< prev index next >

src/java.base/share/classes/java/util/WeakHashMap.java

Print this page




  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.lang.ref.WeakReference;
  29 import java.lang.ref.ReferenceQueue;
  30 import java.util.concurrent.ThreadLocalRandom;
  31 import java.util.function.BiConsumer;
  32 import java.util.function.BiFunction;
  33 import java.util.function.Consumer;
  34 
  35 
  36 /**
  37  * Hash table based implementation of the <tt>Map</tt> interface, with
  38  * <em>weak keys</em>.
  39  * An entry in a <tt>WeakHashMap</tt> will automatically be removed when
  40  * its key is no longer in ordinary use.  More precisely, the presence of a
  41  * mapping for a given key will not prevent the key from being discarded by the
  42  * garbage collector, that is, made finalizable, finalized, and then reclaimed.
  43  * When a key has been discarded its entry is effectively removed from the map,
  44  * so this class behaves somewhat differently from other <tt>Map</tt>
  45  * implementations.
  46  *
  47  * <p> Both null values and the null key are supported. This class has
  48  * performance characteristics similar to those of the <tt>HashMap</tt>
  49  * class, and has the same efficiency parameters of <em>initial capacity</em>
  50  * and <em>load factor</em>.
  51  *
  52  * <p> Like most collection classes, this class is not synchronized.
  53  * A synchronized <tt>WeakHashMap</tt> may be constructed using the
  54  * {@link Collections#synchronizedMap Collections.synchronizedMap}
  55  * method.
  56  *
  57  * <p> This class is intended primarily for use with key objects whose
  58  * <tt>equals</tt> methods test for object identity using the
  59  * <tt>==</tt> operator.  Once such a key is discarded it can never be
  60  * recreated, so it is impossible to do a lookup of that key in a
  61  * <tt>WeakHashMap</tt> at some later time and be surprised that its entry
  62  * has been removed.  This class will work perfectly well with key objects
  63  * whose <tt>equals</tt> methods are not based upon object identity, such
  64  * as <tt>String</tt> instances.  With such recreatable key objects,
  65  * however, the automatic removal of <tt>WeakHashMap</tt> entries whose
  66  * keys have been discarded may prove to be confusing.
  67  *
  68  * <p> The behavior of the <tt>WeakHashMap</tt> class depends in part upon
  69  * the actions of the garbage collector, so several familiar (though not
  70  * required) <tt>Map</tt> invariants do not hold for this class.  Because
  71  * the garbage collector may discard keys at any time, a
  72  * <tt>WeakHashMap</tt> may behave as though an unknown thread is silently
  73  * removing entries.  In particular, even if you synchronize on a
  74  * <tt>WeakHashMap</tt> instance and invoke none of its mutator methods, it
  75  * is possible for the <tt>size</tt> method to return smaller values over
  76  * time, for the <tt>isEmpty</tt> method to return <tt>false</tt> and
  77  * then <tt>true</tt>, for the <tt>containsKey</tt> method to return
  78  * <tt>true</tt> and later <tt>false</tt> for a given key, for the
  79  * <tt>get</tt> method to return a value for a given key but later return
  80  * <tt>null</tt>, for the <tt>put</tt> method to return
  81  * <tt>null</tt> and the <tt>remove</tt> method to return
  82  * <tt>false</tt> for a key that previously appeared to be in the map, and
  83  * for successive examinations of the key set, the value collection, and
  84  * the entry set to yield successively smaller numbers of elements.
  85  *
  86  * <p> Each key object in a <tt>WeakHashMap</tt> is stored indirectly as
  87  * the referent of a weak reference.  Therefore a key will automatically be
  88  * removed only after the weak references to it, both inside and outside of the
  89  * map, have been cleared by the garbage collector.
  90  *
  91  * <p> <strong>Implementation note:</strong> The value objects in a
  92  * <tt>WeakHashMap</tt> are held by ordinary strong references.  Thus care
  93  * should be taken to ensure that value objects do not strongly refer to their
  94  * own keys, either directly or indirectly, since that will prevent the keys
  95  * from being discarded.  Note that a value object may refer indirectly to its
  96  * key via the <tt>WeakHashMap</tt> itself; that is, a value object may
  97  * strongly refer to some other key object whose associated value object, in
  98  * turn, strongly refers to the key of the first value object.  If the values
  99  * in the map do not rely on the map holding strong references to them, one way
 100  * to deal with this is to wrap values themselves within
 101  * <tt>WeakReferences</tt> before
 102  * inserting, as in: <tt>m.put(key, new WeakReference(value))</tt>,
 103  * and then unwrapping upon each <tt>get</tt>.
 104  *
 105  * <p>The iterators returned by the <tt>iterator</tt> method of the collections
 106  * returned by all of this class's "collection view methods" are
 107  * <i>fail-fast</i>: if the map is structurally modified at any time after the
 108  * iterator is created, in any way except through the iterator's own
 109  * <tt>remove</tt> method, the iterator will throw a {@link
 110  * ConcurrentModificationException}.  Thus, in the face of concurrent
 111  * modification, the iterator fails quickly and cleanly, rather than risking
 112  * arbitrary, non-deterministic behavior at an undetermined time in the future.
 113  *
 114  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 115  * as it is, generally speaking, impossible to make any hard guarantees in the
 116  * presence of unsynchronized concurrent modification.  Fail-fast iterators
 117  * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
 118  * Therefore, it would be wrong to write a program that depended on this
 119  * exception for its correctness:  <i>the fail-fast behavior of iterators
 120  * should be used only to detect bugs.</i>
 121  *
 122  * <p>This class is a member of the
 123  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 124  * Java Collections Framework</a>.
 125  *
 126  * @param <K> the type of keys maintained by this map
 127  * @param <V> the type of mapped values
 128  *
 129  * @author      Doug Lea
 130  * @author      Josh Bloch
 131  * @author      Mark Reinhold
 132  * @since       1.2
 133  * @see         java.util.HashMap
 134  * @see         java.lang.ref.WeakReference
 135  */
 136 public class WeakHashMap<K,V>
 137     extends AbstractMap<K,V>


