1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.lang.ref.WeakReference;
  29 import java.lang.ref.ReferenceQueue;
  30 import java.util.function.Consumer;
  31 
  32 
  33 /**
  34  * Hash table based implementation of the <tt>Map</tt> interface, with
  35  * <em>weak keys</em>.
  36  * An entry in a <tt>WeakHashMap</tt> will automatically be removed when
  37  * its key is no longer in ordinary use.  More precisely, the presence of a
  38  * mapping for a given key will not prevent the key from being discarded by the
  39  * garbage collector, that is, made finalizable, finalized, and then reclaimed.
  40  * When a key has been discarded its entry is effectively removed from the map,
  41  * so this class behaves somewhat differently from other <tt>Map</tt>
  42  * implementations.
  43  *
  44  * <p> Both null values and the null key are supported. This class has
  45  * performance characteristics similar to those of the <tt>HashMap</tt>
  46  * class, and has the same efficiency parameters of <em>initial capacity</em>
  47  * and <em>load factor</em>.
  48  *
  49  * <p> Like most collection classes, this class is not synchronized.
  50  * A synchronized <tt>WeakHashMap</tt> may be constructed using the
  51  * {@link Collections#synchronizedMap Collections.synchronizedMap}
  52  * method.
  53  *
  54  * <p> This class is intended primarily for use with key objects whose
  55  * <tt>equals</tt> methods test for object identity using the
  56  * <tt>==</tt> operator.  Once such a key is discarded it can never be
  57  * recreated, so it is impossible to do a lookup of that key in a
  58  * <tt>WeakHashMap</tt> at some later time and be surprised that its entry
  59  * has been removed.  This class will work perfectly well with key objects
  60  * whose <tt>equals</tt> methods are not based upon object identity, such
  61  * as <tt>String</tt> instances.  With such recreatable key objects,
  62  * however, the automatic removal of <tt>WeakHashMap</tt> entries whose
  63  * keys have been discarded may prove to be confusing.
  64  *
  65  * <p> The behavior of the <tt>WeakHashMap</tt> class depends in part upon
  66  * the actions of the garbage collector, so several familiar (though not
  67  * required) <tt>Map</tt> invariants do not hold for this class.  Because
  68  * the garbage collector may discard keys at any time, a
  69  * <tt>WeakHashMap</tt> may behave as though an unknown thread is silently
  70  * removing entries.  In particular, even if you synchronize on a
  71  * <tt>WeakHashMap</tt> instance and invoke none of its mutator methods, it
  72  * is possible for the <tt>size</tt> method to return smaller values over
  73  * time, for the <tt>isEmpty</tt> method to return <tt>false</tt> and
  74  * then <tt>true</tt>, for the <tt>containsKey</tt> method to return
  75  * <tt>true</tt> and later <tt>false</tt> for a given key, for the
  76  * <tt>get</tt> method to return a value for a given key but later return
  77  * <tt>null</tt>, for the <tt>put</tt> method to return
  78  * <tt>null</tt> and the <tt>remove</tt> method to return
  79  * <tt>false</tt> for a key that previously appeared to be in the map, and
  80  * for successive examinations of the key set, the value collection, and
  81  * the entry set to yield successively smaller numbers of elements.
  82  *
  83  * <p> Each key object in a <tt>WeakHashMap</tt> is stored indirectly as
  84  * the referent of a weak reference.  Therefore a key will automatically be
  85  * removed only after the weak references to it, both inside and outside of the
  86  * map, have been cleared by the garbage collector.
  87  *
  88  * <p> <strong>Implementation note:</strong> The value objects in a
  89  * <tt>WeakHashMap</tt> are held by ordinary strong references.  Thus care
  90  * should be taken to ensure that value objects do not strongly refer to their
  91  * own keys, either directly or indirectly, since that will prevent the keys
  92  * from being discarded.  Note that a value object may refer indirectly to its
  93  * key via the <tt>WeakHashMap</tt> itself; that is, a value object may
  94  * strongly refer to some other key object whose associated value object, in
  95  * turn, strongly refers to the key of the first value object.  If the values
  96  * in the map do not rely on the map holding strong references to them, one way
  97  * to deal with this is to wrap values themselves within
  98  * <tt>WeakReferences</tt> before
  99  * inserting, as in: <tt>m.put(key, new WeakReference(value))</tt>,
 100  * and then unwrapping upon each <tt>get</tt>.
 101  *
 102  * <p>The iterators returned by the <tt>iterator</tt> method of the collections
 103  * returned by all of this class's "collection view methods" are
 104  * <i>fail-fast</i>: if the map is structurally modified at any time after the
 105  * iterator is created, in any way except through the iterator's own
 106  * <tt>remove</tt> method, the iterator will throw a {@link
 107  * ConcurrentModificationException}.  Thus, in the face of concurrent
 108  * modification, the iterator fails quickly and cleanly, rather than risking
 109  * arbitrary, non-deterministic behavior at an undetermined time in the future.
 110  *
 111  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 112  * as it is, generally speaking, impossible to make any hard guarantees in the
 113  * presence of unsynchronized concurrent modification.  Fail-fast iterators
 114  * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
 115  * Therefore, it would be wrong to write a program that depended on this
 116  * exception for its correctness:  <i>the fail-fast behavior of iterators
 117  * should be used only to detect bugs.</i>
 118  *
 119  * <p>This class is a member of the
 120  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 121  * Java Collections Framework</a>.
