1 /*
   2  * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright 2013, 2014 SAP AG. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "interpreter/interpreter.hpp"
  29 #include "interpreter/interpreterRuntime.hpp"
  30 #include "interpreter/templateInterpreter.hpp"
  31 #include "interpreter/templateTable.hpp"
  32 #include "memory/universe.inline.hpp"
  33 #include "oops/objArrayKlass.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "runtime/synchronizer.hpp"
  39 #include "utilities/macros.hpp"
  40 
  41 #ifndef CC_INTERP
  42 
  43 #undef __
  44 #define __ _masm->
  45 
  46 // ============================================================================
  47 // Misc helpers
  48 
  49 // Do an oop store like *(base + index) = val OR *(base + offset) = val
  50 // (only one of both variants is possible at the same time).
  51 // Index can be noreg.
  52 // Kills:
  53 //   Rbase, Rtmp
  54 static void do_oop_store(InterpreterMacroAssembler* _masm,
  55                          Register           Rbase,
  56                          RegisterOrConstant offset,
  57                          Register           Rval,         // Noreg means always null.
  58                          Register           Rtmp1,
  59                          Register           Rtmp2,
  60                          Register           Rtmp3,
  61                          BarrierSet::Name   barrier,
  62                          bool               precise,
  63                          bool               check_null) {
  64   assert_different_registers(Rtmp1, Rtmp2, Rtmp3, Rval, Rbase);
  65 
  66   switch (barrier) {
  67 #if INCLUDE_ALL_GCS
  68     case BarrierSet::G1SATBCT:
  69     case BarrierSet::G1SATBCTLogging:
  70       {
  71         // Load and record the previous value.
  72         __ g1_write_barrier_pre(Rbase, offset,
  73                                 Rtmp3, /* holder of pre_val ? */
  74                                 Rtmp1, Rtmp2, false /* frame */);
  75 
  76         Label Lnull, Ldone;
  77         if (Rval != noreg) {
  78           if (check_null) {
  79             __ cmpdi(CCR0, Rval, 0);
  80             __ beq(CCR0, Lnull);
  81           }
  82           __ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval must stay uncompressed.*/ Rtmp1);
  83           // Mark the card.
  84           if (!(offset.is_constant() && offset.as_constant() == 0) && precise) {
  85             __ add(Rbase, offset, Rbase);
  86           }
  87           __ g1_write_barrier_post(Rbase, Rval, Rtmp1, Rtmp2, Rtmp3, /*filtered (fast path)*/ &Ldone);
  88           if (check_null) { __ b(Ldone); }
  89         }
  90 
  91         if (Rval == noreg || check_null) { // Store null oop.
  92           Register Rnull = Rval;
  93           __ bind(Lnull);
  94           if (Rval == noreg) {
  95             Rnull = Rtmp1;
  96             __ li(Rnull, 0);
  97           }
  98           if (UseCompressedOops) {
  99             __ stw(Rnull, offset, Rbase);
 100           } else {
 101             __ std(Rnull, offset, Rbase);
 102           }
 103         }
 104         __ bind(Ldone);
 105       }
 106       break;
 107 #endif // INCLUDE_ALL_GCS
 108     case BarrierSet::CardTableModRef:
 109     case BarrierSet::CardTableExtension:
 110       {
 111         Label Lnull, Ldone;
 112         if (Rval != noreg) {
 113           if (check_null) {
 114             __ cmpdi(CCR0, Rval, 0);
 115             __ beq(CCR0, Lnull);
 116           }
 117           __ store_heap_oop_not_null(Rval, offset, Rbase, /*Rval should better stay uncompressed.*/ Rtmp1);
 118           // Mark the card.
 119           if (!(offset.is_constant() && offset.as_constant() == 0) && precise) {
 120             __ add(Rbase, offset, Rbase);
 121           }
 122           __ card_write_barrier_post(Rbase, Rval, Rtmp1);
 123           if (check_null) {
 124             __ b(Ldone);
 125           }
 126         }
 127 
 128         if (Rval == noreg || check_null) { // Store null oop.
 129           Register Rnull = Rval;
 130           __ bind(Lnull);
 131           if (Rval == noreg) {
 132             Rnull = Rtmp1;
 133             __ li(Rnull, 0);
 134           }
 135           if (UseCompressedOops) {
 136             __ stw(Rnull, offset, Rbase);
 137           } else {
 138             __ std(Rnull, offset, Rbase);
 139           }
 140         }
 141         __ bind(Ldone);
 142       }
 143       break;
 144     case BarrierSet::ModRef:
 145     case BarrierSet::Other:
 146       ShouldNotReachHere();
 147       break;
 148     default:
 149       ShouldNotReachHere();
 150   }
 151 }
 152 
 153 // ============================================================================
 154 // Platform-dependent initialization
 155 
 156 void TemplateTable::pd_initialize() {
 157   // No ppc64 specific initialization.
 158 }
 159 
 160 Address TemplateTable::at_bcp(int offset) {
 161   // Not used on ppc.
 162   ShouldNotReachHere();
 163   return Address();
 164 }
 165 
 166 // Patches the current bytecode (ptr to it located in bcp)
 167 // in the bytecode stream with a new one.
 168 void TemplateTable::patch_bytecode(Bytecodes::Code new_bc, Register Rnew_bc, Register Rtemp, bool load_bc_into_bc_reg /*=true*/, int byte_no) {
 169   // With sharing on, may need to test method flag.
 170   if (!RewriteBytecodes) return;
 171   Label L_patch_done;
 172 
 173   switch (new_bc) {
 174     case Bytecodes::_fast_aputfield:
 175     case Bytecodes::_fast_bputfield:
 176     case Bytecodes::_fast_cputfield:
 177     case Bytecodes::_fast_dputfield:
 178     case Bytecodes::_fast_fputfield:
 179     case Bytecodes::_fast_iputfield:
 180     case Bytecodes::_fast_lputfield:
 181     case Bytecodes::_fast_sputfield:
 182     {
 183       // We skip bytecode quickening for putfield instructions when
 184       // the put_code written to the constant pool cache is zero.
 185       // This is required so that every execution of this instruction
 186       // calls out to InterpreterRuntime::resolve_get_put to do
 187       // additional, required work.
 188       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 189       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 190       __ get_cache_and_index_at_bcp(Rtemp /* dst = cache */, 1);
 191       // Big Endian: ((*(cache+indices))>>((1+byte_no)*8))&0xFF
 192       __ lbz(Rnew_bc, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (1 + byte_no), Rtemp);
 193       __ cmpwi(CCR0, Rnew_bc, 0);
 194       __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc);
 195       __ beq(CCR0, L_patch_done);
 196       // __ isync(); // acquire not needed
 197       break;
 198     }
 199 
 200     default:
 201       assert(byte_no == -1, "sanity");
 202       if (load_bc_into_bc_reg) {
 203         __ li(Rnew_bc, (unsigned int)(unsigned char)new_bc);
 204       }
 205   }
 206 
 207   if (JvmtiExport::can_post_breakpoint()) {
 208     Label L_fast_patch;
 209     __ lbz(Rtemp, 0, R14_bcp);
 210     __ cmpwi(CCR0, Rtemp, (unsigned int)(unsigned char)Bytecodes::_breakpoint);
 211     __ bne(CCR0, L_fast_patch);
 212     // Perform the quickening, slowly, in the bowels of the breakpoint table.
 213     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), R19_method, R14_bcp, Rnew_bc);
 214     __ b(L_patch_done);
 215     __ bind(L_fast_patch);
 216   }
 217 
 218   // Patch bytecode.
 219   __ stb(Rnew_bc, 0, R14_bcp);
 220 
 221   __ bind(L_patch_done);
 222 }
 223 
 224 // ============================================================================
 225 // Individual instructions
 226 
 227 void TemplateTable::nop() {
 228   transition(vtos, vtos);
 229   // Nothing to do.
 230 }
 231 
 232 void TemplateTable::shouldnotreachhere() {
 233   transition(vtos, vtos);
 234   __ stop("shouldnotreachhere bytecode");
 235 }
 236 
 237 void TemplateTable::aconst_null() {
 238   transition(vtos, atos);
 239   __ li(R17_tos, 0);
 240 }
 241 
 242 void TemplateTable::iconst(int value) {
 243   transition(vtos, itos);
 244   assert(value >= -1 && value <= 5, "");
 245   __ li(R17_tos, value);
 246 }
 247 
 248 void TemplateTable::lconst(int value) {
 249   transition(vtos, ltos);
 250   assert(value >= -1 && value <= 5, "");
 251   __ li(R17_tos, value);
 252 }
 253 
 254 void TemplateTable::fconst(int value) {
 255   transition(vtos, ftos);
 256   static float zero = 0.0;
 257   static float one  = 1.0;
 258   static float two  = 2.0;
 259   switch (value) {
 260     default: ShouldNotReachHere();
 261     case 0: {
 262       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0, true);
 263       __ lfs(F15_ftos, simm16_offset, R11_scratch1);
 264       break;
 265     }
 266     case 1: {
 267       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0, true);
 268       __ lfs(F15_ftos, simm16_offset, R11_scratch1);
 269       break;
 270     }
 271     case 2: {
 272       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&two, R0, true);
 273       __ lfs(F15_ftos, simm16_offset, R11_scratch1);
 274       break;
 275     }
 276   }
 277 }
 278 
 279 void TemplateTable::dconst(int value) {
 280   transition(vtos, dtos);
 281   static double zero = 0.0;
 282   static double one  = 1.0;
 283   switch (value) {
 284     case 0: {
 285       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&zero, R0, true);
 286       __ lfd(F15_ftos, simm16_offset, R11_scratch1);
 287       break;
 288     }
 289     case 1: {
 290       int simm16_offset = __ load_const_optimized(R11_scratch1, (address*)&one, R0, true);
 291       __ lfd(F15_ftos, simm16_offset, R11_scratch1);
 292       break;
 293     }
 294     default: ShouldNotReachHere();
 295   }
 296 }
 297 
 298 void TemplateTable::bipush() {
 299   transition(vtos, itos);
 300   __ lbz(R17_tos, 1, R14_bcp);
 301   __ extsb(R17_tos, R17_tos);
 302 }
 303 
 304 void TemplateTable::sipush() {
 305   transition(vtos, itos);
 306   __ get_2_byte_integer_at_bcp(1, R17_tos, InterpreterMacroAssembler::Signed);
 307 }
 308 
 309 void TemplateTable::ldc(bool wide) {
 310   Register Rscratch1 = R11_scratch1,
 311            Rscratch2 = R12_scratch2,
 312            Rcpool    = R3_ARG1;
 313 
 314   transition(vtos, vtos);
 315   Label notInt, notClass, exit;
 316 
 317   __ get_cpool_and_tags(Rcpool, Rscratch2); // Set Rscratch2 = &tags.
 318   if (wide) { // Read index.
 319     __ get_2_byte_integer_at_bcp(1, Rscratch1, InterpreterMacroAssembler::Unsigned);
 320   } else {
 321     __ lbz(Rscratch1, 1, R14_bcp);
 322   }
 323 
 324   const int base_offset = ConstantPool::header_size() * wordSize;
 325   const int tags_offset = Array<u1>::base_offset_in_bytes();
 326 
 327   // Get type from tags.
 328   __ addi(Rscratch2, Rscratch2, tags_offset);
 329   __ lbzx(Rscratch2, Rscratch2, Rscratch1);
 330 
 331   __ cmpwi(CCR0, Rscratch2, JVM_CONSTANT_UnresolvedClass); // Unresolved class?
 332   __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_UnresolvedClassInError); // Unresolved class in error state?
 333   __ cror(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2);
 334 
 335   // Resolved class - need to call vm to get java mirror of the class.
 336   __ cmpwi(CCR1, Rscratch2, JVM_CONSTANT_Class);
 337   __ crnor(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2); // Neither resolved class nor unresolved case from above?
 338   __ beq(CCR0, notClass);
 339 
 340   __ li(R4, wide ? 1 : 0);
 341   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), R4);
 342   __ push(atos);
 343   __ b(exit);
 344 
 345   __ align(32, 12);
 346   __ bind(notClass);
 347   __ addi(Rcpool, Rcpool, base_offset);
 348   __ sldi(Rscratch1, Rscratch1, LogBytesPerWord);
 349   __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Integer);
 350   __ bne(CCR0, notInt);
 351   __ isync(); // Order load of constant wrt. tags.
 352   __ lwax(R17_tos, Rcpool, Rscratch1);
 353   __ push(itos);
 354   __ b(exit);
 355 
 356   __ align(32, 12);
 357   __ bind(notInt);
 358 #ifdef ASSERT
 359   // String and Object are rewritten to fast_aldc
 360   __ cmpdi(CCR0, Rscratch2, JVM_CONSTANT_Float);
 361   __ asm_assert_eq("unexpected type", 0x8765);
 362 #endif
 363   __ isync(); // Order load of constant wrt. tags.
 364   __ lfsx(F15_ftos, Rcpool, Rscratch1);
 365   __ push(ftos);
 366 
 367   __ align(32, 12);
 368   __ bind(exit);
 369 }
 370 
 371 // Fast path for caching oop constants.
 372 void TemplateTable::fast_aldc(bool wide) {
 373   transition(vtos, atos);
 374 
 375   int index_size = wide ? sizeof(u2) : sizeof(u1);
 376   const Register Rscratch = R11_scratch1;
 377   Label resolved;
 378 
 379   // We are resolved if the resolved reference cache entry contains a
 380   // non-null object (CallSite, etc.)
 381   __ get_cache_index_at_bcp(Rscratch, 1, index_size);  // Load index.
 382   __ load_resolved_reference_at_index(R17_tos, Rscratch);
 383   __ cmpdi(CCR0, R17_tos, 0);
 384   __ bne(CCR0, resolved);
 385   __ load_const_optimized(R3_ARG1, (int)bytecode());
 386 
 387   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 388 
 389   // First time invocation - must resolve first.
 390   __ call_VM(R17_tos, entry, R3_ARG1);
 391 
 392   __ align(32, 12);
 393   __ bind(resolved);
 394   __ verify_oop(R17_tos);
 395 }
 396 
 397 void TemplateTable::ldc2_w() {
 398   transition(vtos, vtos);
 399   Label Llong, Lexit;
 400 
 401   Register Rindex = R11_scratch1,
 402            Rcpool = R12_scratch2,
 403            Rtag   = R3_ARG1;
 404   __ get_cpool_and_tags(Rcpool, Rtag);
 405   __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned);
 406 
 407   const int base_offset = ConstantPool::header_size() * wordSize;
 408   const int tags_offset = Array<u1>::base_offset_in_bytes();
 409   // Get type from tags.
 410   __ addi(Rcpool, Rcpool, base_offset);
 411   __ addi(Rtag, Rtag, tags_offset);
 412 
 413   __ lbzx(Rtag, Rtag, Rindex);
 414 
 415   __ sldi(Rindex, Rindex, LogBytesPerWord);
 416   __ cmpdi(CCR0, Rtag, JVM_CONSTANT_Double);
 417   __ bne(CCR0, Llong);
 418   // A double can be placed at word-aligned locations in the constant pool.
 419   // Check out Conversions.java for an example.
 420   // Also ConstantPool::header_size() is 20, which makes it very difficult
 421   // to double-align double on the constant pool. SG, 11/7/97
 422   __ isync(); // Order load of constant wrt. tags.
 423   __ lfdx(F15_ftos, Rcpool, Rindex);
 424   __ push(dtos);
 425   __ b(Lexit);
 426 
 427   __ bind(Llong);
 428   __ isync(); // Order load of constant wrt. tags.
 429   __ ldx(R17_tos, Rcpool, Rindex);
 430   __ push(ltos);
 431 
 432   __ bind(Lexit);
 433 }
 434 
 435 // Get the locals index located in the bytecode stream at bcp + offset.
 436 void TemplateTable::locals_index(Register Rdst, int offset) {
 437   __ lbz(Rdst, offset, R14_bcp);
 438 }
 439 
 440 void TemplateTable::iload() {
 441   transition(vtos, itos);
 442 
 443   // Get the local value into tos
 444   const Register Rindex = R22_tmp2;
 445   locals_index(Rindex);
 446 
 447   // Rewrite iload,iload  pair into fast_iload2
 448   //         iload,caload pair into fast_icaload
 449   if (RewriteFrequentPairs) {
 450     Label Lrewrite, Ldone;
 451     Register Rnext_byte  = R3_ARG1,
 452              Rrewrite_to = R6_ARG4,
 453              Rscratch    = R11_scratch1;
 454 
 455     // get next byte
 456     __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_iload), R14_bcp);
 457 
 458     // if _iload, wait to rewrite to iload2. We only want to rewrite the
 459     // last two iloads in a pair. Comparing against fast_iload means that
 460     // the next bytecode is neither an iload or a caload, and therefore
 461     // an iload pair.
 462     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_iload);
 463     __ beq(CCR0, Ldone);
 464 
 465     __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_iload);
 466     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload2);
 467     __ beq(CCR1, Lrewrite);
 468 
 469     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_caload);
 470     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_icaload);
 471     __ beq(CCR0, Lrewrite);
 472 
 473     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iload);
 474 
 475     __ bind(Lrewrite);
 476     patch_bytecode(Bytecodes::_iload, Rrewrite_to, Rscratch, false);
 477     __ bind(Ldone);
 478   }
 479 
 480   __ load_local_int(R17_tos, Rindex, Rindex);
 481 }
 482 
 483 // Load 2 integers in a row without dispatching
 484 void TemplateTable::fast_iload2() {
 485   transition(vtos, itos);
 486 
 487   __ lbz(R3_ARG1, 1, R14_bcp);
 488   __ lbz(R17_tos, Bytecodes::length_for(Bytecodes::_iload) + 1, R14_bcp);
 489 
 490   __ load_local_int(R3_ARG1, R11_scratch1, R3_ARG1);
 491   __ load_local_int(R17_tos, R12_scratch2, R17_tos);
 492   __ push_i(R3_ARG1);
 493 }
 494 
 495 void TemplateTable::fast_iload() {
 496   transition(vtos, itos);
 497   // Get the local value into tos
 498 
 499   const Register Rindex = R11_scratch1;
 500   locals_index(Rindex);
 501   __ load_local_int(R17_tos, Rindex, Rindex);
 502 }
 503 
 504 // Load a local variable type long from locals area to TOS cache register.
 505 // Local index resides in bytecodestream.
 506 void TemplateTable::lload() {
 507   transition(vtos, ltos);
 508 
 509   const Register Rindex = R11_scratch1;
 510   locals_index(Rindex);
 511   __ load_local_long(R17_tos, Rindex, Rindex);
 512 }
 513 
 514 void TemplateTable::fload() {
 515   transition(vtos, ftos);
 516 
 517   const Register Rindex = R11_scratch1;
 518   locals_index(Rindex);
 519   __ load_local_float(F15_ftos, Rindex, Rindex);
 520 }
 521 
 522 void TemplateTable::dload() {
 523   transition(vtos, dtos);
 524 
 525   const Register Rindex = R11_scratch1;
 526   locals_index(Rindex);
 527   __ load_local_double(F15_ftos, Rindex, Rindex);
 528 }
 529 
 530 void TemplateTable::aload() {
 531   transition(vtos, atos);
 532 
 533   const Register Rindex = R11_scratch1;
 534   locals_index(Rindex);
 535   __ load_local_ptr(R17_tos, Rindex, Rindex);
 536 }
 537 
 538 void TemplateTable::locals_index_wide(Register Rdst) {
 539   // Offset is 2, not 1, because Lbcp points to wide prefix code.
 540   __ get_2_byte_integer_at_bcp(2, Rdst, InterpreterMacroAssembler::Unsigned);
 541 }
 542 
 543 void TemplateTable::wide_iload() {
 544   // Get the local value into tos.