 179      */
 180     private final ReferenceQueue<Object> queue = new ReferenceQueue<>();
 181 
 182     /**
 183      * The number of times this WeakHashMap has been structurally modified.
 184      * Structural modifications are those that change the number of
 185      * mappings in the map or otherwise modify its internal structure
 186      * (e.g., rehash).  This field is used to make iterators on
 187      * Collection-views of the map fail-fast.
 188      *
 189      * @see ConcurrentModificationException
 190      */
 191     int modCount;
 192 
 193     @SuppressWarnings("unchecked")
 194     private Entry<K,V>[] newTable(int n) {
 195         return (Entry<K,V>[]) new Entry<?,?>[n];
 196     }
 197 
 198     /**
 199      * Constructs a new, empty <tt>WeakHashMap</tt> with the given initial
 200      * capacity and the given load factor.
 201      *
 202      * @param  initialCapacity The initial capacity of the <tt>WeakHashMap</tt>
 203      * @param  loadFactor      The load factor of the <tt>WeakHashMap</tt>
 204      * @throws IllegalArgumentException if the initial capacity is negative,
 205      *         or if the load factor is nonpositive.
 206      */
 207     public WeakHashMap(int initialCapacity, float loadFactor) {
 208         if (initialCapacity < 0)
 209             throw new IllegalArgumentException("Illegal Initial Capacity: "+
 210                                                initialCapacity);
 211         if (initialCapacity > MAXIMUM_CAPACITY)
 212             initialCapacity = MAXIMUM_CAPACITY;
 213 
 214         if (loadFactor <= 0 || Float.isNaN(loadFactor))
 215             throw new IllegalArgumentException("Illegal Load factor: "+
 216                                                loadFactor);
 217         int capacity = 1;
 218         while (capacity < initialCapacity)
 219             capacity <<= 1;
 220         table = newTable(capacity);
 221         this.loadFactor = loadFactor;
 222         threshold = (int)(capacity * loadFactor);
 223     }
 224 
 225     /**
 226      * Constructs a new, empty <tt>WeakHashMap</tt> with the given initial
 227      * capacity and the default load factor (0.75).
 228      *
 229      * @param  initialCapacity The initial capacity of the <tt>WeakHashMap</tt>
 230      * @throws IllegalArgumentException if the initial capacity is negative
 231      */
 232     public WeakHashMap(int initialCapacity) {
 233         this(initialCapacity, DEFAULT_LOAD_FACTOR);
 234     }
 235 
 236     /**
 237      * Constructs a new, empty <tt>WeakHashMap</tt> with the default initial
 238      * capacity (16) and load factor (0.75).
 239      */
 240     public WeakHashMap() {
 241         this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
 242     }
 243 
 244     /**
 245      * Constructs a new <tt>WeakHashMap</tt> with the same mappings as the
 246      * specified map.  The <tt>WeakHashMap</tt> is created with the default
 247      * load factor (0.75) and an initial capacity sufficient to hold the
 248      * mappings in the specified map.
 249      *
 250      * @param   m the map whose mappings are to be placed in this map
 251      * @throws  NullPointerException if the specified map is null
 252      * @since   1.3
 253      */
 254     public WeakHashMap(Map<? extends K, ? extends V> m) {
 255         this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
 256                 DEFAULT_INITIAL_CAPACITY),
 257              DEFAULT_LOAD_FACTOR);
 258         putAll(m);
 259     }
 260 
 261     // internal utilities
 262 
 263     /**
 264      * Value representing null keys inside tables.
 265      */
 266     private static final Object NULL_KEY = new Object();


