1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.lang.ref.WeakReference;
  29 import java.lang.ref.ReferenceQueue;
  30 import java.util.concurrent.ThreadLocalRandom;
  31 import java.util.function.BiConsumer;
  32 import java.util.function.BiFunction;
  33 import java.util.function.Consumer;
  34 
  35 
  36 /**
  37  * Hash table based implementation of the <tt>Map</tt> interface, with
  38  * <em>weak keys</em>.
  39  * An entry in a <tt>WeakHashMap</tt> will automatically be removed when
  40  * its key is no longer in ordinary use.  More precisely, the presence of a
  41  * mapping for a given key will not prevent the key from being discarded by the
  42  * garbage collector, that is, made finalizable, finalized, and then reclaimed.
  43  * When a key has been discarded its entry is effectively removed from the map,
  44  * so this class behaves somewhat differently from other <tt>Map</tt>
  45  * implementations.
  46  *
  47  * <p> Both null values and the null key are supported. This class has
  48  * performance characteristics similar to those of the <tt>HashMap</tt>
  49  * class, and has the same efficiency parameters of <em>initial capacity</em>
  50  * and <em>load factor</em>.
  51  *
  52  * <p> Like most collection classes, this class is not synchronized.
  53  * A synchronized <tt>WeakHashMap</tt> may be constructed using the
  54  * {@link Collections#synchronizedMap Collections.synchronizedMap}
  55  * method.
  56  *
  57  * <p> This class is intended primarily for use with key objects whose
  58  * <tt>equals</tt> methods test for object identity using the
  59  * <tt>==</tt> operator.  Once such a key is discarded it can never be
  60  * recreated, so it is impossible to do a lookup of that key in a
  61  * <tt>WeakHashMap</tt> at some later time and be surprised that its entry
  62  * has been removed.  This class will work perfectly well with key objects
  63  * whose <tt>equals</tt> methods are not based upon object identity, such
  64  * as <tt>String</tt> instances.  With such recreatable key objects,
  65  * however, the automatic removal of <tt>WeakHashMap</tt> entries whose
  66  * keys have been discarded may prove to be confusing.
  67  *
  68  * <p> The behavior of the <tt>WeakHashMap</tt> class depends in part upon
  69  * the actions of the garbage collector, so several familiar (though not
  70  * required) <tt>Map</tt> invariants do not hold for this class.  Because
  71  * the garbage collector may discard keys at any time, a
  72  * <tt>WeakHashMap</tt> may behave as though an unknown thread is silently
  73  * removing entries.  In particular, even if you synchronize on a
  74  * <tt>WeakHashMap</tt> instance and invoke none of its mutator methods, it
  75  * is possible for the <tt>size</tt> method to return smaller values over
  76  * time, for the <tt>isEmpty</tt> method to return <tt>false</tt> and
  77  * then <tt>true</tt>, for the <tt>containsKey</tt> method to return
  78  * <tt>true</tt> and later <tt>false</tt> for a given key, for the
  79  * <tt>get</tt> method to return a value for a given key but later return
  80  * <tt>null</tt>, for the <tt>put</tt> method to return
  81  * <tt>null</tt> and the <tt>remove</tt> method to return
  82  * <tt>false</tt> for a key that previously appeared to be in the map, and
  83  * for successive examinations of the key set, the value collection, and
  84  * the entry set to yield successively smaller numbers of elements.
  85  *
  86  * <p> Each key object in a <tt>WeakHashMap</tt> is stored indirectly as
  87  * the referent of a weak reference.  Therefore a key will automatically be
  88  * removed only after the weak references to it, both inside and outside of the
  89  * map, have been cleared by the garbage collector.
  90  *
  91  * <p> <strong>Implementation note:</strong> The value objects in a
  92  * <tt>WeakHashMap</tt> are held by ordinary strong references.  Thus care
  93  * should be taken to ensure that value objects do not strongly refer to their
  94  * own keys, either directly or indirectly, since that will prevent the keys
  95  * from being discarded.  Note that a value object may refer indirectly to its
  96  * key via the <tt>WeakHashMap</tt> itself; that is, a value object may
  97  * strongly refer to some other key object whose associated value object, in
  98  * turn, strongly refers to the key of the first value object.  If the values
  99  * in the map do not rely on the map holding strong references to them, one way
 100  * to deal with this is to wrap values themselves within
 101  * <tt>WeakReferences</tt> before
 102  * inserting, as in: <tt>m.put(key, new WeakReference(value))</tt>,
 103  * and then unwrapping upon each <tt>get</tt>.
 104  *
 105  * <p>The iterators returned by the <tt>iterator</tt> method of the collections
 106  * returned by all of this class's "collection view methods" are
 107  * <i>fail-fast</i>: if the map is structurally modified at any time after the
 108  * iterator is created, in any way except through the iterator's own
 109  * <tt>remove</tt> method, the iterator will throw a {@link
 110  * ConcurrentModificationException}.  Thus, in the face of concurrent
 111  * modification, the iterator fails quickly and cleanly, rather than risking
 112  * arbitrary, non-deterministic behavior at an undetermined time in the future.
 113  *
 114  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 115  * as it is, generally speaking, impossible to make any hard guarantees in the
 116  * presence of unsynchronized concurrent modification.  Fail-fast iterators
 117  * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
 118  * Therefore, it would be wrong to write a program that depended on this
 119  * exception for its correctness:  <i>the fail-fast behavior of iterators
 120  * should be used only to detect bugs.</i>
 121  *
 122  * <p>This class is a member of the
 123  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 124  * Java Collections Framework</a>.