 545 
 546   const Register Rindex = R11_scratch1;
 547   locals_index_wide(Rindex);
 548   __ load_local_int(R17_tos, Rindex, Rindex);
 549 }
 550 
 551 void TemplateTable::wide_lload() {
 552   transition(vtos, ltos);
 553 
 554   const Register Rindex = R11_scratch1;
 555   locals_index_wide(Rindex);
 556   __ load_local_long(R17_tos, Rindex, Rindex);
 557 }
 558 
 559 void TemplateTable::wide_fload() {
 560   transition(vtos, ftos);
 561 
 562   const Register Rindex = R11_scratch1;
 563   locals_index_wide(Rindex);
 564   __ load_local_float(F15_ftos, Rindex, Rindex);
 565 }
 566 
 567 void TemplateTable::wide_dload() {
 568   transition(vtos, dtos);
 569 
 570   const Register Rindex = R11_scratch1;
 571   locals_index_wide(Rindex);
 572   __ load_local_double(F15_ftos, Rindex, Rindex);
 573 }
 574 
 575 void TemplateTable::wide_aload() {
 576   transition(vtos, atos);
 577 
 578   const Register Rindex = R11_scratch1;
 579   locals_index_wide(Rindex);
 580   __ load_local_ptr(R17_tos, Rindex, Rindex);
 581 }
 582 
 583 void TemplateTable::iaload() {
 584   transition(itos, itos);
 585 
 586   const Register Rload_addr = R3_ARG1,
 587                  Rarray     = R4_ARG2,
 588                  Rtemp      = R5_ARG3;
 589   __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr);
 590   __ lwa(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rload_addr);
 591 }
 592 
 593 void TemplateTable::laload() {
 594   transition(itos, ltos);
 595 
 596   const Register Rload_addr = R3_ARG1,
 597                  Rarray     = R4_ARG2,
 598                  Rtemp      = R5_ARG3;
 599   __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr);
 600   __ ld(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rload_addr);
 601 }
 602 
 603 void TemplateTable::faload() {
 604   transition(itos, ftos);
 605 
 606   const Register Rload_addr = R3_ARG1,
 607                  Rarray     = R4_ARG2,
 608                  Rtemp      = R5_ARG3;
 609   __ index_check(Rarray, R17_tos /* index */, LogBytesPerInt, Rtemp, Rload_addr);
 610   __ lfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rload_addr);
 611 }
 612 
 613 void TemplateTable::daload() {
 614   transition(itos, dtos);
 615 
 616   const Register Rload_addr = R3_ARG1,
 617                  Rarray     = R4_ARG2,
 618                  Rtemp      = R5_ARG3;
 619   __ index_check(Rarray, R17_tos /* index */, LogBytesPerLong, Rtemp, Rload_addr);
 620   __ lfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rload_addr);
 621 }
 622 
 623 void TemplateTable::aaload() {
 624   transition(itos, atos);
 625 
 626   // tos: index
 627   // result tos: array
 628   const Register Rload_addr = R3_ARG1,
 629                  Rarray     = R4_ARG2,
 630                  Rtemp      = R5_ARG3;
 631   __ index_check(Rarray, R17_tos /* index */, UseCompressedOops ? 2 : LogBytesPerWord, Rtemp, Rload_addr);
 632   __ load_heap_oop(R17_tos, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Rload_addr);
 633   __ verify_oop(R17_tos);
 634   //__ dcbt(R17_tos); // prefetch
 635 }
 636 
 637 void TemplateTable::baload() {
 638   transition(itos, itos);
 639 
 640   const Register Rload_addr = R3_ARG1,
 641                  Rarray     = R4_ARG2,
 642                  Rtemp      = R5_ARG3;
 643   __ index_check(Rarray, R17_tos /* index */, 0, Rtemp, Rload_addr);
 644   __ lbz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rload_addr);
 645   __ extsb(R17_tos, R17_tos);
 646 }
 647 
 648 void TemplateTable::caload() {
 649   transition(itos, itos);
 650 
 651   const Register Rload_addr = R3_ARG1,
 652                  Rarray     = R4_ARG2,
 653                  Rtemp      = R5_ARG3;
 654   __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
 655   __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr);
 656 }
 657 
 658 // Iload followed by caload frequent pair.
 659 void TemplateTable::fast_icaload() {
 660   transition(vtos, itos);
 661 
 662   const Register Rload_addr = R3_ARG1,
 663                  Rarray     = R4_ARG2,
 664                  Rtemp      = R11_scratch1;
 665 
 666   locals_index(R17_tos);
 667   __ load_local_int(R17_tos, Rtemp, R17_tos);
 668   __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
 669   __ lhz(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rload_addr);
 670 }
 671 
 672 void TemplateTable::saload() {
 673   transition(itos, itos);
 674 
 675   const Register Rload_addr = R11_scratch1,
 676                  Rarray     = R12_scratch2,
 677                  Rtemp      = R3_ARG1;
 678   __ index_check(Rarray, R17_tos /* index */, LogBytesPerShort, Rtemp, Rload_addr);
 679   __ lha(R17_tos, arrayOopDesc::base_offset_in_bytes(T_SHORT), Rload_addr);
 680 }
 681 
 682 void TemplateTable::iload(int n) {
 683   transition(vtos, itos);
 684 
 685   __ lwz(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
 686 }
 687 
 688 void TemplateTable::lload(int n) {
 689   transition(vtos, ltos);
 690 
 691   __ ld(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
 692 }
 693 
 694 void TemplateTable::fload(int n) {
 695   transition(vtos, ftos);
 696 
 697   __ lfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals);
 698 }
 699 
 700 void TemplateTable::dload(int n) {
 701   transition(vtos, dtos);
 702 
 703   __ lfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
 704 }
 705 
 706 void TemplateTable::aload(int n) {
 707   transition(vtos, atos);
 708 
 709   __ ld(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
 710 }
 711 
 712 void TemplateTable::aload_0() {
 713   transition(vtos, atos);
 714   // According to bytecode histograms, the pairs:
 715   //
 716   // _aload_0, _fast_igetfield
 717   // _aload_0, _fast_agetfield
 718   // _aload_0, _fast_fgetfield
 719   //
 720   // occur frequently. If RewriteFrequentPairs is set, the (slow)
 721   // _aload_0 bytecode checks if the next bytecode is either
 722   // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
 723   // rewrites the current bytecode into a pair bytecode; otherwise it
 724   // rewrites the current bytecode into _0 that doesn't do
 725   // the pair check anymore.
 726   //
 727   // Note: If the next bytecode is _getfield, the rewrite must be
 728   //       delayed, otherwise we may miss an opportunity for a pair.
 729   //
 730   // Also rewrite frequent pairs
 731   //   aload_0, aload_1
 732   //   aload_0, iload_1
 733   // These bytecodes with a small amount of code are most profitable
 734   // to rewrite.
 735 
 736   if (RewriteFrequentPairs) {
 737 
 738     Label Lrewrite, Ldont_rewrite;
 739     Register Rnext_byte  = R3_ARG1,
 740              Rrewrite_to = R6_ARG4,
 741              Rscratch    = R11_scratch1;
 742 
 743     // Get next byte.
 744     __ lbz(Rnext_byte, Bytecodes::length_for(Bytecodes::_aload_0), R14_bcp);
 745 
 746     // If _getfield, wait to rewrite. We only want to rewrite the last two bytecodes in a pair.
 747     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_getfield);
 748     __ beq(CCR0, Ldont_rewrite);
 749 
 750     __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_igetfield);
 751     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_iaccess_0);
 752     __ beq(CCR1, Lrewrite);
 753 
 754     __ cmpwi(CCR0, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_agetfield);
 755     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aaccess_0);
 756     __ beq(CCR0, Lrewrite);
 757 
 758     __ cmpwi(CCR1, Rnext_byte, (unsigned int)(unsigned char)Bytecodes::_fast_fgetfield);
 759     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_faccess_0);
 760     __ beq(CCR1, Lrewrite);
 761 
 762     __ li(Rrewrite_to, (unsigned int)(unsigned char)Bytecodes::_fast_aload_0);
 763 
 764     __ bind(Lrewrite);
 765     patch_bytecode(Bytecodes::_aload_0, Rrewrite_to, Rscratch, false);
 766     __ bind(Ldont_rewrite);
 767   }
 768 
 769   // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
 770   aload(0);
 771 }
 772 
 773 void TemplateTable::istore() {
 774   transition(itos, vtos);
 775 
 776   const Register Rindex = R11_scratch1;
 777   locals_index(Rindex);
 778   __ store_local_int(R17_tos, Rindex);
 779 }
 780 
 781 void TemplateTable::lstore() {
 782   transition(ltos, vtos);
 783   const Register Rindex = R11_scratch1;
 784   locals_index(Rindex);
 785   __ store_local_long(R17_tos, Rindex);
 786 }
 787 
 788 void TemplateTable::fstore() {
 789   transition(ftos, vtos);
 790 
 791   const Register Rindex = R11_scratch1;
 792   locals_index(Rindex);
 793   __ store_local_float(F15_ftos, Rindex);
 794 }
 795 
 796 void TemplateTable::dstore() {
 797   transition(dtos, vtos);
 798 
 799   const Register Rindex = R11_scratch1;
 800   locals_index(Rindex);
 801   __ store_local_double(F15_ftos, Rindex);
 802 }
 803 
 804 void TemplateTable::astore() {
 805   transition(vtos, vtos);
 806 
 807   const Register Rindex = R11_scratch1;
 808   __ pop_ptr();
 809   __ verify_oop_or_return_address(R17_tos, Rindex);
 810   locals_index(Rindex);
 811   __ store_local_ptr(R17_tos, Rindex);
 812 }
 813 
 814 void TemplateTable::wide_istore() {
 815   transition(vtos, vtos);
 816 
 817   const Register Rindex = R11_scratch1;
 818   __ pop_i();
 819   locals_index_wide(Rindex);
 820   __ store_local_int(R17_tos, Rindex);
 821 }
 822 
 823 void TemplateTable::wide_lstore() {
 824   transition(vtos, vtos);
 825 
 826   const Register Rindex = R11_scratch1;
 827   __ pop_l();
 828   locals_index_wide(Rindex);
 829   __ store_local_long(R17_tos, Rindex);
 830 }
 831 
 832 void TemplateTable::wide_fstore() {
 833   transition(vtos, vtos);
 834 
 835   const Register Rindex = R11_scratch1;
 836   __ pop_f();
 837   locals_index_wide(Rindex);
 838   __ store_local_float(F15_ftos, Rindex);
 839 }
 840 
 841 void TemplateTable::wide_dstore() {
 842   transition(vtos, vtos);
 843 
 844   const Register Rindex = R11_scratch1;
 845   __ pop_d();
 846   locals_index_wide(Rindex);
 847   __ store_local_double(F15_ftos, Rindex);
 848 }
 849 
 850 void TemplateTable::wide_astore() {
 851   transition(vtos, vtos);
 852 
 853   const Register Rindex = R11_scratch1;
 854   __ pop_ptr();
 855   __ verify_oop_or_return_address(R17_tos, Rindex);
 856   locals_index_wide(Rindex);
 857   __ store_local_ptr(R17_tos, Rindex);
 858 }
 859 
 860 void TemplateTable::iastore() {
 861   transition(itos, vtos);
 862 
 863   const Register Rindex      = R3_ARG1,
 864                  Rstore_addr = R4_ARG2,
 865                  Rarray      = R5_ARG3,
 866                  Rtemp       = R6_ARG4;
 867   __ pop_i(Rindex);
 868   __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr);
 869   __ stw(R17_tos, arrayOopDesc::base_offset_in_bytes(T_INT), Rstore_addr);
 870   }
 871 
 872 void TemplateTable::lastore() {
 873   transition(ltos, vtos);
 874 
 875   const Register Rindex      = R3_ARG1,
 876                  Rstore_addr = R4_ARG2,
 877                  Rarray      = R5_ARG3,
 878                  Rtemp       = R6_ARG4;
 879   __ pop_i(Rindex);
 880   __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr);
 881   __ std(R17_tos, arrayOopDesc::base_offset_in_bytes(T_LONG), Rstore_addr);
 882   }
 883 
 884 void TemplateTable::fastore() {
 885   transition(ftos, vtos);
 886 
 887   const Register Rindex      = R3_ARG1,
 888                  Rstore_addr = R4_ARG2,
 889                  Rarray      = R5_ARG3,
 890                  Rtemp       = R6_ARG4;
 891   __ pop_i(Rindex);
 892   __ index_check(Rarray, Rindex, LogBytesPerInt, Rtemp, Rstore_addr);
 893   __ stfs(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_FLOAT), Rstore_addr);
 894   }
 895 
 896 void TemplateTable::dastore() {
 897   transition(dtos, vtos);
 898 
 899   const Register Rindex      = R3_ARG1,
 900                  Rstore_addr = R4_ARG2,
 901                  Rarray      = R5_ARG3,
 902                  Rtemp       = R6_ARG4;
 903   __ pop_i(Rindex);
 904   __ index_check(Rarray, Rindex, LogBytesPerLong, Rtemp, Rstore_addr);
 905   __ stfd(F15_ftos, arrayOopDesc::base_offset_in_bytes(T_DOUBLE), Rstore_addr);
 906   }
 907 
 908 // Pop 3 values from the stack and...
 909 void TemplateTable::aastore() {
 910   transition(vtos, vtos);
 911 
 912   Label Lstore_ok, Lis_null, Ldone;
 913   const Register Rindex    = R3_ARG1,
 914                  Rarray    = R4_ARG2,
 915                  Rscratch  = R11_scratch1,
 916                  Rscratch2 = R12_scratch2,
 917                  Rarray_klass = R5_ARG3,
 918                  Rarray_element_klass = Rarray_klass,
 919                  Rvalue_klass = R6_ARG4,
 920                  Rstore_addr = R31;    // Use register which survives VM call.
 921 
 922   __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp); // Get value to store.
 923   __ lwz(Rindex, Interpreter::expr_offset_in_bytes(1), R15_esp); // Get index.
 924   __ ld(Rarray, Interpreter::expr_offset_in_bytes(2), R15_esp);  // Get array.
 925 
 926   __ verify_oop(R17_tos);
 927   __ index_check_without_pop(Rarray, Rindex, UseCompressedOops ? 2 : LogBytesPerWord, Rscratch, Rstore_addr);
 928   // Rindex is dead!
 929   Register Rscratch3 = Rindex;
 930 
 931   // Do array store check - check for NULL value first.
 932   __ cmpdi(CCR0, R17_tos, 0);
 933   __ beq(CCR0, Lis_null);
 934 
 935   __ load_klass(Rarray_klass, Rarray);
 936   __ load_klass(Rvalue_klass, R17_tos);
 937 
 938   // Do fast instanceof cache test.
 939   __ ld(Rarray_element_klass, in_bytes(ObjArrayKlass::element_klass_offset()), Rarray_klass);
 940 
 941   // Generate a fast subtype check. Branch to store_ok if no failure. Throw if failure.
 942   __ gen_subtype_check(Rvalue_klass /*subklass*/, Rarray_element_klass /*superklass*/, Rscratch, Rscratch2, Rscratch3, Lstore_ok);
 943 
 944   // Fell through: subtype check failed => throw an exception.
 945   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArrayStoreException_entry);
 946   __ mtctr(R11_scratch1);
 947   __ bctr();
 948 
 949   __ bind(Lis_null);
 950   do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), noreg /* 0 */,
 951                Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */);
 952   __ profile_null_seen(Rscratch, Rscratch2);
 953   __ b(Ldone);
 954 
 955   // Store is OK.
 956   __ bind(Lstore_ok);
 957   do_oop_store(_masm, Rstore_addr, arrayOopDesc::base_offset_in_bytes(T_OBJECT), R17_tos /* value */,
 958                Rscratch, Rscratch2, Rscratch3, _bs->kind(), true /* precise */, false /* check_null */);
 959 
 960   __ bind(Ldone);
 961   // Adjust sp (pops array, index and value).
 962   __ addi(R15_esp, R15_esp, 3 * Interpreter::stackElementSize);
 963 }
 964 
 965 void TemplateTable::bastore() {
 966   transition(itos, vtos);
 967 
 968   const Register Rindex   = R11_scratch1,
 969                  Rarray   = R12_scratch2,
 970                  Rscratch = R3_ARG1;
 971   __ pop_i(Rindex);
 972   // tos: val
 973   // Rarray: array ptr (popped by index_check)
 974   __ index_check(Rarray, Rindex, 0, Rscratch, Rarray);
 975   __ stb(R17_tos, arrayOopDesc::base_offset_in_bytes(T_BYTE), Rarray);
 976 }
 977 
 978 void TemplateTable::castore() {
 979   transition(itos, vtos);
 980 
 981   const Register Rindex   = R11_scratch1,
 982                  Rarray   = R12_scratch2,
 983                  Rscratch = R3_ARG1;
 984   __ pop_i(Rindex);
 985   // tos: val
 986   // Rarray: array ptr (popped by index_check)
 987   __ index_check(Rarray, Rindex, LogBytesPerShort, Rscratch, Rarray);
 988   __ sth(R17_tos, arrayOopDesc::base_offset_in_bytes(T_CHAR), Rarray);
 989 }
 990 
 991 void TemplateTable::sastore() {
 992   castore();
 993 }
 994 
 995 void TemplateTable::istore(int n) {
 996   transition(itos, vtos);
 997   __ stw(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
 998 }
 999 
1000 void TemplateTable::lstore(int n) {
1001   transition(ltos, vtos);
1002   __ std(R17_tos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
1003 }
1004 
1005 void TemplateTable::fstore(int n) {
1006   transition(ftos, vtos);
1007   __ stfs(F15_ftos, Interpreter::local_offset_in_bytes(n), R18_locals);
1008 }
1009 
1010 void TemplateTable::dstore(int n) {
1011   transition(dtos, vtos);
1012   __ stfd(F15_ftos, Interpreter::local_offset_in_bytes(n + 1), R18_locals);
1013 }
1014 
1015 void TemplateTable::astore(int n) {
1016   transition(vtos, vtos);
1017 
1018   __ pop_ptr();
1019   __ verify_oop_or_return_address(R17_tos, R11_scratch1);
1020   __ std(R17_tos, Interpreter::local_offset_in_bytes(n), R18_locals);
1021 }
1022 
1023 void TemplateTable::pop() {
1024   transition(vtos, vtos);
1025 
1026   __ addi(R15_esp, R15_esp, Interpreter::stackElementSize);
1027 }
1028 
1029 void TemplateTable::pop2() {
1030   transition(vtos, vtos);
1031 
1032   __ addi(R15_esp, R15_esp, Interpreter::stackElementSize * 2);
1033 }
1034 
1035 void TemplateTable::dup() {
1036   transition(vtos, vtos);
1037 
1038   __ ld(R11_scratch1, Interpreter::stackElementSize, R15_esp);
1039   __ push_ptr(R11_scratch1);
1040 }
1041 
1042 void TemplateTable::dup_x1() {
1043   transition(vtos, vtos);
1044 
1045   Register Ra = R11_scratch1,
1046            Rb = R12_scratch2;
1047   // stack: ..., a, b
1048   __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
1049   __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
1050   __ std(Rb, Interpreter::stackElementSize * 2, R15_esp);
1051   __ std(Ra, Interpreter::stackElementSize,     R15_esp);
1052   __ push_ptr(Rb);
1053   // stack: ..., b, a, b
1054 }
1055 
1056 void TemplateTable::dup_x2() {
1057   transition(vtos, vtos);
1058 
1059   Register Ra = R11_scratch1,
1060            Rb = R12_scratch2,
1061            Rc = R3_ARG1;
1062 
1063   // stack: ..., a, b, c
1064   __ ld(Rc, Interpreter::stackElementSize,     R15_esp);  // load c
1065   __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp);  // load a
1066   __ std(Rc, Interpreter::stackElementSize * 3, R15_esp); // store c in a
1067   __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp);  // load b
1068   // stack: ..., c, b, c
1069   __ std(Ra, Interpreter::stackElementSize * 2, R15_esp); // store a in b
1070   // stack: ..., c, a, c
1071   __ std(Rb, Interpreter::stackElementSize,     R15_esp); // store b in c
1072   __ push_ptr(Rc);                                        // push c
1073   // stack: ..., c, a, b, c
1074 }
1075 
1076 void TemplateTable::dup2() {
1077   transition(vtos, vtos);
1078 
1079   Register Ra = R11_scratch1,
1080            Rb = R12_scratch2;
1081   // stack: ..., a, b
1082   __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
1083   __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
1084   __ push_2ptrs(Ra, Rb);
1085   // stack: ..., a, b, a, b
1086 }
1087 
1088 void TemplateTable::dup2_x1() {
1089   transition(vtos, vtos);
1090 
1091   Register Ra = R11_scratch1,
1092            Rb = R12_scratch2,
1093            Rc = R3_ARG1;
1094   // stack: ..., a, b, c
1095   __ ld(Rc, Interpreter::stackElementSize,     R15_esp);
1096   __ ld(Rb, Interpreter::stackElementSize * 2, R15_esp);
1097   __ std(Rc, Interpreter::stackElementSize * 2, R15_esp);
1098   __ ld(Ra, Interpreter::stackElementSize * 3, R15_esp);
1099   __ std(Ra, Interpreter::stackElementSize,     R15_esp);
1100   __ std(Rb, Interpreter::stackElementSize * 3, R15_esp);
1101   // stack: ..., b, c, a
1102   __ push_2ptrs(Rb, Rc);
1103   // stack: ..., b, c, a, b, c
1104 }
1105 
1106 void TemplateTable::dup2_x2() {
1107   transition(vtos, vtos);
1108 
1109   Register Ra = R11_scratch1,
1110            Rb = R12_scratch2,
1111            Rc = R3_ARG1,
1112            Rd = R4_ARG2;
1113   // stack: ..., a, b, c, d
1114   __ ld(Rb, Interpreter::stackElementSize * 3, R15_esp);
1115   __ ld(Rd, Interpreter::stackElementSize,     R15_esp);
1116   __ std(Rb, Interpreter::stackElementSize,     R15_esp);  // store b in d
1117   __ std(Rd, Interpreter::stackElementSize * 3, R15_esp);  // store d in b
1118   __ ld(Ra, Interpreter::stackElementSize * 4, R15_esp);
1119   __ ld(Rc, Interpreter::stackElementSize * 2, R15_esp);
1120   __ std(Ra, Interpreter::stackElementSize * 2, R15_esp);  // store a in c
1121   __ std(Rc, Interpreter::stackElementSize * 4, R15_esp);  // store c in a
1122   // stack: ..., c, d, a, b
1123   __ push_2ptrs(Rc, Rd);
1124   // stack: ..., c, d, a, b, c, d
1125 }
1126 
1127 void TemplateTable::swap() {
1128   transition(vtos, vtos);
1129   // stack: ..., a, b
1130 
1131   Register Ra = R11_scratch1,
1132            Rb = R12_scratch2;
1133   // stack: ..., a, b
1134   __ ld(Rb, Interpreter::stackElementSize,     R15_esp);
1135   __ ld(Ra, Interpreter::stackElementSize * 2, R15_esp);
1136   __ std(Rb, Interpreter::stackElementSize * 2, R15_esp);
1137   __ std(Ra, Interpreter::stackElementSize,     R15_esp);
1138   // stack: ..., b, a
1139 }
1140 
1141 void TemplateTable::iop2(Operation op) {
1142   transition(itos, itos);
1143 
1144   Register Rscratch = R11_scratch1;
1145 
1146   __ pop_i(Rscratch);
1147   // tos  = number of bits to shift
1148   // Rscratch = value to shift
1149   switch (op) {
1150     case  add:   __ add(R17_tos, Rscratch, R17_tos); break;
1151     case  sub:   __ sub(R17_tos, Rscratch, R17_tos); break;
1152     case  mul:   __ mullw(R17_tos, Rscratch, R17_tos); break;
1153     case  _and:  __ andr(R17_tos, Rscratch, R17_tos); break;
1154     case  _or:   __ orr(R17_tos, Rscratch, R17_tos); break;
1155     case  _xor:  __ xorr(R17_tos, Rscratch, R17_tos); break;
1156     case  shl:   __ rldicl(R17_tos, R17_tos, 0, 64-5); __ slw(R17_tos, Rscratch, R17_tos); break;
1157     case  shr:   __ rldicl(R17_tos, R17_tos, 0, 64-5); __ sraw(R17_tos, Rscratch, R17_tos); break;
1158     case  ushr:  __ rldicl(R17_tos, R17_tos, 0, 64-5); __ srw(R17_tos, Rscratch, R17_tos); break;
1159     default:     ShouldNotReachHere();
1160   }
1161 }
1162 
1163 void TemplateTable::lop2(Operation op) {
1164   transition(ltos, ltos);
1165 
1166   Register Rscratch = R11_scratch1;
1167   __ pop_l(Rscratch);
1168   switch (op) {
1169     case  add:   __ add(R17_tos, Rscratch, R17_tos); break;
1170     case  sub:   __ sub(R17_tos, Rscratch, R17_tos); break;
1171     case  _and:  __ andr(R17_tos, Rscratch, R17_tos); break;
1172     case  _or:   __ orr(R17_tos, Rscratch, R17_tos); break;
1173     case  _xor:  __ xorr(R17_tos, Rscratch, R17_tos); break;
1174     default:     ShouldNotReachHere();
1175   }
1176 }
1177 
1178 void TemplateTable::idiv() {
1179   transition(itos, itos);