 122  *
 123  * @param <K> the type of keys maintained by this map
 124  * @param <V> the type of mapped values
 125  *
 126  * @author      Doug Lea
 127  * @author      Josh Bloch
 128  * @author      Mark Reinhold
 129  * @since       1.2
 130  * @see         java.util.HashMap
 131  * @see         java.lang.ref.WeakReference
 132  */
 133 public class WeakHashMap<K,V>
 134     extends AbstractMap<K,V>
 135     implements Map<K,V> {
 136 
 137     /**
 138      * The default initial capacity -- MUST be a power of two.
 139      */
 140     private static final int DEFAULT_INITIAL_CAPACITY = 16;
 141 
 142     /**
 143      * The maximum capacity, used if a higher value is implicitly specified
 144      * by either of the constructors with arguments.
 145      * MUST be a power of two <= 1<<30.
 146      */
 147     private static final int MAXIMUM_CAPACITY = 1 << 30;
 148 
 149     /**
 150      * The load factor used when none specified in constructor.
 151      */
 152     private static final float DEFAULT_LOAD_FACTOR = 0.75f;
 153 
 154     /**
 155      * The table, resized as necessary. Length MUST Always be a power of two.
 156      */
 157     Entry<K,V>[] table;
 158 
 159     /**
 160      * The number of key-value mappings contained in this weak hash map.
 161      */
 162     private int size;
 163 
 164     /**
 165      * The next size value at which to resize (capacity * load factor).
 166      */
 167     private int threshold;
 168 
 169     /**
 170      * The load factor for the hash table.
 171      */
 172     private final float loadFactor;
 173 
 174     /**
 175      * Reference queue for cleared WeakEntries
 176      */
 177     private final ReferenceQueue<Object> queue = new ReferenceQueue<>();
 178 
 179     /**
 180      * The number of times this WeakHashMap has been structurally modified.
 181      * Structural modifications are those that change the number of
 182      * mappings in the map or otherwise modify its internal structure
 183      * (e.g., rehash).  This field is used to make iterators on
 184      * Collection-views of the map fail-fast.
 185      *
 186      * @see ConcurrentModificationException
 187      */
 188     int modCount;
 189 
 190     /**
 191      * A randomizing value associated with this instance that is applied to
 192      * hash code of keys to make hash collisions harder to find.
 193      */
 194     transient final int hashSeed = sun.misc.Hashing.randomHashSeed(this);
 195 
 196     @SuppressWarnings("unchecked")
 197     private Entry<K,V>[] newTable(int n) {
 198         return (Entry<K,V>[]) new Entry<?,?>[n];
 199     }
 200 
 201     /**
 202      * Constructs a new, empty <tt>WeakHashMap</tt> with the given initial
 203      * capacity and the given load factor.
 204      *
 205      * @param  initialCapacity The initial capacity of the <tt>WeakHashMap</tt>
 206      * @param  loadFactor      The load factor of the <tt>WeakHashMap</tt>
 207      * @throws IllegalArgumentException if the initial capacity is negative,
 208      *         or if the load factor is nonpositive.
 209      */
 210     public WeakHashMap(int initialCapacity, float loadFactor) {
 211         if (initialCapacity < 0)
 212             throw new IllegalArgumentException("Illegal Initial Capacity: "+
 213                                                initialCapacity);
 214         if (initialCapacity > MAXIMUM_CAPACITY)
 215             initialCapacity = MAXIMUM_CAPACITY;
 216 
 217         if (loadFactor <= 0 || Float.isNaN(loadFactor))
 218             throw new IllegalArgumentException("Illegal Load factor: "+
 219                                                loadFactor);
 220         int capacity = 1;
 221         while (capacity < initialCapacity)
 222             capacity <<= 1;
 223         table = newTable(capacity);
 224         this.loadFactor = loadFactor;
 225         threshold = (int)(capacity * loadFactor);
 226     }
 227 
 228     /**
 229      * Constructs a new, empty <tt>WeakHashMap</tt> with the given initial
 230      * capacity and the default load factor (0.75).
 231      *
 232      * @param  initialCapacity The initial capacity of the <tt>WeakHashMap</tt>
 233      * @throws IllegalArgumentException if the initial capacity is negative
 234      */
 235     public WeakHashMap(int initialCapacity) {
 236         this(initialCapacity, DEFAULT_LOAD_FACTOR);
 237     }
 238 
 239     /**
 240      * Constructs a new, empty <tt>WeakHashMap</tt> with the default initial
 241      * capacity (16) and load factor (0.75).
 242      */
 243     public WeakHashMap() {
 244         this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
 245     }
 246 
 247     /**
 248      * Constructs a new <tt>WeakHashMap</tt> with the same mappings as the
 249      * specified map.  The <tt>WeakHashMap</tt> is created with the default
 250      * load factor (0.75) and an initial capacity sufficient to hold the
 251      * mappings in the specified map.
 252      *
 253      * @param   m the map whose mappings are to be placed in this map
 254      * @throws  NullPointerException if the specified map is null
 255      * @since   1.3
 256      */
 257     public WeakHashMap(Map<? extends K, ? extends V> m) {
 258         this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
 259                 DEFAULT_INITIAL_CAPACITY),
 260              DEFAULT_LOAD_FACTOR);
 261         putAll(m);
 262     }
 263 
 264     // internal utilities
 265 
 266     /**
 267      * Value representing null keys inside tables.
 268      */
 269     private static final Object NULL_KEY = new Object();
 270 
 271     /**
 272      * Use NULL_KEY for key if it is null.
 273      */
 274     private static Object maskNull(Object key) {
 275         return (key == null) ? NULL_KEY : key;
 276     }
 277 
 278     /**
 279      * Returns internal representation of null key back to caller as null.
