1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.awt;
  27 
  28 import java.awt.image.ColorModel;
  29 import java.lang.annotation.Native;
  30 import sun.java2d.SunCompositeContext;
  31 
  32 /**
  33  * The <code>AlphaComposite</code> class implements basic alpha
  34  * compositing rules for combining source and destination colors
  35  * to achieve blending and transparency effects with graphics and
  36  * images.
  37  * The specific rules implemented by this class are the basic set
  38  * of 12 rules described in
  39  * T. Porter and T. Duff, "Compositing Digital Images", SIGGRAPH 84,
  40  * 253-259.
  41  * The rest of this documentation assumes some familiarity with the
  42  * definitions and concepts outlined in that paper.
  43  *
  44  * <p>
  45  * This class extends the standard equations defined by Porter and
  46  * Duff to include one additional factor.
  47  * An instance of the <code>AlphaComposite</code> class can contain
  48  * an alpha value that is used to modify the opacity or coverage of
  49  * every source pixel before it is used in the blending equations.
  50  *
  51  * <p>
  52  * It is important to note that the equations defined by the Porter
  53  * and Duff paper are all defined to operate on color components
  54  * that are premultiplied by their corresponding alpha components.
  55  * Since the <code>ColorModel</code> and <code>Raster</code> classes
  56  * allow the storage of pixel data in either premultiplied or
  57  * non-premultiplied form, all input data must be normalized into
  58  * premultiplied form before applying the equations and all results
  59  * might need to be adjusted back to the form required by the destination
  60  * before the pixel values are stored.
  61  *
  62  * <p>
  63  * Also note that this class defines only the equations
  64  * for combining color and alpha values in a purely mathematical
  65  * sense. The accurate application of its equations depends
  66  * on the way the data is retrieved from its sources and stored
  67  * in its destinations.
  68  * See <a href="#caveats">Implementation Caveats</a>
  69  * for further information.
  70  *
  71  * <p>
  72  * The following factors are used in the description of the blending
  73  * equation in the Porter and Duff paper:
  74  *
  75  * <blockquote>
  76  * <table summary="layout">
  77  * <tr><th align=left>Factor&nbsp;&nbsp;<th align=left>Definition
  78  * <tr><td><em>A<sub>s</sub></em><td>the alpha component of the source pixel
  79  * <tr><td><em>C<sub>s</sub></em><td>a color component of the source pixel in premultiplied form
  80  * <tr><td><em>A<sub>d</sub></em><td>the alpha component of the destination pixel
  81  * <tr><td><em>C<sub>d</sub></em><td>a color component of the destination pixel in premultiplied form
  82  * <tr><td><em>F<sub>s</sub></em><td>the fraction of the source pixel that contributes to the output
  83  * <tr><td><em>F<sub>d</sub></em><td>the fraction of the destination pixel that contributes
  84  * to the output
  85  * <tr><td><em>A<sub>r</sub></em><td>the alpha component of the result
  86  * <tr><td><em>C<sub>r</sub></em><td>a color component of the result in premultiplied form
  87  * </table>
  88  * </blockquote>
  89  *
  90  * <p>
  91  * Using these factors, Porter and Duff define 12 ways of choosing
  92  * the blending factors <em>F<sub>s</sub></em> and <em>F<sub>d</sub></em> to
  93  * produce each of 12 desirable visual effects.
  94  * The equations for determining <em>F<sub>s</sub></em> and <em>F<sub>d</sub></em>
  95  * are given in the descriptions of the 12 static fields
  96  * that specify visual effects.
  97  * For example,
  98  * the description for
  99  * <a href="#SRC_OVER"><code>SRC_OVER</code></a>
 100  * specifies that <em>F<sub>s</sub></em> = 1 and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>).
