< prev index next >
src/java.desktop/share/classes/sun/print/PathGraphics.java
Print this page
*** 175,187 ****
/**
* Draws the outline of the specified rectangle.
* The left and right edges of the rectangle are at
! * <code>x</code> and <code>x + width</code>.
* The top and bottom edges are at
! * <code>y</code> and <code>y + height</code>.
* The rectangle is drawn using the graphics context's current color.
* @param x the <i>x</i> coordinate
* of the rectangle to be drawn.
* @param y the <i>y</i> coordinate
* of the rectangle to be drawn.
--- 175,187 ----
/**
* Draws the outline of the specified rectangle.
* The left and right edges of the rectangle are at
! * {@code x} and <code>x + width</code>.
* The top and bottom edges are at
! * {@code y} and <code>y + height</code>.
* The rectangle is drawn using the graphics context's current color.
* @param x the <i>x</i> coordinate
* of the rectangle to be drawn.
* @param y the <i>y</i> coordinate
* of the rectangle to be drawn.
*** 209,224 ****
}
/**
* Fills the specified rectangle.
* The left and right edges of the rectangle are at
! * <code>x</code> and <code>x + width - 1</code>.
* The top and bottom edges are at
! * <code>y</code> and <code>y + height - 1</code>.
* The resulting rectangle covers an area
! * <code>width</code> pixels wide by
! * <code>height</code> pixels tall.
* The rectangle is filled using the graphics context's current color.
* @param x the <i>x</i> coordinate
* of the rectangle to be filled.
* @param y the <i>y</i> coordinate
* of the rectangle to be filled.
--- 209,224 ----
}
/**
* Fills the specified rectangle.
* The left and right edges of the rectangle are at
! * {@code x} and <code>x + width - 1</code>.
* The top and bottom edges are at
! * {@code y} and <code>y + height - 1</code>.
* The resulting rectangle covers an area
! * {@code width} pixels wide by
! * {@code height} pixels tall.
* The rectangle is filled using the graphics context's current color.
* @param x the <i>x</i> coordinate
* of the rectangle to be filled.
* @param y the <i>y</i> coordinate
* of the rectangle to be filled.
*** 249,259 ****
* color of the current drawing surface. This operation does not
* use the current paint mode.
* <p>
* Beginning with Java 1.1, the background color
* of offscreen images may be system dependent. Applications should
! * use <code>setColor</code> followed by <code>fillRect</code> to
* ensure that an offscreen image is cleared to a specific color.
* @param x the <i>x</i> coordinate of the rectangle to clear.
* @param y the <i>y</i> coordinate of the rectangle to clear.
* @param width the width of the rectangle to clear.
* @param height the height of the rectangle to clear.
--- 249,259 ----
* color of the current drawing surface. This operation does not
* use the current paint mode.
* <p>
* Beginning with Java 1.1, the background color
* of offscreen images may be system dependent. Applications should
! * use {@code setColor} followed by {@code fillRect} to
* ensure that an offscreen image is cleared to a specific color.
* @param x the <i>x</i> coordinate of the rectangle to clear.
* @param y the <i>y</i> coordinate of the rectangle to clear.
* @param width the width of the rectangle to clear.
* @param height the height of the rectangle to clear.
*** 269,281 ****
}
/**
* Draws an outlined round-cornered rectangle using this graphics
* context's current color. The left and right edges of the rectangle
! * are at <code>x</code> and <code>x + width</code>,
* respectively. The top and bottom edges of the rectangle are at
! * <code>y</code> and <code>y + height</code>.
* @param x the <i>x</i> coordinate of the rectangle to be drawn.
* @param y the <i>y</i> coordinate of the rectangle to be drawn.
* @param width the width of the rectangle to be drawn.
* @param height the height of the rectangle to be drawn.
* @param arcWidth the horizontal diameter of the arc
--- 269,281 ----
}
/**
* Draws an outlined round-cornered rectangle using this graphics
* context's current color. The left and right edges of the rectangle
! * are at {@code x} and <code>x + width</code>,
* respectively. The top and bottom edges of the rectangle are at
! * {@code y} and <code>y + height</code>.
* @param x the <i>x</i> coordinate of the rectangle to be drawn.
* @param y the <i>y</i> coordinate of the rectangle to be drawn.
* @param width the width of the rectangle to be drawn.
* @param height the height of the rectangle to be drawn.
* @param arcWidth the horizontal diameter of the arc
*** 294,306 ****
/**
* Fills the specified rounded corner rectangle with the current color.