 280      */
 281     static Object unmaskNull(Object key) {
 282         return (key == NULL_KEY) ? null : key;
 283     }
 284 
 285     /**
 286      * Checks for equality of non-null reference x and possibly-null y.  By
 287      * default uses Object.equals.
 288      */
 289     private static boolean eq(Object x, Object y) {
 290         return x == y || x.equals(y);
 291     }
 292 
 293     /**
 294      * Retrieve object hash code and applies a supplemental hash function to the
 295      * result hash, which defends against poor quality hash functions.  This is
 296      * critical because HashMap uses power-of-two length hash tables, that
 297      * otherwise encounter collisions for hashCodes that do not differ
 298      * in lower bits.
 299      */
 300     final int hash(Object k) {
 301         if (k instanceof String) {
 302             return ((String) k).hash32();
 303         }
 304         int  h = hashSeed ^ k.hashCode();
 305 
 306         // This function ensures that hashCodes that differ only by
 307         // constant multiples at each bit position have a bounded
 308         // number of collisions (approximately 8 at default load factor).
 309         h ^= (h >>> 20) ^ (h >>> 12);
 310         return h ^ (h >>> 7) ^ (h >>> 4);
 311     }
 312 
 313     /**
 314      * Returns index for hash code h.
 315      */
 316     private static int indexFor(int h, int length) {
 317         return h & (length-1);
 318     }
 319 
 320     /**
 321      * Expunges stale entries from the table.
 322      */
 323     private void expungeStaleEntries() {
 324         for (Object x; (x = queue.poll()) != null; ) {
 325             synchronized (queue) {
 326                 @SuppressWarnings("unchecked")
 327                     Entry<K,V> e = (Entry<K,V>) x;
 328                 int i = indexFor(e.hash, table.length);
 329 
 330                 Entry<K,V> prev = table[i];
 331                 Entry<K,V> p = prev;
 332                 while (p != null) {
 333                     Entry<K,V> next = p.next;
 334                     if (p == e) {
 335                         if (prev == e)
 336                             table[i] = next;
 337                         else
 338                             prev.next = next;
 339                         // Must not null out e.next;
 340                         // stale entries may be in use by a HashIterator
 341                         e.value = null; // Help GC
 342                         size--;
 343                         break;
 344                     }
 345                     prev = p;
 346                     p = next;
 347                 }
 348             }
 349         }
 350     }
 351 
 352     /**
 353      * Returns the table after first expunging stale entries.
 354      */
 355     private Entry<K,V>[] getTable() {
 356         expungeStaleEntries();
 357         return table;
 358     }
 359 
 360     /**
 361      * Returns the number of key-value mappings in this map.
 362      * This result is a snapshot, and may not reflect unprocessed
 363      * entries that will be removed before next attempted access
 364      * because they are no longer referenced.
 365      */
 366     public int size() {
 367         if (size == 0)
 368             return 0;
 369         expungeStaleEntries();
 370         return size;
 371     }
 372 
 373     /**
 374      * Returns <tt>true</tt> if this map contains no key-value mappings.
 375      * This result is a snapshot, and may not reflect unprocessed
 376      * entries that will be removed before next attempted access
 377      * because they are no longer referenced.
 378      */
 379     public boolean isEmpty() {
 380         return size() == 0;
 381     }
 382 
 383     /**
 384      * Returns the value to which the specified key is mapped,
 385      * or {@code null} if this map contains no mapping for the key.
 386      *
 387      * <p>More formally, if this map contains a mapping from a key
 388      * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
 389      * key.equals(k))}, then this method returns {@code v}; otherwise
 390      * it returns {@code null}.  (There can be at most one such mapping.)
 391      *
 392      * <p>A return value of {@code null} does not <i>necessarily</i>
 393      * indicate that the map contains no mapping for the key; it's also
 394      * possible that the map explicitly maps the key to {@code null}.
 395      * The {@link #containsKey containsKey} operation may be used to
 396      * distinguish these two cases.
 397      *
 398      * @see #put(Object, Object)
 399      */
 400     public V get(Object key) {
 401         Object k = maskNull(key);
 402         int h = hash(k);
 403         Entry<K,V>[] tab = getTable();
 404         int index = indexFor(h, tab.length);
 405         Entry<K,V> e = tab[index];
 406         while (e != null) {
 407             if (e.hash == h && eq(k, e.get()))
 408                 return e.value;
 409             e = e.next;
 410         }
 411         return null;
 412     }
 413 
 414     /**
 415      * Returns <tt>true</tt> if this map contains a mapping for the
 416      * specified key.
 417      *
 418      * @param  key   The key whose presence in this map is to be tested
 419      * @return <tt>true</tt> if there is a mapping for <tt>key</tt>;
 420      *         <tt>false</tt> otherwise
 421      */
 422     public boolean containsKey(Object key) {
 423         return getEntry(key) != null;
 424     }
 425 
 426     /**
 427      * Returns the entry associated with the specified key in this map.
 428      * Returns null if the map contains no mapping for this key.
 429      */
 430     Entry<K,V> getEntry(Object key) {
 431         Object k = maskNull(key);
 432         int h = hash(k);
 433         Entry<K,V>[] tab = getTable();
 434         int index = indexFor(h, tab.length);
 435         Entry<K,V> e = tab[index];
 436         while (e != null && !(e.hash == h && eq(k, e.get())))
 437             e = e.next;
 438         return e;
 439     }
 440 
 441     /**
 442      * Associates the specified value with the specified key in this map.
 443      * If the map previously contained a mapping for this key, the old
 444      * value is replaced.
 445      *
 446      * @param key key with which the specified value is to be associated.
 447      * @param value value to be associated with the specified key.