 101  * Once a set of equations for determining the blending factors is
 102  * known they can then be applied to each pixel to produce a result
 103  * using the following set of equations:
 104  *
 105  * <pre>
 106  *      <em>F<sub>s</sub></em> = <em>f</em>(<em>A<sub>d</sub></em>)
 107  *      <em>F<sub>d</sub></em> = <em>f</em>(<em>A<sub>s</sub></em>)
 108  *      <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*<em>F<sub>s</sub></em> + <em>A<sub>d</sub></em>*<em>F<sub>d</sub></em>
 109  *      <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*<em>F<sub>s</sub></em> + <em>C<sub>d</sub></em>*<em>F<sub>d</sub></em></pre>
 110  *
 111  * <p>
 112  * The following factors will be used to discuss our extensions to
 113  * the blending equation in the Porter and Duff paper:
 114  *
 115  * <blockquote>
 116  * <table summary="layout">
 117  * <tr><th align=left>Factor&nbsp;&nbsp;<th align=left>Definition
 118  * <tr><td><em>C<sub>sr</sub></em> <td>one of the raw color components of the source pixel
 119  * <tr><td><em>C<sub>dr</sub></em> <td>one of the raw color components of the destination pixel
 120  * <tr><td><em>A<sub>ac</sub></em>  <td>the "extra" alpha component from the AlphaComposite instance
 121  * <tr><td><em>A<sub>sr</sub></em> <td>the raw alpha component of the source pixel
 122  * <tr><td><em>A<sub>dr</sub></em><td>the raw alpha component of the destination pixel
 123  * <tr><td><em>A<sub>df</sub></em> <td>the final alpha component stored in the destination
 124  * <tr><td><em>C<sub>df</sub></em> <td>the final raw color component stored in the destination
 125  * </table>
 126  *</blockquote>
 127  *
 128  * <h3>Preparing Inputs</h3>
 129  *
 130  * <p>
 131  * The <code>AlphaComposite</code> class defines an additional alpha
 132  * value that is applied to the source alpha.
 133  * This value is applied as if an implicit SRC_IN rule were first
 134  * applied to the source pixel against a pixel with the indicated
 135  * alpha by multiplying both the raw source alpha and the raw
 136  * source colors by the alpha in the <code>AlphaComposite</code>.
 137  * This leads to the following equation for producing the alpha
 138  * used in the Porter and Duff blending equation:
 139  *
 140  * <pre>
 141  *      <em>A<sub>s</sub></em> = <em>A<sub>sr</sub></em> * <em>A<sub>ac</sub></em> </pre>
 142  *
 143  * All of the raw source color components need to be multiplied
 144  * by the alpha in the <code>AlphaComposite</code> instance.
 145  * Additionally, if the source was not in premultiplied form
 146  * then the color components also need to be multiplied by the
 147  * source alpha.
 148  * Thus, the equation for producing the source color components
 149  * for the Porter and Duff equation depends on whether the source
 150  * pixels are premultiplied or not:
 151  *
 152  * <pre>
 153  *      <em>C<sub>s</sub></em> = <em>C<sub>sr</sub></em> * <em>A<sub>sr</sub></em> * <em>A<sub>ac</sub></em>     (if source is not premultiplied)
 154  *      <em>C<sub>s</sub></em> = <em>C<sub>sr</sub></em> * <em>A<sub>ac</sub></em>           (if source is premultiplied) </pre>
 155  *
 156  * No adjustment needs to be made to the destination alpha:
 157  *
 158  * <pre>
 159  *      <em>A<sub>d</sub></em> = <em>A<sub>dr</sub></em> </pre>
 160  *
 161  * <p>
 162  * The destination color components need to be adjusted only if
 163  * they are not in premultiplied form:
 164  *
 165  * <pre>
 166  *      <em>C<sub>d</sub></em> = <em>C<sub>dr</sub></em> * <em>A<sub>d</sub></em>    (if destination is not premultiplied)
 167  *      <em>C<sub>d</sub></em> = <em>C<sub>dr</sub></em>         (if destination is premultiplied) </pre>
 168  *
 169  * <h3>Applying the Blending Equation</h3>
 170  *
 171  * <p>
 172  * The adjusted <em>A<sub>s</sub></em>, <em>A<sub>d</sub></em>,
 173  * <em>C<sub>s</sub></em>, and <em>C<sub>d</sub></em> are used in the standard
 174  * Porter and Duff equations to calculate the blending factors
 175  * <em>F<sub>s</sub></em> and <em>F<sub>d</sub></em> and then the resulting
 176  * premultiplied components <em>A<sub>r</sub></em> and <em>C<sub>r</sub></em>.
