()); // No fast path instrinsic
 952     return slow_ctl;
 953   }
 954 }
 955 
 956 //------------------------------set_result-------------------------------
 957 // Helper function for finishing intrinsics.
 958 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 959   record_for_igvn(region);
 960   set_control(_gvn.transform(region));
 961   set_result( _gvn.transform(value));
 962   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 963 }
 964 
 965 //------------------------------generate_guard---------------------------
 966 // Helper function for generating guarded fast-slow graph structures.
 967 // The given 'test', if true, guards a slow path.  If the test fails
 968 // then a fast path can be taken.  (We generally hope it fails.)
 969 // In all cases, GraphKit::control() is updated to the fast path.
 970 // The returned value represents the control for the slow path.
 971 // The return value is never 'top'; it is either a valid control
 972 // or NULL if it is obvious that the slow path can never be taken.
 973 // Also, if region and the slow control are not NULL, the slow edge
 974 // is appended to the region.
 975 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 976   if (stopped()) {
 977     // Already short circuited.
 978     return NULL;
 979   }
 980 
 981   // Build an if node and its projections.
 982   // If test is true we take the slow path, which we assume is uncommon.
 983   if (_gvn.type(test) == TypeInt::ZERO) {
 984     // The slow branch is never taken.  No need to build this guard.
 985     return NULL;
 986   }
 987 
 988   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 989 
 990   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 991   if (if_slow == top()) {
 992     // The slow branch is never taken.  No need to build this guard.
 993     return NULL;
 994   }
 995 
 996   if (region != NULL)
 997     region->add_req(if_slow);
 998 
 999   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
1000   set_control(if_fast);
1001 
1002   return if_slow;
1003 }
1004 
1005 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
1006   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
1007 }
1008 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
1009   return generate_guard(test, region, PROB_FAIR);
1010 }
1011 
1012 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
1013                                                      Node* *pos_index) {
1014   if (stopped())
1015     return NULL;                // already stopped
1016   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1017     return NULL;                // index is already adequately typed
1018   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
1019   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1020   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1021   if (is_neg != NULL && pos_index != NULL) {
1022     // Emulate effect of Parse::adjust_map_after_if.
1023     Node* ccast = new CastIINode(index, TypeInt::POS);
1024     ccast->set_req(0, control());
1025     (*pos_index) = _gvn.transform(ccast);
1026   }
1027   return is_neg;
1028 }
1029 
1030 // Make sure that 'position' is a valid limit index, in [0..length].
1031 // There are two equivalent plans for checking this:
1032 //   A. (offset + copyLength)  unsigned<=  arrayLength
1033 //   B. offset  <=  (arrayLength - copyLength)
1034 // We require that all of the values above, except for the sum and
1035 // difference, are already known to be non-negative.
1036 // Plan A is robust in the face of overflow, if offset and copyLength
1037 // are both hugely positive.
1038 //
1039 // Plan B is less direct and intuitive, but it does not overflow at
1040 // all, since the difference of two non-negatives is always
1041 // representable.  Whenever Java methods must perform the equivalent
1042 // check they generally use Plan B instead of Plan A.
1043 // For the moment we use Plan A.
1044 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1045                                                   Node* subseq_length,
1046                                                   Node* array_length,
1047                                                   RegionNode* region) {
1048   if (stopped())
1049     return NULL;                // already stopped
1050   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1051   if (zero_offset && subseq_length->eqv_uncast(array_length))
1052     return NULL;                // common case of whole-array copy
1053   Node* last = subseq_length;
1054   if (!zero_offset)             // last += offset
1055     last = _gvn.transform(new AddINode(last, offset));
1056   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1057   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1058   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1059   return is_over;
1060 }
1061 
1062 
1063 //--------------------------generate_current_thread--------------------
1064 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1065   ciKlass*    thread_klass = env()->Thread_klass();
1066   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1067   Node* thread = _gvn.transform(new ThreadLocalNode());
1068   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1069   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1070   tls_output = thread;
1071   return threadObj;
1072 }
1073 
1074 
1075 //------------------------------make_string_method_node------------------------
1076 // Helper method for String intrinsic functions. This version is called
1077 // with str1 and str2 pointing to String object nodes.
1078 //
1079 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1080   Node* no_ctrl = NULL;
1081 
1082   // Get start addr of string
1083   Node* str1_value   = load_String_value(no_ctrl, str1);
1084   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1085   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1086 
1087   // Get length of string 1
1088   Node* str1_len  = load_String_length(no_ctrl, str1);
1089 
1090   Node* str2_value   = load_String_value(no_ctrl, str2);
1091   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1092   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1093 
1094   Node* str2_len = NULL;
1095   Node* result = NULL;
1096 
1097   switch (opcode) {
1098   case Op_StrIndexOf:
1099     // Get length of string 2
1100     str2_len = load_String_length(no_ctrl, str2);
1101 
1102     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1103                                 str1_start, str1_len, str2_start, str2_len);
1104     break;
1105   case Op_StrComp:
1106     // Get length of string 2
1107     str2_len = load_String_length(no_ctrl, str2);
1108 
1109     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1110                              str1_start, str1_len, str2_start, str2_len);
1111     break;
1112   case Op_StrEquals:
1113     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1114                                str1_start, str2_start, str1_len);
1115     break;
1116   default:
1117     ShouldNotReachHere();
1118     return NULL;
1119   }
1120 
1121   // All these intrinsics have checks.
1122   C->set_has_split_ifs(true); // Has chance for split-if optimization
1123 
1124   return _gvn.transform(result);
1125 }
1126 
1127 // Helper method for String intrinsic functions. This version is called
1128 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1129 // to Int nodes containing the lenghts of str1 and str2.
1130 //
1131 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1132   Node* result = NULL;
1133   switch (opcode) {
1134   case Op_StrIndexOf:
1135     result = new StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1136                                 str1_start, cnt1, str2_start, cnt2);
1137     break;
1138   case Op_StrComp:
1139     result = new StrCompNode(control(), memory(TypeAryPtr::CHARS),
1140                              str1_start, cnt1, str2_start, cnt2);
1141     break;
1142   case Op_StrEquals:
1143     result = new StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1144                                str1_start, str2_start, cnt1);
1145     break;
1146   default:
1147     ShouldNotReachHere();
1148     return NULL;
1149   }
1150 
1151   // All these intrinsics have checks.
1152   C->set_has_split_ifs(true); // Has chance for split-if optimization
1153 
1154   return _gvn.transform(result);
1155 }
1156 
1157 //------------------------------inline_string_compareTo------------------------
1158 // public int java.lang.String.compareTo(String anotherString);
1159 bool LibraryCallKit::inline_string_compareTo() {
1160   Node* receiver = null_check(argument(0));
1161   Node* arg      = null_check(argument(1));
1162   if (stopped()) {
1163     return true;
1164   }
1165   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1166   return true;
1167 }
1168 
1169 //------------------------------inline_string_equals------------------------
1170 bool LibraryCallKit::inline_string_equals() {
1171   Node* receiver = null_check_receiver();
1172   // NOTE: Do not null check argument for String.equals() because spec
1173   // allows to specify NULL as argument.
1174   Node* argument = this->argument(1);
1175   if (stopped()) {
1176     return true;
1177   }
1178 
1179   // paths (plus control) merge
1180   RegionNode* region = new RegionNode(5);
1181   Node* phi = new PhiNode(region, TypeInt::BOOL);
1182 
1183   // does source == target string?
1184   Node* cmp = _gvn.transform(new CmpPNode(receiver, argument));
1185   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1186 
1187   Node* if_eq = generate_slow_guard(bol, NULL);
1188   if (if_eq != NULL) {
1189     // receiver == argument
1190     phi->init_req(2, intcon(1));
1191     region->init_req(2, if_eq);
1192   }
1193 
1194   // get String klass for instanceOf
1195   ciInstanceKlass* klass = env()->String_klass();
1196 
1197   if (!stopped()) {
1198     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1199     Node* cmp  = _gvn.transform(new CmpINode(inst, intcon(1)));
1200     Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1201 
1202     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1203     //instanceOf == true, fallthrough
1204 
1205     if (inst_false != NULL) {
1206       phi->init_req(3, intcon(0));
1207       region->init_req(3, inst_false);
1208     }
1209   }
1210 
1211   if (!stopped()) {
1212     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1213 
1214     // Properly cast the argument to String
1215     argument = _gvn.transform(new CheckCastPPNode(control(), argument, string_type));
1216     // This path is taken only when argument's type is String:NotNull.
1217     argument = cast_not_null(argument, false);
1218 
1219     Node* no_ctrl = NULL;
1220 
1221     // Get start addr of receiver
1222     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1223     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1224     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1225 
1226     // Get length of receiver
1227     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1228 
1229     // Get start addr of argument
1230     Node* argument_val    = load_String_value(no_ctrl, argument);
1231     Node* argument_offset = load_String_offset(no_ctrl, argument);
1232     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1233 
1234     // Get length of argument
1235     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1236 
1237     // Check for receiver count != argument count
1238     Node* cmp = _gvn.transform(new CmpINode(receiver_cnt, argument_cnt));
1239     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1240     Node* if_ne = generate_slow_guard(bol, NULL);
1241     if (if_ne != NULL) {
1242       phi->init_req(4, intcon(0));
1243       region->init_req(4, if_ne);
1244     }
1245 
1246     // Check for count == 0 is done by assembler code for StrEquals.
1247 
1248     if (!stopped()) {
1249       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1250       phi->init_req(1, equals);
1251       region->init_req(1, control());
1252     }
1253   }
1254 
1255   // post merge
1256   set_control(_gvn.transform(region));
1257   record_for_igvn(region);
1258 
1259   set_result(_gvn.transform(phi));
1260   return true;
1261 }
1262 
1263 //------------------------------inline_array_equals----------------------------
1264 bool LibraryCallKit::inline_array_equals() {
1265   Node* arg1 = argument(0);
1266   Node* arg2 = argument(1);
1267   set_result(_gvn.transform(new AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1268   return true;
1269 }
1270 
1271 // Java version of String.indexOf(constant string)
1272 // class StringDecl {
1273 //   StringDecl(char[] ca) {
1274 //     offset = 0;
1275 //     count = ca.length;
1276 //     value = ca;
1277 //   }
1278 //   int offset;
1279 //   int count;
1280 //   char[] value;
1281 // }
1282 //
1283 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1284 //                             int targetOffset, int cache_i, int md2) {
1285 //   int cache = cache_i;
1286 //   int sourceOffset = string_object.offset;
1287 //   int sourceCount = string_object.count;
1288 //   int targetCount = target_object.length;
1289 //
1290 //   int targetCountLess1 = targetCount - 1;
1291 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1292 //
1293 //   char[] source = string_object.value;
1294 //   char[] target = target_object;
1295 //   int lastChar = target[targetCountLess1];
1296 //
1297 //  outer_loop:
1298 //   for (int i = sourceOffset; i < sourceEnd; ) {
1299 //     int src = source[i + targetCountLess1];
1300 //     if (src == lastChar) {
1301 //       // With random strings and a 4-character alphabet,
1302 //       // reverse matching at this point sets up 0.8% fewer
1303 //       // frames, but (paradoxically) makes 0.3% more probes.
1304 //       // Since those probes are nearer the lastChar probe,
1305 //       // there is may be a net D$ win with reverse matching.
1306 //       // But, reversing loop inhibits unroll of inner loop
1307 //       // for unknown reason.  So, does running outer loop from
1308 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1309 //       for (int j = 0; j < targetCountLess1; j++) {
1310 //         if (target[targetOffset + j] != source[i+j]) {
1311 //           if ((cache & (1 << source[i+j])) == 0) {
1312 //             if (md2 < j+1) {
1313 //               i += j+1;
1314 //               continue outer_loop;
1315 //             }
1316 //           }
1317 //           i += md2;
1318 //           continue outer_loop;
1319 //         }
1320 //       }
1321 //       return i - sourceOffset;
1322 //     }
1323 //     if ((cache & (1 << src)) == 0) {
1324 //       i += targetCountLess1;
1325 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1326 //     i++;
1327 //   }
1328 //   return -1;
1329 // }
1330 
1331 //------------------------------string_indexOf------------------------
1332 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1333                                      jint cache_i, jint md2_i) {
1334 
1335   Node* no_ctrl  = NULL;
1336   float likely   = PROB_LIKELY(0.9);
1337   float unlikely = PROB_UNLIKELY(0.9);
1338 
1339   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1340 
1341   Node* source        = load_String_value(no_ctrl, string_object);
1342   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1343   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1344 
1345   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1346   jint target_length = target_array->length();
1347   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1348   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1349 
1350   // String.value field is known to be @Stable.
1351   if (UseImplicitStableValues) {
1352     target = cast_array_to_stable(target, target_type);
1353   }
1354 
1355   IdealKit kit(this, false, true);
1356 #define __ kit.
1357   Node* zero             = __ ConI(0);
1358   Node* one              = __ ConI(1);
1359   Node* cache            = __ ConI(cache_i);
1360   Node* md2              = __ ConI(md2_i);
1361   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1362   Node* targetCountLess1 = __ ConI(target_length - 1);
1363   Node* targetOffset     = __ ConI(targetOffset_i);
1364   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1365 
1366   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1367   Node* outer_loop = __ make_label(2 /* goto */);
1368   Node* return_    = __ make_label(1);
1369 
1370   __ set(rtn,__ ConI(-1));
1371   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1372        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1373        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1374        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1375        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1376          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1377               Node* tpj = __ AddI(targetOffset, __ value(j));
1378               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1379               Node* ipj  = __ AddI(__ value(i), __ value(j));
1380               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1381               __ if_then(targ, BoolTest::ne, src2); {
1382                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1383                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1384                     __ increment(i, __ AddI(__ value(j), one));
1385                     __ goto_(outer_loop);
1386                   } __ end_if(); __ dead(j);
1387                 }__ end_if(); __ dead(j);
1388                 __ increment(i, md2);
1389                 __ goto_(outer_loop);
1390               }__ end_if();
1391               __ increment(j, one);
1392          }__ end_loop(); __ dead(j);
1393          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1394          __ goto_(return_);
1395        }__ end_if();
1396        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1397          __ increment(i, targetCountLess1);
1398        }__ end_if();
1399        __ increment(i, one);
1400        __ bind(outer_loop);
1401   }__ end_loop(); __ dead(i);
1402   __ bind(return_);
1403 
1404   // Final sync IdealKit and GraphKit.
1405   final_sync(kit);
1406   Node* result = __ value(rtn);
1407 #undef __
1408   C->set_has_loops(true);
1409   return result;
1410 }
1411 
1412 //------------------------------inline_string_indexOf------------------------
1413 bool LibraryCallKit::inline_string_indexOf() {
1414   Node* receiver = argument(0);
1415   Node* arg      = argument(1);
1416 
1417   Node* result;
1418   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1419       UseSSE42Intrinsics) {
1420     // Generate SSE4.2 version of indexOf
1421     // We currently only have match rules that use SSE4.2
1422 
1423     receiver = null_check(receiver);
1424     arg      = null_check(arg);
1425     if (stopped()) {
1426       return true;
1427     }
1428 
1429     // Make the merge point
1430     RegionNode* result_rgn = new RegionNode(4);
1431     Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1432     Node* no_ctrl  = NULL;
1433 
1434     // Get start addr of source string
1435     Node* source = load_String_value(no_ctrl, receiver);
1436     Node* source_offset = load_String_offset(no_ctrl, receiver);
1437     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1438 
1439     // Get length of source string
1440     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1441 
1442     // Get start addr of substring
1443     Node* substr = load_String_value(no_ctrl, arg);
1444     Node* substr_offset = load_String_offset(no_ctrl, arg);
1445     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1446 
1447     // Get length of source string
1448     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1449 
1450     // Check for substr count > string count
1451     Node* cmp = _gvn.transform(new CmpINode(substr_cnt, source_cnt));
1452     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1453     Node* if_gt = generate_slow_guard(bol, NULL);
1454     if (if_gt != NULL) {
1455       result_phi->init_req(2, intcon(-1));
1456       result_rgn->init_req(2, if_gt);
1457     }
1458 
1459     if (!stopped()) {
1460       // Check for substr count == 0
1461       cmp = _gvn.transform(new CmpINode(substr_cnt, intcon(0)));
1462       bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1463       Node* if_zero = generate_slow_guard(bol, NULL);
1464       if (if_zero != NULL) {
1465         result_phi->init_req(3, intcon(0));
1466         result_rgn->init_req(3, if_zero);
1467       }
1468     }
1469 
1470     if (!stopped()) {
1471       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1472       result_phi->init_req(1, result);
1473       result_rgn->init_req(1, control());
1474     }
1475     set_control(_gvn.transform(result_rgn));
1476     record_for_igvn(result_rgn);
1477     result = _gvn.transform(result_phi);
1478 
1479   } else { // Use LibraryCallKit::string_indexOf
1480     // don't intrinsify if argument isn't a constant string.
1481     if (!arg->is_Con()) {
1482      return false;
1483     }
1484     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1485     if (str_type == NULL) {
1486       return false;
1487     }
1488     ciInstanceKlass* klass = env()->String_klass();
1489     ciObject* str_const = str_type->const_oop();
1490     if (str_const == NULL || str_const->klass() != klass) {
1491       return false;
1492     }
1493     ciInstance* str = str_const->as_instance();
1494     assert(str != NULL, "must be instance");
1495 
1496     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1497     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1498 
1499     int o;
1500     int c;
1501     if (java_lang_String::has_offset_field()) {
1502       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1503       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1504     } else {
1505       o = 0;
1506       c = pat->length();
1507     }
1508 
1509     // constant strings have no offset and count == length which
1510     // simplifies the resulting code somewhat so lets optimize for that.
1511     if (o != 0 || c != pat->length()) {
1512      return false;
1513     }
1514 
1515     receiver = null_check(receiver, T_OBJECT);
1516     // NOTE: No null check on the argument is needed since it's a constant String oop.
1517     if (stopped()) {
1518       return true;
1519     }
1520 
1521     // The null string as a pattern always returns 0 (match at beginning of string)
1522     if (c == 0) {
1523       set_result(intcon(0));
1524       return true;
1525     }
1526 
1527     // Generate default indexOf
1528     jchar lastChar = pat->char_at(o + (c - 1));
1529     int cache = 0;
1530     int i;
1531     for (i = 0; i < c - 1; i++) {
1532       assert(i < pat->length(), "out of range");
1533       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1534     }
1535 
1536     int md2 = c;
1537     for (i = 0; i < c - 1; i++) {
1538       assert(i < pat->length(), "out of range");
1539       if (pat->char_at(o + i) == lastChar) {
1540         md2 = (c - 1) - i;
1541       }
1542     }
1543 
1544     result = string_indexOf(receiver, pat, o, cache, md2);
1545   }
1546   set_result(result);
1547   return true;
1548 }
1549 
1550 //--------------------------round_double_node--------------------------------
1551 // Round a double node if necessary.
1552 Node* LibraryCallKit::round_double_node(Node* n) {
1553   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1554     n = _gvn.transform(new RoundDoubleNode(0, n));
1555   return n;
1556 }
1557 
1558 //------------------------------inline_math-----------------------------------
1559 // public static double Math.abs(double)
1560 // public static double Math.sqrt(double)
1561 // public static double Math.log(double)
1562 // public static double Math.log10(double)
1563 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1564   Node* arg = round_double_node(argument(0));
1565   Node* n;
1566   switch (id) {
1567   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1568   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1569   case vmIntrinsics::_dlog:   n = new LogDNode(C, control(),   arg);  break;
1570   case vmIntrinsics::_dlog10: n = new Log10DNode(C, control(), arg);  break;
1571   default:  fatal_unexpected_iid(id);  break;
1572   }
1573   set_result(_gvn.transform(n));
1574   return true;
1575 }
1576 
1577 //------------------------------inline_trig----------------------------------
1578 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1579 // argument reduction which will turn into a fast/slow diamond.
1580 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1581   Node* arg = round_double_node(argument(0));
1582   Node* n = NULL;
1583 
1584   switch (id) {
1585   case vmIntrinsics::_dsin:  n = new SinDNode(C, control(), arg);  break;
1586   case vmIntrinsics::_dcos:  n = new CosDNode(C, control(), arg);  break;
1587   case vmIntrinsics::_dtan:  n = new TanDNode(C, control(), arg);  break;
1588   default:  fatal_unexpected_iid(id);  break;
1589   }
1590   n = _gvn.transform(n);
1591 
1592   // Rounding required?  Check for argument reduction!