 448      * @return the previous value associated with <tt>key</tt>, or
 449      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 450      *         (A <tt>null</tt> return can also indicate that the map
 451      *         previously associated <tt>null</tt> with <tt>key</tt>.)
 452      */
 453     public V put(K key, V value) {
 454         Object k = maskNull(key);
 455         int h = hash(k);
 456         Entry<K,V>[] tab = getTable();
 457         int i = indexFor(h, tab.length);
 458 
 459         for (Entry<K,V> e = tab[i]; e != null; e = e.next) {
 460             if (h == e.hash && eq(k, e.get())) {
 461                 V oldValue = e.value;
 462                 if (value != oldValue)
 463                     e.value = value;
 464                 return oldValue;
 465             }
 466         }
 467 
 468         modCount++;
 469         Entry<K,V> e = tab[i];
 470         tab[i] = new Entry<>(k, value, queue, h, e);
 471         if (++size >= threshold)
 472             resize(tab.length * 2);
 473         return null;
 474     }
 475 
 476     /**
 477      * Rehashes the contents of this map into a new array with a
 478      * larger capacity.  This method is called automatically when the
 479      * number of keys in this map reaches its threshold.
 480      *
 481      * If current capacity is MAXIMUM_CAPACITY, this method does not
 482      * resize the map, but sets threshold to Integer.MAX_VALUE.
 483      * This has the effect of preventing future calls.
 484      *
 485      * @param newCapacity the new capacity, MUST be a power of two;
 486      *        must be greater than current capacity unless current
 487      *        capacity is MAXIMUM_CAPACITY (in which case value
 488      *        is irrelevant).
 489      */
 490     void resize(int newCapacity) {
 491         Entry<K,V>[] oldTable = getTable();
 492         int oldCapacity = oldTable.length;
 493         if (oldCapacity == MAXIMUM_CAPACITY) {
 494             threshold = Integer.MAX_VALUE;
 495             return;
 496         }
 497 
 498         Entry<K,V>[] newTable = newTable(newCapacity);
 499         transfer(oldTable, newTable);
 500         table = newTable;
 501 
 502         /*
 503          * If ignoring null elements and processing ref queue caused massive
 504          * shrinkage, then restore old table.  This should be rare, but avoids
 505          * unbounded expansion of garbage-filled tables.
 506          */
 507         if (size >= threshold / 2) {
 508             threshold = (int)(newCapacity * loadFactor);
 509         } else {
 510             expungeStaleEntries();
 511             transfer(newTable, oldTable);
 512             table = oldTable;
 513         }
 514     }
 515 
 516     /** Transfers all entries from src to dest tables */
 517     private void transfer(Entry<K,V>[] src, Entry<K,V>[] dest) {
 518         for (int j = 0; j < src.length; ++j) {
 519             Entry<K,V> e = src[j];
 520             src[j] = null;
 521             while (e != null) {
 522                 Entry<K,V> next = e.next;
 523                 Object key = e.get();
 524                 if (key == null) {
 525                     e.next = null;  // Help GC
 526                     e.value = null; //  "   "
 527                     size--;
 528                 } else {
 529                     int i = indexFor(e.hash, dest.length);
 530                     e.next = dest[i];
 531                     dest[i] = e;
 532                 }
 533                 e = next;
 534             }
 535         }
 536     }
 537 
 538     /**
 539      * Copies all of the mappings from the specified map to this map.
 540      * These mappings will replace any mappings that this map had for any
 541      * of the keys currently in the specified map.
 542      *
 543      * @param m mappings to be stored in this map.
 544      * @throws  NullPointerException if the specified map is null.
 545      */
 546     public void putAll(Map<? extends K, ? extends V> m) {
 547         int numKeysToBeAdded = m.size();
 548         if (numKeysToBeAdded == 0)
 549             return;
 550 
 551         /*
 552          * Expand the map if the map if the number of mappings to be added
 553          * is greater than or equal to threshold.  This is conservative; the
 554          * obvious condition is (m.size() + size) >= threshold, but this
 555          * condition could result in a map with twice the appropriate capacity,
 556          * if the keys to be added overlap with the keys already in this map.
 557          * By using the conservative calculation, we subject ourself
 558          * to at most one extra resize.
 559          */
 560         if (numKeysToBeAdded > threshold) {
 561             int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
 562             if (targetCapacity > MAXIMUM_CAPACITY)
 563                 targetCapacity = MAXIMUM_CAPACITY;
 564             int newCapacity = table.length;
 565             while (newCapacity < targetCapacity)
 566                 newCapacity <<= 1;
 567             if (newCapacity > table.length)
 568                 resize(newCapacity);
 569         }
 570 
 571         for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
 572             put(e.getKey(), e.getValue());
 573     }
 574 
 575     /**
 576      * Removes the mapping for a key from this weak hash map if it is present.
 577      * More formally, if this map contains a mapping from key <tt>k</tt> to
 578      * value <tt>v</tt> such that <code>(key==null ?  k==null :
 579      * key.equals(k))</code>, that mapping is removed.  (The map can contain
 580      * at most one such mapping.)
 581      *
 582      * <p>Returns the value to which this map previously associated the key,
 583      * or <tt>null</tt> if the map contained no mapping for the key.  A
 584      * return value of <tt>null</tt> does not <i>necessarily</i> indicate
 585      * that the map contained no mapping for the key; it's also possible
 586      * that the map explicitly mapped the key to <tt>null</tt>.
 587      *
 588      * <p>The map will not contain a mapping for the specified key once the
 589      * call returns.