 348      */
 349     private Entry<K,V>[] getTable() {
 350         expungeStaleEntries();
 351         return table;
 352     }
 353 
 354     /**
 355      * Returns the number of key-value mappings in this map.
 356      * This result is a snapshot, and may not reflect unprocessed
 357      * entries that will be removed before next attempted access
 358      * because they are no longer referenced.
 359      */
 360     public int size() {
 361         if (size == 0)
 362             return 0;
 363         expungeStaleEntries();
 364         return size;
 365     }
 366 
 367     /**
 368      * Returns <tt>true</tt> if this map contains no key-value mappings.
 369      * This result is a snapshot, and may not reflect unprocessed
 370      * entries that will be removed before next attempted access
 371      * because they are no longer referenced.
 372      */
 373     public boolean isEmpty() {
 374         return size() == 0;
 375     }
 376 
 377     /**
 378      * Returns the value to which the specified key is mapped,
 379      * or {@code null} if this map contains no mapping for the key.
 380      *
 381      * <p>More formally, if this map contains a mapping from a key
 382      * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
 383      * key.equals(k))}, then this method returns {@code v}; otherwise
 384      * it returns {@code null}.  (There can be at most one such mapping.)
 385      *
 386      * <p>A return value of {@code null} does not <i>necessarily</i>
 387      * indicate that the map contains no mapping for the key; it's also
 388      * possible that the map explicitly maps the key to {@code null}.
 389      * The {@link #containsKey containsKey} operation may be used to
 390      * distinguish these two cases.
 391      *
 392      * @see #put(Object, Object)
 393      */
 394     public V get(Object key) {
 395         Object k = maskNull(key);
 396         int h = hash(k);
 397         Entry<K,V>[] tab = getTable();
 398         int index = indexFor(h, tab.length);
 399         Entry<K,V> e = tab[index];
 400         while (e != null) {
 401             if (e.hash == h && eq(k, e.get()))
 402                 return e.value;
 403             e = e.next;
 404         }
 405         return null;
 406     }
 407 
 408     /**
 409      * Returns <tt>true</tt> if this map contains a mapping for the
 410      * specified key.
 411      *
 412      * @param  key   The key whose presence in this map is to be tested
 413      * @return <tt>true</tt> if there is a mapping for <tt>key</tt>;
 414      *         <tt>false</tt> otherwise
 415      */
 416     public boolean containsKey(Object key) {
 417         return getEntry(key) != null;
 418     }
 419 
 420     /**
 421      * Returns the entry associated with the specified key in this map.
 422      * Returns null if the map contains no mapping for this key.
 423      */
 424     Entry<K,V> getEntry(Object key) {
 425         Object k = maskNull(key);
 426         int h = hash(k);
 427         Entry<K,V>[] tab = getTable();
 428         int index = indexFor(h, tab.length);
 429         Entry<K,V> e = tab[index];
 430         while (e != null && !(e.hash == h && eq(k, e.get())))
 431             e = e.next;
 432         return e;
 433     }
 434 
 435     /**
 436      * Associates the specified value with the specified key in this map.
 437      * If the map previously contained a mapping for this key, the old
 438      * value is replaced.
 439      *
 440      * @param key key with which the specified value is to be associated.
 441      * @param value value to be associated with the specified key.
 442      * @return the previous value associated with <tt>key</tt>, or
 443      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 444      *         (A <tt>null</tt> return can also indicate that the map
 445      *         previously associated <tt>null</tt> with <tt>key</tt>.)
 446      */
 447     public V put(K key, V value) {
 448         Object k = maskNull(key);
 449         int h = hash(k);
 450         Entry<K,V>[] tab = getTable();
 451         int i = indexFor(h, tab.length);
 452 
 453         for (Entry<K,V> e = tab[i]; e != null; e = e.next) {
 454             if (h == e.hash && eq(k, e.get())) {
 455                 V oldValue = e.value;
 456                 if (value != oldValue)
 457                     e.value = value;
 458                 return oldValue;
 459             }
 460         }
 461 
 462         modCount++;
 463         Entry<K,V> e = tab[i];
 464         tab[i] = new Entry<>(k, value, queue, h, e);
 465         if (++size >= threshold)


 551          * By using the conservative calculation, we subject ourself
 552          * to at most one extra resize.
 553          */
 554         if (numKeysToBeAdded > threshold) {
 555             int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
 556             if (targetCapacity > MAXIMUM_CAPACITY)
 557                 targetCapacity = MAXIMUM_CAPACITY;
 558             int newCapacity = table.length;
 559             while (newCapacity < targetCapacity)
 560                 newCapacity <<= 1;
 561             if (newCapacity > table.length)
 562                 resize(newCapacity);
 563         }
 564 
 565         for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
 566             put(e.getKey(), e.getValue());
 567     }
 568 
 569     /**
 570      * Removes the mapping for a key from this weak hash map if it is present.
 571      * More formally, if this map contains a mapping from key <tt>k</tt> to
 572      * value <tt>v</tt> such that <code>(key==null ?  k==null :
 573      * key.equals(k))</code>, that mapping is removed.  (The map can contain
 574      * at most one such mapping.)
 575      *
 576      * <p>Returns the value to which this map previously associated the key,
 577      * or <tt>null</tt> if the map contained no mapping for the key.  A
 578      * return value of <tt>null</tt> does not <i>necessarily</i> indicate
 579      * that the map contained no mapping for the key; it's also possible
 580      * that the map explicitly mapped the key to <tt>null</tt>.
 581      *
 582      * <p>The map will not contain a mapping for the specified key once the
 583      * call returns.
 584      *
 585      * @param key key whose mapping is to be removed from the map
 586      * @return the previous value associated with <tt>key</tt>, or
 587      *         <tt>null</tt> if there was no mapping for <tt>key</tt>
 588      */
 589     public V remove(Object key) {
 590         Object k = maskNull(key);
 591         int h = hash(k);
 592         Entry<K,V>[] tab = getTable();
 593         int i = indexFor(h, tab.length);
 594         Entry<K,V> prev = tab[i];
 595         Entry<K,V> e = prev;
 596 
 597         while (e != null) {
 598             Entry<K,V> next = e.next;
 599             if (h == e.hash && eq(k, e.get())) {
 600                 modCount++;
 601                 size--;
 602                 if (prev == e)
 603                     tab[i] = next;
 604                 else
 605                     prev.next = next;
 606                 return e.value;
 607             }