1593   if (Matcher::strict_fp_requires_explicit_rounding) {
1594     static const double     pi_4 =  0.7853981633974483;
1595     static const double neg_pi_4 = -0.7853981633974483;
1596     // pi/2 in 80-bit extended precision
1597     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1598     // -pi/2 in 80-bit extended precision
1599     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1600     // Cutoff value for using this argument reduction technique
1601     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1602     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1603 
1604     // Pseudocode for sin:
1605     // if (x <= Math.PI / 4.0) {
1606     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1607     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1608     // } else {
1609     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1610     // }
1611     // return StrictMath.sin(x);
1612 
1613     // Pseudocode for cos:
1614     // if (x <= Math.PI / 4.0) {
1615     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1616     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1617     // } else {
1618     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1619     // }
1620     // return StrictMath.cos(x);
1621 
1622     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1623     // requires a special machine instruction to load it.  Instead we'll try
1624     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1625     // probably do the math inside the SIN encoding.
1626 
1627     // Make the merge point
1628     RegionNode* r = new RegionNode(3);
1629     Node* phi = new PhiNode(r, Type::DOUBLE);
1630 
1631     // Flatten arg so we need only 1 test
1632     Node *abs = _gvn.transform(new AbsDNode(arg));
1633     // Node for PI/4 constant
1634     Node *pi4 = makecon(TypeD::make(pi_4));
1635     // Check PI/4 : abs(arg)
1636     Node *cmp = _gvn.transform(new CmpDNode(pi4,abs));
1637     // Check: If PI/4 < abs(arg) then go slow
1638     Node *bol = _gvn.transform(new BoolNode( cmp, BoolTest::lt ));
1639     // Branch either way
1640     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1641     set_control(opt_iff(r,iff));
1642 
1643     // Set fast path result
1644     phi->init_req(2, n);
1645 
1646     // Slow path - non-blocking leaf call
1647     Node* call = NULL;
1648     switch (id) {
1649     case vmIntrinsics::_dsin:
1650       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1651                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1652                                "Sin", NULL, arg, top());
1653       break;
1654     case vmIntrinsics::_dcos:
1655       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1656                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1657                                "Cos", NULL, arg, top());
1658       break;
1659     case vmIntrinsics::_dtan:
1660       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1661                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1662                                "Tan", NULL, arg, top());
1663       break;
1664     }
1665     assert(control()->in(0) == call, "");
1666     Node* slow_result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1667     r->init_req(1, control());
1668     phi->init_req(1, slow_result);
1669 
1670     // Post-merge
1671     set_control(_gvn.transform(r));
1672     record_for_igvn(r);
1673     n = _gvn.transform(phi);
1674 
1675     C->set_has_split_ifs(true); // Has chance for split-if optimization
1676   }
1677   set_result(n);
1678   return true;
1679 }
1680 
1681 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1682   //-------------------
1683   //result=(result.isNaN())? funcAddr():result;
1684   // Check: If isNaN() by checking result!=result? then either trap
1685   // or go to runtime
1686   Node* cmpisnan = _gvn.transform(new CmpDNode(result, result));
1687   // Build the boolean node
1688   Node* bolisnum = _gvn.transform(new BoolNode(cmpisnan, BoolTest::eq));
1689 
1690   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1691     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1692       // The pow or exp intrinsic returned a NaN, which requires a call
1693       // to the runtime.  Recompile with the runtime call.
1694       uncommon_trap(Deoptimization::Reason_intrinsic,
1695                     Deoptimization::Action_make_not_entrant);
1696     }
1697     return result;
1698   } else {
1699     // If this inlining ever returned NaN in the past, we compile a call
1700     // to the runtime to properly handle corner cases
1701 
1702     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1703     Node* if_slow = _gvn.transform(new IfFalseNode(iff));
1704     Node* if_fast = _gvn.transform(new IfTrueNode(iff));
1705 
1706     if (!if_slow->is_top()) {
1707       RegionNode* result_region = new RegionNode(3);
1708       PhiNode*    result_val = new PhiNode(result_region, Type::DOUBLE);
1709 
1710       result_region->init_req(1, if_fast);
1711       result_val->init_req(1, result);
1712 
1713       set_control(if_slow);
1714 
1715       const TypePtr* no_memory_effects = NULL;
1716       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1717                                    no_memory_effects,
1718                                    x, top(), y, y ? top() : NULL);
1719       Node* value = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+0));
1720 #ifdef ASSERT
1721       Node* value_top = _gvn.transform(new ProjNode(rt, TypeFunc::Parms+1));
1722       assert(value_top == top(), "second value must be top");
1723 #endif
1724 
1725       result_region->init_req(2, control());
1726       result_val->init_req(2, value);
1727       set_control(_gvn.transform(result_region));
1728       return _gvn.transform(result_val);
1729     } else {
1730       return result;
1731     }
1732   }
1733 }
1734 
1735 //------------------------------inline_exp-------------------------------------
1736 // Inline exp instructions, if possible.  The Intel hardware only misses
1737 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1738 bool LibraryCallKit::inline_exp() {
1739   Node* arg = round_double_node(argument(0));
1740   Node* n   = _gvn.transform(new ExpDNode(C, control(), arg));
1741 
1742   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1743   set_result(n);
1744 
1745   C->set_has_split_ifs(true); // Has chance for split-if optimization
1746   return true;
1747 }
1748 
1749 //------------------------------inline_pow-------------------------------------
1750 // Inline power instructions, if possible.
1751 bool LibraryCallKit::inline_pow() {
1752   // Pseudocode for pow
1753   // if (y == 2) {
1754   //   return x * x;
1755   // } else {
1756   //   if (x <= 0.0) {
1757   //     long longy = (long)y;
1758   //     if ((double)longy == y) { // if y is long
1759   //       if (y + 1 == y) longy = 0; // huge number: even
1760   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1761   //     } else {
1762   //       result = NaN;
1763   //     }
1764   //   } else {
1765   //     result = DPow(x,y);
1766   //   }
1767   //   if (result != result)?  {
1768   //     result = uncommon_trap() or runtime_call();
1769   //   }
1770   //   return result;
1771   // }
1772 
1773   Node* x = round_double_node(argument(0));
1774   Node* y = round_double_node(argument(2));
1775 
1776   Node* result = NULL;
1777 
1778   Node*   const_two_node = makecon(TypeD::make(2.0));
1779   Node*   cmp_node       = _gvn.transform(new CmpDNode(y, const_two_node));
1780   Node*   bool_node      = _gvn.transform(new BoolNode(cmp_node, BoolTest::eq));
1781   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1782   Node*   if_true        = _gvn.transform(new IfTrueNode(if_node));
1783   Node*   if_false       = _gvn.transform(new IfFalseNode(if_node));
1784 
1785   RegionNode* region_node = new RegionNode(3);
1786   region_node->init_req(1, if_true);
1787 
1788   Node* phi_node = new PhiNode(region_node, Type::DOUBLE);
1789   // special case for x^y where y == 2, we can convert it to x * x
1790   phi_node->init_req(1, _gvn.transform(new MulDNode(x, x)));
1791 
1792   // set control to if_false since we will now process the false branch
1793   set_control(if_false);
1794 
1795   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1796     // Short form: skip the fancy tests and just check for NaN result.
1797     result = _gvn.transform(new PowDNode(C, control(), x, y));
1798   } else {
1799     // If this inlining ever returned NaN in the past, include all
1800     // checks + call to the runtime.
1801 
1802     // Set the merge point for If node with condition of (x <= 0.0)
1803     // There are four possible paths to region node and phi node
1804     RegionNode *r = new RegionNode(4);
1805     Node *phi = new PhiNode(r, Type::DOUBLE);
1806 
1807     // Build the first if node: if (x <= 0.0)
1808     // Node for 0 constant
1809     Node *zeronode = makecon(TypeD::ZERO);
1810     // Check x:0
1811     Node *cmp = _gvn.transform(new CmpDNode(x, zeronode));
1812     // Check: If (x<=0) then go complex path
1813     Node *bol1 = _gvn.transform(new BoolNode( cmp, BoolTest::le ));
1814     // Branch either way
1815     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1816     // Fast path taken; set region slot 3
1817     Node *fast_taken = _gvn.transform(new IfFalseNode(if1));
1818     r->init_req(3,fast_taken); // Capture fast-control
1819 
1820     // Fast path not-taken, i.e. slow path
1821     Node *complex_path = _gvn.transform(new IfTrueNode(if1));
1822 
1823     // Set fast path result
1824     Node *fast_result = _gvn.transform(new PowDNode(C, control(), x, y));
1825     phi->init_req(3, fast_result);
1826 
1827     // Complex path
1828     // Build the second if node (if y is long)
1829     // Node for (long)y
1830     Node *longy = _gvn.transform(new ConvD2LNode(y));
1831     // Node for (double)((long) y)
1832     Node *doublelongy= _gvn.transform(new ConvL2DNode(longy));
1833     // Check (double)((long) y) : y
1834     Node *cmplongy= _gvn.transform(new CmpDNode(doublelongy, y));
1835     // Check if (y isn't long) then go to slow path
1836 
1837     Node *bol2 = _gvn.transform(new BoolNode( cmplongy, BoolTest::ne ));
1838     // Branch either way
1839     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1840     Node* ylong_path = _gvn.transform(new IfFalseNode(if2));
1841 
1842     Node *slow_path = _gvn.transform(new IfTrueNode(if2));
1843 
1844     // Calculate DPow(abs(x), y)*(1 & (long)y)
1845     // Node for constant 1
1846     Node *conone = longcon(1);
1847     // 1& (long)y
1848     Node *signnode= _gvn.transform(new AndLNode(conone, longy));
1849 
1850     // A huge number is always even. Detect a huge number by checking
1851     // if y + 1 == y and set integer to be tested for parity to 0.
1852     // Required for corner case:
1853     // (long)9.223372036854776E18 = max_jlong
1854     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1855     // max_jlong is odd but 9.223372036854776E18 is even
1856     Node* yplus1 = _gvn.transform(new AddDNode(y, makecon(TypeD::make(1))));
1857     Node *cmpyplus1= _gvn.transform(new CmpDNode(yplus1, y));
1858     Node *bolyplus1 = _gvn.transform(new BoolNode( cmpyplus1, BoolTest::eq ));
1859     Node* correctedsign = NULL;
1860     if (ConditionalMoveLimit != 0) {
1861       correctedsign = _gvn.transform(CMoveNode::make(NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1862     } else {
1863       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1864       RegionNode *r = new RegionNode(3);
1865       Node *phi = new PhiNode(r, TypeLong::LONG);
1866       r->init_req(1, _gvn.transform(new IfFalseNode(ifyplus1)));
1867       r->init_req(2, _gvn.transform(new IfTrueNode(ifyplus1)));
1868       phi->init_req(1, signnode);
1869       phi->init_req(2, longcon(0));
1870       correctedsign = _gvn.transform(phi);
1871       ylong_path = _gvn.transform(r);
1872       record_for_igvn(r);
1873     }
1874 
1875     // zero node
1876     Node *conzero = longcon(0);
1877     // Check (1&(long)y)==0?
1878     Node *cmpeq1 = _gvn.transform(new CmpLNode(correctedsign, conzero));
1879     // Check if (1&(long)y)!=0?, if so the result is negative
1880     Node *bol3 = _gvn.transform(new BoolNode( cmpeq1, BoolTest::ne ));
1881     // abs(x)
1882     Node *absx=_gvn.transform(new AbsDNode(x));
1883     // abs(x)^y
1884     Node *absxpowy = _gvn.transform(new PowDNode(C, control(), absx, y));
1885     // -abs(x)^y
1886     Node *negabsxpowy = _gvn.transform(new NegDNode (absxpowy));
1887     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1888     Node *signresult = NULL;
1889     if (ConditionalMoveLimit != 0) {
1890       signresult = _gvn.transform(CMoveNode::make(NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1891     } else {
1892       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1893       RegionNode *r = new RegionNode(3);
1894       Node *phi = new PhiNode(r, Type::DOUBLE);
1895       r->init_req(1, _gvn.transform(new IfFalseNode(ifyeven)));
1896       r->init_req(2, _gvn.transform(new IfTrueNode(ifyeven)));
1897       phi->init_req(1, absxpowy);
1898       phi->init_req(2, negabsxpowy);
1899       signresult = _gvn.transform(phi);
1900       ylong_path = _gvn.transform(r);
1901       record_for_igvn(r);
1902     }
1903     // Set complex path fast result
1904     r->init_req(2, ylong_path);
1905     phi->init_req(2, signresult);
1906 
1907     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1908     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1909     r->init_req(1,slow_path);
1910     phi->init_req(1,slow_result);
1911 
1912     // Post merge
1913     set_control(_gvn.transform(r));
1914     record_for_igvn(r);
1915     result = _gvn.transform(phi);
1916   }
1917 
1918   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1919 
1920   // control from finish_pow_exp is now input to the region node
1921   region_node->set_req(2, control());
1922   // the result from finish_pow_exp is now input to the phi node
1923   phi_node->init_req(2, result);
1924   set_control(_gvn.transform(region_node));
1925   record_for_igvn(region_node);
1926   set_result(_gvn.transform(phi_node));
1927 
1928   C->set_has_split_ifs(true); // Has chance for split-if optimization
1929   return true;
1930 }
1931 
1932 //------------------------------runtime_math-----------------------------
1933 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1934   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1935          "must be (DD)D or (D)D type");
1936 
1937   // Inputs
1938   Node* a = round_double_node(argument(0));
1939   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1940 
1941   const TypePtr* no_memory_effects = NULL;
1942   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1943                                  no_memory_effects,
1944                                  a, top(), b, b ? top() : NULL);
1945   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1946 #ifdef ASSERT
1947   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1948   assert(value_top == top(), "second value must be top");
1949 #endif
1950 
1951   set_result(value);
1952   return true;
1953 }
1954 
1955 //------------------------------inline_math_native-----------------------------
1956 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1957 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1958   switch (id) {
1959     // These intrinsics are not properly supported on all hardware
1960   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1961     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1962   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1963     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1964   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1965     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1966 
1967   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1968     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1969   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1970     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1971 
1972     // These intrinsics are supported on all hardware
1973   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1974   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1975 
1976   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1977     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1978   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1979     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1980 #undef FN_PTR
1981 
1982    // These intrinsics are not yet correctly implemented
1983   case vmIntrinsics::_datan2:
1984     return false;
1985 
1986   default:
1987     fatal_unexpected_iid(id);
1988     return false;
1989   }
1990 }
1991 
1992 static bool is_simple_name(Node* n) {
1993   return (n->req() == 1         // constant
1994           || (n->is_Type() && n->as_Type()->type()->singleton())
1995           || n->is_Proj()       // parameter or return value
1996           || n->is_Phi()        // local of some sort
1997           );
1998 }
1999 
2000 //----------------------------inline_min_max-----------------------------------
2001 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
2002   set_result(generate_min_max(id, argument(0), argument(1)));
2003   return true;
2004 }
2005 
2006 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
2007   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
2008   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2009   Node* fast_path = _gvn.transform( new IfFalseNode(check));
2010   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
2011 
2012   {
2013     PreserveJVMState pjvms(this);
2014     PreserveReexecuteState preexecs(this);
2015     jvms()->set_should_reexecute(true);
2016 
2017     set_control(slow_path);
2018     set_i_o(i_o());
2019 
2020     uncommon_trap(Deoptimization::Reason_intrinsic,
2021                   Deoptimization::Action_none);
2022   }
2023 
2024   set_control(fast_path);
2025   set_result(math);
2026 }
2027 
2028 template <typename OverflowOp>
2029 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2030   typedef typename OverflowOp::MathOp MathOp;
2031 
2032   MathOp* mathOp = new MathOp(arg1, arg2);
2033   Node* operation = _gvn.transform( mathOp );
2034   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2035   inline_math_mathExact(operation, ofcheck);
2036   return true;
2037 }
2038 
2039 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2040   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2041 }
2042 
2043 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2044   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2045 }
2046 
2047 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2048   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2049 }
2050 
2051 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2052   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2053 }
2054 
2055 bool LibraryCallKit::inline_math_negateExactI() {
2056   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2057 }
2058 
2059 bool LibraryCallKit::inline_math_negateExactL() {
2060   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2061 }
2062 
2063 bool LibraryCallKit::inline_math_multiplyExactI() {
2064   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2065 }
2066 
2067 bool LibraryCallKit::inline_math_multiplyExactL() {
2068   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2069 }
2070 
2071 Node*
2072 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2073   // These are the candidate return value:
2074   Node* xvalue = x0;
2075   Node* yvalue = y0;
2076 
2077   if (xvalue == yvalue) {
2078     return xvalue;
2079   }
2080 
2081   bool want_max = (id == vmIntrinsics::_max);
2082 
2083   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2084   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2085   if (txvalue == NULL || tyvalue == NULL)  return top();
2086   // This is not really necessary, but it is consistent with a
2087   // hypothetical MaxINode::Value method:
2088   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2089 
2090   // %%% This folding logic should (ideally) be in a different place.
2091   // Some should be inside IfNode, and there to be a more reliable
2092   // transformation of ?: style patterns into cmoves.  We also want
2093   // more powerful optimizations around cmove and min/max.
2094 
2095   // Try to find a dominating comparison of these guys.
2096   // It can simplify the index computation for Arrays.copyOf
2097   // and similar uses of System.arraycopy.
2098   // First, compute the normalized version of CmpI(x, y).
2099   int   cmp_op = Op_CmpI;
2100   Node* xkey = xvalue;
2101   Node* ykey = yvalue;
2102   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
2103   if (ideal_cmpxy->is_Cmp()) {
2104     // E.g., if we have CmpI(length - offset, count),
2105     // it might idealize to CmpI(length, count + offset)
2106     cmp_op = ideal_cmpxy->Opcode();
2107     xkey = ideal_cmpxy->in(1);
2108     ykey = ideal_cmpxy->in(2);
2109   }
2110 
2111   // Start by locating any relevant comparisons.
2112   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2113   Node* cmpxy = NULL;
2114   Node* cmpyx = NULL;
2115   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2116     Node* cmp = start_from->fast_out(k);
2117     if (cmp->outcnt() > 0 &&            // must have prior uses
2118         cmp->in(0) == NULL &&           // must be context-independent
2119         cmp->Opcode() == cmp_op) {      // right kind of compare
2120       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2121       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2122     }
2123   }
2124 
2125   const int NCMPS = 2;
2126   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2127   int cmpn;
2128   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2129     if (cmps[cmpn] != NULL)  break;     // find a result
2130   }
2131   if (cmpn < NCMPS) {
2132     // Look for a dominating test that tells us the min and max.
2133     int depth = 0;                // Limit search depth for speed
2134     Node* dom = control();
2135     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2136       if (++depth >= 100)  break;
2137       Node* ifproj = dom;
2138       if (!ifproj->is_Proj())  continue;
2139       Node* iff = ifproj->in(0);
2140       if (!iff->is_If())  continue;
2141       Node* bol = iff->in(1);
2142       if (!bol->is_Bool())  continue;
2143       Node* cmp = bol->in(1);
2144       if (cmp == NULL)  continue;
2145       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2146         if (cmps[cmpn] == cmp)  break;
2147       if (cmpn == NCMPS)  continue;
2148       BoolTest::mask btest = bol->as_Bool()->_test._test;
2149       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2150       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2151       // At this point, we know that 'x btest y' is true.
2152       switch (btest) {
2153       case BoolTest::eq:
2154         // They are proven equal, so we can collapse the min/max.
2155         // Either value is the answer.  Choose the simpler.
2156         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2157           return yvalue;
2158         return xvalue;
2159       case BoolTest::lt:          // x < y
2160       case BoolTest::le:          // x <= y
2161         return (want_max ? yvalue : xvalue);
2162       case BoolTest::gt:          // x > y
2163       case BoolTest::ge:          // x >= y
2164         return (want_max ? xvalue : yvalue);
2165       }
2166     }
2167   }
2168 
2169   // We failed to find a dominating test.
2170   // Let's pick a test that might GVN with prior tests.
