1 /*
   2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright 2012, 2014 SAP AG. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 
  27 #include "precompiled.hpp"
  28 #include "asm/assembler.hpp"
  29 #include "asm/macroAssembler.inline.hpp"
  30 #include "interp_masm_ppc_64.hpp"
  31 #include "interpreter/interpreterRuntime.hpp"
  32 #include "prims/jvmtiThreadState.hpp"
  33 
  34 #ifdef PRODUCT
  35 #define BLOCK_COMMENT(str) // nothing
  36 #else
  37 #define BLOCK_COMMENT(str) block_comment(str)
  38 #endif
  39 
  40 void InterpreterMacroAssembler::null_check_throw(Register a, int offset, Register temp_reg) {
  41 #ifdef CC_INTERP
  42   address exception_entry = StubRoutines::throw_NullPointerException_at_call_entry();
  43 #else
  44   address exception_entry = Interpreter::throw_NullPointerException_entry();
  45 #endif
  46   MacroAssembler::null_check_throw(a, offset, temp_reg, exception_entry);
  47 }
  48 
  49 void InterpreterMacroAssembler::branch_to_entry(address entry, Register Rscratch) {
  50   assert(entry, "Entry must have been generated by now");
  51   if (is_within_range_of_b(entry, pc())) {
  52     b(entry);
  53   } else {
  54     load_const_optimized(Rscratch, entry, R0);
  55     mtctr(Rscratch);
  56     bctr();
  57   }
  58 }
  59 
  60 #ifndef CC_INTERP
  61 
  62 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
  63   Register bytecode = R12_scratch2;
  64   if (bcp_incr != 0) {
  65     lbzu(bytecode, bcp_incr, R14_bcp);
  66   } else {
  67     lbz(bytecode, 0, R14_bcp);
  68   }
  69 
  70   dispatch_Lbyte_code(state, bytecode, Interpreter::dispatch_table(state));
  71 }
  72 
  73 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
  74   // Load current bytecode.
  75   Register bytecode = R12_scratch2;
  76   lbz(bytecode, 0, R14_bcp);
  77   dispatch_Lbyte_code(state, bytecode, table);
  78 }
  79 
  80 // Dispatch code executed in the prolog of a bytecode which does not do it's
  81 // own dispatch. The dispatch address is computed and placed in R24_dispatch_addr.
  82 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
  83   Register bytecode = R12_scratch2;
  84   lbz(bytecode, bcp_incr, R14_bcp);
  85 
  86   load_dispatch_table(R24_dispatch_addr, Interpreter::dispatch_table(state));
  87 
  88   sldi(bytecode, bytecode, LogBytesPerWord);
  89   ldx(R24_dispatch_addr, R24_dispatch_addr, bytecode);
  90 }
  91 
  92 // Dispatch code executed in the epilog of a bytecode which does not do it's
  93 // own dispatch. The dispatch address in R24_dispatch_addr is used for the
  94 // dispatch.
  95 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
  96   mtctr(R24_dispatch_addr);
  97   addi(R14_bcp, R14_bcp, bcp_incr);
  98   bctr();
  99 }
 100 
 101 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
 102   assert(scratch_reg != R0, "can't use R0 as scratch_reg here");
 103   if (JvmtiExport::can_pop_frame()) {
 104     Label L;
 105 
 106     // Check the "pending popframe condition" flag in the current thread.
 107     lwz(scratch_reg, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
 108 
 109     // Initiate popframe handling only if it is not already being
 110     // processed. If the flag has the popframe_processing bit set, it
 111     // means that this code is called *during* popframe handling - we
 112     // don't want to reenter.
 113     andi_(R0, scratch_reg, JavaThread::popframe_pending_bit);
 114     beq(CCR0, L);
 115 
 116     andi_(R0, scratch_reg, JavaThread::popframe_processing_bit);
 117     bne(CCR0, L);
 118 
 119     // Call the Interpreter::remove_activation_preserving_args_entry()
 120     // func to get the address of the same-named entrypoint in the
 121     // generated interpreter code.
 122 #if defined(ABI_ELFv2)
 123     call_c(CAST_FROM_FN_PTR(address,
 124                             Interpreter::remove_activation_preserving_args_entry),
 125                             relocInfo::none);
 126 #else
 127     call_c(CAST_FROM_FN_PTR(FunctionDescriptor*,
 128                             Interpreter::remove_activation_preserving_args_entry),
 129            relocInfo::none);
 130 #endif
 131 
 132     // Jump to Interpreter::_remove_activation_preserving_args_entry.
 133     mtctr(R3_RET);
 134     bctr();
 135 
 136     align(32, 12);
 137     bind(L);
 138   }
 139 }
 140 
 141 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
 142   const Register Rthr_state_addr = scratch_reg;
 143   if (JvmtiExport::can_force_early_return()) {
 144     Label Lno_early_ret;
 145     ld(Rthr_state_addr, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
 146     cmpdi(CCR0, Rthr_state_addr, 0);
 147     beq(CCR0, Lno_early_ret);
 148 
 149     lwz(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rthr_state_addr);
 150     cmpwi(CCR0, R0, JvmtiThreadState::earlyret_pending);
 151     bne(CCR0, Lno_early_ret);
 152 
 153     // Jump to Interpreter::_earlyret_entry.
 154     lwz(R3_ARG1, in_bytes(JvmtiThreadState::earlyret_tos_offset()), Rthr_state_addr);
 155     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry));
 156     mtlr(R3_RET);
 157     blr();
 158 
 159     align(32, 12);
 160     bind(Lno_early_ret);
 161   }
 162 }
 163 
 164 void InterpreterMacroAssembler::load_earlyret_value(TosState state, Register Rscratch1) {
 165   const Register RjvmtiState = Rscratch1;
 166   const Register Rscratch2   = R0;
 167 
 168   ld(RjvmtiState, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
 169   li(Rscratch2, 0);
 170 
 171   switch (state) {
 172     case atos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
 173                std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState);
 174                break;
 175     case ltos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
 176                break;
 177     case btos: // fall through
 178     case ctos: // fall through
 179     case stos: // fall through
 180     case itos: lwz(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
 181                break;
 182     case ftos: lfs(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
 183                break;
 184     case dtos: lfd(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
 185                break;
 186     case vtos: break;
 187     default  : ShouldNotReachHere();
 188   }
 189 
 190   // Clean up tos value in the jvmti thread state.
 191   std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState);
 192   // Set tos state field to illegal value.
 193   li(Rscratch2, ilgl);
 194   stw(Rscratch2, in_bytes(JvmtiThreadState::earlyret_tos_offset()), RjvmtiState);
 195 }
 196 
 197 // Common code to dispatch and dispatch_only.
 198 // Dispatch value in Lbyte_code and increment Lbcp.
 199 
 200 void InterpreterMacroAssembler::load_dispatch_table(Register dst, address* table) {
 201   address table_base = (address)Interpreter::dispatch_table((TosState)0);
 202   intptr_t table_offs = (intptr_t)table - (intptr_t)table_base;
 203   if (is_simm16(table_offs)) {
 204     addi(dst, R25_templateTableBase, (int)table_offs);
 205   } else {
 206     load_const_optimized(dst, table, R0);
 207   }
 208 }
 209 
 210 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, Register bytecode, address* table, bool verify) {
 211   if (verify) {
 212     unimplemented("dispatch_Lbyte_code: verify"); // See Sparc Implementation to implement this
 213   }
 214 
 215 #ifdef FAST_DISPATCH
 216   unimplemented("dispatch_Lbyte_code FAST_DISPATCH");
 217 #else
 218   assert_different_registers(bytecode, R11_scratch1);
 219 
 220   // Calc dispatch table address.
 221   load_dispatch_table(R11_scratch1, table);
 222 
 223   sldi(R12_scratch2, bytecode, LogBytesPerWord);
 224   ldx(R11_scratch1, R11_scratch1, R12_scratch2);
 225 
 226   // Jump off!
 227   mtctr(R11_scratch1);
 228   bctr();
 229 #endif
 230 }
 231 
 232 void InterpreterMacroAssembler::load_receiver(Register Rparam_count, Register Rrecv_dst) {
 233   sldi(Rrecv_dst, Rparam_count, Interpreter::logStackElementSize);
 234   ldx(Rrecv_dst, Rrecv_dst, R15_esp);
 235 }
 236 
 237 // helpers for expression stack
 238 
 239 void InterpreterMacroAssembler::pop_i(Register r) {
 240   lwzu(r, Interpreter::stackElementSize, R15_esp);
 241 }
 242 
 243 void InterpreterMacroAssembler::pop_ptr(Register r) {
 244   ldu(r, Interpreter::stackElementSize, R15_esp);
 245 }
 246 
 247 void InterpreterMacroAssembler::pop_l(Register r) {
 248   ld(r, Interpreter::stackElementSize, R15_esp);
 249   addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
 250 }
 251 
 252 void InterpreterMacroAssembler::pop_f(FloatRegister f) {
 253   lfsu(f, Interpreter::stackElementSize, R15_esp);
 254 }
 255 
 256 void InterpreterMacroAssembler::pop_d(FloatRegister f) {
 257   lfd(f, Interpreter::stackElementSize, R15_esp);
 258   addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize);
 259 }
 260 
 261 void InterpreterMacroAssembler::push_i(Register r) {
 262   stw(r, 0, R15_esp);
 263   addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
 264 }
 265 
 266 void InterpreterMacroAssembler::push_ptr(Register r) {
 267   std(r, 0, R15_esp);
 268   addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
 269 }
 270 
 271 void InterpreterMacroAssembler::push_l(Register r) {
 272   std(r, - Interpreter::stackElementSize, R15_esp);
 273   addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
 274 }
 275 
 276 void InterpreterMacroAssembler::push_f(FloatRegister f) {
 277   stfs(f, 0, R15_esp);
 278   addi(R15_esp, R15_esp, - Interpreter::stackElementSize );
 279 }
 280 
 281 void InterpreterMacroAssembler::push_d(FloatRegister f)   {
 282   stfd(f, - Interpreter::stackElementSize, R15_esp);
 283   addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
 284 }
 285 
 286 void InterpreterMacroAssembler::push_2ptrs(Register first, Register second) {
 287   std(first, 0, R15_esp);
 288   std(second, -Interpreter::stackElementSize, R15_esp);
 289   addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize );
 290 }
 291 
 292 void InterpreterMacroAssembler::push_l_pop_d(Register l, FloatRegister d) {
 293   std(l, 0, R15_esp);
 294   lfd(d, 0, R15_esp);
 295 }
 296 
 297 void InterpreterMacroAssembler::push_d_pop_l(FloatRegister d, Register l) {
 298   stfd(d, 0, R15_esp);
 299   ld(l, 0, R15_esp);
 300 }
 301 
 302 void InterpreterMacroAssembler::push(TosState state) {
 303   switch (state) {
 304     case atos: push_ptr();                break;
 305     case btos:
 306     case ctos:
 307     case stos:
 308     case itos: push_i();                  break;
 309     case ltos: push_l();                  break;
 310     case ftos: push_f();                  break;
 311     case dtos: push_d();                  break;
 312     case vtos: /* nothing to do */        break;
 313     default  : ShouldNotReachHere();
 314   }
 315 }
 316 
 317 void InterpreterMacroAssembler::pop(TosState state) {
 318   switch (state) {
 319     case atos: pop_ptr();            break;
 320     case btos:
 321     case ctos:
 322     case stos:
 323     case itos: pop_i();              break;
 324     case ltos: pop_l();              break;
 325     case ftos: pop_f();              break;
 326     case dtos: pop_d();              break;
 327     case vtos: /* nothing to do */   break;
 328     default  : ShouldNotReachHere();
 329   }
 330   verify_oop(R17_tos, state);
 331 }
 332 
 333 void InterpreterMacroAssembler::empty_expression_stack() {
 334   addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
 335 }
 336 
 337 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(int         bcp_offset,
 338                                                           Register    Rdst,
 339                                                           signedOrNot is_signed) {
 340 #if defined(VM_LITTLE_ENDIAN)
 341   if (bcp_offset) {
 342     load_const_optimized(Rdst, bcp_offset);
 343     lhbrx(Rdst, R14_bcp, Rdst);
 344   } else {
 345     lhbrx(Rdst, R14_bcp);
 346   }
 347   if (is_signed == Signed) {
 348     extsh(Rdst, Rdst);
 349   }
 350 #else
 351   // Read Java big endian format.
