1 /*
   2  * Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "c1/c1_Compilation.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "ci/ciArray.hpp"
  35 #include "ci/ciObjArrayKlass.hpp"
  36 #include "ci/ciTypeArrayKlass.hpp"
  37 #include "ci/ciUtilities.hpp"
  38 #include "gc/shared/c1/barrierSetC1.hpp"
  39 #include "gc/shared/cardTable.hpp"
  40 #include "gc/shared/cardTableBarrierSet.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/stubRoutines.hpp"
  43 #include "vmreg_arm.inline.hpp"
  44 
  45 #ifdef ASSERT
  46 #define __ gen()->lir(__FILE__, __LINE__)->
  47 #else
  48 #define __ gen()->lir()->
  49 #endif
  50 
  51 void LIRItem::load_byte_item() {
  52   load_item();
  53 }
  54 
  55 void LIRItem::load_nonconstant() {
  56   LIR_Opr r = value()->operand();
  57   if (_gen->can_inline_as_constant(value())) {
  58     if (!r->is_constant()) {
  59       r = LIR_OprFact::value_type(value()->type());
  60     }
  61     _result = r;
  62   } else {
  63     load_item();
  64   }
  65 }
  66 
  67 //--------------------------------------------------------------
  68 //               LIRGenerator
  69 //--------------------------------------------------------------
  70 
  71 
  72 LIR_Opr LIRGenerator::exceptionOopOpr() {
  73   return FrameMap::Exception_oop_opr;
  74 }
  75 
  76 LIR_Opr LIRGenerator::exceptionPcOpr()  {
  77   return FrameMap::Exception_pc_opr;
  78 }
  79 
  80 LIR_Opr LIRGenerator::syncLockOpr()     {
  81   return new_register(T_INT);
  82 }
  83 
  84 LIR_Opr LIRGenerator::syncTempOpr()     {
  85   return new_register(T_OBJECT);
  86 }
  87 
  88 LIR_Opr LIRGenerator::getThreadTemp()   {
  89   return LIR_OprFact::illegalOpr;
  90 }
  91 
  92 LIR_Opr LIRGenerator::atomicLockOpr() {
  93   return LIR_OprFact::illegalOpr;
  94 }
  95 
  96 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  97   LIR_Opr opr;
  98   switch (type->tag()) {
  99     case intTag:     opr = FrameMap::Int_result_opr;    break;
 100     case objectTag:  opr = FrameMap::Object_result_opr; break;
 101     case longTag:    opr = FrameMap::Long_result_opr;   break;
 102     case floatTag:   opr = FrameMap::Float_result_opr;  break;
 103     case doubleTag:  opr = FrameMap::Double_result_opr; break;
 104     case addressTag:
 105     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
 106   }
 107   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
 108   return opr;
 109 }
 110 
 111 
 112 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
 113   return new_register(T_INT);
 114 }
 115 
 116 
 117 //--------- loading items into registers --------------------------------
 118 
 119 
 120 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
 121 #ifdef AARCH64
 122   if (v->type()->as_IntConstant() != NULL) {
 123     return v->type()->as_IntConstant()->value() == 0;
 124   } else if (v->type()->as_LongConstant() != NULL) {
 125     return v->type()->as_LongConstant()->value() == 0;
 126   } else if (v->type()->as_ObjectConstant() != NULL) {
 127     return v->type()->as_ObjectConstant()->value()->is_null_object();
 128   } else if (v->type()->as_FloatConstant() != NULL) {
 129     return jint_cast(v->type()->as_FloatConstant()->value()) == 0;
 130   } else if (v->type()->as_DoubleConstant() != NULL) {
 131     return jlong_cast(v->type()->as_DoubleConstant()->value()) == 0;
 132   }
 133 #endif // AARCH64
 134   return false;
 135 }
 136 
 137 
 138 bool LIRGenerator::can_inline_as_constant(Value v) const {
 139   if (v->type()->as_IntConstant() != NULL) {
 140     return Assembler::is_arith_imm_in_range(v->type()->as_IntConstant()->value());
 141   } else if (v->type()->as_ObjectConstant() != NULL) {
 142     return v->type()->as_ObjectConstant()->value()->is_null_object();
 143 #ifdef AARCH64
 144   } else if (v->type()->as_LongConstant() != NULL) {
 145     return Assembler::is_arith_imm_in_range(v->type()->as_LongConstant()->value());
 146 #else
 147   } else if (v->type()->as_FloatConstant() != NULL) {
 148     return v->type()->as_FloatConstant()->value() == 0.0f;
 149   } else if (v->type()->as_DoubleConstant() != NULL) {
 150     return v->type()->as_DoubleConstant()->value() == 0.0;
 151 #endif // AARCH64
 152   }
 153   return false;
 154 }
 155 
 156 
 157 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
 158   ShouldNotCallThis(); // Not used on ARM
 159   return false;
 160 }
 161 
 162 
 163 #ifdef AARCH64
 164 
 165 static bool can_inline_as_constant_in_cmp(Value v) {
 166   jlong constant;
 167   if (v->type()->as_IntConstant() != NULL) {
 168     constant = v->type()->as_IntConstant()->value();
 169   } else if (v->type()->as_LongConstant() != NULL) {
 170     constant = v->type()->as_LongConstant()->value();
 171   } else if (v->type()->as_ObjectConstant() != NULL) {
 172     return v->type()->as_ObjectConstant()->value()->is_null_object();
 173   } else if (v->type()->as_FloatConstant() != NULL) {
 174     return v->type()->as_FloatConstant()->value() == 0.0f;
 175   } else if (v->type()->as_DoubleConstant() != NULL) {
 176     return v->type()->as_DoubleConstant()->value() == 0.0;
 177   } else {
 178     return false;
 179   }
 180 
 181   return Assembler::is_arith_imm_in_range(constant) || Assembler::is_arith_imm_in_range(-constant);
 182 }
 183 
 184 
 185 static bool can_inline_as_constant_in_logic(Value v) {
 186   if (v->type()->as_IntConstant() != NULL) {
 187     return Assembler::LogicalImmediate(v->type()->as_IntConstant()->value(), true).is_encoded();
 188   } else if (v->type()->as_LongConstant() != NULL) {
 189     return Assembler::LogicalImmediate(v->type()->as_LongConstant()->value(), false).is_encoded();
 190   }
 191   return false;
 192 }
 193 
 194 
 195 #endif // AARCH64
 196 
 197 
 198 LIR_Opr LIRGenerator::safepoint_poll_register() {
 199   return LIR_OprFact::illegalOpr;
 200 }
 201 
 202 
 203 static LIR_Opr make_constant(BasicType type, jlong c) {
 204   switch (type) {
 205     case T_ADDRESS:
 206     case T_OBJECT:  return LIR_OprFact::intptrConst(c);
 207     case T_LONG:    return LIR_OprFact::longConst(c);
 208     case T_INT:     return LIR_OprFact::intConst(c);
 209     default: ShouldNotReachHere();
 210     return LIR_OprFact::intConst(-1);
 211   }
 212 }
 213 
 214 #ifdef AARCH64
 215 
 216 void LIRGenerator::add_constant(LIR_Opr src, jlong c, LIR_Opr dest) {
 217   if (c == 0) {
 218     __ move(src, dest);
 219     return;
 220   }
 221 
 222   BasicType type = src->type();
 223   bool is_neg = (c < 0);
 224   c = ABS(c);
 225 
 226   if ((c >> 24) == 0) {
 227     for (int shift = 0; shift <= 12; shift += 12) {
 228       int part = ((int)c) & (right_n_bits(12) << shift);
 229       if (part != 0) {
 230         if (is_neg) {
 231           __ sub(src, make_constant(type, part), dest);
 232         } else {
 233           __ add(src, make_constant(type, part), dest);
 234         }
 235         src = dest;
 236       }
 237     }
 238   } else {
 239     __ move(make_constant(type, c), dest);
 240     if (is_neg) {
 241       __ sub(src, dest, dest);
 242     } else {
 243       __ add(src, dest, dest);
 244     }
 245   }
 246 }
 247 
 248 #endif // AARCH64
 249 
 250 
 251 void LIRGenerator::add_large_constant(LIR_Opr src, int c, LIR_Opr dest) {
 252   assert(c != 0, "must be");
 253 #ifdef AARCH64
 254   add_constant(src, c, dest);
 255 #else
 256   // Find first non-zero bit
 257   int shift = 0;
 258   while ((c & (3 << shift)) == 0) {
 259     shift += 2;
 260   }
 261   // Add the least significant part of the constant
 262   int mask = 0xff << shift;
 263   __ add(src, LIR_OprFact::intConst(c & mask), dest);
 264   // Add up to 3 other parts of the constant;
 265   // each of them can be represented as rotated_imm