2171   Node*          best_bol   = NULL;
2172   BoolTest::mask best_btest = BoolTest::illegal;
2173   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2174     Node* cmp = cmps[cmpn];
2175     if (cmp == NULL)  continue;
2176     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2177       Node* bol = cmp->fast_out(j);
2178       if (!bol->is_Bool())  continue;
2179       BoolTest::mask btest = bol->as_Bool()->_test._test;
2180       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2181       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2182       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2183         best_bol   = bol->as_Bool();
2184         best_btest = btest;
2185       }
2186     }
2187   }
2188 
2189   Node* answer_if_true  = NULL;
2190   Node* answer_if_false = NULL;
2191   switch (best_btest) {
2192   default:
2193     if (cmpxy == NULL)
2194       cmpxy = ideal_cmpxy;
2195     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2196     // and fall through:
2197   case BoolTest::lt:          // x < y
2198   case BoolTest::le:          // x <= y
2199     answer_if_true  = (want_max ? yvalue : xvalue);
2200     answer_if_false = (want_max ? xvalue : yvalue);
2201     break;
2202   case BoolTest::gt:          // x > y
2203   case BoolTest::ge:          // x >= y
2204     answer_if_true  = (want_max ? xvalue : yvalue);
2205     answer_if_false = (want_max ? yvalue : xvalue);
2206     break;
2207   }
2208 
2209   jint hi, lo;
2210   if (want_max) {
2211     // We can sharpen the minimum.
2212     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2213     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2214   } else {
2215     // We can sharpen the maximum.
2216     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2217     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2218   }
2219 
2220   // Use a flow-free graph structure, to avoid creating excess control edges
2221   // which could hinder other optimizations.
2222   // Since Math.min/max is often used with arraycopy, we want
2223   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2224   Node* cmov = CMoveNode::make(NULL, best_bol,
2225                                answer_if_false, answer_if_true,
2226                                TypeInt::make(lo, hi, widen));
2227 
2228   return _gvn.transform(cmov);
2229 
2230   /*
2231   // This is not as desirable as it may seem, since Min and Max
2232   // nodes do not have a full set of optimizations.
2233   // And they would interfere, anyway, with 'if' optimizations
2234   // and with CMoveI canonical forms.
2235   switch (id) {
2236   case vmIntrinsics::_min:
2237     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2238   case vmIntrinsics::_max:
2239     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2240   default:
2241     ShouldNotReachHere();
2242   }
2243   */
2244 }
2245 
2246 inline int
2247 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2248   const TypePtr* base_type = TypePtr::NULL_PTR;
2249   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2250   if (base_type == NULL) {
2251     // Unknown type.
2252     return Type::AnyPtr;
2253   } else if (base_type == TypePtr::NULL_PTR) {
2254     // Since this is a NULL+long form, we have to switch to a rawptr.
2255     base   = _gvn.transform(new CastX2PNode(offset));
2256     offset = MakeConX(0);
2257     return Type::RawPtr;
2258   } else if (base_type->base() == Type::RawPtr) {
2259     return Type::RawPtr;
2260   } else if (base_type->isa_oopptr()) {
2261     // Base is never null => always a heap address.
2262     if (base_type->ptr() == TypePtr::NotNull) {
2263       return Type::OopPtr;
2264     }
2265     // Offset is small => always a heap address.
2266     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2267     if (offset_type != NULL &&
2268         base_type->offset() == 0 &&     // (should always be?)
2269         offset_type->_lo >= 0 &&
2270         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2271       return Type::OopPtr;
2272     }
2273     // Otherwise, it might either be oop+off or NULL+addr.
2274     return Type::AnyPtr;
2275   } else {
2276     // No information:
2277     return Type::AnyPtr;
2278   }
2279 }
2280 
2281 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2282   int kind = classify_unsafe_addr(base, offset);
2283   if (kind == Type::RawPtr) {
2284     return basic_plus_adr(top(), base, offset);
2285   } else {
2286     return basic_plus_adr(base, offset);
2287   }
2288 }
2289 
2290 //--------------------------inline_number_methods-----------------------------
2291 // inline int     Integer.numberOfLeadingZeros(int)
2292 // inline int        Long.numberOfLeadingZeros(long)
2293 //
2294 // inline int     Integer.numberOfTrailingZeros(int)
2295 // inline int        Long.numberOfTrailingZeros(long)
2296 //
2297 // inline int     Integer.bitCount(int)
2298 // inline int        Long.bitCount(long)
2299 //
2300 // inline char  Character.reverseBytes(char)
2301 // inline short     Short.reverseBytes(short)
2302 // inline int     Integer.reverseBytes(int)
2303 // inline long       Long.reverseBytes(long)
2304 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2305   Node* arg = argument(0);
2306   Node* n;
2307   switch (id) {
2308   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2309   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2310   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2311   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2312   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2313   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2314   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2315   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2316   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2317   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2318   default:  fatal_unexpected_iid(id);  break;
2319   }
2320   set_result(_gvn.transform(n));
2321   return true;
2322 }
2323 
2324 //----------------------------inline_unsafe_access----------------------------
2325 
2326 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2327 
2328 // Helper that guards and inserts a pre-barrier.
2329 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2330                                         Node* pre_val, bool need_mem_bar) {
2331   // We could be accessing the referent field of a reference object. If so, when G1
2332   // is enabled, we need to log the value in the referent field in an SATB buffer.
2333   // This routine performs some compile time filters and generates suitable
2334   // runtime filters that guard the pre-barrier code.
2335   // Also add memory barrier for non volatile load from the referent field
2336   // to prevent commoning of loads across safepoint.
2337   if (!UseG1GC && !need_mem_bar)
2338     return;
2339 
2340   // Some compile time checks.
2341 
2342   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2343   const TypeX* otype = offset->find_intptr_t_type();
2344   if (otype != NULL && otype->is_con() &&
2345       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2346     // Constant offset but not the reference_offset so just return
2347     return;
2348   }
2349 
2350   // We only need to generate the runtime guards for instances.
2351   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2352   if (btype != NULL) {
2353     if (btype->isa_aryptr()) {
2354       // Array type so nothing to do
2355       return;
2356     }
2357 
2358     const TypeInstPtr* itype = btype->isa_instptr();
2359     if (itype != NULL) {
2360       // Can the klass of base_oop be statically determined to be
2361       // _not_ a sub-class of Reference and _not_ Object?
2362       ciKlass* klass = itype->klass();
2363       if ( klass->is_loaded() &&
2364           !klass->is_subtype_of(env()->Reference_klass()) &&
2365           !env()->Object_klass()->is_subtype_of(klass)) {
2366         return;
2367       }
2368     }
2369   }
2370 
2371   // The compile time filters did not reject base_oop/offset so
2372   // we need to generate the following runtime filters
2373   //
2374   // if (offset == java_lang_ref_Reference::_reference_offset) {
2375   //   if (instance_of(base, java.lang.ref.Reference)) {
2376   //     pre_barrier(_, pre_val, ...);
2377   //   }
2378   // }
2379 
2380   float likely   = PROB_LIKELY(  0.999);
2381   float unlikely = PROB_UNLIKELY(0.999);
2382 
2383   IdealKit ideal(this);
2384 #define __ ideal.
2385 
2386   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2387 
2388   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2389       // Update graphKit memory and control from IdealKit.
2390       sync_kit(ideal);
2391 
2392       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2393       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2394 
2395       // Update IdealKit memory and control from graphKit.
2396       __ sync_kit(this);
2397 
2398       Node* one = __ ConI(1);
2399       // is_instof == 0 if base_oop == NULL
2400       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2401 
2402         // Update graphKit from IdeakKit.
2403         sync_kit(ideal);
2404 
2405         // Use the pre-barrier to record the value in the referent field
2406         pre_barrier(false /* do_load */,
2407                     __ ctrl(),
2408                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2409                     pre_val /* pre_val */,
2410                     T_OBJECT);
2411         if (need_mem_bar) {
2412           // Add memory barrier to prevent commoning reads from this field
2413           // across safepoint since GC can change its value.
2414           insert_mem_bar(Op_MemBarCPUOrder);
2415         }
2416         // Update IdealKit from graphKit.
2417         __ sync_kit(this);
2418 
2419       } __ end_if(); // _ref_type != ref_none
2420   } __ end_if(); // offset == referent_offset
2421 
2422   // Final sync IdealKit and GraphKit.
2423   final_sync(ideal);
2424 #undef __
2425 }
2426 
2427 
2428 // Interpret Unsafe.fieldOffset cookies correctly:
2429 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2430 
2431 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2432   // Attempt to infer a sharper value type from the offset and base type.
2433   ciKlass* sharpened_klass = NULL;
2434 
2435   // See if it is an instance field, with an object type.
2436   if (alias_type->field() != NULL) {
2437     assert(!is_native_ptr, "native pointer op cannot use a java address");
2438     if (alias_type->field()->type()->is_klass()) {
2439       sharpened_klass = alias_type->field()->type()->as_klass();
2440     }
2441   }
2442 
2443   // See if it is a narrow oop array.
2444   if (adr_type->isa_aryptr()) {
2445     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2446       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2447       if (elem_type != NULL) {
2448         sharpened_klass = elem_type->klass();
2449       }
2450     }
2451   }
2452 
2453   // The sharpened class might be unloaded if there is no class loader
2454   // contraint in place.
2455   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2456     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2457 
2458 #ifndef PRODUCT
2459     if (C->print_intrinsics() || C->print_inlining()) {
2460       tty->print("  from base type: ");  adr_type->dump();
2461       tty->print("  sharpened value: ");  tjp->dump();
2462     }
2463 #endif
2464     // Sharpen the value type.
2465     return tjp;
2466   }
2467   return NULL;
2468 }
2469 
2470 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2471   if (callee()->is_static())  return false;  // caller must have the capability!
2472 
2473 #ifndef PRODUCT
2474   {
2475     ResourceMark rm;
2476     // Check the signatures.
2477     ciSignature* sig = callee()->signature();
2478 #ifdef ASSERT
2479     if (!is_store) {
2480       // Object getObject(Object base, int/long offset), etc.
2481       BasicType rtype = sig->return_type()->basic_type();
2482       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2483           rtype = T_ADDRESS;  // it is really a C void*
2484       assert(rtype == type, "getter must return the expected value");
2485       if (!is_native_ptr) {
2486         assert(sig->count() == 2, "oop getter has 2 arguments");
2487         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2488         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2489       } else {
2490         assert(sig->count() == 1, "native getter has 1 argument");
2491         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2492       }
2493     } else {
2494       // void putObject(Object base, int/long offset, Object x), etc.
2495       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2496       if (!is_native_ptr) {
2497         assert(sig->count() == 3, "oop putter has 3 arguments");
2498         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2499         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2500       } else {
2501         assert(sig->count() == 2, "native putter has 2 arguments");
2502         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2503       }
2504       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2505       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2506         vtype = T_ADDRESS;  // it is really a C void*
2507       assert(vtype == type, "putter must accept the expected value");
2508     }
2509 #endif // ASSERT
2510  }
2511 #endif //PRODUCT
2512 
2513   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2514 
2515   Node* receiver = argument(0);  // type: oop
2516 
2517   // Build address expression.  See the code in inline_unsafe_prefetch.
2518   Node* adr;
2519   Node* heap_base_oop = top();
2520   Node* offset = top();
2521   Node* val;
2522 
2523   if (!is_native_ptr) {
2524     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2525     Node* base = argument(1);  // type: oop
2526     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2527     offset = argument(2);  // type: long
2528     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2529     // to be plain byte offsets, which are also the same as those accepted
2530     // by oopDesc::field_base.
2531     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2532            "fieldOffset must be byte-scaled");
2533     // 32-bit machines ignore the high half!
2534     offset = ConvL2X(offset);
2535     adr = make_unsafe_address(base, offset);
2536     heap_base_oop = base;
2537     val = is_store ? argument(4) : NULL;
2538   } else {
2539     Node* ptr = argument(1);  // type: long
2540     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2541     adr = make_unsafe_address(NULL, ptr);
2542     val = is_store ? argument(3) : NULL;
2543   }
2544 
2545   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2546 
2547   // First guess at the value type.
2548   const Type *value_type = Type::get_const_basic_type(type);
2549 
2550   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2551   // there was not enough information to nail it down.
2552   Compile::AliasType* alias_type = C->alias_type(adr_type);
2553   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2554 
2555   // We will need memory barriers unless we can determine a unique
2556   // alias category for this reference.  (Note:  If for some reason
2557   // the barriers get omitted and the unsafe reference begins to "pollute"
2558   // the alias analysis of the rest of the graph, either Compile::can_alias
2559   // or Compile::must_alias will throw a diagnostic assert.)
2560   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2561 
2562   // If we are reading the value of the referent field of a Reference
2563   // object (either by using Unsafe directly or through reflection)
2564   // then, if G1 is enabled, we need to record the referent in an
2565   // SATB log buffer using the pre-barrier mechanism.
2566   // Also we need to add memory barrier to prevent commoning reads
2567   // from this field across safepoint since GC can change its value.
2568   bool need_read_barrier = !is_native_ptr && !is_store &&
2569                            offset != top() && heap_base_oop != top();
2570 
2571   if (!is_store && type == T_OBJECT) {
2572     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2573     if (tjp != NULL) {
2574       value_type = tjp;
2575     }
2576   }
2577 
2578   receiver = null_check(receiver);
2579   if (stopped()) {
2580     return true;
2581   }
2582   // Heap pointers get a null-check from the interpreter,
2583   // as a courtesy.  However, this is not guaranteed by Unsafe,
2584   // and it is not possible to fully distinguish unintended nulls
2585   // from intended ones in this API.
2586 
2587   if (is_volatile) {
2588     // We need to emit leading and trailing CPU membars (see below) in
2589     // addition to memory membars when is_volatile. This is a little
2590     // too strong, but avoids the need to insert per-alias-type
2591     // volatile membars (for stores; compare Parse::do_put_xxx), which
2592     // we cannot do effectively here because we probably only have a
2593     // rough approximation of type.
2594     need_mem_bar = true;
2595     // For Stores, place a memory ordering barrier now.
2596     if (is_store) {
2597       insert_mem_bar(Op_MemBarRelease);
2598     } else {
2599       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2600         insert_mem_bar(Op_MemBarVolatile);
2601       }
2602     }
2603   }
2604 
2605   // Memory barrier to prevent normal and 'unsafe' accesses from
2606   // bypassing each other.  Happens after null checks, so the
2607   // exception paths do not take memory state from the memory barrier,
2608   // so there's no problems making a strong assert about mixing users
2609   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2610   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2611   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2612 
2613   if (!is_store) {
2614     MemNode::MemOrd mo = is_volatile ? MemNode::acquire : MemNode::unordered;
2615     Node* p = make_load(control(), adr, value_type, type, adr_type, mo, is_volatile);
2616     // load value
2617     switch (type) {
2618     case T_BOOLEAN:
2619     case T_CHAR:
2620     case T_BYTE:
2621     case T_SHORT:
2622     case T_INT:
2623     case T_LONG:
2624     case T_FLOAT:
2625     case T_DOUBLE:
2626       break;
2627     case T_OBJECT:
2628       if (need_read_barrier) {
2629         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2630       }
2631       break;
2632     case T_ADDRESS:
2633       // Cast to an int type.
2634       p = _gvn.transform(new CastP2XNode(NULL, p));
2635       p = ConvX2UL(p);
2636       break;
2637     default:
2638       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2639       break;
2640     }
2641     // The load node has the control of the preceding MemBarCPUOrder.  All
2642     // following nodes will have the control of the MemBarCPUOrder inserted at
2643     // the end of this method.  So, pushing the load onto the stack at a later
2644     // point is fine.
2645     set_result(p);
2646   } else {
2647     // place effect of store into memory
2648     switch (type) {
2649     case T_DOUBLE:
2650       val = dstore_rounding(val);
2651       break;
2652     case T_ADDRESS:
2653       // Repackage the long as a pointer.
2654       val = ConvL2X(val);
2655       val = _gvn.transform(new CastX2PNode(val));
2656       break;
2657     }
2658 
2659     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2660     if (type != T_OBJECT ) {
2661       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2662     } else {
2663       // Possibly an oop being stored to Java heap or native memory
2664       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2665         // oop to Java heap.
2666         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2667       } else {
2668         // We can't tell at compile time if we are storing in the Java heap or outside
2669         // of it. So we need to emit code to conditionally do the proper type of
2670         // store.
2671 
2672         IdealKit ideal(this);
2673 #define __ ideal.
2674         // QQQ who knows what probability is here??
2675         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2676           // Sync IdealKit and graphKit.
2677           sync_kit(ideal);
2678           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2679           // Update IdealKit memory.
2680           __ sync_kit(this);
2681         } __ else_(); {
2682           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2683         } __ end_if();
2684         // Final sync IdealKit and GraphKit.
2685         final_sync(ideal);
2686 #undef __
2687       }
2688     }
2689   }
2690 
2691   if (is_volatile) {
2692     if (!is_store) {
2693       insert_mem_bar(Op_MemBarAcquire);
2694     } else {
2695       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2696         insert_mem_bar(Op_MemBarVolatile);
2697       }
2698     }
2699   }
2700 
2701   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2702 
2703   return true;
2704 }
2705 
2706 //----------------------------inline_unsafe_prefetch----------------------------
2707 
2708 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2709 #ifndef PRODUCT
2710   {
2711     ResourceMark rm;
2712     // Check the signatures.
2713     ciSignature* sig = callee()->signature();
2714 #ifdef ASSERT
2715     // Object getObject(Object base, int/long offset), etc.
2716     BasicType rtype = sig->return_type()->basic_type();
2717     if (!is_native_ptr) {
2718       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2719       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2720       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2721     } else {
2722       assert(sig->count() == 1, "native prefetch has 1 argument");
2723       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2724     }
2725 #endif // ASSERT
2726   }
2727 #endif // !PRODUCT
2728 
2729   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2730 
2731   const int idx = is_static ? 0 : 1;
2732   if (!is_static) {
2733     null_check_receiver();
2734     if (stopped()) {
2735       return true;
2736     }
2737   }
2738 
2739   // Build address expression.  See the code in inline_unsafe_access.
2740   Node *adr;
2741   if (!is_native_ptr) {
2742     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2743     Node* base   = argument(idx + 0);  // type: oop
2744     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2745     Node* offset = argument(idx + 1);  // type: long
2746     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2747     // to be plain byte offsets, which are also the same as those accepted
2748     // by oopDesc::field_base.
2749     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2750            "fieldOffset must be byte-scaled");
2751     // 32-bit machines ignore the high half!
2752     offset = ConvL2X(offset);
2753     adr = make_unsafe_address(base, offset);
2754   } else {
2755     Node* ptr = argument(idx + 0);  // type: long
2756     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2757     adr = make_unsafe_address(NULL, ptr);
2758   }
2759 
2760   // Generate the read or write prefetch
2761   Node *prefetch;
2762   if (is_store) {
2763     prefetch = new PrefetchWriteNode(i_o(), adr);
2764   } else {
2765     prefetch = new PrefetchReadNode(i_o(), adr);
2766   }
2767   prefetch->init_req(0, control());
2768   set_i_o(_gvn.transform(prefetch));
2769 
2770   return true;
2771 }
2772 
2773 //----------------------------inline_unsafe_load_store----------------------------
2774 // This method serves a couple of different customers (depending on LoadStoreKind):
2775 //
2776 // LS_cmpxchg:
2777 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2778 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2779 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2780 //
2781 // LS_xadd:
2782 //   public int  getAndAddInt( Object o, long offset, int  delta)
2783 //   public long getAndAddLong(Object o, long offset, long delta)
2784 //
2785 // LS_xchg:
2786 //   int    getAndSet(Object o, long offset, int    newValue)
2787 //   long   getAndSet(Object o, long offset, long   newValue)
2788 //   Object getAndSet(Object o, long offset, Object newValue)
2789 //
2790 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2791   // This basic scheme here is the same as inline_unsafe_access, but
2792   // differs in enough details that combining them would make the code
2793   // overly confusing.  (This is a true fact! I originally combined
2794   // them, but even I was confused by it!) As much code/comments as
2795   // possible are retained from inline_unsafe_access though to make
2796   // the correspondences clearer. - dl
2797 
2798   if (callee()->is_static())  return false;  // caller must have the capability!
2799 
2800 #ifndef PRODUCT
2801   BasicType rtype;
2802   {
2803     ResourceMark rm;
2804     // Check the signatures.
2805     ciSignature* sig = callee()->signature();
2806     rtype = sig->return_type()->basic_type();
2807     if (kind == LS_xadd || kind == LS_xchg) {
2808       // Check the signatures.