* The left and right edges of the rectangle
! * are at <code>x</code> and <code>x + width - 1</code>,
* respectively. The top and bottom edges of the rectangle are at
! * <code>y</code> and <code>y + height - 1</code>.
* @param x the <i>x</i> coordinate of the rectangle to be filled.
* @param y the <i>y</i> coordinate of the rectangle to be filled.
* @param width the width of the rectangle to be filled.
* @param height the height of the rectangle to be filled.
* @param arcWidth the horizontal diameter
--- 294,306 ----
/**
* Fills the specified rounded corner rectangle with the current color.
* The left and right edges of the rectangle
! * are at {@code x} and <code>x + width - 1</code>,
* respectively. The top and bottom edges of the rectangle are at
! * {@code y} and <code>y + height - 1</code>.
* @param x the <i>x</i> coordinate of the rectangle to be filled.
* @param y the <i>y</i> coordinate of the rectangle to be filled.
* @param width the width of the rectangle to be filled.
* @param height the height of the rectangle to be filled.
* @param arcWidth the horizontal diameter
*** 318,329 ****
}
/**
* Draws the outline of an oval.
* The result is a circle or ellipse that fits within the
! * rectangle specified by the <code>x</code>, <code>y</code>,
! * <code>width</code>, and <code>height</code> arguments.
* <p>
* The oval covers an area that is
* <code>width + 1</code> pixels wide
* and <code>height + 1</code> pixels tall.
* @param x the <i>x</i> coordinate of the upper left
--- 318,329 ----
}
/**
* Draws the outline of an oval.
* The result is a circle or ellipse that fits within the
! * rectangle specified by the {@code x}, {@code y},
! * {@code width}, and {@code height} arguments.
* <p>
* The oval covers an area that is
* <code>width + 1</code> pixels wide
* and <code>height + 1</code> pixels tall.
* @param x the <i>x</i> coordinate of the upper left
*** 357,376 ****
/**
* Draws the outline of a circular or elliptical arc
* covering the specified rectangle.
* <p>
! * The resulting arc begins at <code>startAngle</code> and extends
! * for <code>arcAngle</code> degrees, using the current color.
* Angles are interpreted such that 0 degrees
* is at the 3 o'clock position.
* A positive value indicates a counter-clockwise rotation
* while a negative value indicates a clockwise rotation.
* <p>
* The center of the arc is the center of the rectangle whose origin
* is (<i>x</i>, <i>y</i>) and whose size is specified by the
! * <code>width</code> and <code>height</code> arguments.
* <p>
* The resulting arc covers an area
* <code>width + 1</code> pixels wide
* by <code>height + 1</code> pixels tall.
* <p>
--- 357,376 ----
/**
* Draws the outline of a circular or elliptical arc
* covering the specified rectangle.
* <p>
! * The resulting arc begins at {@code startAngle} and extends
! * for {@code arcAngle} degrees, using the current color.
* Angles are interpreted such that 0 degrees
* is at the 3 o'clock position.
* A positive value indicates a counter-clockwise rotation
* while a negative value indicates a clockwise rotation.
* <p>
* The center of the arc is the center of the rectangle whose origin
* is (<i>x</i>, <i>y</i>) and whose size is specified by the
! * {@code width} and {@code height} arguments.
* <p>
* The resulting arc covers an area
* <code>width + 1</code> pixels wide
* by <code>height + 1</code> pixels tall.
* <p>
*** 401,420 ****
/**
* Fills a circular or elliptical arc covering the specified rectangle.
* <p>
! * The resulting arc begins at <code>startAngle</code> and extends
! * for <code>arcAngle</code> degrees.
* Angles are interpreted such that 0 degrees
* is at the 3 o'clock position.
* A positive value indicates a counter-clockwise rotation
* while a negative value indicates a clockwise rotation.
* <p>
* The center of the arc is the center of the rectangle whose origin
* is (<i>x</i>, <i>y</i>) and whose size is specified by the
! * <code>width</code> and <code>height</code> arguments.
* <p>
* The resulting arc covers an area
* <code>width + 1</code> pixels wide
* by <code>height + 1</code> pixels tall.
* <p>
--- 401,420 ----
/**
* Fills a circular or elliptical arc covering the specified rectangle.
* <p>
! * The resulting arc begins at {@code startAngle} and extends
! * for {@code arcAngle} degrees.
* Angles are interpreted such that 0 degrees
* is at the 3 o'clock position.