 177  *
 178  * <h3>Preparing Results</h3>
 179  *
 180  * <p>
 181  * The results only need to be adjusted if they are to be stored
 182  * back into a destination buffer that holds data that is not
 183  * premultiplied, using the following equations:
 184  *
 185  * <pre>
 186  *      <em>A<sub>df</sub></em> = <em>A<sub>r</sub></em>
 187  *      <em>C<sub>df</sub></em> = <em>C<sub>r</sub></em>                 (if dest is premultiplied)
 188  *      <em>C<sub>df</sub></em> = <em>C<sub>r</sub></em> / <em>A<sub>r</sub></em>            (if dest is not premultiplied) </pre>
 189  *
 190  * Note that since the division is undefined if the resulting alpha
 191  * is zero, the division in that case is omitted to avoid the "divide
 192  * by zero" and the color components are left as
 193  * all zeros.
 194  *
 195  * <h3>Performance Considerations</h3>
 196  *
 197  * <p>
 198  * For performance reasons, it is preferable that
 199  * <code>Raster</code> objects passed to the <code>compose</code>
 200  * method of a {@link CompositeContext} object created by the
 201  * <code>AlphaComposite</code> class have premultiplied data.
 202  * If either the source <code>Raster</code>
 203  * or the destination <code>Raster</code>
 204  * is not premultiplied, however,
 205  * appropriate conversions are performed before and after the compositing
 206  * operation.
 207  *
 208  * <h3><a name="caveats">Implementation Caveats</a></h3>
 209  *
 210  * <ul>
 211  * <li>
 212  * Many sources, such as some of the opaque image types listed
 213  * in the <code>BufferedImage</code> class, do not store alpha values
 214  * for their pixels.  Such sources supply an alpha of 1.0 for
 215  * all of their pixels.
 216  *
 217  * <li>
 218  * Many destinations also have no place to store the alpha values
 219  * that result from the blending calculations performed by this class.
 220  * Such destinations thus implicitly discard the resulting
 221  * alpha values that this class produces.
 222  * It is recommended that such destinations should treat their stored
 223  * color values as non-premultiplied and divide the resulting color
 224  * values by the resulting alpha value before storing the color
 225  * values and discarding the alpha value.
 226  *
 227  * <li>
 228  * The accuracy of the results depends on the manner in which pixels
 229  * are stored in the destination.
 230  * An image format that provides at least 8 bits of storage per color
 231  * and alpha component is at least adequate for use as a destination
 232  * for a sequence of a few to a dozen compositing operations.
 233  * An image format with fewer than 8 bits of storage per component
 234  * is of limited use for just one or two compositing operations
 235  * before the rounding errors dominate the results.
 236  * An image format
 237  * that does not separately store
 238  * color components is not a
 239  * good candidate for any type of translucent blending.
 240  * For example, <code>BufferedImage.TYPE_BYTE_INDEXED</code>
 241  * should not be used as a destination for a blending operation
 242  * because every operation
 243  * can introduce large errors, due to
 244  * the need to choose a pixel from a limited palette to match the
 245  * results of the blending equations.
 246  *
 247  * <li>
 248  * Nearly all formats store pixels as discrete integers rather than
 249  * the floating point values used in the reference equations above.
 250  * The implementation can either scale the integer pixel
 251  * values into floating point values in the range 0.0 to 1.0 or
 252  * use slightly modified versions of the equations
 253  * that operate entirely in the integer domain and yet produce
 254  * analogous results to the reference equations.
 255  *
 256  * <p>
 257  * Typically the integer values are related to the floating point
 258  * values in such a way that the integer 0 is equated
 259  * to the floating point value 0.0 and the integer
 260  * 2^<em>n</em>-1 (where <em>n</em> is the number of bits
 261  * in the representation) is equated to 1.0.
 262  * For 8-bit representations, this means that 0x00
 263  * represents 0.0 and 0xff represents
 264  * 1.0.
 265  *
 266  * <li>
 267  * The internal implementation can approximate some of the equations
 268  * and it can also eliminate some steps to avoid unnecessary operations.
 269  * For example, consider a discrete integer image with non-premultiplied
 270  * alpha values that uses 8 bits per component for storage.
