1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.io.IOException;
  29 import java.io.InvalidObjectException;
  30 import java.io.Serializable;
  31 import java.lang.reflect.ParameterizedType;
  32 import java.lang.reflect.Type;
  33 import java.util.function.BiConsumer;
  34 import java.util.function.BiFunction;
  35 import java.util.function.Consumer;
  36 import java.util.function.Function;
  37 
  38 /**
  39  * Hash table based implementation of the <tt>Map</tt> interface.  This
  40  * implementation provides all of the optional map operations, and permits
  41  * <tt>null</tt> values and the <tt>null</tt> key.  (The <tt>HashMap</tt>
  42  * class is roughly equivalent to <tt>Hashtable</tt>, except that it is
  43  * unsynchronized and permits nulls.)  This class makes no guarantees as to
  44  * the order of the map; in particular, it does not guarantee that the order
  45  * will remain constant over time.
  46  *
  47  * <p>This implementation provides constant-time performance for the basic
  48  * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function
  49  * disperses the elements properly among the buckets.  Iteration over
  50  * collection views requires time proportional to the "capacity" of the
  51  * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number
  52  * of key-value mappings).  Thus, it's very important not to set the initial
  53  * capacity too high (or the load factor too low) if iteration performance is
  54  * important.
  55  *
  56  * <p>An instance of <tt>HashMap</tt> has two parameters that affect its
  57  * performance: <i>initial capacity</i> and <i>load factor</i>.  The
  58  * <i>capacity</i> is the number of buckets in the hash table, and the initial
  59  * capacity is simply the capacity at the time the hash table is created.  The
  60  * <i>load factor</i> is a measure of how full the hash table is allowed to
  61  * get before its capacity is automatically increased.  When the number of
  62  * entries in the hash table exceeds the product of the load factor and the
  63  * current capacity, the hash table is <i>rehashed</i> (that is, internal data
  64  * structures are rebuilt) so that the hash table has approximately twice the
  65  * number of buckets.
  66  *
  67  * <p>As a general rule, the default load factor (.75) offers a good
  68  * tradeoff between time and space costs.  Higher values decrease the
  69  * space overhead but increase the lookup cost (reflected in most of
  70  * the operations of the <tt>HashMap</tt> class, including
  71  * <tt>get</tt> and <tt>put</tt>).  The expected number of entries in
  72  * the map and its load factor should be taken into account when
  73  * setting its initial capacity, so as to minimize the number of
  74  * rehash operations.  If the initial capacity is greater than the
  75  * maximum number of entries divided by the load factor, no rehash
  76  * operations will ever occur.
  77  *
  78  * <p>If many mappings are to be stored in a <tt>HashMap</tt>
  79  * instance, creating it with a sufficiently large capacity will allow
  80  * the mappings to be stored more efficiently than letting it perform
  81  * automatic rehashing as needed to grow the table.  Note that using
  82  * many keys with the same {@code hashCode()} is a sure way to slow
  83  * down performance of any hash table. To ameliorate impact, when keys
  84  * are {@link Comparable}, this class may use comparison order among
  85  * keys to help break ties.
  86  *
  87  * <p><strong>Note that this implementation is not synchronized.</strong>
  88  * If multiple threads access a hash map concurrently, and at least one of
  89  * the threads modifies the map structurally, it <i>must</i> be
  90  * synchronized externally.  (A structural modification is any operation
  91  * that adds or deletes one or more mappings; merely changing the value
  92  * associated with a key that an instance already contains is not a
  93  * structural modification.)  This is typically accomplished by
  94  * synchronizing on some object that naturally encapsulates the map.
  95  *
  96  * If no such object exists, the map should be "wrapped" using the
  97  * {@link Collections#synchronizedMap Collections.synchronizedMap}
  98  * method.  This is best done at creation time, to prevent accidental
  99  * unsynchronized access to the map:<pre>
 100  *   Map m = Collections.synchronizedMap(new HashMap(...));</pre>
 101  *
 102  * <p>The iterators returned by all of this class's "collection view methods"
 103  * are <i>fail-fast</i>: if the map is structurally modified at any time after
 104  * the iterator is created, in any way except through the iterator's own
 105  * <tt>remove</tt> method, the iterator will throw a
 106  * {@link ConcurrentModificationException}.  Thus, in the face of concurrent
 107  * modification, the iterator fails quickly and cleanly, rather than risking
 108  * arbitrary, non-deterministic behavior at an undetermined time in the
 109  * future.
 110  *
 111  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 112  * as it is, generally speaking, impossible to make any hard guarantees in the
 113  * presence of unsynchronized concurrent modification.  Fail-fast iterators
 114  * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
 115  * Therefore, it would be wrong to write a program that depended on this
 116  * exception for its correctness: <i>the fail-fast behavior of iterators
 117  * should be used only to detect bugs.</i>
 118  *
 119  * <p>This class is a member of the
 120  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 121  * Java Collections Framework</a>.
 122  *
 123  * @param <K> the type of keys maintained by this map
 124  * @param <V> the type of mapped values
 125  *
 126  * @author  Doug Lea
 127  * @author  Josh Bloch
 128  * @author  Arthur van Hoff
 129  * @author  Neal Gafter
 130  * @see     Object#hashCode()
 131  * @see     Collection
 132  * @see     Map
 133  * @see     TreeMap
 134  * @see     Hashtable
 135  * @since   1.2
 136  */
 137 public class HashMap<K,V> extends AbstractMap<K,V>
 138     implements Map<K,V>, Cloneable, Serializable {
 139 
 140     private static final long serialVersionUID = 362498820763181265L;
 141 
 142     /*
 143      * Implementation notes.