2809 #ifdef ASSERT
2810       assert(rtype == type, "get and set must return the expected type");
2811       assert(sig->count() == 3, "get and set has 3 arguments");
2812       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2813       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2814       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2815 #endif // ASSERT
2816     } else if (kind == LS_cmpxchg) {
2817       // Check the signatures.
2818 #ifdef ASSERT
2819       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2820       assert(sig->count() == 4, "CAS has 4 arguments");
2821       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2822       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2823 #endif // ASSERT
2824     } else {
2825       ShouldNotReachHere();
2826     }
2827   }
2828 #endif //PRODUCT
2829 
2830   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2831 
2832   // Get arguments:
2833   Node* receiver = NULL;
2834   Node* base     = NULL;
2835   Node* offset   = NULL;
2836   Node* oldval   = NULL;
2837   Node* newval   = NULL;
2838   if (kind == LS_cmpxchg) {
2839     const bool two_slot_type = type2size[type] == 2;
2840     receiver = argument(0);  // type: oop
2841     base     = argument(1);  // type: oop
2842     offset   = argument(2);  // type: long
2843     oldval   = argument(4);  // type: oop, int, or long
2844     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2845   } else if (kind == LS_xadd || kind == LS_xchg){
2846     receiver = argument(0);  // type: oop
2847     base     = argument(1);  // type: oop
2848     offset   = argument(2);  // type: long
2849     oldval   = NULL;
2850     newval   = argument(4);  // type: oop, int, or long
2851   }
2852 
2853   // Null check receiver.
2854   receiver = null_check(receiver);
2855   if (stopped()) {
2856     return true;
2857   }
2858 
2859   // Build field offset expression.
2860   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2861   // to be plain byte offsets, which are also the same as those accepted
2862   // by oopDesc::field_base.
2863   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2864   // 32-bit machines ignore the high half of long offsets
2865   offset = ConvL2X(offset);
2866   Node* adr = make_unsafe_address(base, offset);
2867   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2868 
2869   // For CAS, unlike inline_unsafe_access, there seems no point in
2870   // trying to refine types. Just use the coarse types here.
2871   const Type *value_type = Type::get_const_basic_type(type);
2872   Compile::AliasType* alias_type = C->alias_type(adr_type);
2873   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2874 
2875   if (kind == LS_xchg && type == T_OBJECT) {
2876     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2877     if (tjp != NULL) {
2878       value_type = tjp;
2879     }
2880   }
2881 
2882   int alias_idx = C->get_alias_index(adr_type);
2883 
2884   // Memory-model-wise, a LoadStore acts like a little synchronized
2885   // block, so needs barriers on each side.  These don't translate
2886   // into actual barriers on most machines, but we still need rest of
2887   // compiler to respect ordering.
2888 
2889   insert_mem_bar(Op_MemBarRelease);
2890   insert_mem_bar(Op_MemBarCPUOrder);
2891 
2892   // 4984716: MemBars must be inserted before this
2893   //          memory node in order to avoid a false
2894   //          dependency which will confuse the scheduler.
2895   Node *mem = memory(alias_idx);
2896 
2897   // For now, we handle only those cases that actually exist: ints,
2898   // longs, and Object. Adding others should be straightforward.
2899   Node* load_store;
2900   switch(type) {
2901   case T_INT:
2902     if (kind == LS_xadd) {
2903       load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2904     } else if (kind == LS_xchg) {
2905       load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2906     } else if (kind == LS_cmpxchg) {
2907       load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval));
2908     } else {
2909       ShouldNotReachHere();
2910     }
2911     break;
2912   case T_LONG:
2913     if (kind == LS_xadd) {
2914       load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2915     } else if (kind == LS_xchg) {
2916       load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2917     } else if (kind == LS_cmpxchg) {
2918       load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2919     } else {
2920       ShouldNotReachHere();
2921     }
2922     break;
2923   case T_OBJECT:
2924     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2925     // could be delayed during Parse (for example, in adjust_map_after_if()).
2926     // Execute transformation here to avoid barrier generation in such case.
2927     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2928       newval = _gvn.makecon(TypePtr::NULL_PTR);
2929 
2930     // Reference stores need a store barrier.
2931     if (kind == LS_xchg) {
2932       // If pre-barrier must execute before the oop store, old value will require do_load here.
2933       if (!can_move_pre_barrier()) {
2934         pre_barrier(true /* do_load*/,
2935                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2936                     NULL /* pre_val*/,
2937                     T_OBJECT);
2938       } // Else move pre_barrier to use load_store value, see below.
2939     } else if (kind == LS_cmpxchg) {
2940       // Same as for newval above:
2941       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2942         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2943       }
2944       // The only known value which might get overwritten is oldval.
2945       pre_barrier(false /* do_load */,
2946                   control(), NULL, NULL, max_juint, NULL, NULL,
2947                   oldval /* pre_val */,
2948                   T_OBJECT);
2949     } else {
2950       ShouldNotReachHere();
2951     }
2952 
2953 #ifdef _LP64
2954     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2955       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2956       if (kind == LS_xchg) {
2957         load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr,
2958                                                        newval_enc, adr_type, value_type->make_narrowoop()));
2959       } else {
2960         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2961         Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2962         load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr,
2963                                                                 newval_enc, oldval_enc));
2964       }
2965     } else
2966 #endif
2967     {
2968       if (kind == LS_xchg) {
2969         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2970       } else {
2971         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2972         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2973       }
2974     }
2975     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2976     break;
2977   default:
2978     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2979     break;
2980   }
2981 
2982   // SCMemProjNodes represent the memory state of a LoadStore. Their
2983   // main role is to prevent LoadStore nodes from being optimized away
2984   // when their results aren't used.
2985   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
2986   set_memory(proj, alias_idx);
2987 
2988   if (type == T_OBJECT && kind == LS_xchg) {
2989 #ifdef _LP64
2990     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2991       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
2992     }
2993 #endif
2994     if (can_move_pre_barrier()) {
2995       // Don't need to load pre_val. The old value is returned by load_store.
2996       // The pre_barrier can execute after the xchg as long as no safepoint
2997       // gets inserted between them.
2998       pre_barrier(false /* do_load */,
2999                   control(), NULL, NULL, max_juint, NULL, NULL,
3000                   load_store /* pre_val */,
3001                   T_OBJECT);
3002     }
3003   }
3004 
3005   // Add the trailing membar surrounding the access
3006   insert_mem_bar(Op_MemBarCPUOrder);
3007   insert_mem_bar(Op_MemBarAcquire);
3008 
3009   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3010   set_result(load_store);
3011   return true;
3012 }
3013 
3014 //----------------------------inline_unsafe_ordered_store----------------------
3015 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
3016 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
3017 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
3018 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3019   // This is another variant of inline_unsafe_access, differing in
3020   // that it always issues store-store ("release") barrier and ensures
3021   // store-atomicity (which only matters for "long").
3022 
3023   if (callee()->is_static())  return false;  // caller must have the capability!
3024 
3025 #ifndef PRODUCT
3026   {
3027     ResourceMark rm;
3028     // Check the signatures.
3029     ciSignature* sig = callee()->signature();
3030 #ifdef ASSERT
3031     BasicType rtype = sig->return_type()->basic_type();
3032     assert(rtype == T_VOID, "must return void");
3033     assert(sig->count() == 3, "has 3 arguments");
3034     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3035     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3036 #endif // ASSERT
3037   }
3038 #endif //PRODUCT
3039 
3040   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3041 
3042   // Get arguments:
3043   Node* receiver = argument(0);  // type: oop
3044   Node* base     = argument(1);  // type: oop
3045   Node* offset   = argument(2);  // type: long
3046   Node* val      = argument(4);  // type: oop, int, or long
3047 
3048   // Null check receiver.
3049   receiver = null_check(receiver);
3050   if (stopped()) {
3051     return true;
3052   }
3053 
3054   // Build field offset expression.
3055   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3056   // 32-bit machines ignore the high half of long offsets
3057   offset = ConvL2X(offset);
3058   Node* adr = make_unsafe_address(base, offset);
3059   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3060   const Type *value_type = Type::get_const_basic_type(type);
3061   Compile::AliasType* alias_type = C->alias_type(adr_type);
3062 
3063   insert_mem_bar(Op_MemBarRelease);
3064   insert_mem_bar(Op_MemBarCPUOrder);
3065   // Ensure that the store is atomic for longs:
3066   const bool require_atomic_access = true;
3067   Node* store;
3068   if (type == T_OBJECT) // reference stores need a store barrier.
3069     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3070   else {
3071     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3072   }
3073   insert_mem_bar(Op_MemBarCPUOrder);
3074   return true;
3075 }
3076 
3077 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3078   // Regardless of form, don't allow previous ld/st to move down,
3079   // then issue acquire, release, or volatile mem_bar.
3080   insert_mem_bar(Op_MemBarCPUOrder);
3081   switch(id) {
3082     case vmIntrinsics::_loadFence:
3083       insert_mem_bar(Op_LoadFence);
3084       return true;
3085     case vmIntrinsics::_storeFence:
3086       insert_mem_bar(Op_StoreFence);
3087       return true;
3088     case vmIntrinsics::_fullFence:
3089       insert_mem_bar(Op_MemBarVolatile);
3090       return true;
3091     default:
3092       fatal_unexpected_iid(id);
3093       return false;
3094   }
3095 }
3096 
3097 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3098   if (!kls->is_Con()) {
3099     return true;
3100   }
3101   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3102   if (klsptr == NULL) {
3103     return true;
3104   }
3105   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3106   // don't need a guard for a klass that is already initialized
3107   return !ik->is_initialized();
3108 }
3109 
3110 //----------------------------inline_unsafe_allocate---------------------------
3111 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3112 bool LibraryCallKit::inline_unsafe_allocate() {
3113   if (callee()->is_static())  return false;  // caller must have the capability!
3114 
3115   null_check_receiver();  // null-check, then ignore
3116   Node* cls = null_check(argument(1));
3117   if (stopped())  return true;
3118 
3119   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3120   kls = null_check(kls);
3121   if (stopped())  return true;  // argument was like int.class
3122 
3123   Node* test = NULL;
3124   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3125     // Note:  The argument might still be an illegal value like
3126     // Serializable.class or Object[].class.   The runtime will handle it.
3127     // But we must make an explicit check for initialization.
3128     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3129     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3130     // can generate code to load it as unsigned byte.
3131     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3132     Node* bits = intcon(InstanceKlass::fully_initialized);
3133     test = _gvn.transform(new SubINode(inst, bits));
3134     // The 'test' is non-zero if we need to take a slow path.
3135   }
3136 
3137   Node* obj = new_instance(kls, test);
3138   set_result(obj);
3139   return true;
3140 }
3141 
3142 #ifdef TRACE_HAVE_INTRINSICS
3143 /*
3144  * oop -> myklass
3145  * myklass->trace_id |= USED
3146  * return myklass->trace_id & ~0x3
3147  */
3148 bool LibraryCallKit::inline_native_classID() {
3149   null_check_receiver();  // null-check, then ignore
3150   Node* cls = null_check(argument(1), T_OBJECT);
3151   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3152   kls = null_check(kls, T_OBJECT);
3153   ByteSize offset = TRACE_ID_OFFSET;
3154   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3155   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3156   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3157   Node* andl = _gvn.transform(new AndLNode(tvalue, bits));
3158   Node* clsused = longcon(0x01l); // set the class bit
3159   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3160 
3161   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3162   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3163   set_result(andl);
3164   return true;
3165 }
3166 
3167 bool LibraryCallKit::inline_native_threadID() {
3168   Node* tls_ptr = NULL;
3169   Node* cur_thr = generate_current_thread(tls_ptr);
3170   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3171   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3172   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3173 
3174   Node* threadid = NULL;
3175   size_t thread_id_size = OSThread::thread_id_size();
3176   if (thread_id_size == (size_t) BytesPerLong) {
3177     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3178   } else if (thread_id_size == (size_t) BytesPerInt) {
3179     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3180   } else {
3181     ShouldNotReachHere();
3182   }
3183   set_result(threadid);
3184   return true;
3185 }
3186 #endif
3187 
3188 //------------------------inline_native_time_funcs--------------
3189 // inline code for System.currentTimeMillis() and System.nanoTime()
3190 // these have the same type and signature
3191 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3192   const TypeFunc* tf = OptoRuntime::void_long_Type();
3193   const TypePtr* no_memory_effects = NULL;
3194   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3195   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3196 #ifdef ASSERT
3197   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3198   assert(value_top == top(), "second value must be top");
3199 #endif
3200   set_result(value);
3201   return true;
3202 }
3203 
3204 //------------------------inline_native_currentThread------------------
3205 bool LibraryCallKit::inline_native_currentThread() {
3206   Node* junk = NULL;
3207   set_result(generate_current_thread(junk));
3208   return true;
3209 }
3210 
3211 //------------------------inline_native_isInterrupted------------------
3212 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3213 bool LibraryCallKit::inline_native_isInterrupted() {
3214   // Add a fast path to t.isInterrupted(clear_int):
3215   //   (t == Thread.current() &&
3216   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3217   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3218   // So, in the common case that the interrupt bit is false,
3219   // we avoid making a call into the VM.  Even if the interrupt bit
3220   // is true, if the clear_int argument is false, we avoid the VM call.
3221   // However, if the receiver is not currentThread, we must call the VM,
3222   // because there must be some locking done around the operation.
3223 
3224   // We only go to the fast case code if we pass two guards.
3225   // Paths which do not pass are accumulated in the slow_region.
3226 
3227   enum {
3228     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3229     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3230     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3231     PATH_LIMIT
3232   };
3233 
3234   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3235   // out of the function.
3236   insert_mem_bar(Op_MemBarCPUOrder);
3237 
3238   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3239   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3240 
3241   RegionNode* slow_region = new RegionNode(1);
3242   record_for_igvn(slow_region);
3243 
3244   // (a) Receiving thread must be the current thread.
3245   Node* rec_thr = argument(0);
3246   Node* tls_ptr = NULL;
3247   Node* cur_thr = generate_current_thread(tls_ptr);
3248   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3249   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3250 
3251   generate_slow_guard(bol_thr, slow_region);
3252 
3253   // (b) Interrupt bit on TLS must be false.
3254   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3255   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3256   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3257 
3258   // Set the control input on the field _interrupted read to prevent it floating up.
3259   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3260   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3261   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3262 
3263   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3264 
3265   // First fast path:  if (!TLS._interrupted) return false;
3266   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3267   result_rgn->init_req(no_int_result_path, false_bit);
3268   result_val->init_req(no_int_result_path, intcon(0));
3269 
3270   // drop through to next case
3271   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3272 
3273 #ifndef TARGET_OS_FAMILY_windows
3274   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3275   Node* clr_arg = argument(1);
3276   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3277   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3278   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3279 
3280   // Second fast path:  ... else if (!clear_int) return true;
3281   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3282   result_rgn->init_req(no_clear_result_path, false_arg);
3283   result_val->init_req(no_clear_result_path, intcon(1));
3284 
3285   // drop through to next case
3286   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3287 #else
3288   // To return true on Windows you must read the _interrupted field
3289   // and check the the event state i.e. take the slow path.
3290 #endif // TARGET_OS_FAMILY_windows
3291 
3292   // (d) Otherwise, go to the slow path.
3293   slow_region->add_req(control());
3294   set_control( _gvn.transform(slow_region));
3295 
3296   if (stopped()) {
3297     // There is no slow path.
3298     result_rgn->init_req(slow_result_path, top());
3299     result_val->init_req(slow_result_path, top());
3300   } else {
3301     // non-virtual because it is a private non-static
3302     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3303 
3304     Node* slow_val = set_results_for_java_call(slow_call);
3305     // this->control() comes from set_results_for_java_call
3306 
3307     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3308     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3309 
3310     // These two phis are pre-filled with copies of of the fast IO and Memory
3311     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3312     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3313 
3314     result_rgn->init_req(slow_result_path, control());
3315     result_io ->init_req(slow_result_path, i_o());
3316     result_mem->init_req(slow_result_path, reset_memory());
3317     result_val->init_req(slow_result_path, slow_val);
3318 
3319     set_all_memory(_gvn.transform(result_mem));
3320     set_i_o(       _gvn.transform(result_io));
3321   }
3322 
3323   C->set_has_split_ifs(true); // Has chance for split-if optimization
3324   set_result(result_rgn, result_val);
3325   return true;
3326 }
3327 
3328 //---------------------------load_mirror_from_klass----------------------------
3329 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3330 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3331   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3332   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3333 }
3334 
3335 //-----------------------load_klass_from_mirror_common-------------------------
3336 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3337 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3338 // and branch to the given path on the region.
3339 // If never_see_null, take an uncommon trap on null, so we can optimistically
3340 // compile for the non-null case.
3341 // If the region is NULL, force never_see_null = true.
3342 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3343                                                     bool never_see_null,
3344                                                     RegionNode* region,
3345                                                     int null_path,
3346                                                     int offset) {
3347   if (region == NULL)  never_see_null = true;
3348   Node* p = basic_plus_adr(mirror, offset);
3349   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3350   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3351   Node* null_ctl = top();
3352   kls = null_check_oop(kls, &null_ctl, never_see_null);
3353   if (region != NULL) {
3354     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3355     region->init_req(null_path, null_ctl);
3356   } else {
3357     assert(null_ctl == top(), "no loose ends");
3358   }
3359   return kls;
3360 }
3361 
3362 //--------------------(inline_native_Class_query helpers)---------------------
3363 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3364 // Fall through if (mods & mask) == bits, take the guard otherwise.
3365 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3366   // Branch around if the given klass has the given modifier bit set.
3367   // Like generate_guard, adds a new path onto the region.
3368   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3369   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3370   Node* mask = intcon(modifier_mask);
3371   Node* bits = intcon(modifier_bits);
3372   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3373   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3374   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3375   return generate_fair_guard(bol, region);
3376 }
3377 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3378   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3379 }
3380 
3381 //-------------------------inline_native_Class_query-------------------
3382 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3383   const Type* return_type = TypeInt::BOOL;
3384   Node* prim_return_value = top();  // what happens if it's a primitive class?
3385   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3386   bool expect_prim = false;     // most of these guys expect to work on refs
3387 
3388   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3389 
3390   Node* mirror = argument(0);
3391   Node* obj    = top();
3392 
3393   switch (id) {
3394   case vmIntrinsics::_isInstance:
3395     // nothing is an instance of a primitive type
3396     prim_return_value = intcon(0);
3397     obj = argument(1);
3398     break;
3399   case vmIntrinsics::_getModifiers:
3400     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3401     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3402     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3403     break;
3404   case vmIntrinsics::_isInterface:
3405     prim_return_value = intcon(0);
3406     break;
3407   case vmIntrinsics::_isArray:
3408     prim_return_value = intcon(0);
3409     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3410     break;
3411   case vmIntrinsics::_isPrimitive:
3412     prim_return_value = intcon(1);
3413     expect_prim = true;  // obviously
3414     break;
3415   case vmIntrinsics::_getSuperclass:
3416     prim_return_value = null();
3417     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3418     break;
3419   case vmIntrinsics::_getClassAccessFlags:
3420     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3421     return_type = TypeInt::INT;  // not bool!  6297094
3422     break;
3423   default:
3424     fatal_unexpected_iid(id);
3425     break;
3426   }
3427 
3428   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3429   if (mirror_con == NULL)  return false;  // cannot happen?
3430 
3431 #ifndef PRODUCT
3432   if (C->print_intrinsics() || C->print_inlining()) {
3433     ciType* k = mirror_con->java_mirror_type();
3434     if (k) {
3435       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3436       k->print_name();
3437       tty->cr();
3438     }
3439   }
3440 #endif
3441 
3442   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3443   RegionNode* region = new RegionNode(PATH_LIMIT);
3444   record_for_igvn(region);
3445   PhiNode* phi = new PhiNode(region, return_type);
3446 
3447   // The mirror will never be null of Reflection.getClassAccessFlags, however
3448   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3449   // if it is. See bug 4774291.
3450 
3451   // For Reflection.getClassAccessFlags(), the null check occurs in
3452   // the wrong place; see inline_unsafe_access(), above, for a similar
3453   // situation.
3454   mirror = null_check(mirror);
3455   // If mirror or obj is dead, only null-path is taken.
3456   if (stopped())  return true;
3457 
3458   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3459 
3460   // Now load the mirror's klass metaobject, and null-check it.
3461   // Side-effects region with the control path if the klass is null.
3462   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3463   // If kls is null, we have a primitive mirror.
