1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package org.ietf.jgss;
  27 
  28 import java.io.InputStream;
  29 import java.io.OutputStream;
  30 
  31 /**
  32  * This interface encapsulates the GSS-API security context and provides
  33  * the security services that are available over the context.  Security
  34  * contexts are established between peers using locally acquired
  35  * credentials.  Multiple contexts may exist simultaneously between a pair
  36  * of peers, using the same or different set of credentials.  GSS-API
  37  * functions in a manner independent of the underlying transport protocol
  38  * and depends on its calling application to transport the tokens that are
  39  * generated by the security context between the peers.<p>
  40  *
  41  * If the caller instantiates the context using the default
  42  * <code>GSSManager</code> instance, then the Kerberos v5 GSS-API mechanism
  43  * is guaranteed to be available for context establishment. This mechanism
  44  * is identified by the Oid "1.2.840.113554.1.2.2" and is defined in RFC
  45  * 1964.<p>
  46  *
  47  * Before the context establishment phase is initiated, the context
  48  * initiator may request specific characteristics desired of the
  49  * established context. Not all underlying mechanisms support all
  50  * characteristics that a caller might desire. After the context is
  51  * established, the caller can check the actual characteristics and services
  52  * offered by that context by means of various query methods. When using
  53  * the Kerberos v5 GSS-API mechanism offered by the default
  54  * <code>GSSManager</code> instance, all optional services will be
  55  * available locally. They are mutual authentication, credential
  56  * delegation, confidentiality and integrity protection, and per-message
  57  * replay detection and sequencing. Note that in the GSS-API, message integrity
  58  * is a prerequisite for message confidentiality.<p>
  59  *
  60  * The context establishment occurs in a loop where the
  61  * initiator calls {@link #initSecContext(byte[], int, int) initSecContext}
  62  * and the acceptor calls {@link #acceptSecContext(byte[], int, int)
  63  * acceptSecContext} until the context is established. While in this loop
  64  * the <code>initSecContext</code> and <code>acceptSecContext</code>
  65  * methods produce tokens that the application sends over to the peer. The
  66  * peer passes any such token as input to its <code>acceptSecContext</code>
  67  * or <code>initSecContext</code> as the case may be.<p>
  68  *
  69  * During the context establishment phase, the {@link
  70  * #isProtReady() isProtReady} method may be called to determine if the
  71  * context can be used for the per-message operations of {@link
  72  * #wrap(byte[], int, int, MessageProp) wrap} and {@link #getMIC(byte[],
  73  * int, int, MessageProp) getMIC}.  This allows applications to use
  74  * per-message operations on contexts which aren't yet fully
  75  * established.<p>
  76  *
  77  * After the context has been established or the <code>isProtReady</code>
  78  * method returns <code>true</code>, the query routines can be invoked to
  79  * determine the actual characteristics and services of the established
  80  * context.  The application can also start using the per-message methods
  81  * of {@link #wrap(byte[], int, int, MessageProp) wrap} and
  82  * {@link #getMIC(byte[], int, int, MessageProp) getMIC} to obtain
  83  * cryptographic operations on application supplied data.<p>
  84  *
  85  * When the context is no longer needed, the application should call
  86  * {@link #dispose() dispose} to release any system resources the context
  87  * may be using.<p>
  88  *
  89  * A security context typically maintains sequencing and replay detection
  90  * information about the tokens it processes. Therefore, the sequence in
  91  * which any tokens are presented to this context for processing can be
  92  * important. Also note that none of the methods in this interface are
  93  * synchronized. Therefore, it is not advisable to share a
  94  * <code>GSSContext</code> among several threads unless some application
  95  * level synchronization is in place.<p>
  96  *
  97  * Finally, different mechanism providers might place different security
  98  * restrictions on using GSS-API contexts. These will be documented by the
  99  * mechanism provider. The application will need to ensure that it has the
 100  * appropriate permissions if such checks are made in the mechanism layer.<p>
 101  *
 102  * The example code presented below demonstrates the usage of the
 103  * <code>GSSContext</code> interface for the initiating peer.  Different
 104  * operations on the <code>GSSContext</code> object are presented,
 105  * including: object instantiation, setting of desired flags, context
 106  * establishment, query of actual context flags, per-message operations on
 107  * application data, and finally context deletion.
 108  *
 109  * <pre>
 110  *    // Create a context using default credentials
 111  *    // and the implementation specific default mechanism
 112  *    GSSManager manager ...
 113  *    GSSName targetName ...
 114  *    GSSContext context = manager.createContext(targetName, null, null,
 115  *                                           GSSContext.INDEFINITE_LIFETIME);
 116  *
 117  *    // set desired context options prior to context establishment
 118  *    context.requestConf(true);
 119  *    context.requestMutualAuth(true);
 120  *    context.requestReplayDet(true);
 121  *    context.requestSequenceDet(true);
 122  *
 123  *    // establish a context between peers
 124  *
 125  *    byte []inToken = new byte[0];
 126  *
 127  *    // Loop while there still is a token to be processed
 128  *
 129  *    while (!context.isEstablished()) {
 130  *
 131  *        byte[] outToken
 132  *            = context.initSecContext(inToken, 0, inToken.length);
 133  *
 134  *        // send the output token if generated
 135  *        if (outToken != null)
 136  *            sendToken(outToken);
 137  *
 138  *        if (!context.isEstablished()) {
 139  *            inToken = readToken();
 140  *    }
 141  *
 142  *     // display context information
 143  *     System.out.println("Remaining lifetime in seconds = "
 144  *                                          + context.getLifetime());
 145  *     System.out.println("Context mechanism = " + context.getMech());
 146  *     System.out.println("Initiator = " + context.getSrcName());
 147  *     System.out.println("Acceptor = " + context.getTargName());
 148  *
 149  *     if (context.getConfState())
 150  *             System.out.println("Confidentiality (i.e., privacy) is available");
 151  *
 152  *     if (context.getIntegState())
 153  *             System.out.println("Integrity is available");
 154  *
 155  *     // perform wrap on an application supplied message, appMsg,
 156  *     // using QOP = 0, and requesting privacy service
 157  *     byte [] appMsg ...
 158  *
 159  *     MessageProp mProp = new MessageProp(0, true);
 160  *
 161  *     byte []tok = context.wrap(appMsg, 0, appMsg.length, mProp);
 162  *
 163  *     sendToken(tok);
 164  *
 165  *     // release the local-end of the context
 166  *     context.dispose();
 167  *
 168  * </pre>
 169  *
 170  * @author Mayank Upadhyay
 171  * @since 1.4
 172  */
 173 public interface GSSContext {
 174 
 175     /**
 176      * A lifetime constant representing the default context lifetime.  This
 177      * value is set to 0.
 178      */
 179     public static final int DEFAULT_LIFETIME = 0;
 180 
 181     /**
 182      * A lifetime constant representing indefinite context lifetime.
 183      * This value must is set to the maximum integer value in Java -
 184      * {@link java.lang.Integer#MAX_VALUE Integer.MAX_VALUE}.
 185      */
 186     public static final int INDEFINITE_LIFETIME = Integer.MAX_VALUE;
 187 
 188     /**
 189      * Called by the context initiator to start the context creation
 190      * phase and process any tokens generated
 191      * by the peer's <code>acceptSecContext</code> method.