 271  * The stored values for a
 272  * nearly transparent darkened red might be:
 273  *
 274  * <pre>
 275  *    (A, R, G, B) = (0x01, 0xb0, 0x00, 0x00)</pre>
 276  *
 277  * <p>
 278  * If integer math were being used and this value were being
 279  * composited in
 280  * <a href="#SRC"><code>SRC</code></a>
 281  * mode with no extra alpha, then the math would
 282  * indicate that the results were (in integer format):
 283  *
 284  * <pre>
 285  *    (A, R, G, B) = (0x01, 0x01, 0x00, 0x00)</pre>
 286  *
 287  * <p>
 288  * Note that the intermediate values, which are always in premultiplied
 289  * form, would only allow the integer red component to be either 0x00
 290  * or 0x01.  When we try to store this result back into a destination
 291  * that is not premultiplied, dividing out the alpha will give us
 292  * very few choices for the non-premultiplied red value.
 293  * In this case an implementation that performs the math in integer
 294  * space without shortcuts is likely to end up with the final pixel
 295  * values of:
 296  *
 297  * <pre>
 298  *    (A, R, G, B) = (0x01, 0xff, 0x00, 0x00)</pre>
 299  *
 300  * <p>
 301  * (Note that 0x01 divided by 0x01 gives you 1.0, which is equivalent
 302  * to the value 0xff in an 8-bit storage format.)
 303  *
 304  * <p>
 305  * Alternately, an implementation that uses floating point math
 306  * might produce more accurate results and end up returning to the
 307  * original pixel value with little, if any, roundoff error.
 308  * Or, an implementation using integer math might decide that since
 309  * the equations boil down to a virtual NOP on the color values
 310  * if performed in a floating point space, it can transfer the
 311  * pixel untouched to the destination and avoid all the math entirely.
 312  *
 313  * <p>
 314  * These implementations all attempt to honor the
 315  * same equations, but use different tradeoffs of integer and
 316  * floating point math and reduced or full equations.
 317  * To account for such differences, it is probably best to
 318  * expect only that the premultiplied form of the results to
 319  * match between implementations and image formats.  In this
 320  * case both answers, expressed in premultiplied form would
 321  * equate to:
 322  *
 323  * <pre>
 324  *    (A, R, G, B) = (0x01, 0x01, 0x00, 0x00)</pre>
 325  *
 326  * <p>
 327  * and thus they would all match.
 328  *
 329  * <li>
 330  * Because of the technique of simplifying the equations for
 331  * calculation efficiency, some implementations might perform
 332  * differently when encountering result alpha values of 0.0
 333  * on a non-premultiplied destination.
 334  * Note that the simplification of removing the divide by alpha
 335  * in the case of the SRC rule is technically not valid if the
 336  * denominator (alpha) is 0.
 337  * But, since the results should only be expected to be accurate
 338  * when viewed in premultiplied form, a resulting alpha of 0
 339  * essentially renders the resulting color components irrelevant
 340  * and so exact behavior in this case should not be expected.
 341  * </ul>
 342  * @see Composite
 343  * @see CompositeContext
 344  */
 345 
 346 public final class AlphaComposite implements Composite {
 347     /**
 348      * Both the color and the alpha of the destination are cleared
 349      * (Porter-Duff Clear rule).
 350      * Neither the source nor the destination is used as input.
 351      *<p>
 352      * <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = 0, thus:
 353      *<pre>
 354      *  <em>A<sub>r</sub></em> = 0
 355      *  <em>C<sub>r</sub></em> = 0
 356      *</pre>
 357      */
 358     @Native public static final int     CLEAR           = 1;
 359 
 360     /**
 361      * The source is copied to the destination
 362      * (Porter-Duff Source rule).
 363      * The destination is not used as input.
 364      *<p>
 365      * <em>F<sub>s</sub></em> = 1 and <em>F<sub>d</sub></em> = 0, thus:
 366      *<pre>
 367      *  <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>
 368      *  <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>
 369      *</pre>
 370      */
 371     @Native public static final int     SRC             = 2;
 372 
 373     /**
 374      * The destination is left untouched
 375      * (Porter-Duff Destination rule).