 266   if (c & (mask << 8)) {
 267     __ add(dest, LIR_OprFact::intConst(c & (mask << 8)), dest);
 268   }
 269   if (c & (mask << 16)) {
 270     __ add(dest, LIR_OprFact::intConst(c & (mask << 16)), dest);
 271   }
 272   if (c & (mask << 24)) {
 273     __ add(dest, LIR_OprFact::intConst(c & (mask << 24)), dest);
 274   }
 275 #endif // AARCH64
 276 }
 277 
 278 static LIR_Address* make_address(LIR_Opr base, LIR_Opr index, LIR_Address::Scale scale, BasicType type) {
 279   return new LIR_Address(base, index, scale, 0, type);
 280 }
 281 
 282 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
 283                                             int shift, int disp, BasicType type) {
 284   assert(base->is_register(), "must be");
 285 
 286   if (index->is_constant()) {
 287     disp += index->as_constant_ptr()->as_jint() << shift;
 288     index = LIR_OprFact::illegalOpr;
 289   }
 290 
 291 #ifndef AARCH64
 292   if (base->type() == T_LONG) {
 293     LIR_Opr tmp = new_register(T_INT);
 294     __ convert(Bytecodes::_l2i, base, tmp);
 295     base = tmp;
 296   }
 297   if (index != LIR_OprFact::illegalOpr && index->type() == T_LONG) {
 298     LIR_Opr tmp = new_register(T_INT);
 299     __ convert(Bytecodes::_l2i, index, tmp);
 300     index = tmp;
 301   }
 302   // At this point base and index should be all ints and not constants
 303   assert(base->is_single_cpu() && !base->is_constant(), "base should be an non-constant int");
 304   assert(index->is_illegal() || (index->type() == T_INT && !index->is_constant()), "index should be an non-constant int");
 305 #endif
 306 
 307   int max_disp;
 308   bool disp_is_in_range;
 309   bool embedded_shift;
 310 
 311 #ifdef AARCH64
 312   int align = exact_log2(type2aelembytes(type, true));
 313   assert((disp & right_n_bits(align)) == 0, "displacement is not aligned");
 314   assert(shift == 0 || shift == align, "shift should be zero or equal to embedded align");
 315   max_disp = (1 << 12) << align;
 316 
 317   if (disp >= 0) {
 318     disp_is_in_range = Assembler::is_unsigned_imm_in_range(disp, 12, align);
 319   } else {
 320     disp_is_in_range = Assembler::is_imm_in_range(disp, 9, 0);
 321   }
 322 
 323   embedded_shift = true;
 324 #else
 325   switch (type) {
 326     case T_BYTE:
 327     case T_SHORT:
 328     case T_CHAR:
 329       max_disp = 256;          // ldrh, ldrsb encoding has 8-bit offset
 330       embedded_shift = false;
 331       break;
 332     case T_FLOAT:
 333     case T_DOUBLE:
 334       max_disp = 1024;         // flds, fldd have 8-bit offset multiplied by 4
 335       embedded_shift = false;
 336       break;
 337     case T_LONG:
 338       max_disp = 4096;
 339       embedded_shift = false;
 340       break;
 341     default:
 342       max_disp = 4096;         // ldr, ldrb allow 12-bit offset
 343       embedded_shift = true;
 344   }
 345 
 346   disp_is_in_range = (-max_disp < disp && disp < max_disp);
 347 #endif // !AARCH64
 348 
 349   if (index->is_register()) {
 350     LIR_Opr tmp = new_pointer_register();
 351     if (!disp_is_in_range) {
 352       add_large_constant(base, disp, tmp);
 353       base = tmp;
 354       disp = 0;
 355     }
 356     LIR_Address* addr = make_address(base, index, (LIR_Address::Scale)shift, type);
 357     if (disp == 0 && embedded_shift) {
 358       // can use ldr/str instruction with register index
 359       return addr;
 360     } else {
 361       LIR_Opr tmp = new_pointer_register();
 362       __ add(base, LIR_OprFact::address(addr), tmp); // add with shifted/extended register
 363       return new LIR_Address(tmp, disp, type);
 364     }
 365   }
 366 
 367   // If the displacement is too large to be inlined into LDR instruction,
 368   // generate large constant with additional sequence of ADD instructions
 369   int excess_disp = disp & ~(max_disp - 1);
 370   if (excess_disp != 0) {
 371     LIR_Opr tmp = new_pointer_register();
 372     add_large_constant(base, excess_disp, tmp);
 373     base = tmp;
 374   }
 375   return new LIR_Address(base, disp & (max_disp - 1), type);
 376 }
 377 
 378 
 379 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr, BasicType type) {
 380   int base_offset = arrayOopDesc::base_offset_in_bytes(type);
 381   int elem_size = type2aelembytes(type);
 382 
 383   if (index_opr->is_constant()) {
 384     int offset = base_offset + index_opr->as_constant_ptr()->as_jint() * elem_size;
 385     return generate_address(array_opr, offset, type);
 386   } else {
 387     assert(index_opr->is_register(), "must be");
 388     int scale = exact_log2(elem_size);
 389     return generate_address(array_opr, index_opr, scale, base_offset, type);
 390   }
 391 }
 392 
 393 
 394 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
 395   assert(type == T_LONG || type == T_INT, "should be");
 396   LIR_Opr r = make_constant(type, x);
 397 #ifdef AARCH64
 398   bool imm_in_range = Assembler::LogicalImmediate(x, type == T_INT).is_encoded();
 399 #else
 400   bool imm_in_range = AsmOperand::is_rotated_imm(x);
 401 #endif // AARCH64
 402   if (!imm_in_range) {
 403     LIR_Opr tmp = new_register(type);
 404     __ move(r, tmp);
 405     return tmp;
 406   }
 407   return r;
 408 }
 409 
 410 
 411 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
 412   LIR_Opr pointer = new_pointer_register();
 413   __ move(LIR_OprFact::intptrConst(counter), pointer);
 414   LIR_Address* addr = new LIR_Address(pointer, type);
 415   increment_counter(addr, step);
 416 }
 417 
 418 
 419 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
 420   LIR_Opr temp = new_register(addr->type());
 421   __ move(addr, temp);
 422   __ add(temp, make_constant(addr->type(), step), temp);
 423   __ move(temp, addr);
 424 }
 425 
 426 
 427 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
 428   __ load(new LIR_Address(base, disp, T_INT), FrameMap::LR_opr, info);
 429   __ cmp(condition, FrameMap::LR_opr, c);
 430 }
 431 
 432 
 433 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
 434   __ load(new LIR_Address(base, disp, type), FrameMap::LR_opr, info);
 435   __ cmp(condition, reg, FrameMap::LR_opr);
 436 }
 437 
 438 
 439 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
 440   assert(left != result, "should be different registers");
 441   if (is_power_of_2(c + 1)) {
 442 #ifdef AARCH64
 443     __ shift_left(left, log2_intptr(c + 1), result);
 444     __ sub(result, left, result);
 445 #else
 446     LIR_Address::Scale scale = (LIR_Address::Scale) log2_intptr(c + 1);
 447     LIR_Address* addr = new LIR_Address(left, left, scale, 0, T_INT);
 448     __ sub(LIR_OprFact::address(addr), left, result); // rsb with shifted register
 449 #endif // AARCH64
 450     return true;
 451   } else if (is_power_of_2(c - 1)) {
 452     LIR_Address::Scale scale = (LIR_Address::Scale) log2_intptr(c - 1);
 453     LIR_Address* addr = new LIR_Address(left, left, scale, 0, T_INT);
 454     __ add(left, LIR_OprFact::address(addr), result); // add with shifted register
 455     return true;
 456   }
 457   return false;
 458 }
 459 
 460 
 461 void LIRGenerator::store_stack_parameter(LIR_Opr item, ByteSize offset_from_sp) {
 462   assert(item->type() == T_INT, "other types are not expected");
 463   __ store(item, new LIR_Address(FrameMap::SP_opr, in_bytes(offset_from_sp), item->type()));
 464 }
 465 
 466 void LIRGenerator::set_card(LIR_Opr value, LIR_Address* card_addr) {
 467   assert(CardTable::dirty_card_val() == 0,
 468     "Cannot use ZR register (aarch64) or the register containing the card table base address directly (aarch32) otherwise");
 469 #ifdef AARCH64
 470   // AARCH64 has a register that is constant zero. We can use that one to set the
 471   // value in the card table to dirty.