1180 
1181   Label Lnormal, Lexception, Ldone;
1182   Register Rdividend = R11_scratch1; // Used by irem.
1183 
1184   __ addi(R0, R17_tos, 1);
1185   __ cmplwi(CCR0, R0, 2);
1186   __ bgt(CCR0, Lnormal); // divisor <-1 or >1
1187 
1188   __ cmpwi(CCR1, R17_tos, 0);
1189   __ beq(CCR1, Lexception); // divisor == 0
1190 
1191   __ pop_i(Rdividend);
1192   __ mullw(R17_tos, Rdividend, R17_tos); // div by +/-1
1193   __ b(Ldone);
1194 
1195   __ bind(Lexception);
1196   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry);
1197   __ mtctr(R11_scratch1);
1198   __ bctr();
1199 
1200   __ align(32, 12);
1201   __ bind(Lnormal);
1202   __ pop_i(Rdividend);
1203   __ divw(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1.
1204   __ bind(Ldone);
1205 }
1206 
1207 void TemplateTable::irem() {
1208   transition(itos, itos);
1209 
1210   __ mr(R12_scratch2, R17_tos);
1211   idiv();
1212   __ mullw(R17_tos, R17_tos, R12_scratch2);
1213   __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by idiv.
1214 }
1215 
1216 void TemplateTable::lmul() {
1217   transition(ltos, ltos);
1218 
1219   __ pop_l(R11_scratch1);
1220   __ mulld(R17_tos, R11_scratch1, R17_tos);
1221 }
1222 
1223 void TemplateTable::ldiv() {
1224   transition(ltos, ltos);
1225 
1226   Label Lnormal, Lexception, Ldone;
1227   Register Rdividend = R11_scratch1; // Used by lrem.
1228 
1229   __ addi(R0, R17_tos, 1);
1230   __ cmpldi(CCR0, R0, 2);
1231   __ bgt(CCR0, Lnormal); // divisor <-1 or >1
1232 
1233   __ cmpdi(CCR1, R17_tos, 0);
1234   __ beq(CCR1, Lexception); // divisor == 0
1235 
1236   __ pop_l(Rdividend);
1237   __ mulld(R17_tos, Rdividend, R17_tos); // div by +/-1
1238   __ b(Ldone);
1239 
1240   __ bind(Lexception);
1241   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ArithmeticException_entry);
1242   __ mtctr(R11_scratch1);
1243   __ bctr();
1244 
1245   __ align(32, 12);
1246   __ bind(Lnormal);
1247   __ pop_l(Rdividend);
1248   __ divd(R17_tos, Rdividend, R17_tos); // Can't divide minint/-1.
1249   __ bind(Ldone);
1250 }
1251 
1252 void TemplateTable::lrem() {
1253   transition(ltos, ltos);
1254 
1255   __ mr(R12_scratch2, R17_tos);
1256   ldiv();
1257   __ mulld(R17_tos, R17_tos, R12_scratch2);
1258   __ subf(R17_tos, R17_tos, R11_scratch1); // Dividend set by ldiv.
1259 }
1260 
1261 void TemplateTable::lshl() {
1262   transition(itos, ltos);
1263 
1264   __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
1265   __ pop_l(R11_scratch1);
1266   __ sld(R17_tos, R11_scratch1, R17_tos);
1267 }
1268 
1269 void TemplateTable::lshr() {
1270   transition(itos, ltos);
1271 
1272   __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
1273   __ pop_l(R11_scratch1);
1274   __ srad(R17_tos, R11_scratch1, R17_tos);
1275 }
1276 
1277 void TemplateTable::lushr() {
1278   transition(itos, ltos);
1279 
1280   __ rldicl(R17_tos, R17_tos, 0, 64-6); // Extract least significant bits.
1281   __ pop_l(R11_scratch1);
1282   __ srd(R17_tos, R11_scratch1, R17_tos);
1283 }
1284 
1285 void TemplateTable::fop2(Operation op) {
1286   transition(ftos, ftos);
1287 
1288   switch (op) {
1289     case add: __ pop_f(F0_SCRATCH); __ fadds(F15_ftos, F0_SCRATCH, F15_ftos); break;
1290     case sub: __ pop_f(F0_SCRATCH); __ fsubs(F15_ftos, F0_SCRATCH, F15_ftos); break;
1291     case mul: __ pop_f(F0_SCRATCH); __ fmuls(F15_ftos, F0_SCRATCH, F15_ftos); break;
1292     case div: __ pop_f(F0_SCRATCH); __ fdivs(F15_ftos, F0_SCRATCH, F15_ftos); break;
1293     case rem:
1294       __ pop_f(F1_ARG1);
1295       __ fmr(F2_ARG2, F15_ftos);
1296       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1297       __ fmr(F15_ftos, F1_RET);
1298       break;
1299 
1300     default: ShouldNotReachHere();
1301   }
1302 }
1303 
1304 void TemplateTable::dop2(Operation op) {
1305   transition(dtos, dtos);
1306 
1307   switch (op) {
1308     case add: __ pop_d(F0_SCRATCH); __ fadd(F15_ftos, F0_SCRATCH, F15_ftos); break;
1309     case sub: __ pop_d(F0_SCRATCH); __ fsub(F15_ftos, F0_SCRATCH, F15_ftos); break;
1310     case mul: __ pop_d(F0_SCRATCH); __ fmul(F15_ftos, F0_SCRATCH, F15_ftos); break;
1311     case div: __ pop_d(F0_SCRATCH); __ fdiv(F15_ftos, F0_SCRATCH, F15_ftos); break;
1312     case rem:
1313       __ pop_d(F1_ARG1);
1314       __ fmr(F2_ARG2, F15_ftos);
1315       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1316       __ fmr(F15_ftos, F1_RET);
1317       break;
1318 
1319     default: ShouldNotReachHere();
1320   }
1321 }
1322 
1323 // Negate the value in the TOS cache.
1324 void TemplateTable::ineg() {
1325   transition(itos, itos);
1326 
1327   __ neg(R17_tos, R17_tos);
1328 }
1329 
1330 // Negate the value in the TOS cache.
1331 void TemplateTable::lneg() {
1332   transition(ltos, ltos);
1333 
1334   __ neg(R17_tos, R17_tos);
1335 }
1336 
1337 void TemplateTable::fneg() {
1338   transition(ftos, ftos);
1339 
1340   __ fneg(F15_ftos, F15_ftos);
1341 }
1342 
1343 void TemplateTable::dneg() {
1344   transition(dtos, dtos);
1345 
1346   __ fneg(F15_ftos, F15_ftos);
1347 }
1348 
1349 // Increments a local variable in place.
1350 void TemplateTable::iinc() {
1351   transition(vtos, vtos);
1352 
1353   const Register Rindex     = R11_scratch1,
1354                  Rincrement = R0,
1355                  Rvalue     = R12_scratch2;
1356 
1357   locals_index(Rindex);              // Load locals index from bytecode stream.
1358   __ lbz(Rincrement, 2, R14_bcp);    // Load increment from the bytecode stream.
1359   __ extsb(Rincrement, Rincrement);
1360 
1361   __ load_local_int(Rvalue, Rindex, Rindex); // Puts address of local into Rindex.
1362 
1363   __ add(Rvalue, Rincrement, Rvalue);
1364   __ stw(Rvalue, 0, Rindex);
1365 }
1366 
1367 void TemplateTable::wide_iinc() {
1368   transition(vtos, vtos);
1369 
1370   Register Rindex       = R11_scratch1,
1371            Rlocals_addr = Rindex,
1372            Rincr        = R12_scratch2;
1373   locals_index_wide(Rindex);
1374   __ get_2_byte_integer_at_bcp(4, Rincr, InterpreterMacroAssembler::Signed);
1375   __ load_local_int(R17_tos, Rlocals_addr, Rindex);
1376   __ add(R17_tos, Rincr, R17_tos);
1377   __ stw(R17_tos, 0, Rlocals_addr);
1378 }
1379 
1380 void TemplateTable::convert() {
1381   // %%%%% Factor this first part accross platforms
1382 #ifdef ASSERT
1383   TosState tos_in  = ilgl;
1384   TosState tos_out = ilgl;
1385   switch (bytecode()) {
1386     case Bytecodes::_i2l: // fall through
1387     case Bytecodes::_i2f: // fall through
1388     case Bytecodes::_i2d: // fall through
1389     case Bytecodes::_i2b: // fall through
1390     case Bytecodes::_i2c: // fall through
1391     case Bytecodes::_i2s: tos_in = itos; break;
1392     case Bytecodes::_l2i: // fall through
1393     case Bytecodes::_l2f: // fall through
1394     case Bytecodes::_l2d: tos_in = ltos; break;
1395     case Bytecodes::_f2i: // fall through
1396     case Bytecodes::_f2l: // fall through
1397     case Bytecodes::_f2d: tos_in = ftos; break;
1398     case Bytecodes::_d2i: // fall through
1399     case Bytecodes::_d2l: // fall through
1400     case Bytecodes::_d2f: tos_in = dtos; break;
1401     default             : ShouldNotReachHere();
1402   }
1403   switch (bytecode()) {
1404     case Bytecodes::_l2i: // fall through
1405     case Bytecodes::_f2i: // fall through
1406     case Bytecodes::_d2i: // fall through
1407     case Bytecodes::_i2b: // fall through
1408     case Bytecodes::_i2c: // fall through
1409     case Bytecodes::_i2s: tos_out = itos; break;
1410     case Bytecodes::_i2l: // fall through
1411     case Bytecodes::_f2l: // fall through
1412     case Bytecodes::_d2l: tos_out = ltos; break;
1413     case Bytecodes::_i2f: // fall through
1414     case Bytecodes::_l2f: // fall through
1415     case Bytecodes::_d2f: tos_out = ftos; break;
1416     case Bytecodes::_i2d: // fall through
1417     case Bytecodes::_l2d: // fall through
1418     case Bytecodes::_f2d: tos_out = dtos; break;
1419     default             : ShouldNotReachHere();
1420   }
1421   transition(tos_in, tos_out);
1422 #endif
1423 
1424   // Conversion
1425   Label done;
1426   switch (bytecode()) {
1427     case Bytecodes::_i2l:
1428       __ extsw(R17_tos, R17_tos);
1429       break;
1430 
1431     case Bytecodes::_l2i:
1432       // Nothing to do, we'll continue to work with the lower bits.
1433       break;
1434 
1435     case Bytecodes::_i2b:
1436       __ extsb(R17_tos, R17_tos);
1437       break;
1438 
1439     case Bytecodes::_i2c:
1440       __ rldicl(R17_tos, R17_tos, 0, 64-2*8);
1441       break;
1442 
1443     case Bytecodes::_i2s:
1444       __ extsh(R17_tos, R17_tos);
1445       break;
1446 
1447     case Bytecodes::_i2d:
1448       __ extsw(R17_tos, R17_tos);
1449     case Bytecodes::_l2d:
1450       __ push_l_pop_d();
1451       __ fcfid(F15_ftos, F15_ftos);
1452       break;
1453 
1454     case Bytecodes::_i2f:
1455       __ extsw(R17_tos, R17_tos);
1456       __ push_l_pop_d();
1457       if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only
1458         // Comment: alternatively, load with sign extend could be done by lfiwax.
1459         __ fcfids(F15_ftos, F15_ftos);
1460       } else {
1461         __ fcfid(F15_ftos, F15_ftos);
1462         __ frsp(F15_ftos, F15_ftos);
1463       }
1464       break;
1465 
1466     case Bytecodes::_l2f:
1467       if (VM_Version::has_fcfids()) { // fcfids is >= Power7 only
1468         __ push_l_pop_d();
1469         __ fcfids(F15_ftos, F15_ftos);
1470       } else {
1471         // Avoid rounding problem when result should be 0x3f800001: need fixup code before fcfid+frsp.
1472         __ mr(R3_ARG1, R17_tos);
1473         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::l2f));
1474         __ fmr(F15_ftos, F1_RET);
1475       }
1476       break;
1477 
1478     case Bytecodes::_f2d:
1479       // empty
1480       break;
1481 
1482     case Bytecodes::_d2f:
1483       __ frsp(F15_ftos, F15_ftos);
1484       break;
1485 
1486     case Bytecodes::_d2i:
1487     case Bytecodes::_f2i:
1488       __ fcmpu(CCR0, F15_ftos, F15_ftos);
1489       __ li(R17_tos, 0); // 0 in case of NAN
1490       __ bso(CCR0, done);
1491       __ fctiwz(F15_ftos, F15_ftos);
1492       __ push_d_pop_l();
1493       break;
1494 
1495     case Bytecodes::_d2l:
1496     case Bytecodes::_f2l:
1497       __ fcmpu(CCR0, F15_ftos, F15_ftos);
1498       __ li(R17_tos, 0); // 0 in case of NAN
1499       __ bso(CCR0, done);
1500       __ fctidz(F15_ftos, F15_ftos);
1501       __ push_d_pop_l();
1502       break;
1503 
1504     default: ShouldNotReachHere();
1505   }
1506   __ bind(done);
1507 }
1508 
1509 // Long compare
1510 void TemplateTable::lcmp() {
1511   transition(ltos, itos);
1512 
1513   const Register Rscratch = R11_scratch1;
1514   __ pop_l(Rscratch); // first operand, deeper in stack
1515 
1516   __ cmpd(CCR0, Rscratch, R17_tos); // compare
1517   __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
1518   __ srwi(Rscratch, R17_tos, 30);
1519   __ srawi(R17_tos, R17_tos, 31);
1520   __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1
1521 }
1522 
1523 // fcmpl/fcmpg and dcmpl/dcmpg bytecodes
1524 // unordered_result == -1 => fcmpl or dcmpl
1525 // unordered_result ==  1 => fcmpg or dcmpg
1526 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1527   const FloatRegister Rfirst  = F0_SCRATCH,
1528                       Rsecond = F15_ftos;
1529   const Register Rscratch = R11_scratch1;
1530 
1531   if (is_float) {
1532     __ pop_f(Rfirst);
1533   } else {
1534     __ pop_d(Rfirst);
1535   }
1536 
1537   Label Lunordered, Ldone;
1538   __ fcmpu(CCR0, Rfirst, Rsecond); // compare
1539   if (unordered_result) {
1540     __ bso(CCR0, Lunordered);
1541   }
1542   __ mfcr(R17_tos); // set bit 32..33 as follows: <: 0b10, =: 0b00, >: 0b01
1543   __ srwi(Rscratch, R17_tos, 30);
1544   __ srawi(R17_tos, R17_tos, 31);
1545   __ orr(R17_tos, Rscratch, R17_tos); // set result as follows: <: -1, =: 0, >: 1
1546   if (unordered_result) {
1547     __ b(Ldone);
1548     __ bind(Lunordered);
1549     __ load_const_optimized(R17_tos, unordered_result);
1550   }
1551   __ bind(Ldone);
1552 }
1553 
1554 // Branch_conditional which takes TemplateTable::Condition.
1555 void TemplateTable::branch_conditional(ConditionRegister crx, TemplateTable::Condition cc, Label& L, bool invert) {
1556   bool positive = false;
1557   Assembler::Condition cond = Assembler::equal;
1558   switch (cc) {
1559     case TemplateTable::equal:         positive = true ; cond = Assembler::equal  ; break;
1560     case TemplateTable::not_equal:     positive = false; cond = Assembler::equal  ; break;
1561     case TemplateTable::less:          positive = true ; cond = Assembler::less   ; break;
1562     case TemplateTable::less_equal:    positive = false; cond = Assembler::greater; break;
1563     case TemplateTable::greater:       positive = true ; cond = Assembler::greater; break;
1564     case TemplateTable::greater_equal: positive = false; cond = Assembler::less   ; break;
1565     default: ShouldNotReachHere();
1566   }
1567   int bo = (positive != invert) ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0;
1568   int bi = Assembler::bi0(crx, cond);
1569   __ bc(bo, bi, L);
1570 }
1571 
1572 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1573 
1574   // Note: on SPARC, we use InterpreterMacroAssembler::if_cmp also.
1575   __ verify_thread();
1576 
1577   const Register Rscratch1    = R11_scratch1,
1578                  Rscratch2    = R12_scratch2,
1579                  Rscratch3    = R3_ARG1,
1580                  R4_counters  = R4_ARG2,
1581                  bumped_count = R31,
1582                  Rdisp        = R22_tmp2;
1583 
1584   __ profile_taken_branch(Rscratch1, bumped_count);
1585 
1586   // Get (wide) offset.
1587   if (is_wide) {
1588     __ get_4_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed);
1589   } else {
1590     __ get_2_byte_integer_at_bcp(1, Rdisp, InterpreterMacroAssembler::Signed);
1591   }
1592 
1593   // --------------------------------------------------------------------------
1594   // Handle all the JSR stuff here, then exit.
1595   // It's much shorter and cleaner than intermingling with the
1596   // non-JSR normal-branch stuff occurring below.
1597   if (is_jsr) {
1598     // Compute return address as bci in Otos_i.