 144      *
 145      * This map usually acts as a binned (bucketed) hash table, but
 146      * when bins get too large, they are transformed into bins of
 147      * TreeNodes, each structured similarly to those in
 148      * java.util.TreeMap. Most methods try to use normal bins, but
 149      * relay to TreeNode methods when applicable (simply by checking
 150      * instanceof a node).  Bins of TreeNodes may be traversed and
 151      * used like any others, but additionally support faster lookup
 152      * when overpopulated. However, since the vast majority of bins in
 153      * normal use are not overpopulated, checking for existence of
 154      * tree bins may be delayed in the course of table methods.
 155      *
 156      * Tree bins (i.e., bins whose elements are all TreeNodes) are
 157      * ordered primarily by hashCode, but in the case of ties, if two
 158      * elements are of the same "class C implements Comparable<C>",
 159      * type then their compareTo method is used for ordering. (We
 160      * conservatively check generic types via reflection to validate
 161      * this -- see method comparableClassFor).  The added complexity
 162      * of tree bins is worthwhile in providing worst-case O(log n)
 163      * operations when keys either have distinct hashes or are
 164      * orderable, Thus, performance degrades gracefully under
 165      * accidental or malicious usages in which hashCode() methods
 166      * return values that are poorly distributed, as well as those in
 167      * which many keys share a hashCode, so long as they are also
 168      * Comparable. (If neither of these apply, we may waste about a
 169      * factor of two in time and space compared to taking no
 170      * precautions. But the only known cases stem from poor user
 171      * programming practices that are already so slow that this makes
 172      * little difference.)
 173      *
 174      * Because TreeNodes are about twice the size of regular nodes, we
 175      * use them only when bins contain enough nodes to warrant use
 176      * (see TREEIFY_THRESHOLD). And when they become too small (due to
 177      * removal or resizing) they are converted back to plain bins.  In
 178      * usages with well-distributed user hashCodes, tree bins are
 179      * rarely used.  Ideally, under random hashCodes, the frequency of
 180      * nodes in bins follows a Poisson distribution
 181      * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
 182      * parameter of about 0.5 on average for the default resizing
 183      * threshold of 0.75, although with a large variance because of
 184      * resizing granularity. Ignoring variance, the expected
 185      * occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
 186      * factorial(k)). The first values are:
 187      *
 188      * 0:    0.60653066
 189      * 1:    0.30326533
 190      * 2:    0.07581633
 191      * 3:    0.01263606
 192      * 4:    0.00157952
 193      * 5:    0.00015795
 194      * 6:    0.00001316
 195      * 7:    0.00000094
 196      * 8:    0.00000006
 197      * more: less than 1 in ten million
 198      *
 199      * The root of a tree bin is normally its first node.  However,
 200      * sometimes (currently only upon Iterator.remove), the root might
 201      * be elsewhere, but can be recovered following parent links
 202      * (method TreeNode.root()).
 203      *
 204      * All applicable internal methods accept a hash code as an
 205      * argument (as normally supplied from a public method), allowing
 206      * them to call each other without recomputing user hashCodes.
 207      * Most internal methods also accept a "tab" argument, that is
 208      * normally the current table, but may be a new or old one when
 209      * resizing or converting.
 210      *
 211      * When bin lists are treeified, split, or untreeified, we keep
 212      * them in the same relative access/traversal order (i.e., field
 213      * Node.next) to better preserve locality, and to slightly
 214      * simplify handling of splits and traversals that invoke
 215      * iterator.remove. When using comparators on insertion, to keep a
 216      * total ordering (or as close as is required here) across
 217      * rebalancings, we compare classes and identityHashCodes as
 218      * tie-breakers.
 219      *
 220      * The use and transitions among plain vs tree modes is
 221      * complicated by the existence of subclass LinkedHashMap. See
 222      * below for hook methods defined to be invoked upon insertion,
 223      * removal and access that allow LinkedHashMap internals to
 224      * otherwise remain independent of these mechanics. (This also
 225      * requires that a map instance be passed to some utility methods
 226      * that may create new nodes.)
 227      *
 228      * The concurrent-programming-like SSA-based coding style helps
 229      * avoid aliasing errors amid all of the twisty pointer operations.
 230      */
 231 
 232     /**
 233      * The default initial capacity - MUST be a power of two.
 234      */
 235     static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
 236 
 237     /**
 238      * The maximum capacity, used if a higher value is implicitly specified
 239      * by either of the constructors with arguments.
 240      * MUST be a power of two <= 1<<30.
 241      */
 242     static final int MAXIMUM_CAPACITY = 1 << 30;
 243 
 244     /**
 245      * The load factor used when none specified in constructor.
 246      */
 247     static final float DEFAULT_LOAD_FACTOR = 0.75f;
 248 
 249     /**
 250      * The bin count threshold for using a tree rather than list for a
 251      * bin.  Bins are converted to trees when adding an element to a
 252      * bin with at least this many nodes. The value must be greater
 253      * than 2 and should be at least 8 to mesh with assumptions in
 254      * tree removal about conversion back to plain bins upon
 255      * shrinkage.
 256      */
 257     static final int TREEIFY_THRESHOLD = 8;
 258 
 259     /**
 260      * The bin count threshold for untreeifying a (split) bin during a
 261      * resize operation. Should be less than TREEIFY_THRESHOLD, and at
 262      * most 6 to mesh with shrinkage detection under removal.
 263      */
 264     static final int UNTREEIFY_THRESHOLD = 6;
 265 
 266     /**
 267      * The smallest table capacity for which bins may be treeified.
 268      * (Otherwise the table is resized if too many nodes in a bin.)
 269      * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
 270      * between resizing and treeification thresholds.