 125  *
 126  * @param <K> the type of keys maintained by this map
 127  * @param <V> the type of mapped values
 128  *
 129  * @author      Doug Lea
 130  * @author      Josh Bloch
 131  * @author      Mark Reinhold
 132  * @since       1.2
 133  * @see         java.util.HashMap
 134  * @see         java.lang.ref.WeakReference
 135  */
 136 public class WeakHashMap<K,V>
 137     extends AbstractMap<K,V>
 138     implements Map<K,V> {
 139 
 140     /**
 141      * The default initial capacity -- MUST be a power of two.
 142      */
 143     private static final int DEFAULT_INITIAL_CAPACITY = 16;
 144 
 145     /**
 146      * The maximum capacity, used if a higher value is implicitly specified
 147      * by either of the constructors with arguments.
 148      * MUST be a power of two <= 1<<30.
 149      */
 150     private static final int MAXIMUM_CAPACITY = 1 << 30;
 151 
 152     /**
 153      * The load factor used when none specified in constructor.
 154      */
 155     private static final float DEFAULT_LOAD_FACTOR = 0.75f;
 156 
 157     /**
 158      * The table, resized as necessary. Length MUST Always be a power of two.
 159      */
 160     Entry<K,V>[] table;
 161 
 162     /**
 163      * The number of key-value mappings contained in this weak hash map.
 164      */
 165     private int size;
 166 
 167     /**
 168      * The next size value at which to resize (capacity * load factor).
 169      */
 170     private int threshold;
 171 
 172     /**
 173      * The load factor for the hash table.
 174      */
 175     private final float loadFactor;
 176 
 177     /**
 178      * Reference queue for cleared WeakEntries
 179      */
 180     private final ReferenceQueue<Object> queue = new ReferenceQueue<>();
 181 
 182     /**
 183      * The number of times this WeakHashMap has been structurally modified.
 184      * Structural modifications are those that change the number of
 185      * mappings in the map or otherwise modify its internal structure
 186      * (e.g., rehash).  This field is used to make iterators on
 187      * Collection-views of the map fail-fast.
 188      *
 189      * @see ConcurrentModificationException
 190      */
 191     int modCount;
 192 
 193     @SuppressWarnings("unchecked")
 194     private Entry<K,V>[] newTable(int n) {
 195         return (Entry<K,V>[]) new Entry<?,?>[n];
 196     }
 197 
 198     /**
 199      * Constructs a new, empty <tt>WeakHashMap</tt> with the given initial
 200      * capacity and the given load factor.
 201      *
 202      * @param  initialCapacity The initial capacity of the <tt>WeakHashMap</tt>
 203      * @param  loadFactor      The load factor of the <tt>WeakHashMap</tt>
 204      * @throws IllegalArgumentException if the initial capacity is negative,
 205      *         or if the load factor is nonpositive.
 206      */
 207     public WeakHashMap(int initialCapacity, float loadFactor) {
 208         if (initialCapacity < 0)
 209             throw new IllegalArgumentException("Illegal Initial Capacity: "+
 210                                                initialCapacity);
 211         if (initialCapacity > MAXIMUM_CAPACITY)
 212             initialCapacity = MAXIMUM_CAPACITY;
 213 
 214         if (loadFactor <= 0 || Float.isNaN(loadFactor))
 215             throw new IllegalArgumentException("Illegal Load factor: "+
 216                                                loadFactor);
 217         int capacity = 1;
 218         while (capacity < initialCapacity)
 219             capacity <<= 1;
 220         table = newTable(capacity);
 221         this.loadFactor = loadFactor;
 222         threshold = (int)(capacity * loadFactor);
 223     }
 224 
 225     /**
 226      * Constructs a new, empty <tt>WeakHashMap</tt> with the given initial
 227      * capacity and the default load factor (0.75).
 228      *
 229      * @param  initialCapacity The initial capacity of the <tt>WeakHashMap</tt>
 230      * @throws IllegalArgumentException if the initial capacity is negative
 231      */
 232     public WeakHashMap(int initialCapacity) {
 233         this(initialCapacity, DEFAULT_LOAD_FACTOR);
 234     }
 235 
 236     /**
 237      * Constructs a new, empty <tt>WeakHashMap</tt> with the default initial
 238      * capacity (16) and load factor (0.75).
 239      */
 240     public WeakHashMap() {
 241         this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
 242     }
 243 
 244     /**
 245      * Constructs a new <tt>WeakHashMap</tt> with the same mappings as the
 246      * specified map.  The <tt>WeakHashMap</tt> is created with the default
 247      * load factor (0.75) and an initial capacity sufficient to hold the
 248      * mappings in the specified map.
 249      *
 250      * @param   m the map whose mappings are to be placed in this map
 251      * @throws  NullPointerException if the specified map is null
 252      * @since   1.3
 253      */
 254     public WeakHashMap(Map<? extends K, ? extends V> m) {
 255         this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
 256                 DEFAULT_INITIAL_CAPACITY),
 257              DEFAULT_LOAD_FACTOR);
 258         putAll(m);
 259     }
 260 
 261     // internal utilities
 262 
 263     /**
 264      * Value representing null keys inside tables.
 265      */
 266     private static final Object NULL_KEY = new Object();
 267 
 268     /**
 269      * Use NULL_KEY for key if it is null.
 270      */
 271     private static Object maskNull(Object key) {
 272         return (key == null) ? NULL_KEY : key;
 273     }
 274 
 275     /**
 276      * Returns internal representation of null key back to caller as null.
 277      */
 278     static Object unmaskNull(Object key) {
 279         return (key == NULL_KEY) ? null : key;
 280     }
 281 
 282     /**
 283      * Checks for equality of non-null reference x and possibly-null y.  By
 284      * default uses Object.equals.