 472   __ move(FrameMap::ZR_opr, card_addr);
 473 #else // AARCH64
 474   if((ci_card_table_address_as<intx>() & 0xff) == 0) {
 475     // If the card table base address is aligned to 256 bytes, we can use the register
 476     // that contains the card_table_base_address.
 477     __ move(value, card_addr);
 478   } else {
 479     // Otherwise we need to create a register containing that value.
 480     LIR_Opr tmp_zero = new_register(T_INT);
 481     __ move(LIR_OprFact::intConst(CardTable::dirty_card_val()), tmp_zero);
 482     __ move(tmp_zero, card_addr);
 483   }
 484 #endif // AARCH64
 485 }
 486 
 487 void LIRGenerator::CardTableBarrierSet_post_barrier_helper(LIR_OprDesc* addr, LIR_Const* card_table_base) {
 488   assert(addr->is_register(), "must be a register at this point");
 489 
 490   CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(BarrierSet::barrier_set());
 491   CardTable* ct = ctbs->card_table();
 492 
 493   LIR_Opr tmp = FrameMap::LR_ptr_opr;
 494 
 495   // TODO-AARCH64: check performance
 496   bool load_card_table_base_const = AARCH64_ONLY(false) NOT_AARCH64(VM_Version::supports_movw());
 497   if (load_card_table_base_const) {
 498     __ move((LIR_Opr)card_table_base, tmp);
 499   } else {
 500     __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
 501   }
 502 
 503 #ifdef AARCH64
 504   LIR_Address* shifted_reg_operand = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTable::card_shift, 0, T_BYTE);
 505   LIR_Opr tmp2 = tmp;
 506   __ add(tmp, LIR_OprFact::address(shifted_reg_operand), tmp2); // tmp2 = tmp + (addr >> CardTable::card_shift)
 507   LIR_Address* card_addr = new LIR_Address(tmp2, T_BYTE);
 508 #else
 509   // Use unsigned type T_BOOLEAN here rather than (signed) T_BYTE since signed load
 510   // byte instruction does not support the addressing mode we need.
 511   LIR_Address* card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTable::card_shift, 0, T_BOOLEAN);
 512 #endif
 513   if (UseCondCardMark) {
 514     if (ct->scanned_concurrently()) {
 515       __ membar_storeload();
 516     }
 517     LIR_Opr cur_value = new_register(T_INT);
 518     __ move(card_addr, cur_value);
 519 
 520     LabelObj* L_already_dirty = new LabelObj();
 521     __ cmp(lir_cond_equal, cur_value, LIR_OprFact::intConst(CardTable::dirty_card_val()));
 522     __ branch(lir_cond_equal, T_BYTE, L_already_dirty->label());
 523     set_card(tmp, card_addr);
 524     __ branch_destination(L_already_dirty->label());
 525   } else {
 526     if (ct->scanned_concurrently()) {
 527       __ membar_storestore();
 528     }
 529     set_card(tmp, card_addr);
 530   }
 531 }
 532 
 533 void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) {
 534   LIR_Opr tmp1 = FrameMap::R0_oop_opr;
 535   LIR_Opr tmp2 = FrameMap::R1_oop_opr;
 536   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
 537   __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci);
 538 }
 539 
 540 //----------------------------------------------------------------------
 541 //             visitor functions
 542 //----------------------------------------------------------------------
 543 
 544 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
 545   assert(x->is_pinned(),"");
 546   LIRItem obj(x->obj(), this);
 547   obj.load_item();
 548   set_no_result(x);
 549 
 550   LIR_Opr lock = new_pointer_register();
 551   LIR_Opr hdr  = new_pointer_register();
 552 
 553   // Need a scratch register for biased locking on arm
 554   LIR_Opr scratch = LIR_OprFact::illegalOpr;
 555   if(UseBiasedLocking) {
 556     scratch = new_pointer_register();
 557   } else {
 558     scratch = atomicLockOpr();
 559   }
 560 
 561   CodeEmitInfo* info_for_exception = NULL;
 562   if (x->needs_null_check()) {
 563     info_for_exception = state_for(x);
 564   }
 565 
 566   CodeEmitInfo* info = state_for(x, x->state(), true);
 567   monitor_enter(obj.result(), lock, hdr, scratch,
 568                 x->monitor_no(), info_for_exception, info);
 569 }
 570 
 571 
 572 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
 573   assert(x->is_pinned(),"");
 574   LIRItem obj(x->obj(), this);
 575   obj.dont_load_item();
 576   set_no_result(x);
 577 
 578   LIR_Opr obj_temp = new_pointer_register();
 579   LIR_Opr lock     = new_pointer_register();
 580   LIR_Opr hdr      = new_pointer_register();
 581 
 582   monitor_exit(obj_temp, lock, hdr, atomicLockOpr(), x->monitor_no());
 583 }
 584 
 585 
 586 // _ineg, _lneg, _fneg, _dneg
 587 void LIRGenerator::do_NegateOp(NegateOp* x) {
 588 #ifdef __SOFTFP__
 589   address runtime_func = NULL;
 590   ValueTag tag = x->type()->tag();
 591   if (tag == floatTag) {
 592     runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::fneg);
 593   } else if (tag == doubleTag) {
 594     runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dneg);
 595   }
 596   if (runtime_func != NULL) {
 597     set_result(x, call_runtime(x->x(), runtime_func, x->type(), NULL));
 598     return;
 599   }
 600 #endif // __SOFTFP__
 601   LIRItem value(x->x(), this);
 602   value.load_item();
 603   LIR_Opr reg = rlock_result(x);
 604   __ negate(value.result(), reg);
 605 }
 606 
 607 
 608 // for  _fadd, _fmul, _fsub, _fdiv, _frem
 609 //      _dadd, _dmul, _dsub, _ddiv, _drem
 610 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
 611   address runtime_func;
 612   switch (x->op()) {
 613     case Bytecodes::_frem:
 614       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
 615       break;
 616     case Bytecodes::_drem:
 617       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
 618       break;
 619 #ifdef __SOFTFP__
 620     // Call function compiled with -msoft-float.