1599     __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method);
1600     __ addi(Rscratch2, R14_bcp, -in_bytes(ConstMethod::codes_offset()) + (is_wide ? 5 : 3));
1601     __ subf(R17_tos, Rscratch1, Rscratch2);
1602 
1603     // Bump bcp to target of JSR.
1604     __ add(R14_bcp, Rdisp, R14_bcp);
1605     // Push returnAddress for "ret" on stack.
1606     __ push_ptr(R17_tos);
1607     // And away we go!
1608     __ dispatch_next(vtos);
1609     return;
1610   }
1611 
1612   // --------------------------------------------------------------------------
1613   // Normal (non-jsr) branch handling
1614 
1615   const bool increment_invocation_counter_for_backward_branches = UseCompiler && UseLoopCounter;
1616   if (increment_invocation_counter_for_backward_branches) {
1617     //__ unimplemented("branch invocation counter");
1618 
1619     Label Lforward;
1620     __ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr.
1621 
1622     // Check branch direction.
1623     __ cmpdi(CCR0, Rdisp, 0);
1624     __ bgt(CCR0, Lforward);
1625 
1626     __ get_method_counters(R19_method, R4_counters, Lforward);
1627 
1628     if (TieredCompilation) {
1629       Label Lno_mdo, Loverflow;
1630       const int increment = InvocationCounter::count_increment;
1631       const int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
1632       if (ProfileInterpreter) {
1633         Register Rmdo = Rscratch1;
1634 
1635         // If no method data exists, go to profile_continue.
1636         __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
1637         __ cmpdi(CCR0, Rmdo, 0);
1638         __ beq(CCR0, Lno_mdo);
1639 
1640         // Increment backedge counter in the MDO.
1641         const int mdo_bc_offs = in_bytes(MethodData::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
1642         __ lwz(Rscratch2, mdo_bc_offs, Rmdo);
1643         __ load_const_optimized(Rscratch3, mask, R0);
1644         __ addi(Rscratch2, Rscratch2, increment);
1645         __ stw(Rscratch2, mdo_bc_offs, Rmdo);
1646         __ and_(Rscratch3, Rscratch2, Rscratch3);
1647         __ bne(CCR0, Lforward);
1648         __ b(Loverflow);
1649       }
1650 
1651       // If there's no MDO, increment counter in method.
1652       const int mo_bc_offs = in_bytes(MethodCounters::backedge_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
1653       __ bind(Lno_mdo);
1654       __ lwz(Rscratch2, mo_bc_offs, R4_counters);
1655       __ load_const_optimized(Rscratch3, mask, R0);
1656       __ addi(Rscratch2, Rscratch2, increment);
1657       __ stw(Rscratch2, mo_bc_offs, R19_method);
1658       __ and_(Rscratch3, Rscratch2, Rscratch3);
1659       __ bne(CCR0, Lforward);
1660 
1661       __ bind(Loverflow);
1662 
1663       // Notify point for loop, pass branch bytecode.
1664       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R14_bcp, true);
1665 
1666       // Was an OSR adapter generated?
1667       // O0 = osr nmethod
1668       __ cmpdi(CCR0, R3_RET, 0);
1669       __ beq(CCR0, Lforward);
1670 
1671       // Has the nmethod been invalidated already?
1672       __ lwz(R0, nmethod::entry_bci_offset(), R3_RET);
1673       __ cmpwi(CCR0, R0, InvalidOSREntryBci);
1674       __ beq(CCR0, Lforward);
1675 
1676       // Migrate the interpreter frame off of the stack.
1677       // We can use all registers because we will not return to interpreter from this point.
1678 
1679       // Save nmethod.
1680       const Register osr_nmethod = R31;
1681       __ mr(osr_nmethod, R3_RET);
1682       __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R11_scratch1);
1683       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), R16_thread);
1684       __ reset_last_Java_frame();
1685       // OSR buffer is in ARG1.
1686 
1687       // Remove the interpreter frame.
1688       __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1689 
1690       // Jump to the osr code.
1691       __ ld(R11_scratch1, nmethod::osr_entry_point_offset(), osr_nmethod);
1692       __ mtlr(R0);
1693       __ mtctr(R11_scratch1);
1694       __ bctr();
1695 
1696     } else {
1697 
1698       const Register invoke_ctr = Rscratch1;
1699       // Update Backedge branch separately from invocations.
1700       __ increment_backedge_counter(R4_counters, invoke_ctr, Rscratch2, Rscratch3);
1701 
1702       if (ProfileInterpreter) {
1703         __ test_invocation_counter_for_mdp(invoke_ctr, Rscratch2, Lforward);
1704         if (UseOnStackReplacement) {
1705           __ test_backedge_count_for_osr(bumped_count, R14_bcp, Rscratch2);
1706         }
1707       } else {
1708         if (UseOnStackReplacement) {
1709           __ test_backedge_count_for_osr(invoke_ctr, R14_bcp, Rscratch2);
1710         }
1711       }
1712     }
1713 
1714     __ bind(Lforward);
1715 
1716   } else {
1717     // Bump bytecode pointer by displacement (take the branch).
1718     __ add(R14_bcp, Rdisp, R14_bcp); // Add to bc addr.
1719   }
1720   // Continue with bytecode @ target.
1721   // %%%%% Like Intel, could speed things up by moving bytecode fetch to code above,
1722   // %%%%% and changing dispatch_next to dispatch_only.
1723   __ dispatch_next(vtos);
1724 }
1725 
1726 // Helper function for if_cmp* methods below.
1727 // Factored out common compare and branch code.
1728 void TemplateTable::if_cmp_common(Register Rfirst, Register Rsecond, Register Rscratch1, Register Rscratch2, Condition cc, bool is_jint, bool cmp0) {
1729   Label Lnot_taken;
1730   // Note: The condition code we get is the condition under which we
1731   // *fall through*! So we have to inverse the CC here.
1732 
1733   if (is_jint) {
1734     if (cmp0) {
1735       __ cmpwi(CCR0, Rfirst, 0);
1736     } else {
1737       __ cmpw(CCR0, Rfirst, Rsecond);
1738     }
1739   } else {
1740     if (cmp0) {
1741       __ cmpdi(CCR0, Rfirst, 0);
1742     } else {
1743       __ cmpd(CCR0, Rfirst, Rsecond);
1744     }
1745   }
1746   branch_conditional(CCR0, cc, Lnot_taken, /*invert*/ true);
1747 
1748   // Conition is false => Jump!
1749   branch(false, false);
1750 
1751   // Condition is not true => Continue.
1752   __ align(32, 12);
1753   __ bind(Lnot_taken);
1754   __ profile_not_taken_branch(Rscratch1, Rscratch2);
1755 }
1756 
1757 // Compare integer values with zero and fall through if CC holds, branch away otherwise.
1758 void TemplateTable::if_0cmp(Condition cc) {
1759   transition(itos, vtos);
1760 
1761   if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, true, true);
1762 }
1763 
1764 // Compare integer values and fall through if CC holds, branch away otherwise.
1765 //
1766 // Interface:
1767 //  - Rfirst: First operand  (older stack value)
1768 //  - tos:    Second operand (younger stack value)
1769 void TemplateTable::if_icmp(Condition cc) {
1770   transition(itos, vtos);
1771 
1772   const Register Rfirst  = R0,
1773                  Rsecond = R17_tos;
1774 
1775   __ pop_i(Rfirst);
1776   if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, true, false);
1777 }
1778 
1779 void TemplateTable::if_nullcmp(Condition cc) {
1780   transition(atos, vtos);
1781 
1782   if_cmp_common(R17_tos, noreg, R11_scratch1, R12_scratch2, cc, false, true);
1783 }
1784 
1785 void TemplateTable::if_acmp(Condition cc) {
1786   transition(atos, vtos);
1787 
1788   const Register Rfirst  = R0,
1789                  Rsecond = R17_tos;
1790 
1791   __ pop_ptr(Rfirst);
1792   if_cmp_common(Rfirst, Rsecond, R11_scratch1, R12_scratch2, cc, false, false);
1793 }
1794 
1795 void TemplateTable::ret() {
1796   locals_index(R11_scratch1);
1797   __ load_local_ptr(R17_tos, R11_scratch1, R11_scratch1);
1798 
1799   __ profile_ret(vtos, R17_tos, R11_scratch1, R12_scratch2);
1800 
1801   __ ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method);
1802   __ add(R11_scratch1, R17_tos, R11_scratch1);
1803   __ addi(R14_bcp, R11_scratch1, in_bytes(ConstMethod::codes_offset()));
1804   __ dispatch_next(vtos);
1805 }
1806 
1807 void TemplateTable::wide_ret() {
1808   transition(vtos, vtos);
1809 
1810   const Register Rindex = R3_ARG1,
1811                  Rscratch1 = R11_scratch1,
1812                  Rscratch2 = R12_scratch2;
1813 
1814   locals_index_wide(Rindex);
1815   __ load_local_ptr(R17_tos, R17_tos, Rindex);
1816   __ profile_ret(vtos, R17_tos, Rscratch1, R12_scratch2);
1817   // Tos now contains the bci, compute the bcp from that.
1818   __ ld(Rscratch1, in_bytes(Method::const_offset()), R19_method);
1819   __ addi(Rscratch2, R17_tos, in_bytes(ConstMethod::codes_offset()));
1820   __ add(R14_bcp, Rscratch1, Rscratch2);
1821   __ dispatch_next(vtos);
1822 }
1823 
1824 void TemplateTable::tableswitch() {
1825   transition(itos, vtos);
1826 
1827   Label Ldispatch, Ldefault_case;
1828   Register Rlow_byte         = R3_ARG1,
1829            Rindex            = Rlow_byte,
1830            Rhigh_byte        = R4_ARG2,
1831            Rdef_offset_addr  = R5_ARG3, // is going to contain address of default offset
1832            Rscratch1         = R11_scratch1,
1833            Rscratch2         = R12_scratch2,
1834            Roffset           = R6_ARG4;
1835 
1836   // Align bcp.
1837   __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt);
1838   __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt));
1839 
1840   // Load lo & hi.
1841   __ lwz(Rlow_byte, BytesPerInt, Rdef_offset_addr);
1842   __ lwz(Rhigh_byte, BytesPerInt * 2, Rdef_offset_addr);
1843 
1844   // Check for default case (=index outside [low,high]).
1845   __ cmpw(CCR0, R17_tos, Rlow_byte);
1846   __ cmpw(CCR1, R17_tos, Rhigh_byte);
1847   __ blt(CCR0, Ldefault_case);
1848   __ bgt(CCR1, Ldefault_case);
1849 
1850   // Lookup dispatch offset.
1851   __ sub(Rindex, R17_tos, Rlow_byte);
1852   __ extsw(Rindex, Rindex);
1853   __ profile_switch_case(Rindex, Rhigh_byte /* scratch */, Rscratch1, Rscratch2);
1854   __ sldi(Rindex, Rindex, LogBytesPerInt);
1855   __ addi(Rindex, Rindex, 3 * BytesPerInt);
1856   __ lwax(Roffset, Rdef_offset_addr, Rindex);
1857   __ b(Ldispatch);
1858 
1859   __ bind(Ldefault_case);
1860   __ profile_switch_default(Rhigh_byte, Rscratch1);
1861   __ lwa(Roffset, 0, Rdef_offset_addr);
1862 
1863   __ bind(Ldispatch);
1864 
1865   __ add(R14_bcp, Roffset, R14_bcp);
1866   __ dispatch_next(vtos);
1867 }
1868 
1869 void TemplateTable::lookupswitch() {
1870   transition(itos, itos);
1871   __ stop("lookupswitch bytecode should have been rewritten");
1872 }
1873 
1874 // Table switch using linear search through cases.
1875 // Bytecode stream format:
1876 // Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ...
1877 // Note: Everything is big-endian format here. So on little endian machines, we have to revers offset and count and cmp value.
1878 void TemplateTable::fast_linearswitch() {
1879   transition(itos, vtos);
1880 
1881   Label Lloop_entry, Lsearch_loop, Lfound, Lcontinue_execution, Ldefault_case;
1882 
1883   Register Rcount           = R3_ARG1,
1884            Rcurrent_pair    = R4_ARG2,
1885            Rdef_offset_addr = R5_ARG3, // Is going to contain address of default offset.
1886            Roffset          = R31,     // Might need to survive C call.
1887            Rvalue           = R12_scratch2,
1888            Rscratch         = R11_scratch1,
1889            Rcmp_value       = R17_tos;
1890 
1891   // Align bcp.
1892   __ addi(Rdef_offset_addr, R14_bcp, BytesPerInt);
1893   __ clrrdi(Rdef_offset_addr, Rdef_offset_addr, log2_long((jlong)BytesPerInt));
1894 
1895   // Setup loop counter and limit.
1896   __ lwz(Rcount, BytesPerInt, Rdef_offset_addr);    // Load count.
1897   __ addi(Rcurrent_pair, Rdef_offset_addr, 2 * BytesPerInt); // Rcurrent_pair now points to first pair.
1898 
1899   // Set up search loop.
1900   __ cmpwi(CCR0, Rcount, 0);
1901   __ beq(CCR0, Ldefault_case);
1902 
1903   __ mtctr(Rcount);
1904 
1905   // linear table search
1906   __ bind(Lsearch_loop);
1907 
1908   __ lwz(Rvalue, 0, Rcurrent_pair);
1909   __ lwa(Roffset, 1 * BytesPerInt, Rcurrent_pair);
1910 
1911   __ cmpw(CCR0, Rvalue, Rcmp_value);
1912   __ beq(CCR0, Lfound);
1913 
1914   __ addi(Rcurrent_pair, Rcurrent_pair, 2 * BytesPerInt);
1915   __ bdnz(Lsearch_loop);
1916 
1917   // default case
1918   __ bind(Ldefault_case);
1919 
1920   __ lwa(Roffset, 0, Rdef_offset_addr);
1921   if (ProfileInterpreter) {
1922     __ profile_switch_default(Rdef_offset_addr, Rcount/* scratch */);
1923     __ b(Lcontinue_execution);
1924   }
1925 
1926   // Entry found, skip Roffset bytecodes and continue.
1927   __ bind(Lfound);
1928   if (ProfileInterpreter) {
1929     // Calc the num of the pair we hit. Careful, Rcurrent_pair points 2 ints
1930     // beyond the actual current pair due to the auto update load above!
1931     __ sub(Rcurrent_pair, Rcurrent_pair, Rdef_offset_addr);
1932     __ addi(Rcurrent_pair, Rcurrent_pair, - 2 * BytesPerInt);
1933     __ srdi(Rcurrent_pair, Rcurrent_pair, LogBytesPerInt + 1);
1934     __ profile_switch_case(Rcurrent_pair, Rcount /*scratch*/, Rdef_offset_addr/*scratch*/, Rscratch);
1935     __ bind(Lcontinue_execution);
1936   }
1937   __ add(R14_bcp, Roffset, R14_bcp);
1938   __ dispatch_next(vtos);
1939 }
1940 
1941 // Table switch using binary search (value/offset pairs are ordered).
1942 // Bytecode stream format:
1943 // Bytecode (1) | 4-byte padding | default offset (4) | count (4) | value/offset pair1 (8) | value/offset pair2 (8) | ...
1944 // Note: Everything is big-endian format here. So on little endian machines, we have to revers offset and count and cmp value.
1945 void TemplateTable::fast_binaryswitch() {
1946 
1947   transition(itos, vtos);
1948   // Implementation using the following core algorithm: (copied from Intel)
1949   //
1950   // int binary_search(int key, LookupswitchPair* array, int n) {
1951   //   // Binary search according to "Methodik des Programmierens" by
1952   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1953   //   int i = 0;
1954   //   int j = n;
1955   //   while (i+1 < j) {
1956   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1957   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1958   //     // where a stands for the array and assuming that the (inexisting)
1959   //     // element a[n] is infinitely big.
1960   //     int h = (i + j) >> 1;
1961   //     // i < h < j
1962   //     if (key < array[h].fast_match()) {
1963   //       j = h;
1964   //     } else {
1965   //       i = h;
1966   //     }
1967   //   }
1968   //   // R: a[i] <= key < a[i+1] or Q
1969   //   // (i.e., if key is within array, i is the correct index)
1970   //   return i;
1971   // }
1972 
1973   // register allocation
1974   const Register Rkey     = R17_tos;          // already set (tosca)
1975   const Register Rarray   = R3_ARG1;
1976   const Register Ri       = R4_ARG2;
1977   const Register Rj       = R5_ARG3;
1978   const Register Rh       = R6_ARG4;
1979   const Register Rscratch = R11_scratch1;
1980 
1981   const int log_entry_size = 3;
1982   const int entry_size = 1 << log_entry_size;
1983 
1984   Label found;
1985 
1986   // Find Array start,
1987   __ addi(Rarray, R14_bcp, 3 * BytesPerInt);
1988   __ clrrdi(Rarray, Rarray, log2_long((jlong)BytesPerInt));
1989 
1990   // initialize i & j
1991   __ li(Ri,0);
1992   __ lwz(Rj, -BytesPerInt, Rarray);
1993 
1994   // and start.
1995   Label entry;
1996   __ b(entry);
1997 
1998   // binary search loop
1999   { Label loop;
2000     __ bind(loop);
2001     // int h = (i + j) >> 1;
2002     __ srdi(Rh, Rh, 1);
2003     // if (key < array[h].fast_match()) {
2004     //   j = h;
2005     // } else {
2006     //   i = h;
2007     // }
2008     __ sldi(Rscratch, Rh, log_entry_size);
2009     __ lwzx(Rscratch, Rscratch, Rarray);
2010 
2011     // if (key < current value)
2012     //   Rh = Rj
2013     // else
2014     //   Rh = Ri
2015     Label Lgreater;
2016     __ cmpw(CCR0, Rkey, Rscratch);
2017     __ bge(CCR0, Lgreater);
2018     __ mr(Rj, Rh);
2019     __ b(entry);
2020     __ bind(Lgreater);
2021     __ mr(Ri, Rh);
2022 
2023     // while (i+1 < j)
2024     __ bind(entry);
2025     __ addi(Rscratch, Ri, 1);
2026     __ cmpw(CCR0, Rscratch, Rj);
2027     __ add(Rh, Ri, Rj); // start h = i + j >> 1;
2028 
2029     __ blt(CCR0, loop);
2030   }
2031 
2032   // End of binary search, result index is i (must check again!).
2033   Label default_case;
2034   Label continue_execution;
2035   if (ProfileInterpreter) {
2036     __ mr(Rh, Ri);              // Save index in i for profiling.
2037   }
2038   // Ri = value offset
2039   __ sldi(Ri, Ri, log_entry_size);
2040   __ add(Ri, Ri, Rarray);
2041   __ lwz(Rscratch, 0, Ri);
2042 
2043   Label not_found;
2044   // Ri = offset offset
2045   __ cmpw(CCR0, Rkey, Rscratch);
2046   __ beq(CCR0, not_found);
2047   // entry not found -> j = default offset
2048   __ lwz(Rj, -2 * BytesPerInt, Rarray);
2049   __ b(default_case);
2050 
2051   __ bind(not_found);
2052   // entry found -> j = offset
2053   __ profile_switch_case(Rh, Rj, Rscratch, Rkey);
2054   __ lwz(Rj, BytesPerInt, Ri);
2055 
2056   if (ProfileInterpreter) {
2057     __ b(continue_execution);
2058   }
2059 
2060   __ bind(default_case); // fall through (if not profiling)
2061   __ profile_switch_default(Ri, Rscratch);
2062 
2063   __ bind(continue_execution);
2064 
2065   __ extsw(Rj, Rj);
2066   __ add(R14_bcp, Rj, R14_bcp);
2067   __ dispatch_next(vtos);
2068 }
2069 
2070 void TemplateTable::_return(TosState state) {
2071   transition(state, state);
2072   assert(_desc->calls_vm(),
2073          "inconsistent calls_vm information"); // call in remove_activation
2074 
2075   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2076 
2077     Register Rscratch     = R11_scratch1,
2078              Rklass       = R12_scratch2,
2079              Rklass_flags = Rklass;
2080     Label Lskip_register_finalizer;
2081 
2082     // Check if the method has the FINALIZER flag set and call into the VM to finalize in this case.
2083     assert(state == vtos, "only valid state");
2084     __ ld(R17_tos, 0, R18_locals);
2085 
2086     // Load klass of this obj.
2087     __ load_klass(Rklass, R17_tos);
2088     __ lwz(Rklass_flags, in_bytes(Klass::access_flags_offset()), Rklass);
2089     __ testbitdi(CCR0, R0, Rklass_flags, exact_log2(JVM_ACC_HAS_FINALIZER));
2090     __ bfalse(CCR0, Lskip_register_finalizer);
2091 
2092     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), R17_tos /* obj */);
2093 
2094     __ align(32, 12);
2095     __ bind(Lskip_register_finalizer);
2096   }
2097 
2098   // Move the result value into the correct register and remove memory stack frame.