 647      * The map will be empty after this call returns.
 648      */
 649     public void clear() {
 650         // clear out ref queue. We don't need to expunge entries
 651         // since table is getting cleared.
 652         while (queue.poll() != null)
 653             ;
 654 
 655         modCount++;
 656         Arrays.fill(table, null);
 657         size = 0;
 658 
 659         // Allocation of array may have caused GC, which may have caused
 660         // additional entries to go stale.  Removing these entries from the
 661         // reference queue will make them eligible for reclamation.
 662         while (queue.poll() != null)
 663             ;
 664     }
 665 
 666     /**
 667      * Returns <tt>true</tt> if this map maps one or more keys to the
 668      * specified value.
 669      *
 670      * @param value value whose presence in this map is to be tested
 671      * @return <tt>true</tt> if this map maps one or more keys to the
 672      *         specified value
 673      */
 674     public boolean containsValue(Object value) {
 675         if (value==null)
 676             return containsNullValue();
 677 
 678         Entry<K,V>[] tab = getTable();
 679         for (int i = tab.length; i-- > 0;)
 680             for (Entry<K,V> e = tab[i]; e != null; e = e.next)
 681                 if (value.equals(e.value))
 682                     return true;
 683         return false;
 684     }
 685 
 686     /**
 687      * Special-case code for containsValue with null argument
 688      */
 689     private boolean containsNullValue() {
 690         Entry<K,V>[] tab = getTable();
 691         for (int i = tab.length; i-- > 0;)


 838         public K next() {
 839             return nextEntry().getKey();
 840         }
 841     }
 842 
 843     private class EntryIterator extends HashIterator<Map.Entry<K,V>> {
 844         public Map.Entry<K,V> next() {
 845             return nextEntry();
 846         }
 847     }
 848 
 849     // Views
 850 
 851     private transient Set<Map.Entry<K,V>> entrySet;
 852 
 853     /**
 854      * Returns a {@link Set} view of the keys contained in this map.
 855      * The set is backed by the map, so changes to the map are
 856      * reflected in the set, and vice-versa.  If the map is modified
 857      * while an iteration over the set is in progress (except through
 858      * the iterator's own <tt>remove</tt> operation), the results of
 859      * the iteration are undefined.  The set supports element removal,
 860      * which removes the corresponding mapping from the map, via the
 861      * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
 862      * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
 863      * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
 864      * operations.
 865      */
 866     public Set<K> keySet() {
 867         Set<K> ks = keySet;
 868         return (ks != null ? ks : (keySet = new KeySet()));
 869     }
 870 
 871     private class KeySet extends AbstractSet<K> {
 872         public Iterator<K> iterator() {
 873             return new KeyIterator();
 874         }
 875 
 876         public int size() {
 877             return WeakHashMap.this.size();
 878         }
 879 
 880         public boolean contains(Object o) {
 881             return containsKey(o);
 882         }
 883 


 887                 return true;
 888             }
 889             else
 890                 return false;
 891         }
 892 
 893         public void clear() {
 894             WeakHashMap.this.clear();
 895         }
 896 
 897         public Spliterator<K> spliterator() {
 898             return new KeySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
 899         }
 900     }
 901 
 902     /**
 903      * Returns a {@link Collection} view of the values contained in this map.
 904      * The collection is backed by the map, so changes to the map are
 905      * reflected in the collection, and vice-versa.  If the map is
 906      * modified while an iteration over the collection is in progress
 907      * (except through the iterator's own <tt>remove</tt> operation),
 908      * the results of the iteration are undefined.  The collection
 909      * supports element removal, which removes the corresponding
 910      * mapping from the map, via the <tt>Iterator.remove</tt>,
 911      * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
 912      * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
 913      * support the <tt>add</tt> or <tt>addAll</tt> operations.
 914      */
 915     public Collection<V> values() {
 916         Collection<V> vs = values;
 917         return (vs != null) ? vs : (values = new Values());
 918     }
 919 
 920     private class Values extends AbstractCollection<V> {
 921         public Iterator<V> iterator() {
 922             return new ValueIterator();
 923         }
 924 
 925         public int size() {
 926             return WeakHashMap.this.size();
 927         }
 928 
 929         public boolean contains(Object o) {
 930             return containsValue(o);
 931         }
 932 
 933         public void clear() {
 934             WeakHashMap.this.clear();
 935         }
 936 
 937         public Spliterator<V> spliterator() {
 938             return new ValueSpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
 939         }
 940     }
 941 
 942     /**
 943      * Returns a {@link Set} view of the mappings contained in this map.
 944      * The set is backed by the map, so changes to the map are
 945      * reflected in the set, and vice-versa.  If the map is modified
 946      * while an iteration over the set is in progress (except through
 947      * the iterator's own <tt>remove</tt> operation, or through the
 948      * <tt>setValue</tt> operation on a map entry returned by the
 949      * iterator) the results of the iteration are undefined.  The set
 950      * supports element removal, which removes the corresponding
 951      * mapping from the map, via the <tt>Iterator.remove</tt>,
 952      * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
 953      * <tt>clear</tt> operations.  It does not support the
 954      * <tt>add</tt> or <tt>addAll</tt> operations.
 955      */
 956     public Set<Map.Entry<K,V>> entrySet() {
 957         Set<Map.Entry<K,V>> es = entrySet;
 958         return es != null ? es : (entrySet = new EntrySet());
 959     }
 960 
 961     private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
 962         public Iterator<Map.Entry<K,V>> iterator() {
 963             return new EntryIterator();
 964         }
 965 
 966         public boolean contains(Object o) {
 967             if (!(o instanceof Map.Entry))
 968                 return false;
 969             Map.Entry<?,?> e = (Map.Entry<?,?>)o;
 970             Entry<K,V> candidate = getEntry(e.getKey());
 971             return candidate != null && candidate.equals(e);
 972         }
 973 
 974         public boolean remove(Object o) {