 352   if (is_signed == Signed) {
 353     lha(Rdst, bcp_offset, R14_bcp);
 354   } else {
 355     lhz(Rdst, bcp_offset, R14_bcp);
 356   }
 357 #endif
 358 }
 359 
 360 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(int         bcp_offset,
 361                                                           Register    Rdst,
 362                                                           signedOrNot is_signed) {
 363 #if defined(VM_LITTLE_ENDIAN)
 364   if (bcp_offset) {
 365     load_const_optimized(Rdst, bcp_offset);
 366     lwbrx(Rdst, R14_bcp, Rdst);
 367   } else {
 368     lwbrx(Rdst, R14_bcp);
 369   }
 370   if (is_signed == Signed) {
 371     extsw(Rdst, Rdst);
 372   }
 373 #else
 374   // Read Java big endian format.
 375   if (bcp_offset & 3) { // Offset unaligned?
 376     load_const_optimized(Rdst, bcp_offset);
 377     if (is_signed == Signed) {
 378       lwax(Rdst, R14_bcp, Rdst);
 379     } else {
 380       lwzx(Rdst, R14_bcp, Rdst);
 381     }
 382   } else {
 383     if (is_signed == Signed) {
 384       lwa(Rdst, bcp_offset, R14_bcp);
 385     } else {
 386       lwz(Rdst, bcp_offset, R14_bcp);
 387     }
 388   }
 389 #endif
 390 }
 391 
 392 
 393 // Load the constant pool cache index from the bytecode stream.
 394 //
 395 // Kills / writes:
 396 //   - Rdst, Rscratch
 397 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register Rdst, int bcp_offset, size_t index_size) {
 398   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 399   // Cache index is always in the native format, courtesy of Rewriter.
 400   if (index_size == sizeof(u2)) {
 401     lhz(Rdst, bcp_offset, R14_bcp);
 402   } else if (index_size == sizeof(u4)) {
 403     if (bcp_offset & 3) {
 404       load_const_optimized(Rdst, bcp_offset);
 405       lwax(Rdst, R14_bcp, Rdst);
 406     } else {
 407       lwa(Rdst, bcp_offset, R14_bcp);
 408     }
 409     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 410     nand(Rdst, Rdst, Rdst); // convert to plain index
 411   } else if (index_size == sizeof(u1)) {
 412     lbz(Rdst, bcp_offset, R14_bcp);
 413   } else {
 414     ShouldNotReachHere();
 415   }
 416   // Rdst now contains cp cache index.
 417 }
 418 
 419 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, int bcp_offset, size_t index_size) {
 420   get_cache_index_at_bcp(cache, bcp_offset, index_size);
 421   sldi(cache, cache, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord));
 422   add(cache, R27_constPoolCache, cache);
 423 }
 424 
 425 // Load 4-byte signed or unsigned integer in Java format (that is, big-endian format)
 426 // from (Rsrc)+offset.
 427 void InterpreterMacroAssembler::get_u4(Register Rdst, Register Rsrc, int offset,
 428                                        signedOrNot is_signed) {
 429 #if defined(VM_LITTLE_ENDIAN)
 430   if (offset) {
 431     load_const_optimized(Rdst, offset);
 432     lwbrx(Rdst, Rdst, Rsrc);
 433   } else {
 434     lwbrx(Rdst, Rsrc);
 435   }
 436   if (is_signed == Signed) {
 437     extsw(Rdst, Rdst);
 438   }
 439 #else
 440   if (is_signed == Signed) {
 441     lwa(Rdst, offset, Rsrc);
 442   } else {
 443     lwz(Rdst, offset, Rsrc);
 444   }
 445 #endif
 446 }
 447 
 448 // Load object from cpool->resolved_references(index).
 449 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index) {
 450   assert_different_registers(result, index);
 451   get_constant_pool(result);
 452 
 453   // Convert from field index to resolved_references() index and from
 454   // word index to byte offset. Since this is a java object, it can be compressed.
 455   Register tmp = index;  // reuse
 456   sldi(tmp, index, LogBytesPerHeapOop);
 457   // Load pointer for resolved_references[] objArray.
 458   ld(result, ConstantPool::resolved_references_offset_in_bytes(), result);
 459   // JNIHandles::resolve(result)
 460   ld(result, 0, result);
 461 #ifdef ASSERT
 462   Label index_ok;
 463   lwa(R0, arrayOopDesc::length_offset_in_bytes(), result);
 464   sldi(R0, R0, LogBytesPerHeapOop);
 465   cmpd(CCR0, tmp, R0);
 466   blt(CCR0, index_ok);
 467   stop("resolved reference index out of bounds", 0x09256);
 468   bind(index_ok);
 469 #endif
 470   // Add in the index.
 471   add(result, tmp, result);
 472   load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
 473 }
 474 
 475 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
 476 // a subtype of super_klass. Blows registers Rsub_klass, tmp1, tmp2.
 477 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Register Rsuper_klass, Register Rtmp1,
 478                                                   Register Rtmp2, Register Rtmp3, Label &ok_is_subtype) {
 479   // Profile the not-null value's klass.
 480   profile_typecheck(Rsub_klass, Rtmp1, Rtmp2);
 481   check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype);
 482   profile_typecheck_failed(Rtmp1, Rtmp2);
 483 }
 484 
 485 void InterpreterMacroAssembler::generate_stack_overflow_check_with_compare_and_throw(Register Rmem_frame_size, Register Rscratch1) {
 486   Label done;
 487   sub(Rmem_frame_size, R1_SP, Rmem_frame_size);
 488   ld(Rscratch1, thread_(stack_overflow_limit));
 489   cmpld(CCR0/*is_stack_overflow*/, Rmem_frame_size, Rscratch1);
 490   bgt(CCR0/*is_stack_overflow*/, done);
 491 
 492   // Load target address of the runtime stub.
 493   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "generated in wrong order");
 494   load_const_optimized(Rscratch1, (StubRoutines::throw_StackOverflowError_entry()), R0);
 495   mtctr(Rscratch1);
 496   // Restore caller_sp.
 497 #ifdef ASSERT
 498   ld(Rscratch1, 0, R1_SP);
 499   ld(R0, 0, R21_sender_SP);
 500   cmpd(CCR0, R0, Rscratch1);
 501   asm_assert_eq("backlink", 0x547);
 502 #endif // ASSERT
 503   mr(R1_SP, R21_sender_SP);
 504   bctr();
 505 
 506   align(32, 12);
 507   bind(done);
 508 }
 509 
 510 // Separate these two to allow for delay slot in middle.
 511 // These are used to do a test and full jump to exception-throwing code.
 512 
 513 // Check that index is in range for array, then shift index by index_shift,
 514 // and put arrayOop + shifted_index into res.
 515 // Note: res is still shy of address by array offset into object.
 516 
 517 void InterpreterMacroAssembler::index_check_without_pop(Register Rarray, Register Rindex, int index_shift, Register Rtmp, Register Rres) {
 518   // Check that index is in range for array, then shift index by index_shift,
 519   // and put arrayOop + shifted_index into res.
 520   // Note: res is still shy of address by array offset into object.
 521   // Kills:
 522   //   - Rindex
 523   // Writes:
 524   //   - Rres: Address that corresponds to the array index if check was successful.
 525   verify_oop(Rarray);
 526   const Register Rlength   = R0;
 527   const Register RsxtIndex = Rtmp;
 528   Label LisNull, LnotOOR;
 529 
 530   // Array nullcheck
 531   if (!ImplicitNullChecks) {
 532     cmpdi(CCR0, Rarray, 0);
 533     beq(CCR0, LisNull);
 534   } else {
 535     null_check_throw(Rarray, arrayOopDesc::length_offset_in_bytes(), /*temp*/RsxtIndex);
 536   }
 537 
 538   // Rindex might contain garbage in upper bits (remember that we don't sign extend
 539   // during integer arithmetic operations). So kill them and put value into same register
 540   // where ArrayIndexOutOfBounds would expect the index in.
 541   rldicl(RsxtIndex, Rindex, 0, 32); // zero extend 32 bit -> 64 bit
 542 
 543   // Index check
 544   lwz(Rlength, arrayOopDesc::length_offset_in_bytes(), Rarray);
 545   cmplw(CCR0, Rindex, Rlength);
 546   sldi(RsxtIndex, RsxtIndex, index_shift);
 547   blt(CCR0, LnotOOR);
 548   load_dispatch_table(Rtmp, (address*)Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
 549   mtctr(Rtmp);
 550   bctr();
 551 
 552   if (!ImplicitNullChecks) {
 553     bind(LisNull);
 554     load_dispatch_table(Rtmp, (address*)Interpreter::_throw_NullPointerException_entry);
 555     mtctr(Rtmp);
 556     bctr();
 557   }
 558 
 559   align(32, 16);
 560   bind(LnotOOR);
 561 
 562   // Calc address
 563   add(Rres, RsxtIndex, Rarray);
 564 }
 565 
 566 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
 567   // pop array
 568   pop_ptr(array);
 569 
 570   // check array
 571   index_check_without_pop(array, index, index_shift, tmp, res);
 572 }
 573 
 574 void InterpreterMacroAssembler::get_const(Register Rdst) {
 575   ld(Rdst, in_bytes(Method::const_offset()), R19_method);
 576 }
 577 
 578 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
 579   get_const(Rdst);
 580   ld(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
 581 }
 582 
 583 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
 584   get_constant_pool(Rdst);
 585   ld(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
 586 }
 587 
 588 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
 589   get_constant_pool(Rcpool);
 590   ld(Rtags, ConstantPool::tags_offset_in_bytes(), Rcpool);
 591 }
 592 
 593 // Unlock if synchronized method.
 594 //
 595 // Unlock the receiver if this is a synchronized method.
 596 // Unlock any Java monitors from synchronized blocks.
 597 //
 598 // If there are locked Java monitors
 599 //   If throw_monitor_exception
 600 //     throws IllegalMonitorStateException
 601 //   Else if install_monitor_exception
 602 //     installs IllegalMonitorStateException
 603 //   Else
 604 //     no error processing
 605 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
 606                                                               bool throw_monitor_exception,
 607                                                               bool install_monitor_exception) {
 608   Label Lunlocked, Lno_unlock;
 609   {
 610     Register Rdo_not_unlock_flag = R11_scratch1;
 611     Register Raccess_flags       = R12_scratch2;
 612 
 613     // Check if synchronized method or unlocking prevented by
 614     // JavaThread::do_not_unlock_if_synchronized flag.