 285      */
 286     private static boolean eq(Object x, Object y) {
 287         return x == y || x.equals(y);
 288     }
 289 
 290     /**
 291      * Retrieve object hash code and applies a supplemental hash function to the
 292      * result hash, which defends against poor quality hash functions.  This is
 293      * critical because HashMap uses power-of-two length hash tables, that
 294      * otherwise encounter collisions for hashCodes that do not differ
 295      * in lower bits.
 296      */
 297     final int hash(Object k) {
 298         int h = k.hashCode();
 299 
 300         // This function ensures that hashCodes that differ only by
 301         // constant multiples at each bit position have a bounded
 302         // number of collisions (approximately 8 at default load factor).
 303         h ^= (h >>> 20) ^ (h >>> 12);
 304         return h ^ (h >>> 7) ^ (h >>> 4);
 305     }
 306 
 307     /**
 308      * Returns index for hash code h.
 309      */
 310     private static int indexFor(int h, int length) {
 311         return h & (length-1);
 312     }
 313 
 314     /**
 315      * Expunges stale entries from the table.
 316      */
 317     private void expungeStaleEntries() {
 318         for (Object x; (x = queue.poll()) != null; ) {
 319             synchronized (queue) {
 320                 @SuppressWarnings("unchecked")
 321                     Entry<K,V> e = (Entry<K,V>) x;
 322                 int i = indexFor(e.hash, table.length);
 323 
 324                 Entry<K,V> prev = table[i];
 325                 Entry<K,V> p = prev;
 326                 while (p != null) {
 327                     Entry<K,V> next = p.next;
 328                     if (p == e) {
 329                         if (prev == e)
 330                             table[i] = next;
 331                         else
 332                             prev.next = next;
 333                         // Must not null out e.next;
 334                         // stale entries may be in use by a HashIterator
 335                         e.value = null; // Help GC
 336                         size--;
 337                         break;
 338                     }
 339                     prev = p;
 340                     p = next;
 341                 }
 342             }
 343         }
 344     }
 345 
 346     /**
 347      * Returns the table after first expunging stale entries.
 348      */
 349     private Entry<K,V>[] getTable() {
 350         expungeStaleEntries();
 351         return table;
 352     }
 353 
 354     /**
 355      * Returns the number of key-value mappings in this map.
 356      * This result is a snapshot, and may not reflect unprocessed
 357      * entries that will be removed before next attempted access
 358      * because they are no longer referenced.
 359      */
 360     public int size() {
 361         if (size == 0)
 362             return 0;
 363         expungeStaleEntries();
 364         return size;
 365     }
 366 
 367     /**
 368      * Returns <tt>true</tt> if this map contains no key-value mappings.
 369      * This result is a snapshot, and may not reflect unprocessed
 370      * entries that will be removed before next attempted access
 371      * because they are no longer referenced.
 372      */
 373     public boolean isEmpty() {
 374         return size() == 0;
 375     }
 376 
 377     /**
 378      * Returns the value to which the specified key is mapped,
 379      * or {@code null} if this map contains no mapping for the key.
 380      *
 381      * <p>More formally, if this map contains a mapping from a key
 382      * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
 383      * key.equals(k))}, then this method returns {@code v}; otherwise
 384      * it returns {@code null}.  (There can be at most one such mapping.)
 385      *
 386      * <p>A return value of {@code null} does not <i>necessarily</i>
 387      * indicate that the map contains no mapping for the key; it's also
 388      * possible that the map explicitly maps the key to {@code null}.
 389      * The {@link #containsKey containsKey} operation may be used to
 390      * distinguish these two cases.
 391      *
 392      * @see #put(Object, Object)
 393      */
 394     public V get(Object key) {
 395         Object k = maskNull(key);
 396         int h = hash(k);
 397         Entry<K,V>[] tab = getTable();
 398         int index = indexFor(h, tab.length);
 399         Entry<K,V> e = tab[index];
 400         while (e != null) {
 401             if (e.hash == h && eq(k, e.get()))
 402                 return e.value;
 403             e = e.next;
 404         }
 405         return null;
 406     }
 407 
 408     /**
 409      * Returns <tt>true</tt> if this map contains a mapping for the
 410      * specified key.
 411      *
 412      * @param  key   The key whose presence in this map is to be tested
 413      * @return <tt>true</tt> if there is a mapping for <tt>key</tt>;
 414      *         <tt>false</tt> otherwise
 415      */
 416     public boolean containsKey(Object key) {
 417         return getEntry(key) != null;
 418     }
 419 
 420     /**
 421      * Returns the entry associated with the specified key in this map.
 422      * Returns null if the map contains no mapping for this key.
 423      */
 424     Entry<K,V> getEntry(Object key) {
 425         Object k = maskNull(key);
 426         int h = hash(k);
 427         Entry<K,V>[] tab = getTable();
 428         int index = indexFor(h, tab.length);
 429         Entry<K,V> e = tab[index];
 430         while (e != null && !(e.hash == h && eq(k, e.get())))
 431             e = e.next;
 432         return e;
 433     }
 434 
 435     /**
 436      * Associates the specified value with the specified key in this map.
 437      * If the map previously contained a mapping for this key, the old
 438      * value is replaced.
 439      *
 440      * @param key key with which the specified value is to be associated.
 441      * @param value value to be associated with the specified key.
 442      * @return the previous value associated with <tt>key</tt>, or
 443      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 444      *         (A <tt>null</tt> return can also indicate that the map
 445      *         previously associated <tt>null</tt> with <tt>key</tt>.)