 192      * This method may return an output token which the application will need
 193      * to send to the peer for processing by its <code>acceptSecContext</code>
 194      * method. The application can call {@link #isEstablished()
 195      * isEstablished} to determine if the context establishment phase is
 196      * complete on this side of the context.  A return value of
 197      * <code>false</code> from <code>isEstablished</code> indicates that
 198      * more tokens are expected to be supplied to
 199      * <code>initSecContext</code>.  Upon completion of the context
 200      * establishment, the available context options may be queried through
 201      * the get methods.<p>
 202      *
 203      * Note that it is possible that the <code>initSecContext</code> method
 204      * return a token for the peer, and <code>isEstablished</code> return
 205      * <code>true</code> also. This indicates that the token needs to be sent
 206      * to the peer, but the local end of the context is now fully
 207      * established.<p>
 208      *
 209      * Some mechanism providers might require that the caller be granted
 210      * permission to initiate a security context. A failed permission check
 211      * might cause a {@link java.lang.SecurityException SecurityException}
 212      * to be thrown from this method.
 213      *
 214      * @return a byte[] containing the token to be sent to the
 215      * peer. <code>null</code> indicates that no token is generated.
 216      * @param inputBuf token generated by the peer. This parameter is ignored
 217      * on the first call since no token has been received from the peer.
 218      * @param offset the offset within the inputBuf where the token begins.
 219      * @param len the length of the token.
 220      *
 221      * @throws GSSException containing the following
 222      * major error codes:
 223      *   {@link GSSException#DEFECTIVE_TOKEN GSSException.DEFECTIVE_TOKEN},
 224      *   {@link GSSException#BAD_MIC GSSException.BAD_MIC},
 225      *   {@link GSSException#NO_CRED GSSException.NO_CRED},
 226      *   {@link GSSException#CREDENTIALS_EXPIRED
 227      *                                  GSSException.CREDENTIALS_EXPIRED},
 228      *   {@link GSSException#BAD_BINDINGS GSSException.BAD_BINDINGS},
 229      *   {@link GSSException#OLD_TOKEN GSSException.OLD_TOKEN},
 230      *   {@link GSSException#DUPLICATE_TOKEN GSSException.DUPLICATE_TOKEN},
 231      *   {@link GSSException#BAD_NAMETYPE GSSException.BAD_NAMETYPE},
 232      *   {@link GSSException#BAD_MECH GSSException.BAD_MECH},
 233      *   {@link GSSException#FAILURE GSSException.FAILURE}
 234      */
 235     public byte[] initSecContext(byte inputBuf[], int offset, int len)
 236         throws GSSException;
 237 
 238     /**
 239      * Called by the context initiator to start the context creation
 240      * phase and process any tokens generated
 241      * by the peer's <code>acceptSecContext</code> method using
 242      * streams. This method may write an output token to the
 243      * <code>OutpuStream</code>, which the application will
 244      * need to send to the peer for processing by its
 245      * <code>acceptSecContext</code> call. Typically, the application would
 246      * ensure this by calling the  {@link java.io.OutputStream#flush() flush}
 247      * method on an <code>OutputStream</code> that encapsulates the
 248      * connection between the two peers. The application can
 249      * determine if a token is written to the OutputStream from the return
 250      * value of this method. A return value of <code>0</code> indicates that
 251      * no token was written. The application can call
 252      * {@link #isEstablished() isEstablished} to determine if the context
 253      * establishment phase is complete on this side of the context. A
 254      * return  value of <code>false</code> from <code>isEstablished</code>
 255      * indicates that more tokens are expected to be supplied to
 256      * <code>initSecContext</code>.
 257      * Upon completion of the context establishment, the available context
 258      * options may be queried through the get methods.<p>
 259      *
 260      * Note that it is possible that the <code>initSecContext</code> method
 261      * return a token for the peer, and <code>isEstablished</code> return
 262      * <code>true</code> also. This indicates that the token needs to be sent
 263      * to the peer, but the local end of the context is now fully
 264      * established.<p>
 265      *
 266      * The GSS-API authentication tokens contain a definitive start and
 267      * end. This method will attempt to read one of these tokens per
 268      * invocation, and may block on the stream if only part of the token is
 269      * available.  In all other respects this method is equivalent to the
 270      * byte array based {@link #initSecContext(byte[], int, int)
 271      * initSecContext}.<p>
 272      *
 273      * Some mechanism providers might require that the caller be granted
 274      * permission to initiate a security context. A failed permission check
 275      * might cause a {@link java.lang.SecurityException SecurityException}
 276      * to be thrown from this method.<p>
 277      *
 278      * The following example code demonstrates how this method might be
 279      * used:
 280      * <pre>
 281      *     InputStream is ...
 282      *     OutputStream os ...
 283      *     GSSContext context ...
 284      *
 285      *     // Loop while there is still a token to be processed
 286      *
 287      *     while (!context.isEstablished()) {
 288      *
 289      *         context.initSecContext(is, os);
 290      *
 291      *         // send output token if generated
 292      *         os.flush();
 293      *     }
 294      * </pre>
 295      *
 296      *
 297      * @return the number of bytes written to the OutputStream as part of the
 298      * token to be sent to the peer. A value of 0 indicates that no token
 299      * needs to be sent.
 300      * @param inStream an InputStream that contains the token generated by
 301      * the peer. This parameter is ignored on the first call since no token
 302      * has been or will be received from the peer at that point.
 303      * @param outStream an OutputStream where the output token will be
 304      * written. During the final stage of context establishment, there may be
 305      * no bytes written.
 306      *
 307      * @throws GSSException containing the following
 308      * major error codes:
 309      *   {@link GSSException#DEFECTIVE_TOKEN GSSException.DEFECTIVE_TOKEN},
 310      *   {@link GSSException#BAD_MIC GSSException.BAD_MIC},
 311      *   {@link GSSException#NO_CRED GSSException.NO_CRED},
 312      *   {@link GSSException#CREDENTIALS_EXPIRED GSSException.CREDENTIALS_EXPIRED},
 313      *   {@link GSSException#BAD_BINDINGS GSSException.BAD_BINDINGS},
 314      *   {@link GSSException#OLD_TOKEN GSSException.OLD_TOKEN},
 315      *   {@link GSSException#DUPLICATE_TOKEN GSSException.DUPLICATE_TOKEN},
 316      *   {@link GSSException#BAD_NAMETYPE GSSException.BAD_NAMETYPE},
 317      *   {@link GSSException#BAD_MECH GSSException.BAD_MECH},
 318      *   {@link GSSException#FAILURE GSSException.FAILURE}
 319      */
 320     public int initSecContext(InputStream inStream,
 321                               OutputStream outStream) throws GSSException;
 322 
 323     /**
 324      * Called by the context acceptor upon receiving a token from the
 325      * peer. This method may return an output token which the application
 326      * will need to send to the peer for further processing by its
 327      * <code>initSecContext</code> call.<p>
 328      *
 329      * The application can call {@link #isEstablished() isEstablished} to
 330      * determine if the context establishment phase is complete for this
 331      * peer.  A return value of <code>false</code> from
 332      * <code>isEstablished</code> indicates that more tokens are expected to
 333      * be supplied to this method.    Upon completion of the context
 334      * establishment, the available context options may be queried through
 335      * the get methods.<p>
 336      *
 337      * Note that it is possible that <code>acceptSecContext</code> return a
 338      * token for the peer, and <code>isEstablished</code> return
 339      * <code>true</code> also.  This indicates that the token needs to be
 340      * sent to the peer, but the local end of the context is now fully
 341      * established.<p>
 342      *
 343      * Some mechanism providers might require that the caller be granted
 344      * permission to accept a security context. A failed permission check
 345      * might cause a {@link java.lang.SecurityException SecurityException}
 346      * to be thrown from this method.<p>
 347      *
 348      * The following example code demonstrates how this method might be
 349      * used:
 350      * <pre>
 351      *     byte[] inToken;
 352      *     byte[] outToken;
 353      *     GSSContext context ...