3464   phi->init_req(_prim_path, prim_return_value);
3465   if (stopped()) { set_result(region, phi); return true; }
3466   bool safe_for_replace = (region->in(_prim_path) == top());
3467 
3468   Node* p;  // handy temp
3469   Node* null_ctl;
3470 
3471   // Now that we have the non-null klass, we can perform the real query.
3472   // For constant classes, the query will constant-fold in LoadNode::Value.
3473   Node* query_value = top();
3474   switch (id) {
3475   case vmIntrinsics::_isInstance:
3476     // nothing is an instance of a primitive type
3477     query_value = gen_instanceof(obj, kls, safe_for_replace);
3478     break;
3479 
3480   case vmIntrinsics::_getModifiers:
3481     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3482     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3483     break;
3484 
3485   case vmIntrinsics::_isInterface:
3486     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3487     if (generate_interface_guard(kls, region) != NULL)
3488       // A guard was added.  If the guard is taken, it was an interface.
3489       phi->add_req(intcon(1));
3490     // If we fall through, it's a plain class.
3491     query_value = intcon(0);
3492     break;
3493 
3494   case vmIntrinsics::_isArray:
3495     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3496     if (generate_array_guard(kls, region) != NULL)
3497       // A guard was added.  If the guard is taken, it was an array.
3498       phi->add_req(intcon(1));
3499     // If we fall through, it's a plain class.
3500     query_value = intcon(0);
3501     break;
3502 
3503   case vmIntrinsics::_isPrimitive:
3504     query_value = intcon(0); // "normal" path produces false
3505     break;
3506 
3507   case vmIntrinsics::_getSuperclass:
3508     // The rules here are somewhat unfortunate, but we can still do better
3509     // with random logic than with a JNI call.
3510     // Interfaces store null or Object as _super, but must report null.
3511     // Arrays store an intermediate super as _super, but must report Object.
3512     // Other types can report the actual _super.
3513     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3514     if (generate_interface_guard(kls, region) != NULL)
3515       // A guard was added.  If the guard is taken, it was an interface.
3516       phi->add_req(null());
3517     if (generate_array_guard(kls, region) != NULL)
3518       // A guard was added.  If the guard is taken, it was an array.
3519       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3520     // If we fall through, it's a plain class.  Get its _super.
3521     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3522     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3523     null_ctl = top();
3524     kls = null_check_oop(kls, &null_ctl);
3525     if (null_ctl != top()) {
3526       // If the guard is taken, Object.superClass is null (both klass and mirror).
3527       region->add_req(null_ctl);
3528       phi   ->add_req(null());
3529     }
3530     if (!stopped()) {
3531       query_value = load_mirror_from_klass(kls);
3532     }
3533     break;
3534 
3535   case vmIntrinsics::_getClassAccessFlags:
3536     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3537     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3538     break;
3539 
3540   default:
3541     fatal_unexpected_iid(id);
3542     break;
3543   }
3544 
3545   // Fall-through is the normal case of a query to a real class.
3546   phi->init_req(1, query_value);
3547   region->init_req(1, control());
3548 
3549   C->set_has_split_ifs(true); // Has chance for split-if optimization
3550   set_result(region, phi);
3551   return true;
3552 }
3553 
3554 //-------------------------inline_Class_cast-------------------
3555 bool LibraryCallKit::inline_Class_cast() {
3556   Node* mirror = argument(0); // Class
3557   Node* obj    = argument(1);
3558   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3559   if (mirror_con == NULL) {
3560     return false;  // dead path (mirror->is_top()).
3561   }
3562   if (obj == NULL || obj->is_top()) {
3563     return false;  // dead path
3564   }
3565   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3566 
3567   // First, see if Class.cast() can be folded statically.
3568   // java_mirror_type() returns non-null for compile-time Class constants.
3569   ciType* tm = mirror_con->java_mirror_type();
3570   if (tm != NULL && tm->is_klass() &&
3571       tp != NULL && tp->klass() != NULL) {
3572     if (!tp->klass()->is_loaded()) {
3573       // Don't use intrinsic when class is not loaded.
3574       return false;
3575     } else {
3576       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3577       if (static_res == Compile::SSC_always_true) {
3578         // isInstance() is true - fold the code.
3579         set_result(obj);
3580         return true;
3581       } else if (static_res == Compile::SSC_always_false) {
3582         // Don't use intrinsic, have to throw ClassCastException.
3583         // If the reference is null, the non-intrinsic bytecode will
3584         // be optimized appropriately.
3585         return false;
3586       }
3587     }
3588   }
3589 
3590   // Bailout intrinsic and do normal inlining if exception path is frequent.
3591   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3592     return false;
3593   }
3594 
3595   // Generate dynamic checks.
3596   // Class.cast() is java implementation of _checkcast bytecode.
3597   // Do checkcast (Parse::do_checkcast()) optimizations here.
3598 
3599   mirror = null_check(mirror);
3600   // If mirror is dead, only null-path is taken.
3601   if (stopped()) {
3602     return true;
3603   }
3604 
3605   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3606   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3607   RegionNode* region = new RegionNode(PATH_LIMIT);
3608   record_for_igvn(region);
3609 
3610   // Now load the mirror's klass metaobject, and null-check it.
3611   // If kls is null, we have a primitive mirror and
3612   // nothing is an instance of a primitive type.
3613   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3614 
3615   Node* res = top();
3616   if (!stopped()) {
3617     Node* bad_type_ctrl = top();
3618     // Do checkcast optimizations.
3619     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3620     region->init_req(_bad_type_path, bad_type_ctrl);
3621   }
3622   if (region->in(_prim_path) != top() ||
3623       region->in(_bad_type_path) != top()) {
3624     // Let Interpreter throw ClassCastException.
3625     PreserveJVMState pjvms(this);
3626     set_control(_gvn.transform(region));
3627     uncommon_trap(Deoptimization::Reason_intrinsic,
3628                   Deoptimization::Action_maybe_recompile);
3629   }
3630   if (!stopped()) {
3631     set_result(res);
3632   }
3633   return true;
3634 }
3635 
3636 
3637 //--------------------------inline_native_subtype_check------------------------
3638 // This intrinsic takes the JNI calls out of the heart of
3639 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3640 bool LibraryCallKit::inline_native_subtype_check() {
3641   // Pull both arguments off the stack.
3642   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3643   args[0] = argument(0);
3644   args[1] = argument(1);
3645   Node* klasses[2];             // corresponding Klasses: superk, subk
3646   klasses[0] = klasses[1] = top();
3647 
3648   enum {
3649     // A full decision tree on {superc is prim, subc is prim}:
3650     _prim_0_path = 1,           // {P,N} => false
3651                                 // {P,P} & superc!=subc => false
3652     _prim_same_path,            // {P,P} & superc==subc => true
3653     _prim_1_path,               // {N,P} => false
3654     _ref_subtype_path,          // {N,N} & subtype check wins => true
3655     _both_ref_path,             // {N,N} & subtype check loses => false
3656     PATH_LIMIT
3657   };
3658 
3659   RegionNode* region = new RegionNode(PATH_LIMIT);
3660   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3661   record_for_igvn(region);
3662 
3663   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3664   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3665   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3666 
3667   // First null-check both mirrors and load each mirror's klass metaobject.
3668   int which_arg;
3669   for (which_arg = 0; which_arg <= 1; which_arg++) {
3670     Node* arg = args[which_arg];
3671     arg = null_check(arg);
3672     if (stopped())  break;
3673     args[which_arg] = arg;
3674 
3675     Node* p = basic_plus_adr(arg, class_klass_offset);
3676     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3677     klasses[which_arg] = _gvn.transform(kls);
3678   }
3679 
3680   // Having loaded both klasses, test each for null.
3681   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3682   for (which_arg = 0; which_arg <= 1; which_arg++) {
3683     Node* kls = klasses[which_arg];
3684     Node* null_ctl = top();
3685     kls = null_check_oop(kls, &null_ctl, never_see_null);
3686     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3687     region->init_req(prim_path, null_ctl);
3688     if (stopped())  break;
3689     klasses[which_arg] = kls;
3690   }
3691 
3692   if (!stopped()) {
3693     // now we have two reference types, in klasses[0..1]
3694     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3695     Node* superk = klasses[0];  // the receiver
3696     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3697     // now we have a successful reference subtype check
3698     region->set_req(_ref_subtype_path, control());
3699   }
3700 
3701   // If both operands are primitive (both klasses null), then
3702   // we must return true when they are identical primitives.
3703   // It is convenient to test this after the first null klass check.
3704   set_control(region->in(_prim_0_path)); // go back to first null check
3705   if (!stopped()) {
3706     // Since superc is primitive, make a guard for the superc==subc case.
3707     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3708     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3709     generate_guard(bol_eq, region, PROB_FAIR);
3710     if (region->req() == PATH_LIMIT+1) {
3711       // A guard was added.  If the added guard is taken, superc==subc.
3712       region->swap_edges(PATH_LIMIT, _prim_same_path);
3713       region->del_req(PATH_LIMIT);
3714     }
3715     region->set_req(_prim_0_path, control()); // Not equal after all.
3716   }
3717 
3718   // these are the only paths that produce 'true':
3719   phi->set_req(_prim_same_path,   intcon(1));
3720   phi->set_req(_ref_subtype_path, intcon(1));
3721 
3722   // pull together the cases:
3723   assert(region->req() == PATH_LIMIT, "sane region");
3724   for (uint i = 1; i < region->req(); i++) {
3725     Node* ctl = region->in(i);
3726     if (ctl == NULL || ctl == top()) {
3727       region->set_req(i, top());
3728       phi   ->set_req(i, top());
3729     } else if (phi->in(i) == NULL) {
3730       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3731     }
3732   }
3733 
3734   set_control(_gvn.transform(region));
3735   set_result(_gvn.transform(phi));
3736   return true;
3737 }
3738 
3739 //---------------------generate_array_guard_common------------------------
3740 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3741                                                   bool obj_array, bool not_array) {
3742   // If obj_array/non_array==false/false:
3743   // Branch around if the given klass is in fact an array (either obj or prim).
3744   // If obj_array/non_array==false/true:
3745   // Branch around if the given klass is not an array klass of any kind.
3746   // If obj_array/non_array==true/true:
3747   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3748   // If obj_array/non_array==true/false:
3749   // Branch around if the kls is an oop array (Object[] or subtype)
3750   //
3751   // Like generate_guard, adds a new path onto the region.
3752   jint  layout_con = 0;
3753   Node* layout_val = get_layout_helper(kls, layout_con);
3754   if (layout_val == NULL) {
3755     bool query = (obj_array
3756                   ? Klass::layout_helper_is_objArray(layout_con)
3757                   : Klass::layout_helper_is_array(layout_con));
3758     if (query == not_array) {
3759       return NULL;                       // never a branch
3760     } else {                             // always a branch
3761       Node* always_branch = control();
3762       if (region != NULL)
3763         region->add_req(always_branch);
3764       set_control(top());
3765       return always_branch;
3766     }
3767   }
3768   // Now test the correct condition.
3769   jint  nval = (obj_array
3770                 ? ((jint)Klass::_lh_array_tag_type_value
3771                    <<    Klass::_lh_array_tag_shift)
3772                 : Klass::_lh_neutral_value);
3773   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3774   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3775   // invert the test if we are looking for a non-array
3776   if (not_array)  btest = BoolTest(btest).negate();
3777   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3778   return generate_fair_guard(bol, region);
3779 }
3780 
3781 
3782 //-----------------------inline_native_newArray--------------------------
3783 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3784 bool LibraryCallKit::inline_native_newArray() {
3785   Node* mirror    = argument(0);
3786   Node* count_val = argument(1);
3787 
3788   mirror = null_check(mirror);
3789   // If mirror or obj is dead, only null-path is taken.
3790   if (stopped())  return true;
3791 
3792   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3793   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3794   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3795   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3796   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3797 
3798   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3799   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3800                                                   result_reg, _slow_path);
3801   Node* normal_ctl   = control();
3802   Node* no_array_ctl = result_reg->in(_slow_path);
3803 
3804   // Generate code for the slow case.  We make a call to newArray().
3805   set_control(no_array_ctl);
3806   if (!stopped()) {
3807     // Either the input type is void.class, or else the
3808     // array klass has not yet been cached.  Either the
3809     // ensuing call will throw an exception, or else it
3810     // will cache the array klass for next time.
3811     PreserveJVMState pjvms(this);
3812     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3813     Node* slow_result = set_results_for_java_call(slow_call);
3814     // this->control() comes from set_results_for_java_call
3815     result_reg->set_req(_slow_path, control());
3816     result_val->set_req(_slow_path, slow_result);
3817     result_io ->set_req(_slow_path, i_o());
3818     result_mem->set_req(_slow_path, reset_memory());
3819   }
3820 
3821   set_control(normal_ctl);
3822   if (!stopped()) {
3823     // Normal case:  The array type has been cached in the java.lang.Class.
3824     // The following call works fine even if the array type is polymorphic.
3825     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3826     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3827     result_reg->init_req(_normal_path, control());
3828     result_val->init_req(_normal_path, obj);
3829     result_io ->init_req(_normal_path, i_o());
3830     result_mem->init_req(_normal_path, reset_memory());
3831   }
3832 
3833   // Return the combined state.
3834   set_i_o(        _gvn.transform(result_io)  );
3835   set_all_memory( _gvn.transform(result_mem));
3836 
3837   C->set_has_split_ifs(true); // Has chance for split-if optimization
3838   set_result(result_reg, result_val);
3839   return true;
3840 }
3841 
3842 //----------------------inline_native_getLength--------------------------
3843 // public static native int java.lang.reflect.Array.getLength(Object array);
3844 bool LibraryCallKit::inline_native_getLength() {
3845   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3846 
3847   Node* array = null_check(argument(0));
3848   // If array is dead, only null-path is taken.
3849   if (stopped())  return true;
3850 
3851   // Deoptimize if it is a non-array.
3852   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3853 
3854   if (non_array != NULL) {
3855     PreserveJVMState pjvms(this);
3856     set_control(non_array);
3857     uncommon_trap(Deoptimization::Reason_intrinsic,
3858                   Deoptimization::Action_maybe_recompile);
3859   }
3860 
3861   // If control is dead, only non-array-path is taken.
3862   if (stopped())  return true;
3863 
3864   // The works fine even if the array type is polymorphic.
3865   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3866   Node* result = load_array_length(array);
3867 
3868   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3869   set_result(result);
3870   return true;
3871 }
3872 
3873 //------------------------inline_array_copyOf----------------------------
3874 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3875 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3876 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3877   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3878 
3879   // Get the arguments.
3880   Node* original          = argument(0);
3881   Node* start             = is_copyOfRange? argument(1): intcon(0);
3882   Node* end               = is_copyOfRange? argument(2): argument(1);
3883   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3884 
3885   Node* newcopy;
3886 
3887   // Set the original stack and the reexecute bit for the interpreter to reexecute
3888   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3889   { PreserveReexecuteState preexecs(this);
3890     jvms()->set_should_reexecute(true);
3891 
3892     array_type_mirror = null_check(array_type_mirror);
3893     original          = null_check(original);
3894 
3895     // Check if a null path was taken unconditionally.
3896     if (stopped())  return true;
3897 
3898     Node* orig_length = load_array_length(original);
3899 
3900     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3901     klass_node = null_check(klass_node);
3902 
3903     RegionNode* bailout = new RegionNode(1);
3904     record_for_igvn(bailout);
3905 
3906     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3907     // Bail out if that is so.
3908     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3909     if (not_objArray != NULL) {
3910       // Improve the klass node's type from the new optimistic assumption:
3911       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3912       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3913       Node* cast = new CastPPNode(klass_node, akls);
3914       cast->init_req(0, control());
3915       klass_node = _gvn.transform(cast);
3916     }
3917 
3918     // Bail out if either start or end is negative.
3919     generate_negative_guard(start, bailout, &start);
3920     generate_negative_guard(end,   bailout, &end);
3921 
3922     Node* length = end;
3923     if (_gvn.type(start) != TypeInt::ZERO) {
3924       length = _gvn.transform(new SubINode(end, start));
3925     }
3926 
3927     // Bail out if length is negative.
3928     // Without this the new_array would throw
3929     // NegativeArraySizeException but IllegalArgumentException is what
3930     // should be thrown
3931     generate_negative_guard(length, bailout, &length);
3932 
3933     if (bailout->req() > 1) {
3934       PreserveJVMState pjvms(this);
3935       set_control(_gvn.transform(bailout));
3936       uncommon_trap(Deoptimization::Reason_intrinsic,
3937                     Deoptimization::Action_maybe_recompile);
3938     }
3939 
3940     if (!stopped()) {
3941       // How many elements will we copy from the original?
3942       // The answer is MinI(orig_length - start, length).
3943       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3944       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3945 
3946       newcopy = new_array(klass_node, length, 0);  // no arguments to push
3947 
3948       // Generate a direct call to the right arraycopy function(s).
3949       // We know the copy is disjoint but we might not know if the
3950       // oop stores need checking.
3951       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3952       // This will fail a store-check if x contains any non-nulls.
3953 
3954       Node* alloc = tightly_coupled_allocation(newcopy, NULL);
3955 
3956       ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, alloc != NULL,
3957                                               load_object_klass(original), klass_node);
3958       if (!is_copyOfRange) {
3959         ac->set_copyof();
3960       } else {
3961         ac->set_copyofrange();
3962       }
3963       Node* n = _gvn.transform(ac);
3964       assert(n == ac, "cannot disappear");
3965       ac->connect_outputs(this);
3966     }
3967   } // original reexecute is set back here
3968 
3969   C->set_has_split_ifs(true); // Has chance for split-if optimization
3970   if (!stopped()) {
3971     set_result(newcopy);
3972   }
3973   return true;
3974 }
3975 
3976 
3977 //----------------------generate_virtual_guard---------------------------
3978 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3979 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3980                                              RegionNode* slow_region) {
3981   ciMethod* method = callee();
3982   int vtable_index = method->vtable_index();
3983   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3984          err_msg_res("bad index %d", vtable_index));
3985   // Get the Method* out of the appropriate vtable entry.
3986   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3987                      vtable_index*vtableEntry::size()) * wordSize +
3988                      vtableEntry::method_offset_in_bytes();
3989   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3990   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3991 
3992   // Compare the target method with the expected method (e.g., Object.hashCode).
3993   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3994 
3995   Node* native_call = makecon(native_call_addr);
3996   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
3997   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
3998 
3999   return generate_slow_guard(test_native, slow_region);
4000 }
4001 
4002 //-----------------------generate_method_call----------------------------
4003 // Use generate_method_call to make a slow-call to the real
4004 // method if the fast path fails.  An alternative would be to
4005 // use a stub like OptoRuntime::slow_arraycopy_Java.
4006 // This only works for expanding the current library call,
4007 // not another intrinsic.  (E.g., don't use this for making an
4008 // arraycopy call inside of the copyOf intrinsic.)
4009 CallJavaNode*
4010 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4011   // When compiling the intrinsic method itself, do not use this technique.
4012   guarantee(callee() != C->method(), "cannot make slow-call to self");
4013 
4014   ciMethod* method = callee();
4015   // ensure the JVMS we have will be correct for this call
4016   guarantee(method_id == method->intrinsic_id(), "must match");
4017 
4018   const TypeFunc* tf = TypeFunc::make(method);
4019   CallJavaNode* slow_call;
4020   if (is_static) {
4021     assert(!is_virtual, "");
4022     slow_call = new CallStaticJavaNode(C, tf,
4023                            SharedRuntime::get_resolve_static_call_stub(),
4024                            method, bci());
4025   } else if (is_virtual) {
4026     null_check_receiver();
4027     int vtable_index = Method::invalid_vtable_index;
4028     if (UseInlineCaches) {
4029       // Suppress the vtable call
4030     } else {
4031       // hashCode and clone are not a miranda methods,
4032       // so the vtable index is fixed.
4033       // No need to use the linkResolver to get it.
4034        vtable_index = method->vtable_index();
4035        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4036               err_msg_res("bad index %d", vtable_index));
4037     }
4038     slow_call = new CallDynamicJavaNode(tf,
4039                           SharedRuntime::get_resolve_virtual_call_stub(),
4040                           method, vtable_index, bci());
4041   } else {  // neither virtual nor static:  opt_virtual
4042     null_check_receiver();
4043     slow_call = new CallStaticJavaNode(C, tf,
4044                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4045                                 method, bci());
4046     slow_call->set_optimized_virtual(true);
4047   }
4048   set_arguments_for_java_call(slow_call);
4049   set_edges_for_java_call(slow_call);
4050   return slow_call;
4051 }
4052 
4053 
4054 /**
4055  * Build special case code for calls to hashCode on an object. This call may
4056  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4057  * slightly different code.