 376      *<p>
 377      * <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = 1, thus:
 378      *<pre>
 379      *  <em>A<sub>r</sub></em> = <em>A<sub>d</sub></em>
 380      *  <em>C<sub>r</sub></em> = <em>C<sub>d</sub></em>
 381      *</pre>
 382      * @since 1.4
 383      */
 384     @Native public static final int     DST             = 9;
 385     // Note that DST was added in 1.4 so it is numbered out of order...
 386 
 387     /**
 388      * The source is composited over the destination
 389      * (Porter-Duff Source Over Destination rule).
 390      *<p>
 391      * <em>F<sub>s</sub></em> = 1 and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus:
 392      *<pre>
 393      *  <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em> + <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
 394      *  <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em> + <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
 395      *</pre>
 396      */
 397     @Native public static final int     SRC_OVER        = 3;
 398 
 399     /**
 400      * The destination is composited over the source and
 401      * the result replaces the destination
 402      * (Porter-Duff Destination Over Source rule).
 403      *<p>
 404      * <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = 1, thus:
 405      *<pre>
 406      *  <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>A<sub>d</sub></em>
 407      *  <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>C<sub>d</sub></em>
 408      *</pre>
 409      */
 410     @Native public static final int     DST_OVER        = 4;
 411 
 412     /**
 413      * The part of the source lying inside of the destination replaces
 414      * the destination
 415      * (Porter-Duff Source In Destination rule).
 416      *<p>
 417      * <em>F<sub>s</sub></em> = <em>A<sub>d</sub></em> and <em>F<sub>d</sub></em> = 0, thus:
 418      *<pre>
 419      *  <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*<em>A<sub>d</sub></em>
 420      *  <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*<em>A<sub>d</sub></em>
 421      *</pre>
 422      */
 423     @Native public static final int     SRC_IN          = 5;
 424 
 425     /**
 426      * The part of the destination lying inside of the source
 427      * replaces the destination
 428      * (Porter-Duff Destination In Source rule).
 429      *<p>
 430      * <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = <em>A<sub>s</sub></em>, thus:
 431      *<pre>
 432      *  <em>A<sub>r</sub></em> = <em>A<sub>d</sub></em>*<em>A<sub>s</sub></em>
 433      *  <em>C<sub>r</sub></em> = <em>C<sub>d</sub></em>*<em>A<sub>s</sub></em>
 434      *</pre>
 435      */
 436     @Native public static final int     DST_IN          = 6;
 437 
 438     /**
 439      * The part of the source lying outside of the destination
 440      * replaces the destination
 441      * (Porter-Duff Source Held Out By Destination rule).
 442      *<p>
 443      * <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = 0, thus:
 444      *<pre>
 445      *  <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>)
 446      *  <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>)
 447      *</pre>
 448      */
 449     @Native public static final int     SRC_OUT         = 7;
 450 
 451     /**
 452      * The part of the destination lying outside of the source
 453      * replaces the destination
 454      * (Porter-Duff Destination Held Out By Source rule).
 455      *<p>
 456      * <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus:
 457      *<pre>
 458      *  <em>A<sub>r</sub></em> = <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
 459      *  <em>C<sub>r</sub></em> = <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
 460      *</pre>
 461      */
 462     @Native public static final int     DST_OUT         = 8;
 463 
 464     // Rule 9 is DST which is defined above where it fits into the
 465     // list logically, rather than numerically
 466     //
 467     // public static final int  DST             = 9;
 468 
 469     /**
 470      * The part of the source lying inside of the destination
 471      * is composited onto the destination
 472      * (Porter-Duff Source Atop Destination rule).
 473      *<p>
 474      * <em>F<sub>s</sub></em> = <em>A<sub>d</sub></em> and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus:
 475      *<pre>
 476      *  <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*<em>A<sub>d</sub></em> + <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>) = <em>A<sub>d</sub></em>
 477      *  <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*<em>A<sub>d</sub></em> + <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
 478      *</pre>
 479      * @since 1.4
 480      */
 481     @Native public static final int     SRC_ATOP        = 10;
 482 
 483     /**
 484      * The part of the destination lying inside of the source
 485      * is composited over the source and replaces the destination
 486      * (Porter-Duff Destination Atop Source rule).