 615     lbz(Rdo_not_unlock_flag, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
 616     lwz(Raccess_flags, in_bytes(Method::access_flags_offset()), R19_method);
 617     li(R0, 0);
 618     stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); // reset flag
 619 
 620     push(state);
 621 
 622     // Skip if we don't have to unlock.
 623     rldicl_(R0, Raccess_flags, 64-JVM_ACC_SYNCHRONIZED_BIT, 63); // Extract bit and compare to 0.
 624     beq(CCR0, Lunlocked);
 625 
 626     cmpwi(CCR0, Rdo_not_unlock_flag, 0);
 627     bne(CCR0, Lno_unlock);
 628   }
 629 
 630   // Unlock
 631   {
 632     Register Rmonitor_base = R11_scratch1;
 633 
 634     Label Lunlock;
 635     // If it's still locked, everything is ok, unlock it.
 636     ld(Rmonitor_base, 0, R1_SP);
 637     addi(Rmonitor_base, Rmonitor_base, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base
 638 
 639     ld(R0, BasicObjectLock::obj_offset_in_bytes(), Rmonitor_base);
 640     cmpdi(CCR0, R0, 0);
 641     bne(CCR0, Lunlock);
 642 
 643     // If it's already unlocked, throw exception.
 644     if (throw_monitor_exception) {
 645       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 646       should_not_reach_here();
 647     } else {
 648       if (install_monitor_exception) {
 649         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
 650         b(Lunlocked);
 651       }
 652     }
 653 
 654     bind(Lunlock);
 655     unlock_object(Rmonitor_base);
 656   }
 657 
 658   // Check that all other monitors are unlocked. Throw IllegelMonitorState exception if not.
 659   bind(Lunlocked);
 660   {
 661     Label Lexception, Lrestart;
 662     Register Rcurrent_obj_addr = R11_scratch1;
 663     const int delta = frame::interpreter_frame_monitor_size_in_bytes();
 664     assert((delta & LongAlignmentMask) == 0, "sizeof BasicObjectLock must be even number of doublewords");
 665 
 666     bind(Lrestart);
 667     // Set up search loop: Calc num of iterations.
 668     {
 669       Register Riterations = R12_scratch2;
 670       Register Rmonitor_base = Rcurrent_obj_addr;
 671       ld(Rmonitor_base, 0, R1_SP);
 672       addi(Rmonitor_base, Rmonitor_base, - frame::ijava_state_size);  // Monitor base
 673 
 674       subf_(Riterations, R26_monitor, Rmonitor_base);
 675       ble(CCR0, Lno_unlock);
 676 
 677       addi(Rcurrent_obj_addr, Rmonitor_base, BasicObjectLock::obj_offset_in_bytes() - frame::interpreter_frame_monitor_size_in_bytes());
 678       // Check if any monitor is on stack, bail out if not
 679       srdi(Riterations, Riterations, exact_log2(delta));
 680       mtctr(Riterations);
 681     }
 682 
 683     // The search loop: Look for locked monitors.
 684     {
 685       const Register Rcurrent_obj = R0;
 686       Label Lloop;
 687 
 688       ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
 689       addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
 690       bind(Lloop);
 691 
 692       // Check if current entry is used.
 693       cmpdi(CCR0, Rcurrent_obj, 0);
 694       bne(CCR0, Lexception);
 695       // Preload next iteration's compare value.
 696       ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
 697       addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta);
 698       bdnz(Lloop);
 699     }
 700     // Fell through: Everything's unlocked => finish.
 701     b(Lno_unlock);
 702 
 703     // An object is still locked => need to throw exception.
 704     bind(Lexception);
 705     if (throw_monitor_exception) {
 706       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
 707       should_not_reach_here();
 708     } else {
 709       // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
 710       // Unlock does not block, so don't have to worry about the frame.
 711       Register Rmonitor_addr = R11_scratch1;
 712       addi(Rmonitor_addr, Rcurrent_obj_addr, -BasicObjectLock::obj_offset_in_bytes() + delta);
 713       unlock_object(Rmonitor_addr);
 714       if (install_monitor_exception) {
 715         call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
 716       }
 717       b(Lrestart);
 718     }
 719   }
 720 
 721   align(32, 12);
 722   bind(Lno_unlock);
 723   pop(state);
 724 }
 725 
 726 // Support function for remove_activation & Co.
 727 void InterpreterMacroAssembler::merge_frames(Register Rsender_sp, Register return_pc, Register Rscratch1, Register Rscratch2) {
 728   // Pop interpreter frame.
 729   ld(Rscratch1, 0, R1_SP); // *SP
 730   ld(Rsender_sp, _ijava_state_neg(sender_sp), Rscratch1); // top_frame_sp
 731   ld(Rscratch2, 0, Rscratch1); // **SP
 732 #ifdef ASSERT
 733   {
 734     Label Lok;
 735     ld(R0, _ijava_state_neg(ijava_reserved), Rscratch1);
 736     cmpdi(CCR0, R0, 0x5afe);
 737     beq(CCR0, Lok);
 738     stop("frame corrupted (remove activation)", 0x5afe);
 739     bind(Lok);
 740   }
 741 #endif
 742   if (return_pc!=noreg) {
 743     ld(return_pc, _abi(lr), Rscratch1); // LR
 744   }
 745 
 746   // Merge top frames.
 747   subf(Rscratch1, R1_SP, Rsender_sp); // top_frame_sp - SP
 748   stdux(Rscratch2, R1_SP, Rscratch1); // atomically set *(SP = top_frame_sp) = **SP
 749 }
 750 
 751 // Remove activation.
 752 //
 753 // Unlock the receiver if this is a synchronized method.
 754 // Unlock any Java monitors from synchronized blocks.
 755 // Remove the activation from the stack.
 756 //
 757 // If there are locked Java monitors
 758 //    If throw_monitor_exception
 759 //       throws IllegalMonitorStateException
 760 //    Else if install_monitor_exception
 761 //       installs IllegalMonitorStateException
 762 //    Else
 763 //       no error processing
 764 void InterpreterMacroAssembler::remove_activation(TosState state,
 765                                                   bool throw_monitor_exception,
 766                                                   bool install_monitor_exception) {
 767   unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
 768 
 769   // Save result (push state before jvmti call and pop it afterwards) and notify jvmti.
 770   notify_method_exit(false, state, NotifyJVMTI, true);
 771 
 772   verify_oop(R17_tos, state);
 773   verify_thread();
 774 
 775   merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
 776   mtlr(R0);
 777 }
 778 
 779 #endif // !CC_INTERP
 780 
 781 // Lock object
 782 //
 783 // Registers alive
 784 //   monitor - Address of the BasicObjectLock to be used for locking,
 785 //             which must be initialized with the object to lock.
 786 //   object  - Address of the object to be locked.
 787 //
 788 void InterpreterMacroAssembler::lock_object(Register monitor, Register object) {
 789   if (UseHeavyMonitors) {
 790     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 791             monitor, /*check_for_exceptions=*/true CC_INTERP_ONLY(&& false));
 792   } else {
 793     // template code:
 794     //
 795     // markOop displaced_header = obj->mark().set_unlocked();
 796     // monitor->lock()->set_displaced_header(displaced_header);
 797     // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
 798     //   // We stored the monitor address into the object's mark word.
 799     // } else if (THREAD->is_lock_owned((address)displaced_header))
 800     //   // Simple recursive case.
 801     //   monitor->lock()->set_displaced_header(NULL);
 802     // } else {
 803     //   // Slow path.
 804     //   InterpreterRuntime::monitorenter(THREAD, monitor);
 805     // }
 806 
 807     const Register displaced_header = R7_ARG5;
 808     const Register object_mark_addr = R8_ARG6;
 809     const Register current_header   = R9_ARG7;
 810     const Register tmp              = R10_ARG8;
 811 
 812     Label done;
 813     Label cas_failed, slow_case;
 814 
 815     assert_different_registers(displaced_header, object_mark_addr, current_header, tmp);
 816 
 817     // markOop displaced_header = obj->mark().set_unlocked();
 818 
 819     // Load markOop from object into displaced_header.
 820     ld(displaced_header, oopDesc::mark_offset_in_bytes(), object);
 821 
 822     if (UseBiasedLocking) {
 823       biased_locking_enter(CCR0, object, displaced_header, tmp, current_header, done, &slow_case);
 824     }
 825 
 826     // Set displaced_header to be (markOop of object | UNLOCK_VALUE).
 827     ori(displaced_header, displaced_header, markOopDesc::unlocked_value);
 828 
 829     // monitor->lock()->set_displaced_header(displaced_header);
 830 
 831     // Initialize the box (Must happen before we update the object mark!).
 832     std(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
 833         BasicLock::displaced_header_offset_in_bytes(), monitor);
 834 
 835     // if (Atomic::cmpxchg_ptr(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
 836 
 837     // Store stack address of the BasicObjectLock (this is monitor) into object.
 838     addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
 839 
 840     // Must fence, otherwise, preceding store(s) may float below cmpxchg.
 841     // CmpxchgX sets CCR0 to cmpX(current, displaced).
 842     fence(); // TODO: replace by MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq ?
 843     cmpxchgd(/*flag=*/CCR0,
 844              /*current_value=*/current_header,
 845              /*compare_value=*/displaced_header, /*exchange_value=*/monitor,
 846              /*where=*/object_mark_addr,
 847              MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
 848              MacroAssembler::cmpxchgx_hint_acquire_lock(),
 849              noreg,
 850              &cas_failed);
 851 
 852     // If the compare-and-exchange succeeded, then we found an unlocked
 853     // object and we have now locked it.
 854     b(done);
 855     bind(cas_failed);
 856 
 857     // } else if (THREAD->is_lock_owned((address)displaced_header))
 858     //   // Simple recursive case.
 859     //   monitor->lock()->set_displaced_header(NULL);
 860 
 861     // We did not see an unlocked object so try the fast recursive case.
 862 
 863     // Check if owner is self by comparing the value in the markOop of object
 864     // (current_header) with the stack pointer.
 865     sub(current_header, current_header, R1_SP);
 866 
 867     assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
 868     load_const_optimized(tmp,
 869                          (address) (~(os::vm_page_size()-1) |
 870                                     markOopDesc::lock_mask_in_place));
 871 
 872     and_(R0/*==0?*/, current_header, tmp);
 873     // If condition is true we are done and hence we can store 0 in the displaced
 874     // header indicating it is a recursive lock.
 875     bne(CCR0, slow_case);
 876     release();
 877     std(R0/*==0!*/, BasicObjectLock::lock_offset_in_bytes() +
 878         BasicLock::displaced_header_offset_in_bytes(), monitor);
 879     b(done);
 880 
 881     // } else {
 882     //   // Slow path.
 883     //   InterpreterRuntime::monitorenter(THREAD, monitor);
 884 
 885     // None of the above fast optimizations worked so we have to get into the
 886     // slow case of monitor enter.