* A positive value indicates a counter-clockwise rotation
* while a negative value indicates a clockwise rotation.
* <p>
* The center of the arc is the center of the rectangle whose origin
* is (<i>x</i>, <i>y</i>) and whose size is specified by the
! * {@code width} and {@code height} arguments.
* <p>
* The resulting arc covers an area
* <code>width + 1</code> pixels wide
* by <code>height + 1</code> pixels tall.
* <p>
*** 476,495 ****
/**
* Draws a closed polygon defined by
* arrays of <i>x</i> and <i>y</i> coordinates.
* Each pair of (<i>x</i>, <i>y</i>) coordinates defines a point.
* <p>
! * This method draws the polygon defined by <code>nPoint</code> line
* segments, where the first <code>nPoint - 1</code>
* line segments are line segments from
* <code>(xPoints[i - 1], yPoints[i - 1])</code>
* to <code>(xPoints[i], yPoints[i])</code>, for
! * 1 ≤ <i>i</i> ≤ <code>nPoints</code>.
* The figure is automatically closed by drawing a line connecting
* the final point to the first point, if those points are different.
! * @param xPoints a an array of <code>x</code> coordinates.
! * @param yPoints a an array of <code>y</code> coordinates.
* @param nPoints a the total number of points.
* @see java.awt.Graphics#fillPolygon
* @see java.awt.Graphics#drawPolyline
*/
public void drawPolygon(int xPoints[], int yPoints[],
--- 476,495 ----
/**
* Draws a closed polygon defined by
* arrays of <i>x</i> and <i>y</i> coordinates.
* Each pair of (<i>x</i>, <i>y</i>) coordinates defines a point.
* <p>
! * This method draws the polygon defined by {@code nPoint} line
* segments, where the first <code>nPoint - 1</code>
* line segments are line segments from
* <code>(xPoints[i - 1], yPoints[i - 1])</code>
* to <code>(xPoints[i], yPoints[i])</code>, for
! * 1 ≤ <i>i</i> ≤ {@code nPoints}.
* The figure is automatically closed by drawing a line connecting
* the final point to the first point, if those points are different.
! * @param xPoints a an array of {@code x} coordinates.
! * @param yPoints a an array of {@code y} coordinates.
* @param nPoints a the total number of points.
* @see java.awt.Graphics#fillPolygon
* @see java.awt.Graphics#drawPolyline
*/
public void drawPolygon(int xPoints[], int yPoints[],
*** 498,508 ****
draw(new Polygon(xPoints, yPoints, nPoints));
}
/**
* Draws the outline of a polygon defined by the specified
! * <code>Polygon</code> object.
* @param p the polygon to draw.
* @see java.awt.Graphics#fillPolygon
* @see java.awt.Graphics#drawPolyline
*/
public void drawPolygon(Polygon p) {
--- 498,508 ----
draw(new Polygon(xPoints, yPoints, nPoints));
}
/**
* Draws the outline of a polygon defined by the specified
! * {@code Polygon} object.
* @param p the polygon to draw.
* @see java.awt.Graphics#fillPolygon
* @see java.awt.Graphics#drawPolyline
*/
public void drawPolygon(Polygon p) {
*** 511,533 ****
/**
* Fills a closed polygon defined by
* arrays of <i>x</i> and <i>y</i> coordinates.
* <p>
! * This method draws the polygon defined by <code>nPoint</code> line
* segments, where the first <code>nPoint - 1</code>
* line segments are line segments from
* <code>(xPoints[i - 1], yPoints[i - 1])</code>
* to <code>(xPoints[i], yPoints[i])</code>, for
! * 1 ≤ <i>i</i> ≤ <code>nPoints</code>.
* The figure is automatically closed by drawing a line connecting
* the final point to the first point, if those points are different.
* <p>
* The area inside the polygon is defined using an
* even-odd fill rule, also known as the alternating rule.
! * @param xPoints a an array of <code>x</code> coordinates.
! * @param yPoints a an array of <code>y</code> coordinates.
* @param nPoints a the total number of points.
* @see java.awt.Graphics#drawPolygon(int[], int[], int)
*/
public void fillPolygon(int xPoints[], int yPoints[],
int nPoints) {
--- 511,533 ----
/**
* Fills a closed polygon defined by
* arrays of <i>x</i> and <i>y</i> coordinates.