  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.lang.ref.WeakReference;
  29 import java.lang.ref.ReferenceQueue;
  30 import java.util.concurrent.ThreadLocalRandom;
  31 import java.util.function.BiConsumer;
  32 import java.util.function.BiFunction;
  33 import java.util.function.Consumer;
  34 
  35 
  36 /**
  37  * Hash table based implementation of the {@code Map} interface, with
  38  * <em>weak keys</em>.
  39  * An entry in a {@code WeakHashMap} will automatically be removed when
  40  * its key is no longer in ordinary use.  More precisely, the presence of a
  41  * mapping for a given key will not prevent the key from being discarded by the
  42  * garbage collector, that is, made finalizable, finalized, and then reclaimed.
  43  * When a key has been discarded its entry is effectively removed from the map,
  44  * so this class behaves somewhat differently from other {@code Map}
  45  * implementations.
  46  *
  47  * <p> Both null values and the null key are supported. This class has
  48  * performance characteristics similar to those of the {@code HashMap}
  49  * class, and has the same efficiency parameters of <em>initial capacity</em>
  50  * and <em>load factor</em>.
  51  *
  52  * <p> Like most collection classes, this class is not synchronized.
  53  * A synchronized {@code WeakHashMap} may be constructed using the
  54  * {@link Collections#synchronizedMap Collections.synchronizedMap}
  55  * method.
  56  *
  57  * <p> This class is intended primarily for use with key objects whose
  58  * {@code equals} methods test for object identity using the
  59  * {@code ==} operator.  Once such a key is discarded it can never be
  60  * recreated, so it is impossible to do a lookup of that key in a
  61  * {@code WeakHashMap} at some later time and be surprised that its entry
  62  * has been removed.  This class will work perfectly well with key objects
  63  * whose {@code equals} methods are not based upon object identity, such
  64  * as {@code String} instances.  With such recreatable key objects,
  65  * however, the automatic removal of {@code WeakHashMap} entries whose
  66  * keys have been discarded may prove to be confusing.
  67  *
  68  * <p> The behavior of the {@code WeakHashMap} class depends in part upon
  69  * the actions of the garbage collector, so several familiar (though not
  70  * required) {@code Map} invariants do not hold for this class.  Because
  71  * the garbage collector may discard keys at any time, a
  72  * {@code WeakHashMap} may behave as though an unknown thread is silently
  73  * removing entries.  In particular, even if you synchronize on a
  74  * {@code WeakHashMap} instance and invoke none of its mutator methods, it
  75  * is possible for the {@code size} method to return smaller values over
  76  * time, for the {@code isEmpty} method to return {@code false} and
  77  * then {@code true}, for the {@code containsKey} method to return
  78  * {@code true} and later {@code false} for a given key, for the
  79  * {@code get} method to return a value for a given key but later return
  80  * {@code null}, for the {@code put} method to return
  81  * {@code null} and the {@code remove} method to return
  82  * {@code false} for a key that previously appeared to be in the map, and
  83  * for successive examinations of the key set, the value collection, and
  84  * the entry set to yield successively smaller numbers of elements.
  85  *
  86  * <p> Each key object in a {@code WeakHashMap} is stored indirectly as
  87  * the referent of a weak reference.  Therefore a key will automatically be
  88  * removed only after the weak references to it, both inside and outside of the
  89  * map, have been cleared by the garbage collector.
  90  *
  91  * <p> <strong>Implementation note:</strong> The value objects in a
  92  * {@code WeakHashMap} are held by ordinary strong references.  Thus care
  93  * should be taken to ensure that value objects do not strongly refer to their
  94  * own keys, either directly or indirectly, since that will prevent the keys
  95  * from being discarded.  Note that a value object may refer indirectly to its
  96  * key via the {@code WeakHashMap} itself; that is, a value object may
  97  * strongly refer to some other key object whose associated value object, in
  98  * turn, strongly refers to the key of the first value object.  If the values
  99  * in the map do not rely on the map holding strong references to them, one way
 100  * to deal with this is to wrap values themselves within
 101  * {@code WeakReferences} before
 102  * inserting, as in: {@code m.put(key, new WeakReference(value))},
 103  * and then unwrapping upon each {@code get}.
 104  *
 105  * <p>The iterators returned by the {@code iterator} method of the collections
 106  * returned by all of this class's "collection view methods" are
 107  * <i>fail-fast</i>: if the map is structurally modified at any time after the
 108  * iterator is created, in any way except through the iterator's own
 109  * {@code remove} method, the iterator will throw a {@link
 110  * ConcurrentModificationException}.  Thus, in the face of concurrent
 111  * modification, the iterator fails quickly and cleanly, rather than risking
 112  * arbitrary, non-deterministic behavior at an undetermined time in the future.
 113  *
 114  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 115  * as it is, generally speaking, impossible to make any hard guarantees in the
 116  * presence of unsynchronized concurrent modification.  Fail-fast iterators
 117  * throw {@code ConcurrentModificationException} on a best-effort basis.
 118  * Therefore, it would be wrong to write a program that depended on this
 119  * exception for its correctness:  <i>the fail-fast behavior of iterators
 120  * should be used only to detect bugs.</i>
 121  *
 122  * <p>This class is a member of the
 123  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 124  * Java Collections Framework</a>.
 125  *
 126  * @param <K> the type of keys maintained by this map
 127  * @param <V> the type of mapped values
 128  *
 129  * @author      Doug Lea
 130  * @author      Josh Bloch
 131  * @author      Mark Reinhold
 132  * @since       1.2
 133  * @see         java.util.HashMap
 134  * @see         java.lang.ref.WeakReference
 135  */
 136 public class WeakHashMap<K,V>
 137     extends AbstractMap<K,V>