 887     bind(slow_case);
 888     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 889             monitor, /*check_for_exceptions=*/true CC_INTERP_ONLY(&& false));
 890     // }
 891     align(32, 12);
 892     bind(done);
 893   }
 894 }
 895 
 896 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
 897 //
 898 // Registers alive
 899 //   monitor - Address of the BasicObjectLock to be used for locking,
 900 //             which must be initialized with the object to lock.
 901 //
 902 // Throw IllegalMonitorException if object is not locked by current thread.
 903 void InterpreterMacroAssembler::unlock_object(Register monitor, bool check_for_exceptions) {
 904   if (UseHeavyMonitors) {
 905     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 906             monitor, check_for_exceptions CC_INTERP_ONLY(&& false));
 907   } else {
 908 
 909     // template code:
 910     //
 911     // if ((displaced_header = monitor->displaced_header()) == NULL) {
 912     //   // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL.
 913     //   monitor->set_obj(NULL);
 914     // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
 915     //   // We swapped the unlocked mark in displaced_header into the object's mark word.
 916     //   monitor->set_obj(NULL);
 917     // } else {
 918     //   // Slow path.
 919     //   InterpreterRuntime::monitorexit(THREAD, monitor);
 920     // }
 921 
 922     const Register object           = R7_ARG5;
 923     const Register displaced_header = R8_ARG6;
 924     const Register object_mark_addr = R9_ARG7;
 925     const Register current_header   = R10_ARG8;
 926 
 927     Label free_slot;
 928     Label slow_case;
 929 
 930     assert_different_registers(object, displaced_header, object_mark_addr, current_header);
 931 
 932     if (UseBiasedLocking) {
 933       // The object address from the monitor is in object.
 934       ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor);
 935       assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
 936       biased_locking_exit(CCR0, object, displaced_header, free_slot);
 937     }
 938 
 939     // Test first if we are in the fast recursive case.
 940     ld(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
 941            BasicLock::displaced_header_offset_in_bytes(), monitor);
 942 
 943     // If the displaced header is zero, we have a recursive unlock.
 944     cmpdi(CCR0, displaced_header, 0);
 945     beq(CCR0, free_slot); // recursive unlock
 946 
 947     // } else if (Atomic::cmpxchg_ptr(displaced_header, obj->mark_addr(), monitor) == monitor) {
 948     //   // We swapped the unlocked mark in displaced_header into the object's mark word.
 949     //   monitor->set_obj(NULL);
 950 
 951     // If we still have a lightweight lock, unlock the object and be done.
 952 
 953     // The object address from the monitor is in object.
 954     if (!UseBiasedLocking) { ld(object, BasicObjectLock::obj_offset_in_bytes(), monitor); }
 955     addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes());
 956 
 957     // We have the displaced header in displaced_header. If the lock is still
 958     // lightweight, it will contain the monitor address and we'll store the
 959     // displaced header back into the object's mark word.
 960     // CmpxchgX sets CCR0 to cmpX(current, monitor).
 961     cmpxchgd(/*flag=*/CCR0,
 962              /*current_value=*/current_header,
 963              /*compare_value=*/monitor, /*exchange_value=*/displaced_header,
 964              /*where=*/object_mark_addr,
 965              MacroAssembler::MemBarRel,
 966              MacroAssembler::cmpxchgx_hint_release_lock(),
 967              noreg,
 968              &slow_case);
 969     b(free_slot);
 970 
 971     // } else {
 972     //   // Slow path.
 973     //   InterpreterRuntime::monitorexit(THREAD, monitor);
 974 
 975     // The lock has been converted into a heavy lock and hence
 976     // we need to get into the slow case.
 977     bind(slow_case);
 978     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 979             monitor, check_for_exceptions CC_INTERP_ONLY(&& false));
 980     // }
 981 
 982     Label done;
 983     b(done); // Monitor register may be overwritten! Runtime has already freed the slot.
 984 
 985     // Exchange worked, do monitor->set_obj(NULL);
 986     align(32, 12);
 987     bind(free_slot);
 988     li(R0, 0);
 989     std(R0, BasicObjectLock::obj_offset_in_bytes(), monitor);
 990     bind(done);
 991   }
 992 }
 993 
 994 #ifndef CC_INTERP
 995 
 996 // Load compiled (i2c) or interpreter entry when calling from interpreted and
 997 // do the call. Centralized so that all interpreter calls will do the same actions.
 998 // If jvmti single stepping is on for a thread we must not call compiled code.
 999 //
1000 // Input:
1001 //   - Rtarget_method: method to call
1002 //   - Rret_addr:      return address
1003 //   - 2 scratch regs
1004 //
1005 void InterpreterMacroAssembler::call_from_interpreter(Register Rtarget_method, Register Rret_addr, Register Rscratch1, Register Rscratch2) {
1006   assert_different_registers(Rscratch1, Rscratch2, Rtarget_method, Rret_addr);
1007   // Assume we want to go compiled if available.
1008   const Register Rtarget_addr = Rscratch1;
1009   const Register Rinterp_only = Rscratch2;
1010 
1011   ld(Rtarget_addr, in_bytes(Method::from_interpreted_offset()), Rtarget_method);
1012 
1013   if (JvmtiExport::can_post_interpreter_events()) {
1014     lwz(Rinterp_only, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
1015 
1016     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
1017     // compiled code in threads for which the event is enabled. Check here for
1018     // interp_only_mode if these events CAN be enabled.
1019     Label done;
1020     verify_thread();
1021     cmpwi(CCR0, Rinterp_only, 0);
1022     beq(CCR0, done);
1023     ld(Rtarget_addr, in_bytes(Method::interpreter_entry_offset()), Rtarget_method);
1024     align(32, 12);
1025     bind(done);
1026   }
1027 
1028 #ifdef ASSERT
1029   {
1030     Label Lok;
1031     cmpdi(CCR0, Rtarget_addr, 0);
1032     bne(CCR0, Lok);
1033     stop("null entry point");
1034     bind(Lok);
1035   }
1036 #endif // ASSERT
1037 
1038   mr(R21_sender_SP, R1_SP);
1039 
1040   // Calc a precise SP for the call. The SP value we calculated in
1041   // generate_fixed_frame() is based on the max_stack() value, so we would waste stack space
1042   // if esp is not max. Also, the i2c adapter extends the stack space without restoring
1043   // our pre-calced value, so repeating calls via i2c would result in stack overflow.
1044   // Since esp already points to an empty slot, we just have to sub 1 additional slot
1045   // to meet the abi scratch requirements.
1046   // The max_stack pointer will get restored by means of the GR_Lmax_stack local in
1047   // the return entry of the interpreter.
1048   addi(Rscratch2, R15_esp, Interpreter::stackElementSize - frame::abi_reg_args_size);
1049   clrrdi(Rscratch2, Rscratch2, exact_log2(frame::alignment_in_bytes)); // round towards smaller address
1050   resize_frame_absolute(Rscratch2, Rscratch2, R0);
1051 
1052   mr_if_needed(R19_method, Rtarget_method);
1053   mtctr(Rtarget_addr);
1054   mtlr(Rret_addr);
1055 
1056   save_interpreter_state(Rscratch2);
1057 #ifdef ASSERT
1058   ld(Rscratch1, _ijava_state_neg(top_frame_sp), Rscratch2); // Rscratch2 contains fp
1059   cmpd(CCR0, R21_sender_SP, Rscratch1);
1060   asm_assert_eq("top_frame_sp incorrect", 0x951);
1061 #endif
1062 
1063   bctr();
1064 }
1065 
1066 // Set the method data pointer for the current bcp.
1067 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1068   assert(ProfileInterpreter, "must be profiling interpreter");
1069   Label get_continue;
1070   ld(R28_mdx, in_bytes(Method::method_data_offset()), R19_method);
1071   test_method_data_pointer(get_continue);
1072   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R19_method, R14_bcp);
1073 
1074   addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
1075   add(R28_mdx, R28_mdx, R3_RET);
1076   bind(get_continue);
1077 }
1078 
1079 // Test ImethodDataPtr. If it is null, continue at the specified label.
1080 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
1081   assert(ProfileInterpreter, "must be profiling interpreter");
1082   cmpdi(CCR0, R28_mdx, 0);
1083   beq(CCR0, zero_continue);
1084 }
1085 
1086 void InterpreterMacroAssembler::verify_method_data_pointer() {
1087   assert(ProfileInterpreter, "must be profiling interpreter");
1088 #ifdef ASSERT
1089   Label verify_continue;
1090   test_method_data_pointer(verify_continue);
1091 
1092   // If the mdp is valid, it will point to a DataLayout header which is
1093   // consistent with the bcp. The converse is highly probable also.
1094   lhz(R11_scratch1, in_bytes(DataLayout::bci_offset()), R28_mdx);
1095   ld(R12_scratch2, in_bytes(Method::const_offset()), R19_method);
1096   addi(R11_scratch1, R11_scratch1, in_bytes(ConstMethod::codes_offset()));
1097   add(R11_scratch1, R12_scratch2, R12_scratch2);
1098   cmpd(CCR0, R11_scratch1, R14_bcp);
1099   beq(CCR0, verify_continue);
1100 
1101   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp ), R19_method, R14_bcp, R28_mdx);
1102 
1103   bind(verify_continue);
1104 #endif
1105 }
1106 
1107 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
1108                                                                 Register Rscratch,
1109                                                                 Label &profile_continue) {
1110   assert(ProfileInterpreter, "must be profiling interpreter");
1111   // Control will flow to "profile_continue" if the counter is less than the
1112   // limit or if we call profile_method().
1113   Label done;
1114 
1115   // If no method data exists, and the counter is high enough, make one.
1116   int ipl_offs = load_const_optimized(Rscratch, &InvocationCounter::InterpreterProfileLimit, R0, true);
1117   lwz(Rscratch, ipl_offs, Rscratch);
1118 
1119   cmpdi(CCR0, R28_mdx, 0);
1120   // Test to see if we should create a method data oop.
1121   cmpd(CCR1, Rscratch /* InterpreterProfileLimit */, invocation_count);
1122   bne(CCR0, done);
1123   bge(CCR1, profile_continue);
1124 
1125   // Build it now.
1126   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1127   set_method_data_pointer_for_bcp();
1128   b(profile_continue);
1129 
1130   align(32, 12);
1131   bind(done);
1132 }
1133 
1134 void InterpreterMacroAssembler::test_backedge_count_for_osr(Register backedge_count, Register branch_bcp, Register Rtmp) {
1135   assert_different_registers(backedge_count, Rtmp, branch_bcp);
1136   assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
1137 
1138   Label did_not_overflow;
1139   Label overflow_with_error;
1140 
1141   int ibbl_offs = load_const_optimized(Rtmp, &InvocationCounter::InterpreterBackwardBranchLimit, R0, true);
1142   lwz(Rtmp, ibbl_offs, Rtmp);
1143   cmpw(CCR0, backedge_count, Rtmp);
1144 
1145   blt(CCR0, did_not_overflow);
1146 
1147   // When ProfileInterpreter is on, the backedge_count comes from the
1148   // methodDataOop, which value does not get reset on the call to
1149   // frequency_counter_overflow(). To avoid excessive calls to the overflow
1150   // routine while the method is being compiled, add a second test to make sure
1151   // the overflow function is called only once every overflow_frequency.