* <p>
! * This method draws the polygon defined by {@code nPoint} line
* segments, where the first <code>nPoint - 1</code>
* line segments are line segments from
* <code>(xPoints[i - 1], yPoints[i - 1])</code>
* to <code>(xPoints[i], yPoints[i])</code>, for
! * 1 ≤ <i>i</i> ≤ {@code nPoints}.
* The figure is automatically closed by drawing a line connecting
* the final point to the first point, if those points are different.
* <p>
* The area inside the polygon is defined using an
* even-odd fill rule, also known as the alternating rule.
! * @param xPoints a an array of {@code x} coordinates.
! * @param yPoints a an array of {@code y} coordinates.
* @param nPoints a the total number of points.
* @see java.awt.Graphics#drawPolygon(int[], int[], int)
*/
public void fillPolygon(int xPoints[], int yPoints[],
int nPoints) {
*** 1087,1105 ****
}
deviceFill(s.getPathIterator(deviceTransform), color);
}
/**
! * Fill the path defined by <code>pathIter</code>
* with the specified color.
* The path is provided in device coordinates.
*/
protected abstract void deviceFill(PathIterator pathIter, Color color);
/*
* Set the clipping path to that defined by
! * the passed in <code>PathIterator</code>.
*/
protected abstract void deviceClip(PathIterator pathIter);
/*
* Draw the outline of the rectangle without using path
--- 1087,1105 ----
}
deviceFill(s.getPathIterator(deviceTransform), color);
}
/**
! * Fill the path defined by {@code pathIter}
* with the specified color.
* The path is provided in device coordinates.
*/
protected abstract void deviceFill(PathIterator pathIter, Color color);
/*
* Set the clipping path to that defined by
! * the passed in {@code PathIterator}.
*/
protected abstract void deviceClip(PathIterator pathIter);
/*
* Draw the outline of the rectangle without using path
*** 1324,1343 ****
}
/**
! * The various <code>drawImage()</code> methods for
! * <code>PathGraphics</code> are all decomposed
! * into an invocation of <code>drawImageToPlatform</code>.
* The portion of the passed in image defined by
! * <code>srcX, srcY, srcWidth, and srcHeight</code>
* is transformed by the supplied AffineTransform and
* drawn using PS to the printer context.
*
* @param img The image to be drawn.
! * This method does nothing if <code>img</code> is null.
* @param xform Used to transform the image before drawing.
* This can be null.
* @param bgcolor This color is drawn where the image has transparent
* pixels. If this parameter is null then the
* pixels already in the destination should show
--- 1324,1343 ----
}
/**
! * The various {@code drawImage()} methods for
! * {@code PathGraphics} are all decomposed
! * into an invocation of {@code drawImageToPlatform}.
* The portion of the passed in image defined by
! * {@code srcX, srcY, srcWidth, and srcHeight}
* is transformed by the supplied AffineTransform and
* drawn using PS to the printer context.
*
* @param img The image to be drawn.
! * This method does nothing if {@code img} is null.
* @param xform Used to transform the image before drawing.
* This can be null.
* @param bgcolor This color is drawn where the image has transparent
* pixels. If this parameter is null then the
* pixels already in the destination should show
*** 1371,1381 ****
* This method returns immediately in all cases, even if the
* complete image has not yet been loaded, and it has not been dithered
* and converted for the current output device.
* <p>
* If the image has not yet been completely loaded, then
! * <code>drawImage</code> returns <code>false</code>. As more of
* the image becomes available, the process that draws the image notifies
* the specified image observer.
* @param img the specified image to be drawn.
* @param x the <i>x</i> coordinate.
* @param y the <i>y</i> coordinate.
--- 1371,1381 ----
* This method returns immediately in all cases, even if the
* complete image has not yet been loaded, and it has not been dithered
* and converted for the current output device.
* <p>
* If the image has not yet been completely loaded, then
! * {@code drawImage} returns {@code false}. As more of
* the image becomes available, the process that draws the image notifies
* the specified image observer.
* @param img the specified image to be drawn.
* @param x the <i>x</i> coordinate.
* @param y the <i>y</i> coordinate.
*** 1403,1415 ****
* <p>
* This method returns immediately in all cases, even if the
* entire image has not yet been scaled, dithered, and converted
* for the current output device.
* If the current output representation is not yet complete, then
! * <code>drawImage</code> returns <code>false</code>. As more of
* the image becomes available, the process that draws the image notifies
! * the image observer by calling its <code>imageUpdate</code> method.