 271      */
 272     static final int MIN_TREEIFY_CAPACITY = 64;
 273 
 274     /**
 275      * Basic hash bin node, used for most entries.  (See below for
 276      * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
 277      */
 278     static class Node<K,V> implements Map.Entry<K,V> {
 279         final int hash;
 280         final K key;
 281         V value;
 282         Node<K,V> next;
 283 
 284         Node(int hash, K key, V value, Node<K,V> next) {
 285             this.hash = hash;
 286             this.key = key;
 287             this.value = value;
 288             this.next = next;
 289         }
 290 
 291         public final K getKey()        { return key; }
 292         public final V getValue()      { return value; }
 293         public final String toString() { return key + "=" + value; }
 294 
 295         public final int hashCode() {
 296             return Objects.hashCode(key) ^ Objects.hashCode(value);
 297         }
 298 
 299         public final V setValue(V newValue) {
 300             V oldValue = value;
 301             value = newValue;
 302             return oldValue;
 303         }
 304 
 305         public final boolean equals(Object o) {
 306             if (o == this)
 307                 return true;
 308             if (o instanceof Map.Entry) {
 309                 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
 310                 if (Objects.equals(key, e.getKey()) &&
 311                     Objects.equals(value, e.getValue()))
 312                     return true;
 313             }
 314             return false;
 315         }
 316     }
 317 
 318     /* ---------------- Static utilities -------------- */
 319 
 320     /**
 321      * Computes key.hashCode() and spreads (XORs) higher bits of hash
 322      * to lower.  Because the table uses power-of-two masking, sets of
 323      * hashes that vary only in bits above the current mask will
 324      * always collide. (Among known examples are sets of Float keys
 325      * holding consecutive whole numbers in small tables.)  So we
 326      * apply a transform that spreads the impact of higher bits
 327      * downward. There is a tradeoff between speed, utility, and
 328      * quality of bit-spreading. Because many common sets of hashes
 329      * are already reasonably distributed (so don't benefit from
 330      * spreading), and because we use trees to handle large sets of
 331      * collisions in bins, we just XOR some shifted bits in the
 332      * cheapest possible way to reduce systematic lossage, as well as
 333      * to incorporate impact of the highest bits that would otherwise
 334      * never be used in index calculations because of table bounds.
 335      */
 336     static final int hash(Object key) {
 337         int h;
 338         return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
 339     }
 340 
 341     /**
 342      * Returns x's Class if it is of the form "class C implements
 343      * Comparable<C>", else null.
 344      */
 345     static Class<?> comparableClassFor(Object x) {
 346         if (x instanceof Comparable) {
 347             Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
 348             if ((c = x.getClass()) == String.class) // bypass checks
 349                 return c;
 350             if ((ts = c.getGenericInterfaces()) != null) {
 351                 for (int i = 0; i < ts.length; ++i) {
 352                     if (((t = ts[i]) instanceof ParameterizedType) &&
 353                         ((p = (ParameterizedType)t).getRawType() ==
 354                          Comparable.class) &&
 355                         (as = p.getActualTypeArguments()) != null &&
 356                         as.length == 1 && as[0] == c) // type arg is c
 357                         return c;
 358                 }
 359             }
 360         }
 361         return null;
 362     }
 363 
 364     /**
 365      * Returns k.compareTo(x) if x matches kc (k's screened comparable
 366      * class), else 0.
 367      */
 368     @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
 369     static int compareComparables(Class<?> kc, Object k, Object x) {
 370         return (x == null || x.getClass() != kc ? 0 :
 371                 ((Comparable)k).compareTo(x));
 372     }
 373 
 374     /**
 375      * Returns a power of two size for the given target capacity.
 376      */
 377     static final int tableSizeFor(int cap) {
 378         int n = cap - 1;
 379         n |= n >>> 1;
 380         n |= n >>> 2;
 381         n |= n >>> 4;
 382         n |= n >>> 8;
 383         n |= n >>> 16;
 384         return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
 385     }
 386 
 387     /* ---------------- Fields -------------- */
 388 
 389     /**
 390      * The table, initialized on first use, and resized as
 391      * necessary. When allocated, length is always a power of two.
 392      * (We also tolerate length zero in some operations to allow
 393      * bootstrapping mechanics that are currently not needed.)
 394      */
 395     transient Node<K,V>[] table;
 396 
 397     /**
 398      * Holds cached entrySet(). Note that AbstractMap fields are used
 399      * for keySet() and values().
 400      */
 401     transient Set<Map.Entry<K,V>> entrySet;
 402 
 403     /**
 404      * The number of key-value mappings contained in this map.
 405      */
 406     transient int size;
 407 
 408     /**
 409      * The number of times this HashMap has been structurally modified
 410      * Structural modifications are those that change the number of mappings in
 411      * the HashMap or otherwise modify its internal structure (e.g.,
 412      * rehash).  This field is used to make iterators on Collection-views of
 413      * the HashMap fail-fast.  (See ConcurrentModificationException).
 414      */
 415     transient int modCount;
 416 
 417     /**
 418      * The next size value at which to resize (capacity * load factor).
 419      *
 420      * @serial
 421      */
 422     // (The javadoc description is true upon serialization.
 423     // Additionally, if the table array has not been allocated, this
 424     // field holds the initial array capacity, or zero signifying
 425     // DEFAULT_INITIAL_CAPACITY.)
 426     int threshold;
 427 
 428     /**
 429      * The load factor for the hash table.
 430      *
 431      * @serial
 432      */
 433     final float loadFactor;
 434 
 435     /* ---------------- Public operations -------------- */
 436 
 437     /**
 438      * Constructs an empty <tt>HashMap</tt> with the specified initial
 439      * capacity and load factor.