1152   if (ProfileInterpreter) {
1153     const int overflow_frequency = 1024;
1154     li(Rtmp, overflow_frequency-1);
1155     andr(Rtmp, Rtmp, backedge_count);
1156     cmpwi(CCR0, Rtmp, 0);
1157     bne(CCR0, did_not_overflow);
1158   }
1159 
1160   // Overflow in loop, pass branch bytecode.
1161   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, true);
1162 
1163   // Was an OSR adapter generated?
1164   // O0 = osr nmethod
1165   cmpdi(CCR0, R3_RET, 0);
1166   beq(CCR0, overflow_with_error);
1167 
1168   // Has the nmethod been invalidated already?
1169   lwz(Rtmp, nmethod::entry_bci_offset(), R3_RET);
1170   cmpwi(CCR0, Rtmp, InvalidOSREntryBci);
1171   beq(CCR0, overflow_with_error);
1172 
1173   // Migrate the interpreter frame off of the stack.
1174   // We can use all registers because we will not return to interpreter from this point.
1175 
1176   // Save nmethod.
1177   const Register osr_nmethod = R31;
1178   mr(osr_nmethod, R3_RET);
1179   set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1);
1180   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread);
1181   reset_last_Java_frame();
1182   // OSR buffer is in ARG1
1183 
1184   // Remove the interpreter frame.
1185   merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1186 
1187   // Jump to the osr code.
1188   ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod);
1189   mtlr(R0);
1190   mtctr(R11_scratch1);
1191   bctr();
1192 
1193   align(32, 12);
1194   bind(overflow_with_error);
1195   bind(did_not_overflow);
1196 }
1197 
1198 // Store a value at some constant offset from the method data pointer.
1199 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
1200   assert(ProfileInterpreter, "must be profiling interpreter");
1201 
1202   std(value, constant, R28_mdx);
1203 }
1204 
1205 // Increment the value at some constant offset from the method data pointer.
1206 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
1207                                                       Register counter_addr,
1208                                                       Register Rbumped_count,
1209                                                       bool decrement) {
1210   // Locate the counter at a fixed offset from the mdp:
1211   addi(counter_addr, R28_mdx, constant);
1212   increment_mdp_data_at(counter_addr, Rbumped_count, decrement);
1213 }
1214 
1215 // Increment the value at some non-fixed (reg + constant) offset from
1216 // the method data pointer.
1217 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
1218                                                       int constant,
1219                                                       Register scratch,
1220                                                       Register Rbumped_count,
1221                                                       bool decrement) {
1222   // Add the constant to reg to get the offset.
1223   add(scratch, R28_mdx, reg);
1224   // Then calculate the counter address.
1225   addi(scratch, scratch, constant);
1226   increment_mdp_data_at(scratch, Rbumped_count, decrement);
1227 }
1228 
1229 void InterpreterMacroAssembler::increment_mdp_data_at(Register counter_addr,
1230                                                       Register Rbumped_count,
1231                                                       bool decrement) {
1232   assert(ProfileInterpreter, "must be profiling interpreter");
1233 
1234   // Load the counter.
1235   ld(Rbumped_count, 0, counter_addr);
1236 
1237   if (decrement) {
1238     // Decrement the register. Set condition codes.
1239     addi(Rbumped_count, Rbumped_count, - DataLayout::counter_increment);
1240     // Store the decremented counter, if it is still negative.
1241     std(Rbumped_count, 0, counter_addr);
1242     // Note: add/sub overflow check are not ported, since 64 bit
1243     // calculation should never overflow.
1244   } else {
1245     // Increment the register. Set carry flag.
1246     addi(Rbumped_count, Rbumped_count, DataLayout::counter_increment);
1247     // Store the incremented counter.
1248     std(Rbumped_count, 0, counter_addr);
1249   }
1250 }
1251 
1252 // Set a flag value at the current method data pointer position.
1253 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
1254                                                 Register scratch) {
1255   assert(ProfileInterpreter, "must be profiling interpreter");
1256   // Load the data header.
1257   lbz(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
1258   // Set the flag.
1259   ori(scratch, scratch, flag_constant);
1260   // Store the modified header.
1261   stb(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx);
1262 }
1263 
1264 // Test the location at some offset from the method data pointer.
1265 // If it is not equal to value, branch to the not_equal_continue Label.
1266 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
1267                                                  Register value,
1268                                                  Label& not_equal_continue,
1269                                                  Register test_out) {
1270   assert(ProfileInterpreter, "must be profiling interpreter");
1271 
1272   ld(test_out, offset, R28_mdx);
1273   cmpd(CCR0,  value, test_out);
1274   bne(CCR0, not_equal_continue);
1275 }
1276 
1277 // Update the method data pointer by the displacement located at some fixed
1278 // offset from the method data pointer.
1279 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
1280                                                      Register scratch) {
1281   assert(ProfileInterpreter, "must be profiling interpreter");
1282 
1283   ld(scratch, offset_of_disp, R28_mdx);
1284   add(R28_mdx, scratch, R28_mdx);
1285 }
1286 
1287 // Update the method data pointer by the displacement located at the
1288 // offset (reg + offset_of_disp).
1289 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
1290                                                      int offset_of_disp,
1291                                                      Register scratch) {
1292   assert(ProfileInterpreter, "must be profiling interpreter");
1293 
1294   add(scratch, reg, R28_mdx);
1295   ld(scratch, offset_of_disp, scratch);
1296   add(R28_mdx, scratch, R28_mdx);
1297 }
1298 
1299 // Update the method data pointer by a simple constant displacement.
1300 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
1301   assert(ProfileInterpreter, "must be profiling interpreter");
1302   addi(R28_mdx, R28_mdx, constant);
1303 }
1304 
1305 // Update the method data pointer for a _ret bytecode whose target
1306 // was not among our cached targets.
1307 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
1308                                                    Register return_bci) {
1309   assert(ProfileInterpreter, "must be profiling interpreter");
1310 
1311   push(state);
1312   assert(return_bci->is_nonvolatile(), "need to protect return_bci");
1313   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
1314   pop(state);
1315 }
1316 
1317 // Increments the backedge counter.
1318 // Returns backedge counter + invocation counter in Rdst.
1319 void InterpreterMacroAssembler::increment_backedge_counter(const Register Rcounters, const Register Rdst,
1320                                                            const Register Rtmp1, Register Rscratch) {
1321   assert(UseCompiler, "incrementing must be useful");
1322   assert_different_registers(Rdst, Rtmp1);
1323   const Register invocation_counter = Rtmp1;
1324   const Register counter = Rdst;
1325   // TODO ppc port assert(4 == InvocationCounter::sz_counter(), "unexpected field size.");
1326 
1327   // Load backedge counter.
1328   lwz(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
1329                in_bytes(InvocationCounter::counter_offset()), Rcounters);
1330   // Load invocation counter.
1331   lwz(invocation_counter, in_bytes(MethodCounters::invocation_counter_offset()) +
1332                           in_bytes(InvocationCounter::counter_offset()), Rcounters);
1333 
1334   // Add the delta to the backedge counter.
1335   addi(counter, counter, InvocationCounter::count_increment);
1336 
1337   // Mask the invocation counter.
1338   li(Rscratch, InvocationCounter::count_mask_value);
1339   andr(invocation_counter, invocation_counter, Rscratch);
1340 
1341   // Store new counter value.
1342   stw(counter, in_bytes(MethodCounters::backedge_counter_offset()) +
1343                in_bytes(InvocationCounter::counter_offset()), Rcounters);
1344   // Return invocation counter + backedge counter.
1345   add(counter, counter, invocation_counter);
1346 }
1347 
1348 // Count a taken branch in the bytecodes.
1349 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
1350   if (ProfileInterpreter) {
1351     Label profile_continue;
1352 
1353     // If no method data exists, go to profile_continue.
1354     test_method_data_pointer(profile_continue);
1355 
1356     // We are taking a branch. Increment the taken count.
1357     increment_mdp_data_at(in_bytes(JumpData::taken_offset()), scratch, bumped_count);
1358 
1359     // The method data pointer needs to be updated to reflect the new target.
1360     update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
1361     bind (profile_continue);
1362   }
1363 }
1364 
1365 // Count a not-taken branch in the bytecodes.
1366 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch1, Register scratch2) {
1367   if (ProfileInterpreter) {
1368     Label profile_continue;
1369 
1370     // If no method data exists, go to profile_continue.
1371     test_method_data_pointer(profile_continue);
1372 
1373     // We are taking a branch. Increment the not taken count.
1374     increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch1, scratch2);
1375 
1376     // The method data pointer needs to be updated to correspond to the
1377     // next bytecode.
1378     update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
1379     bind (profile_continue);
1380   }
1381 }
1382 
1383 // Count a non-virtual call in the bytecodes.
1384 void InterpreterMacroAssembler::profile_call(Register scratch1, Register scratch2) {
1385   if (ProfileInterpreter) {
1386     Label profile_continue;
1387 
1388     // If no method data exists, go to profile_continue.
1389     test_method_data_pointer(profile_continue);
1390 
1391     // We are making a call. Increment the count.
1392     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1393 
1394     // The method data pointer needs to be updated to reflect the new target.
1395     update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
1396     bind (profile_continue);
1397   }
1398 }
1399 
1400 // Count a final call in the bytecodes.
1401 void InterpreterMacroAssembler::profile_final_call(Register scratch1, Register scratch2) {
1402   if (ProfileInterpreter) {
1403     Label profile_continue;
1404 
1405     // If no method data exists, go to profile_continue.
1406     test_method_data_pointer(profile_continue);
1407 
1408     // We are making a call. Increment the count.
1409     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1410 
1411     // The method data pointer needs to be updated to reflect the new target.
1412     update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1413     bind (profile_continue);
1414   }
1415 }
1416 
1417 // Count a virtual call in the bytecodes.
1418 void InterpreterMacroAssembler::profile_virtual_call(Register Rreceiver,
1419                                                      Register Rscratch1,
1420                                                      Register Rscratch2,
1421                                                      bool receiver_can_be_null) {
1422   if (!ProfileInterpreter) { return; }
1423   Label profile_continue;
1424 
1425   // If no method data exists, go to profile_continue.
1426   test_method_data_pointer(profile_continue);
1427 
1428   Label skip_receiver_profile;
1429   if (receiver_can_be_null) {
1430     Label not_null;
1431     cmpdi(CCR0, Rreceiver, 0);
1432     bne(CCR0, not_null);
1433     // We are making a call. Increment the count for null receiver.
1434     increment_mdp_data_at(in_bytes(CounterData::count_offset()), Rscratch1, Rscratch2);
1435     b(skip_receiver_profile);
1436     bind(not_null);
1437   }
1438 
1439   // Record the receiver type.
1440   record_klass_in_profile(Rreceiver, Rscratch1, Rscratch2, true);
1441   bind(skip_receiver_profile);
1442 
1443   // The method data pointer needs to be updated to reflect the new target.
1444   update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
1445   bind (profile_continue);
1446 }
1447 
1448 void InterpreterMacroAssembler::profile_typecheck(Register Rklass, Register Rscratch1, Register Rscratch2) {
1449   if (ProfileInterpreter) {
1450     Label profile_continue;
1451 
1452     // If no method data exists, go to profile_continue.
1453     test_method_data_pointer(profile_continue);
1454 
1455     int mdp_delta = in_bytes(BitData::bit_data_size());
1456     if (TypeProfileCasts) {
1457       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1458 
1459       // Record the object type.