 590      *
 591      * @param key key whose mapping is to be removed from the map
 592      * @return the previous value associated with <tt>key</tt>, or
 593      *         <tt>null</tt> if there was no mapping for <tt>key</tt>
 594      */
 595     public V remove(Object key) {
 596         Object k = maskNull(key);
 597         int h = hash(k);
 598         Entry<K,V>[] tab = getTable();
 599         int i = indexFor(h, tab.length);
 600         Entry<K,V> prev = tab[i];
 601         Entry<K,V> e = prev;
 602 
 603         while (e != null) {
 604             Entry<K,V> next = e.next;
 605             if (h == e.hash && eq(k, e.get())) {
 606                 modCount++;
 607                 size--;
 608                 if (prev == e)
 609                     tab[i] = next;
 610                 else
 611                     prev.next = next;
 612                 return e.value;
 613             }
 614             prev = e;
 615             e = next;
 616         }
 617 
 618         return null;
 619     }
 620 
 621     /** Special version of remove needed by Entry set */
 622     boolean removeMapping(Object o) {
 623         if (!(o instanceof Map.Entry))
 624             return false;
 625         Entry<K,V>[] tab = getTable();
 626         Map.Entry<?,?> entry = (Map.Entry<?,?>)o;
 627         Object k = maskNull(entry.getKey());
 628         int h = hash(k);
 629         int i = indexFor(h, tab.length);
 630         Entry<K,V> prev = tab[i];
 631         Entry<K,V> e = prev;
 632 
 633         while (e != null) {
 634             Entry<K,V> next = e.next;
 635             if (h == e.hash && e.equals(entry)) {
 636                 modCount++;
 637                 size--;
 638                 if (prev == e)
 639                     tab[i] = next;
 640                 else
 641                     prev.next = next;
 642                 return true;
 643             }
 644             prev = e;
 645             e = next;
 646         }
 647 
 648         return false;
 649     }
 650 
 651     /**
 652      * Removes all of the mappings from this map.
 653      * The map will be empty after this call returns.
 654      */
 655     public void clear() {
 656         // clear out ref queue. We don't need to expunge entries
 657         // since table is getting cleared.
 658         while (queue.poll() != null)
 659             ;
 660 
 661         modCount++;
 662         Arrays.fill(table, null);
 663         size = 0;
 664 
 665         // Allocation of array may have caused GC, which may have caused
 666         // additional entries to go stale.  Removing these entries from the
 667         // reference queue will make them eligible for reclamation.
 668         while (queue.poll() != null)
 669             ;
 670     }
 671 
 672     /**
 673      * Returns <tt>true</tt> if this map maps one or more keys to the
 674      * specified value.
 675      *
 676      * @param value value whose presence in this map is to be tested
 677      * @return <tt>true</tt> if this map maps one or more keys to the
 678      *         specified value
 679      */
 680     public boolean containsValue(Object value) {
 681         if (value==null)
 682             return containsNullValue();
 683 
 684         Entry<K,V>[] tab = getTable();
 685         for (int i = tab.length; i-- > 0;)
 686             for (Entry<K,V> e = tab[i]; e != null; e = e.next)
 687                 if (value.equals(e.value))
 688                     return true;
 689         return false;
 690     }
 691 
 692     /**
 693      * Special-case code for containsValue with null argument
 694      */
 695     private boolean containsNullValue() {
 696         Entry<K,V>[] tab = getTable();
 697         for (int i = tab.length; i-- > 0;)
 698             for (Entry<K,V> e = tab[i]; e != null; e = e.next)
 699                 if (e.value==null)
 700                     return true;
 701         return false;
 702     }
 703 
 704     /**
 705      * The entries in this hash table extend WeakReference, using its main ref
 706      * field as the key.
 707      */
 708     private static class Entry<K,V> extends WeakReference<Object> implements Map.Entry<K,V> {
 709         V value;
 710         final int hash;
 711         Entry<K,V> next;
 712 
 713         /**
 714          * Creates new entry.
 715          */
 716         Entry(Object key, V value,
 717               ReferenceQueue<Object> queue,
 718               int hash, Entry<K,V> next) {
 719             super(key, queue);
 720             this.value = value;
 721             this.hash  = hash;
 722             this.next  = next;
 723         }
 724 
 725         @SuppressWarnings("unchecked")
 726         public K getKey() {
 727             return (K) WeakHashMap.unmaskNull(get());
 728         }
 729 
 730         public V getValue() {
 731             return value;
 732         }
 733 
 734         public V setValue(V newValue) {
 735             V oldValue = value;
 736             value = newValue;
 737             return oldValue;
 738         }
 739 
 740         public boolean equals(Object o) {
 741             if (!(o instanceof Map.Entry))
 742                 return false;
 743             Map.Entry<?,?> e = (Map.Entry<?,?>)o;
 744             K k1 = getKey();
 745             Object k2 = e.getKey();
 746             if (k1 == k2 || (k1 != null && k1.equals(k2))) {
 747                 V v1 = getValue();
 748                 Object v2 = e.getValue();
 749                 if (v1 == v2 || (v1 != null && v1.equals(v2)))
 750                     return true;
 751             }
 752             return false;
 753         }
 754 
 755         public int hashCode() {
 756             K k = getKey();
 757             V v = getValue();
 758             return ((k==null ? 0 : k.hashCode()) ^
 759                     (v==null ? 0 : v.hashCode()));
 760         }
 761 
 762         public String toString() {
 763             return getKey() + "=" + getValue();
 764         }
 765     }
 766 
 767     private abstract class HashIterator<T> implements Iterator<T> {
 768         private int index;
 769         private Entry<K,V> entry = null;
 770         private Entry<K,V> lastReturned = null;
 771         private int expectedModCount = modCount;
 772 
 773         /**
 774          * Strong reference needed to avoid disappearance of key
 775          * between hasNext and next
 776          */
 777         private Object nextKey = null;
 778 
 779         /**
 780          * Strong reference needed to avoid disappearance of key
 781          * between nextEntry() and any use of the entry
 782          */
 783         private Object currentKey = null;
 784 
 785         HashIterator() {