 440      *
 441      * @param  initialCapacity the initial capacity
 442      * @param  loadFactor      the load factor
 443      * @throws IllegalArgumentException if the initial capacity is negative
 444      *         or the load factor is nonpositive
 445      */
 446     public HashMap(int initialCapacity, float loadFactor) {
 447         if (initialCapacity < 0)
 448             throw new IllegalArgumentException("Illegal initial capacity: " +
 449                                                initialCapacity);
 450         if (initialCapacity > MAXIMUM_CAPACITY)
 451             initialCapacity = MAXIMUM_CAPACITY;
 452         if (loadFactor <= 0 || Float.isNaN(loadFactor))
 453             throw new IllegalArgumentException("Illegal load factor: " +
 454                                                loadFactor);
 455         this.loadFactor = loadFactor;
 456         this.threshold = tableSizeFor(initialCapacity);
 457     }
 458 
 459     /**
 460      * Constructs an empty <tt>HashMap</tt> with the specified initial
 461      * capacity and the default load factor (0.75).
 462      *
 463      * @param  initialCapacity the initial capacity.
 464      * @throws IllegalArgumentException if the initial capacity is negative.
 465      */
 466     public HashMap(int initialCapacity) {
 467         this(initialCapacity, DEFAULT_LOAD_FACTOR);
 468     }
 469 
 470     /**
 471      * Constructs an empty <tt>HashMap</tt> with the default initial capacity
 472      * (16) and the default load factor (0.75).
 473      */
 474     public HashMap() {
 475         this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
 476     }
 477 
 478     /**
 479      * Constructs a new <tt>HashMap</tt> with the same mappings as the
 480      * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
 481      * default load factor (0.75) and an initial capacity sufficient to
 482      * hold the mappings in the specified <tt>Map</tt>.
 483      *
 484      * @param   m the map whose mappings are to be placed in this map
 485      * @throws  NullPointerException if the specified map is null
 486      */
 487     public HashMap(Map<? extends K, ? extends V> m) {
 488         this.loadFactor = DEFAULT_LOAD_FACTOR;
 489         putMapEntries(m, false);
 490     }
 491 
 492     /**
 493      * Implements Map.putAll and Map constructor
 494      *
 495      * @param m the map
 496      * @param evict false when initially constructing this map, else
 497      * true (relayed to method afterNodeInsertion).
 498      */
 499     final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
 500         int s = m.size();
 501         if (s > 0) {
 502             if (table == null) { // pre-size
 503                 float ft = ((float)s / loadFactor) + 1.0F;
 504                 int t = ((ft < (float)MAXIMUM_CAPACITY) ?
 505                          (int)ft : MAXIMUM_CAPACITY);
 506                 if (t > threshold)
 507                     threshold = tableSizeFor(t);
 508             }
 509             else if (s > threshold)
 510                 resize();
 511             for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
 512                 K key = e.getKey();
 513                 V value = e.getValue();
 514                 putVal(hash(key), key, value, false, evict);
 515             }
 516         }
 517     }
 518 
 519     /**
 520      * Returns the number of key-value mappings in this map.
 521      *
 522      * @return the number of key-value mappings in this map
 523      */
 524     public int size() {
 525         return size;
 526     }
 527 
 528     /**
 529      * Returns <tt>true</tt> if this map contains no key-value mappings.
 530      *
 531      * @return <tt>true</tt> if this map contains no key-value mappings
 532      */
 533     public boolean isEmpty() {
 534         return size == 0;
 535     }
 536 
 537     /**
 538      * Returns the value to which the specified key is mapped,
 539      * or {@code null} if this map contains no mapping for the key.
 540      *
 541      * <p>More formally, if this map contains a mapping from a key
 542      * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
 543      * key.equals(k))}, then this method returns {@code v}; otherwise
 544      * it returns {@code null}.  (There can be at most one such mapping.)
 545      *
 546      * <p>A return value of {@code null} does not <i>necessarily</i>
 547      * indicate that the map contains no mapping for the key; it's also
 548      * possible that the map explicitly maps the key to {@code null}.
 549      * The {@link #containsKey containsKey} operation may be used to
 550      * distinguish these two cases.
 551      *
 552      * @see #put(Object, Object)
 553      */
 554     public V get(Object key) {
 555         Node<K,V> e;
 556         return (e = getNode(hash(key), key)) == null ? null : e.value;
 557     }
 558 
 559     /**
 560      * Implements Map.get and related methods
 561      *
 562      * @param hash hash for key
 563      * @param key the key
 564      * @return the node, or null if none
 565      */
 566     final Node<K,V> getNode(int hash, Object key) {
 567         Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
 568         if ((tab = table) != null && (n = tab.length) > 0 &&
 569             (first = tab[(n - 1) & hash]) != null) {
 570             if (first.hash == hash && // always check first node
 571                 ((k = first.key) == key || (key != null && key.equals(k))))
 572                 return first;
 573             if ((e = first.next) != null) {
 574                 if (first instanceof TreeNode)
 575                     return ((TreeNode<K,V>)first).getTreeNode(hash, key);
 576                 do {
 577                     if (e.hash == hash &&
 578                         ((k = e.key) == key || (key != null && key.equals(k))))
 579                         return e;
 580                 } while ((e = e.next) != null);
 581             }
 582         }
 583         return null;
 584     }
 585 
 586     /**
 587      * Returns <tt>true</tt> if this map contains a mapping for the
 588      * specified key.
 589      *
 590      * @param   key   The key whose presence in this map is to be tested
 591      * @return <tt>true</tt> if this map contains a mapping for the specified
 592      * key.
 593      */
 594     public boolean containsKey(Object key) {
 595         return getNode(hash(key), key) != null;
 596     }
 597 
 598     /**
 599      * Associates the specified value with the specified key in this map.
 600      * If the map previously contained a mapping for the key, the old
 601      * value is replaced.