4058  */
4059 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4060   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4061   assert(!(is_virtual && is_static), "either virtual, special, or static");
4062 
4063   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4064 
4065   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4066   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4067   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4068   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4069   Node* obj = NULL;
4070   if (!is_static) {
4071     // Check for hashing null object
4072     obj = null_check_receiver();
4073     if (stopped())  return true;        // unconditionally null
4074     result_reg->init_req(_null_path, top());
4075     result_val->init_req(_null_path, top());
4076   } else {
4077     // Do a null check, and return zero if null.
4078     // System.identityHashCode(null) == 0
4079     obj = argument(0);
4080     Node* null_ctl = top();
4081     obj = null_check_oop(obj, &null_ctl);
4082     result_reg->init_req(_null_path, null_ctl);
4083     result_val->init_req(_null_path, _gvn.intcon(0));
4084   }
4085 
4086   // Unconditionally null?  Then return right away.
4087   if (stopped()) {
4088     set_control( result_reg->in(_null_path));
4089     if (!stopped())
4090       set_result(result_val->in(_null_path));
4091     return true;
4092   }
4093 
4094   // We only go to the fast case code if we pass a number of guards.  The
4095   // paths which do not pass are accumulated in the slow_region.
4096   RegionNode* slow_region = new RegionNode(1);
4097   record_for_igvn(slow_region);
4098 
4099   // If this is a virtual call, we generate a funny guard.  We pull out
4100   // the vtable entry corresponding to hashCode() from the target object.
4101   // If the target method which we are calling happens to be the native
4102   // Object hashCode() method, we pass the guard.  We do not need this
4103   // guard for non-virtual calls -- the caller is known to be the native
4104   // Object hashCode().
4105   if (is_virtual) {
4106     // After null check, get the object's klass.
4107     Node* obj_klass = load_object_klass(obj);
4108     generate_virtual_guard(obj_klass, slow_region);
4109   }
4110 
4111   // Get the header out of the object, use LoadMarkNode when available
4112   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4113   // The control of the load must be NULL. Otherwise, the load can move before
4114   // the null check after castPP removal.
4115   Node* no_ctrl = NULL;
4116   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4117 
4118   // Test the header to see if it is unlocked.
4119   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4120   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4121   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4122   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4123   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4124 
4125   generate_slow_guard(test_unlocked, slow_region);
4126 
4127   // Get the hash value and check to see that it has been properly assigned.
4128   // We depend on hash_mask being at most 32 bits and avoid the use of
4129   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4130   // vm: see markOop.hpp.
4131   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4132   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4133   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4134   // This hack lets the hash bits live anywhere in the mark object now, as long
4135   // as the shift drops the relevant bits into the low 32 bits.  Note that
4136   // Java spec says that HashCode is an int so there's no point in capturing
4137   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4138   hshifted_header      = ConvX2I(hshifted_header);
4139   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4140 
4141   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4142   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4143   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4144 
4145   generate_slow_guard(test_assigned, slow_region);
4146 
4147   Node* init_mem = reset_memory();
4148   // fill in the rest of the null path:
4149   result_io ->init_req(_null_path, i_o());
4150   result_mem->init_req(_null_path, init_mem);
4151 
4152   result_val->init_req(_fast_path, hash_val);
4153   result_reg->init_req(_fast_path, control());
4154   result_io ->init_req(_fast_path, i_o());
4155   result_mem->init_req(_fast_path, init_mem);
4156 
4157   // Generate code for the slow case.  We make a call to hashCode().
4158   set_control(_gvn.transform(slow_region));
4159   if (!stopped()) {
4160     // No need for PreserveJVMState, because we're using up the present state.
4161     set_all_memory(init_mem);
4162     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4163     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4164     Node* slow_result = set_results_for_java_call(slow_call);
4165     // this->control() comes from set_results_for_java_call
4166     result_reg->init_req(_slow_path, control());
4167     result_val->init_req(_slow_path, slow_result);
4168     result_io  ->set_req(_slow_path, i_o());
4169     result_mem ->set_req(_slow_path, reset_memory());
4170   }
4171 
4172   // Return the combined state.
4173   set_i_o(        _gvn.transform(result_io)  );
4174   set_all_memory( _gvn.transform(result_mem));
4175 
4176   set_result(result_reg, result_val);
4177   return true;
4178 }
4179 
4180 //---------------------------inline_native_getClass----------------------------
4181 // public final native Class<?> java.lang.Object.getClass();
4182 //
4183 // Build special case code for calls to getClass on an object.
4184 bool LibraryCallKit::inline_native_getClass() {
4185   Node* obj = null_check_receiver();
4186   if (stopped())  return true;
4187   set_result(load_mirror_from_klass(load_object_klass(obj)));
4188   return true;
4189 }
4190 
4191 //-----------------inline_native_Reflection_getCallerClass---------------------
4192 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4193 //
4194 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4195 //
4196 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4197 // in that it must skip particular security frames and checks for
4198 // caller sensitive methods.
4199 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4200 #ifndef PRODUCT
4201   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4202     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4203   }
4204 #endif
4205 
4206   if (!jvms()->has_method()) {
4207 #ifndef PRODUCT
4208     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4209       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4210     }
4211 #endif
4212     return false;
4213   }
4214 
4215   // Walk back up the JVM state to find the caller at the required
4216   // depth.
4217   JVMState* caller_jvms = jvms();
4218 
4219   // Cf. JVM_GetCallerClass
4220   // NOTE: Start the loop at depth 1 because the current JVM state does
4221   // not include the Reflection.getCallerClass() frame.
4222   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4223     ciMethod* m = caller_jvms->method();
4224     switch (n) {
4225     case 0:
4226       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4227       break;
4228     case 1:
4229       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4230       if (!m->caller_sensitive()) {
4231 #ifndef PRODUCT
4232         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4233           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4234         }
4235 #endif
4236         return false;  // bail-out; let JVM_GetCallerClass do the work
4237       }
4238       break;
4239     default:
4240       if (!m->is_ignored_by_security_stack_walk()) {
4241         // We have reached the desired frame; return the holder class.
4242         // Acquire method holder as java.lang.Class and push as constant.
4243         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4244         ciInstance* caller_mirror = caller_klass->java_mirror();
4245         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4246 
4247 #ifndef PRODUCT
4248         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4249           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4250           tty->print_cr("  JVM state at this point:");
4251           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4252             ciMethod* m = jvms()->of_depth(i)->method();
4253             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4254           }
4255         }
4256 #endif
4257         return true;
4258       }
4259       break;
4260     }
4261   }
4262 
4263 #ifndef PRODUCT
4264   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4265     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4266     tty->print_cr("  JVM state at this point:");
4267     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4268       ciMethod* m = jvms()->of_depth(i)->method();
4269       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4270     }
4271   }
4272 #endif
4273 
4274   return false;  // bail-out; let JVM_GetCallerClass do the work
4275 }
4276 
4277 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4278   Node* arg = argument(0);
4279   Node* result;
4280 
4281   switch (id) {
4282   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4283   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4284   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4285   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4286 
4287   case vmIntrinsics::_doubleToLongBits: {
4288     // two paths (plus control) merge in a wood
4289     RegionNode *r = new RegionNode(3);
4290     Node *phi = new PhiNode(r, TypeLong::LONG);
4291 
4292     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4293     // Build the boolean node
4294     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4295 
4296     // Branch either way.
4297     // NaN case is less traveled, which makes all the difference.
4298     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4299     Node *opt_isnan = _gvn.transform(ifisnan);
4300     assert( opt_isnan->is_If(), "Expect an IfNode");
4301     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4302     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4303 
4304     set_control(iftrue);
4305 
4306     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4307     Node *slow_result = longcon(nan_bits); // return NaN
4308     phi->init_req(1, _gvn.transform( slow_result ));
4309     r->init_req(1, iftrue);
4310 
4311     // Else fall through
4312     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4313     set_control(iffalse);
4314 
4315     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4316     r->init_req(2, iffalse);
4317 
4318     // Post merge
4319     set_control(_gvn.transform(r));
4320     record_for_igvn(r);
4321 
4322     C->set_has_split_ifs(true); // Has chance for split-if optimization
4323     result = phi;
4324     assert(result->bottom_type()->isa_long(), "must be");
4325     break;
4326   }
4327 
4328   case vmIntrinsics::_floatToIntBits: {
4329     // two paths (plus control) merge in a wood
4330     RegionNode *r = new RegionNode(3);
4331     Node *phi = new PhiNode(r, TypeInt::INT);
4332 
4333     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4334     // Build the boolean node
4335     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4336 
4337     // Branch either way.
4338     // NaN case is less traveled, which makes all the difference.
4339     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4340     Node *opt_isnan = _gvn.transform(ifisnan);
4341     assert( opt_isnan->is_If(), "Expect an IfNode");
4342     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4343     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4344 
4345     set_control(iftrue);
4346 
4347     static const jint nan_bits = 0x7fc00000;
4348     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4349     phi->init_req(1, _gvn.transform( slow_result ));
4350     r->init_req(1, iftrue);
4351 
4352     // Else fall through
4353     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4354     set_control(iffalse);
4355 
4356     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4357     r->init_req(2, iffalse);
4358 
4359     // Post merge
4360     set_control(_gvn.transform(r));
4361     record_for_igvn(r);
4362 
4363     C->set_has_split_ifs(true); // Has chance for split-if optimization
4364     result = phi;
4365     assert(result->bottom_type()->isa_int(), "must be");
4366     break;
4367   }
4368 
4369   default:
4370     fatal_unexpected_iid(id);
4371     break;
4372   }
4373   set_result(_gvn.transform(result));
4374   return true;
4375 }
4376 
4377 #ifdef _LP64
4378 #define XTOP ,top() /*additional argument*/
4379 #else  //_LP64
4380 #define XTOP        /*no additional argument*/
4381 #endif //_LP64
4382 
4383 //----------------------inline_unsafe_copyMemory-------------------------
4384 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4385 bool LibraryCallKit::inline_unsafe_copyMemory() {
4386   if (callee()->is_static())  return false;  // caller must have the capability!
4387   null_check_receiver();  // null-check receiver
4388   if (stopped())  return true;
4389 
4390   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4391 
4392   Node* src_ptr =         argument(1);   // type: oop
4393   Node* src_off = ConvL2X(argument(2));  // type: long
4394   Node* dst_ptr =         argument(4);   // type: oop
4395   Node* dst_off = ConvL2X(argument(5));  // type: long
4396   Node* size    = ConvL2X(argument(7));  // type: long
4397 
4398   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4399          "fieldOffset must be byte-scaled");
4400 
4401   Node* src = make_unsafe_address(src_ptr, src_off);
4402   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4403 
4404   // Conservatively insert a memory barrier on all memory slices.
4405   // Do not let writes of the copy source or destination float below the copy.
4406   insert_mem_bar(Op_MemBarCPUOrder);
4407 
4408   // Call it.  Note that the length argument is not scaled.
4409   make_runtime_call(RC_LEAF|RC_NO_FP,
4410                     OptoRuntime::fast_arraycopy_Type(),
4411                     StubRoutines::unsafe_arraycopy(),
4412                     "unsafe_arraycopy",
4413                     TypeRawPtr::BOTTOM,
4414                     src, dst, size XTOP);
4415 
4416   // Do not let reads of the copy destination float above the copy.
4417   insert_mem_bar(Op_MemBarCPUOrder);
4418 
4419   return true;
4420 }
4421 
4422 //------------------------clone_coping-----------------------------------
4423 // Helper function for inline_native_clone.
4424 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4425   assert(obj_size != NULL, "");
4426   Node* raw_obj = alloc_obj->in(1);
4427   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4428 
4429   AllocateNode* alloc = NULL;
4430   if (ReduceBulkZeroing) {
4431     // We will be completely responsible for initializing this object -
4432     // mark Initialize node as complete.
4433     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4434     // The object was just allocated - there should be no any stores!
4435     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4436     // Mark as complete_with_arraycopy so that on AllocateNode
4437     // expansion, we know this AllocateNode is initialized by an array
4438     // copy and a StoreStore barrier exists after the array copy.
4439     alloc->initialization()->set_complete_with_arraycopy();
4440   }
4441 
4442   // Copy the fastest available way.
4443   // TODO: generate fields copies for small objects instead.
4444   Node* src  = obj;
4445   Node* dest = alloc_obj;
4446   Node* size = _gvn.transform(obj_size);
4447 
4448   // Exclude the header but include array length to copy by 8 bytes words.
4449   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4450   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4451                             instanceOopDesc::base_offset_in_bytes();
4452   // base_off:
4453   // 8  - 32-bit VM
4454   // 12 - 64-bit VM, compressed klass
4455   // 16 - 64-bit VM, normal klass
4456   if (base_off % BytesPerLong != 0) {
4457     assert(UseCompressedClassPointers, "");
4458     if (is_array) {
4459       // Exclude length to copy by 8 bytes words.
4460       base_off += sizeof(int);
4461     } else {
4462       // Include klass to copy by 8 bytes words.
4463       base_off = instanceOopDesc::klass_offset_in_bytes();
4464     }
4465     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4466   }
4467   src  = basic_plus_adr(src,  base_off);
4468   dest = basic_plus_adr(dest, base_off);
4469 
4470   // Compute the length also, if needed:
4471   Node* countx = size;
4472   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4473   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4474 
4475   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4476 
4477   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false);
4478   ac->set_clonebasic();
4479   Node* n = _gvn.transform(ac);
4480   if (n == ac) {
4481     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4482   } else {
4483     set_all_memory(n);
4484   }
4485 
4486   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4487   if (card_mark) {
4488     assert(!is_array, "");
4489     // Put in store barrier for any and all oops we are sticking
4490     // into this object.  (We could avoid this if we could prove
4491     // that the object type contains no oop fields at all.)
4492     Node* no_particular_value = NULL;
4493     Node* no_particular_field = NULL;
4494     int raw_adr_idx = Compile::AliasIdxRaw;
4495     post_barrier(control(),
4496                  memory(raw_adr_type),
4497                  alloc_obj,
4498                  no_particular_field,
4499                  raw_adr_idx,
4500                  no_particular_value,
4501                  T_OBJECT,
4502                  false);
4503   }
4504 
4505   // Do not let reads from the cloned object float above the arraycopy.
4506   if (alloc != NULL) {
4507     // Do not let stores that initialize this object be reordered with
4508     // a subsequent store that would make this object accessible by
4509     // other threads.
4510     // Record what AllocateNode this StoreStore protects so that
4511     // escape analysis can go from the MemBarStoreStoreNode to the
4512     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4513     // based on the escape status of the AllocateNode.
4514     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4515   } else {
4516     insert_mem_bar(Op_MemBarCPUOrder);
4517   }
4518 }
4519 
4520 //------------------------inline_native_clone----------------------------
4521 // protected native Object java.lang.Object.clone();
4522 //
4523 // Here are the simple edge cases:
4524 //  null receiver => normal trap
4525 //  virtual and clone was overridden => slow path to out-of-line clone
4526 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4527 //
4528 // The general case has two steps, allocation and copying.
4529 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4530 //
4531 // Copying also has two cases, oop arrays and everything else.
4532 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4533 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4534 //
4535 // These steps fold up nicely if and when the cloned object's klass
4536 // can be sharply typed as an object array, a type array, or an instance.
4537 //
4538 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4539   PhiNode* result_val;
4540 
4541   // Set the reexecute bit for the interpreter to reexecute
4542   // the bytecode that invokes Object.clone if deoptimization happens.
4543   { PreserveReexecuteState preexecs(this);
4544     jvms()->set_should_reexecute(true);
4545 
4546     Node* obj = null_check_receiver();
4547     if (stopped())  return true;
4548 
4549     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4550 
4551     // If we are going to clone an instance, we need its exact type to
4552     // know the number and types of fields to convert the clone to
4553     // loads/stores. Maybe a speculative type can help us.
4554     if (!obj_type->klass_is_exact() &&
4555         obj_type->speculative_type() != NULL &&
4556         obj_type->speculative_type()->is_instance_klass()) {
4557       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4558       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4559           !spec_ik->has_injected_fields()) {
4560         ciKlass* k = obj_type->klass();
4561         if (!k->is_instance_klass() ||
4562             k->as_instance_klass()->is_interface() ||
4563             k->as_instance_klass()->has_subklass()) {
4564           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4565         }
4566       }
4567     }
4568 
4569     Node* obj_klass = load_object_klass(obj);
4570     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4571     const TypeOopPtr*   toop   = ((tklass != NULL)
4572                                 ? tklass->as_instance_type()
4573                                 : TypeInstPtr::NOTNULL);
4574 
4575     // Conservatively insert a memory barrier on all memory slices.
4576     // Do not let writes into the original float below the clone.
4577     insert_mem_bar(Op_MemBarCPUOrder);
4578 
4579     // paths into result_reg:
4580     enum {
4581       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4582       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4583       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4584       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4585       PATH_LIMIT
4586     };
4587     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4588     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4589     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4590     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4591     record_for_igvn(result_reg);
4592 
4593     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4594     int raw_adr_idx = Compile::AliasIdxRaw;
4595 
4596     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4597     if (array_ctl != NULL) {
4598       // It's an array.
4599       PreserveJVMState pjvms(this);
4600       set_control(array_ctl);
4601       Node* obj_length = load_array_length(obj);
4602       Node* obj_size  = NULL;
4603       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4604 
4605       if (!use_ReduceInitialCardMarks()) {
4606         // If it is an oop array, it requires very special treatment,
4607         // because card marking is required on each card of the array.
4608         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4609         if (is_obja != NULL) {
4610           PreserveJVMState pjvms2(this);
4611           set_control(is_obja);
4612           // Generate a direct call to the right arraycopy function(s).
4613           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4614           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL);
4615           ac->set_cloneoop();
4616           Node* n = _gvn.transform(ac);
4617           assert(n == ac, "cannot disappear");
4618           ac->connect_outputs(this);
4619 
4620           result_reg->init_req(_objArray_path, control());
4621           result_val->init_req(_objArray_path, alloc_obj);
4622           result_i_o ->set_req(_objArray_path, i_o());
4623           result_mem ->set_req(_objArray_path, reset_memory());
4624         }
4625       }
4626       // Otherwise, there are no card marks to worry about.
4627       // (We can dispense with card marks if we know the allocation
4628       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4629       //  causes the non-eden paths to take compensating steps to
4630       //  simulate a fresh allocation, so that no further
4631       //  card marks are required in compiled code to initialize
4632       //  the object.)
4633 
4634       if (!stopped()) {
4635         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4636 
4637         // Present the results of the copy.
4638         result_reg->init_req(_array_path, control());
4639         result_val->init_req(_array_path, alloc_obj);
4640         result_i_o ->set_req(_array_path, i_o());
4641         result_mem ->set_req(_array_path, reset_memory());
4642       }
4643     }
4644 
4645     // We only go to the instance fast case code if we pass a number of guards.
4646     // The paths which do not pass are accumulated in the slow_region.
4647     RegionNode* slow_region = new RegionNode(1);
4648     record_for_igvn(slow_region);
4649     if (!stopped()) {
4650       // It's an instance (we did array above).  Make the slow-path tests.
4651       // If this is a virtual call, we generate a funny guard.  We grab
4652       // the vtable entry corresponding to clone() from the target object.
4653       // If the target method which we are calling happens to be the
4654       // Object clone() method, we pass the guard.  We do not need this
4655       // guard for non-virtual calls; the caller is known to be the native
4656       // Object clone().
4657       if (is_virtual) {
4658         generate_virtual_guard(obj_klass, slow_region);
4659       }
4660 
4661       // The object must be cloneable and must not have a finalizer.
4662       // Both of these conditions may be checked in a single test.
4663       // We could optimize the cloneable test further, but we don't care.
4664       generate_access_flags_guard(obj_klass,
4665                                   // Test both conditions:
4666                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4667                                   // Must be cloneable but not finalizer:
4668                                   JVM_ACC_IS_CLONEABLE,
4669                                   slow_region);
4670     }
4671 
4672     if (!stopped()) {
4673       // It's an instance, and it passed the slow-path tests.
4674       PreserveJVMState pjvms(this);
4675       Node* obj_size  = NULL;
4676       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4677       // is reexecuted if deoptimization occurs and there could be problems when merging
4678       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4679       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4680 
4681       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4682 
4683       // Present the results of the slow call.