 446      */
 447     public V put(K key, V value) {
 448         Object k = maskNull(key);
 449         int h = hash(k);
 450         Entry<K,V>[] tab = getTable();
 451         int i = indexFor(h, tab.length);
 452 
 453         for (Entry<K,V> e = tab[i]; e != null; e = e.next) {
 454             if (h == e.hash && eq(k, e.get())) {
 455                 V oldValue = e.value;
 456                 if (value != oldValue)
 457                     e.value = value;
 458                 return oldValue;
 459             }
 460         }
 461 
 462         modCount++;
 463         Entry<K,V> e = tab[i];
 464         tab[i] = new Entry<>(k, value, queue, h, e);
 465         if (++size >= threshold)
 466             resize(tab.length * 2);
 467         return null;
 468     }
 469 
 470     /**
 471      * Rehashes the contents of this map into a new array with a
 472      * larger capacity.  This method is called automatically when the
 473      * number of keys in this map reaches its threshold.
 474      *
 475      * If current capacity is MAXIMUM_CAPACITY, this method does not
 476      * resize the map, but sets threshold to Integer.MAX_VALUE.
 477      * This has the effect of preventing future calls.
 478      *
 479      * @param newCapacity the new capacity, MUST be a power of two;
 480      *        must be greater than current capacity unless current
 481      *        capacity is MAXIMUM_CAPACITY (in which case value
 482      *        is irrelevant).
 483      */
 484     void resize(int newCapacity) {
 485         Entry<K,V>[] oldTable = getTable();
 486         int oldCapacity = oldTable.length;
 487         if (oldCapacity == MAXIMUM_CAPACITY) {
 488             threshold = Integer.MAX_VALUE;
 489             return;
 490         }
 491 
 492         Entry<K,V>[] newTable = newTable(newCapacity);
 493         transfer(oldTable, newTable);
 494         table = newTable;
 495 
 496         /*
 497          * If ignoring null elements and processing ref queue caused massive
 498          * shrinkage, then restore old table.  This should be rare, but avoids
 499          * unbounded expansion of garbage-filled tables.
 500          */
 501         if (size >= threshold / 2) {
 502             threshold = (int)(newCapacity * loadFactor);
 503         } else {
 504             expungeStaleEntries();
 505             transfer(newTable, oldTable);
 506             table = oldTable;
 507         }
 508     }
 509 
 510     /** Transfers all entries from src to dest tables */
 511     private void transfer(Entry<K,V>[] src, Entry<K,V>[] dest) {
 512         for (int j = 0; j < src.length; ++j) {
 513             Entry<K,V> e = src[j];
 514             src[j] = null;
 515             while (e != null) {
 516                 Entry<K,V> next = e.next;
 517                 Object key = e.get();
 518                 if (key == null) {
 519                     e.next = null;  // Help GC
 520                     e.value = null; //  "   "
 521                     size--;
 522                 } else {
 523                     int i = indexFor(e.hash, dest.length);
 524                     e.next = dest[i];
 525                     dest[i] = e;
 526                 }
 527                 e = next;
 528             }
 529         }
 530     }
 531 
 532     /**
 533      * Copies all of the mappings from the specified map to this map.
 534      * These mappings will replace any mappings that this map had for any
 535      * of the keys currently in the specified map.
 536      *
 537      * @param m mappings to be stored in this map.
 538      * @throws  NullPointerException if the specified map is null.
 539      */
 540     public void putAll(Map<? extends K, ? extends V> m) {
 541         int numKeysToBeAdded = m.size();
 542         if (numKeysToBeAdded == 0)
 543             return;
 544 
 545         /*
 546          * Expand the map if the map if the number of mappings to be added
 547          * is greater than or equal to threshold.  This is conservative; the
 548          * obvious condition is (m.size() + size) >= threshold, but this
 549          * condition could result in a map with twice the appropriate capacity,
 550          * if the keys to be added overlap with the keys already in this map.
 551          * By using the conservative calculation, we subject ourself
 552          * to at most one extra resize.
 553          */
 554         if (numKeysToBeAdded > threshold) {
 555             int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
 556             if (targetCapacity > MAXIMUM_CAPACITY)
 557                 targetCapacity = MAXIMUM_CAPACITY;
 558             int newCapacity = table.length;
 559             while (newCapacity < targetCapacity)
 560                 newCapacity <<= 1;
 561             if (newCapacity > table.length)
 562                 resize(newCapacity);
 563         }
 564 
 565         for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
 566             put(e.getKey(), e.getValue());
 567     }
 568 
 569     /**
 570      * Removes the mapping for a key from this weak hash map if it is present.
 571      * More formally, if this map contains a mapping from key <tt>k</tt> to
 572      * value <tt>v</tt> such that <code>(key==null ?  k==null :
 573      * key.equals(k))</code>, that mapping is removed.  (The map can contain
 574      * at most one such mapping.)
 575      *
 576      * <p>Returns the value to which this map previously associated the key,
 577      * or <tt>null</tt> if the map contained no mapping for the key.  A
 578      * return value of <tt>null</tt> does not <i>necessarily</i> indicate
 579      * that the map contained no mapping for the key; it's also possible
 580      * that the map explicitly mapped the key to <tt>null</tt>.
 581      *
 582      * <p>The map will not contain a mapping for the specified key once the
 583      * call returns.