 179      */
 180     private final ReferenceQueue<Object> queue = new ReferenceQueue<>();
 181 
 182     /**
 183      * The number of times this WeakHashMap has been structurally modified.
 184      * Structural modifications are those that change the number of
 185      * mappings in the map or otherwise modify its internal structure
 186      * (e.g., rehash).  This field is used to make iterators on
 187      * Collection-views of the map fail-fast.
 188      *
 189      * @see ConcurrentModificationException
 190      */
 191     int modCount;
 192 
 193     @SuppressWarnings("unchecked")
 194     private Entry<K,V>[] newTable(int n) {
 195         return (Entry<K,V>[]) new Entry<?,?>[n];
 196     }
 197 
 198     /**
 199      * Constructs a new, empty {@code WeakHashMap} with the given initial
 200      * capacity and the given load factor.
 201      *
 202      * @param  initialCapacity The initial capacity of the {@code WeakHashMap}
 203      * @param  loadFactor      The load factor of the {@code WeakHashMap}
 204      * @throws IllegalArgumentException if the initial capacity is negative,
 205      *         or if the load factor is nonpositive.
 206      */
 207     public WeakHashMap(int initialCapacity, float loadFactor) {
 208         if (initialCapacity < 0)
 209             throw new IllegalArgumentException("Illegal Initial Capacity: "+
 210                                                initialCapacity);
 211         if (initialCapacity > MAXIMUM_CAPACITY)
 212             initialCapacity = MAXIMUM_CAPACITY;
 213 
 214         if (loadFactor <= 0 || Float.isNaN(loadFactor))
 215             throw new IllegalArgumentException("Illegal Load factor: "+
 216                                                loadFactor);
 217         int capacity = 1;
 218         while (capacity < initialCapacity)
 219             capacity <<= 1;
 220         table = newTable(capacity);
 221         this.loadFactor = loadFactor;
 222         threshold = (int)(capacity * loadFactor);
 223     }
 224 
 225     /**
 226      * Constructs a new, empty {@code WeakHashMap} with the given initial
 227      * capacity and the default load factor (0.75).
 228      *
 229      * @param  initialCapacity The initial capacity of the {@code WeakHashMap}
 230      * @throws IllegalArgumentException if the initial capacity is negative
 231      */
 232     public WeakHashMap(int initialCapacity) {
 233         this(initialCapacity, DEFAULT_LOAD_FACTOR);
 234     }
 235 
 236     /**
 237      * Constructs a new, empty {@code WeakHashMap} with the default initial
 238      * capacity (16) and load factor (0.75).
 239      */
 240     public WeakHashMap() {
 241         this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
 242     }
 243 
 244     /**
 245      * Constructs a new {@code WeakHashMap} with the same mappings as the
 246      * specified map.  The {@code WeakHashMap} is created with the default
 247      * load factor (0.75) and an initial capacity sufficient to hold the
 248      * mappings in the specified map.
 249      *
 250      * @param   m the map whose mappings are to be placed in this map
 251      * @throws  NullPointerException if the specified map is null
 252      * @since   1.3
 253      */
 254     public WeakHashMap(Map<? extends K, ? extends V> m) {
 255         this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
 256                 DEFAULT_INITIAL_CAPACITY),
 257              DEFAULT_LOAD_FACTOR);
 258         putAll(m);
 259     }
 260 
 261     // internal utilities
 262 
 263     /**
 264      * Value representing null keys inside tables.
 265      */
 266     private static final Object NULL_KEY = new Object();