 621 
 622       // __aeabi_XXXX_glibc: Imported code from glibc soft-fp bundle for calculation accuracy improvement. See CR 6757269.
 623 
 624     case Bytecodes::_fadd:
 625       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_fadd_glibc);
 626       break;
 627     case Bytecodes::_fmul:
 628       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_fmul);
 629       break;
 630     case Bytecodes::_fsub:
 631       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_fsub_glibc);
 632       break;
 633     case Bytecodes::_fdiv:
 634       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_fdiv);
 635       break;
 636     case Bytecodes::_dadd:
 637       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_dadd_glibc);
 638       break;
 639     case Bytecodes::_dmul:
 640       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_dmul);
 641       break;
 642     case Bytecodes::_dsub:
 643       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_dsub_glibc);
 644       break;
 645     case Bytecodes::_ddiv:
 646       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_ddiv);
 647       break;
 648     default:
 649       ShouldNotReachHere();
 650 #else // __SOFTFP__
 651     default: {
 652       LIRItem left(x->x(), this);
 653       LIRItem right(x->y(), this);
 654       left.load_item();
 655       right.load_item();
 656       rlock_result(x);
 657       arithmetic_op_fpu(x->op(), x->operand(), left.result(), right.result(), x->is_strictfp());
 658       return;
 659     }
 660 #endif // __SOFTFP__
 661   }
 662 
 663   LIR_Opr result = call_runtime(x->x(), x->y(), runtime_func, x->type(), NULL);
 664   set_result(x, result);
 665 }
 666 
 667 
 668 void LIRGenerator::make_div_by_zero_check(LIR_Opr right_arg, BasicType type, CodeEmitInfo* info) {
 669   assert(right_arg->is_register(), "must be");
 670   __ cmp(lir_cond_equal, right_arg, make_constant(type, 0));
 671   __ branch(lir_cond_equal, type, new DivByZeroStub(info));
 672 }
 673 
 674 
 675 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
 676 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
 677   CodeEmitInfo* info = NULL;
 678   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
 679     info = state_for(x);
 680   }
 681 
 682 #ifdef AARCH64
 683   LIRItem left(x->x(), this);
 684   LIRItem right(x->y(), this);
 685   LIRItem* left_arg = &left;
 686   LIRItem* right_arg = &right;
 687 
 688   // Test if instr is commutative and if we should swap
 689   if (x->is_commutative() && left.is_constant()) {
 690     left_arg = &right;
 691     right_arg = &left;
 692   }
 693 
 694   left_arg->load_item();
 695   switch (x->op()) {
 696     case Bytecodes::_ldiv:
 697       right_arg->load_item();
 698       make_div_by_zero_check(right_arg->result(), T_LONG, info);
 699       __ idiv(left_arg->result(), right_arg->result(), rlock_result(x), LIR_OprFact::illegalOpr, NULL);
 700       break;
 701 
 702     case Bytecodes::_lrem: {
 703       right_arg->load_item();
 704       make_div_by_zero_check(right_arg->result(), T_LONG, info);
 705       // a % b is implemented with 2 instructions:
 706       // tmp = a/b       (sdiv)
 707       // res = a - b*tmp (msub)
 708       LIR_Opr tmp = FrameMap::as_long_opr(Rtemp);
 709       __ irem(left_arg->result(), right_arg->result(), rlock_result(x), tmp, NULL);
 710       break;
 711     }
 712 
 713     case Bytecodes::_lmul:
 714       if (right_arg->is_constant() && is_power_of_2_long(right_arg->get_jlong_constant())) {
 715         right_arg->dont_load_item();
 716         __ shift_left(left_arg->result(), exact_log2_long(right_arg->get_jlong_constant()), rlock_result(x));
 717       } else {
 718         right_arg->load_item();
 719         __ mul(left_arg->result(), right_arg->result(), rlock_result(x));
 720       }
 721       break;
 722 
 723     case Bytecodes::_ladd:
 724     case Bytecodes::_lsub:
 725       if (right_arg->is_constant()) {
 726         jlong c = right_arg->get_jlong_constant();
 727         add_constant(left_arg->result(), (x->op() == Bytecodes::_ladd) ? c : -c, rlock_result(x));
 728       } else {
 729         right_arg->load_item();
 730         arithmetic_op_long(x->op(), rlock_result(x), left_arg->result(), right_arg->result(), NULL);
 731       }
 732       break;
 733 
 734     default:
 735       ShouldNotReachHere();
 736       return;
 737   }
 738 #else
 739   switch (x->op()) {
 740     case Bytecodes::_ldiv:
 741     case Bytecodes::_lrem: {
 742       LIRItem right(x->y(), this);
 743       right.load_item();
 744       make_div_by_zero_check(right.result(), T_LONG, info);
 745     }
 746     // Fall through
 747     case Bytecodes::_lmul: {
 748       address entry;
 749       switch (x->op()) {
 750       case Bytecodes::_lrem:
 751         entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
 752         break;
 753       case Bytecodes::_ldiv:
 754         entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
 755         break;
 756       case Bytecodes::_lmul:
 757         entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
 758         break;
 759       default:
 760         ShouldNotReachHere();
 761         return;
 762       }
 763       LIR_Opr result = call_runtime(x->y(), x->x(), entry, x->type(), NULL);
 764       set_result(x, result);
 765       break;
 766     }
 767     case Bytecodes::_ladd:
 768     case Bytecodes::_lsub: {
 769       LIRItem left(x->x(), this);
 770       LIRItem right(x->y(), this);
 771       left.load_item();
 772       right.load_item();
 773       rlock_result(x);
 774       arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
 775       break;
 776     }
 777     default:
 778       ShouldNotReachHere();
 779   }
 780 #endif // AARCH64
 781 }
 782 
 783 
 784 // for: _iadd, _imul, _isub, _idiv, _irem
 785 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
 786   bool is_div_rem = x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem;
 787   LIRItem left(x->x(), this);
 788   LIRItem right(x->y(), this);
 789   LIRItem* left_arg = &left;
 790   LIRItem* right_arg = &right;
 791 
 792   // Test if instr is commutative and if we should swap
 793   if (x->is_commutative() && left.is_constant()) {
 794     left_arg = &right;
 795     right_arg = &left;
 796   }
 797 
 798   if (is_div_rem) {
 799     CodeEmitInfo* info = state_for(x);
 800     if (x->op() == Bytecodes::_idiv && right_arg->is_constant() && is_power_of_2(right_arg->get_jint_constant())) {
 801       left_arg->load_item();
 802       right_arg->dont_load_item();
 803       LIR_Opr tmp = LIR_OprFact::illegalOpr;
 804       LIR_Opr result = rlock_result(x);
 805       __ idiv(left_arg->result(), right_arg->result(), result, tmp, info);