 487      *<p>
 488      * <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = <em>A<sub>s</sub></em>, thus:
 489      *<pre>
 490      *  <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>A<sub>d</sub></em>*<em>A<sub>s</sub></em> = <em>A<sub>s</sub></em>
 491      *  <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>C<sub>d</sub></em>*<em>A<sub>s</sub></em>
 492      *</pre>
 493      * @since 1.4
 494      */
 495     @Native public static final int     DST_ATOP        = 11;
 496 
 497     /**
 498      * The part of the source that lies outside of the destination
 499      * is combined with the part of the destination that lies outside
 500      * of the source
 501      * (Porter-Duff Source Xor Destination rule).
 502      *<p>
 503      * <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus:
 504      *<pre>
 505      *  <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
 506      *  <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
 507      *</pre>
 508      * @since 1.4
 509      */
 510     @Native public static final int     XOR             = 12;
 511 
 512     /**
 513      * <code>AlphaComposite</code> object that implements the opaque CLEAR rule
 514      * with an alpha of 1.0f.
 515      * @see #CLEAR
 516      */
 517     public static final AlphaComposite Clear    = new AlphaComposite(CLEAR);
 518 
 519     /**
 520      * <code>AlphaComposite</code> object that implements the opaque SRC rule
 521      * with an alpha of 1.0f.
 522      * @see #SRC
 523      */
 524     public static final AlphaComposite Src      = new AlphaComposite(SRC);
 525 
 526     /**
 527      * <code>AlphaComposite</code> object that implements the opaque DST rule
 528      * with an alpha of 1.0f.
 529      * @see #DST
 530      * @since 1.4
 531      */
 532     public static final AlphaComposite Dst      = new AlphaComposite(DST);
 533 
 534     /**
 535      * <code>AlphaComposite</code> object that implements the opaque SRC_OVER rule
 536      * with an alpha of 1.0f.
 537      * @see #SRC_OVER
 538      */
 539     public static final AlphaComposite SrcOver  = new AlphaComposite(SRC_OVER);
 540 
 541     /**
 542      * <code>AlphaComposite</code> object that implements the opaque DST_OVER rule
 543      * with an alpha of 1.0f.
 544      * @see #DST_OVER
 545      */
 546     public static final AlphaComposite DstOver  = new AlphaComposite(DST_OVER);
 547 
 548     /**
 549      * <code>AlphaComposite</code> object that implements the opaque SRC_IN rule
 550      * with an alpha of 1.0f.
 551      * @see #SRC_IN
 552      */
 553     public static final AlphaComposite SrcIn    = new AlphaComposite(SRC_IN);
 554 
 555     /**
 556      * <code>AlphaComposite</code> object that implements the opaque DST_IN rule
 557      * with an alpha of 1.0f.
 558      * @see #DST_IN
 559      */
 560     public static final AlphaComposite DstIn    = new AlphaComposite(DST_IN);
 561 
 562     /**
 563      * <code>AlphaComposite</code> object that implements the opaque SRC_OUT rule
 564      * with an alpha of 1.0f.
 565      * @see #SRC_OUT
 566      */
 567     public static final AlphaComposite SrcOut   = new AlphaComposite(SRC_OUT);
 568 
 569     /**
 570      * <code>AlphaComposite</code> object that implements the opaque DST_OUT rule
 571      * with an alpha of 1.0f.
 572      * @see #DST_OUT
 573      */
 574     public static final AlphaComposite DstOut   = new AlphaComposite(DST_OUT);
 575 
 576     /**
 577      * <code>AlphaComposite</code> object that implements the opaque SRC_ATOP rule
 578      * with an alpha of 1.0f.
 579      * @see #SRC_ATOP
 580      * @since 1.4
 581      */
 582     public static final AlphaComposite SrcAtop  = new AlphaComposite(SRC_ATOP);
 583 
 584     /**
 585      * <code>AlphaComposite</code> object that implements the opaque DST_ATOP rule
 586      * with an alpha of 1.0f.
 587      * @see #DST_ATOP
 588      * @since 1.4
 589      */
 590     public static final AlphaComposite DstAtop  = new AlphaComposite(DST_ATOP);
 591 
 592     /**
 593      * <code>AlphaComposite</code> object that implements the opaque XOR rule
 594      * with an alpha of 1.0f.