 348      */
 349     private Entry<K,V>[] getTable() {
 350         expungeStaleEntries();
 351         return table;
 352     }
 353 
 354     /**
 355      * Returns the number of key-value mappings in this map.
 356      * This result is a snapshot, and may not reflect unprocessed
 357      * entries that will be removed before next attempted access
 358      * because they are no longer referenced.
 359      */
 360     public int size() {
 361         if (size == 0)
 362             return 0;
 363         expungeStaleEntries();
 364         return size;
 365     }
 366 
 367     /**
 368      * Returns {@code true} if this map contains no key-value mappings.
 369      * This result is a snapshot, and may not reflect unprocessed
 370      * entries that will be removed before next attempted access
 371      * because they are no longer referenced.
 372      */
 373     public boolean isEmpty() {
 374         return size() == 0;
 375     }
 376 
 377     /**
 378      * Returns the value to which the specified key is mapped,
 379      * or {@code null} if this map contains no mapping for the key.
 380      *
 381      * <p>More formally, if this map contains a mapping from a key
 382      * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
 383      * key.equals(k))}, then this method returns {@code v}; otherwise
 384      * it returns {@code null}.  (There can be at most one such mapping.)
 385      *
 386      * <p>A return value of {@code null} does not <i>necessarily</i>
 387      * indicate that the map contains no mapping for the key; it's also
 388      * possible that the map explicitly maps the key to {@code null}.
 389      * The {@link #containsKey containsKey} operation may be used to
 390      * distinguish these two cases.
 391      *
 392      * @see #put(Object, Object)
 393      */
 394     public V get(Object key) {
 395         Object k = maskNull(key);
 396         int h = hash(k);
 397         Entry<K,V>[] tab = getTable();
 398         int index = indexFor(h, tab.length);
 399         Entry<K,V> e = tab[index];
 400         while (e != null) {
 401             if (e.hash == h && eq(k, e.get()))
 402                 return e.value;
 403             e = e.next;
 404         }
 405         return null;
 406     }
 407 
 408     /**
 409      * Returns {@code true} if this map contains a mapping for the
 410      * specified key.
 411      *
 412      * @param  key   The key whose presence in this map is to be tested
 413      * @return {@code true} if there is a mapping for {@code key};
 414      *         {@code false} otherwise
 415      */
 416     public boolean containsKey(Object key) {
 417         return getEntry(key) != null;
 418     }
 419 
 420     /**
 421      * Returns the entry associated with the specified key in this map.
 422      * Returns null if the map contains no mapping for this key.
 423      */
 424     Entry<K,V> getEntry(Object key) {
 425         Object k = maskNull(key);
 426         int h = hash(k);
 427         Entry<K,V>[] tab = getTable();
 428         int index = indexFor(h, tab.length);
 429         Entry<K,V> e = tab[index];
 430         while (e != null && !(e.hash == h && eq(k, e.get())))
 431             e = e.next;
 432         return e;
 433     }
 434 
 435     /**
 436      * Associates the specified value with the specified key in this map.
 437      * If the map previously contained a mapping for this key, the old
 438      * value is replaced.
 439      *
 440      * @param key key with which the specified value is to be associated.
 441      * @param value value to be associated with the specified key.
 442      * @return the previous value associated with {@code key}, or
 443      *         {@code null} if there was no mapping for {@code key}.
 444      *         (A {@code null} return can also indicate that the map
 445      *         previously associated {@code null} with {@code key}.)
 446      */
 447     public V put(K key, V value) {
 448         Object k = maskNull(key);
 449         int h = hash(k);
 450         Entry<K,V>[] tab = getTable();
 451         int i = indexFor(h, tab.length);
 452 
 453         for (Entry<K,V> e = tab[i]; e != null; e = e.next) {
 454             if (h == e.hash && eq(k, e.get())) {
 455                 V oldValue = e.value;
 456                 if (value != oldValue)
 457                     e.value = value;
 458                 return oldValue;
 459             }
 460         }
 461 
 462         modCount++;
 463         Entry<K,V> e = tab[i];
 464         tab[i] = new Entry<>(k, value, queue, h, e);
 465         if (++size >= threshold)


 551          * By using the conservative calculation, we subject ourself
 552          * to at most one extra resize.
 553          */
 554         if (numKeysToBeAdded > threshold) {
 555             int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
 556             if (targetCapacity > MAXIMUM_CAPACITY)
 557                 targetCapacity = MAXIMUM_CAPACITY;
 558             int newCapacity = table.length;
 559             while (newCapacity < targetCapacity)
 560                 newCapacity <<= 1;
 561             if (newCapacity > table.length)
 562                 resize(newCapacity);
 563         }
 564 
 565         for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
 566             put(e.getKey(), e.getValue());
 567     }
 568 
 569     /**
 570      * Removes the mapping for a key from this weak hash map if it is present.
 571      * More formally, if this map contains a mapping from key {@code k} to
 572      * value {@code v} such that <code>(key==null ?  k==null :
 573      * key.equals(k))</code>, that mapping is removed.  (The map can contain
 574      * at most one such mapping.)
 575      *
 576      * <p>Returns the value to which this map previously associated the key,
 577      * or {@code null} if the map contained no mapping for the key.  A
 578      * return value of {@code null} does not <i>necessarily</i> indicate
 579      * that the map contained no mapping for the key; it's also possible
 580      * that the map explicitly mapped the key to {@code null}.
 581      *
 582      * <p>The map will not contain a mapping for the specified key once the
 583      * call returns.
 584      *
 585      * @param key key whose mapping is to be removed from the map
 586      * @return the previous value associated with {@code key}, or
 587      *         {@code null} if there was no mapping for {@code key}
 588      */
 589     public V remove(Object key) {
 590         Object k = maskNull(key);
 591         int h = hash(k);
 592         Entry<K,V>[] tab = getTable();
 593         int i = indexFor(h, tab.length);
 594         Entry<K,V> prev = tab[i];
 595         Entry<K,V> e = prev;
 596 
 597         while (e != null) {
 598             Entry<K,V> next = e.next;
 599             if (h == e.hash && eq(k, e.get())) {
 600                 modCount++;
 601                 size--;
 602                 if (prev == e)
 603                     tab[i] = next;
 604                 else
 605                     prev.next = next;
 606                 return e.value;
 607             }