 602      *
 603      * @param key key with which the specified value is to be associated
 604      * @param value value to be associated with the specified key
 605      * @return the previous value associated with <tt>key</tt>, or
 606      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 607      *         (A <tt>null</tt> return can also indicate that the map
 608      *         previously associated <tt>null</tt> with <tt>key</tt>.)
 609      */
 610     public V put(K key, V value) {
 611         return putVal(hash(key), key, value, false, true);
 612     }
 613 
 614     /**
 615      * Implements Map.put and related methods
 616      *
 617      * @param hash hash for key
 618      * @param key the key
 619      * @param value the value to put
 620      * @param onlyIfAbsent if true, don't change existing value
 621      * @param evict if false, the table is in creation mode.
 622      * @return previous value, or null if none
 623      */
 624     final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
 625                    boolean evict) {
 626         Node<K,V>[] tab; Node<K,V> p; int n, i;
 627         if (size > threshold || (tab = table) == null ||
 628             (n = tab.length) == 0)
 629             n = (tab = resize()).length;
 630         if ((p = tab[i = (n - 1) & hash]) == null)
 631             tab[i] = newNode(hash, key, value, null);
 632         else {
 633             Node<K,V> e; K k;
 634             if (p.hash == hash &&
 635                 ((k = p.key) == key || (key != null && key.equals(k))))
 636                 e = p;
 637             else if (p instanceof TreeNode)
 638                 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
 639             else {
 640                 for (int binCount = 0; ; ++binCount) {
 641                     if ((e = p.next) == null) {
 642                         p.next = newNode(hash, key, value, null);
 643                         if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
 644                             treeifyBin(tab, hash);
 645                         break;
 646                     }
 647                     if (e.hash == hash &&
 648                         ((k = e.key) == key || (key != null && key.equals(k))))
 649                         break;
 650                     p = e;
 651                 }
 652             }
 653             if (e != null) { // existing mapping for key
 654                 V oldValue = e.value;
 655                 if (!onlyIfAbsent || oldValue == null)
 656                     e.value = value;
 657                 afterNodeAccess(e);
 658                 return oldValue;
 659             }
 660         }
 661         ++modCount;
 662         ++size;
 663         afterNodeInsertion(evict);
 664         return null;
 665     }
 666 
 667     /**
 668      * Initializes or doubles table size.  If null, allocates in
 669      * accord with initial capacity target held in field threshold.
 670      * Otherwise, because we are using power-of-two expansion, the
 671      * elements from each bin must either stay at same index, or move
 672      * with a power of two offset in the new table.
 673      *
 674      * @return the table
 675      */
 676     final Node<K,V>[] resize() {
 677         Node<K,V>[] oldTab = table;
 678         int oldCap = (oldTab == null) ? 0 : oldTab.length;
 679         int oldThr = threshold;
 680         int newCap, newThr = 0;
 681         if (oldCap > 0) {
 682             if (oldCap >= MAXIMUM_CAPACITY) {
 683                 threshold = Integer.MAX_VALUE;
 684                 return oldTab;
 685             }
 686             else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
 687                      oldCap >= DEFAULT_INITIAL_CAPACITY)
 688                 newThr = oldThr << 1; // double threshold
 689         }
 690         else if (oldThr > 0) // initial capacity was placed in threshold
 691             newCap = oldThr;
 692         else {               // zero initial threshold signifies using defaults
 693             newCap = DEFAULT_INITIAL_CAPACITY;
 694             newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
 695         }
 696         if (newThr == 0) {
 697             float ft = (float)newCap * loadFactor;
 698             newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
 699                       (int)ft : Integer.MAX_VALUE);
 700         }
 701         threshold = newThr;
 702         @SuppressWarnings({"rawtypes","unchecked"})
 703             Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
 704         table = newTab;
 705         if (oldTab != null) {
 706             for (int j = 0; j < oldCap; ++j) {
 707                 Node<K,V> e;
 708                 if ((e = oldTab[j]) != null) {
 709                     oldTab[j] = null;
 710                     if (e.next == null)
 711                         newTab[e.hash & (newCap - 1)] = e;
 712                     else if (e instanceof TreeNode)
 713                         ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
 714                     else { // preserve order
 715                         Node<K,V> loHead = null, loTail = null;
 716                         Node<K,V> hiHead = null, hiTail = null;
 717                         Node<K,V> next;
 718                         do {
 719                             next = e.next;
 720                             if ((e.hash & oldCap) == 0) {
 721                                 if (loTail == null)
 722                                     loHead = e;
 723                                 else
 724                                     loTail.next = e;
 725                                 loTail = e;
 726                             }
 727                             else {
 728                                 if (hiTail == null)
 729                                     hiHead = e;
 730                                 else
 731                                     hiTail.next = e;
 732                                 hiTail = e;
 733                             }
 734                         } while ((e = next) != null);
 735                         if (loTail != null) {
 736                             loTail.next = null;
 737                             newTab[j] = loHead;
 738                         }
 739                         if (hiTail != null) {
 740                             hiTail.next = null;
 741                             newTab[j + oldCap] = hiHead;
 742                         }
 743                     }
 744                 }
 745             }
 746         }
 747         return newTab;
 748     }
 749 
 750     /**
 751      * Replaces all linked nodes in bin at index for given hash unless
 752      * table is too small, in which case resizes instead.
 753      */
 754     final void treeifyBin(Node<K,V>[] tab, int hash) {
 755         int n, index; Node<K,V> e;
 756         if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
 757             resize();
 758         else if ((e = tab[index = (n - 1) & hash]) != null) {
 759             TreeNode<K,V> hd = null, tl = null;
 760             do {
 761                 TreeNode<K,V> p = replacementTreeNode(e, null);
 762                 if (tl == null)
 763                     hd = p;
 764                 else {
 765                     p.prev = tl;
 766                     tl.next = p;
 767                 }
 768                 tl = p;
 769             } while ((e = e.next) != null);
 770             if ((tab[index] = hd) != null)
 771                 hd.treeify(tab);
 772         }
 773     }
 774 
 775     /**
 776      * Copies all of the mappings from the specified map to this map.