 354      *
 355      *     // Loop while there is still a token to be processed
 356      *
 357      *     while (!context.isEstablished()) {
 358      *         inToken = readToken();
 359      *         outToken = context.acceptSecContext(inToken, 0,
 360      *                                             inToken.length);
 361      *         // send output token if generated
 362      *         if (outToken != null)
 363      *             sendToken(outToken);
 364      *     }
 365      * </pre>
 366      *
 367      *
 368      * @return a byte[] containing the token to be sent to the
 369      * peer. <code>null</code> indicates that no token is generated.
 370      * @param inToken token generated by the peer.
 371      * @param offset the offset within the inToken where the token begins.
 372      * @param len the length of the token.
 373      *
 374      * @throws GSSException containing the following
 375      * major error codes:
 376      *   {@link GSSException#DEFECTIVE_TOKEN GSSException.DEFECTIVE_TOKEN},
 377      *   {@link GSSException#BAD_MIC GSSException.BAD_MIC},
 378      *   {@link GSSException#NO_CRED GSSException.NO_CRED},
 379      *   {@link GSSException#CREDENTIALS_EXPIRED
 380      *                               GSSException.CREDENTIALS_EXPIRED},
 381      *   {@link GSSException#BAD_BINDINGS GSSException.BAD_BINDINGS},
 382      *   {@link GSSException#OLD_TOKEN GSSException.OLD_TOKEN},
 383      *   {@link GSSException#DUPLICATE_TOKEN GSSException.DUPLICATE_TOKEN},
 384      *   {@link GSSException#BAD_MECH GSSException.BAD_MECH},
 385      *   {@link GSSException#FAILURE GSSException.FAILURE}
 386      */
 387     public byte[] acceptSecContext(byte inToken[], int offset, int len)
 388         throws GSSException;
 389 
 390     /**
 391      * Called by the context acceptor to process a token from the peer using
 392      * streams.   It may write an output token to the
 393      * <code>OutputStream</code>, which the application
 394      * will need to send to the peer for processing by its
 395      * <code>initSecContext</code> method.  Typically, the application would
 396      * ensure this by calling the  {@link java.io.OutputStream#flush() flush}
 397      * method on an <code>OutputStream</code> that encapsulates the
 398      * connection between the two peers. The application can call
 399      * {@link #isEstablished() isEstablished} to determine if the context
 400      * establishment phase is complete on this side of the context. A
 401      * return  value of <code>false</code> from <code>isEstablished</code>
 402      * indicates that more tokens are expected to be supplied to
 403      * <code>acceptSecContext</code>.
 404      * Upon completion of the context establishment, the available context
 405      * options may be queried through the get methods.<p>
 406      *
 407      * Note that it is possible that <code>acceptSecContext</code> return a
 408      * token for the peer, and <code>isEstablished</code> return
 409      * <code>true</code> also.  This indicates that the token needs to be
 410      * sent to the peer, but the local end of the context is now fully
 411      * established.<p>
 412      *
 413      * The GSS-API authentication tokens contain a definitive start and
 414      * end. This method will attempt to read one of these tokens per
 415      * invocation, and may block on the stream if only part of the token is
 416      * available. In all other respects this method is equivalent to the byte
 417      * array based {@link #acceptSecContext(byte[], int, int)
 418      * acceptSecContext}.<p>
 419      *
 420      * Some mechanism providers might require that the caller be granted
 421      * permission to accept a security context. A failed permission check
 422      * might cause a {@link java.lang.SecurityException SecurityException}
 423      * to be thrown from this method.<p>
 424      *
 425      * The following example code demonstrates how this method might be
 426      * used:
 427      * <pre>
 428      *     InputStream is ...
 429      *     OutputStream os ...
 430      *     GSSContext context ...
 431      *
 432      *     // Loop while there is still a token to be processed
 433      *
 434      *     while (!context.isEstablished()) {
 435      *
 436      *         context.acceptSecContext(is, os);
 437      *
 438      *         // send output token if generated
 439      *         os.flush();
 440      *     }
 441      * </pre>
 442      *
 443      *
 444      * @param inStream an InputStream that contains the token generated by
 445      * the peer.
 446      * @param outStream an OutputStream where the output token will be
 447      * written. During the final stage of context establishment, there may be
 448      * no bytes written.
 449      *
 450      * @throws GSSException containing the following
 451      * major error codes:
 452      *   {@link GSSException#DEFECTIVE_TOKEN GSSException.DEFECTIVE_TOKEN},
 453      *   {@link GSSException#BAD_MIC GSSException.BAD_MIC},
 454      *   {@link GSSException#NO_CRED GSSException.NO_CRED},
 455      *   {@link GSSException#CREDENTIALS_EXPIRED
 456      *                           GSSException.CREDENTIALS_EXPIRED},
 457      *   {@link GSSException#BAD_BINDINGS GSSException.BAD_BINDINGS},
 458      *   {@link GSSException#OLD_TOKEN GSSException.OLD_TOKEN},
 459      *   {@link GSSException#DUPLICATE_TOKEN GSSException.DUPLICATE_TOKEN},
 460      *   {@link GSSException#BAD_MECH GSSException.BAD_MECH},
 461      *   {@link GSSException#FAILURE GSSException.FAILURE}
 462      */
 463     /* Missing return value in RFC. int should have been returned.
 464      * -----------------------------------------------------------
 465      *
 466      * The application can determine if a token is written to the
 467      * OutputStream from the return value of this method. A return value of
 468      * <code>0</code> indicates that no token was written.
 469      *
 470      * @return <strong>the number of bytes written to the
 471      * OutputStream as part of the token to be sent to the peer. A value of
 472      * 0 indicates that no token  needs to be
 473      * sent.</strong>
 474      */
 475     public void acceptSecContext(InputStream inStream,
 476                                  OutputStream outStream) throws GSSException;
 477 
 478     /**
 479      * Used during context establishment to determine the state of the
 480      * context.
 481      *
 482      * @return <code>true</code> if this is a fully established context on
 483      * the caller's side and no more tokens are needed from the peer.
 484      */
 485     public boolean isEstablished();
 486 
 487     /**
 488      * Releases any system resources and cryptographic information stored in
 489      * the context object and invalidates the context.
 490      *
 491      *
 492      * @throws GSSException containing the following
 493      * major error codes:
 494      *   {@link GSSException#FAILURE GSSException.FAILURE}
 495      */
 496     public void dispose() throws GSSException;
 497 
 498     /**
 499      * Used to determine limits on the size of the message
 500      * that can be passed to <code>wrap</code>. Returns the maximum
 501      * message size that, if presented to the <code>wrap</code> method with
 502      * the same <code>confReq</code> and <code>qop</code> parameters, will
 503      * result in an output token containing no more
 504      * than <code>maxTokenSize</code> bytes.<p>
 505      *
 506      * This call is intended for use by applications that communicate over
 507      * protocols that impose a maximum message size.  It enables the
 508      * application to fragment messages prior to applying protection.<p>
 509      *
 510      * GSS-API implementations are recommended but not required to detect
 511      * invalid QOP values when <code>getWrapSizeLimit</code> is called.