 647      * The map will be empty after this call returns.
 648      */
 649     public void clear() {
 650         // clear out ref queue. We don't need to expunge entries
 651         // since table is getting cleared.
 652         while (queue.poll() != null)
 653             ;
 654 
 655         modCount++;
 656         Arrays.fill(table, null);
 657         size = 0;
 658 
 659         // Allocation of array may have caused GC, which may have caused
 660         // additional entries to go stale.  Removing these entries from the
 661         // reference queue will make them eligible for reclamation.
 662         while (queue.poll() != null)
 663             ;
 664     }
 665 
 666     /**
 667      * Returns {@code true} if this map maps one or more keys to the
 668      * specified value.
 669      *
 670      * @param value value whose presence in this map is to be tested
 671      * @return {@code true} if this map maps one or more keys to the
 672      *         specified value
 673      */
 674     public boolean containsValue(Object value) {
 675         if (value==null)
 676             return containsNullValue();
 677 
 678         Entry<K,V>[] tab = getTable();
 679         for (int i = tab.length; i-- > 0;)
 680             for (Entry<K,V> e = tab[i]; e != null; e = e.next)
 681                 if (value.equals(e.value))
 682                     return true;
 683         return false;
 684     }
 685 
 686     /**
 687      * Special-case code for containsValue with null argument
 688      */
 689     private boolean containsNullValue() {
 690         Entry<K,V>[] tab = getTable();
 691         for (int i = tab.length; i-- > 0;)


 838         public K next() {
 839             return nextEntry().getKey();
 840         }
 841     }
 842 
 843     private class EntryIterator extends HashIterator<Map.Entry<K,V>> {
 844         public Map.Entry<K,V> next() {
 845             return nextEntry();
 846         }
 847     }
 848 
 849     // Views
 850 
 851     private transient Set<Map.Entry<K,V>> entrySet;
 852 
 853     /**
 854      * Returns a {@link Set} view of the keys contained in this map.
 855      * The set is backed by the map, so changes to the map are
 856      * reflected in the set, and vice-versa.  If the map is modified
 857      * while an iteration over the set is in progress (except through
 858      * the iterator's own {@code remove} operation), the results of
 859      * the iteration are undefined.  The set supports element removal,
 860      * which removes the corresponding mapping from the map, via the
 861      * {@code Iterator.remove}, {@code Set.remove},
 862      * {@code removeAll}, {@code retainAll}, and {@code clear}
 863      * operations.  It does not support the {@code add} or {@code addAll}
 864      * operations.
 865      */
 866     public Set<K> keySet() {
 867         Set<K> ks = keySet;
 868         return (ks != null ? ks : (keySet = new KeySet()));
 869     }
 870 
 871     private class KeySet extends AbstractSet<K> {
 872         public Iterator<K> iterator() {
 873             return new KeyIterator();
 874         }
 875 
 876         public int size() {
 877             return WeakHashMap.this.size();
 878         }
 879 
 880         public boolean contains(Object o) {
 881             return containsKey(o);
 882         }
 883 


 887                 return true;
 888             }
 889             else
 890                 return false;
 891         }
 892 
 893         public void clear() {
 894             WeakHashMap.this.clear();
 895         }
 896 
 897         public Spliterator<K> spliterator() {
 898             return new KeySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
 899         }
 900     }
 901 
 902     /**
 903      * Returns a {@link Collection} view of the values contained in this map.
 904      * The collection is backed by the map, so changes to the map are
 905      * reflected in the collection, and vice-versa.  If the map is
 906      * modified while an iteration over the collection is in progress
 907      * (except through the iterator's own {@code remove} operation),
 908      * the results of the iteration are undefined.  The collection
 909      * supports element removal, which removes the corresponding
 910      * mapping from the map, via the {@code Iterator.remove},
 911      * {@code Collection.remove}, {@code removeAll},
 912      * {@code retainAll} and {@code clear} operations.  It does not
 913      * support the {@code add} or {@code addAll} operations.
 914      */
 915     public Collection<V> values() {
 916         Collection<V> vs = values;
 917         return (vs != null) ? vs : (values = new Values());
 918     }
 919 
 920     private class Values extends AbstractCollection<V> {
 921         public Iterator<V> iterator() {
 922             return new ValueIterator();
 923         }
 924 
 925         public int size() {
 926             return WeakHashMap.this.size();
 927         }
 928 
 929         public boolean contains(Object o) {
 930             return containsValue(o);
 931         }
 932 
 933         public void clear() {
 934             WeakHashMap.this.clear();
 935         }
 936 
 937         public Spliterator<V> spliterator() {
 938             return new ValueSpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
 939         }
 940     }
 941 
 942     /**
 943      * Returns a {@link Set} view of the mappings contained in this map.
 944      * The set is backed by the map, so changes to the map are
 945      * reflected in the set, and vice-versa.  If the map is modified
 946      * while an iteration over the set is in progress (except through
 947      * the iterator's own {@code remove} operation, or through the
 948      * {@code setValue} operation on a map entry returned by the
 949      * iterator) the results of the iteration are undefined.  The set
 950      * supports element removal, which removes the corresponding
 951      * mapping from the map, via the {@code Iterator.remove},
 952      * {@code Set.remove}, {@code removeAll}, {@code retainAll} and
 953      * {@code clear} operations.  It does not support the
 954      * {@code add} or {@code addAll} operations.
 955      */
 956     public Set<Map.Entry<K,V>> entrySet() {
 957         Set<Map.Entry<K,V>> es = entrySet;
 958         return es != null ? es : (entrySet = new EntrySet());
 959     }
 960 
 961     private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
 962         public Iterator<Map.Entry<K,V>> iterator() {
 963             return new EntryIterator();
 964         }
 965 
 966         public boolean contains(Object o) {
 967             if (!(o instanceof Map.Entry))
 968                 return false;
 969             Map.Entry<?,?> e = (Map.Entry<?,?>)o;
 970             Entry<K,V> candidate = getEntry(e.getKey());
 971             return candidate != null && candidate.equals(e);
 972         }
 973 
 974         public boolean remove(Object o) {


< prev index next >