 584      *
 585      * @param key key whose mapping is to be removed from the map
 586      * @return the previous value associated with <tt>key</tt>, or
 587      *         <tt>null</tt> if there was no mapping for <tt>key</tt>
 588      */
 589     public V remove(Object key) {
 590         Object k = maskNull(key);
 591         int h = hash(k);
 592         Entry<K,V>[] tab = getTable();
 593         int i = indexFor(h, tab.length);
 594         Entry<K,V> prev = tab[i];
 595         Entry<K,V> e = prev;
 596 
 597         while (e != null) {
 598             Entry<K,V> next = e.next;
 599             if (h == e.hash && eq(k, e.get())) {
 600                 modCount++;
 601                 size--;
 602                 if (prev == e)
 603                     tab[i] = next;
 604                 else
 605                     prev.next = next;
 606                 return e.value;
 607             }
 608             prev = e;
 609             e = next;
 610         }
 611 
 612         return null;
 613     }
 614 
 615     /** Special version of remove needed by Entry set */
 616     boolean removeMapping(Object o) {
 617         if (!(o instanceof Map.Entry))
 618             return false;
 619         Entry<K,V>[] tab = getTable();
 620         Map.Entry<?,?> entry = (Map.Entry<?,?>)o;
 621         Object k = maskNull(entry.getKey());
 622         int h = hash(k);
 623         int i = indexFor(h, tab.length);
 624         Entry<K,V> prev = tab[i];
 625         Entry<K,V> e = prev;
 626 
 627         while (e != null) {
 628             Entry<K,V> next = e.next;
 629             if (h == e.hash && e.equals(entry)) {
 630                 modCount++;
 631                 size--;
 632                 if (prev == e)
 633                     tab[i] = next;
 634                 else
 635                     prev.next = next;
 636                 return true;
 637             }
 638             prev = e;
 639             e = next;
 640         }
 641 
 642         return false;
 643     }
 644 
 645     /**
 646      * Removes all of the mappings from this map.
 647      * The map will be empty after this call returns.
 648      */
 649     public void clear() {
 650         // clear out ref queue. We don't need to expunge entries
 651         // since table is getting cleared.
 652         while (queue.poll() != null)
 653             ;
 654 
 655         modCount++;
 656         Arrays.fill(table, null);
 657         size = 0;
 658 
 659         // Allocation of array may have caused GC, which may have caused
 660         // additional entries to go stale.  Removing these entries from the
 661         // reference queue will make them eligible for reclamation.
 662         while (queue.poll() != null)
 663             ;
 664     }
 665 
 666     /**
 667      * Returns <tt>true</tt> if this map maps one or more keys to the
 668      * specified value.
 669      *
 670      * @param value value whose presence in this map is to be tested
 671      * @return <tt>true</tt> if this map maps one or more keys to the
 672      *         specified value
 673      */
 674     public boolean containsValue(Object value) {
 675         if (value==null)
 676             return containsNullValue();
 677 
 678         Entry<K,V>[] tab = getTable();
 679         for (int i = tab.length; i-- > 0;)
 680             for (Entry<K,V> e = tab[i]; e != null; e = e.next)
 681                 if (value.equals(e.value))
 682                     return true;
 683         return false;
 684     }
 685 
 686     /**
 687      * Special-case code for containsValue with null argument
 688      */
 689     private boolean containsNullValue() {
 690         Entry<K,V>[] tab = getTable();
 691         for (int i = tab.length; i-- > 0;)
 692             for (Entry<K,V> e = tab[i]; e != null; e = e.next)
 693                 if (e.value==null)
 694                     return true;
 695         return false;
 696     }
 697 
 698     /**
 699      * The entries in this hash table extend WeakReference, using its main ref
 700      * field as the key.
 701      */
 702     private static class Entry<K,V> extends WeakReference<Object> implements Map.Entry<K,V> {
 703         V value;
 704         final int hash;
 705         Entry<K,V> next;
 706 
 707         /**
 708          * Creates new entry.
 709          */
 710         Entry(Object key, V value,
 711               ReferenceQueue<Object> queue,
 712               int hash, Entry<K,V> next) {
 713             super(key, queue);
 714             this.value = value;
 715             this.hash  = hash;
 716             this.next  = next;
 717         }
 718 
 719         @SuppressWarnings("unchecked")
 720         public K getKey() {
 721             return (K) WeakHashMap.unmaskNull(get());
 722         }
 723 
 724         public V getValue() {
 725             return value;
 726         }
 727 
 728         public V setValue(V newValue) {
 729             V oldValue = value;
 730             value = newValue;
 731             return oldValue;
 732         }
 733 
 734         public boolean equals(Object o) {
 735             if (!(o instanceof Map.Entry))
 736                 return false;
 737             Map.Entry<?,?> e = (Map.Entry<?,?>)o;
 738             K k1 = getKey();
 739             Object k2 = e.getKey();
 740             if (k1 == k2 || (k1 != null && k1.equals(k2))) {
 741                 V v1 = getValue();
 742                 Object v2 = e.getValue();
 743                 if (v1 == v2 || (v1 != null && v1.equals(v2)))
 744                     return true;
 745             }
 746             return false;
 747         }
 748 
 749         public int hashCode() {
 750             K k = getKey();
 751             V v = getValue();
 752             return Objects.hashCode(k) ^ Objects.hashCode(v);
 753         }
 754 
 755         public String toString() {
 756             return getKey() + "=" + getValue();
 757         }
 758     }
 759 
 760     private abstract class HashIterator<T> implements Iterator<T> {
 761         private int index;
 762         private Entry<K,V> entry;
 763         private Entry<K,V> lastReturned;
 764         private int expectedModCount = modCount;
 765 
 766         /**
 767          * Strong reference needed to avoid disappearance of key
 768          * between hasNext and next
 769          */
 770         private Object nextKey;
 771 
 772         /**
 773          * Strong reference needed to avoid disappearance of key
 774          * between nextEntry() and any use of the entry
 775          */
 776         private Object currentKey;
 777 
 778         HashIterator() {
 779             index = isEmpty() ? 0 : table.length;
 780         }
 781 
 782         public boolean hasNext() {
 783             Entry<K,V>[] t = table;
 784 
 785             while (nextKey == null) {
 786                 Entry<K,V> e = entry;
 787                 int i = index;
 788                 while (e == null && i > 0)
 789                     e = t[--i];
 790                 entry = e;
 791                 index = i;
 792                 if (e == null) {
 793                     currentKey = null;
 794                     return false;
 795                 }
 796                 nextKey = e.get(); // hold on to key in strong ref
 797                 if (nextKey == null)
 798                     entry = entry.next;
 799             }
 800             return true;
 801         }
 802 
 803         /** The common parts of next() across different types of iterators */
 804         protected Entry<K,V> nextEntry() {
 805             if (modCount != expectedModCount)
 806                 throw new ConcurrentModificationException();
 807             if (nextKey == null && !hasNext())
 808                 throw new NoSuchElementException();
 809 
 810             lastReturned = entry;
 811             entry = entry.next;
 812             currentKey = nextKey;
 813             nextKey = null;
 814             return lastReturned;
 815         }
 816 
 817         public void remove() {
 818             if (lastReturned == null)
 819                 throw new IllegalStateException();
 820             if (modCount != expectedModCount)
 821                 throw new ConcurrentModificationException();
 822 
 823             WeakHashMap.this.remove(currentKey);
 824             expectedModCount = modCount;
 825             lastReturned = null;
 826             currentKey = null;
 827         }
 828 
 829     }
 830 
 831     private class ValueIterator extends HashIterator<V> {
 832         public V next() {
 833             return nextEntry().value;
 834         }
 835     }
 836 
 837     private class KeyIterator extends HashIterator<K> {
 838         public K next() {
 839             return nextEntry().getKey();
 840         }
 841     }
 842 
 843     private class EntryIterator extends HashIterator<Map.Entry<K,V>> {
 844         public Map.Entry<K,V> next() {
 845             return nextEntry();
 846         }
 847     }
 848 
 849     // Views
 850 
 851     private transient Set<Map.Entry<K,V>> entrySet;
 852 
 853     /**
 854      * Returns a {@link Set} view of the keys contained in this map.