2099   __ remove_activation(state, /* throw_monitor_exception */ true);
2100   // Restoration of lr done by remove_activation.
2101   switch (state) {
2102     case ltos:
2103     case btos:
2104     case ctos:
2105     case stos:
2106     case atos:
2107     case itos: __ mr(R3_RET, R17_tos); break;
2108     case ftos:
2109     case dtos: __ fmr(F1_RET, F15_ftos); break;
2110     case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
2111                // to get visible before the reference to the object gets stored anywhere.
2112                __ membar(Assembler::StoreStore); break;
2113     default  : ShouldNotReachHere();
2114   }
2115   __ blr();
2116 }
2117 
2118 // ============================================================================
2119 // Constant pool cache access
2120 //
2121 // Memory ordering:
2122 //
2123 // Like done in C++ interpreter, we load the fields
2124 //   - _indices
2125 //   - _f12_oop
2126 // acquired, because these are asked if the cache is already resolved. We don't
2127 // want to float loads above this check.
2128 // See also comments in ConstantPoolCacheEntry::bytecode_1(),
2129 // ConstantPoolCacheEntry::bytecode_2() and ConstantPoolCacheEntry::f1();
2130 
2131 // Call into the VM if call site is not yet resolved
2132 //
2133 // Input regs:
2134 //   - None, all passed regs are outputs.
2135 //
2136 // Returns:
2137 //   - Rcache:  The const pool cache entry that contains the resolved result.
2138 //   - Rresult: Either noreg or output for f1/f2.
2139 //
2140 // Kills:
2141 //   - Rscratch
2142 void TemplateTable::resolve_cache_and_index(int byte_no, Register Rcache, Register Rscratch, size_t index_size) {
2143 
2144   __ get_cache_and_index_at_bcp(Rcache, 1, index_size);
2145   Label Lresolved, Ldone;
2146 
2147   assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2148   // We are resolved if the indices offset contains the current bytecode.
2149   // Big Endian:
2150   __ lbz(Rscratch, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()) + 7 - (byte_no + 1), Rcache);
2151   // Acquire by cmp-br-isync (see below).
2152   __ cmpdi(CCR0, Rscratch, (int)bytecode());
2153   __ beq(CCR0, Lresolved);
2154 
2155   address entry = NULL;
2156   switch (bytecode()) {
2157     case Bytecodes::_getstatic      : // fall through
2158     case Bytecodes::_putstatic      : // fall through
2159     case Bytecodes::_getfield       : // fall through
2160     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put); break;
2161     case Bytecodes::_invokevirtual  : // fall through
2162     case Bytecodes::_invokespecial  : // fall through
2163     case Bytecodes::_invokestatic   : // fall through
2164     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke); break;
2165     case Bytecodes::_invokehandle   : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle); break;
2166     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic); break;
2167     default                         : ShouldNotReachHere(); break;
2168   }
2169   __ li(R4_ARG2, (int)bytecode());
2170   __ call_VM(noreg, entry, R4_ARG2, true);
2171 
2172   // Update registers with resolved info.
2173   __ get_cache_and_index_at_bcp(Rcache, 1, index_size);
2174   __ b(Ldone);
2175 
2176   __ bind(Lresolved);
2177   __ isync(); // Order load wrt. succeeding loads.
2178   __ bind(Ldone);
2179 }
2180 
2181 // Load the constant pool cache entry at field accesses into registers.
2182 // The Rcache and Rindex registers must be set before call.
2183 // Input:
2184 //   - Rcache, Rindex
2185 // Output:
2186 //   - Robj, Roffset, Rflags
2187 void TemplateTable::load_field_cp_cache_entry(Register Robj,
2188                                               Register Rcache,
2189                                               Register Rindex /* unused on PPC64 */,
2190                                               Register Roffset,
2191                                               Register Rflags,
2192                                               bool is_static = false) {
2193   assert_different_registers(Rcache, Rflags, Roffset);
2194   // assert(Rindex == noreg, "parameter not used on PPC64");
2195 
2196   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2197   __ ld(Rflags, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache);
2198   __ ld(Roffset, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f2_offset()), Rcache);
2199   if (is_static) {
2200     __ ld(Robj, in_bytes(cp_base_offset) + in_bytes(ConstantPoolCacheEntry::f1_offset()), Rcache);
2201     __ ld(Robj, in_bytes(Klass::java_mirror_offset()), Robj);
2202     // Acquire not needed here. Following access has an address dependency on this value.
2203   }
2204 }
2205 
2206 // Load the constant pool cache entry at invokes into registers.
2207 // Resolve if necessary.
2208 
2209 // Input Registers:
2210 //   - None, bcp is used, though
2211 //
2212 // Return registers:
2213 //   - Rmethod       (f1 field or f2 if invokevirtual)
2214 //   - Ritable_index (f2 field)
2215 //   - Rflags        (flags field)
2216 //
2217 // Kills:
2218 //   - R21
2219 //
2220 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2221                                                Register Rmethod,
2222                                                Register Ritable_index,
2223                                                Register Rflags,
2224                                                bool is_invokevirtual,
2225                                                bool is_invokevfinal,
2226                                                bool is_invokedynamic) {
2227 
2228   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2229   // Determine constant pool cache field offsets.
2230   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2231   const int method_offset = in_bytes(cp_base_offset + (is_invokevirtual ? ConstantPoolCacheEntry::f2_offset() : ConstantPoolCacheEntry::f1_offset()));
2232   const int flags_offset  = in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset());
2233   // Access constant pool cache fields.
2234   const int index_offset  = in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset());
2235 
2236   Register Rcache = R21_tmp1; // Note: same register as R21_sender_SP.
2237 
2238   if (is_invokevfinal) {
2239     assert(Ritable_index == noreg, "register not used");
2240     // Already resolved.
2241     __ get_cache_and_index_at_bcp(Rcache, 1);
2242   } else {
2243     resolve_cache_and_index(byte_no, Rcache, R0, is_invokedynamic ? sizeof(u4) : sizeof(u2));
2244   }
2245 
2246   __ ld(Rmethod, method_offset, Rcache);
2247   __ ld(Rflags, flags_offset, Rcache);
2248 
2249   if (Ritable_index != noreg) {
2250     __ ld(Ritable_index, index_offset, Rcache);
2251   }
2252 }
2253 
2254 // ============================================================================
2255 // Field access
2256 
2257 // Volatile variables demand their effects be made known to all CPU's
2258 // in order. Store buffers on most chips allow reads & writes to
2259 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2260 // without some kind of memory barrier (i.e., it's not sufficient that
2261 // the interpreter does not reorder volatile references, the hardware
2262 // also must not reorder them).
2263 //
2264 // According to the new Java Memory Model (JMM):
2265 // (1) All volatiles are serialized wrt to each other. ALSO reads &
2266 //     writes act as aquire & release, so:
2267 // (2) A read cannot let unrelated NON-volatile memory refs that
2268 //     happen after the read float up to before the read. It's OK for
2269 //     non-volatile memory refs that happen before the volatile read to
2270 //     float down below it.
2271 // (3) Similar a volatile write cannot let unrelated NON-volatile
2272 //     memory refs that happen BEFORE the write float down to after the
2273 //     write. It's OK for non-volatile memory refs that happen after the
2274 //     volatile write to float up before it.
2275 //
2276 // We only put in barriers around volatile refs (they are expensive),
2277 // not _between_ memory refs (that would require us to track the
2278 // flavor of the previous memory refs). Requirements (2) and (3)
2279 // require some barriers before volatile stores and after volatile
2280 // loads. These nearly cover requirement (1) but miss the
2281 // volatile-store-volatile-load case.  This final case is placed after
2282 // volatile-stores although it could just as well go before
2283 // volatile-loads.
2284 
2285 // The registers cache and index expected to be set before call.
2286 // Correct values of the cache and index registers are preserved.
2287 // Kills:
2288 //   Rcache (if has_tos)
2289 //   Rscratch
2290 void TemplateTable::jvmti_post_field_access(Register Rcache, Register Rscratch, bool is_static, bool has_tos) {
2291 
2292   assert_different_registers(Rcache, Rscratch);
2293 
2294   if (JvmtiExport::can_post_field_access()) {
2295     ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2296     Label Lno_field_access_post;
2297 
2298     // Check if post field access in enabled.
2299     int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_access_count_addr(), R0, true);
2300     __ lwz(Rscratch, offs, Rscratch);
2301 
2302     __ cmpwi(CCR0, Rscratch, 0);
2303     __ beq(CCR0, Lno_field_access_post);
2304 
2305     // Post access enabled - do it!
2306     __ addi(Rcache, Rcache, in_bytes(cp_base_offset));
2307     if (is_static) {
2308       __ li(R17_tos, 0);
2309     } else {
2310       if (has_tos) {
2311         // The fast bytecode versions have obj ptr in register.
2312         // Thus, save object pointer before call_VM() clobbers it
2313         // put object on tos where GC wants it.
2314         __ push_ptr(R17_tos);
2315       } else {
2316         // Load top of stack (do not pop the value off the stack).
2317         __ ld(R17_tos, Interpreter::expr_offset_in_bytes(0), R15_esp);
2318       }
2319       __ verify_oop(R17_tos);
2320     }
2321     // tos:   object pointer or NULL if static
2322     // cache: cache entry pointer
2323     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), R17_tos, Rcache);
2324     if (!is_static && has_tos) {
2325       // Restore object pointer.
2326       __ pop_ptr(R17_tos);
2327       __ verify_oop(R17_tos);
2328     } else {
2329       // Cache is still needed to get class or obj.
2330       __ get_cache_and_index_at_bcp(Rcache, 1);
2331     }
2332 
2333     __ align(32, 12);
2334     __ bind(Lno_field_access_post);
2335   }
2336 }
2337 
2338 // kills R11_scratch1
2339 void TemplateTable::pop_and_check_object(Register Roop) {
2340   Register Rtmp = R11_scratch1;
2341 
2342   assert_different_registers(Rtmp, Roop);
2343   __ pop_ptr(Roop);
2344   // For field access must check obj.
2345   __ null_check_throw(Roop, -1, Rtmp);
2346   __ verify_oop(Roop);
2347 }
2348 
2349 // PPC64: implement volatile loads as fence-store-acquire.
2350 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2351   transition(vtos, vtos);
2352 
2353   Label Lacquire, Lisync;
2354 
2355   const Register Rcache        = R3_ARG1,
2356                  Rclass_or_obj = R22_tmp2,
2357                  Roffset       = R23_tmp3,
2358                  Rflags        = R31,
2359                  Rbtable       = R5_ARG3,
2360                  Rbc           = R6_ARG4,
2361                  Rscratch      = R12_scratch2;
2362 
2363   static address field_branch_table[number_of_states],
2364                  static_branch_table[number_of_states];
2365 
2366   address* branch_table = is_static ? static_branch_table : field_branch_table;
2367 
2368   // Get field offset.
2369   resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2));
2370 
2371   // JVMTI support
2372   jvmti_post_field_access(Rcache, Rscratch, is_static, false);
2373 
2374   // Load after possible GC.
2375   load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static);
2376 
2377   // Load pointer to branch table.
2378   __ load_const_optimized(Rbtable, (address)branch_table, Rscratch);
2379 
2380   // Get volatile flag.
2381   __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
2382   // Note: sync is needed before volatile load on PPC64.
2383 
2384   // Check field type.
2385   __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
2386 
2387 #ifdef ASSERT
2388   Label LFlagInvalid;
2389   __ cmpldi(CCR0, Rflags, number_of_states);
2390   __ bge(CCR0, LFlagInvalid);
2391 #endif
2392 
2393   // Load from branch table and dispatch (volatile case: one instruction ahead).
2394   __ sldi(Rflags, Rflags, LogBytesPerWord);
2395   __ cmpwi(CCR6, Rscratch, 1); // Volatile?
2396   if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2397     __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile ? size of 1 instruction : 0.
2398   }
2399   __ ldx(Rbtable, Rbtable, Rflags);
2400 
2401   // Get the obj from stack.
2402   if (!is_static) {
2403     pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1.
2404   } else {
2405     __ verify_oop(Rclass_or_obj);
2406   }
2407 
2408   if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2409     __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point.
2410   }
2411   __ mtctr(Rbtable);
2412   __ bctr();
2413 
2414 #ifdef ASSERT
2415   __ bind(LFlagInvalid);
2416   __ stop("got invalid flag", 0x654);
2417 
2418   // __ bind(Lvtos);
2419   address pc_before_fence = __ pc();
2420   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2421   assert(__ pc() - pc_before_fence == (ptrdiff_t)BytesPerInstWord, "must be single instruction");
2422   assert(branch_table[vtos] == 0, "can't compute twice");
2423   branch_table[vtos] = __ pc(); // non-volatile_entry point
2424   __ stop("vtos unexpected", 0x655);
2425 #endif
2426 
2427   __ align(32, 28, 28); // Align load.
2428   // __ bind(Ldtos);
2429   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2430   assert(branch_table[dtos] == 0, "can't compute twice");
2431   branch_table[dtos] = __ pc(); // non-volatile_entry point
2432   __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
2433   __ push(dtos);
2434   if (!is_static) patch_bytecode(Bytecodes::_fast_dgetfield, Rbc, Rscratch);
2435   {
2436     Label acquire_double;
2437     __ beq(CCR6, acquire_double); // Volatile?
2438     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2439 
2440     __ bind(acquire_double);
2441     __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
2442     __ beq_predict_taken(CCR0, Lisync);
2443     __ b(Lisync); // In case of NAN.
2444   }
2445 
2446   __ align(32, 28, 28); // Align load.
2447   // __ bind(Lftos);
2448   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2449   assert(branch_table[ftos] == 0, "can't compute twice");
2450   branch_table[ftos] = __ pc(); // non-volatile_entry point
2451   __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
2452   __ push(ftos);
2453   if (!is_static) { patch_bytecode(Bytecodes::_fast_fgetfield, Rbc, Rscratch); }
2454   {
2455     Label acquire_float;
2456     __ beq(CCR6, acquire_float); // Volatile?
2457     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2458 
2459     __ bind(acquire_float);
2460     __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
2461     __ beq_predict_taken(CCR0, Lisync);
2462     __ b(Lisync); // In case of NAN.
2463   }
2464 
2465   __ align(32, 28, 28); // Align load.
2466   // __ bind(Litos);
2467   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2468   assert(branch_table[itos] == 0, "can't compute twice");
2469   branch_table[itos] = __ pc(); // non-volatile_entry point
2470   __ lwax(R17_tos, Rclass_or_obj, Roffset);
2471   __ push(itos);
2472   if (!is_static) patch_bytecode(Bytecodes::_fast_igetfield, Rbc, Rscratch);
2473   __ beq(CCR6, Lacquire); // Volatile?
2474   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2475 
2476   __ align(32, 28, 28); // Align load.
2477   // __ bind(Lltos);
2478   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2479   assert(branch_table[ltos] == 0, "can't compute twice");
2480   branch_table[ltos] = __ pc(); // non-volatile_entry point
2481   __ ldx(R17_tos, Rclass_or_obj, Roffset);
2482   __ push(ltos);
2483   if (!is_static) patch_bytecode(Bytecodes::_fast_lgetfield, Rbc, Rscratch);
2484   __ beq(CCR6, Lacquire); // Volatile?
2485   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2486 
2487   __ align(32, 28, 28); // Align load.
2488   // __ bind(Lbtos);
2489   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2490   assert(branch_table[btos] == 0, "can't compute twice");
2491   branch_table[btos] = __ pc(); // non-volatile_entry point
2492   __ lbzx(R17_tos, Rclass_or_obj, Roffset);
2493   __ extsb(R17_tos, R17_tos);
2494   __ push(btos);
2495   if (!is_static) patch_bytecode(Bytecodes::_fast_bgetfield, Rbc, Rscratch);
2496   __ beq(CCR6, Lacquire); // Volatile?
2497   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2498 
2499   __ align(32, 28, 28); // Align load.
2500   // __ bind(Lctos);
2501   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2502   assert(branch_table[ctos] == 0, "can't compute twice");
2503   branch_table[ctos] = __ pc(); // non-volatile_entry point
2504   __ lhzx(R17_tos, Rclass_or_obj, Roffset);
2505   __ push(ctos);
2506   if (!is_static) patch_bytecode(Bytecodes::_fast_cgetfield, Rbc, Rscratch);
2507   __ beq(CCR6, Lacquire); // Volatile?
2508   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2509 
2510   __ align(32, 28, 28); // Align load.
2511   // __ bind(Lstos);
2512   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2513   assert(branch_table[stos] == 0, "can't compute twice");
2514   branch_table[stos] = __ pc(); // non-volatile_entry point
2515   __ lhax(R17_tos, Rclass_or_obj, Roffset);
2516   __ push(stos);
2517   if (!is_static) patch_bytecode(Bytecodes::_fast_sgetfield, Rbc, Rscratch);
2518   __ beq(CCR6, Lacquire); // Volatile?
2519   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2520 
2521   __ align(32, 28, 28); // Align load.
2522   // __ bind(Latos);
2523   __ fence(); // Volatile entry point (one instruction before non-volatile_entry point).
2524   assert(branch_table[atos] == 0, "can't compute twice");
2525   branch_table[atos] = __ pc(); // non-volatile_entry point
2526   __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
2527   __ verify_oop(R17_tos);
2528   __ push(atos);
2529   //__ dcbt(R17_tos); // prefetch
2530   if (!is_static) patch_bytecode(Bytecodes::_fast_agetfield, Rbc, Rscratch);
2531   __ beq(CCR6, Lacquire); // Volatile?
2532   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2533 
2534   __ align(32, 12);
2535   __ bind(Lacquire);
2536   __ twi_0(R17_tos);
2537   __ bind(Lisync);
2538   __ isync(); // acquire
2539 
2540 #ifdef ASSERT
2541   for (int i = 0; i<number_of_states; ++i) {
2542     assert(branch_table[i], "get initialization");
2543     //tty->print_cr("get: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)",
2544     //              is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i]));
2545   }
2546 #endif
2547 }
2548 
2549 void TemplateTable::getfield(int byte_no) {
2550   getfield_or_static(byte_no, false);
2551 }
2552 
2553 void TemplateTable::getstatic(int byte_no) {
2554   getfield_or_static(byte_no, true);
2555 }
2556 
2557 // The registers cache and index expected to be set before call.
2558 // The function may destroy various registers, just not the cache and index registers.
2559 void TemplateTable::jvmti_post_field_mod(Register Rcache, Register Rscratch, bool is_static) {
2560 
2561   assert_different_registers(Rcache, Rscratch, R6_ARG4);
2562 
2563   if (JvmtiExport::can_post_field_modification()) {
2564     Label Lno_field_mod_post;
2565 
2566     // Check if post field access in enabled.
2567     int offs = __ load_const_optimized(Rscratch, JvmtiExport::get_field_modification_count_addr(), R0, true);
2568     __ lwz(Rscratch, offs, Rscratch);
2569 
2570     __ cmpwi(CCR0, Rscratch, 0);
2571     __ beq(CCR0, Lno_field_mod_post);
2572 
2573     // Do the post
2574     ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2575     const Register Robj = Rscratch;
2576 
2577     __ addi(Rcache, Rcache, in_bytes(cp_base_offset));
2578     if (is_static) {
2579       // Life is simple. Null out the object pointer.
2580       __ li(Robj, 0);
2581     } else {
2582       // In case of the fast versions, value lives in registers => put it back on tos.
2583       int offs = Interpreter::expr_offset_in_bytes(0);
2584       Register base = R15_esp;
2585       switch(bytecode()) {
2586         case Bytecodes::_fast_aputfield: __ push_ptr(); offs+= Interpreter::stackElementSize; break;
2587         case Bytecodes::_fast_iputfield: // Fall through
2588         case Bytecodes::_fast_bputfield: // Fall through
2589         case Bytecodes::_fast_cputfield: // Fall through
2590         case Bytecodes::_fast_sputfield: __ push_i(); offs+=  Interpreter::stackElementSize; break;
2591         case Bytecodes::_fast_lputfield: __ push_l(); offs+=2*Interpreter::stackElementSize; break;
2592         case Bytecodes::_fast_fputfield: __ push_f(); offs+=  Interpreter::stackElementSize; break;
2593         case Bytecodes::_fast_dputfield: __ push_d(); offs+=2*Interpreter::stackElementSize; break;
2594         default: {
2595           offs = 0;
2596           base = Robj;
2597           const Register Rflags = Robj;
2598           Label is_one_slot;
2599           // Life is harder. The stack holds the value on top, followed by the
2600           // object. We don't know the size of the value, though; it could be
2601           // one or two words depending on its type. As a result, we must find
2602           // the type to determine where the object is.