 786             index = isEmpty() ? 0 : table.length;
 787         }
 788 
 789         public boolean hasNext() {
 790             Entry<K,V>[] t = table;
 791 
 792             while (nextKey == null) {
 793                 Entry<K,V> e = entry;
 794                 int i = index;
 795                 while (e == null && i > 0)
 796                     e = t[--i];
 797                 entry = e;
 798                 index = i;
 799                 if (e == null) {
 800                     currentKey = null;
 801                     return false;
 802                 }
 803                 nextKey = e.get(); // hold on to key in strong ref
 804                 if (nextKey == null)
 805                     entry = entry.next;
 806             }
 807             return true;
 808         }
 809 
 810         /** The common parts of next() across different types of iterators */
 811         protected Entry<K,V> nextEntry() {
 812             if (modCount != expectedModCount)
 813                 throw new ConcurrentModificationException();
 814             if (nextKey == null && !hasNext())
 815                 throw new NoSuchElementException();
 816 
 817             lastReturned = entry;
 818             entry = entry.next;
 819             currentKey = nextKey;
 820             nextKey = null;
 821             return lastReturned;
 822         }
 823 
 824         public void remove() {
 825             if (lastReturned == null)
 826                 throw new IllegalStateException();
 827             if (modCount != expectedModCount)
 828                 throw new ConcurrentModificationException();
 829 
 830             WeakHashMap.this.remove(currentKey);
 831             expectedModCount = modCount;
 832             lastReturned = null;
 833             currentKey = null;
 834         }
 835 
 836     }
 837 
 838     private class ValueIterator extends HashIterator<V> {
 839         public V next() {
 840             return nextEntry().value;
 841         }
 842     }
 843 
 844     private class KeyIterator extends HashIterator<K> {
 845         public K next() {
 846             return nextEntry().getKey();
 847         }
 848     }
 849 
 850     private class EntryIterator extends HashIterator<Map.Entry<K,V>> {
 851         public Map.Entry<K,V> next() {
 852             return nextEntry();
 853         }
 854     }
 855 
 856     // Views
 857 
 858     private transient Set<Map.Entry<K,V>> entrySet = null;
 859 
 860     /**
 861      * Returns a {@link Set} view of the keys contained in this map.
 862      * The set is backed by the map, so changes to the map are
 863      * reflected in the set, and vice-versa.  If the map is modified
 864      * while an iteration over the set is in progress (except through
 865      * the iterator's own <tt>remove</tt> operation), the results of
 866      * the iteration are undefined.  The set supports element removal,
 867      * which removes the corresponding mapping from the map, via the
 868      * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
 869      * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
 870      * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
 871      * operations.
 872      */
 873     public Set<K> keySet() {
 874         Set<K> ks = keySet;
 875         return (ks != null ? ks : (keySet = new KeySet()));
 876     }
 877 
 878     private class KeySet extends AbstractSet<K> {
 879         public Iterator<K> iterator() {
 880             return new KeyIterator();
 881         }
 882 
 883         public int size() {
 884             return WeakHashMap.this.size();
 885         }
 886 
 887         public boolean contains(Object o) {
 888             return containsKey(o);
 889         }
 890 
 891         public boolean remove(Object o) {
 892             if (containsKey(o)) {
 893                 WeakHashMap.this.remove(o);
 894                 return true;
 895             }
 896             else
 897                 return false;
 898         }
 899 
 900         public void clear() {
 901             WeakHashMap.this.clear();
 902         }
 903 
 904         public Spliterator<K> spliterator() {
 905             return new KeySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
 906         }
 907     }
 908 
 909     /**
 910      * Returns a {@link Collection} view of the values contained in this map.
 911      * The collection is backed by the map, so changes to the map are
 912      * reflected in the collection, and vice-versa.  If the map is
 913      * modified while an iteration over the collection is in progress
 914      * (except through the iterator's own <tt>remove</tt> operation),
 915      * the results of the iteration are undefined.  The collection
 916      * supports element removal, which removes the corresponding
 917      * mapping from the map, via the <tt>Iterator.remove</tt>,
 918      * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
 919      * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
 920      * support the <tt>add</tt> or <tt>addAll</tt> operations.
 921      */
 922     public Collection<V> values() {
 923         Collection<V> vs = values;
 924         return (vs != null) ? vs : (values = new Values());
 925     }
 926 
 927     private class Values extends AbstractCollection<V> {
 928         public Iterator<V> iterator() {
 929             return new ValueIterator();
 930         }
 931 
 932         public int size() {
 933             return WeakHashMap.this.size();
 934         }
 935 
 936         public boolean contains(Object o) {
 937             return containsValue(o);
 938         }
 939 
 940         public void clear() {
 941             WeakHashMap.this.clear();
 942         }
 943 
 944         public Spliterator<V> spliterator() {
 945             return new ValueSpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
 946         }
 947     }
 948 
 949     /**
 950      * Returns a {@link Set} view of the mappings contained in this map.
 951      * The set is backed by the map, so changes to the map are
 952      * reflected in the set, and vice-versa.  If the map is modified
 953      * while an iteration over the set is in progress (except through
 954      * the iterator's own <tt>remove</tt> operation, or through the
 955      * <tt>setValue</tt> operation on a map entry returned by the
 956      * iterator) the results of the iteration are undefined.  The set
 957      * supports element removal, which removes the corresponding
 958      * mapping from the map, via the <tt>Iterator.remove</tt>,
 959      * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
 960      * <tt>clear</tt> operations.  It does not support the
 961      * <tt>add</tt> or <tt>addAll</tt> operations.