 855      * The set is backed by the map, so changes to the map are
 856      * reflected in the set, and vice-versa.  If the map is modified
 857      * while an iteration over the set is in progress (except through
 858      * the iterator's own <tt>remove</tt> operation), the results of
 859      * the iteration are undefined.  The set supports element removal,
 860      * which removes the corresponding mapping from the map, via the
 861      * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
 862      * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
 863      * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
 864      * operations.
 865      */
 866     public Set<K> keySet() {
 867         Set<K> ks = keySet;
 868         return (ks != null ? ks : (keySet = new KeySet()));
 869     }
 870 
 871     private class KeySet extends AbstractSet<K> {
 872         public Iterator<K> iterator() {
 873             return new KeyIterator();
 874         }
 875 
 876         public int size() {
 877             return WeakHashMap.this.size();
 878         }
 879 
 880         public boolean contains(Object o) {
 881             return containsKey(o);
 882         }
 883 
 884         public boolean remove(Object o) {
 885             if (containsKey(o)) {
 886                 WeakHashMap.this.remove(o);
 887                 return true;
 888             }
 889             else
 890                 return false;
 891         }
 892 
 893         public void clear() {
 894             WeakHashMap.this.clear();
 895         }
 896 
 897         public Spliterator<K> spliterator() {
 898             return new KeySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
 899         }
 900     }
 901 
 902     /**
 903      * Returns a {@link Collection} view of the values contained in this map.
 904      * The collection is backed by the map, so changes to the map are
 905      * reflected in the collection, and vice-versa.  If the map is
 906      * modified while an iteration over the collection is in progress
 907      * (except through the iterator's own <tt>remove</tt> operation),
 908      * the results of the iteration are undefined.  The collection
 909      * supports element removal, which removes the corresponding
 910      * mapping from the map, via the <tt>Iterator.remove</tt>,
 911      * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
 912      * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
 913      * support the <tt>add</tt> or <tt>addAll</tt> operations.
 914      */
 915     public Collection<V> values() {
 916         Collection<V> vs = values;
 917         return (vs != null) ? vs : (values = new Values());
 918     }
 919 
 920     private class Values extends AbstractCollection<V> {
 921         public Iterator<V> iterator() {
 922             return new ValueIterator();
 923         }
 924 
 925         public int size() {
 926             return WeakHashMap.this.size();
 927         }
 928 
 929         public boolean contains(Object o) {
 930             return containsValue(o);
 931         }
 932 
 933         public void clear() {
 934             WeakHashMap.this.clear();
 935         }
 936 
 937         public Spliterator<V> spliterator() {
 938             return new ValueSpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
 939         }
 940     }
 941 
 942     /**
 943      * Returns a {@link Set} view of the mappings contained in this map.
 944      * The set is backed by the map, so changes to the map are
 945      * reflected in the set, and vice-versa.  If the map is modified
 946      * while an iteration over the set is in progress (except through
 947      * the iterator's own <tt>remove</tt> operation, or through the
 948      * <tt>setValue</tt> operation on a map entry returned by the
 949      * iterator) the results of the iteration are undefined.  The set
 950      * supports element removal, which removes the corresponding
 951      * mapping from the map, via the <tt>Iterator.remove</tt>,
 952      * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
 953      * <tt>clear</tt> operations.  It does not support the
 954      * <tt>add</tt> or <tt>addAll</tt> operations.