2603           __ ld(Rflags, in_bytes(ConstantPoolCacheEntry::flags_offset()), Rcache); // Big Endian
2604           __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
2605 
2606           __ cmpwi(CCR0, Rflags, ltos);
2607           __ cmpwi(CCR1, Rflags, dtos);
2608           __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(1));
2609           __ crnor(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2);
2610           __ beq(CCR0, is_one_slot);
2611           __ addi(base, R15_esp, Interpreter::expr_offset_in_bytes(2));
2612           __ bind(is_one_slot);
2613           break;
2614         }
2615       }
2616       __ ld(Robj, offs, base);
2617       __ verify_oop(Robj);
2618     }
2619 
2620     __ addi(R6_ARG4, R15_esp, Interpreter::expr_offset_in_bytes(0));
2621     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), Robj, Rcache, R6_ARG4);
2622     __ get_cache_and_index_at_bcp(Rcache, 1);
2623 
2624     // In case of the fast versions, value lives in registers => put it back on tos.
2625     switch(bytecode()) {
2626       case Bytecodes::_fast_aputfield: __ pop_ptr(); break;
2627       case Bytecodes::_fast_iputfield: // Fall through
2628       case Bytecodes::_fast_bputfield: // Fall through
2629       case Bytecodes::_fast_cputfield: // Fall through
2630       case Bytecodes::_fast_sputfield: __ pop_i(); break;
2631       case Bytecodes::_fast_lputfield: __ pop_l(); break;
2632       case Bytecodes::_fast_fputfield: __ pop_f(); break;
2633       case Bytecodes::_fast_dputfield: __ pop_d(); break;
2634       default: break; // Nothin' to do.
2635     }
2636 
2637     __ align(32, 12);
2638     __ bind(Lno_field_mod_post);
2639   }
2640 }
2641 
2642 // PPC64: implement volatile stores as release-store (return bytecode contains an additional release).
2643 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2644   Label Lvolatile;
2645 
2646   const Register Rcache        = R5_ARG3,  // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod).
2647                  Rclass_or_obj = R31,      // Needs to survive C call.
2648                  Roffset       = R22_tmp2, // Needs to survive C call.
2649                  Rflags        = R3_ARG1,
2650                  Rbtable       = R4_ARG2,
2651                  Rscratch      = R11_scratch1,
2652                  Rscratch2     = R12_scratch2,
2653                  Rscratch3     = R6_ARG4,
2654                  Rbc           = Rscratch3;
2655   const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store).
2656 
2657   static address field_branch_table[number_of_states],
2658                  static_branch_table[number_of_states];
2659 
2660   address* branch_table = is_static ? static_branch_table : field_branch_table;
2661 
2662   // Stack (grows up):
2663   //  value
2664   //  obj
2665 
2666   // Load the field offset.
2667   resolve_cache_and_index(byte_no, Rcache, Rscratch, sizeof(u2));
2668   jvmti_post_field_mod(Rcache, Rscratch, is_static);
2669   load_field_cp_cache_entry(Rclass_or_obj, Rcache, noreg, Roffset, Rflags, is_static);
2670 
2671   // Load pointer to branch table.
2672   __ load_const_optimized(Rbtable, (address)branch_table, Rscratch);
2673 
2674   // Get volatile flag.
2675   __ rldicl(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
2676 
2677   // Check the field type.
2678   __ rldicl(Rflags, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
2679 
2680 #ifdef ASSERT
2681   Label LFlagInvalid;
2682   __ cmpldi(CCR0, Rflags, number_of_states);
2683   __ bge(CCR0, LFlagInvalid);
2684 #endif
2685 
2686   // Load from branch table and dispatch (volatile case: one instruction ahead).
2687   __ sldi(Rflags, Rflags, LogBytesPerWord);
2688   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpwi(CR_is_vol, Rscratch, 1); } // Volatile?
2689   __ sldi(Rscratch, Rscratch, exact_log2(BytesPerInstWord)); // Volatile? size of instruction 1 : 0.
2690   __ ldx(Rbtable, Rbtable, Rflags);
2691 
2692   __ subf(Rbtable, Rscratch, Rbtable); // Point to volatile/non-volatile entry point.
2693   __ mtctr(Rbtable);
2694   __ bctr();
2695 
2696 #ifdef ASSERT
2697   __ bind(LFlagInvalid);
2698   __ stop("got invalid flag", 0x656);
2699 
2700   // __ bind(Lvtos);
2701   address pc_before_release = __ pc();
2702   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2703   assert(__ pc() - pc_before_release == (ptrdiff_t)BytesPerInstWord, "must be single instruction");
2704   assert(branch_table[vtos] == 0, "can't compute twice");
2705   branch_table[vtos] = __ pc(); // non-volatile_entry point
2706   __ stop("vtos unexpected", 0x657);
2707 #endif
2708 
2709   __ align(32, 28, 28); // Align pop.
2710   // __ bind(Ldtos);
2711   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2712   assert(branch_table[dtos] == 0, "can't compute twice");
2713   branch_table[dtos] = __ pc(); // non-volatile_entry point
2714   __ pop(dtos);
2715   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2716   __ stfdx(F15_ftos, Rclass_or_obj, Roffset);
2717   if (!is_static) { patch_bytecode(Bytecodes::_fast_dputfield, Rbc, Rscratch, true, byte_no); }
2718   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2719     __ beq(CR_is_vol, Lvolatile); // Volatile?
2720   }
2721   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2722 
2723   __ align(32, 28, 28); // Align pop.
2724   // __ bind(Lftos);
2725   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2726   assert(branch_table[ftos] == 0, "can't compute twice");
2727   branch_table[ftos] = __ pc(); // non-volatile_entry point
2728   __ pop(ftos);
2729   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2730   __ stfsx(F15_ftos, Rclass_or_obj, Roffset);
2731   if (!is_static) { patch_bytecode(Bytecodes::_fast_fputfield, Rbc, Rscratch, true, byte_no); }
2732   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2733     __ beq(CR_is_vol, Lvolatile); // Volatile?
2734   }
2735   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2736 
2737   __ align(32, 28, 28); // Align pop.
2738   // __ bind(Litos);
2739   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2740   assert(branch_table[itos] == 0, "can't compute twice");
2741   branch_table[itos] = __ pc(); // non-volatile_entry point
2742   __ pop(itos);
2743   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2744   __ stwx(R17_tos, Rclass_or_obj, Roffset);
2745   if (!is_static) { patch_bytecode(Bytecodes::_fast_iputfield, Rbc, Rscratch, true, byte_no); }
2746   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2747     __ beq(CR_is_vol, Lvolatile); // Volatile?
2748   }
2749   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2750 
2751   __ align(32, 28, 28); // Align pop.
2752   // __ bind(Lltos);
2753   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2754   assert(branch_table[ltos] == 0, "can't compute twice");
2755   branch_table[ltos] = __ pc(); // non-volatile_entry point
2756   __ pop(ltos);
2757   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2758   __ stdx(R17_tos, Rclass_or_obj, Roffset);
2759   if (!is_static) { patch_bytecode(Bytecodes::_fast_lputfield, Rbc, Rscratch, true, byte_no); }
2760   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2761     __ beq(CR_is_vol, Lvolatile); // Volatile?
2762   }
2763   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2764 
2765   __ align(32, 28, 28); // Align pop.
2766   // __ bind(Lbtos);
2767   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2768   assert(branch_table[btos] == 0, "can't compute twice");
2769   branch_table[btos] = __ pc(); // non-volatile_entry point
2770   __ pop(btos);
2771   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2772   __ stbx(R17_tos, Rclass_or_obj, Roffset);
2773   if (!is_static) { patch_bytecode(Bytecodes::_fast_bputfield, Rbc, Rscratch, true, byte_no); }
2774   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2775     __ beq(CR_is_vol, Lvolatile); // Volatile?
2776   }
2777   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2778 
2779   __ align(32, 28, 28); // Align pop.
2780   // __ bind(Lctos);
2781   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2782   assert(branch_table[ctos] == 0, "can't compute twice");
2783   branch_table[ctos] = __ pc(); // non-volatile_entry point
2784   __ pop(ctos);
2785   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1..
2786   __ sthx(R17_tos, Rclass_or_obj, Roffset);
2787   if (!is_static) { patch_bytecode(Bytecodes::_fast_cputfield, Rbc, Rscratch, true, byte_no); }
2788   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2789     __ beq(CR_is_vol, Lvolatile); // Volatile?
2790   }
2791   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2792 
2793   __ align(32, 28, 28); // Align pop.
2794   // __ bind(Lstos);
2795   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2796   assert(branch_table[stos] == 0, "can't compute twice");
2797   branch_table[stos] = __ pc(); // non-volatile_entry point
2798   __ pop(stos);
2799   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // Kills R11_scratch1.
2800   __ sthx(R17_tos, Rclass_or_obj, Roffset);
2801   if (!is_static) { patch_bytecode(Bytecodes::_fast_sputfield, Rbc, Rscratch, true, byte_no); }
2802   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2803     __ beq(CR_is_vol, Lvolatile); // Volatile?
2804   }
2805   __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2806 
2807   __ align(32, 28, 28); // Align pop.
2808   // __ bind(Latos);
2809   __ release(); // Volatile entry point (one instruction before non-volatile_entry point).
2810   assert(branch_table[atos] == 0, "can't compute twice");
2811   branch_table[atos] = __ pc(); // non-volatile_entry point
2812   __ pop(atos);
2813   if (!is_static) { pop_and_check_object(Rclass_or_obj); } // kills R11_scratch1
2814   do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */);
2815   if (!is_static) { patch_bytecode(Bytecodes::_fast_aputfield, Rbc, Rscratch, true, byte_no); }
2816   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2817     __ beq(CR_is_vol, Lvolatile); // Volatile?
2818     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2819 
2820     __ align(32, 12);
2821     __ bind(Lvolatile);
2822     __ fence();
2823   }
2824   // fallthru: __ b(Lexit);
2825 
2826 #ifdef ASSERT
2827   for (int i = 0; i<number_of_states; ++i) {
2828     assert(branch_table[i], "put initialization");
2829     //tty->print_cr("put: %s_branch_table[%d] = 0x%llx (opcode 0x%llx)",
2830     //              is_static ? "static" : "field", i, branch_table[i], *((unsigned int*)branch_table[i]));
2831   }
2832 #endif
2833 }
2834 
2835 void TemplateTable::putfield(int byte_no) {
2836   putfield_or_static(byte_no, false);
2837 }
2838 
2839 void TemplateTable::putstatic(int byte_no) {
2840   putfield_or_static(byte_no, true);
2841 }
2842 
2843 // See SPARC. On PPC64, we have a different jvmti_post_field_mod which does the job.
2844 void TemplateTable::jvmti_post_fast_field_mod() {
2845   __ should_not_reach_here();
2846 }
2847 
2848 void TemplateTable::fast_storefield(TosState state) {
2849   transition(state, vtos);
2850 
2851   const Register Rcache        = R5_ARG3,  // Do not use ARG1/2 (causes trouble in jvmti_post_field_mod).
2852                  Rclass_or_obj = R31,      // Needs to survive C call.
2853                  Roffset       = R22_tmp2, // Needs to survive C call.
2854                  Rflags        = R3_ARG1,
2855                  Rscratch      = R11_scratch1,
2856                  Rscratch2     = R12_scratch2,
2857                  Rscratch3     = R4_ARG2;
2858   const ConditionRegister CR_is_vol = CCR2; // Non-volatile condition register (survives runtime call in do_oop_store).
2859 
2860   // Constant pool already resolved => Load flags and offset of field.
2861   __ get_cache_and_index_at_bcp(Rcache, 1);
2862   jvmti_post_field_mod(Rcache, Rscratch, false /* not static */);
2863   load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
2864 
2865   // Get the obj and the final store addr.
2866   pop_and_check_object(Rclass_or_obj); // Kills R11_scratch1.
2867 
2868   // Get volatile flag.
2869   __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
2870   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) { __ cmpdi(CR_is_vol, Rscratch, 1); }
2871   {
2872     Label LnotVolatile;
2873     __ beq(CCR0, LnotVolatile);
2874     __ release();
2875     __ align(32, 12);
2876     __ bind(LnotVolatile);
2877   }
2878 
2879   // Do the store and fencing.
2880   switch(bytecode()) {
2881     case Bytecodes::_fast_aputfield:
2882       // Store into the field.
2883       do_oop_store(_masm, Rclass_or_obj, Roffset, R17_tos, Rscratch, Rscratch2, Rscratch3, _bs->kind(), false /* precise */, true /* check null */);
2884       break;
2885 
2886     case Bytecodes::_fast_iputfield:
2887       __ stwx(R17_tos, Rclass_or_obj, Roffset);
2888       break;
2889 
2890     case Bytecodes::_fast_lputfield:
2891       __ stdx(R17_tos, Rclass_or_obj, Roffset);
2892       break;
2893 
2894     case Bytecodes::_fast_bputfield:
2895       __ stbx(R17_tos, Rclass_or_obj, Roffset);
2896       break;
2897 
2898     case Bytecodes::_fast_cputfield:
2899     case Bytecodes::_fast_sputfield:
2900       __ sthx(R17_tos, Rclass_or_obj, Roffset);
2901       break;
2902 
2903     case Bytecodes::_fast_fputfield:
2904       __ stfsx(F15_ftos, Rclass_or_obj, Roffset);
2905       break;
2906 
2907     case Bytecodes::_fast_dputfield:
2908       __ stfdx(F15_ftos, Rclass_or_obj, Roffset);
2909       break;
2910 
2911     default: ShouldNotReachHere();
2912   }
2913 
2914   if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2915     Label LVolatile;
2916     __ beq(CR_is_vol, LVolatile);
2917     __ dispatch_epilog(vtos, Bytecodes::length_for(bytecode()));
2918 
2919     __ align(32, 12);
2920     __ bind(LVolatile);
2921     __ fence();
2922   }
2923 }
2924 
2925 void TemplateTable::fast_accessfield(TosState state) {
2926   transition(atos, state);
2927 
2928   Label LisVolatile;
2929   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2930 
2931   const Register Rcache        = R3_ARG1,
2932                  Rclass_or_obj = R17_tos,
2933                  Roffset       = R22_tmp2,
2934                  Rflags        = R23_tmp3,
2935                  Rscratch      = R12_scratch2;
2936 
2937   // Constant pool already resolved. Get the field offset.
2938   __ get_cache_and_index_at_bcp(Rcache, 1);
2939   load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
2940 
2941   // JVMTI support
2942   jvmti_post_field_access(Rcache, Rscratch, false, true);
2943 
2944   // Get the load address.
2945   __ null_check_throw(Rclass_or_obj, -1, Rscratch);
2946 
2947   // Get volatile flag.
2948   __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
2949   __ bne(CCR0, LisVolatile);
2950 
2951   switch(bytecode()) {
2952     case Bytecodes::_fast_agetfield:
2953     {
2954       __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
2955       __ verify_oop(R17_tos);
2956       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
2957 
2958       __ bind(LisVolatile);
2959       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
2960       __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
2961       __ verify_oop(R17_tos);
2962       __ twi_0(R17_tos);
2963       __ isync();
2964       break;
2965     }
2966     case Bytecodes::_fast_igetfield:
2967     {
2968       __ lwax(R17_tos, Rclass_or_obj, Roffset);
2969       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
2970 
2971       __ bind(LisVolatile);
2972       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
2973       __ lwax(R17_tos, Rclass_or_obj, Roffset);
2974       __ twi_0(R17_tos);
2975       __ isync();
2976       break;
2977     }
2978     case Bytecodes::_fast_lgetfield:
2979     {
2980       __ ldx(R17_tos, Rclass_or_obj, Roffset);
2981       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
2982 
2983       __ bind(LisVolatile);
2984       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
2985       __ ldx(R17_tos, Rclass_or_obj, Roffset);
2986       __ twi_0(R17_tos);
2987       __ isync();
2988       break;
2989     }
2990     case Bytecodes::_fast_bgetfield:
2991     {
2992       __ lbzx(R17_tos, Rclass_or_obj, Roffset);
2993       __ extsb(R17_tos, R17_tos);
2994       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
2995 
2996       __ bind(LisVolatile);
2997       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
2998       __ lbzx(R17_tos, Rclass_or_obj, Roffset);
2999       __ twi_0(R17_tos);
3000       __ extsb(R17_tos, R17_tos);
3001       __ isync();
3002       break;
3003     }
3004     case Bytecodes::_fast_cgetfield:
3005     {
3006       __ lhzx(R17_tos, Rclass_or_obj, Roffset);
3007       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3008 
3009       __ bind(LisVolatile);
3010       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3011       __ lhzx(R17_tos, Rclass_or_obj, Roffset);
3012       __ twi_0(R17_tos);
3013       __ isync();
3014       break;
3015     }
3016     case Bytecodes::_fast_sgetfield:
3017     {
3018       __ lhax(R17_tos, Rclass_or_obj, Roffset);
3019       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3020 
3021       __ bind(LisVolatile);
3022       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3023       __ lhax(R17_tos, Rclass_or_obj, Roffset);
3024       __ twi_0(R17_tos);
3025       __ isync();
3026       break;
3027     }
3028     case Bytecodes::_fast_fgetfield:
3029     {
3030       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3031       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3032 
3033       __ bind(LisVolatile);
3034       Label Ldummy;
3035       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3036       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3037       __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
3038       __ bne_predict_not_taken(CCR0, Ldummy);
3039       __ bind(Ldummy);
3040       __ isync();
3041       break;
3042     }
3043     case Bytecodes::_fast_dgetfield:
3044     {
3045       __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
3046       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()));
3047 
3048       __ bind(LisVolatile);
3049       Label Ldummy;
3050       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3051       __ lfdx(F15_ftos, Rclass_or_obj, Roffset);
3052       __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
3053       __ bne_predict_not_taken(CCR0, Ldummy);
3054       __ bind(Ldummy);
3055       __ isync();
3056       break;
3057     }
3058     default: ShouldNotReachHere();
3059   }
3060 }
3061 
3062 void TemplateTable::fast_xaccess(TosState state) {
3063   transition(vtos, state);
3064 
3065   Label LisVolatile;
3066   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
3067   const Register Rcache        = R3_ARG1,
3068                  Rclass_or_obj = R17_tos,
3069                  Roffset       = R22_tmp2,
3070                  Rflags        = R23_tmp3,
3071                  Rscratch      = R12_scratch2;
3072 
3073   __ ld(Rclass_or_obj, 0, R18_locals);
3074 
3075   // Constant pool already resolved. Get the field offset.
3076   __ get_cache_and_index_at_bcp(Rcache, 2);
3077   load_field_cp_cache_entry(noreg, Rcache, noreg, Roffset, Rflags, false);
3078 
3079   // JVMTI support not needed, since we switch back to single bytecode as soon as debugger attaches.
3080 
3081   // Needed to report exception at the correct bcp.
3082   __ addi(R14_bcp, R14_bcp, 1);
3083 
3084   // Get the load address.
3085   __ null_check_throw(Rclass_or_obj, -1, Rscratch);
3086 
3087   // Get volatile flag.
3088   __ rldicl_(Rscratch, Rflags, 64-ConstantPoolCacheEntry::is_volatile_shift, 63); // Extract volatile bit.
3089   __ bne(CCR0, LisVolatile);
3090 
3091   switch(state) {
3092   case atos:
3093     {
3094       __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
3095       __ verify_oop(R17_tos);
3096       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
3097 
3098       __ bind(LisVolatile);
3099       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3100       __ load_heap_oop(R17_tos, (RegisterOrConstant)Roffset, Rclass_or_obj);
3101       __ verify_oop(R17_tos);
3102       __ twi_0(R17_tos);
3103       __ isync();
3104       break;
3105     }
3106   case itos:
3107     {
3108       __ lwax(R17_tos, Rclass_or_obj, Roffset);
3109       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
3110 
3111       __ bind(LisVolatile);
3112       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3113       __ lwax(R17_tos, Rclass_or_obj, Roffset);
3114       __ twi_0(R17_tos);
3115       __ isync();
3116       break;
3117     }
3118   case ftos:
3119     {
3120       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3121       __ dispatch_epilog(state, Bytecodes::length_for(bytecode()) - 1); // Undo bcp increment.
3122 
3123       __ bind(LisVolatile);
3124       Label Ldummy;
3125       if (support_IRIW_for_not_multiple_copy_atomic_cpu) { __ fence(); }
3126       __ lfsx(F15_ftos, Rclass_or_obj, Roffset);
3127       __ fcmpu(CCR0, F15_ftos, F15_ftos); // Acquire by cmp-br-isync.