 777      * These mappings will replace any mappings that this map had for
 778      * any of the keys currently in the specified map.
 779      *
 780      * @param m mappings to be stored in this map
 781      * @throws NullPointerException if the specified map is null
 782      */
 783     public void putAll(Map<? extends K, ? extends V> m) {
 784         putMapEntries(m, true);
 785     }
 786 
 787     /**
 788      * Removes the mapping for the specified key from this map if present.
 789      *
 790      * @param  key key whose mapping is to be removed from the map
 791      * @return the previous value associated with <tt>key</tt>, or
 792      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 793      *         (A <tt>null</tt> return can also indicate that the map
 794      *         previously associated <tt>null</tt> with <tt>key</tt>.)
 795      */
 796     public V remove(Object key) {
 797         Node<K,V> e;
 798         return (e = removeNode(hash(key), key, null, false, true)) == null ?
 799             null : e.value;
 800     }
 801 
 802     /**
 803      * Implements Map.remove and related methods
 804      *
 805      * @param hash hash for key
 806      * @param key the key
 807      * @param value the value to match if matchValue, else ignored
 808      * @param matchValue if true only remove if value is equal
 809      * @param movable if false do not move other nodes while removing
 810      * @return the node, or null if none
 811      */
 812     final Node<K,V> removeNode(int hash, Object key, Object value,
 813                                boolean matchValue, boolean movable) {
 814         Node<K,V>[] tab; Node<K,V> p; int n, index;
 815         if ((tab = table) != null && (n = tab.length) > 0 &&
 816             (p = tab[index = (n - 1) & hash]) != null) {
 817             Node<K,V> node = null, e; K k; V v;
 818             if (p.hash == hash &&
 819                 ((k = p.key) == key || (key != null && key.equals(k))))
 820                 node = p;
 821             else if ((e = p.next) != null) {
 822                 if (p instanceof TreeNode)
 823                     node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
 824                 else {
 825                     do {
 826                         if (e.hash == hash &&
 827                             ((k = e.key) == key ||
 828                              (key != null && key.equals(k)))) {
 829                             node = e;
 830                             break;
 831                         }
 832                         p = e;
 833                     } while ((e = e.next) != null);
 834                 }
 835             }
 836             if (node != null && (!matchValue || (v = node.value) == value ||
 837                                  (value != null && value.equals(v)))) {
 838                 if (node instanceof TreeNode)
 839                     ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
 840                 else if (node == p)
 841                     tab[index] = node.next;
 842                 else
 843                     p.next = node.next;
 844                 ++modCount;
 845                 --size;
 846                 afterNodeRemoval(node);
 847                 return node;
 848             }
 849         }
 850         return null;
 851     }
 852 
 853     /**
 854      * Removes all of the mappings from this map.
 855      * The map will be empty after this call returns.
 856      */
 857     public void clear() {
 858         Node<K,V>[] tab;
 859         modCount++;
 860         if ((tab = table) != null && size > 0) {
 861             size = 0;
 862             for (int i = 0; i < tab.length; ++i)
 863                 tab[i] = null;
 864         }
 865     }
 866 
 867     /**
 868      * Returns <tt>true</tt> if this map maps one or more keys to the
 869      * specified value.
 870      *
 871      * @param value value whose presence in this map is to be tested
 872      * @return <tt>true</tt> if this map maps one or more keys to the
 873      *         specified value
 874      */
 875     public boolean containsValue(Object value) {
 876         Node<K,V>[] tab; V v;
 877         if ((tab = table) != null && size > 0) {
 878             for (int i = 0; i < tab.length; ++i) {
 879                 for (Node<K,V> e = tab[i]; e != null; e = e.next) {
 880                     if ((v = e.value) == value ||
 881                         (value != null && value.equals(v)))
 882                         return true;
 883                 }
 884             }
 885         }
 886         return false;
 887     }
 888 
 889     /**
 890      * Returns a {@link Set} view of the keys contained in this map.
 891      * The set is backed by the map, so changes to the map are
 892      * reflected in the set, and vice-versa.  If the map is modified
 893      * while an iteration over the set is in progress (except through
 894      * the iterator's own <tt>remove</tt> operation), the results of
 895      * the iteration are undefined.  The set supports element removal,
 896      * which removes the corresponding mapping from the map, via the
 897      * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
 898      * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
 899      * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
 900      * operations.
 901      *
 902      * @return a set view of the keys contained in this map
 903      */
 904     public Set<K> keySet() {
 905         Set<K> ks;
 906         return (ks = keySet) == null ? (keySet = new KeySet()) : ks;
 907     }
 908 
 909     final class KeySet extends AbstractSet<K> {
 910         public final int size()                 { return size; }
 911         public final void clear()               { HashMap.this.clear(); }
 912         public final Iterator<K> iterator()     { return new KeyIterator(); }
 913         public final boolean contains(Object o) { return containsKey(o); }
 914         public final boolean remove(Object key) {
 915             return removeNode(hash(key), key, null, false, true) != null;
 916         }
 917         public final Spliterator<K> spliterator() {
 918             return new KeySpliterator<K,V>(HashMap.this, 0, -1, 0, 0);
 919         }
 920         public final void forEach(Consumer<? super K> action) {
 921             Node<K,V>[] tab;
 922             if (action == null)
 923                 throw new NullPointerException();
 924             if (size > 0 && (tab = table) != null) {
 925                 int mc = modCount;
 926                 for (int i = 0; i < tab.length; ++i) {
 927                     for (Node<K,V> e = tab[i]; e != null; e = e.next)
 928                         action.accept(e.key);
 929                 }
 930                 if (modCount != mc)
 931                     throw new ConcurrentModificationException();
 932             }
 933         }
 934     }
 935 
 936     /**
 937      * Returns a {@link Collection} view of the values contained in this map.