 955      */
 956     public Set<Map.Entry<K,V>> entrySet() {
 957         Set<Map.Entry<K,V>> es = entrySet;
 958         return es != null ? es : (entrySet = new EntrySet());
 959     }
 960 
 961     private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
 962         public Iterator<Map.Entry<K,V>> iterator() {
 963             return new EntryIterator();
 964         }
 965 
 966         public boolean contains(Object o) {
 967             if (!(o instanceof Map.Entry))
 968                 return false;
 969             Map.Entry<?,?> e = (Map.Entry<?,?>)o;
 970             Entry<K,V> candidate = getEntry(e.getKey());
 971             return candidate != null && candidate.equals(e);
 972         }
 973 
 974         public boolean remove(Object o) {
 975             return removeMapping(o);
 976         }
 977 
 978         public int size() {
 979             return WeakHashMap.this.size();
 980         }
 981 
 982         public void clear() {
 983             WeakHashMap.this.clear();
 984         }
 985 
 986         private List<Map.Entry<K,V>> deepCopy() {
 987             List<Map.Entry<K,V>> list = new ArrayList<>(size());
 988             for (Map.Entry<K,V> e : this)
 989                 list.add(new AbstractMap.SimpleEntry<>(e));
 990             return list;
 991         }
 992 
 993         public Object[] toArray() {
 994             return deepCopy().toArray();
 995         }
 996 
 997         public <T> T[] toArray(T[] a) {
 998             return deepCopy().toArray(a);
 999         }
1000 
1001         public Spliterator<Map.Entry<K,V>> spliterator() {
1002             return new EntrySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
1003         }
1004     }
1005 
1006     @SuppressWarnings("unchecked")
1007     @Override
1008     public void forEach(BiConsumer<? super K, ? super V> action) {
1009         Objects.requireNonNull(action);
1010         int expectedModCount = modCount;
1011 
1012         Entry<K, V>[] tab = getTable();
1013         for (Entry<K, V> entry : tab) {
1014             while (entry != null) {
1015                 Object key = entry.get();
1016                 if (key != null) {
1017                     action.accept((K)WeakHashMap.unmaskNull(key), entry.value);
1018                 }
1019                 entry = entry.next;
1020 
1021                 if (expectedModCount != modCount) {
1022                     throw new ConcurrentModificationException();
1023                 }
1024             }
1025         }
1026     }
1027 
1028     @SuppressWarnings("unchecked")
1029     @Override
1030     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1031         Objects.requireNonNull(function);
1032         int expectedModCount = modCount;
1033 
1034         Entry<K, V>[] tab = getTable();;
1035         for (Entry<K, V> entry : tab) {
1036             while (entry != null) {
1037                 Object key = entry.get();
1038                 if (key != null) {
1039                     entry.value = function.apply((K)WeakHashMap.unmaskNull(key), entry.value);
1040                 }
1041                 entry = entry.next;
1042 
1043                 if (expectedModCount != modCount) {
1044                     throw new ConcurrentModificationException();
1045                 }
1046             }
1047         }
1048     }
1049 
1050     /**
1051      * Similar form as other hash Spliterators, but skips dead
1052      * elements.
1053      */
1054     static class WeakHashMapSpliterator<K,V> {
1055         final WeakHashMap<K,V> map;
1056         WeakHashMap.Entry<K,V> current; // current node
1057         int index;             // current index, modified on advance/split
1058         int fence;             // -1 until first use; then one past last index
1059         int est;               // size estimate
1060         int expectedModCount;  // for comodification checks
1061 
1062         WeakHashMapSpliterator(WeakHashMap<K,V> m, int origin,
1063                                int fence, int est,
1064                                int expectedModCount) {
1065             this.map = m;
1066             this.index = origin;
1067             this.fence = fence;
1068             this.est = est;
1069             this.expectedModCount = expectedModCount;
1070         }
1071 
1072         final int getFence() { // initialize fence and size on first use
1073             int hi;
1074             if ((hi = fence) < 0) {
1075                 WeakHashMap<K,V> m = map;
1076                 est = m.size();
1077                 expectedModCount = m.modCount;
1078                 hi = fence = m.table.length;
1079             }
1080             return hi;
1081         }
1082 
1083         public final long estimateSize() {
1084             getFence(); // force init
1085             return (long) est;
1086         }
1087     }
1088 
1089     static final class KeySpliterator<K,V>
1090         extends WeakHashMapSpliterator<K,V>
1091         implements Spliterator<K> {
1092         KeySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1093                        int expectedModCount) {
1094             super(m, origin, fence, est, expectedModCount);
1095         }
1096 
1097         public KeySpliterator<K,V> trySplit() {
1098             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1099             return (lo >= mid) ? null :
1100                 new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
1101                                      expectedModCount);
1102         }
1103 
1104         public void forEachRemaining(Consumer<? super K> action) {
1105             int i, hi, mc;
1106             if (action == null)
1107                 throw new NullPointerException();
1108             WeakHashMap<K,V> m = map;
1109             WeakHashMap.Entry<K,V>[] tab = m.table;
1110             if ((hi = fence) < 0) {
1111                 mc = expectedModCount = m.modCount;
1112                 hi = fence = tab.length;
1113             }
1114             else
1115                 mc = expectedModCount;
1116             if (tab.length >= hi && (i = index) >= 0 &&
1117                 (i < (index = hi) || current != null)) {
1118                 WeakHashMap.Entry<K,V> p = current;
1119                 current = null; // exhaust
1120                 do {
1121                     if (p == null)
1122                         p = tab[i++];
1123                     else {
1124                         Object x = p.get();
1125                         p = p.next;
1126                         if (x != null) {
1127                             @SuppressWarnings("unchecked") K k =
1128                                 (K) WeakHashMap.unmaskNull(x);
1129                             action.accept(k);
1130                         }
1131                     }
1132                 } while (p != null || i < hi);
1133             }
1134             if (m.modCount != mc)
1135                 throw new ConcurrentModificationException();
1136         }
1137 
1138         public boolean tryAdvance(Consumer<? super K> action) {
1139             int hi;
1140             if (action == null)
1141                 throw new NullPointerException();
1142             WeakHashMap.Entry<K,V>[] tab = map.table;
1143             if (tab.length >= (hi = getFence()) && index >= 0) {
1144                 while (current != null || index < hi) {
1145                     if (current == null)
1146                         current = tab[index++];
1147                     else {
1148                         Object x = current.get();
1149                         current = current.next;
1150                         if (x != null) {