 962      */
 963     public Set<Map.Entry<K,V>> entrySet() {
 964         Set<Map.Entry<K,V>> es = entrySet;
 965         return es != null ? es : (entrySet = new EntrySet());
 966     }
 967 
 968     private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
 969         public Iterator<Map.Entry<K,V>> iterator() {
 970             return new EntryIterator();
 971         }
 972 
 973         public boolean contains(Object o) {
 974             if (!(o instanceof Map.Entry))
 975                 return false;
 976             Map.Entry<?,?> e = (Map.Entry<?,?>)o;
 977             Entry<K,V> candidate = getEntry(e.getKey());
 978             return candidate != null && candidate.equals(e);
 979         }
 980 
 981         public boolean remove(Object o) {
 982             return removeMapping(o);
 983         }
 984 
 985         public int size() {
 986             return WeakHashMap.this.size();
 987         }
 988 
 989         public void clear() {
 990             WeakHashMap.this.clear();
 991         }
 992 
 993         private List<Map.Entry<K,V>> deepCopy() {
 994             List<Map.Entry<K,V>> list = new ArrayList<>(size());
 995             for (Map.Entry<K,V> e : this)
 996                 list.add(new AbstractMap.SimpleEntry<>(e));
 997             return list;
 998         }
 999 
1000         public Object[] toArray() {
1001             return deepCopy().toArray();
1002         }
1003 
1004         public <T> T[] toArray(T[] a) {
1005             return deepCopy().toArray(a);
1006         }
1007 
1008         public Spliterator<Map.Entry<K,V>> spliterator() {
1009             return new EntrySpliterator<>(WeakHashMap.this, 0, -1, 0, 0);
1010         }
1011     }
1012 
1013     /**
1014      * Similar form as other hash Spliterators, but skips dead
1015      * elements.
1016      */
1017     static class WeakHashMapSpliterator<K,V> {
1018         final WeakHashMap<K,V> map;
1019         WeakHashMap.Entry<K,V> current; // current node
1020         int index;             // current index, modified on advance/split
1021         int fence;             // -1 until first use; then one past last index
1022         int est;               // size estimate
1023         int expectedModCount;  // for comodification checks
1024 
1025         WeakHashMapSpliterator(WeakHashMap<K,V> m, int origin,
1026                                int fence, int est,
1027                                int expectedModCount) {
1028             this.map = m;
1029             this.index = origin;
1030             this.fence = fence;
1031             this.est = est;
1032             this.expectedModCount = expectedModCount;
1033         }
1034 
1035         final int getFence() { // initialize fence and size on first use
1036             int hi;
1037             if ((hi = fence) < 0) {
1038                 WeakHashMap<K,V> m = map;
1039                 est = m.size();
1040                 expectedModCount = m.modCount;
1041                 hi = fence = m.table.length;
1042             }
1043             return hi;
1044         }
1045 
1046         public final long estimateSize() {
1047             getFence(); // force init
1048             return (long) est;
1049         }
1050     }
1051 
1052     static final class KeySpliterator<K,V>
1053         extends WeakHashMapSpliterator<K,V>
1054         implements Spliterator<K> {
1055         KeySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1056                        int expectedModCount) {
1057             super(m, origin, fence, est, expectedModCount);
1058         }
1059 
1060         public KeySpliterator<K,V> trySplit() {
1061             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1062             return (lo >= mid) ? null :
1063                 new KeySpliterator<K,V>(map, lo, index = mid, est >>>= 1,
1064                                         expectedModCount);
1065         }
1066 
1067         public void forEachRemaining(Consumer<? super K> action) {
1068             int i, hi, mc;
1069             if (action == null)
1070                 throw new NullPointerException();
1071             WeakHashMap<K,V> m = map;
1072             WeakHashMap.Entry<K,V>[] tab = m.table;
1073             if ((hi = fence) < 0) {
1074                 mc = expectedModCount = m.modCount;
1075                 hi = fence = tab.length;
1076             }
1077             else
1078                 mc = expectedModCount;
1079             if (tab.length >= hi && (i = index) >= 0 && i < hi) {
1080                 index = hi;
1081                 WeakHashMap.Entry<K,V> p = current;
1082                 do {
1083                     if (p == null)
1084                         p = tab[i++];
1085                     else {
1086                         Object x = p.get();
1087                         p = p.next;
1088                         if (x != null) {
1089                             @SuppressWarnings("unchecked") K k =
1090                                 (K) WeakHashMap.unmaskNull(x);
1091                             action.accept(k);
1092                         }
1093                     }
1094                 } while (p != null || i < hi);
1095             }
1096             if (m.modCount != mc)
1097                 throw new ConcurrentModificationException();
1098         }
1099 
1100         public boolean tryAdvance(Consumer<? super K> action) {
1101             int hi;
1102             if (action == null)
1103                 throw new NullPointerException();
1104             WeakHashMap.Entry<K,V>[] tab = map.table;
1105             if (tab.length >= (hi = getFence()) && index >= 0) {
1106                 while (current != null || index < hi) {
1107                     if (current == null)
1108                         current = tab[index++];
1109                     else {
1110                         Object x = current.get();
1111                         current = current.next;
1112                         if (x != null) {
1113                             @SuppressWarnings("unchecked") K k =
1114                                 (K) WeakHashMap.unmaskNull(x);
1115                             action.accept(k);
1116                             if (map.modCount != expectedModCount)
1117                                 throw new ConcurrentModificationException();
1118                             return true;
1119                         }
1120                     }
1121                 }
1122             }
1123             return false;
1124         }
1125 
1126         public int characteristics() {
1127             return Spliterator.DISTINCT;
1128         }
1129     }
1130 
1131     static final class ValueSpliterator<K,V>
1132         extends WeakHashMapSpliterator<K,V>
1133         implements Spliterator<V> {