 512      * This routine guarantees only a maximum message size, not the
 513      * availability of specific QOP values for message protection.
 514      *
 515      * @param qop the level of protection wrap will be asked to provide.
 516      * @param confReq <code>true</code> if wrap will be asked to provide
 517      * privacy, <code>false</code>  otherwise.
 518      * @param maxTokenSize the desired maximum size of the token emitted by
 519      * wrap.
 520      * @return the maximum size of the input token for the given output
 521      * token size
 522      *
 523      * @throws GSSException containing the following
 524      * major error codes:
 525      *   {@link GSSException#CONTEXT_EXPIRED GSSException.CONTEXT_EXPIRED},
 526      *   {@link GSSException#BAD_QOP GSSException.BAD_QOP},
 527      *   {@link GSSException#FAILURE GSSException.FAILURE}
 528      */
 529     public int getWrapSizeLimit(int qop, boolean confReq,
 530                                 int maxTokenSize) throws GSSException;
 531 
 532     /**
 533      * Applies per-message security services over the established security
 534      * context. The method will return a token with the
 535      * application supplied data and a cryptographic MIC over it.
 536      * The data may be encrypted if confidentiality (privacy) was
 537      * requested.<p>
 538      *
 539      * The MessageProp object is instantiated by the application and used
 540      * to specify a QOP value which selects cryptographic algorithms, and a
 541      * privacy service to optionally encrypt the message.  The underlying
 542      * mechanism that is used in the call may not be able to provide the
 543      * privacy service.  It sets the actual privacy service that it does
 544      * provide in this MessageProp object which the caller should then
 545      * query upon return.  If the mechanism is not able to provide the
 546      * requested QOP, it throws a GSSException with the BAD_QOP code.<p>
 547      *
 548      * Since some application-level protocols may wish to use tokens
 549      * emitted by wrap to provide "secure framing", implementations should
 550      * support the wrapping of zero-length messages.<p>
 551      *
 552      * The application will be responsible for sending the token to the
 553      * peer.
 554      *
 555      * @param inBuf application data to be protected.
 556      * @param offset the offset within the inBuf where the data begins.
 557      * @param len the length of the data
 558      * @param msgProp instance of MessageProp that is used by the
 559      * application to set the desired QOP and privacy state. Set the
 560      * desired QOP to 0 to request the default QOP. Upon return from this
 561      * method, this object will contain the actual privacy state that
 562      * was applied to the message by the underlying mechanism.
 563      * @return a byte[] containing the token to be sent to the peer.
 564      *
 565      * @throws GSSException containing the following major error codes:
 566      *   {@link GSSException#CONTEXT_EXPIRED GSSException.CONTEXT_EXPIRED},
 567      *   {@link GSSException#BAD_QOP GSSException.BAD_QOP},
 568      *   {@link GSSException#FAILURE GSSException.FAILURE}
 569      */
 570     public byte[] wrap(byte inBuf[], int offset, int len,
 571                        MessageProp msgProp) throws GSSException;
 572 
 573     /**
 574      * Applies per-message security services over the established security
 575      * context using streams. The method will return a
 576      * token with the application supplied data and a cryptographic MIC over it.
 577      * The data may be encrypted if confidentiality
 578      * (privacy) was requested. This method is equivalent to the byte array
 579      * based {@link #wrap(byte[], int, int, MessageProp) wrap} method.<p>
 580      *
 581      * The application will be responsible for sending the token to the
 582      * peer.  Typically, the application would
 583      * ensure this by calling the  {@link java.io.OutputStream#flush() flush}
 584      * method on an <code>OutputStream</code> that encapsulates the
 585      * connection between the two peers.<p>
 586      *
 587      * The MessageProp object is instantiated by the application and used
 588      * to specify a QOP value which selects cryptographic algorithms, and a
 589      * privacy service to optionally encrypt the message.  The underlying
 590      * mechanism that is used in the call may not be able to provide the
 591      * privacy service.  It sets the actual privacy service that it does
 592      * provide in this MessageProp object which the caller should then
 593      * query upon return.  If the mechanism is not able to provide the
 594      * requested QOP, it throws a GSSException with the BAD_QOP code.<p>
 595      *
 596      * Since some application-level protocols may wish to use tokens
 597      * emitted by wrap to provide "secure framing", implementations should
 598      * support the wrapping of zero-length messages.
 599      *
 600      * @param inStream an InputStream containing the application data to be
 601      * protected. All of the data that is available in
 602      * inStream is used.
 603      * @param outStream an OutputStream to write the protected message
 604      * to.
 605      * @param msgProp instance of MessageProp that is used by the
 606      * application to set the desired QOP and privacy state. Set the
 607      * desired QOP to 0 to request the default QOP. Upon return from this
 608      * method, this object will contain the actual privacy state that
 609      * was applied to the message by the underlying mechanism.
 610      *
 611      * @throws GSSException containing the following
 612      * major error codes:
 613      *   {@link GSSException#CONTEXT_EXPIRED GSSException.CONTEXT_EXPIRED},
 614      *   {@link GSSException#BAD_QOP GSSException.BAD_QOP},
 615      *   {@link GSSException#FAILURE GSSException.FAILURE}
 616      */
 617     public void wrap(InputStream inStream, OutputStream outStream,
 618                      MessageProp msgProp) throws GSSException;
 619 
 620     /**
 621      * Used to process tokens generated by the <code>wrap</code> method on
 622      * the other side of the context. The method will return the message
 623      * supplied by the peer application to its wrap call, while at the same
 624      * time verifying the embedded MIC for that message.<p>
 625      *
 626      * The MessageProp object is instantiated by the application and is
 627      * used by the underlying mechanism to return information to the caller
 628      * such as the QOP, whether confidentiality was applied to the message,
 629      * and other supplementary message state information.<p>
 630      *
 631      * Since some application-level protocols may wish to use tokens
 632      * emitted by wrap to provide "secure framing", implementations should
 633      * support the wrapping and unwrapping of zero-length messages.
 634      *
 635      * @param inBuf a byte array containing the wrap token received from
 636      * peer.
 637      * @param offset the offset where the token begins.
 638      * @param len the length of the token
 639      * @param msgProp upon return from the method, this object will contain
 640      * the applied QOP, the privacy state of the message, and supplementary
 641      * information stating if the token was a duplicate, old, out of
 642      * sequence or arriving after a gap.
 643      * @return a byte[] containing the message unwrapped from the input
 644      * token.
 645      *
 646      * @throws GSSException containing the following
 647      * major error codes:
 648      *   {@link GSSException#DEFECTIVE_TOKEN GSSException.DEFECTIVE_TOKEN},
 649      *   {@link GSSException#BAD_MIC GSSException.BAD_MIC},
 650      *   {@link GSSException#CONTEXT_EXPIRED GSSException.CONTEXT_EXPIRED},
 651      *   {@link GSSException#FAILURE GSSException.FAILURE}
 652      */
 653     public byte [] unwrap(byte[] inBuf, int offset, int len,
 654                           MessageProp msgProp) throws GSSException;
 655 
 656     /**
 657      * Uses streams to process tokens generated by the <code>wrap</code>
 658      * method on the other side of the context. The method will return the
 659      * message supplied by the peer application to its wrap call, while at
 660      * the same time verifying the embedded MIC for that message.<p>
 661      *
 662      * The MessageProp object is instantiated by the application and is
 663      * used by the underlying mechanism to return information to the caller
 664      * such as the QOP, whether confidentiality was applied to the message,
 665      * and other supplementary message state information.<p>
 666      *
 667      * Since some application-level protocols may wish to use tokens
 668      * emitted by wrap to provide "secure framing", implementations should
 669      * support the wrapping and unwrapping of zero-length messages.<p>
 670      *
 671      * The format of the input token that this method
 672      * reads is defined in the specification for the underlying mechanism that
 673      * will be used. This method will attempt to read one of these tokens per
 674      * invocation. If the mechanism token contains a definitive start and
 675      * end this method may block on the <code>InputStream</code> if only
 676      * part of the token is available. If the start and end of the token
 677      * are not definitive then the method will attempt to treat all
 678      * available bytes as part of the token.<p>
 679      *
 680      * Other than the possible blocking behavior described above, this
 681      * method is equivalent to the byte array based {@link #unwrap(byte[],
 682      * int, int, MessageProp) unwrap} method.