 595      * @see #XOR
 596      * @since 1.4
 597      */
 598     public static final AlphaComposite Xor      = new AlphaComposite(XOR);
 599 
 600     @Native private static final int MIN_RULE = CLEAR;
 601     @Native private static final int MAX_RULE = XOR;
 602 
 603     float extraAlpha;
 604     int rule;
 605 
 606     private AlphaComposite(int rule) {
 607         this(rule, 1.0f);
 608     }
 609 
 610     private AlphaComposite(int rule, float alpha) {
 611         if (rule < MIN_RULE || rule > MAX_RULE) {
 612             throw new IllegalArgumentException("unknown composite rule");
 613         }
 614         if (alpha >= 0.0f && alpha <= 1.0f) {
 615             this.rule = rule;
 616             this.extraAlpha = alpha;
 617         } else {
 618             throw new IllegalArgumentException("alpha value out of range");
 619         }
 620     }
 621 
 622     /**
 623      * Creates an <code>AlphaComposite</code> object with the specified rule.
 624      *
 625      * @param rule the compositing rule
 626      * @return the {@code AlphaComposite} object created
 627      * @throws IllegalArgumentException if <code>rule</code> is not one of
 628      *         the following:  {@link #CLEAR}, {@link #SRC}, {@link #DST},
 629      *         {@link #SRC_OVER}, {@link #DST_OVER}, {@link #SRC_IN},
 630      *         {@link #DST_IN}, {@link #SRC_OUT}, {@link #DST_OUT},
 631      *         {@link #SRC_ATOP}, {@link #DST_ATOP}, or {@link #XOR}
 632      */
 633     public static AlphaComposite getInstance(int rule) {
 634         switch (rule) {
 635         case CLEAR:
 636             return Clear;
 637         case SRC:
 638             return Src;
 639         case DST:
 640             return Dst;
 641         case SRC_OVER:
 642             return SrcOver;
 643         case DST_OVER:
 644             return DstOver;
 645         case SRC_IN:
 646             return SrcIn;
 647         case DST_IN:
 648             return DstIn;
 649         case SRC_OUT:
 650             return SrcOut;
 651         case DST_OUT:
 652             return DstOut;
 653         case SRC_ATOP:
 654             return SrcAtop;
 655         case DST_ATOP:
 656             return DstAtop;
 657         case XOR:
 658             return Xor;
 659         default:
 660             throw new IllegalArgumentException("unknown composite rule");
 661         }
 662     }
 663 
 664     /**
 665      * Creates an <code>AlphaComposite</code> object with the specified rule and
 666      * the constant alpha to multiply with the alpha of the source.
 667      * The source is multiplied with the specified alpha before being composited
 668      * with the destination.
 669      *
 670      * @param rule the compositing rule
 671      * @param alpha the constant alpha to be multiplied with the alpha of
 672      * the source. <code>alpha</code> must be a floating point number in the
 673      * inclusive range [0.0,&nbsp;1.0].
 674      * @return the {@code AlphaComposite} object created
 675      * @throws IllegalArgumentException if
 676      *         <code>alpha</code> is less than 0.0 or greater than 1.0, or if
 677      *         <code>rule</code> is not one of
 678      *         the following:  {@link #CLEAR}, {@link #SRC}, {@link #DST},
 679      *         {@link #SRC_OVER}, {@link #DST_OVER}, {@link #SRC_IN},
 680      *         {@link #DST_IN}, {@link #SRC_OUT}, {@link #DST_OUT},
 681      *         {@link #SRC_ATOP}, {@link #DST_ATOP}, or {@link #XOR}
 682      */
 683     public static AlphaComposite getInstance(int rule, float alpha) {
 684         if (alpha == 1.0f) {
 685             return getInstance(rule);
 686         }
 687         return new AlphaComposite(rule, alpha);
 688     }
 689 
 690     /**
 691      * Creates a context for the compositing operation.
 692      * The context contains state that is used in performing
 693      * the compositing operation.