4684       result_reg->init_req(_instance_path, control());
4685       result_val->init_req(_instance_path, alloc_obj);
4686       result_i_o ->set_req(_instance_path, i_o());
4687       result_mem ->set_req(_instance_path, reset_memory());
4688     }
4689 
4690     // Generate code for the slow case.  We make a call to clone().
4691     set_control(_gvn.transform(slow_region));
4692     if (!stopped()) {
4693       PreserveJVMState pjvms(this);
4694       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4695       Node* slow_result = set_results_for_java_call(slow_call);
4696       // this->control() comes from set_results_for_java_call
4697       result_reg->init_req(_slow_path, control());
4698       result_val->init_req(_slow_path, slow_result);
4699       result_i_o ->set_req(_slow_path, i_o());
4700       result_mem ->set_req(_slow_path, reset_memory());
4701     }
4702 
4703     // Return the combined state.
4704     set_control(    _gvn.transform(result_reg));
4705     set_i_o(        _gvn.transform(result_i_o));
4706     set_all_memory( _gvn.transform(result_mem));
4707   } // original reexecute is set back here
4708 
4709   set_result(_gvn.transform(result_val));
4710   return true;
4711 }
4712 
4713 //------------------------------inline_arraycopy-----------------------
4714 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4715 //                                                      Object dest, int destPos,
4716 //                                                      int length);
4717 bool LibraryCallKit::inline_arraycopy() {
4718   // Get the arguments.
4719   Node* src         = argument(0);  // type: oop
4720   Node* src_offset  = argument(1);  // type: int
4721   Node* dest        = argument(2);  // type: oop
4722   Node* dest_offset = argument(3);  // type: int
4723   Node* length      = argument(4);  // type: int
4724 
4725   // The following tests must be performed
4726   // (1) src and dest are arrays.
4727   // (2) src and dest arrays must have elements of the same BasicType
4728   // (3) src and dest must not be null.
4729   // (4) src_offset must not be negative.
4730   // (5) dest_offset must not be negative.
4731   // (6) length must not be negative.
4732   // (7) src_offset + length must not exceed length of src.
4733   // (8) dest_offset + length must not exceed length of dest.
4734   // (9) each element of an oop array must be assignable
4735 
4736   // (3) src and dest must not be null.
4737   // always do this here because we need the JVM state for uncommon traps
4738   src  = null_check(src,  T_ARRAY);
4739   dest = null_check(dest, T_ARRAY);
4740 
4741   // Check for allocation before we add nodes that would confuse
4742   // tightly_coupled_allocation()
4743   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4744 
4745   SafePointNode* sfpt = NULL;
4746   if (alloc != NULL) {
4747     // The JVM state for uncommon traps between the allocation and
4748     // arraycopy is set to the state before the allocation: if the
4749     // initialization is performed by the array copy, we don't want to
4750     // go back to the interpreter with an unitialized array.
4751     JVMState* old_jvms = alloc->jvms();
4752     JVMState* jvms = old_jvms->clone_shallow(C);
4753     uint size = alloc->req();
4754     sfpt = new SafePointNode(size, jvms);
4755     jvms->set_map(sfpt);
4756     for (uint i = 0; i < size; i++) {
4757       sfpt->init_req(i, alloc->in(i));
4758     }
4759     // re-push array length for deoptimization
4760     sfpt->ins_req(jvms->stkoff() + jvms->sp(), alloc->in(AllocateNode::ALength));
4761     jvms->set_sp(jvms->sp()+1);
4762     jvms->set_monoff(jvms->monoff()+1);
4763     jvms->set_scloff(jvms->scloff()+1);
4764     jvms->set_endoff(jvms->endoff()+1);
4765     jvms->set_should_reexecute(true);
4766 
4767     sfpt->set_i_o(map()->i_o());
4768     sfpt->set_memory(map()->memory());
4769   }
4770 
4771   bool validated = false;
4772 
4773   const Type* src_type  = _gvn.type(src);
4774   const Type* dest_type = _gvn.type(dest);
4775   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4776   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4777 
4778   // Do we have the type of src?
4779   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4780   // Do we have the type of dest?
4781   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4782   // Is the type for src from speculation?
4783   bool src_spec = false;
4784   // Is the type for dest from speculation?
4785   bool dest_spec = false;
4786 
4787   if (!has_src || !has_dest) {
4788     // We don't have sufficient type information, let's see if
4789     // speculative types can help. We need to have types for both src
4790     // and dest so that it pays off.
4791 
4792     // Do we already have or could we have type information for src
4793     bool could_have_src = has_src;
4794     // Do we already have or could we have type information for dest
4795     bool could_have_dest = has_dest;
4796 
4797     ciKlass* src_k = NULL;
4798     if (!has_src) {
4799       src_k = src_type->speculative_type_not_null();
4800       if (src_k != NULL && src_k->is_array_klass()) {
4801         could_have_src = true;
4802       }
4803     }
4804 
4805     ciKlass* dest_k = NULL;
4806     if (!has_dest) {
4807       dest_k = dest_type->speculative_type_not_null();
4808       if (dest_k != NULL && dest_k->is_array_klass()) {
4809         could_have_dest = true;
4810       }
4811     }
4812 
4813     if (could_have_src && could_have_dest) {
4814       // This is going to pay off so emit the required guards
4815       if (!has_src) {
4816         src = maybe_cast_profiled_obj(src, src_k, true, sfpt);
4817         src_type  = _gvn.type(src);
4818         top_src  = src_type->isa_aryptr();
4819         has_src = (top_src != NULL && top_src->klass() != NULL);
4820         src_spec = true;
4821       }
4822       if (!has_dest) {
4823         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4824         dest_type  = _gvn.type(dest);
4825         top_dest  = dest_type->isa_aryptr();
4826         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4827         dest_spec = true;
4828       }
4829     }
4830   }
4831 
4832   if (has_src && has_dest) {
4833     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4834     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4835     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4836     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4837 
4838     if (src_elem == dest_elem && src_elem == T_OBJECT) {
4839       // If both arrays are object arrays then having the exact types
4840       // for both will remove the need for a subtype check at runtime
4841       // before the call and may make it possible to pick a faster copy
4842       // routine (without a subtype check on every element)
4843       // Do we have the exact type of src?
4844       bool could_have_src = src_spec;
4845       // Do we have the exact type of dest?
4846       bool could_have_dest = dest_spec;
4847       ciKlass* src_k = top_src->klass();
4848       ciKlass* dest_k = top_dest->klass();
4849       if (!src_spec) {
4850         src_k = src_type->speculative_type_not_null();
4851         if (src_k != NULL && src_k->is_array_klass()) {
4852           could_have_src = true;
4853         }
4854       }
4855       if (!dest_spec) {
4856         dest_k = dest_type->speculative_type_not_null();
4857         if (dest_k != NULL && dest_k->is_array_klass()) {
4858           could_have_dest = true;
4859         }
4860       }
4861       if (could_have_src && could_have_dest) {
4862         // If we can have both exact types, emit the missing guards
4863         if (could_have_src && !src_spec) {
4864           src = maybe_cast_profiled_obj(src, src_k, true, sfpt);
4865         }
4866         if (could_have_dest && !dest_spec) {
4867           dest = maybe_cast_profiled_obj(dest, dest_k, true);
4868         }
4869       }
4870     }
4871   }
4872 
4873   if (!too_many_traps(Deoptimization::Reason_intrinsic) && !src->is_top() && !dest->is_top()) {
4874     // validate arguments: enables transformation the ArrayCopyNode
4875     validated = true;
4876 
4877     RegionNode* slow_region = new RegionNode(1);
4878     record_for_igvn(slow_region);
4879 
4880     // (1) src and dest are arrays.
4881     generate_non_array_guard(load_object_klass(src), slow_region);
4882     generate_non_array_guard(load_object_klass(dest), slow_region);
4883 
4884     // (2) src and dest arrays must have elements of the same BasicType
4885     // done at macro expansion or at Ideal transformation time
4886 
4887     // (4) src_offset must not be negative.
4888     generate_negative_guard(src_offset, slow_region);
4889 
4890     // (5) dest_offset must not be negative.
4891     generate_negative_guard(dest_offset, slow_region);
4892 
4893     // (7) src_offset + length must not exceed length of src.
4894     generate_limit_guard(src_offset, length,
4895                          load_array_length(src),
4896                          slow_region);
4897 
4898     // (8) dest_offset + length must not exceed length of dest.
4899     generate_limit_guard(dest_offset, length,
4900                          load_array_length(dest),
4901                          slow_region);
4902 
4903     // (9) each element of an oop array must be assignable
4904     Node* src_klass  = load_object_klass(src);
4905     Node* dest_klass = load_object_klass(dest);
4906     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4907 
4908     if (not_subtype_ctrl != top()) {
4909       if (sfpt != NULL) {
4910         GraphKit kit(sfpt->jvms());
4911         PreserveJVMState pjvms(&kit);
4912         kit.set_control(not_subtype_ctrl);
4913         kit.uncommon_trap(Deoptimization::Reason_intrinsic,
4914                           Deoptimization::Action_make_not_entrant);
4915         assert(kit.stopped(), "Should be stopped");
4916       } else {
4917         PreserveJVMState pjvms(this);
4918         set_control(not_subtype_ctrl);
4919         uncommon_trap(Deoptimization::Reason_intrinsic,
4920                       Deoptimization::Action_make_not_entrant);
4921         assert(stopped(), "Should be stopped");
4922       }
4923     }
4924     if (sfpt != NULL) {
4925       GraphKit kit(sfpt->jvms());
4926       kit.set_control(_gvn.transform(slow_region));
4927       kit.uncommon_trap(Deoptimization::Reason_intrinsic,
4928                         Deoptimization::Action_make_not_entrant);
4929       assert(kit.stopped(), "Should be stopped");
4930     } else {
4931       PreserveJVMState pjvms(this);
4932       set_control(_gvn.transform(slow_region));
4933       uncommon_trap(Deoptimization::Reason_intrinsic,
4934                     Deoptimization::Action_make_not_entrant);
4935       assert(stopped(), "Should be stopped");
4936     }
4937   }
4938 
4939   if (stopped()) {
4940     return true;
4941   }
4942 
4943   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL,
4944                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
4945                                           // so the compiler has a chance to eliminate them: during macro expansion,
4946                                           // we have to set their control (CastPP nodes are eliminated).
4947                                           load_object_klass(src), load_object_klass(dest),
4948                                           load_array_length(src), load_array_length(dest));
4949 
4950   ac->set_arraycopy(validated);
4951 
4952   Node* n = _gvn.transform(ac);
4953   if (n == ac) {
4954     ac->connect_outputs(this);
4955   } else {
4956     assert(validated, "shouldn't transform if all arguments not validated");
4957     set_all_memory(n);
4958   }
4959 
4960   return true;
4961 }
4962 
4963 
4964 // Helper function which determines if an arraycopy immediately follows
4965 // an allocation, with no intervening tests or other escapes for the object.
4966 AllocateArrayNode*
4967 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4968                                            RegionNode* slow_region) {
4969   if (stopped())             return NULL;  // no fast path
4970   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4971 
4972   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4973   if (alloc == NULL)  return NULL;
4974 
4975   Node* rawmem = memory(Compile::AliasIdxRaw);
4976   // Is the allocation's memory state untouched?
4977   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4978     // Bail out if there have been raw-memory effects since the allocation.
4979     // (Example:  There might have been a call or safepoint.)
4980     return NULL;
4981   }
4982   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4983   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4984     return NULL;
4985   }
4986 
4987   // There must be no unexpected observers of this allocation.
4988   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4989     Node* obs = ptr->fast_out(i);
4990     if (obs != this->map()) {
4991       return NULL;
4992     }
4993   }
4994 
4995   // This arraycopy must unconditionally follow the allocation of the ptr.
4996   Node* alloc_ctl = ptr->in(0);
4997   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4998 
4999   Node* ctl = control();
5000   while (ctl != alloc_ctl) {
5001     // There may be guards which feed into the slow_region.
5002     // Any other control flow means that we might not get a chance
5003     // to finish initializing the allocated object.
5004     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5005       IfNode* iff = ctl->in(0)->as_If();
5006       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5007       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5008       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5009         ctl = iff->in(0);       // This test feeds the known slow_region.
5010         continue;
5011       }
5012       // One more try:  Various low-level checks bottom out in
5013       // uncommon traps.  If the debug-info of the trap omits
5014       // any reference to the allocation, as we've already
5015       // observed, then there can be no objection to the trap.
5016       bool found_trap = false;
5017       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5018         Node* obs = not_ctl->fast_out(j);
5019         if (obs->in(0) == not_ctl && obs->is_Call() &&
5020             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5021           found_trap = true; break;
5022         }
5023       }
5024       if (found_trap) {
5025         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5026         continue;
5027       }
5028     }
5029     return NULL;
5030   }
5031 
5032   // If we get this far, we have an allocation which immediately
5033   // precedes the arraycopy, and we can take over zeroing the new object.
5034   // The arraycopy will finish the initialization, and provide
5035   // a new control state to which we will anchor the destination pointer.
5036 
5037   return alloc;
5038 }
5039 
5040 //-------------inline_encodeISOArray-----------------------------------
5041 // encode char[] to byte[] in ISO_8859_1
5042 bool LibraryCallKit::inline_encodeISOArray() {
5043   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5044   // no receiver since it is static method
5045   Node *src         = argument(0);
5046   Node *src_offset  = argument(1);
5047   Node *dst         = argument(2);
5048   Node *dst_offset  = argument(3);
5049   Node *length      = argument(4);
5050 
5051   const Type* src_type = src->Value(&_gvn);
5052   const Type* dst_type = dst->Value(&_gvn);
5053   const TypeAryPtr* top_src = src_type->isa_aryptr();
5054   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5055   if (top_src  == NULL || top_src->klass()  == NULL ||
5056       top_dest == NULL || top_dest->klass() == NULL) {
5057     // failed array check
5058     return false;
5059   }
5060 
5061   // Figure out the size and type of the elements we will be copying.
5062   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5063   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5064   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5065     return false;
5066   }
5067   Node* src_start = array_element_address(src, src_offset, src_elem);
5068   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5069   // 'src_start' points to src array + scaled offset
5070   // 'dst_start' points to dst array + scaled offset
5071 
5072   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5073   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5074   enc = _gvn.transform(enc);
5075   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5076   set_memory(res_mem, mtype);
5077   set_result(enc);
5078   return true;
5079 }
5080 
5081 //-------------inline_multiplyToLen-----------------------------------
5082 bool LibraryCallKit::inline_multiplyToLen() {
5083   assert(UseMultiplyToLenIntrinsic, "not implementated on this platform");
5084 
5085   address stubAddr = StubRoutines::multiplyToLen();
5086   if (stubAddr == NULL) {
5087     return false; // Intrinsic's stub is not implemented on this platform
5088   }
5089   const char* stubName = "multiplyToLen";
5090 
5091   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5092 
5093   Node* x    = argument(1);
5094   Node* xlen = argument(2);
5095   Node* y    = argument(3);
5096   Node* ylen = argument(4);
5097   Node* z    = argument(5);
5098 
5099   const Type* x_type = x->Value(&_gvn);
5100   const Type* y_type = y->Value(&_gvn);
5101   const TypeAryPtr* top_x = x_type->isa_aryptr();
5102   const TypeAryPtr* top_y = y_type->isa_aryptr();
5103   if (top_x  == NULL || top_x->klass()  == NULL ||
5104       top_y == NULL || top_y->klass() == NULL) {
5105     // failed array check
5106     return false;
5107   }
5108 
5109   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5110   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5111   if (x_elem != T_INT || y_elem != T_INT) {
5112     return false;
5113   }
5114 
5115   // Set the original stack and the reexecute bit for the interpreter to reexecute
5116   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5117   // on the return from z array allocation in runtime.
5118   { PreserveReexecuteState preexecs(this);
5119     jvms()->set_should_reexecute(true);
5120 
5121     Node* x_start = array_element_address(x, intcon(0), x_elem);
5122     Node* y_start = array_element_address(y, intcon(0), y_elem);
5123     // 'x_start' points to x array + scaled xlen
5124     // 'y_start' points to y array + scaled ylen
5125 
5126     // Allocate the result array
5127     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5128     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5129     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5130 
5131     IdealKit ideal(this);
5132 
5133 #define __ ideal.
5134      Node* one = __ ConI(1);
5135      Node* zero = __ ConI(0);
5136      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5137      __ set(need_alloc, zero);
5138      __ set(z_alloc, z);
5139      __ if_then(z, BoolTest::eq, null()); {
5140        __ increment (need_alloc, one);
5141      } __ else_(); {
5142        // Update graphKit memory and control from IdealKit.
5143        sync_kit(ideal);
5144        Node* zlen_arg = load_array_length(z);
5145        // Update IdealKit memory and control from graphKit.
5146        __ sync_kit(this);
5147        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5148          __ increment (need_alloc, one);
5149        } __ end_if();
5150      } __ end_if();
5151 
5152      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5153        // Update graphKit memory and control from IdealKit.
5154        sync_kit(ideal);
5155        Node * narr = new_array(klass_node, zlen, 1);
5156        // Update IdealKit memory and control from graphKit.
5157        __ sync_kit(this);
5158        __ set(z_alloc, narr);
5159      } __ end_if();
5160 
5161      sync_kit(ideal);
5162      z = __ value(z_alloc);
5163      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5164      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5165      // Final sync IdealKit and GraphKit.
5166      final_sync(ideal);
5167 #undef __
5168 
5169     Node* z_start = array_element_address(z, intcon(0), T_INT);
5170 
5171     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5172                                    OptoRuntime::multiplyToLen_Type(),
5173                                    stubAddr, stubName, TypePtr::BOTTOM,
5174                                    x_start, xlen, y_start, ylen, z_start, zlen);
5175   } // original reexecute is set back here
5176 
5177   C->set_has_split_ifs(true); // Has chance for split-if optimization
5178   set_result(z);
5179   return true;
5180 }
5181 
5182 
5183 /**
5184  * Calculate CRC32 for byte.
5185  * int java.util.zip.CRC32.update(int crc, int b)
5186  */
5187 bool LibraryCallKit::inline_updateCRC32() {
5188   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5189   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5190   // no receiver since it is static method
5191   Node* crc  = argument(0); // type: int
5192   Node* b    = argument(1); // type: int
5193 
5194   /*
5195    *    int c = ~ crc;
5196    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5197    *    b = b ^ (c >>> 8);
5198    *    crc = ~b;
5199    */
5200 
5201   Node* M1 = intcon(-1);
5202   crc = _gvn.transform(new XorINode(crc, M1));
5203   Node* result = _gvn.transform(new XorINode(crc, b));
5204   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5205 
5206   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5207   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5208   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5209   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5210 
5211   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5212   result = _gvn.transform(new XorINode(crc, result));
5213   result = _gvn.transform(new XorINode(result, M1));
5214   set_result(result);
5215   return true;
5216 }
5217 
5218 /**
5219  * Calculate CRC32 for byte[] array.
5220  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5221  */
5222 bool LibraryCallKit::inline_updateBytesCRC32() {
5223   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5224   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5225   // no receiver since it is static method
5226   Node* crc     = argument(0); // type: int
5227   Node* src     = argument(1); // type: oop
5228   Node* offset  = argument(2); // type: int
5229   Node* length  = argument(3); // type: int
5230 
5231   const Type* src_type = src->Value(&_gvn);
5232   const TypeAryPtr* top_src = src_type->isa_aryptr();
5233   if (top_src  == NULL || top_src->klass()  == NULL) {
5234     // failed array check
5235     return false;
5236   }
5237 
5238   // Figure out the size and type of the elements we will be copying.
5239   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5240   if (src_elem != T_BYTE) {
5241     return false;
5242   }
5243 
5244   // 'src_start' points to src array + scaled offset
5245   Node* src_start = array_element_address(src, offset, src_elem);
5246 
5247   // We assume that range check is done by caller.
5248   // TODO: generate range check (offset+length < src.length) in debug VM.
5249 
5250   // Call the stub.
5251   address stubAddr = StubRoutines::updateBytesCRC32();
5252   const char *stubName = "updateBytesCRC32";
5253 
5254   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5255                                  stubAddr, stubName, TypePtr::BOTTOM,
5256                                  crc, src_start, length);
5257   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5258   set_result(result);
5259   return true;
5260 }
5261 
5262 /**
5263  * Calculate CRC32 for ByteBuffer.