1460       record_klass_in_profile(Rklass, Rscratch1, Rscratch2, false);
1461     }
1462 
1463     // The method data pointer needs to be updated.
1464     update_mdp_by_constant(mdp_delta);
1465 
1466     bind (profile_continue);
1467   }
1468 }
1469 
1470 void InterpreterMacroAssembler::profile_typecheck_failed(Register Rscratch1, Register Rscratch2) {
1471   if (ProfileInterpreter && TypeProfileCasts) {
1472     Label profile_continue;
1473 
1474     // If no method data exists, go to profile_continue.
1475     test_method_data_pointer(profile_continue);
1476 
1477     int count_offset = in_bytes(CounterData::count_offset());
1478     // Back up the address, since we have already bumped the mdp.
1479     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1480 
1481     // *Decrement* the counter. We expect to see zero or small negatives.
1482     increment_mdp_data_at(count_offset, Rscratch1, Rscratch2, true);
1483 
1484     bind (profile_continue);
1485   }
1486 }
1487 
1488 // Count a ret in the bytecodes.
1489 void InterpreterMacroAssembler::profile_ret(TosState state, Register return_bci, Register scratch1, Register scratch2) {
1490   if (ProfileInterpreter) {
1491     Label profile_continue;
1492     uint row;
1493 
1494     // If no method data exists, go to profile_continue.
1495     test_method_data_pointer(profile_continue);
1496 
1497     // Update the total ret count.
1498     increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2 );
1499 
1500     for (row = 0; row < RetData::row_limit(); row++) {
1501       Label next_test;
1502 
1503       // See if return_bci is equal to bci[n]:
1504       test_mdp_data_at(in_bytes(RetData::bci_offset(row)), return_bci, next_test, scratch1);
1505 
1506       // return_bci is equal to bci[n]. Increment the count.
1507       increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch1, scratch2);
1508 
1509       // The method data pointer needs to be updated to reflect the new target.
1510       update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch1);
1511       b(profile_continue);
1512       bind(next_test);
1513     }
1514 
1515     update_mdp_for_ret(state, return_bci);
1516 
1517     bind (profile_continue);
1518   }
1519 }
1520 
1521 // Count the default case of a switch construct.
1522 void InterpreterMacroAssembler::profile_switch_default(Register scratch1,  Register scratch2) {
1523   if (ProfileInterpreter) {
1524     Label profile_continue;
1525 
1526     // If no method data exists, go to profile_continue.
1527     test_method_data_pointer(profile_continue);
1528 
1529     // Update the default case count
1530     increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
1531                           scratch1, scratch2);
1532 
1533     // The method data pointer needs to be updated.
1534     update_mdp_by_offset(in_bytes(MultiBranchData::default_displacement_offset()),
1535                          scratch1);
1536 
1537     bind (profile_continue);
1538   }
1539 }
1540 
1541 // Count the index'th case of a switch construct.
1542 void InterpreterMacroAssembler::profile_switch_case(Register index,
1543                                                     Register scratch1,
1544                                                     Register scratch2,
1545                                                     Register scratch3) {
1546   if (ProfileInterpreter) {
1547     assert_different_registers(index, scratch1, scratch2, scratch3);
1548     Label profile_continue;
1549 
1550     // If no method data exists, go to profile_continue.
1551     test_method_data_pointer(profile_continue);
1552 
1553     // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes().
1554     li(scratch3, in_bytes(MultiBranchData::case_array_offset()));
1555 
1556     assert (in_bytes(MultiBranchData::per_case_size()) == 16, "so that shladd works");
1557     sldi(scratch1, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
1558     add(scratch1, scratch1, scratch3);
1559 
1560     // Update the case count.
1561     increment_mdp_data_at(scratch1, in_bytes(MultiBranchData::relative_count_offset()), scratch2, scratch3);
1562 
1563     // The method data pointer needs to be updated.
1564     update_mdp_by_offset(scratch1, in_bytes(MultiBranchData::relative_displacement_offset()), scratch2);
1565 
1566     bind (profile_continue);
1567   }
1568 }
1569 
1570 void InterpreterMacroAssembler::profile_null_seen(Register Rscratch1, Register Rscratch2) {
1571   if (ProfileInterpreter) {
1572     assert_different_registers(Rscratch1, Rscratch2);
1573     Label profile_continue;
1574 
1575     // If no method data exists, go to profile_continue.
1576     test_method_data_pointer(profile_continue);
1577 
1578     set_mdp_flag_at(BitData::null_seen_byte_constant(), Rscratch1);
1579 
1580     // The method data pointer needs to be updated.
1581     int mdp_delta = in_bytes(BitData::bit_data_size());
1582     if (TypeProfileCasts) {
1583       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1584     }
1585     update_mdp_by_constant(mdp_delta);
1586 
1587     bind (profile_continue);
1588   }
1589 }
1590 
1591 void InterpreterMacroAssembler::record_klass_in_profile(Register Rreceiver,
1592                                                         Register Rscratch1, Register Rscratch2,
1593                                                         bool is_virtual_call) {
1594   assert(ProfileInterpreter, "must be profiling");
1595   assert_different_registers(Rreceiver, Rscratch1, Rscratch2);
1596 
1597   Label done;
1598   record_klass_in_profile_helper(Rreceiver, Rscratch1, Rscratch2, 0, done, is_virtual_call);
1599   bind (done);
1600 }
1601 
1602 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1603                                         Register receiver, Register scratch1, Register scratch2,
1604                                         int start_row, Label& done, bool is_virtual_call) {
1605   if (TypeProfileWidth == 0) {
1606     if (is_virtual_call) {
1607       increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1608     }
1609     return;
1610   }
1611 
1612   int last_row = VirtualCallData::row_limit() - 1;
1613   assert(start_row <= last_row, "must be work left to do");
1614   // Test this row for both the receiver and for null.
1615   // Take any of three different outcomes:
1616   //   1. found receiver => increment count and goto done
1617   //   2. found null => keep looking for case 1, maybe allocate this cell
1618   //   3. found something else => keep looking for cases 1 and 2
1619   // Case 3 is handled by a recursive call.
1620   for (int row = start_row; row <= last_row; row++) {
1621     Label next_test;
1622     bool test_for_null_also = (row == start_row);
1623 
1624     // See if the receiver is receiver[n].
1625     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1626     test_mdp_data_at(recvr_offset, receiver, next_test, scratch1);
1627     // delayed()->tst(scratch);
1628 
1629     // The receiver is receiver[n]. Increment count[n].
1630     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1631     increment_mdp_data_at(count_offset, scratch1, scratch2);
1632     b(done);
1633     bind(next_test);
1634 
1635     if (test_for_null_also) {
1636       Label found_null;
1637       // Failed the equality check on receiver[n]... Test for null.
1638       if (start_row == last_row) {
1639         // The only thing left to do is handle the null case.
1640         if (is_virtual_call) {
1641           // Scratch1 contains test_out from test_mdp_data_at.
1642           cmpdi(CCR0, scratch1, 0);
1643           beq(CCR0, found_null);
1644           // Receiver did not match any saved receiver and there is no empty row for it.
1645           // Increment total counter to indicate polymorphic case.
1646           increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2);
1647           b(done);
1648           bind(found_null);
1649         } else {
1650           cmpdi(CCR0, scratch1, 0);
1651           bne(CCR0, done);
1652         }
1653         break;
1654       }
1655       // Since null is rare, make it be the branch-taken case.
1656       cmpdi(CCR0, scratch1, 0);
1657       beq(CCR0, found_null);
1658 
1659       // Put all the "Case 3" tests here.
1660       record_klass_in_profile_helper(receiver, scratch1, scratch2, start_row + 1, done, is_virtual_call);
1661 
1662       // Found a null. Keep searching for a matching receiver,
1663       // but remember that this is an empty (unused) slot.
1664       bind(found_null);
1665     }
1666   }
1667 
1668   // In the fall-through case, we found no matching receiver, but we
1669   // observed the receiver[start_row] is NULL.
1670 
1671   // Fill in the receiver field and increment the count.
1672   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1673   set_mdp_data_at(recvr_offset, receiver);
1674   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1675   li(scratch1, DataLayout::counter_increment);
1676   set_mdp_data_at(count_offset, scratch1);
1677   if (start_row > 0) {
1678     b(done);
1679   }
1680 }
1681 
1682 // Add a InterpMonitorElem to stack (see frame_sparc.hpp).
1683 void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, Register Rtemp1, Register Rtemp2) {
1684 
1685   // Very-local scratch registers.
1686   const Register esp  = Rtemp1;
1687   const Register slot = Rtemp2;
1688 
1689   // Extracted monitor_size.
1690   int monitor_size = frame::interpreter_frame_monitor_size_in_bytes();
1691   assert(Assembler::is_aligned((unsigned int)monitor_size,
1692                                (unsigned int)frame::alignment_in_bytes),
1693          "size of a monitor must respect alignment of SP");
1694 
1695   resize_frame(-monitor_size, /*temp*/esp); // Allocate space for new monitor
1696   std(R1_SP, _ijava_state_neg(top_frame_sp), esp); // esp contains fp
1697 
1698   // Shuffle expression stack down. Recall that stack_base points
1699   // just above the new expression stack bottom. Old_tos and new_tos
1700   // are used to scan thru the old and new expression stacks.
1701   if (!stack_is_empty) {
1702     Label copy_slot, copy_slot_finished;
1703     const Register n_slots = slot;
1704 
1705     addi(esp, R15_esp, Interpreter::stackElementSize); // Point to first element (pre-pushed stack).
1706     subf(n_slots, esp, R26_monitor);
1707     srdi_(n_slots, n_slots, LogBytesPerWord);          // Compute number of slots to copy.
1708     assert(LogBytesPerWord == 3, "conflicts assembler instructions");
1709     beq(CCR0, copy_slot_finished);                     // Nothing to copy.
1710 
1711     mtctr(n_slots);
1712 
1713     // loop
1714     bind(copy_slot);
1715     ld(slot, 0, esp);              // Move expression stack down.
1716     std(slot, -monitor_size, esp); // distance = monitor_size
1717     addi(esp, esp, BytesPerWord);
1718     bdnz(copy_slot);
1719 
1720     bind(copy_slot_finished);
1721   }
1722 
1723   addi(R15_esp, R15_esp, -monitor_size);
1724   addi(R26_monitor, R26_monitor, -monitor_size);
1725 
1726   // Restart interpreter
1727 }
1728 
1729 // ============================================================================
1730 // Java locals access
1731 
1732 // Load a local variable at index in Rindex into register Rdst_value.
1733 // Also puts address of local into Rdst_address as a service.
1734 // Kills:
1735 //   - Rdst_value
1736 //   - Rdst_address
1737 void InterpreterMacroAssembler::load_local_int(Register Rdst_value, Register Rdst_address, Register Rindex) {
1738   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
1739   subf(Rdst_address, Rdst_address, R18_locals);
1740   lwz(Rdst_value, 0, Rdst_address);
1741 }
1742 
1743 // Load a local variable at index in Rindex into register Rdst_value.
1744 // Also puts address of local into Rdst_address as a service.
1745 // Kills:
1746 //   - Rdst_value
1747 //   - Rdst_address
1748 void InterpreterMacroAssembler::load_local_long(Register Rdst_value, Register Rdst_address, Register Rindex) {
1749   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
1750   subf(Rdst_address, Rdst_address, R18_locals);
1751   ld(Rdst_value, -8, Rdst_address);
1752 }
1753 
1754 // Load a local variable at index in Rindex into register Rdst_value.