 683      *
 684      * @param inStream an InputStream that contains the wrap token generated
 685      * by the peer.
 686      * @param outStream an OutputStream to write the application message
 687      * to.
 688      * @param msgProp upon return from the method, this object will contain
 689      * the applied QOP, the privacy state of the message, and supplementary
 690      * information stating if the token was a duplicate, old, out of
 691      * sequence or arriving after a gap.
 692      *
 693      * @throws GSSException containing the following
 694      * major error codes:
 695      *   {@link GSSException#DEFECTIVE_TOKEN GSSException.DEFECTIVE_TOKEN},
 696      *   {@link GSSException#BAD_MIC GSSException.BAD_MIC},
 697      *   {@link GSSException#CONTEXT_EXPIRED GSSException.CONTEXT_EXPIRED},
 698      *   {@link GSSException#FAILURE GSSException.FAILURE}
 699      */
 700     public void unwrap(InputStream inStream, OutputStream outStream,
 701                        MessageProp msgProp) throws GSSException;
 702 
 703     /**
 704      * Returns a token containing a cryptographic Message Integrity Code
 705      * (MIC) for the supplied message,  for transfer to the peer
 706      * application.  Unlike wrap, which encapsulates the user message in the
 707      * returned token, only the message MIC is returned in the output
 708      * token.<p>
 709      *
 710      * Note that privacy can only be applied through the wrap call.<p>
 711      *
 712      * Since some application-level protocols may wish to use tokens emitted
 713      * by getMIC to provide "secure framing", implementations should support
 714      * derivation of MICs from zero-length messages.
 715      *
 716      * @param inMsg the message to generate the MIC over.
 717      * @param offset offset within the inMsg where the message begins.
 718      * @param len the length of the message
 719      * @param msgProp an instance of <code>MessageProp</code> that is used
 720      * by the application to set the desired QOP.  Set the desired QOP to
 721      * <code>0</code> in <code>msgProp</code> to request the default
 722      * QOP. Alternatively pass in <code>null</code> for <code>msgProp</code>
 723      * to request the default QOP.
 724      * @return a byte[] containing the token to be sent to the peer.
 725      *
 726      * @throws GSSException containing the following
 727      * major error codes:
 728      *   {@link GSSException#CONTEXT_EXPIRED GSSException.CONTEXT_EXPIRED},
 729      *   {@link GSSException#BAD_QOP GSSException.BAD_QOP},
 730      *   {@link GSSException#FAILURE GSSException.FAILURE}
 731      */
 732     public byte[] getMIC(byte []inMsg, int offset, int len,
 733                          MessageProp msgProp) throws GSSException;
 734 
 735     /**
 736      * Uses streams to produce a token containing a cryptographic MIC for
 737      * the supplied message, for transfer to the peer application.
 738      * Unlike wrap, which encapsulates the user message in the returned
 739      * token, only the message MIC is produced in the output token. This
 740      * method is equivalent to the byte array based {@link #getMIC(byte[],
 741      * int, int, MessageProp) getMIC} method.
 742      *
 743      * Note that privacy can only be applied through the wrap call.<p>
 744      *
 745      * Since some application-level protocols may wish to use tokens emitted
 746      * by getMIC to provide "secure framing", implementations should support
 747      * derivation of MICs from zero-length messages.
 748      *
 749      * @param inStream an InputStream containing the message to generate the
 750      * MIC over. All of the data that is available in
 751      * inStream is used.
 752      * @param outStream an OutputStream to write the output token to.
 753      * @param msgProp an instance of <code>MessageProp</code> that is used
 754      * by the application to set the desired QOP.  Set the desired QOP to
 755      * <code>0</code> in <code>msgProp</code> to request the default
 756      * QOP. Alternatively pass in <code>null</code> for <code>msgProp</code>
 757      * to request the default QOP.
 758      *
 759      * @throws GSSException containing the following
 760      * major error codes:
 761      *   {@link GSSException#CONTEXT_EXPIRED GSSException.CONTEXT_EXPIRED},
 762      *   {@link GSSException#BAD_QOP GSSException.BAD_QOP},
 763      *   {@link GSSException#FAILURE GSSException.FAILURE}
 764      */
 765     public void getMIC(InputStream inStream, OutputStream outStream,
 766                        MessageProp msgProp) throws GSSException;
 767 
 768     /**
 769      * Verifies the cryptographic MIC, contained in the token parameter,
 770      * over the supplied message.<p>
 771      *
 772      * The MessageProp object is instantiated by the application and is used
 773      * by the underlying mechanism to return information to the caller such
 774      * as the QOP indicating the strength of protection that was applied to
 775      * the message and other supplementary message state information.<p>
 776      *
 777      * Since some application-level protocols may wish to use tokens emitted
 778      * by getMIC to provide "secure framing", implementations should support
 779      * the calculation and verification of MICs over zero-length messages.
 780      *
 781      * @param inToken the token generated by peer's getMIC method.
 782      * @param tokOffset the offset within the inToken where the token
 783      * begins.
 784      * @param tokLen the length of the token.
 785      * @param inMsg the application message to verify the cryptographic MIC
 786      * over.
 787      * @param msgOffset the offset in inMsg where the message begins.
 788      * @param msgLen the length of the message.
 789      * @param msgProp upon return from the method, this object will contain
 790      * the applied QOP and supplementary information stating if the token
 791      * was a duplicate, old, out of sequence or arriving after a gap.
 792      *
 793      * @throws GSSException containing the following
 794      * major error codes:
 795      *   {@link GSSException#DEFECTIVE_TOKEN GSSException.DEFECTIVE_TOKEN}
 796      *   {@link GSSException#BAD_MIC GSSException.BAD_MIC}
 797      *   {@link GSSException#CONTEXT_EXPIRED GSSException.CONTEXT_EXPIRED}
 798      *   {@link GSSException#FAILURE GSSException.FAILURE}
 799      */
 800     public void verifyMIC(byte[] inToken, int tokOffset, int tokLen,
 801                           byte[] inMsg, int msgOffset, int msgLen,
 802                           MessageProp msgProp) throws GSSException;
 803 
 804     /**
 805      * Uses streams to verify the cryptographic MIC, contained in the token
 806      * parameter, over the supplied message.  This method is equivalent to
 807      * the byte array based {@link #verifyMIC(byte[], int, int, byte[], int,
 808      * int, MessageProp) verifyMIC} method.