5264  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5265  */
5266 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5267   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5268   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5269   // no receiver since it is static method
5270   Node* crc     = argument(0); // type: int
5271   Node* src     = argument(1); // type: long
5272   Node* offset  = argument(3); // type: int
5273   Node* length  = argument(4); // type: int
5274 
5275   src = ConvL2X(src);  // adjust Java long to machine word
5276   Node* base = _gvn.transform(new CastX2PNode(src));
5277   offset = ConvI2X(offset);
5278 
5279   // 'src_start' points to src array + scaled offset
5280   Node* src_start = basic_plus_adr(top(), base, offset);
5281 
5282   // Call the stub.
5283   address stubAddr = StubRoutines::updateBytesCRC32();
5284   const char *stubName = "updateBytesCRC32";
5285 
5286   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5287                                  stubAddr, stubName, TypePtr::BOTTOM,
5288                                  crc, src_start, length);
5289   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5290   set_result(result);
5291   return true;
5292 }
5293 
5294 //----------------------------inline_reference_get----------------------------
5295 // public T java.lang.ref.Reference.get();
5296 bool LibraryCallKit::inline_reference_get() {
5297   const int referent_offset = java_lang_ref_Reference::referent_offset;
5298   guarantee(referent_offset > 0, "should have already been set");
5299 
5300   // Get the argument:
5301   Node* reference_obj = null_check_receiver();
5302   if (stopped()) return true;
5303 
5304   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5305 
5306   ciInstanceKlass* klass = env()->Object_klass();
5307   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5308 
5309   Node* no_ctrl = NULL;
5310   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5311 
5312   // Use the pre-barrier to record the value in the referent field
5313   pre_barrier(false /* do_load */,
5314               control(),
5315               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5316               result /* pre_val */,
5317               T_OBJECT);
5318 
5319   // Add memory barrier to prevent commoning reads from this field
5320   // across safepoint since GC can change its value.
5321   insert_mem_bar(Op_MemBarCPUOrder);
5322 
5323   set_result(result);
5324   return true;
5325 }
5326 
5327 
5328 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5329                                               bool is_exact=true, bool is_static=false) {
5330 
5331   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5332   assert(tinst != NULL, "obj is null");
5333   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5334   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5335 
5336   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5337                                                                           ciSymbol::make(fieldTypeString),
5338                                                                           is_static);
5339   if (field == NULL) return (Node *) NULL;
5340   assert (field != NULL, "undefined field");
5341 
5342   // Next code  copied from Parse::do_get_xxx():
5343 
5344   // Compute address and memory type.
5345   int offset  = field->offset_in_bytes();
5346   bool is_vol = field->is_volatile();
5347   ciType* field_klass = field->type();
5348   assert(field_klass->is_loaded(), "should be loaded");
5349   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5350   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5351   BasicType bt = field->layout_type();
5352 
5353   // Build the resultant type of the load
5354   const Type *type;
5355   if (bt == T_OBJECT) {
5356     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5357   } else {
5358     type = Type::get_const_basic_type(bt);
5359   }
5360 
5361   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
5362     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
5363   }
5364   // Build the load.
5365   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
5366   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, is_vol);
5367   // If reference is volatile, prevent following memory ops from
5368   // floating up past the volatile read.  Also prevents commoning
5369   // another volatile read.
5370   if (is_vol) {
5371     // Memory barrier includes bogus read of value to force load BEFORE membar
5372     insert_mem_bar(Op_MemBarAcquire, loadedField);
5373   }
5374   return loadedField;
5375 }
5376 
5377 
5378 //------------------------------inline_aescrypt_Block-----------------------
5379 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5380   address stubAddr;
5381   const char *stubName;
5382   assert(UseAES, "need AES instruction support");
5383 
5384   switch(id) {
5385   case vmIntrinsics::_aescrypt_encryptBlock:
5386     stubAddr = StubRoutines::aescrypt_encryptBlock();
5387     stubName = "aescrypt_encryptBlock";
5388     break;
5389   case vmIntrinsics::_aescrypt_decryptBlock:
5390     stubAddr = StubRoutines::aescrypt_decryptBlock();
5391     stubName = "aescrypt_decryptBlock";
5392     break;
5393   }
5394   if (stubAddr == NULL) return false;
5395 
5396   Node* aescrypt_object = argument(0);
5397   Node* src             = argument(1);
5398   Node* src_offset      = argument(2);
5399   Node* dest            = argument(3);
5400   Node* dest_offset     = argument(4);
5401 
5402   // (1) src and dest are arrays.
5403   const Type* src_type = src->Value(&_gvn);
5404   const Type* dest_type = dest->Value(&_gvn);
5405   const TypeAryPtr* top_src = src_type->isa_aryptr();
5406   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5407   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5408 
5409   // for the quick and dirty code we will skip all the checks.
5410   // we are just trying to get the call to be generated.
5411   Node* src_start  = src;
5412   Node* dest_start = dest;
5413   if (src_offset != NULL || dest_offset != NULL) {
5414     assert(src_offset != NULL && dest_offset != NULL, "");
5415     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5416     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5417   }
5418 
5419   // now need to get the start of its expanded key array
5420   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5421   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5422   if (k_start == NULL) return false;
5423 
5424   if (Matcher::pass_original_key_for_aes()) {
5425     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5426     // compatibility issues between Java key expansion and SPARC crypto instructions
5427     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5428     if (original_k_start == NULL) return false;
5429 
5430     // Call the stub.
5431     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5432                       stubAddr, stubName, TypePtr::BOTTOM,
5433                       src_start, dest_start, k_start, original_k_start);
5434   } else {
5435     // Call the stub.
5436     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5437                       stubAddr, stubName, TypePtr::BOTTOM,
5438                       src_start, dest_start, k_start);
5439   }
5440 
5441   return true;
5442 }
5443 
5444 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5445 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5446   address stubAddr;
5447   const char *stubName;
5448 
5449   assert(UseAES, "need AES instruction support");
5450 
5451   switch(id) {
5452   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5453     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5454     stubName = "cipherBlockChaining_encryptAESCrypt";
5455     break;
5456   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5457     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5458     stubName = "cipherBlockChaining_decryptAESCrypt";
5459     break;
5460   }
5461   if (stubAddr == NULL) return false;
5462 
5463   Node* cipherBlockChaining_object = argument(0);
5464   Node* src                        = argument(1);
5465   Node* src_offset                 = argument(2);
5466   Node* len                        = argument(3);
5467   Node* dest                       = argument(4);
5468   Node* dest_offset                = argument(5);
5469 
5470   // (1) src and dest are arrays.
5471   const Type* src_type = src->Value(&_gvn);
5472   const Type* dest_type = dest->Value(&_gvn);
5473   const TypeAryPtr* top_src = src_type->isa_aryptr();
5474   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5475   assert (top_src  != NULL && top_src->klass()  != NULL
5476           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5477 
5478   // checks are the responsibility of the caller
5479   Node* src_start  = src;
5480   Node* dest_start = dest;
5481   if (src_offset != NULL || dest_offset != NULL) {
5482     assert(src_offset != NULL && dest_offset != NULL, "");
5483     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5484     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5485   }
5486 
5487   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5488   // (because of the predicated logic executed earlier).
5489   // so we cast it here safely.
5490   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5491 
5492   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5493   if (embeddedCipherObj == NULL) return false;
5494 
5495   // cast it to what we know it will be at runtime
5496   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5497   assert(tinst != NULL, "CBC obj is null");
5498   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5499   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5500   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
5501 
5502   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5503   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5504   const TypeOopPtr* xtype = aklass->as_instance_type();
5505   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
5506   aescrypt_object = _gvn.transform(aescrypt_object);
5507 
5508   // we need to get the start of the aescrypt_object's expanded key array
5509   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5510   if (k_start == NULL) return false;
5511 
5512   // similarly, get the start address of the r vector
5513   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5514   if (objRvec == NULL) return false;
5515   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5516 
5517   Node* cbcCrypt;
5518   if (Matcher::pass_original_key_for_aes()) {
5519     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5520     // compatibility issues between Java key expansion and SPARC crypto instructions
5521     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5522     if (original_k_start == NULL) return false;
5523 
5524     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
5525     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5526                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5527                                  stubAddr, stubName, TypePtr::BOTTOM,
5528                                  src_start, dest_start, k_start, r_start, len, original_k_start);
5529   } else {
5530     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5531     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5532                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5533                                  stubAddr, stubName, TypePtr::BOTTOM,
5534                                  src_start, dest_start, k_start, r_start, len);
5535   }
5536 
5537   // return cipher length (int)
5538   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
5539   set_result(retvalue);
5540   return true;
5541 }
5542 
5543 //------------------------------get_key_start_from_aescrypt_object-----------------------
5544 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5545   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5546   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5547   if (objAESCryptKey == NULL) return (Node *) NULL;
5548 
5549   // now have the array, need to get the start address of the K array
5550   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5551   return k_start;
5552 }
5553 
5554 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
5555 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
5556   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
5557   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5558   if (objAESCryptKey == NULL) return (Node *) NULL;
5559 
5560   // now have the array, need to get the start address of the lastKey array
5561   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
5562   return original_k_start;
5563 }
5564 
5565 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5566 // Return node representing slow path of predicate check.
5567 // the pseudo code we want to emulate with this predicate is:
5568 // for encryption:
5569 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5570 // for decryption:
5571 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5572 //    note cipher==plain is more conservative than the original java code but that's OK
5573 //
5574 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5575   // The receiver was checked for NULL already.
5576   Node* objCBC = argument(0);
5577 
5578   // Load embeddedCipher field of CipherBlockChaining object.
5579   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5580 
5581   // get AESCrypt klass for instanceOf check
5582   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5583   // will have same classloader as CipherBlockChaining object
5584   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5585   assert(tinst != NULL, "CBCobj is null");
5586   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5587 
5588   // we want to do an instanceof comparison against the AESCrypt class
5589   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5590   if (!klass_AESCrypt->is_loaded()) {
5591     // if AESCrypt is not even loaded, we never take the intrinsic fast path
5592     Node* ctrl = control();
5593     set_control(top()); // no regular fast path
5594     return ctrl;
5595   }
5596   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5597 
5598   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5599   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
5600   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
5601 
5602   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5603 
5604   // for encryption, we are done
5605   if (!decrypting)
5606     return instof_false;  // even if it is NULL
5607 
5608   // for decryption, we need to add a further check to avoid
5609   // taking the intrinsic path when cipher and plain are the same
5610   // see the original java code for why.
5611   RegionNode* region = new RegionNode(3);
5612   region->init_req(1, instof_false);
5613   Node* src = argument(1);
5614   Node* dest = argument(4);
5615   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
5616   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
5617   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
5618   region->init_req(2, src_dest_conjoint);
5619 
5620   record_for_igvn(region);
5621   return _gvn.transform(region);
5622 }
5623 
5624 //------------------------------get_vars_from_ghash_object-----------------------
5625 Node * LibraryCallKit::get_vars_from_ghash_object(Node *ghash_object, const char *var_name) {
5626   Node* ghash_var = load_field_from_object(ghash_object, var_name, "[J", /*is_exact*/ false);
5627   assert (ghash_var != NULL, "wrong version of sun.security.provider.GHASH");
5628   if (ghash_var == NULL) return (Node *) NULL;
5629 
5630   // now have the array, need to get the start address of the array
5631   Node* var = array_element_address(ghash_var, intcon(0), T_LONG);
5632   return var;
5633 }
5634 
5635 //------------------------------inline_ghash_processBlocks
5636 bool LibraryCallKit::inline_ghash_processBlocks(vmIntrinsics::ID id) {
5637   address stubAddr;
5638   const char *stubName;
5639   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
5640 
5641   stubAddr = StubRoutines::ghash_processBlocks();
5642   stubName = "ghash_processBlocks";
5643 
5644   Node* ghash_object   = argument(0);
5645   Node* data           = argument(1);
5646   Node* offset         = argument(2);
5647   Node* len            = argument(3);
5648 
5649   Node* state_start = get_vars_from_ghash_object(ghash_object, "state");
5650   assert(state_start, "Unable to load GHASH state");
5651   Node* subkeyH_start = get_vars_from_ghash_object(ghash_object, "subkeyH");
5652   assert(subkeyH_start, "Unable to load GHASH subkeyH");
5653   Node* data_start  = array_element_address(data, offset, T_BYTE);
5654   assert(data_start, "data is NULL");
5655 
5656   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
5657                                   OptoRuntime::ghash_processBlocks_Type(),
5658                                   stubAddr, stubName, TypePtr::BOTTOM,
5659                                   state_start, subkeyH_start, data_start, len);
5660   return true;
5661 }
5662 
5663 //------------------------------inline_sha_implCompress-----------------------
5664 //
5665 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
5666 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
5667 //
5668 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
5669 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
5670 //
5671 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
5672 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
5673 //
5674 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
5675   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
5676 
5677   Node* sha_obj = argument(0);
5678   Node* src     = argument(1); // type oop
5679   Node* ofs     = argument(2); // type int
5680 
5681   const Type* src_type = src->Value(&_gvn);
5682   const TypeAryPtr* top_src = src_type->isa_aryptr();
5683   if (top_src  == NULL || top_src->klass()  == NULL) {
5684     // failed array check
5685     return false;
5686   }
5687   // Figure out the size and type of the elements we will be copying.
5688   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5689   if (src_elem != T_BYTE) {
5690     return false;
5691   }
5692   // 'src_start' points to src array + offset
5693   Node* src_start = array_element_address(src, ofs, src_elem);
5694   Node* state = NULL;
5695   address stubAddr;
5696   const char *stubName;
5697 
5698   switch(id) {
5699   case vmIntrinsics::_sha_implCompress:
5700     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
5701     state = get_state_from_sha_object(sha_obj);
5702     stubAddr = StubRoutines::sha1_implCompress();
5703     stubName = "sha1_implCompress";
5704     break;
5705   case vmIntrinsics::_sha2_implCompress:
5706     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
5707     state = get_state_from_sha_object(sha_obj);
5708     stubAddr = StubRoutines::sha256_implCompress();
5709     stubName = "sha256_implCompress";
5710     break;
5711   case vmIntrinsics::_sha5_implCompress:
5712     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
5713     state = get_state_from_sha5_object(sha_obj);
5714     stubAddr = StubRoutines::sha512_implCompress();
5715     stubName = "sha512_implCompress";
5716     break;
5717   default:
5718     fatal_unexpected_iid(id);
5719     return false;
5720   }
5721   if (state == NULL) return false;
5722 
5723   // Call the stub.
5724   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
5725                                  stubAddr, stubName, TypePtr::BOTTOM,
5726                                  src_start, state);
5727 
5728   return true;
5729 }
5730 
5731 //------------------------------inline_digestBase_implCompressMB-----------------------
5732 //
5733 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
5734 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
5735 //
5736 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
5737   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
5738          "need SHA1/SHA256/SHA512 instruction support");
5739   assert((uint)predicate < 3, "sanity");
5740   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
5741 
5742   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
5743   Node* src            = argument(1); // byte[] array
5744   Node* ofs            = argument(2); // type int
5745   Node* limit          = argument(3); // type int
5746 
5747   const Type* src_type = src->Value(&_gvn);
5748   const TypeAryPtr* top_src = src_type->isa_aryptr();
5749   if (top_src  == NULL || top_src->klass()  == NULL) {
5750     // failed array check
5751     return false;
5752   }
5753   // Figure out the size and type of the elements we will be copying.
5754   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5755   if (src_elem != T_BYTE) {
5756     return false;
5757   }
5758   // 'src_start' points to src array + offset
5759   Node* src_start = array_element_address(src, ofs, src_elem);
5760 
5761   const char* klass_SHA_name = NULL;
5762   const char* stub_name = NULL;
5763   address     stub_addr = NULL;
5764   bool        long_state = false;
5765 
5766   switch (predicate) {
5767   case 0:
5768     if (UseSHA1Intrinsics) {
5769       klass_SHA_name = "sun/security/provider/SHA";
5770       stub_name = "sha1_implCompressMB";
5771       stub_addr = StubRoutines::sha1_implCompressMB();
5772     }
5773     break;
5774   case 1:
5775     if (UseSHA256Intrinsics) {
5776       klass_SHA_name = "sun/security/provider/SHA2";
5777       stub_name = "sha256_implCompressMB";
5778       stub_addr = StubRoutines::sha256_implCompressMB();
5779     }
5780     break;
5781   case 2:
5782     if (UseSHA512Intrinsics) {
5783       klass_SHA_name = "sun/security/provider/SHA5";
5784       stub_name = "sha512_implCompressMB";
5785       stub_addr = StubRoutines::sha512_implCompressMB();
5786       long_state = true;
5787     }
5788     break;
5789   default:
5790     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
5791   }
5792   if (klass_SHA_name != NULL) {
5793     // get DigestBase klass to lookup for SHA klass
5794     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
5795     assert(tinst != NULL, "digestBase_obj is not instance???");
5796     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
5797 
5798     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
5799     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
5800     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
5801     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
5802   }
5803   return false;
5804 }
5805 //------------------------------inline_sha_implCompressMB-----------------------
5806 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
5807                                                bool long_state, address stubAddr, const char *stubName,
5808                                                Node* src_start, Node* ofs, Node* limit) {
5809   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
5810   const TypeOopPtr* xtype = aklass->as_instance_type();
5811   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
5812   sha_obj = _gvn.transform(sha_obj);
5813 
5814   Node* state;
5815   if (long_state) {
5816     state = get_state_from_sha5_object(sha_obj);
5817   } else {
5818     state = get_state_from_sha_object(sha_obj);
5819   }
5820   if (state == NULL) return false;
5821 
5822   // Call the stub.
5823   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5824                                  OptoRuntime::digestBase_implCompressMB_Type(),
5825                                  stubAddr, stubName, TypePtr::BOTTOM,
5826                                  src_start, state, ofs, limit);
5827   // return ofs (int)
5828   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5829   set_result(result);
5830 
5831   return true;
5832 }
5833 
5834 //------------------------------get_state_from_sha_object-----------------------
5835 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
5836   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
5837   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
5838   if (sha_state == NULL) return (Node *) NULL;
5839 
5840   // now have the array, need to get the start address of the state array
5841   Node* state = array_element_address(sha_state, intcon(0), T_INT);
5842   return state;
5843 }
5844 
5845 //------------------------------get_state_from_sha5_object-----------------------
5846 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
5847   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
5848   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
5849   if (sha_state == NULL) return (Node *) NULL;
5850 
5851   // now have the array, need to get the start address of the state array
5852   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
5853   return state;
5854 }
5855 
5856 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
5857 // Return node representing slow path of predicate check.
5858 // the pseudo code we want to emulate with this predicate is:
5859 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
5860 //
5861 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
5862   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
5863          "need SHA1/SHA256/SHA512 instruction support");
5864   assert((uint)predicate < 3, "sanity");
5865 
5866   // The receiver was checked for NULL already.
5867   Node* digestBaseObj = argument(0);
5868 
5869   // get DigestBase klass for instanceOf check
5870   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
5871   assert(tinst != NULL, "digestBaseObj is null");
5872   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
5873 
5874   const char* klass_SHA_name = NULL;
5875   switch (predicate) {
5876   case 0:
5877     if (UseSHA1Intrinsics) {
5878       // we want to do an instanceof comparison against the SHA class
5879       klass_SHA_name = "sun/security/provider/SHA";
5880     }
5881     break;
5882   case 1:
5883     if (UseSHA256Intrinsics) {
5884       // we want to do an instanceof comparison against the SHA2 class
5885       klass_SHA_name = "sun/security/provider/SHA2";
5886     }
5887     break;
5888   case 2:
5889     if (UseSHA512Intrinsics) {
5890       // we want to do an instanceof comparison against the SHA5 class
5891       klass_SHA_name = "sun/security/provider/SHA5";
5892     }
5893     break;
5894   default:
5895     fatal(err_msg_res("unknown SHA intrinsic predicate: %d", predicate));
5896   }
5897 
5898   ciKlass* klass_SHA = NULL;
5899   if (klass_SHA_name != NULL) {
5900     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
5901   }
5902   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
5903     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
5904     Node* ctrl = control();
5905     set_control(top()); // no intrinsic path
5906     return ctrl;
5907   }
5908   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
5909 
5910   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
5911   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
5912   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
5913   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5914 
5915   return instof_false;  // even if it is NULL
5916 }