 938      * The collection is backed by the map, so changes to the map are
 939      * reflected in the collection, and vice-versa.  If the map is
 940      * modified while an iteration over the collection is in progress
 941      * (except through the iterator's own <tt>remove</tt> operation),
 942      * the results of the iteration are undefined.  The collection
 943      * supports element removal, which removes the corresponding
 944      * mapping from the map, via the <tt>Iterator.remove</tt>,
 945      * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
 946      * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
 947      * support the <tt>add</tt> or <tt>addAll</tt> operations.
 948      *
 949      * @return a view of the values contained in this map
 950      */
 951     public Collection<V> values() {
 952         Collection<V> vs;
 953         return (vs = values) == null ? (values = new Values()) : vs;
 954     }
 955 
 956     final class Values extends AbstractCollection<V> {
 957         public final int size()                 { return size; }
 958         public final void clear()               { HashMap.this.clear(); }
 959         public final Iterator<V> iterator()     { return new ValueIterator(); }
 960         public final boolean contains(Object o) { return containsValue(o); }
 961         public final Spliterator<V> spliterator() {
 962             return new ValueSpliterator<K,V>(HashMap.this, 0, -1, 0, 0);
 963         }
 964         public final void forEach(Consumer<? super V> action) {
 965             Node<K,V>[] tab;
 966             if (action == null)
 967                 throw new NullPointerException();
 968             if (size > 0 && (tab = table) != null) {
 969                 int mc = modCount;
 970                 for (int i = 0; i < tab.length; ++i) {
 971                     for (Node<K,V> e = tab[i]; e != null; e = e.next)
 972                         action.accept(e.value);
 973                 }
 974                 if (modCount != mc)
 975                     throw new ConcurrentModificationException();
 976             }
 977         }
 978     }
 979 
 980     /**
 981      * Returns a {@link Set} view of the mappings contained in this map.
 982      * The set is backed by the map, so changes to the map are
 983      * reflected in the set, and vice-versa.  If the map is modified
 984      * while an iteration over the set is in progress (except through
 985      * the iterator's own <tt>remove</tt> operation, or through the
 986      * <tt>setValue</tt> operation on a map entry returned by the
 987      * iterator) the results of the iteration are undefined.  The set
 988      * supports element removal, which removes the corresponding
 989      * mapping from the map, via the <tt>Iterator.remove</tt>,
 990      * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
 991      * <tt>clear</tt> operations.  It does not support the
 992      * <tt>add</tt> or <tt>addAll</tt> operations.
 993      *
 994      * @return a set view of the mappings contained in this map
 995      */
 996     public Set<Map.Entry<K,V>> entrySet() {
 997         Set<Map.Entry<K,V>> es;
 998         return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
 999     }
1000 
1001     final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1002         public final int size()                 { return size; }
1003         public final void clear()               { HashMap.this.clear(); }
1004         public final Iterator<Map.Entry<K,V>> iterator() {
1005             return new EntryIterator();
1006         }
1007         public final boolean contains(Object o) {
1008             if (!(o instanceof Map.Entry))
1009                 return false;
1010             Map.Entry<?,?> e = (Map.Entry<?,?>) o;
1011             Object key = e.getKey();
1012             Node<K,V> candidate = getNode(hash(key), key);
1013             return candidate != null && candidate.equals(e);
1014         }
1015         public final boolean remove(Object o) {
1016             if (o instanceof Map.Entry) {
1017                 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
1018                 Object key = e.getKey();
1019                 Object value = e.getValue();
1020                 return removeNode(hash(key), key, value, true, true) != null;
1021             }
1022             return false;
1023         }
1024         public final Spliterator<Map.Entry<K,V>> spliterator() {
1025             return new EntrySpliterator<K,V>(HashMap.this, 0, -1, 0, 0);
1026         }
1027         public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
1028             Node<K,V>[] tab;
1029             if (action == null)
1030                 throw new NullPointerException();
1031             if (size > 0 && (tab = table) != null) {
1032                 int mc = modCount;
1033                 for (int i = 0; i < tab.length; ++i) {
1034                     for (Node<K,V> e = tab[i]; e != null; e = e.next)
1035                         action.accept(e);
1036                 }
1037                 if (modCount != mc)
1038                     throw new ConcurrentModificationException();
1039             }
1040         }
1041     }
1042 
1043     // Overrides of JDK8 Map extension methods
1044 
1045     public V getOrDefault(Object key, V defaultValue) {
1046         Node<K,V> e;
1047         return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
1048     }
1049 
1050     public V putIfAbsent(K key, V value) {
1051         return putVal(hash(key), key, value, true, true);
1052     }
1053 
1054     public boolean remove(Object key, Object value) {
1055         return removeNode(hash(key), key, value, true, true) != null;
1056     }
1057 
1058     public boolean replace(K key, V oldValue, V newValue) {
1059         Node<K,V> e; V v;
1060         if ((e = getNode(hash(key), key)) != null &&
1061             ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
1062             e.value = newValue;
1063             afterNodeAccess(e);
1064             return true;
1065         }
1066         return false;
1067     }
1068 
1069     public V replace(K key, V value) {
1070         Node<K,V> e;
1071         if ((e = getNode(hash(key), key)) != null) {
1072             V oldValue = e.value;
1073             e.value = value;
1074             afterNodeAccess(e);
1075             return oldValue;
1076         }
1077         return null;
1078     }
1079 
1080     public V computeIfAbsent(K key,
1081                              Function<? super K, ? extends V> mappingFunction) {
1082         if (mappingFunction == null)