 809      *
 810      * The MessageProp object is instantiated by the application and is used
 811      * by the underlying mechanism to return information to the caller such
 812      * as the QOP indicating the strength of protection that was applied to
 813      * the message and other supplementary message state information.<p>
 814      *
 815      * Since some application-level protocols may wish to use tokens emitted
 816      * by getMIC to provide "secure framing", implementations should support
 817      * the calculation and verification of MICs over zero-length messages.<p>
 818      *
 819      * The format of the input token that this method
 820      * reads is defined in the specification for the underlying mechanism that
 821      * will be used. This method will attempt to read one of these tokens per
 822      * invocation. If the mechanism token contains a definitive start and
 823      * end this method may block on the <code>InputStream</code> if only
 824      * part of the token is available. If the start and end of the token
 825      * are not definitive then the method will attempt to treat all
 826      * available bytes as part of the token.<p>
 827      *
 828      * Other than the possible blocking behavior described above, this
 829      * method is equivalent to the byte array based {@link #verifyMIC(byte[],
 830      * int, int, byte[], int, int, MessageProp) verifyMIC} method.
 831      *
 832      * @param tokStream an InputStream containing the token generated by the
 833      * peer's getMIC method.
 834      * @param msgStream an InputStream containing the application message to
 835      * verify the cryptographic MIC over. All of the data
 836      * that is available in msgStream is used.
 837      * @param msgProp upon return from the method, this object will contain
 838      * the applied QOP and supplementary information stating if the token
 839      * was a duplicate, old, out of sequence or arriving after a gap.
 840      *
 841      * @throws GSSException containing the following
 842      * major error codes:
 843      *   {@link GSSException#DEFECTIVE_TOKEN GSSException.DEFECTIVE_TOKEN}
 844      *   {@link GSSException#BAD_MIC GSSException.BAD_MIC}
 845      *   {@link GSSException#CONTEXT_EXPIRED GSSException.CONTEXT_EXPIRED}
 846      *   {@link GSSException#FAILURE GSSException.FAILURE}
 847      */
 848     public void verifyMIC(InputStream tokStream, InputStream msgStream,
 849                           MessageProp msgProp) throws GSSException;
 850 
 851     /**
 852      * Exports this context so that another process may
 853      * import it.. Provided to support the sharing of work between
 854      * multiple processes. This routine will typically be used by the
 855      * context-acceptor, in an application where a single process receives
 856      * incoming connection requests and accepts security contexts over
 857      * them, then passes the established context to one or more other
 858      * processes for message exchange.<p>
 859      *
 860      * This method deactivates the security context and creates an
 861      * interprocess token which, when passed to {@link
 862      * GSSManager#createContext(byte[]) GSSManager.createContext} in
 863      * another process, will re-activate the context in the second process.
 864      * Only a single instantiation of a given context may be active at any
 865      * one time; a subsequent attempt by a context exporter to access the
 866      * exported security context will fail.<p>
 867      *
 868      * The implementation may constrain the set of processes by which the
 869      * interprocess token may be imported, either as a function of local
 870      * security policy, or as a result of implementation decisions.  For
 871      * example, some implementations may constrain contexts to be passed
 872      * only between processes that run under the same account, or which are
 873      * part of the same process group.<p>
 874      *
 875      * The interprocess token may contain security-sensitive information
 876      * (for example cryptographic keys).  While mechanisms are encouraged
 877      * to either avoid placing such sensitive information within
 878      * interprocess tokens, or to encrypt the token before returning it to
 879      * the application, in a typical GSS-API implementation this may not be
 880      * possible.  Thus the application must take care to protect the
 881      * interprocess token, and ensure that any process to which the token
 882      * is transferred is trustworthy. <p>
 883      *
 884      * Implementations are not required to support the inter-process
 885      * transfer of security contexts.  Calling the {@link #isTransferable()
 886      * isTransferable} method will indicate if the context object is
 887      * transferable.<p>
 888      *
 889      * Calling this method on a context that
 890      * is not exportable will result in this exception being thrown with
 891      * the error code {@link GSSException#UNAVAILABLE
 892      * GSSException.UNAVAILABLE}.
 893      *
 894      * @return a byte[] containing the exported context
 895      * @see GSSManager#createContext(byte[])
 896      *
 897      * @throws GSSException containing the following
 898      * major error codes:
 899      *   {@link GSSException#UNAVAILABLE GSSException.UNAVAILABLE},
 900      *   {@link GSSException#CONTEXT_EXPIRED GSSException.CONTEXT_EXPIRED},
 901      *   {@link GSSException#NO_CONTEXT GSSException.NO_CONTEXT},
 902      *   {@link GSSException#FAILURE GSSException.FAILURE}
 903      */
 904     public byte [] export() throws GSSException;
 905 
 906     /**
 907      * Requests that mutual authentication be done during
 908      * context establishment. This request can only be made on the context
 909      * initiator's side and it has to be done prior to the first call to
 910      * <code>initSecContext</code>.<p>
 911      *
 912      * Not all mechanisms support mutual authentication and some mechanisms
 913      * might require mutual authentication even if the application
 914      * doesn't. Therefore, the application should check to see if the
 915      * request was honored with the {@link #getMutualAuthState()
 916      * getMutualAuthState} method.
 917      *
 918      * @param state a boolean value indicating whether mutual
 919      * authentication should be used or not.
 920      * @see #getMutualAuthState()
 921      *
 922      * @throws GSSException containing the following
 923      * major error codes:
 924      *   {@link GSSException#FAILURE GSSException.FAILURE}
 925      */
 926     public void requestMutualAuth(boolean state) throws GSSException;
 927 
 928     /**
 929      * Requests that replay detection be enabled for the
 930      * per-message security services after context establishment. This
 931      * request can only be made on the context initiator's side and it has
 932      * to be done prior to the first call to
 933      * <code>initSecContext</code>. During context establishment replay
 934      * detection is not an option and is a function of the underlying
 935      * mechanism's capabilities.<p>
 936      *
 937      * Not all mechanisms support replay detection and some mechanisms
 938      * might require replay detection even if the application
 939      * doesn't. Therefore, the application should check to see if the
 940      * request was honored with the {@link #getReplayDetState()
 941      * getReplayDetState} method. If replay detection is enabled then the
 942      * {@link MessageProp#isDuplicateToken() MessageProp.isDuplicateToken} and {@link
 943      * MessageProp#isOldToken() MessageProp.isOldToken} methods will return
 944      * valid results for the <code>MessageProp</code> object that is passed
 945      * in to the <code>unwrap</code> method or the <code>verifyMIC</code>
 946      * method.
 947      *
 948      * @param state a boolean value indicating whether replay detection
 949      * should be enabled over the established context or not.
 950      * @see #getReplayDetState()
 951      *
 952      * @throws GSSException containing the following
 953      * major error codes:
 954      *   {@link GSSException#FAILURE GSSException.FAILURE}
 955      */
 956     public void requestReplayDet(boolean state) throws GSSException;
 957 
 958     /**
 959      * Requests that sequence checking be enabled for the
 960      * per-message security services after context establishment. This
 961      * request can only be made on the context initiator's side and it has
 962      * to be done prior to the first call to
 963      * <code>initSecContext</code>. During context establishment sequence
 964      * checking is not an option and is a function of the underlying
 965      * mechanism's capabilities.<p>
 966      *
 967      * Not all mechanisms support sequence checking and some mechanisms
 968      * might require sequence checking even if the application
 969      * doesn't. Therefore, the application should check to see if the
 970      * request was honored with the {@link #getSequenceDetState()
 971      * getSequenceDetState} method. If sequence checking is enabled then the
 972      * {@link MessageProp#isDuplicateToken() MessageProp.isDuplicateToken},
 973      * {@link MessageProp#isOldToken() MessageProp.isOldToken},
 974      * {@link MessageProp#isUnseqToken() MessageProp.isUnseqToken}, and
 975      * {@link MessageProp#isGapToken() MessageProp.isGapToken} methods will return
 976      * valid results for the <code>MessageProp</code> object that is passed
 977      * in to the <code>unwrap</code> method or the <code>verifyMIC</code>
 978      * method.