* <p>
* A scaled version of an image will not necessarily be
* available immediately just because an unscaled version of the
* image has been constructed for this output device. Each size of
* the image may be cached separately and generated from the original
--- 1403,1415 ----
* <p>
* This method returns immediately in all cases, even if the
* entire image has not yet been scaled, dithered, and converted
* for the current output device.
* If the current output representation is not yet complete, then
! * {@code drawImage} returns {@code false}. As more of
* the image becomes available, the process that draws the image notifies
! * the image observer by calling its {@code imageUpdate} method.
* <p>
* A scaled version of an image will not necessarily be
* available immediately just because an unscaled version of the
* image has been constructed for this output device. Each size of
* the image may be cached separately and generated from the original
*** 1448,1462 ****
* This method returns immediately in all cases, even if the
* complete image has not yet been loaded, and it has not been dithered
* and converted for the current output device.
* <p>
* If the image has not yet been completely loaded, then
! * <code>drawImage</code> returns <code>false</code>. As more of
* the image becomes available, the process that draws the image notifies
* the specified image observer.
* @param img the specified image to be drawn.
! * This method does nothing if <code>img</code> is null.
* @param x the <i>x</i> coordinate.
* @param y the <i>y</i> coordinate.
* @param bgcolor the background color to paint under the
* non-opaque portions of the image.
* In this WPathGraphics implementation,
--- 1448,1462 ----
* This method returns immediately in all cases, even if the
* complete image has not yet been loaded, and it has not been dithered
* and converted for the current output device.
* <p>
* If the image has not yet been completely loaded, then
! * {@code drawImage} returns {@code false}. As more of
* the image becomes available, the process that draws the image notifies
* the specified image observer.
* @param img the specified image to be drawn.
! * This method does nothing if {@code img} is null.
* @param x the <i>x</i> coordinate.
* @param y the <i>y</i> coordinate.
* @param bgcolor the background color to paint under the
* non-opaque portions of the image.
* In this WPathGraphics implementation,
*** 1505,1525 ****
* <p>
* This method returns immediately in all cases, even if the
* entire image has not yet been scaled, dithered, and converted
* for the current output device.
* If the current output representation is not yet complete then
! * <code>drawImage</code> returns <code>false</code>. As more of
* the image becomes available, the process that draws the image notifies
* the specified image observer.
* <p>
* A scaled version of an image will not necessarily be
* available immediately just because an unscaled version of the
* image has been constructed for this output device. Each size of
* the image may be cached separately and generated from the original
* data in a separate image production sequence.
* @param img the specified image to be drawn.
! * This method does nothing if <code>img</code> is null.
* @param x the <i>x</i> coordinate.
* @param y the <i>y</i> coordinate.
* @param width the width of the rectangle.
* @param height the height of the rectangle.
* @param bgcolor the background color to paint under the
--- 1505,1525 ----
* <p>
* This method returns immediately in all cases, even if the
* entire image has not yet been scaled, dithered, and converted
* for the current output device.
* If the current output representation is not yet complete then
! * {@code drawImage} returns {@code false}. As more of
* the image becomes available, the process that draws the image notifies
* the specified image observer.
* <p>
* A scaled version of an image will not necessarily be
* available immediately just because an unscaled version of the
* image has been constructed for this output device. Each size of
* the image may be cached separately and generated from the original
* data in a separate image production sequence.
* @param img the specified image to be drawn.
! * This method does nothing if {@code img} is null.
* @param x the <i>x</i> coordinate.
* @param y the <i>y</i> coordinate.
* @param width the width of the rectangle.
* @param height the height of the rectangle.
* @param bgcolor the background color to paint under the
*** 1564,1574 ****
* <p>
* This method returns immediately in all cases, even if the
* image area to be drawn has not yet been scaled, dithered, and converted
* for the current output device.
* If the current output representation is not yet complete then
! * <code>drawImage</code> returns <code>false</code>. As more of
* the image becomes available, the process that draws the image notifies
* the specified image observer.
* <p>
* This method always uses the unscaled version of the image
* to render the scaled rectangle and performs the required
--- 1564,1574 ----
* <p>
* This method returns immediately in all cases, even if the
* image area to be drawn has not yet been scaled, dithered, and converted
* for the current output device.
* If the current output representation is not yet complete then
! * {@code drawImage} returns {@code false}. As more of
* the image becomes available, the process that draws the image notifies
* the specified image observer.
* <p>
* This method always uses the unscaled version of the image
* to render the scaled rectangle and performs the required
*** 1626,1636 ****
* <p>
* This method returns immediately in all cases, even if the
* image area to be drawn has not yet been scaled, dithered, and converted
* for the current output device.