1151                             @SuppressWarnings("unchecked") K k =
1152                                 (K) WeakHashMap.unmaskNull(x);
1153                             action.accept(k);
1154                             if (map.modCount != expectedModCount)
1155                                 throw new ConcurrentModificationException();
1156                             return true;
1157                         }
1158                     }
1159                 }
1160             }
1161             return false;
1162         }
1163 
1164         public int characteristics() {
1165             return Spliterator.DISTINCT;
1166         }
1167     }
1168 
1169     static final class ValueSpliterator<K,V>
1170         extends WeakHashMapSpliterator<K,V>
1171         implements Spliterator<V> {
1172         ValueSpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1173                          int expectedModCount) {
1174             super(m, origin, fence, est, expectedModCount);
1175         }
1176 
1177         public ValueSpliterator<K,V> trySplit() {
1178             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1179             return (lo >= mid) ? null :
1180                 new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
1181                                        expectedModCount);
1182         }
1183 
1184         public void forEachRemaining(Consumer<? super V> action) {
1185             int i, hi, mc;
1186             if (action == null)
1187                 throw new NullPointerException();
1188             WeakHashMap<K,V> m = map;
1189             WeakHashMap.Entry<K,V>[] tab = m.table;
1190             if ((hi = fence) < 0) {
1191                 mc = expectedModCount = m.modCount;
1192                 hi = fence = tab.length;
1193             }
1194             else
1195                 mc = expectedModCount;
1196             if (tab.length >= hi && (i = index) >= 0 &&
1197                 (i < (index = hi) || current != null)) {
1198                 WeakHashMap.Entry<K,V> p = current;
1199                 current = null; // exhaust
1200                 do {
1201                     if (p == null)
1202                         p = tab[i++];
1203                     else {
1204                         Object x = p.get();
1205                         V v = p.value;
1206                         p = p.next;
1207                         if (x != null)
1208                             action.accept(v);
1209                     }
1210                 } while (p != null || i < hi);
1211             }
1212             if (m.modCount != mc)
1213                 throw new ConcurrentModificationException();
1214         }
1215 
1216         public boolean tryAdvance(Consumer<? super V> action) {
1217             int hi;
1218             if (action == null)
1219                 throw new NullPointerException();
1220             WeakHashMap.Entry<K,V>[] tab = map.table;
1221             if (tab.length >= (hi = getFence()) && index >= 0) {
1222                 while (current != null || index < hi) {
1223                     if (current == null)
1224                         current = tab[index++];
1225                     else {
1226                         Object x = current.get();
1227                         V v = current.value;
1228                         current = current.next;
1229                         if (x != null) {
1230                             action.accept(v);
1231                             if (map.modCount != expectedModCount)
1232                                 throw new ConcurrentModificationException();
1233                             return true;
1234                         }
1235                     }
1236                 }
1237             }
1238             return false;
1239         }
1240 
1241         public int characteristics() {
1242             return 0;
1243         }
1244     }
1245 
1246     static final class EntrySpliterator<K,V>
1247         extends WeakHashMapSpliterator<K,V>
1248         implements Spliterator<Map.Entry<K,V>> {
1249         EntrySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1250                        int expectedModCount) {
1251             super(m, origin, fence, est, expectedModCount);
1252         }
1253 
1254         public EntrySpliterator<K,V> trySplit() {
1255             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1256             return (lo >= mid) ? null :
1257                 new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
1258                                        expectedModCount);
1259         }
1260 
1261 
1262         public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
1263             int i, hi, mc;
1264             if (action == null)
1265                 throw new NullPointerException();
1266             WeakHashMap<K,V> m = map;
1267             WeakHashMap.Entry<K,V>[] tab = m.table;
1268             if ((hi = fence) < 0) {
1269                 mc = expectedModCount = m.modCount;
1270                 hi = fence = tab.length;
1271             }
1272             else
1273                 mc = expectedModCount;
1274             if (tab.length >= hi && (i = index) >= 0 &&
1275                 (i < (index = hi) || current != null)) {
1276                 WeakHashMap.Entry<K,V> p = current;
1277                 current = null; // exhaust
1278                 do {
1279                     if (p == null)
1280                         p = tab[i++];
1281                     else {
1282                         Object x = p.get();
1283                         V v = p.value;
1284                         p = p.next;
1285                         if (x != null) {
1286                             @SuppressWarnings("unchecked") K k =
1287                                 (K) WeakHashMap.unmaskNull(x);
1288                             action.accept
1289                                 (new AbstractMap.SimpleImmutableEntry<>(k, v));
1290                         }
1291                     }
1292                 } while (p != null || i < hi);
1293             }
1294             if (m.modCount != mc)
1295                 throw new ConcurrentModificationException();
1296         }
1297 
1298         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
1299             int hi;
1300             if (action == null)
1301                 throw new NullPointerException();
1302             WeakHashMap.Entry<K,V>[] tab = map.table;
1303             if (tab.length >= (hi = getFence()) && index >= 0) {
1304                 while (current != null || index < hi) {
1305                     if (current == null)
1306                         current = tab[index++];
1307                     else {
1308                         Object x = current.get();
1309                         V v = current.value;
1310                         current = current.next;
1311                         if (x != null) {
1312                             @SuppressWarnings("unchecked") K k =
1313                                 (K) WeakHashMap.unmaskNull(x);
1314                             action.accept
1315                                 (new AbstractMap.SimpleImmutableEntry<>(k, v));
1316                             if (map.modCount != expectedModCount)
1317                                 throw new ConcurrentModificationException();
1318                             return true;
1319                         }
1320                     }
1321                 }
1322             }
1323             return false;
1324         }
1325 
1326         public int characteristics() {
1327             return Spliterator.DISTINCT;
1328         }
1329     }
1330 
1331 }