 694      * @param srcColorModel  the {@link ColorModel} of the source
 695      * @param dstColorModel  the <code>ColorModel</code> of the destination
 696      * @return the <code>CompositeContext</code> object to be used to perform
 697      * compositing operations.
 698      */
 699     public CompositeContext createContext(ColorModel srcColorModel,
 700                                           ColorModel dstColorModel,
 701                                           RenderingHints hints) {
 702         return new SunCompositeContext(this, srcColorModel, dstColorModel);
 703     }
 704 
 705     /**
 706      * Returns the alpha value of this <code>AlphaComposite</code>.  If this
 707      * <code>AlphaComposite</code> does not have an alpha value, 1.0 is returned.
 708      * @return the alpha value of this <code>AlphaComposite</code>.
 709      */
 710     public float getAlpha() {
 711         return extraAlpha;
 712     }
 713 
 714     /**
 715      * Returns the compositing rule of this <code>AlphaComposite</code>.
 716      * @return the compositing rule of this <code>AlphaComposite</code>.
 717      */
 718     public int getRule() {
 719         return rule;
 720     }
 721 
 722     /**
 723      * Returns a similar <code>AlphaComposite</code> object that uses
 724      * the specified compositing rule.
 725      * If this object already uses the specified compositing rule,
 726      * this object is returned.
 727      * @return an <code>AlphaComposite</code> object derived from
 728      * this object that uses the specified compositing rule.
 729      * @param rule the compositing rule
 730      * @throws IllegalArgumentException if
 731      *         <code>rule</code> is not one of
 732      *         the following:  {@link #CLEAR}, {@link #SRC}, {@link #DST},
 733      *         {@link #SRC_OVER}, {@link #DST_OVER}, {@link #SRC_IN},
 734      *         {@link #DST_IN}, {@link #SRC_OUT}, {@link #DST_OUT},
 735      *         {@link #SRC_ATOP}, {@link #DST_ATOP}, or {@link #XOR}
 736      * @since 1.6
 737      */
 738     public AlphaComposite derive(int rule) {
 739         return (this.rule == rule)
 740             ? this
 741             : getInstance(rule, this.extraAlpha);
 742     }
 743 
 744     /**
 745      * Returns a similar <code>AlphaComposite</code> object that uses
 746      * the specified alpha value.
 747      * If this object already has the specified alpha value,
 748      * this object is returned.
 749      * @return an <code>AlphaComposite</code> object derived from
 750      * this object that uses the specified alpha value.
 751      * @param alpha the constant alpha to be multiplied with the alpha of
 752      * the source. <code>alpha</code> must be a floating point number in the
 753      * inclusive range [0.0,&nbsp;1.0].
 754      * @throws IllegalArgumentException if
 755      *         <code>alpha</code> is less than 0.0 or greater than 1.0
 756      * @since 1.6
 757      */
 758     public AlphaComposite derive(float alpha) {
 759         return (this.extraAlpha == alpha)
 760             ? this
 761             : getInstance(this.rule, alpha);
 762     }
 763 
 764     /**
 765      * Returns the hashcode for this composite.
 766      * @return      a hash code for this composite.
 767      */
 768     public int hashCode() {
 769         return (Float.floatToIntBits(extraAlpha) * 31 + rule);
 770     }
 771 
 772     /**
 773      * Determines whether the specified object is equal to this
 774      * <code>AlphaComposite</code>.
 775      * <p>
 776      * The result is <code>true</code> if and only if
 777      * the argument is not <code>null</code> and is an
 778      * <code>AlphaComposite</code> object that has the same
 779      * compositing rule and alpha value as this object.
 780      *
 781      * @param obj the <code>Object</code> to test for equality
 782      * @return <code>true</code> if <code>obj</code> equals this
 783      * <code>AlphaComposite</code>; <code>false</code> otherwise.
 784      */
 785     public boolean equals(Object obj) {
 786         if (!(obj instanceof AlphaComposite)) {
 787             return false;
 788         }
 789 
 790         AlphaComposite ac = (AlphaComposite) obj;
 791 
 792         if (rule != ac.rule) {
 793             return false;
 794         }
 795 
 796         if (extraAlpha != ac.extraAlpha) {
 797             return false;
 798         }
 799 
 800         return true;
 801     }
 802 
 803 }