1755 // Also puts address of local into Rdst_address as a service.
1756 // Input:
1757 //   - Rindex:      slot nr of local variable
1758 // Kills:
1759 //   - Rdst_value
1760 //   - Rdst_address
1761 void InterpreterMacroAssembler::load_local_ptr(Register Rdst_value, Register Rdst_address, Register Rindex) {
1762   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
1763   subf(Rdst_address, Rdst_address, R18_locals);
1764   ld(Rdst_value, 0, Rdst_address);
1765 }
1766 
1767 // Load a local variable at index in Rindex into register Rdst_value.
1768 // Also puts address of local into Rdst_address as a service.
1769 // Kills:
1770 //   - Rdst_value
1771 //   - Rdst_address
1772 void InterpreterMacroAssembler::load_local_float(FloatRegister Rdst_value, Register Rdst_address, Register Rindex) {
1773   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
1774   subf(Rdst_address, Rdst_address, R18_locals);
1775   lfs(Rdst_value, 0, Rdst_address);
1776 }
1777 
1778 // Load a local variable at index in Rindex into register Rdst_value.
1779 // Also puts address of local into Rdst_address as a service.
1780 // Kills:
1781 //   - Rdst_value
1782 //   - Rdst_address
1783 void InterpreterMacroAssembler::load_local_double(FloatRegister Rdst_value, Register Rdst_address, Register Rindex) {
1784   sldi(Rdst_address, Rindex, Interpreter::logStackElementSize);
1785   subf(Rdst_address, Rdst_address, R18_locals);
1786   lfd(Rdst_value, -8, Rdst_address);
1787 }
1788 
1789 // Store an int value at local variable slot Rindex.
1790 // Kills:
1791 //   - Rindex
1792 void InterpreterMacroAssembler::store_local_int(Register Rvalue, Register Rindex) {
1793   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
1794   subf(Rindex, Rindex, R18_locals);
1795   stw(Rvalue, 0, Rindex);
1796 }
1797 
1798 // Store a long value at local variable slot Rindex.
1799 // Kills:
1800 //   - Rindex
1801 void InterpreterMacroAssembler::store_local_long(Register Rvalue, Register Rindex) {
1802   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
1803   subf(Rindex, Rindex, R18_locals);
1804   std(Rvalue, -8, Rindex);
1805 }
1806 
1807 // Store an oop value at local variable slot Rindex.
1808 // Kills:
1809 //   - Rindex
1810 void InterpreterMacroAssembler::store_local_ptr(Register Rvalue, Register Rindex) {
1811   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
1812   subf(Rindex, Rindex, R18_locals);
1813   std(Rvalue, 0, Rindex);
1814 }
1815 
1816 // Store an int value at local variable slot Rindex.
1817 // Kills:
1818 //   - Rindex
1819 void InterpreterMacroAssembler::store_local_float(FloatRegister Rvalue, Register Rindex) {
1820   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
1821   subf(Rindex, Rindex, R18_locals);
1822   stfs(Rvalue, 0, Rindex);
1823 }
1824 
1825 // Store an int value at local variable slot Rindex.
1826 // Kills:
1827 //   - Rindex
1828 void InterpreterMacroAssembler::store_local_double(FloatRegister Rvalue, Register Rindex) {
1829   sldi(Rindex, Rindex, Interpreter::logStackElementSize);
1830   subf(Rindex, Rindex, R18_locals);
1831   stfd(Rvalue, -8, Rindex);
1832 }
1833 
1834 // Read pending exception from thread and jump to interpreter.
1835 // Throw exception entry if one if pending. Fall through otherwise.
1836 void InterpreterMacroAssembler::check_and_forward_exception(Register Rscratch1, Register Rscratch2) {
1837   assert_different_registers(Rscratch1, Rscratch2, R3);
1838   Register Rexception = Rscratch1;
1839   Register Rtmp       = Rscratch2;
1840   Label Ldone;
1841   // Get pending exception oop.
1842   ld(Rexception, thread_(pending_exception));
1843   cmpdi(CCR0, Rexception, 0);
1844   beq(CCR0, Ldone);
1845   li(Rtmp, 0);
1846   mr_if_needed(R3, Rexception);
1847   std(Rtmp, thread_(pending_exception)); // Clear exception in thread
1848   if (Interpreter::rethrow_exception_entry() != NULL) {
1849     // Already got entry address.
1850     load_dispatch_table(Rtmp, (address*)Interpreter::rethrow_exception_entry());
1851   } else {
1852     // Dynamically load entry address.
1853     int simm16_rest = load_const_optimized(Rtmp, &Interpreter::_rethrow_exception_entry, R0, true);
1854     ld(Rtmp, simm16_rest, Rtmp);
1855   }
1856   mtctr(Rtmp);
1857   save_interpreter_state(Rtmp);
1858   bctr();
1859 
1860   align(32, 12);
1861   bind(Ldone);
1862 }
1863 
1864 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) {
1865   save_interpreter_state(R11_scratch1);
1866 
1867   MacroAssembler::call_VM(oop_result, entry_point, false);
1868 
1869   restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
1870 
1871   check_and_handle_popframe(R11_scratch1);
1872   check_and_handle_earlyret(R11_scratch1);
1873   // Now check exceptions manually.
1874   if (check_exceptions) {
1875     check_and_forward_exception(R11_scratch1, R12_scratch2);
1876   }
1877 }
1878 
1879 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
1880   // ARG1 is reserved for the thread.
1881   mr_if_needed(R4_ARG2, arg_1);
1882   call_VM(oop_result, entry_point, check_exceptions);
1883 }
1884 
1885 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
1886   // ARG1 is reserved for the thread.
1887   mr_if_needed(R4_ARG2, arg_1);
1888   assert(arg_2 != R4_ARG2, "smashed argument");
1889   mr_if_needed(R5_ARG3, arg_2);
1890   call_VM(oop_result, entry_point, check_exceptions);
1891 }
1892 
1893 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
1894   // ARG1 is reserved for the thread.
1895   mr_if_needed(R4_ARG2, arg_1);
1896   assert(arg_2 != R4_ARG2, "smashed argument");
1897   mr_if_needed(R5_ARG3, arg_2);
1898   assert(arg_3 != R4_ARG2 && arg_3 != R5_ARG3, "smashed argument");
1899   mr_if_needed(R6_ARG4, arg_3);
1900   call_VM(oop_result, entry_point, check_exceptions);
1901 }
1902 
1903 void InterpreterMacroAssembler::save_interpreter_state(Register scratch) {
1904   ld(scratch, 0, R1_SP);
1905   std(R15_esp, _ijava_state_neg(esp), scratch);
1906   std(R14_bcp, _ijava_state_neg(bcp), scratch);
1907   std(R26_monitor, _ijava_state_neg(monitors), scratch);
1908   if (ProfileInterpreter) { std(R28_mdx, _ijava_state_neg(mdx), scratch); }
1909   // Other entries should be unchanged.
1910 }
1911 
1912 void InterpreterMacroAssembler::restore_interpreter_state(Register scratch, bool bcp_and_mdx_only) {
1913   ld(scratch, 0, R1_SP);
1914   ld(R14_bcp, _ijava_state_neg(bcp), scratch); // Changed by VM code (exception).
1915   if (ProfileInterpreter) { ld(R28_mdx, _ijava_state_neg(mdx), scratch); } // Changed by VM code.
1916   if (!bcp_and_mdx_only) {
1917     // Following ones are Metadata.
1918     ld(R19_method, _ijava_state_neg(method), scratch);
1919     ld(R27_constPoolCache, _ijava_state_neg(cpoolCache), scratch);
1920     // Following ones are stack addresses and don't require reload.
1921     ld(R15_esp, _ijava_state_neg(esp), scratch);
1922     ld(R18_locals, _ijava_state_neg(locals), scratch);
1923     ld(R26_monitor, _ijava_state_neg(monitors), scratch);
1924   }
1925 #ifdef ASSERT
1926   {
1927     Label Lok;
1928     subf(R0, R1_SP, scratch);
1929     cmpdi(CCR0, R0, frame::abi_reg_args_size + frame::ijava_state_size);
1930     bge(CCR0, Lok);
1931     stop("frame too small (restore istate)", 0x5432);
1932     bind(Lok);
1933   }
1934   {
1935     Label Lok;
1936     ld(R0, _ijava_state_neg(ijava_reserved), scratch);
1937     cmpdi(CCR0, R0, 0x5afe);
1938     beq(CCR0, Lok);
1939     stop("frame corrupted (restore istate)", 0x5afe);
1940     bind(Lok);
1941   }
1942 #endif
1943 }
1944 
1945 #endif // !CC_INTERP
1946 
1947 void InterpreterMacroAssembler::get_method_counters(Register method,
1948                                                     Register Rcounters,
1949                                                     Label& skip) {
1950   BLOCK_COMMENT("Load and ev. allocate counter object {");
1951   Label has_counters;
1952   ld(Rcounters, in_bytes(Method::method_counters_offset()), method);
1953   cmpdi(CCR0, Rcounters, 0);
1954   bne(CCR0, has_counters);
1955   call_VM(noreg, CAST_FROM_FN_PTR(address,
1956                                   InterpreterRuntime::build_method_counters), method, false);
1957   ld(Rcounters, in_bytes(Method::method_counters_offset()), method);
1958   cmpdi(CCR0, Rcounters, 0);
1959   beq(CCR0, skip); // No MethodCounters, OutOfMemory.
1960   BLOCK_COMMENT("} Load and ev. allocate counter object");
1961 
1962   bind(has_counters);
1963 }
1964 
1965 void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, Register iv_be_count, Register Rtmp_r0) {
1966   assert(UseCompiler, "incrementing must be useful");
1967   Register invocation_count = iv_be_count;
1968   Register backedge_count   = Rtmp_r0;
1969   int delta = InvocationCounter::count_increment;
1970 
1971   // Load each counter in a register.
1972   //  ld(inv_counter, Rtmp);
1973   //  ld(be_counter, Rtmp2);
1974   int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() +
1975                                     InvocationCounter::counter_offset());
1976   int be_counter_offset  = in_bytes(MethodCounters::backedge_counter_offset() +
1977                                     InvocationCounter::counter_offset());
1978 
1979   BLOCK_COMMENT("Increment profiling counters {");
1980 
1981   // Load the backedge counter.
1982   lwz(backedge_count, be_counter_offset, Rcounters); // is unsigned int
1983   // Mask the backedge counter.
1984   Register tmp = invocation_count;
1985   li(tmp, InvocationCounter::count_mask_value);
1986   andr(backedge_count, tmp, backedge_count); // Cannot use andi, need sign extension of count_mask_value.
1987 
1988   // Load the invocation counter.
1989   lwz(invocation_count, inv_counter_offset, Rcounters); // is unsigned int
1990   // Add the delta to the invocation counter and store the result.
1991   addi(invocation_count, invocation_count, delta);
1992   // Store value.
1993   stw(invocation_count, inv_counter_offset, Rcounters);
1994 
1995   // Add invocation counter + backedge counter.
1996   add(iv_be_count, backedge_count, invocation_count);
1997 
1998   // Note that this macro must leave the backedge_count + invocation_count in
1999   // register iv_be_count!