3128       __ bne_predict_not_taken(CCR0, Ldummy);
3129       __ bind(Ldummy);
3130       __ isync();
3131       break;
3132     }
3133   default: ShouldNotReachHere();
3134   }
3135   __ addi(R14_bcp, R14_bcp, -1);
3136 }
3137 
3138 // ============================================================================
3139 // Calls
3140 
3141 // Common code for invoke
3142 //
3143 // Input:
3144 //   - byte_no
3145 //
3146 // Output:
3147 //   - Rmethod:        The method to invoke next.
3148 //   - Rret_addr:      The return address to return to.
3149 //   - Rindex:         MethodType (invokehandle) or CallSite obj (invokedynamic)
3150 //   - Rrecv:          Cache for "this" pointer, might be noreg if static call.
3151 //   - Rflags:         Method flags from const pool cache.
3152 //
3153 //  Kills:
3154 //   - Rscratch1
3155 //
3156 void TemplateTable::prepare_invoke(int byte_no,
3157                                    Register Rmethod,  // linked method (or i-klass)
3158                                    Register Rret_addr,// return address
3159                                    Register Rindex,   // itable index, MethodType, etc.
3160                                    Register Rrecv,    // If caller wants to see it.
3161                                    Register Rflags,   // If caller wants to test it.
3162                                    Register Rscratch
3163                                    ) {
3164   // Determine flags.
3165   const Bytecodes::Code code = bytecode();
3166   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
3167   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
3168   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
3169   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
3170   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
3171   const bool load_receiver       = (Rrecv != noreg);
3172   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
3173 
3174   assert_different_registers(Rmethod, Rindex, Rflags, Rscratch);
3175   assert_different_registers(Rmethod, Rrecv, Rflags, Rscratch);
3176   assert_different_registers(Rret_addr, Rscratch);
3177 
3178   load_invoke_cp_cache_entry(byte_no, Rmethod, Rindex, Rflags, is_invokevirtual, false, is_invokedynamic);
3179 
3180   // Saving of SP done in call_from_interpreter.
3181 
3182   // Maybe push "appendix" to arguments.
3183   if (is_invokedynamic || is_invokehandle) {
3184     Label Ldone;
3185     __ rldicl_(R0, Rflags, 64-ConstantPoolCacheEntry::has_appendix_shift, 63);
3186     __ beq(CCR0, Ldone);
3187     // Push "appendix" (MethodType, CallSite, etc.).
3188     // This must be done before we get the receiver,
3189     // since the parameter_size includes it.
3190     __ load_resolved_reference_at_index(Rscratch, Rindex);
3191     __ verify_oop(Rscratch);
3192     __ push_ptr(Rscratch);
3193     __ bind(Ldone);
3194   }
3195 
3196   // Load receiver if needed (after appendix is pushed so parameter size is correct).
3197   if (load_receiver) {
3198     const Register Rparam_count = Rscratch;
3199     __ andi(Rparam_count, Rflags, ConstantPoolCacheEntry::parameter_size_mask);
3200     __ load_receiver(Rparam_count, Rrecv);
3201     __ verify_oop(Rrecv);
3202   }
3203 
3204   // Get return address.
3205   {
3206     Register Rtable_addr = Rscratch;
3207     Register Rret_type = Rret_addr;
3208     address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3209 
3210     // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
3211     __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
3212     __ load_dispatch_table(Rtable_addr, (address*)table_addr);
3213     __ sldi(Rret_type, Rret_type, LogBytesPerWord);
3214     // Get return address.
3215     __ ldx(Rret_addr, Rtable_addr, Rret_type);
3216   }
3217 }
3218 
3219 // Helper for virtual calls. Load target out of vtable and jump off!
3220 // Kills all passed registers.
3221 void TemplateTable::generate_vtable_call(Register Rrecv_klass, Register Rindex, Register Rret, Register Rtemp) {
3222 
3223   assert_different_registers(Rrecv_klass, Rtemp, Rret);
3224   const Register Rtarget_method = Rindex;
3225 
3226   // Get target method & entry point.
3227   const int base = InstanceKlass::vtable_start_offset() * wordSize;
3228   // Calc vtable addr scale the vtable index by 8.
3229   __ sldi(Rindex, Rindex, exact_log2(vtableEntry::size() * wordSize));
3230   // Load target.
3231   __ addi(Rrecv_klass, Rrecv_klass, base + vtableEntry::method_offset_in_bytes());
3232   __ ldx(Rtarget_method, Rindex, Rrecv_klass);
3233   __ call_from_interpreter(Rtarget_method, Rret, Rrecv_klass /* scratch1 */, Rtemp /* scratch2 */);
3234 }
3235 
3236 // Virtual or final call. Final calls are rewritten on the fly to run through "fast_finalcall" next time.
3237 void TemplateTable::invokevirtual(int byte_no) {
3238   transition(vtos, vtos);
3239 
3240   Register Rtable_addr = R11_scratch1,
3241            Rret_type = R12_scratch2,
3242            Rret_addr = R5_ARG3,
3243            Rflags = R22_tmp2, // Should survive C call.
3244            Rrecv = R3_ARG1,
3245            Rrecv_klass = Rrecv,
3246            Rvtableindex_or_method = R31, // Should survive C call.
3247            Rnum_params = R4_ARG2,
3248            Rnew_bc = R6_ARG4;
3249 
3250   Label LnotFinal;
3251 
3252   load_invoke_cp_cache_entry(byte_no, Rvtableindex_or_method, noreg, Rflags, /*virtual*/ true, false, false);
3253 
3254   __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift);
3255   __ bfalse(CCR0, LnotFinal);
3256 
3257   patch_bytecode(Bytecodes::_fast_invokevfinal, Rnew_bc, R12_scratch2);
3258   invokevfinal_helper(Rvtableindex_or_method, Rflags, R11_scratch1, R12_scratch2);
3259 
3260   __ align(32, 12);
3261   __ bind(LnotFinal);
3262   // Load "this" pointer (receiver).
3263   __ rldicl(Rnum_params, Rflags, 64, 48);
3264   __ load_receiver(Rnum_params, Rrecv);
3265   __ verify_oop(Rrecv);
3266 
3267   // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
3268   __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
3269   __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table());
3270   __ sldi(Rret_type, Rret_type, LogBytesPerWord);
3271   __ ldx(Rret_addr, Rret_type, Rtable_addr);
3272   __ null_check_throw(Rrecv, oopDesc::klass_offset_in_bytes(), R11_scratch1);
3273   __ load_klass(Rrecv_klass, Rrecv);
3274   __ verify_klass_ptr(Rrecv_klass);
3275   __ profile_virtual_call(Rrecv_klass, R11_scratch1, R12_scratch2, false);
3276 
3277   generate_vtable_call(Rrecv_klass, Rvtableindex_or_method, Rret_addr, R11_scratch1);
3278 }
3279 
3280 void TemplateTable::fast_invokevfinal(int byte_no) {
3281   transition(vtos, vtos);
3282 
3283   assert(byte_no == f2_byte, "use this argument");
3284   Register Rflags  = R22_tmp2,
3285            Rmethod = R31;
3286   load_invoke_cp_cache_entry(byte_no, Rmethod, noreg, Rflags, /*virtual*/ true, /*is_invokevfinal*/ true, false);
3287   invokevfinal_helper(Rmethod, Rflags, R11_scratch1, R12_scratch2);
3288 }
3289 
3290 void TemplateTable::invokevfinal_helper(Register Rmethod, Register Rflags, Register Rscratch1, Register Rscratch2) {
3291 
3292   assert_different_registers(Rmethod, Rflags, Rscratch1, Rscratch2);
3293 
3294   // Load receiver from stack slot.
3295   Register Rrecv = Rscratch2;
3296   Register Rnum_params = Rrecv;
3297 
3298   __ ld(Rnum_params, in_bytes(Method::const_offset()), Rmethod);
3299   __ lhz(Rnum_params /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), Rnum_params);
3300 
3301   // Get return address.
3302   Register Rtable_addr = Rscratch1,
3303            Rret_addr   = Rflags,
3304            Rret_type   = Rret_addr;
3305   // Get return type. It's coded into the upper 4 bits of the lower half of the 64 bit value.
3306   __ rldicl(Rret_type, Rflags, 64-ConstantPoolCacheEntry::tos_state_shift, 64-ConstantPoolCacheEntry::tos_state_bits);
3307   __ load_dispatch_table(Rtable_addr, Interpreter::invoke_return_entry_table());
3308   __ sldi(Rret_type, Rret_type, LogBytesPerWord);
3309   __ ldx(Rret_addr, Rret_type, Rtable_addr);
3310 
3311   // Load receiver and receiver NULL check.
3312   __ load_receiver(Rnum_params, Rrecv);
3313   __ null_check_throw(Rrecv, -1, Rscratch1);
3314 
3315   __ profile_final_call(Rrecv, Rscratch1);
3316 
3317   // Do the call.
3318   __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1, Rscratch2);
3319 }
3320 
3321 void TemplateTable::invokespecial(int byte_no) {
3322   assert(byte_no == f1_byte, "use this argument");
3323   transition(vtos, vtos);
3324 
3325   Register Rtable_addr = R3_ARG1,
3326            Rret_addr   = R4_ARG2,
3327            Rflags      = R5_ARG3,
3328            Rreceiver   = R6_ARG4,
3329            Rmethod     = R31;
3330 
3331   prepare_invoke(byte_no, Rmethod, Rret_addr, noreg, Rreceiver, Rflags, R11_scratch1);
3332 
3333   // Receiver NULL check.
3334   __ null_check_throw(Rreceiver, -1, R11_scratch1);
3335 
3336   __ profile_call(R11_scratch1, R12_scratch2);
3337   __ call_from_interpreter(Rmethod, Rret_addr, R11_scratch1, R12_scratch2);
3338 }
3339 
3340 void TemplateTable::invokestatic(int byte_no) {
3341   assert(byte_no == f1_byte, "use this argument");
3342   transition(vtos, vtos);
3343 
3344   Register Rtable_addr = R3_ARG1,
3345            Rret_addr   = R4_ARG2,
3346            Rflags      = R5_ARG3;
3347 
3348   prepare_invoke(byte_no, R19_method, Rret_addr, noreg, noreg, Rflags, R11_scratch1);
3349 
3350   __ profile_call(R11_scratch1, R12_scratch2);
3351   __ call_from_interpreter(R19_method, Rret_addr, R11_scratch1, R12_scratch2);
3352 }
3353 
3354 void TemplateTable::invokeinterface_object_method(Register Rrecv_klass,
3355                                                   Register Rret,
3356                                                   Register Rflags,
3357                                                   Register Rindex,
3358                                                   Register Rtemp1,
3359                                                   Register Rtemp2) {
3360 
3361   assert_different_registers(Rindex, Rret, Rrecv_klass, Rflags, Rtemp1, Rtemp2);
3362   Label LnotFinal;
3363 
3364   // Check for vfinal.
3365   __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_vfinal_shift);
3366   __ bfalse(CCR0, LnotFinal);
3367 
3368   Register Rscratch = Rflags; // Rflags is dead now.
3369 
3370   // Final call case.
3371   __ profile_final_call(Rtemp1, Rscratch);
3372   // Do the final call - the index (f2) contains the method.
3373   __ call_from_interpreter(Rindex, Rret, Rscratch, Rrecv_klass /* scratch */);
3374 
3375   // Non-final callc case.
3376   __ bind(LnotFinal);
3377   __ profile_virtual_call(Rrecv_klass, Rtemp1, Rscratch, false);
3378   generate_vtable_call(Rrecv_klass, Rindex, Rret, Rscratch);
3379 }
3380 
3381 void TemplateTable::invokeinterface(int byte_no) {
3382   assert(byte_no == f1_byte, "use this argument");
3383   transition(vtos, vtos);
3384 
3385   const Register Rscratch1        = R11_scratch1,
3386                  Rscratch2        = R12_scratch2,
3387                  Rscratch3        = R9_ARG7,
3388                  Rscratch4        = R10_ARG8,
3389                  Rtable_addr      = Rscratch2,
3390                  Rinterface_klass = R5_ARG3,
3391                  Rret_type        = R8_ARG6,
3392                  Rret_addr        = Rret_type,
3393                  Rindex           = R6_ARG4,
3394                  Rreceiver        = R4_ARG2,
3395                  Rrecv_klass      = Rreceiver,
3396                  Rflags           = R7_ARG5;
3397 
3398   prepare_invoke(byte_no, Rinterface_klass, Rret_addr, Rindex, Rreceiver, Rflags, Rscratch1);
3399 
3400   // Get receiver klass.
3401   __ null_check_throw(Rreceiver, oopDesc::klass_offset_in_bytes(), Rscratch3);
3402   __ load_klass(Rrecv_klass, Rreceiver);
3403 
3404   // Check corner case object method.
3405   Label LobjectMethod;
3406 
3407   __ testbitdi(CCR0, R0, Rflags, ConstantPoolCacheEntry::is_forced_virtual_shift);
3408   __ btrue(CCR0, LobjectMethod);
3409 
3410   // Fallthrough: The normal invokeinterface case.
3411   __ profile_virtual_call(Rrecv_klass, Rscratch1, Rscratch2, false);
3412 
3413   // Find entry point to call.
3414   Label Lthrow_icc, Lthrow_ame;
3415   // Result will be returned in Rindex.
3416   __ mr(Rscratch4, Rrecv_klass);
3417   __ mr(Rscratch3, Rindex);
3418   __ lookup_interface_method(Rrecv_klass, Rinterface_klass, Rindex, Rindex, Rscratch1, Rscratch2, Lthrow_icc);
3419 
3420   __ cmpdi(CCR0, Rindex, 0);
3421   __ beq(CCR0, Lthrow_ame);
3422   // Found entry. Jump off!
3423   __ call_from_interpreter(Rindex, Rret_addr, Rscratch1, Rscratch2);
3424 
3425   // Vtable entry was NULL => Throw abstract method error.
3426   __ bind(Lthrow_ame);
3427   __ mr(Rrecv_klass, Rscratch4);
3428   __ mr(Rindex, Rscratch3);
3429   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3430 
3431   // Interface was not found => Throw incompatible class change error.
3432   __ bind(Lthrow_icc);
3433   __ mr(Rrecv_klass, Rscratch4);
3434   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_IncompatibleClassChangeError));
3435 
3436   __ should_not_reach_here();
3437 
3438   // Special case of invokeinterface called for virtual method of
3439   // java.lang.Object. See ConstantPoolCacheEntry::set_method() for details:
3440   // The invokeinterface was rewritten to a invokevirtual, hence we have
3441   // to handle this corner case. This code isn't produced by javac, but could
3442   // be produced by another compliant java compiler.
3443   __ bind(LobjectMethod);
3444   invokeinterface_object_method(Rrecv_klass, Rret_addr, Rflags, Rindex, Rscratch1, Rscratch2);
3445 }
3446 
3447 void TemplateTable::invokedynamic(int byte_no) {
3448   transition(vtos, vtos);
3449 
3450   const Register Rret_addr = R3_ARG1,
3451                  Rflags    = R4_ARG2,
3452                  Rmethod   = R22_tmp2,
3453                  Rscratch1 = R11_scratch1,
3454                  Rscratch2 = R12_scratch2;
3455 
3456   prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, noreg, Rflags, Rscratch2);
3457 
3458   // Profile this call.
3459   __ profile_call(Rscratch1, Rscratch2);
3460 
3461   // Off we go. With the new method handles, we don't jump to a method handle
3462   // entry any more. Instead, we pushed an "appendix" in prepare invoke, which happens
3463   // to be the callsite object the bootstrap method returned. This is passed to a
3464   // "link" method which does the dispatch (Most likely just grabs the MH stored
3465   // inside the callsite and does an invokehandle).
3466   __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */);
3467 }
3468 
3469 void TemplateTable::invokehandle(int byte_no) {
3470   transition(vtos, vtos);
3471 
3472   const Register Rret_addr = R3_ARG1,
3473                  Rflags    = R4_ARG2,
3474                  Rrecv     = R5_ARG3,
3475                  Rmethod   = R22_tmp2,
3476                  Rscratch1 = R11_scratch1,
3477                  Rscratch2 = R12_scratch2;
3478 
3479   prepare_invoke(byte_no, Rmethod, Rret_addr, Rscratch1, Rrecv, Rflags, Rscratch2);
3480   __ verify_method_ptr(Rmethod);
3481   __ null_check_throw(Rrecv, -1, Rscratch2);
3482 
3483   __ profile_final_call(Rrecv, Rscratch1);
3484 
3485   // Still no call from handle => We call the method handle interpreter here.
3486   __ call_from_interpreter(Rmethod, Rret_addr, Rscratch1 /* scratch1 */, Rscratch2 /* scratch2 */);
3487 }
3488 
3489 // =============================================================================
3490 // Allocation
3491 
3492 // Puts allocated obj ref onto the expression stack.
3493 void TemplateTable::_new() {
3494   transition(vtos, atos);
3495 
3496   Label Lslow_case,
3497         Ldone,
3498         Linitialize_header,
3499         Lallocate_shared,
3500         Linitialize_object;  // Including clearing the fields.
3501 
3502   const Register RallocatedObject = R17_tos,
3503                  RinstanceKlass   = R9_ARG7,
3504                  Rscratch         = R11_scratch1,
3505                  Roffset          = R8_ARG6,
3506                  Rinstance_size   = Roffset,
3507                  Rcpool           = R4_ARG2,
3508                  Rtags            = R3_ARG1,
3509                  Rindex           = R5_ARG3;
3510 
3511   const bool allow_shared_alloc = Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3512 
3513   // --------------------------------------------------------------------------
3514   // Check if fast case is possible.
3515 
3516   // Load pointers to const pool and const pool's tags array.
3517   __ get_cpool_and_tags(Rcpool, Rtags);
3518   // Load index of constant pool entry.
3519   __ get_2_byte_integer_at_bcp(1, Rindex, InterpreterMacroAssembler::Unsigned);
3520 
3521   if (UseTLAB) {
3522     // Make sure the class we're about to instantiate has been resolved
3523     // This is done before loading instanceKlass to be consistent with the order
3524     // how Constant Pool is updated (see ConstantPoolCache::klass_at_put).
3525     __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
3526     __ lbzx(Rtags, Rindex, Rtags);
3527 
3528     __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
3529     __ bne(CCR0, Lslow_case);
3530 
3531     // Get instanceKlass (load from Rcpool + sizeof(ConstantPool) + Rindex*BytesPerWord).
3532     __ sldi(Roffset, Rindex, LogBytesPerWord);
3533     __ addi(Rscratch, Rcpool, sizeof(ConstantPool));
3534     __ isync(); // Order load of instance Klass wrt. tags.
3535     __ ldx(RinstanceKlass, Roffset, Rscratch);
3536 
3537     // Make sure klass is fully initialized and get instance_size.
3538     __ lbz(Rscratch, in_bytes(InstanceKlass::init_state_offset()), RinstanceKlass);
3539     __ lwz(Rinstance_size, in_bytes(Klass::layout_helper_offset()), RinstanceKlass);
3540 
3541     __ cmpdi(CCR1, Rscratch, InstanceKlass::fully_initialized);
3542     // Make sure klass does not have has_finalizer, or is abstract, or interface or java/lang/Class.
3543     __ andi_(R0, Rinstance_size, Klass::_lh_instance_slow_path_bit); // slow path bit equals 0?
3544 
3545     __ crnand(/*CR0 eq*/2, /*CR1 eq*/4+2, /*CR0 eq*/2); // slow path bit set or not fully initialized?
3546     __ beq(CCR0, Lslow_case);
3547 
3548     // --------------------------------------------------------------------------
3549     // Fast case:
3550     // Allocate the instance.
3551     // 1) Try to allocate in the TLAB.
3552     // 2) If fail, and the TLAB is not full enough to discard, allocate in the shared Eden.
3553     // 3) If the above fails (or is not applicable), go to a slow case (creates a new TLAB, etc.).
3554 
3555     Register RoldTopValue = RallocatedObject; // Object will be allocated here if it fits.
3556     Register RnewTopValue = R6_ARG4;
3557     Register RendValue    = R7_ARG5;
3558 
3559     // Check if we can allocate in the TLAB.
3560     __ ld(RoldTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
3561     __ ld(RendValue,    in_bytes(JavaThread::tlab_end_offset()), R16_thread);
3562 
3563     __ add(RnewTopValue, Rinstance_size, RoldTopValue);
3564 
3565     // If there is enough space, we do not CAS and do not clear.
3566     __ cmpld(CCR0, RnewTopValue, RendValue);
3567     __ bgt(CCR0, allow_shared_alloc ? Lallocate_shared : Lslow_case);
3568 
3569     __ std(RnewTopValue, in_bytes(JavaThread::tlab_top_offset()), R16_thread);
3570 
3571     if (ZeroTLAB) {
3572       // The fields have already been cleared.