 806     } else {
 807 #ifdef AARCH64
 808       left_arg->load_item();
 809       right_arg->load_item();
 810       make_div_by_zero_check(right_arg->result(), T_INT, info);
 811       if (x->op() == Bytecodes::_idiv) {
 812         __ idiv(left_arg->result(), right_arg->result(), rlock_result(x), LIR_OprFact::illegalOpr, NULL);
 813       } else {
 814         // a % b is implemented with 2 instructions:
 815         // tmp = a/b       (sdiv)
 816         // res = a - b*tmp (msub)
 817         LIR_Opr tmp = FrameMap::as_opr(Rtemp);
 818         __ irem(left_arg->result(), right_arg->result(), rlock_result(x), tmp, NULL);
 819       }
 820 #else
 821       left_arg->load_item_force(FrameMap::R0_opr);
 822       right_arg->load_item_force(FrameMap::R2_opr);
 823       LIR_Opr tmp = FrameMap::R1_opr;
 824       LIR_Opr result = rlock_result(x);
 825       LIR_Opr out_reg;
 826       if (x->op() == Bytecodes::_irem) {
 827         out_reg = FrameMap::R0_opr;
 828         __ irem(left_arg->result(), right_arg->result(), out_reg, tmp, info);
 829       } else { // (x->op() == Bytecodes::_idiv)
 830         out_reg = FrameMap::R1_opr;
 831         __ idiv(left_arg->result(), right_arg->result(), out_reg, tmp, info);
 832       }
 833       __ move(out_reg, result);
 834 #endif // AARCH64
 835     }
 836 
 837 #ifdef AARCH64
 838   } else if (((x->op() == Bytecodes::_iadd) || (x->op() == Bytecodes::_isub)) && right_arg->is_constant()) {
 839     left_arg->load_item();
 840     jint c = right_arg->get_jint_constant();
 841     right_arg->dont_load_item();
 842     add_constant(left_arg->result(), (x->op() == Bytecodes::_iadd) ? c : -c, rlock_result(x));
 843 #endif // AARCH64
 844 
 845   } else {
 846     left_arg->load_item();
 847     if (x->op() == Bytecodes::_imul && right_arg->is_constant()) {
 848       jint c = right_arg->get_jint_constant();
 849       if (c > 0 && c < max_jint && (is_power_of_2(c) || is_power_of_2(c - 1) || is_power_of_2(c + 1))) {
 850         right_arg->dont_load_item();
 851       } else {
 852         right_arg->load_item();
 853       }
 854     } else {
 855       AARCH64_ONLY(assert(!right_arg->is_constant(), "constant right_arg is already handled by this moment");)
 856       right_arg->load_nonconstant();
 857     }
 858     rlock_result(x);
 859     assert(right_arg->is_constant() || right_arg->is_register(), "wrong state of right");
 860     arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), NULL);
 861   }
 862 }
 863 
 864 
 865 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
 866   ValueTag tag = x->type()->tag();
 867   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
 868   switch (tag) {
 869     case floatTag:
 870     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
 871     case longTag:    do_ArithmeticOp_Long(x); return;
 872     case intTag:     do_ArithmeticOp_Int(x);  return;
 873   }
 874   ShouldNotReachHere();
 875 }
 876 
 877 
 878 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
 879 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
 880   LIRItem value(x->x(), this);
 881   LIRItem count(x->y(), this);
 882 
 883 #ifndef AARCH64
 884   if (value.type()->is_long()) {
 885     count.set_destroys_register();
 886   }
 887 #endif // !AARCH64
 888 
 889   if (count.is_constant()) {
 890     assert(count.type()->as_IntConstant() != NULL, "should be");
 891     count.dont_load_item();
 892   } else {
 893     count.load_item();
 894   }
 895   value.load_item();
 896 
 897   LIR_Opr res = rlock_result(x);
 898   shift_op(x->op(), res, value.result(), count.result(), LIR_OprFact::illegalOpr);
 899 }
 900 
 901 
 902 // _iand, _land, _ior, _lor, _ixor, _lxor
 903 void LIRGenerator::do_LogicOp(LogicOp* x) {
 904   LIRItem left(x->x(), this);
 905   LIRItem right(x->y(), this);
 906 
 907   left.load_item();
 908 
 909 #ifdef AARCH64
 910   if (right.is_constant() && can_inline_as_constant_in_logic(right.value())) {
 911     right.dont_load_item();
 912   } else {
 913     right.load_item();
 914   }
 915 #else
 916   right.load_nonconstant();
 917 #endif // AARCH64
 918 
 919   logic_op(x->op(), rlock_result(x), left.result(), right.result());
 920 }
 921 
 922 
 923 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
 924 void LIRGenerator::do_CompareOp(CompareOp* x) {
 925 #ifdef __SOFTFP__
 926   address runtime_func;
 927   switch (x->op()) {
 928     case Bytecodes::_fcmpl:
 929       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::fcmpl);
 930       break;
 931     case Bytecodes::_fcmpg:
 932       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::fcmpg);
 933       break;
 934     case Bytecodes::_dcmpl:
 935       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dcmpl);
 936       break;
 937     case Bytecodes::_dcmpg:
 938       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dcmpg);
 939       break;
 940     case Bytecodes::_lcmp: {
 941         LIRItem left(x->x(), this);
 942         LIRItem right(x->y(), this);
 943         left.load_item();
 944         right.load_nonconstant();
 945         LIR_Opr reg = rlock_result(x);
 946          __ lcmp2int(left.result(), right.result(), reg);
 947         return;
 948       }
 949     default:
 950       ShouldNotReachHere();
 951   }
 952   LIR_Opr result = call_runtime(x->x(), x->y(), runtime_func, x->type(), NULL);
 953   set_result(x, result);
 954 #else // __SOFTFP__
 955   LIRItem left(x->x(), this);
 956   LIRItem right(x->y(), this);
 957   left.load_item();
 958 
 959 #ifdef AARCH64
 960   if (right.is_constant() && can_inline_as_constant_in_cmp(right.value())) {
 961     right.dont_load_item();
 962   } else {
 963     right.load_item();
 964   }
 965 #else
 966   right.load_nonconstant();
 967 #endif // AARCH64
 968 
 969   LIR_Opr reg = rlock_result(x);
 970 
 971   if (x->x()->type()->is_float_kind()) {
 972     Bytecodes::Code code = x->op();
 973     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
 974   } else if (x->x()->type()->tag() == longTag) {
 975     __ lcmp2int(left.result(), right.result(), reg);
 976   } else {
 977     ShouldNotReachHere();
 978   }
 979 #endif // __SOFTFP__
 980 }
 981 
 982 LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) {
 983   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
 984   LIR_Opr tmp1 = LIR_OprFact::illegalOpr;
 985   LIR_Opr tmp2 = LIR_OprFact::illegalOpr;
 986   new_value.load_item();
 987   cmp_value.load_item();
 988   LIR_Opr result = new_register(T_INT);
 989   if (type == T_OBJECT || type == T_ARRAY) {
 990 #ifdef AARCH64
 991     if (UseCompressedOops) {
 992       tmp1 = new_pointer_register();
 993       tmp2 = new_pointer_register();
 994     }
 995 #endif