2000   BLOCK_COMMENT("} Increment profiling counters");
2001 }
2002 
2003 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
2004   if (state == atos) { MacroAssembler::verify_oop(reg); }
2005 }
2006 
2007 #ifndef CC_INTERP
2008 // Local helper function for the verify_oop_or_return_address macro.
2009 static bool verify_return_address(Method* m, int bci) {
2010 #ifndef PRODUCT
2011   address pc = (address)(m->constMethod()) + in_bytes(ConstMethod::codes_offset()) + bci;
2012   // Assume it is a valid return address if it is inside m and is preceded by a jsr.
2013   if (!m->contains(pc))                                            return false;
2014   address jsr_pc;
2015   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
2016   if (*jsr_pc == Bytecodes::_jsr   && jsr_pc >= m->code_base())    return true;
2017   jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
2018   if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base())    return true;
2019 #endif // PRODUCT
2020   return false;
2021 }
2022 
2023 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2024   if (VerifyFPU) {
2025     unimplemented("verfiyFPU");
2026   }
2027 }
2028 
2029 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
2030   if (!VerifyOops) return;
2031 
2032   // The VM documentation for the astore[_wide] bytecode allows
2033   // the TOS to be not only an oop but also a return address.
2034   Label test;
2035   Label skip;
2036   // See if it is an address (in the current method):
2037 
2038   const int log2_bytecode_size_limit = 16;
2039   srdi_(Rtmp, reg, log2_bytecode_size_limit);
2040   bne(CCR0, test);
2041 
2042   address fd = CAST_FROM_FN_PTR(address, verify_return_address);
2043   unsigned int nbytes_save = 10*8; // 10 volatile gprs
2044 
2045   save_LR_CR(Rtmp);
2046   push_frame_reg_args(nbytes_save, Rtmp);
2047   save_volatile_gprs(R1_SP, 112); // except R0
2048 
2049   load_const_optimized(Rtmp, fd, R0);
2050   mr_if_needed(R4_ARG2, reg);
2051   mr(R3_ARG1, R19_method);
2052   call_c(Rtmp); // call C
2053 
2054   restore_volatile_gprs(R1_SP, 112); // except R0
2055   pop_frame();
2056   restore_LR_CR(Rtmp);
2057   b(skip);
2058 
2059   // Perform a more elaborate out-of-line call.
2060   // Not an address; verify it:
2061   bind(test);
2062   verify_oop(reg);
2063   bind(skip);
2064 }
2065 #endif // !CC_INTERP
2066 
2067 // Inline assembly for:
2068 //
2069 // if (thread is in interp_only_mode) {
2070 //   InterpreterRuntime::post_method_entry();
2071 // }
2072 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY ) ||
2073 //     *jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY2)   ) {
2074 //   SharedRuntime::jvmpi_method_entry(method, receiver);
2075 // }
2076 void InterpreterMacroAssembler::notify_method_entry() {
2077   // JVMTI
2078   // Whenever JVMTI puts a thread in interp_only_mode, method
2079   // entry/exit events are sent for that thread to track stack
2080   // depth. If it is possible to enter interp_only_mode we add
2081   // the code to check if the event should be sent.
2082   if (JvmtiExport::can_post_interpreter_events()) {
2083     Label jvmti_post_done;
2084 
2085     lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
2086     cmpwi(CCR0, R0, 0);
2087     beq(CCR0, jvmti_post_done);
2088     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry),
2089             /*check_exceptions=*/true CC_INTERP_ONLY(&& false));
2090 
2091     bind(jvmti_post_done);
2092   }
2093 }
2094 
2095 // Inline assembly for:
2096 //
2097 // if (thread is in interp_only_mode) {
2098 //   // save result
2099 //   InterpreterRuntime::post_method_exit();
2100 //   // restore result
2101 // }
2102 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_EXIT)) {
2103 //   // save result
2104 //   SharedRuntime::jvmpi_method_exit();
2105 //   // restore result
2106 // }
2107 //
2108 // Native methods have their result stored in d_tmp and l_tmp.
2109 // Java methods have their result stored in the expression stack.
2110 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method, TosState state,
2111                                                    NotifyMethodExitMode mode, bool check_exceptions) {
2112   // JVMTI
2113   // Whenever JVMTI puts a thread in interp_only_mode, method
2114   // entry/exit events are sent for that thread to track stack
2115   // depth. If it is possible to enter interp_only_mode we add
2116   // the code to check if the event should be sent.
2117   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2118     Label jvmti_post_done;
2119 
2120     lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
2121     cmpwi(CCR0, R0, 0);
2122     beq(CCR0, jvmti_post_done);
2123     CC_INTERP_ONLY(assert(is_native_method && !check_exceptions, "must not push state"));
2124     if (!is_native_method) push(state); // Expose tos to GC.
2125     call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit),
2126             /*check_exceptions=*/check_exceptions);
2127     if (!is_native_method) pop(state);
2128 
2129     align(32, 12);
2130     bind(jvmti_post_done);
2131   }
2132 
2133   // Dtrace support not implemented.
2134 }
2135 
2136 #ifdef CC_INTERP
2137 // Convert the current TOP_IJAVA_FRAME into a PARENT_IJAVA_FRAME
2138 // (using parent_frame_resize) and push a new interpreter
2139 // TOP_IJAVA_FRAME (using frame_size).
2140 void InterpreterMacroAssembler::push_interpreter_frame(Register top_frame_size, Register parent_frame_resize,
2141                                                        Register tmp1, Register tmp2, Register tmp3,
2142                                                        Register tmp4, Register pc) {
2143   assert_different_registers(top_frame_size, parent_frame_resize, tmp1, tmp2, tmp3, tmp4);
2144   ld(tmp1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
2145   mr(tmp2/*top_frame_sp*/, R1_SP);
2146   // Move initial_caller_sp.
2147   ld(tmp4, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
2148   neg(parent_frame_resize, parent_frame_resize);
2149   resize_frame(parent_frame_resize/*-parent_frame_resize*/, tmp3);
2150 
2151   // Set LR in new parent frame.
2152   std(tmp1, _abi(lr), R1_SP);
2153   // Set top_frame_sp info for new parent frame.
2154   std(tmp2, _parent_ijava_frame_abi(top_frame_sp), R1_SP);
2155   std(tmp4, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
2156 
2157   // Push new TOP_IJAVA_FRAME.
2158   push_frame(top_frame_size, tmp2);
2159 
2160   get_PC_trash_LR(tmp3);
2161   std(tmp3, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
2162   // Used for non-initial callers by unextended_sp().
2163   std(R1_SP, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
2164 }
2165 
2166 // Pop the topmost TOP_IJAVA_FRAME and convert the previous
2167 // PARENT_IJAVA_FRAME back into a TOP_IJAVA_FRAME.
2168 void InterpreterMacroAssembler::pop_interpreter_frame(Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
2169   assert_different_registers(tmp1, tmp2, tmp3, tmp4);
2170 
2171   ld(tmp1/*caller's sp*/, _abi(callers_sp), R1_SP);
2172   ld(tmp3, _abi(lr), tmp1);
2173 
2174   ld(tmp4, _parent_ijava_frame_abi(initial_caller_sp), tmp1);
2175 
2176   ld(tmp2/*caller's caller's sp*/, _abi(callers_sp), tmp1);
2177   // Merge top frame.
2178   std(tmp2, _abi(callers_sp), R1_SP);
2179 
2180   ld(tmp2, _parent_ijava_frame_abi(top_frame_sp), tmp1);
2181 
2182   // Update C stack pointer to caller's top_abi.
2183   resize_frame_absolute(tmp2/*addr*/, tmp1/*tmp*/, tmp2/*tmp*/);
2184 
2185   // Update LR in top_frame.
2186   std(tmp3, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
2187 
2188   std(tmp4, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
2189 
2190   // Store the top-frame stack-pointer for c2i adapters.
2191   std(R1_SP, _top_ijava_frame_abi(top_frame_sp), R1_SP);
2192 }
2193 
2194 // Turn state's interpreter frame into the current TOP_IJAVA_FRAME.
2195 void InterpreterMacroAssembler::pop_interpreter_frame_to_state(Register state, Register tmp1, Register tmp2, Register tmp3) {
2196   assert_different_registers(R14_state, R15_prev_state, tmp1, tmp2, tmp3);
2197 
2198   if (state == R14_state) {
2199     ld(tmp1/*state's fp*/, state_(_last_Java_fp));
2200     ld(tmp2/*state's sp*/, state_(_last_Java_sp));
2201   } else if (state == R15_prev_state) {
2202     ld(tmp1/*state's fp*/, prev_state_(_last_Java_fp));
2203     ld(tmp2/*state's sp*/, prev_state_(_last_Java_sp));
2204   } else {
2205     ShouldNotReachHere();
2206   }
2207 
2208   // Merge top frames.
2209   std(tmp1, _abi(callers_sp), R1_SP);
2210 
2211   // Tmp2 is new SP.
2212   // Tmp1 is parent's SP.
2213   resize_frame_absolute(tmp2/*addr*/, tmp1/*tmp*/, tmp2/*tmp*/);
2214 
2215   // Update LR in top_frame.
2216   // Must be interpreter frame.
2217   get_PC_trash_LR(tmp3);
2218   std(tmp3, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
2219   // Used for non-initial callers by unextended_sp().
2220   std(R1_SP, _top_ijava_frame_abi(initial_caller_sp), R1_SP);
2221 }
2222 
2223 // Set SP to initial caller's sp, but before fix the back chain.
2224 void InterpreterMacroAssembler::resize_frame_to_initial_caller(Register tmp1, Register tmp2) {
2225   ld(tmp1, _parent_ijava_frame_abi(initial_caller_sp), R1_SP);
2226   ld(tmp2, _parent_ijava_frame_abi(callers_sp), R1_SP);
2227   std(tmp2, _parent_ijava_frame_abi(callers_sp), tmp1); // Fix back chain ...
2228   mr(R1_SP, tmp1); // ... and resize to initial caller.
2229 }
2230 
2231 // Pop the current interpreter state (without popping the correspoding
2232 // frame) and restore R14_state and R15_prev_state accordingly.
2233 // Use prev_state_may_be_0 to indicate whether prev_state may be 0
2234 // in order to generate an extra check before retrieving prev_state_(_prev_link).
2235 void InterpreterMacroAssembler::pop_interpreter_state(bool prev_state_may_be_0)
2236 {
2237   // Move prev_state to state and restore prev_state from state_(_prev_link).
2238   Label prev_state_is_0;
2239   mr(R14_state, R15_prev_state);
2240 
2241   // Don't retrieve /*state==*/prev_state_(_prev_link)
2242   // if /*state==*/prev_state is 0.
2243   if (prev_state_may_be_0) {
2244     cmpdi(CCR0, R15_prev_state, 0);
2245     beq(CCR0, prev_state_is_0);
2246   }
2247 
2248   ld(R15_prev_state, /*state==*/prev_state_(_prev_link));
2249   bind(prev_state_is_0);
2250 }
2251 
2252 void InterpreterMacroAssembler::restore_prev_state() {
2253   // _prev_link is private, but cInterpreter is a friend.
2254   ld(R15_prev_state, state_(_prev_link));
2255 }
2256 #endif // CC_INTERP