3573       __ b(Linitialize_header);
3574     } else {
3575       // Initialize both the header and fields.
3576       __ b(Linitialize_object);
3577     }
3578 
3579     // Fall through: TLAB was too small.
3580     if (allow_shared_alloc) {
3581       Register RtlabWasteLimitValue = R10_ARG8;
3582       Register RfreeValue = RnewTopValue;
3583 
3584       __ bind(Lallocate_shared);
3585       // Check if tlab should be discarded (refill_waste_limit >= free).
3586       __ ld(RtlabWasteLimitValue, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), R16_thread);
3587       __ subf(RfreeValue, RoldTopValue, RendValue);
3588       __ srdi(RfreeValue, RfreeValue, LogHeapWordSize); // in dwords
3589       __ cmpld(CCR0, RtlabWasteLimitValue, RfreeValue);
3590       __ bge(CCR0, Lslow_case);
3591 
3592       // Increment waste limit to prevent getting stuck on this slow path.
3593       __ addi(RtlabWasteLimitValue, RtlabWasteLimitValue, (int)ThreadLocalAllocBuffer::refill_waste_limit_increment());
3594       __ std(RtlabWasteLimitValue, in_bytes(JavaThread::tlab_refill_waste_limit_offset()), R16_thread);
3595     }
3596     // else: No allocation in the shared eden. // fallthru: __ b(Lslow_case);
3597   }
3598   // else: Always go the slow path.
3599 
3600   // --------------------------------------------------------------------------
3601   // slow case
3602   __ bind(Lslow_case);
3603   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), Rcpool, Rindex);
3604 
3605   if (UseTLAB) {
3606     __ b(Ldone);
3607     // --------------------------------------------------------------------------
3608     // Init1: Zero out newly allocated memory.
3609 
3610     if (!ZeroTLAB || allow_shared_alloc) {
3611       // Clear object fields.
3612       __ bind(Linitialize_object);
3613 
3614       // Initialize remaining object fields.
3615       Register Rbase = Rtags;
3616       __ addi(Rinstance_size, Rinstance_size, 7 - (int)sizeof(oopDesc));
3617       __ addi(Rbase, RallocatedObject, sizeof(oopDesc));
3618       __ srdi(Rinstance_size, Rinstance_size, 3);
3619 
3620       // Clear out object skipping header. Takes also care of the zero length case.
3621       __ clear_memory_doubleword(Rbase, Rinstance_size);
3622       // fallthru: __ b(Linitialize_header);
3623     }
3624 
3625     // --------------------------------------------------------------------------
3626     // Init2: Initialize the header: mark, klass
3627     __ bind(Linitialize_header);
3628 
3629     // Init mark.
3630     if (UseBiasedLocking) {
3631       __ ld(Rscratch, in_bytes(Klass::prototype_header_offset()), RinstanceKlass);
3632     } else {
3633       __ load_const_optimized(Rscratch, markOopDesc::prototype(), R0);
3634     }
3635     __ std(Rscratch, oopDesc::mark_offset_in_bytes(), RallocatedObject);
3636 
3637     // Init klass.
3638     __ store_klass_gap(RallocatedObject);
3639     __ store_klass(RallocatedObject, RinstanceKlass, Rscratch); // klass (last for cms)
3640 
3641     // Check and trigger dtrace event.
3642     {
3643       SkipIfEqualZero skip_if(_masm, Rscratch, &DTraceAllocProbes);
3644       __ push(atos);
3645       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc));
3646       __ pop(atos);
3647     }
3648   }
3649 
3650   // continue
3651   __ bind(Ldone);
3652 
3653   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3654   __ membar(Assembler::StoreStore);
3655 }
3656 
3657 void TemplateTable::newarray() {
3658   transition(itos, atos);
3659 
3660   __ lbz(R4, 1, R14_bcp);
3661   __ extsw(R5, R17_tos);
3662   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), R4, R5 /* size */);
3663 
3664   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3665   __ membar(Assembler::StoreStore);
3666 }
3667 
3668 void TemplateTable::anewarray() {
3669   transition(itos, atos);
3670 
3671   __ get_constant_pool(R4);
3672   __ get_2_byte_integer_at_bcp(1, R5, InterpreterMacroAssembler::Unsigned);
3673   __ extsw(R6, R17_tos); // size
3674   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), R4 /* pool */, R5 /* index */, R6 /* size */);
3675 
3676   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3677   __ membar(Assembler::StoreStore);
3678 }
3679 
3680 // Allocate a multi dimensional array
3681 void TemplateTable::multianewarray() {
3682   transition(vtos, atos);
3683 
3684   Register Rptr = R31; // Needs to survive C call.
3685 
3686   // Put ndims * wordSize into frame temp slot
3687   __ lbz(Rptr, 3, R14_bcp);
3688   __ sldi(Rptr, Rptr, Interpreter::logStackElementSize);
3689   // Esp points past last_dim, so set to R4 to first_dim address.
3690   __ add(R4, Rptr, R15_esp);
3691   call_VM(R17_tos, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), R4 /* first_size_address */);
3692   // Pop all dimensions off the stack.
3693   __ add(R15_esp, Rptr, R15_esp);
3694 
3695   // Must prevent reordering of stores for object initialization with stores that publish the new object.
3696   __ membar(Assembler::StoreStore);
3697 }
3698 
3699 void TemplateTable::arraylength() {
3700   transition(atos, itos);
3701 
3702   Label LnoException;
3703   __ verify_oop(R17_tos);
3704   __ null_check_throw(R17_tos, arrayOopDesc::length_offset_in_bytes(), R11_scratch1);
3705   __ lwa(R17_tos, arrayOopDesc::length_offset_in_bytes(), R17_tos);
3706 }
3707 
3708 // ============================================================================
3709 // Typechecks
3710 
3711 void TemplateTable::checkcast() {
3712   transition(atos, atos);
3713 
3714   Label Ldone, Lis_null, Lquicked, Lresolved;
3715   Register Roffset         = R6_ARG4,
3716            RobjKlass       = R4_ARG2,
3717            RspecifiedKlass = R5_ARG3, // Generate_ClassCastException_verbose_handler will read value from this register.
3718            Rcpool          = R11_scratch1,
3719            Rtags           = R12_scratch2;
3720 
3721   // Null does not pass.
3722   __ cmpdi(CCR0, R17_tos, 0);
3723   __ beq(CCR0, Lis_null);
3724 
3725   // Get constant pool tag to find out if the bytecode has already been "quickened".
3726   __ get_cpool_and_tags(Rcpool, Rtags);
3727 
3728   __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned);
3729 
3730   __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
3731   __ lbzx(Rtags, Rtags, Roffset);
3732 
3733   __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
3734   __ beq(CCR0, Lquicked);
3735 
3736   // Call into the VM to "quicken" instanceof.
3737   __ push_ptr();  // for GC
3738   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3739   __ get_vm_result_2(RspecifiedKlass);
3740   __ pop_ptr();   // Restore receiver.
3741   __ b(Lresolved);
3742 
3743   // Extract target class from constant pool.
3744   __ bind(Lquicked);
3745   __ sldi(Roffset, Roffset, LogBytesPerWord);
3746   __ addi(Rcpool, Rcpool, sizeof(ConstantPool));
3747   __ isync(); // Order load of specified Klass wrt. tags.
3748   __ ldx(RspecifiedKlass, Rcpool, Roffset);
3749 
3750   // Do the checkcast.
3751   __ bind(Lresolved);
3752   // Get value klass in RobjKlass.
3753   __ load_klass(RobjKlass, R17_tos);
3754   // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure.
3755   __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone);
3756 
3757   // Not a subtype; so must throw exception
3758   // Target class oop is in register R6_ARG4 == RspecifiedKlass by convention.
3759   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::_throw_ClassCastException_entry);
3760   __ mtctr(R11_scratch1);
3761   __ bctr();
3762 
3763   // Profile the null case.
3764   __ align(32, 12);
3765   __ bind(Lis_null);
3766   __ profile_null_seen(R11_scratch1, Rtags); // Rtags used as scratch.
3767 
3768   __ align(32, 12);
3769   __ bind(Ldone);
3770 }
3771 
3772 // Output:
3773 //   - tos == 0: Obj was null or not an instance of class.
3774 //   - tos == 1: Obj was an instance of class.
3775 void TemplateTable::instanceof() {
3776   transition(atos, itos);
3777 
3778   Label Ldone, Lis_null, Lquicked, Lresolved;
3779   Register Roffset         = R5_ARG3,
3780            RobjKlass       = R4_ARG2,
3781            RspecifiedKlass = R6_ARG4, // Generate_ClassCastException_verbose_handler will expect the value in this register.
3782            Rcpool          = R11_scratch1,
3783            Rtags           = R12_scratch2;
3784 
3785   // Null does not pass.
3786   __ cmpdi(CCR0, R17_tos, 0);
3787   __ beq(CCR0, Lis_null);
3788 
3789   // Get constant pool tag to find out if the bytecode has already been "quickened".
3790   __ get_cpool_and_tags(Rcpool, Rtags);
3791 
3792   __ get_2_byte_integer_at_bcp(1, Roffset, InterpreterMacroAssembler::Unsigned);
3793 
3794   __ addi(Rtags, Rtags, Array<u1>::base_offset_in_bytes());
3795   __ lbzx(Rtags, Rtags, Roffset);
3796 
3797   __ cmpdi(CCR0, Rtags, JVM_CONSTANT_Class);
3798   __ beq(CCR0, Lquicked);
3799 
3800   // Call into the VM to "quicken" instanceof.
3801   __ push_ptr();  // for GC
3802   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3803   __ get_vm_result_2(RspecifiedKlass);
3804   __ pop_ptr();   // Restore receiver.
3805   __ b(Lresolved);
3806 
3807   // Extract target class from constant pool.
3808   __ bind(Lquicked);
3809   __ sldi(Roffset, Roffset, LogBytesPerWord);
3810   __ addi(Rcpool, Rcpool, sizeof(ConstantPool));
3811   __ isync(); // Order load of specified Klass wrt. tags.
3812   __ ldx(RspecifiedKlass, Rcpool, Roffset);
3813 
3814   // Do the checkcast.
3815   __ bind(Lresolved);
3816   // Get value klass in RobjKlass.
3817   __ load_klass(RobjKlass, R17_tos);
3818   // Generate a fast subtype check. Branch to cast_ok if no failure. Return 0 if failure.
3819   __ li(R17_tos, 1);
3820   __ gen_subtype_check(RobjKlass, RspecifiedKlass, /*3 temp regs*/ Roffset, Rcpool, Rtags, /*target if subtype*/ Ldone);
3821   __ li(R17_tos, 0);
3822 
3823   if (ProfileInterpreter) {
3824     __ b(Ldone);
3825   }
3826 
3827   // Profile the null case.
3828   __ align(32, 12);
3829   __ bind(Lis_null);
3830   __ profile_null_seen(Rcpool, Rtags); // Rcpool and Rtags used as scratch.
3831 
3832   __ align(32, 12);
3833   __ bind(Ldone);
3834 }
3835 
3836 // =============================================================================
3837 // Breakpoints
3838 
3839 void TemplateTable::_breakpoint() {
3840   transition(vtos, vtos);
3841 
3842   // Get the unpatched byte code.
3843   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), R19_method, R14_bcp);
3844   __ mr(R31, R3_RET);
3845 
3846   // Post the breakpoint event.
3847   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), R19_method, R14_bcp);
3848 
3849   // Complete the execution of original bytecode.
3850   __ dispatch_Lbyte_code(vtos, R31, Interpreter::normal_table(vtos));
3851 }
3852 
3853 // =============================================================================
3854 // Exceptions
3855 
3856 void TemplateTable::athrow() {
3857   transition(atos, vtos);
3858 
3859   // Exception oop is in tos
3860   __ verify_oop(R17_tos);
3861 
3862   __ null_check_throw(R17_tos, -1, R11_scratch1);
3863 
3864   // Throw exception interpreter entry expects exception oop to be in R3.
3865   __ mr(R3_RET, R17_tos);
3866   __ load_dispatch_table(R11_scratch1, (address*)Interpreter::throw_exception_entry());
3867   __ mtctr(R11_scratch1);
3868   __ bctr();
3869 }
3870 
3871 // =============================================================================
3872 // Synchronization
3873 // Searches the basic object lock list on the stack for a free slot
3874 // and uses it to lock the obect in tos.
3875 //
3876 // Recursive locking is enabled by exiting the search if the same
3877 // object is already found in the list. Thus, a new basic lock obj lock
3878 // is allocated "higher up" in the stack and thus is found first
3879 // at next monitor exit.
3880 void TemplateTable::monitorenter() {
3881   transition(atos, vtos);
3882 
3883   __ verify_oop(R17_tos);
3884 
3885   Register Rcurrent_monitor  = R11_scratch1,
3886            Rcurrent_obj      = R12_scratch2,
3887            Robj_to_lock      = R17_tos,
3888            Rscratch1         = R3_ARG1,
3889            Rscratch2         = R4_ARG2,
3890            Rscratch3         = R5_ARG3,
3891            Rcurrent_obj_addr = R6_ARG4;
3892 
3893   // ------------------------------------------------------------------------------
3894   // Null pointer exception.
3895   __ null_check_throw(Robj_to_lock, -1, R11_scratch1);
3896 
3897   // Try to acquire a lock on the object.
3898   // Repeat until succeeded (i.e., until monitorenter returns true).
3899 
3900   // ------------------------------------------------------------------------------
3901   // Find a free slot in the monitor block.
3902   Label Lfound, Lexit, Lallocate_new;
3903   ConditionRegister found_free_slot = CCR0,
3904                     found_same_obj  = CCR1,
3905                     reached_limit   = CCR6;
3906   {
3907     Label Lloop, Lentry;
3908     Register Rlimit = Rcurrent_monitor;
3909 
3910     // Set up search loop - start with topmost monitor.
3911     __ add(Rcurrent_obj_addr, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
3912 
3913     __ ld(Rlimit, 0, R1_SP);
3914     __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes() - BasicObjectLock::obj_offset_in_bytes())); // Monitor base
3915 
3916     // Check if any slot is present => short cut to allocation if not.
3917     __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit);
3918     __ bgt(reached_limit, Lallocate_new);
3919 
3920     // Pre-load topmost slot.
3921     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
3922     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
3923     // The search loop.
3924     __ bind(Lloop);
3925     // Found free slot?
3926     __ cmpdi(found_free_slot, Rcurrent_obj, 0);
3927     // Is this entry for same obj? If so, stop the search and take the found
3928     // free slot or allocate a new one to enable recursive locking.
3929     __ cmpd(found_same_obj, Rcurrent_obj, Robj_to_lock);
3930     __ cmpld(reached_limit, Rcurrent_obj_addr, Rlimit);
3931     __ beq(found_free_slot, Lexit);
3932     __ beq(found_same_obj, Lallocate_new);
3933     __ bgt(reached_limit, Lallocate_new);
3934     // Check if last allocated BasicLockObj reached.
3935     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
3936     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
3937     // Next iteration if unchecked BasicObjectLocks exist on the stack.
3938     __ b(Lloop);
3939   }
3940 
3941   // ------------------------------------------------------------------------------
3942   // Check if we found a free slot.
3943   __ bind(Lexit);
3944 
3945   __ addi(Rcurrent_monitor, Rcurrent_obj_addr, -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes());
3946   __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, - frame::interpreter_frame_monitor_size() * wordSize);
3947   __ b(Lfound);
3948 
3949   // We didn't find a free BasicObjLock => allocate one.
3950   __ align(32, 12);
3951   __ bind(Lallocate_new);
3952   __ add_monitor_to_stack(false, Rscratch1, Rscratch2);
3953   __ mr(Rcurrent_monitor, R26_monitor);
3954   __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes());
3955 
3956   // ------------------------------------------------------------------------------
3957   // We now have a slot to lock.
3958   __ bind(Lfound);
3959 
3960   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
3961   // The object has already been poped from the stack, so the expression stack looks correct.
3962   __ addi(R14_bcp, R14_bcp, 1);
3963 
3964   __ std(Robj_to_lock, 0, Rcurrent_obj_addr);
3965   __ lock_object(Rcurrent_monitor, Robj_to_lock);
3966 
3967   // Check if there's enough space on the stack for the monitors after locking.
3968   Label Lskip_stack_check;
3969   // Optimization: If the monitors stack section is less then a std page size (4K) don't run
3970   // the stack check. There should be enough shadow pages to fit that in.
3971   __ ld(Rscratch3, 0, R1_SP);
3972   __ sub(Rscratch3, Rscratch3, R26_monitor);
3973   __ cmpdi(CCR0, Rscratch3, 4*K);
3974   __ blt(CCR0, Lskip_stack_check);
3975 
3976   DEBUG_ONLY(__ untested("stack overflow check during monitor enter");)
3977   __ li(Rscratch1, 0);
3978   __ generate_stack_overflow_check_with_compare_and_throw(Rscratch1, Rscratch2);
3979 
3980   __ align(32, 12);
3981   __ bind(Lskip_stack_check);
3982 
3983   // The bcp has already been incremented. Just need to dispatch to next instruction.
3984   __ dispatch_next(vtos);
3985 }
3986 
3987 void TemplateTable::monitorexit() {
3988   transition(atos, vtos);
3989   __ verify_oop(R17_tos);
3990 
3991   Register Rcurrent_monitor  = R11_scratch1,
3992            Rcurrent_obj      = R12_scratch2,
3993            Robj_to_lock      = R17_tos,
3994            Rcurrent_obj_addr = R3_ARG1,
3995            Rlimit            = R4_ARG2;
3996   Label Lfound, Lillegal_monitor_state;
3997 
3998   // Check corner case: unbalanced monitorEnter / Exit.
3999   __ ld(Rlimit, 0, R1_SP);
4000   __ addi(Rlimit, Rlimit, - (frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base
4001 
4002   // Null pointer check.
4003   __ null_check_throw(Robj_to_lock, -1, R11_scratch1);
4004 
4005   __ cmpld(CCR0, R26_monitor, Rlimit);
4006   __ bgt(CCR0, Lillegal_monitor_state);
4007 
4008   // Find the corresponding slot in the monitors stack section.
4009   {
4010     Label Lloop;
4011 
4012     // Start with topmost monitor.
4013     __ addi(Rcurrent_obj_addr, R26_monitor, BasicObjectLock::obj_offset_in_bytes());
4014     __ addi(Rlimit, Rlimit, BasicObjectLock::obj_offset_in_bytes());
4015     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
4016     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
4017 
4018     __ bind(Lloop);
4019     // Is this entry for same obj?
4020     __ cmpd(CCR0, Rcurrent_obj, Robj_to_lock);
4021     __ beq(CCR0, Lfound);
4022 
4023     // Check if last allocated BasicLockObj reached.
4024 
4025     __ ld(Rcurrent_obj, 0, Rcurrent_obj_addr);
4026     __ cmpld(CCR0, Rcurrent_obj_addr, Rlimit);
4027     __ addi(Rcurrent_obj_addr, Rcurrent_obj_addr, frame::interpreter_frame_monitor_size() * wordSize);
4028 
4029     // Next iteration if unchecked BasicObjectLocks exist on the stack.
4030     __ ble(CCR0, Lloop);
4031   }
4032 
4033   // Fell through without finding the basic obj lock => throw up!
4034   __ bind(Lillegal_monitor_state);
4035   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
4036   __ should_not_reach_here();
4037 
4038   __ align(32, 12);
4039   __ bind(Lfound);
4040   __ addi(Rcurrent_monitor, Rcurrent_obj_addr,
4041           -(frame::interpreter_frame_monitor_size() * wordSize) - BasicObjectLock::obj_offset_in_bytes());
4042   __ unlock_object(Rcurrent_monitor);
4043 }
4044 
4045 // ============================================================================
4046 // Wide bytecodes
4047 
4048 // Wide instructions. Simply redirects to the wide entry point for that instruction.
4049 void TemplateTable::wide() {
4050   transition(vtos, vtos);
4051 
4052   const Register Rtable = R11_scratch1,
4053                  Rindex = R12_scratch2,
4054                  Rtmp   = R0;
4055 
4056   __ lbz(Rindex, 1, R14_bcp);
4057 
4058   __ load_dispatch_table(Rtable, Interpreter::_wentry_point);
4059 
4060   __ slwi(Rindex, Rindex, LogBytesPerWord);
4061   __ ldx(Rtmp, Rtable, Rindex);
4062   __ mtctr(Rtmp);
4063   __ bctr();
4064   // Note: the bcp increment step is part of the individual wide bytecode implementations.
4065 }
4066 #endif // !CC_INTERP