 996     __ cas_obj(addr, cmp_value.result(), new_value.result(), new_register(T_INT), new_register(T_INT), result);
 997   } else if (type == T_INT) {
 998     __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), tmp1, tmp1, result);
 999   } else if (type == T_LONG) {
1000 #ifndef AARCH64
1001     tmp1 = new_register(T_LONG);
1002 #endif // !AARCH64
1003     __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), tmp1, tmp2, result);
1004   } else {
1005     ShouldNotReachHere();
1006   }
1007   return result;
1008 }
1009 
1010 LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) {
1011   bool is_oop = type == T_OBJECT || type == T_ARRAY;
1012   LIR_Opr result = new_register(type);
1013   value.load_item();
1014   assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type");
1015   LIR_Opr tmp = (UseCompressedOops && is_oop) ? new_pointer_register() : LIR_OprFact::illegalOpr;
1016   __ xchg(addr, value.result(), result, tmp);
1017   return result;
1018 }
1019 
1020 LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) {
1021   LIR_Opr result = new_register(type);
1022   value.load_item();
1023   assert(type == T_INT LP64_ONLY( || type == T_LONG), "unexpected type");
1024   LIR_Opr tmp = new_register(type);
1025   __ xadd(addr, value.result(), result, tmp);
1026   return result;
1027 }
1028 
1029 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
1030   address runtime_func;
1031   switch (x->id()) {
1032     case vmIntrinsics::_dabs: {
1033 #ifdef __SOFTFP__
1034       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dabs);
1035       break;
1036 #else
1037       assert(x->number_of_arguments() == 1, "wrong type");
1038       LIRItem value(x->argument_at(0), this);
1039       value.load_item();
1040       __ abs(value.result(), rlock_result(x), LIR_OprFact::illegalOpr);
1041       return;
1042 #endif // __SOFTFP__
1043     }
1044     case vmIntrinsics::_dsqrt: {
1045 #ifdef __SOFTFP__
1046       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt);
1047       break;
1048 #else
1049       assert(x->number_of_arguments() == 1, "wrong type");
1050       LIRItem value(x->argument_at(0), this);
1051       value.load_item();
1052       __ sqrt(value.result(), rlock_result(x), LIR_OprFact::illegalOpr);
1053       return;
1054 #endif // __SOFTFP__
1055     }
1056     case vmIntrinsics::_dsin:
1057       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
1058       break;
1059     case vmIntrinsics::_dcos:
1060       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
1061       break;
1062     case vmIntrinsics::_dtan:
1063       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
1064       break;
1065     case vmIntrinsics::_dlog:
1066       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
1067       break;
1068     case vmIntrinsics::_dlog10:
1069       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
1070       break;
1071     case vmIntrinsics::_dexp:
1072       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
1073       break;
1074     case vmIntrinsics::_dpow:
1075       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
1076       break;
1077     default:
1078       ShouldNotReachHere();
1079       return;
1080   }
1081 
1082   LIR_Opr result;
1083   if (x->number_of_arguments() == 1) {
1084     result = call_runtime(x->argument_at(0), runtime_func, x->type(), NULL);
1085   } else {
1086     assert(x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow, "unexpected intrinsic");
1087     result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_func, x->type(), NULL);
1088   }
1089   set_result(x, result);
1090 }
1091 
1092 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
1093   fatal("FMA intrinsic is not implemented on this platform");
1094 }
1095 
1096 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
1097   fatal("vectorizedMismatch intrinsic is not implemented on this platform");
1098 }
1099 
1100 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
1101   CodeEmitInfo* info = state_for(x, x->state());
1102   assert(x->number_of_arguments() == 5, "wrong type");
1103   LIRItem src(x->argument_at(0), this);
1104   LIRItem src_pos(x->argument_at(1), this);
1105   LIRItem dst(x->argument_at(2), this);
1106   LIRItem dst_pos(x->argument_at(3), this);
1107   LIRItem length(x->argument_at(4), this);
1108 
1109   // We put arguments into the same registers which are used for a Java call.
1110   // Note: we used fixed registers for all arguments because all registers
1111   // are caller-saved, so register allocator treats them all as used.
1112   src.load_item_force    (FrameMap::R0_oop_opr);
1113   src_pos.load_item_force(FrameMap::R1_opr);
1114   dst.load_item_force    (FrameMap::R2_oop_opr);
1115   dst_pos.load_item_force(FrameMap::R3_opr);
1116   length.load_item_force (FrameMap::R4_opr);
1117   LIR_Opr tmp =          (FrameMap::R5_opr);
1118   set_no_result(x);
1119 
1120   int flags;
1121   ciArrayKlass* expected_type;
1122   arraycopy_helper(x, &flags, &expected_type);
1123   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(),
1124                tmp, expected_type, flags, info);
1125 }
1126 
1127 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
1128   fatal("CRC32 intrinsic is not implemented on this platform");
1129 }
1130 
1131 void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
1132   Unimplemented();
1133 }
1134 
1135 void LIRGenerator::do_Convert(Convert* x) {
1136   address runtime_func;
1137   switch (x->op()) {
1138 #ifndef AARCH64
1139     case Bytecodes::_l2f:
1140       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::l2f);
1141       break;
1142     case Bytecodes::_l2d:
1143       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::l2d);
1144       break;
1145     case Bytecodes::_f2l:
1146       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::f2l);
1147       break;
1148     case Bytecodes::_d2l:
1149       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::d2l);
1150       break;
1151 #ifdef __SOFTFP__
1152     case Bytecodes::_f2d:
1153       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_f2d);
1154       break;
1155     case Bytecodes::_d2f:
1156       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_d2f);
1157       break;
1158     case Bytecodes::_i2f:
1159       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_i2f);
1160       break;
1161     case Bytecodes::_i2d:
1162       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_i2d);
1163       break;
1164     case Bytecodes::_f2i:
1165       runtime_func = CAST_FROM_FN_PTR(address, __aeabi_f2iz);
1166       break;
1167     case Bytecodes::_d2i:
1168       // This is implemented in hard float in assembler on arm but a call
1169       // on other platforms.