 979      *
 980      * @param state a boolean value indicating whether sequence checking
 981      * should be enabled over the established context or not.
 982      * @see #getSequenceDetState()
 983      *
 984      * @throws GSSException containing the following
 985      * major error codes:
 986      *   {@link GSSException#FAILURE GSSException.FAILURE}
 987      */
 988     public void requestSequenceDet(boolean state) throws GSSException;
 989 
 990     /**
 991      * Requests that the initiator's credentials be
 992      * delegated to the acceptor during context establishment. This
 993      * request can only be made on the context initiator's side and it has
 994      * to be done prior to the first call to
 995      * <code>initSecContext</code>.
 996      *
 997      * Not all mechanisms support credential delegation. Therefore, an
 998      * application that desires delegation should check to see if the
 999      * request was honored with the {@link #getCredDelegState()
1000      * getCredDelegState} method. If the application indicates that
1001      * delegation must not be used, then the mechanism will honor the
1002      * request and delegation will not occur. This is an exception
1003      * to the general rule that a mechanism may enable a service even if it
1004      * is not requested.
1005      *
1006      * @param state a boolean value indicating whether the credentials
1007      * should be delegated or not.
1008      * @see #getCredDelegState()
1009      *
1010      * @throws GSSException containing the following
1011      * major error codes:
1012      *   {@link GSSException#FAILURE GSSException.FAILURE}
1013      */
1014     public void requestCredDeleg(boolean state) throws GSSException;
1015 
1016     /**
1017      * Requests that the initiator's identity not be
1018      * disclosed to the acceptor. This request can only be made on the
1019      * context initiator's side and it has to be done prior to the first
1020      * call to <code>initSecContext</code>.
1021      *
1022      * Not all mechanisms support anonymity for the initiator. Therefore, the
1023      * application should check to see if the request was honored with the
1024      * {@link #getAnonymityState() getAnonymityState} method.
1025      *
1026      * @param state a boolean value indicating if the initiator should
1027      * be authenticated to the acceptor as an anonymous principal.
1028      * @see #getAnonymityState
1029      *
1030      * @throws GSSException containing the following
1031      * major error codes:
1032      *   {@link GSSException#FAILURE GSSException.FAILURE}
1033      */
1034     public void requestAnonymity(boolean state) throws GSSException;
1035 
1036     /**
1037      * Requests that data confidentiality be enabled
1038      * for the <code>wrap</code> method. This request can only be made on
1039      * the context initiator's side and it has to be done prior to the
1040      * first call to <code>initSecContext</code>.
1041      *
1042      * Not all mechanisms support confidentiality and other mechanisms
1043      * might enable it even if the application doesn't request
1044      * it. The application may check to see if the request was honored with
1045      * the {@link #getConfState() getConfState} method. If confidentiality
1046      * is enabled, only then will the mechanism honor a request for privacy
1047      * in the {@link MessageProp#MessageProp(int, boolean) MessageProp}
1048      * object that is passed in to the <code>wrap</code> method.<p>
1049      *
1050      * Enabling confidentiality will also automatically enable
1051      * integrity.
1052      *
1053      * @param state a boolean value indicating whether confidentiality
1054      * should be enabled or not.
1055      * @see #getConfState()
1056      * @see #getIntegState()
1057      * @see #requestInteg(boolean)
1058      * @see MessageProp
1059      *
1060      * @throws GSSException containing the following
1061      * major error codes:
1062      *   {@link GSSException#FAILURE GSSException.FAILURE}
1063      */
1064     public void requestConf(boolean state) throws GSSException;
1065 
1066     /**
1067      * Requests that data integrity be enabled
1068      * for the <code>wrap</code> and <code>getMIC</code>methods. This
1069      * request can only be made on the context initiator's side and it has
1070      * to be done prior to the first call to <code>initSecContext</code>.
1071      *
1072      * Not all mechanisms support integrity and other mechanisms
1073      * might enable it even if the application doesn't request
1074      * it. The application may check to see if the request was honored with
1075      * the {@link #getIntegState() getIntegState} method.<p>
1076      *
1077      * Disabling integrity will also automatically disable
1078      * confidentiality.
1079      *
1080      * @param state a boolean value indicating whether integrity
1081      * should be enabled or not.
1082      * @see #getIntegState()
1083      *
1084      * @throws GSSException containing the following
1085      * major error codes:
1086      *   {@link GSSException#FAILURE GSSException.FAILURE}
1087      */
1088     public void requestInteg(boolean state) throws GSSException;
1089 
1090     /**
1091      * Requests a lifetime in seconds for the
1092      * context. This method can only be called on the context initiator's
1093      * side  and it has to be done prior to the first call to
1094      * <code>initSecContext</code>.<p>
1095      *
1096      * The actual lifetime of the context will depend on the capabilities of
1097      * the underlying mechanism and the application should call the {@link
1098      * #getLifetime() getLifetime} method to determine this.
1099      *
1100      * @param lifetime the desired context lifetime in seconds. Use
1101      * <code>INDEFINITE_LIFETIME</code> to request an indefinite lifetime
1102      * and <code>DEFAULT_LIFETIME</code> to request a default lifetime.
1103      * @see #getLifetime()
1104      *
1105      * @throws GSSException containing the following
1106      * major error codes:
1107      *   {@link GSSException#FAILURE GSSException.FAILURE}
1108      */
1109     public void requestLifetime(int lifetime) throws GSSException;
1110 
1111     /**
1112      * Sets the channel bindings to be used during context
1113      * establishment. This method can be called on both
1114      * the context initiator's and the context acceptor's side, but it must
1115      * be called before context establishment begins. This means that an
1116      * initiator must call it before the first call to
1117      * <code>initSecContext</code> and the acceptor must call it before the
1118      * first call to <code>acceptSecContext</code>.
1119      *
1120      * @param cb the channel bindings to use.
1121      *
1122      * @throws GSSException containing the following
1123      * major error codes:
1124      *   {@link GSSException#FAILURE GSSException.FAILURE}
1125      */
1126     public void setChannelBinding(ChannelBinding cb) throws GSSException;
1127 
1128     /**
1129      * Determines if credential delegation is enabled on
1130      * this context. It can be called by both the context initiator and the
1131      * context acceptor. For a definitive answer this method must be
1132      * called only after context establishment is complete. Note that if an
1133      * initiator requests that delegation not be allowed the {@link
1134      * #requestCredDeleg(boolean) requestCredDeleg} method will honor that
1135      * request and this method will return <code>false</code> on the
1136      * initiator's side from that point onwards.
1137      *
1138      * @return true if delegation is enabled, false otherwise.
1139      * @see #requestCredDeleg(boolean)
1140      */
1141     public boolean getCredDelegState();
1142 
1143     /**
1144      * Determines if mutual authentication is enabled on
1145      * this context. It can be called by both the context initiator and the
1146      * context acceptor. For a definitive answer this method must be
1147      * called only after context establishment is complete. An initiator
1148      * that requests mutual authentication can call this method after
1149      * context completion and dispose the context if its request was not
1150      * honored.