1134         ValueSpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1135                          int expectedModCount) {
1136             super(m, origin, fence, est, expectedModCount);
1137         }
1138 
1139         public ValueSpliterator<K,V> trySplit() {
1140             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1141             return (lo >= mid) ? null :
1142                 new ValueSpliterator<K,V>(map, lo, index = mid, est >>>= 1,
1143                                           expectedModCount);
1144         }
1145 
1146         public void forEachRemaining(Consumer<? super V> action) {
1147             int i, hi, mc;
1148             if (action == null)
1149                 throw new NullPointerException();
1150             WeakHashMap<K,V> m = map;
1151             WeakHashMap.Entry<K,V>[] tab = m.table;
1152             if ((hi = fence) < 0) {
1153                 mc = expectedModCount = m.modCount;
1154                 hi = fence = tab.length;
1155             }
1156             else
1157                 mc = expectedModCount;
1158             if (tab.length >= hi && (i = index) >= 0 && i < hi) {
1159                 index = hi;
1160                 WeakHashMap.Entry<K,V> p = current;
1161                 do {
1162                     if (p == null)
1163                         p = tab[i++];
1164                     else {
1165                         Object x = p.get();
1166                         V v = p.value;
1167                         p = p.next;
1168                         if (x != null)
1169                             action.accept(v);
1170                     }
1171                 } while (p != null || i < hi);
1172             }
1173             if (m.modCount != mc)
1174                 throw new ConcurrentModificationException();
1175         }
1176 
1177         public boolean tryAdvance(Consumer<? super V> action) {
1178             int hi;
1179             if (action == null)
1180                 throw new NullPointerException();
1181             WeakHashMap.Entry<K,V>[] tab = map.table;
1182             if (tab.length >= (hi = getFence()) && index >= 0) {
1183                 while (current != null || index < hi) {
1184                     if (current == null)
1185                         current = tab[index++];
1186                     else {
1187                         Object x = current.get();
1188                         V v = current.value;
1189                         current = current.next;
1190                         if (x != null) {
1191                             action.accept(v);
1192                             if (map.modCount != expectedModCount)
1193                                 throw new ConcurrentModificationException();
1194                             return true;
1195                         }
1196                     }
1197                 }
1198             }
1199             return false;
1200         }
1201 
1202         public int characteristics() {
1203             return 0;
1204         }
1205     }
1206 
1207     static final class EntrySpliterator<K,V>
1208         extends WeakHashMapSpliterator<K,V>
1209         implements Spliterator<Map.Entry<K,V>> {
1210         EntrySpliterator(WeakHashMap<K,V> m, int origin, int fence, int est,
1211                        int expectedModCount) {
1212             super(m, origin, fence, est, expectedModCount);
1213         }
1214 
1215         public EntrySpliterator<K,V> trySplit() {
1216             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1217             return (lo >= mid) ? null :
1218                 new EntrySpliterator<K,V>(map, lo, index = mid, est >>>= 1,
1219                                           expectedModCount);
1220         }
1221 
1222 
1223         public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
1224             int i, hi, mc;
1225             if (action == null)
1226                 throw new NullPointerException();
1227             WeakHashMap<K,V> m = map;
1228             WeakHashMap.Entry<K,V>[] tab = m.table;
1229             if ((hi = fence) < 0) {
1230                 mc = expectedModCount = m.modCount;
1231                 hi = fence = tab.length;
1232             }
1233             else
1234                 mc = expectedModCount;
1235             if (tab.length >= hi && (i = index) >= 0 && i < hi) {
1236                 index = hi;
1237                 WeakHashMap.Entry<K,V> p = current;
1238                 do {
1239                     if (p == null)
1240                         p = tab[i++];
1241                     else {
1242                         Object x = p.get();
1243                         V v = p.value;
1244                         p = p.next;
1245                         if (x != null) {
1246                             @SuppressWarnings("unchecked") K k =
1247                                 (K) WeakHashMap.unmaskNull(x);
1248                             action.accept
1249                                 (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
1250                         }
1251                     }
1252                 } while (p != null || i < hi);
1253             }
1254             if (m.modCount != mc)
1255                 throw new ConcurrentModificationException();
1256         }
1257 
1258         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
1259             int hi;
1260             if (action == null)
1261                 throw new NullPointerException();
1262             WeakHashMap.Entry<K,V>[] tab = map.table;
1263             if (tab.length >= (hi = getFence()) && index >= 0) {
1264                 while (current != null || index < hi) {
1265                     if (current == null)
1266                         current = tab[index++];
1267                     else {
1268                         Object x = current.get();
1269                         V v = current.value;
1270                         current = current.next;
1271                         if (x != null) {
1272                             @SuppressWarnings("unchecked") K k =
1273                                 (K) WeakHashMap.unmaskNull(x);
1274                             action.accept
1275                                 (new AbstractMap.SimpleImmutableEntry<K,V>(k, v));
1276                             if (map.modCount != expectedModCount)
1277                                 throw new ConcurrentModificationException();
1278                             return true;
1279                         }
1280                     }
1281                 }
1282             }
1283             return false;
1284         }
1285 
1286         public int characteristics() {
1287             return Spliterator.DISTINCT;
1288         }
1289     }
1290 
1291 }