1170       runtime_func = CAST_FROM_FN_PTR(address, SharedRuntime::d2i);
1171       break;
1172 #endif // __SOFTFP__
1173 #endif // !AARCH64
1174     default: {
1175       LIRItem value(x->value(), this);
1176       value.load_item();
1177       LIR_Opr reg = rlock_result(x);
1178       __ convert(x->op(), value.result(), reg, NULL);
1179       return;
1180     }
1181   }
1182 
1183   LIR_Opr result = call_runtime(x->value(), runtime_func, x->type(), NULL);
1184   set_result(x, result);
1185 }
1186 
1187 
1188 void LIRGenerator::do_NewInstance(NewInstance* x) {
1189   print_if_not_loaded(x);
1190 
1191   CodeEmitInfo* info = state_for(x, x->state());
1192   LIR_Opr reg = result_register_for(x->type());  // R0 is required by runtime call in NewInstanceStub::emit_code
1193   LIR_Opr klass_reg = FrameMap::R1_metadata_opr; // R1 is required by runtime call in NewInstanceStub::emit_code
1194   LIR_Opr tmp1 = new_register(objectType);
1195   LIR_Opr tmp2 = new_register(objectType);
1196   LIR_Opr tmp3 = FrameMap::LR_oop_opr;
1197 
1198   new_instance(reg, x->klass(), x->is_unresolved(), tmp1, tmp2, tmp3,
1199                LIR_OprFact::illegalOpr, klass_reg, info);
1200 
1201   LIR_Opr result = rlock_result(x);
1202   __ move(reg, result);
1203 }
1204 
1205 
1206 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1207   // Evaluate state_for() first, because it can emit code
1208   // with the same fixed registers that are used here (R1, R2)
1209   CodeEmitInfo* info = state_for(x, x->state());
1210   LIRItem length(x->length(), this);
1211 
1212   length.load_item_force(FrameMap::R2_opr);      // R2 is required by runtime call in NewTypeArrayStub::emit_code
1213   LIR_Opr len = length.result();
1214 
1215   LIR_Opr reg = result_register_for(x->type());  // R0 is required by runtime call in NewTypeArrayStub::emit_code
1216   LIR_Opr klass_reg = FrameMap::R1_metadata_opr; // R1 is required by runtime call in NewTypeArrayStub::emit_code
1217 
1218   LIR_Opr tmp1 = new_register(objectType);
1219   LIR_Opr tmp2 = new_register(objectType);
1220   LIR_Opr tmp3 = FrameMap::LR_oop_opr;
1221   LIR_Opr tmp4 = LIR_OprFact::illegalOpr;
1222 
1223   BasicType elem_type = x->elt_type();
1224   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1225 
1226   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1227   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1228 
1229   LIR_Opr result = rlock_result(x);
1230   __ move(reg, result);
1231 }
1232 
1233 
1234 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1235   // Evaluate state_for() first, because it can emit code
1236   // with the same fixed registers that are used here (R1, R2)
1237   CodeEmitInfo* info = state_for(x, x->state());
1238   LIRItem length(x->length(), this);
1239 
1240   length.load_item_force(FrameMap::R2_opr);           // R2 is required by runtime call in NewObjectArrayStub::emit_code
1241   LIR_Opr len = length.result();
1242 
1243   CodeEmitInfo* patching_info = NULL;
1244   if (!x->klass()->is_loaded() || PatchALot) {
1245     patching_info = state_for(x, x->state_before());
1246   }
1247 
1248   LIR_Opr reg = result_register_for(x->type());       // R0 is required by runtime call in NewObjectArrayStub::emit_code
1249   LIR_Opr klass_reg = FrameMap::R1_metadata_opr;      // R1 is required by runtime call in NewObjectArrayStub::emit_code
1250 
1251   LIR_Opr tmp1 = new_register(objectType);
1252   LIR_Opr tmp2 = new_register(objectType);
1253   LIR_Opr tmp3 = FrameMap::LR_oop_opr;
1254   LIR_Opr tmp4 = LIR_OprFact::illegalOpr;
1255 
1256   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1257   ciMetadata* obj = ciObjArrayKlass::make(x->klass());
1258   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1259     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1260   }
1261   klass2reg_with_patching(klass_reg, obj, patching_info);
1262   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1263 
1264   LIR_Opr result = rlock_result(x);
1265   __ move(reg, result);
1266 }
1267 
1268 
1269 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1270   Values* dims = x->dims();
1271   int i = dims->length();
1272   LIRItemList* items = new LIRItemList(i, i, NULL);
1273   while (i-- > 0) {
1274     LIRItem* size = new LIRItem(dims->at(i), this);
1275     items->at_put(i, size);
1276   }
1277 
1278   // Need to get the info before, as the items may become invalid through item_free
1279   CodeEmitInfo* patching_info = NULL;
1280   if (!x->klass()->is_loaded() || PatchALot) {
1281     patching_info = state_for(x, x->state_before());
1282 
1283     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1284     // clone all handlers (NOTE: Usually this is handled transparently
1285     // by the CodeEmitInfo cloning logic in CodeStub constructors but
1286     // is done explicitly here because a stub isn't being used).
1287     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1288   }
1289 
1290   i = dims->length();
1291   while (i-- > 0) {
1292     LIRItem* size = items->at(i);
1293     size->load_item();
1294     LIR_Opr sz = size->result();
1295     assert(sz->type() == T_INT, "should be");
1296     store_stack_parameter(sz, in_ByteSize(i * BytesPerInt));
1297   }
1298 
1299   CodeEmitInfo* info = state_for(x, x->state());
1300   LIR_Opr klass_reg = FrameMap::R0_metadata_opr;
1301   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1302 
1303   LIR_Opr rank = FrameMap::R2_opr;
1304   __ move(LIR_OprFact::intConst(x->rank()), rank);
1305   LIR_Opr varargs = FrameMap::SP_opr;
1306   LIR_OprList* args = new LIR_OprList(3);
1307   args->append(klass_reg);
1308   args->append(rank);
1309   args->append(varargs);
1310   LIR_Opr reg = result_register_for(x->type());
1311   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1312                   LIR_OprFact::illegalOpr, reg, args, info);
1313 
1314   LIR_Opr result = rlock_result(x);
1315   __ move(reg, result);
1316 }
1317 
1318 
1319 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1320   // nothing to do for now
1321 }
1322 
1323 
1324 void LIRGenerator::do_CheckCast(CheckCast* x) {
1325   LIRItem obj(x->obj(), this);
1326   CodeEmitInfo* patching_info = NULL;
1327   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) {
1328     patching_info = state_for(x, x->state_before());
1329   }
1330 
1331   obj.load_item();
1332 
1333   CodeEmitInfo* info_for_exception =
1334     (x->needs_exception_state() ? state_for(x) :
1335                                   state_for(x, x->state_before(), true /*ignore_xhandler*/));
1336 
1337   CodeStub* stub;
1338   if (x->is_incompatible_class_change_check()) {
1339     assert(patching_info == NULL, "can't patch this");
1340     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id,
1341                                    LIR_OprFact::illegalOpr, info_for_exception);
1342   } else if (x->is_invokespecial_receiver_check()) {
1343     assert(patching_info == NULL, "can't patch this");
1344     stub = new DeoptimizeStub(info_for_exception,
1345                               Deoptimization::Reason_class_check,
1346                               Deoptimization::Action_none);
1347   } else {
1348     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id,
1349                                    LIR_OprFact::illegalOpr, info_for_exception);
1350   }
1351 
1352   LIR_Opr out_reg = rlock_result(x);
1353   LIR_Opr tmp1 = FrameMap::R0_oop_opr;
1354   LIR_Opr tmp2 = FrameMap::R1_oop_opr;
1355   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1356 
1357   __ checkcast(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3, x->direct_compare(),
1358                info_for_exception, patching_info, stub, x->profiled_method(), x->profiled_bci());
1359 }
1360 
1361 
1362 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1363   LIRItem obj(x->obj(), this);
1364   CodeEmitInfo* patching_info = NULL;
1365   if (!x->klass()->is_loaded() || PatchALot) {
1366     patching_info = state_for(x, x->state_before());
1367   }
1368 
1369   obj.load_item();
1370   LIR_Opr out_reg = rlock_result(x);
1371   LIR_Opr tmp1 = FrameMap::R0_oop_opr;
1372   LIR_Opr tmp2 = FrameMap::R1_oop_opr;
1373   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1374 
1375   __ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
1376                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1377 }
1378 
1379 
1380 #ifdef __SOFTFP__
1381 // Turn operator if (f <op> g) into runtime call:
1382 //     call _aeabi_fcmp<op>(f, g)
1383 //     cmp(eq, 1)
1384 //     branch(eq, true path).
1385 void LIRGenerator::do_soft_float_compare(If* x) {
1386   assert(x->number_of_sux() == 2, "inconsistency");
1387   ValueTag tag = x->x()->type()->tag();
1388   If::Condition cond = x->cond();
1389   address runtime_func;
1390   // unordered comparison gets the wrong answer because aeabi functions
1391   //  return false.
1392   bool unordered_is_true = x->unordered_is_true();
1393   // reverse of condition for ne
1394   bool compare_to_zero = false;
1395   switch (lir_cond(cond)) {
1396     case lir_cond_notEqual:
1397       compare_to_zero = true;  // fall through
1398     case lir_cond_equal:
1399       runtime_func = tag == floatTag ?
1400           CAST_FROM_FN_PTR(address, __aeabi_fcmpeq):
1401           CAST_FROM_FN_PTR(address, __aeabi_dcmpeq);
1402       break;
1403     case lir_cond_less:
1404       if (unordered_is_true) {
1405         runtime_func = tag == floatTag ?