* If the current output representation is not yet complete then
! * <code>drawImage</code> returns <code>false</code>. As more of
* the image becomes available, the process that draws the image notifies
* the specified image observer.
* <p>
* This method always uses the unscaled version of the image
* to render the scaled rectangle and performs the required
--- 1626,1636 ----
* <p>
* This method returns immediately in all cases, even if the
* image area to be drawn has not yet been scaled, dithered, and converted
* for the current output device.
* If the current output representation is not yet complete then
! * {@code drawImage} returns {@code false}. As more of
* the image becomes available, the process that draws the image notifies
* the specified image observer.
* <p>
* This method always uses the unscaled version of the image
* to render the scaled rectangle and performs the required
*** 1640,1650 ****
* of the source rectangle is mapped to the first coordinate of
* the destination rectangle, and the second source coordinate is
* mapped to the second destination coordinate. The subimage is
* scaled and flipped as needed to preserve those mappings.
* @param img the specified image to be drawn
! * This method does nothing if <code>img</code> is null.
* @param dx1 the <i>x</i> coordinate of the first corner of the
* destination rectangle.
* @param dy1 the <i>y</i> coordinate of the first corner of the
* destination rectangle.
* @param dx2 the <i>x</i> coordinate of the second corner of the
--- 1640,1650 ----
* of the source rectangle is mapped to the first coordinate of
* the destination rectangle, and the second source coordinate is
* mapped to the second destination coordinate. The subimage is
* scaled and flipped as needed to preserve those mappings.
* @param img the specified image to be drawn
! * This method does nothing if {@code img} is null.
* @param dx1 the <i>x</i> coordinate of the first corner of the
* destination rectangle.
* @param dy1 the <i>y</i> coordinate of the first corner of the
* destination rectangle.
* @param dx2 the <i>x</i> coordinate of the second corner of the
*** 1765,1775 ****
* transform attribute in the Graphics2D state is applied.
* The rendering attributes applied include the clip, transform,
* and composite attributes. Note that the result is
* undefined, if the given transform is noninvertible.
* @param img The image to be drawn.
! * This method does nothing if <code>img</code> is null.
* @param xform The transformation from image space into user space.
* @param obs The image observer to be notified as more of the image
* is converted.
* @see #transform
* @see #setTransform
--- 1765,1775 ----
* transform attribute in the Graphics2D state is applied.
* The rendering attributes applied include the clip, transform,
* and composite attributes. Note that the result is
* undefined, if the given transform is noninvertible.
* @param img The image to be drawn.
! * This method does nothing if {@code img} is null.
* @param xform The transformation from image space into user space.
* @param obs The image observer to be notified as more of the image
* is converted.
* @see #transform
* @see #setTransform
*** 1807,1817 ****
* img1 = op.filter(img, null);
* drawImage(img1, new AffineTransform(1f,0f,0f,1f,x,y), null);
* </pre>
* @param op The filter to be applied to the image before drawing.
* @param img The BufferedImage to be drawn.
! * This method does nothing if <code>img</code> is null.
* @param x,y The location in user space where the image should be drawn.
* @see #transform
* @see #setTransform
* @see #setComposite
* @see #clip
--- 1807,1817 ----
* img1 = op.filter(img, null);
* drawImage(img1, new AffineTransform(1f,0f,0f,1f,x,y), null);
* </pre>
* @param op The filter to be applied to the image before drawing.
* @param img The BufferedImage to be drawn.
! * This method does nothing if {@code img} is null.
* @param x,y The location in user space where the image should be drawn.
* @see #transform
* @see #setTransform
* @see #setComposite
* @see #clip
*** 1851,1861 ****
* transform attribute in the Graphics2D state is applied.
* The rendering attributes applied include the clip, transform,
* and composite attributes. Note that the result is
* undefined, if the given transform is noninvertible.
* @param img The image to be drawn.
! * This method does nothing if <code>img</code> is null.
* @param xform The transformation from image space into user space.
* @see #transform
* @see #setTransform
* @see #setComposite
* @see #clip
--- 1851,1861 ----
* transform attribute in the Graphics2D state is applied.
* The rendering attributes applied include the clip, transform,
* and composite attributes. Note that the result is
* undefined, if the given transform is noninvertible.
* @param img The image to be drawn.
! * This method does nothing if {@code img} is null.
* @param xform The transformation from image space into user space.
* @see #transform
* @see #setTransform
* @see #setComposite
* @see #clip
< prev index next >