1151      *
1152      * @return true if mutual authentication is enabled, false otherwise.
1153      * @see #requestMutualAuth(boolean)
1154      */
1155     public boolean getMutualAuthState();
1156 
1157     /**
1158      * Determines if replay detection is enabled for the
1159      * per-message security services from this context. It can be called by
1160      * both the context initiator and the context acceptor. For a
1161      * definitive answer this method must be called only after context
1162      * establishment is complete. An initiator that requests replay
1163      * detection can call this method after context completion and
1164      * dispose the context if its request was not honored.
1165      *
1166      * @return true if replay detection is enabled, false otherwise.
1167      * @see #requestReplayDet(boolean)
1168      */
1169     public boolean getReplayDetState();
1170 
1171     /**
1172      * Determines if sequence checking is enabled for the
1173      * per-message security services from this context. It can be called by
1174      * both the context initiator and the context acceptor. For a
1175      * definitive answer this method must be called only after context
1176      * establishment is complete. An initiator that requests sequence
1177      * checking can call this method after context completion and
1178      * dispose the context if its request was not honored.
1179      *
1180      * @return true if sequence checking is enabled, false otherwise.
1181      * @see #requestSequenceDet(boolean)
1182      */
1183     public boolean getSequenceDetState();
1184 
1185     /**
1186      * Determines if the context initiator is
1187      * anonymously authenticated to the context acceptor. It can be called by
1188      * both the context initiator and the context acceptor, and at any
1189      * time. <strong>On the initiator side, a call to this method determines
1190      * if the identity of the initiator has been disclosed in any of the
1191      * context establishment tokens that might have been generated thus far
1192      * by <code>initSecContext</code>. An initiator that absolutely must be
1193      * authenticated anonymously should call this method after each call to
1194      * <code>initSecContext</code> to determine if the generated token
1195      * should be sent to the peer or the context aborted.</strong> On the
1196      * acceptor side, a call to this method determines if any of the tokens
1197      * processed by <code>acceptSecContext</code> thus far have divulged
1198      * the identity of the initiator.
1199      *
1200      * @return true if the context initiator is still anonymous, false
1201      * otherwise.
1202      * @see #requestAnonymity(boolean)
1203      */
1204     public boolean getAnonymityState();
1205 
1206     /**
1207      * Determines if the context is transferable to other processes
1208      * through the use of the {@link #export() export} method.  This call
1209      * is only valid on fully established contexts.
1210      *
1211      * @return true if this context can be exported, false otherwise.
1212      *
1213      * @throws GSSException containing the following
1214      * major error codes:
1215      *   {@link GSSException#FAILURE GSSException.FAILURE}
1216      */
1217     public boolean isTransferable() throws GSSException;
1218 
1219     /**
1220      * Determines if the context is ready for per message operations to be
1221      * used over it.  Some mechanisms may allow the usage of the
1222      * per-message operations before the context is fully established.
1223      *
1224      * @return true if methods like <code>wrap</code>, <code>unwrap</code>,
1225      * <code>getMIC</code>, and <code>verifyMIC</code> can be used with
1226      * this context at the current stage of context establishment, false
1227      * otherwise.
1228      */
1229     public boolean isProtReady();
1230 
1231     /**
1232      * Determines if data confidentiality is available
1233      * over the context. This method can be called by both the context
1234      * initiator and the context acceptor, but only after one of {@link
1235      * #isProtReady() isProtReady} or {@link #isEstablished()
1236      * isEstablished} return <code>true</code>. If this method returns
1237      * <code>true</code>, so will {@link #getIntegState()
1238      * getIntegState}
1239      *
1240      * @return true if confidentiality services are available, false
1241      * otherwise.
1242      * @see #requestConf(boolean)
1243      */
1244     public boolean getConfState();
1245 
1246     /**
1247      * Determines if data integrity is available
1248      * over the context. This method can be called by both the context
1249      * initiator and the context acceptor, but only after one of {@link
1250      * #isProtReady() isProtReady} or {@link #isEstablished()
1251      * isEstablished} return <code>true</code>. This method will always
1252      * return <code>true</code> if {@link #getConfState() getConfState}
1253      * returns true.
1254      *
1255      * @return true if integrity services are available, false otherwise.
1256      * @see #requestInteg(boolean)
1257      */
1258     public boolean getIntegState();
1259 
1260     /**
1261      * Determines what the remaining lifetime for this
1262      * context is. It can be called by both the context initiator and the
1263      * context acceptor, but for a definitive answer it should be called
1264      * only after {@link #isEstablished() isEstablished} returns
1265      * true.
1266      *
1267      * @return the remaining lifetime in seconds
1268      * @see #requestLifetime(int)
1269      */
1270     public int getLifetime();
1271 
1272     /**
1273      * Returns the name of the context initiator. This call is valid only
1274      * after one of {@link #isProtReady() isProtReady} or {@link
1275      * #isEstablished() isEstablished} return <code>true</code>.
1276      *
1277      * @return a GSSName that is an MN containing the name of the context
1278      * initiator.
1279      * @see GSSName
1280      *
1281      * @throws GSSException containing the following
1282      * major error codes:
1283      *   {@link GSSException#FAILURE GSSException.FAILURE}
1284      */
1285     public GSSName getSrcName() throws GSSException;
1286 
1287     /**
1288      * Returns the name of the context acceptor. This call is valid only
1289      * after one of {@link #isProtReady() isProtReady} or {@link
1290      * #isEstablished() isEstablished} return <code>true</code>.
1291      *
1292      * @return a GSSName that is an MN containing the name of the context
1293      * acceptor.
1294      *
1295      * @throws GSSException containing the following
1296      * major error codes:
1297      *   {@link GSSException#FAILURE GSSException.FAILURE}
1298      */
1299     public GSSName getTargName() throws GSSException;
1300 
1301     /**
1302      * Determines what mechanism is being used for this
1303      * context. This method may be called before the context is fully
1304      * established, but the mechanism returned may change on successive
1305      * calls in the negotiated mechanism case.
1306      *
1307      * @return the Oid of the mechanism being used
1308      *
1309      * @throws GSSException containing the following
1310      * major error codes:
1311      *   {@link GSSException#FAILURE GSSException.FAILURE}
1312      */
1313     public Oid getMech() throws GSSException;
1314 
1315     /**
1316      * Obtains the credentials delegated by the context
1317      * initiator to the context acceptor. It should be called only on the
1318      * context acceptor's side, and once the context is fully
1319      * established. The caller can use the method {@link
1320      * #getCredDelegState() getCredDelegState} to determine if there are
1321      * any delegated credentials.
1322      *
1323      * @return a GSSCredential containing the initiator's delegated
1324      * credentials, or <code>null</code> is no credentials
1325      * were delegated.
1326      *
1327      * @throws GSSException containing the following
1328      * major error codes:
1329      *   {@link GSSException#FAILURE GSSException.FAILURE}
1330      */
1331     public GSSCredential getDelegCred() throws GSSException;
1332 
1333     /**
1334      * Determines if this is the context initiator. This
1335      * can be called on both the context initiator's and context acceptor's
1336      * side.
1337      *
1338      * @return true if this is the context initiator, false if it is the
1339      * context acceptor.
1340      *
1341      * @throws GSSException containing the following
1342      * major error codes:
1343      *   {@link GSSException#FAILURE GSSException.FAILURE}
1344      */
1345     public boolean isInitiator() throws GSSException;
1346 }