1406           CAST_FROM_FN_PTR(address, SharedRuntime::unordered_fcmplt):
1407           CAST_FROM_FN_PTR(address, SharedRuntime::unordered_dcmplt);
1408       } else {
1409         runtime_func = tag == floatTag ?
1410           CAST_FROM_FN_PTR(address, __aeabi_fcmplt):
1411           CAST_FROM_FN_PTR(address, __aeabi_dcmplt);
1412       }
1413       break;
1414     case lir_cond_lessEqual:
1415       if (unordered_is_true) {
1416         runtime_func = tag == floatTag ?
1417           CAST_FROM_FN_PTR(address, SharedRuntime::unordered_fcmple):
1418           CAST_FROM_FN_PTR(address, SharedRuntime::unordered_dcmple);
1419       } else {
1420         runtime_func = tag == floatTag ?
1421           CAST_FROM_FN_PTR(address, __aeabi_fcmple):
1422           CAST_FROM_FN_PTR(address, __aeabi_dcmple);
1423       }
1424       break;
1425     case lir_cond_greaterEqual:
1426       if (unordered_is_true) {
1427         runtime_func = tag == floatTag ?
1428           CAST_FROM_FN_PTR(address, SharedRuntime::unordered_fcmpge):
1429           CAST_FROM_FN_PTR(address, SharedRuntime::unordered_dcmpge);
1430       } else {
1431         runtime_func = tag == floatTag ?
1432           CAST_FROM_FN_PTR(address, __aeabi_fcmpge):
1433           CAST_FROM_FN_PTR(address, __aeabi_dcmpge);
1434       }
1435       break;
1436     case lir_cond_greater:
1437       if (unordered_is_true) {
1438         runtime_func = tag == floatTag ?
1439           CAST_FROM_FN_PTR(address, SharedRuntime::unordered_fcmpgt):
1440           CAST_FROM_FN_PTR(address, SharedRuntime::unordered_dcmpgt);
1441       } else {
1442         runtime_func = tag == floatTag ?
1443           CAST_FROM_FN_PTR(address, __aeabi_fcmpgt):
1444           CAST_FROM_FN_PTR(address, __aeabi_dcmpgt);
1445       }
1446       break;
1447     case lir_cond_aboveEqual:
1448     case lir_cond_belowEqual:
1449       ShouldNotReachHere();  // We're not going to get these.
1450     default:
1451       assert(lir_cond(cond) == lir_cond_always, "must be");
1452       ShouldNotReachHere();
1453   }
1454   set_no_result(x);
1455 
1456   // add safepoint before generating condition code so it can be recomputed
1457   if (x->is_safepoint()) {
1458     increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1459     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1460   }
1461   // Call float compare function, returns (1,0) if true or false.
1462   LIR_Opr result = call_runtime(x->x(), x->y(), runtime_func, intType, NULL);
1463   __ cmp(lir_cond_equal, result,
1464          compare_to_zero ?
1465            LIR_OprFact::intConst(0) : LIR_OprFact::intConst(1));
1466   profile_branch(x, cond);
1467   move_to_phi(x->state());
1468   __ branch(lir_cond_equal, T_INT, x->tsux());
1469 }
1470 #endif // __SOFTFP__
1471 
1472 void LIRGenerator::do_If(If* x) {
1473   assert(x->number_of_sux() == 2, "inconsistency");
1474   ValueTag tag = x->x()->type()->tag();
1475 
1476 #ifdef __SOFTFP__
1477   if (tag == floatTag || tag == doubleTag) {
1478     do_soft_float_compare(x);
1479     assert(x->default_sux() == x->fsux(), "wrong destination above");
1480     __ jump(x->default_sux());
1481     return;
1482   }
1483 #endif // __SOFTFP__
1484 
1485   LIRItem xitem(x->x(), this);
1486   LIRItem yitem(x->y(), this);
1487   LIRItem* xin = &xitem;
1488   LIRItem* yin = &yitem;
1489   If::Condition cond = x->cond();
1490 
1491 #ifndef AARCH64
1492   if (tag == longTag) {
1493     if (cond == If::gtr || cond == If::leq) {
1494       cond = Instruction::mirror(cond);
1495       xin = &yitem;
1496       yin = &xitem;
1497     }
1498     xin->set_destroys_register();
1499   }
1500 #endif // !AARCH64
1501 
1502   xin->load_item();
1503   LIR_Opr left = xin->result();
1504   LIR_Opr right;
1505 
1506 #ifdef AARCH64
1507   if (yin->is_constant() && can_inline_as_constant_in_cmp(yin->value())) {
1508     yin->dont_load_item();
1509   } else {
1510     yin->load_item();
1511   }
1512   right = yin->result();
1513 #else
1514   if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 &&
1515       (cond == If::eql || cond == If::neq)) {
1516     // inline long zero
1517     right = LIR_OprFact::value_type(yin->value()->type());
1518   } else {
1519     yin->load_nonconstant();
1520     right = yin->result();
1521   }
1522 #endif // AARCH64
1523 
1524   set_no_result(x);
1525 
1526   // add safepoint before generating condition code so it can be recomputed
1527   if (x->is_safepoint()) {
1528     increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()),
1529         x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci());
1530     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1531   }
1532 
1533   __ cmp(lir_cond(cond), left, right);
1534   profile_branch(x, cond);
1535   move_to_phi(x->state());
1536   if (x->x()->type()->is_float_kind()) {
1537     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1538   } else {
1539     __ branch(lir_cond(cond), right->type(), x->tsux());
1540   }
1541   assert(x->default_sux() == x->fsux(), "wrong destination above");
1542   __ jump(x->default_sux());
1543 }
1544 
1545 
1546 LIR_Opr LIRGenerator::getThreadPointer() {
1547   return FrameMap::Rthread_opr;
1548 }
1549 
1550 void LIRGenerator::trace_block_entry(BlockBegin* block) {
1551   __ move(LIR_OprFact::intConst(block->block_id()), FrameMap::R0_opr);
1552   LIR_OprList* args = new LIR_OprList(1);
1553   args->append(FrameMap::R0_opr);
1554   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1555   __ call_runtime_leaf(func, getThreadTemp(), LIR_OprFact::illegalOpr, args);
1556 }
1557 
1558 
1559 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1560                                         CodeEmitInfo* info) {
1561 #ifndef AARCH64
1562   if (value->is_double_cpu()) {
1563     assert(address->index()->is_illegal(), "should have a constant displacement");
1564     LIR_Opr tmp = new_pointer_register();
1565     add_large_constant(address->base(), address->disp(), tmp);
1566     __ volatile_store_mem_reg(value, new LIR_Address(tmp, (intx)0, address->type()), info);
1567     return;
1568   }
1569 #endif // !AARCH64
1570   // TODO-AARCH64 implement with stlr instruction
1571   __ store(value, address, info, lir_patch_none);
1572 }
1573 
1574 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1575                                        CodeEmitInfo* info) {
1576 #ifndef AARCH64
1577   if (result->is_double_cpu()) {
1578     assert(address->index()->is_illegal(), "should have a constant displacement");
1579     LIR_Opr tmp = new_pointer_register();
1580     add_large_constant(address->base(), address->disp(), tmp);
1581     __ volatile_load_mem_reg(new LIR_Address(tmp, (intx)0, address->type()), result, info);
1582     return;
1583   }
1584 #endif // !AARCH64
1585   // TODO-AARCH64 implement with ldar instruction
1586   __ load(address, result, info, lir_patch_none);
1587 }