1083             throw new NullPointerException();
1084         int hash = hash(key);
1085         Node<K,V>[] tab; Node<K,V> first; int n, i;
1086         int binCount = 0;
1087         TreeNode<K,V> t = null;
1088         Node<K,V> old = null;
1089         if (size > threshold || (tab = table) == null ||
1090             (n = tab.length) == 0)
1091             n = (tab = resize()).length;
1092         if ((first = tab[i = (n - 1) & hash]) != null) {
1093             if (first instanceof TreeNode)
1094                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
1095             else {
1096                 Node<K,V> e = first; K k;
1097                 do {
1098                     if (e.hash == hash &&
1099                         ((k = e.key) == key || (key != null && key.equals(k)))) {
1100                         old = e;
1101                         break;
1102                     }
1103                     ++binCount;
1104                 } while ((e = e.next) != null);
1105             }
1106             V oldValue;
1107             if (old != null && (oldValue = old.value) != null) {
1108                 afterNodeAccess(old);
1109                 return oldValue;
1110             }
1111         }
1112         V v = mappingFunction.apply(key);
1113         if (old != null) {
1114             old.value = v;
1115             afterNodeAccess(old);
1116             return v;
1117         }
1118         else if (v == null)
1119             return null;
1120         else if (t != null)
1121             t.putTreeVal(this, tab, hash, key, v);
1122         else {
1123             tab[i] = newNode(hash, key, v, first);
1124             if (binCount >= TREEIFY_THRESHOLD - 1)
1125                 treeifyBin(tab, hash);
1126         }
1127         ++modCount;
1128         ++size;
1129         afterNodeInsertion(true);
1130         return v;
1131     }
1132 
1133     public V computeIfPresent(K key,
1134                               BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1135         if (remappingFunction == null)
1136             throw new NullPointerException();
1137         Node<K,V> e; V oldValue;
1138         int hash = hash(key);
1139         if ((e = getNode(hash, key)) != null &&
1140             (oldValue = e.value) != null) {
1141             V v = remappingFunction.apply(key, oldValue);
1142             if (v != null) {
1143                 e.value = v;
1144                 afterNodeAccess(e);
1145                 return v;
1146             }
1147             else
1148                 removeNode(hash, key, null, false, true);
1149         }
1150         return null;
1151     }
1152 
1153     public V compute(K key,
1154                      BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1155         if (remappingFunction == null)
1156             throw new NullPointerException();
1157         int hash = hash(key);
1158         Node<K,V>[] tab; Node<K,V> first; int n, i;
1159         int binCount = 0;
1160         TreeNode<K,V> t = null;
1161         Node<K,V> old = null;
1162         if (size > threshold || (tab = table) == null ||
1163             (n = tab.length) == 0)
1164             n = (tab = resize()).length;
1165         if ((first = tab[i = (n - 1) & hash]) != null) {
1166             if (first instanceof TreeNode)
1167                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
1168             else {
1169                 Node<K,V> e = first; K k;
1170                 do {
1171                     if (e.hash == hash &&
1172                         ((k = e.key) == key || (key != null && key.equals(k)))) {
1173                         old = e;
1174                         break;
1175                     }
1176                     ++binCount;
1177                 } while ((e = e.next) != null);
1178             }
1179         }
1180         V oldValue = (old == null) ? null : old.value;
1181         V v = remappingFunction.apply(key, oldValue);
1182         if (old != null) {
1183             if (v != null) {
1184                 old.value = v;
1185                 afterNodeAccess(old);
1186             }
1187             else
1188                 removeNode(hash, key, null, false, true);
1189         }
1190         else if (v != null) {
1191             if (t != null)
1192                 t.putTreeVal(this, tab, hash, key, v);
1193             else {
1194                 tab[i] = newNode(hash, key, v, first);
1195                 if (binCount >= TREEIFY_THRESHOLD - 1)
1196                     treeifyBin(tab, hash);
1197             }
1198             ++modCount;
1199             ++size;
1200             afterNodeInsertion(true);
1201         }
1202         return v;
1203     }
1204 
1205     public V merge(K key, V value,
1206                    BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1207         if (remappingFunction == null)
1208             throw new NullPointerException();
1209         int hash = hash(key);
1210         Node<K,V>[] tab; Node<K,V> first; int n, i;
1211         int binCount = 0;
1212         TreeNode<K,V> t = null;
1213         Node<K,V> old = null;
1214         if (size > threshold || (tab = table) == null ||
1215             (n = tab.length) == 0)
1216             n = (tab = resize()).length;
1217         if ((first = tab[i = (n - 1) & hash]) != null) {
1218             if (first instanceof TreeNode)
1219                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
1220             else {
1221                 Node<K,V> e = first; K k;
1222                 do {
1223                     if (e.hash == hash &&
1224                         ((k = e.key) == key || (key != null && key.equals(k)))) {
1225                         old = e;
1226                         break;
1227                     }
1228                     ++binCount;
1229                 } while ((e = e.next) != null);
1230             }
1231         }
1232         if (old != null) {
1233             V v = remappingFunction.apply(old.value, value);
1234             if (v != null) {
1235                 old.value = v;
1236                 afterNodeAccess(old);
1237             }
1238             else
1239                 removeNode(hash, key, null, false, true);
1240             return v;
1241         }
1242         if (value != null) {
1243             if (t != null)
1244                 t.putTreeVal(this, tab, hash, key, value);
1245             else {
1246                 tab[i] = newNode(hash, key, value, first);
1247                 if (binCount >= TREEIFY_THRESHOLD - 1)
1248                     treeifyBin(tab, hash);
1249             }
1250             ++modCount;
1251             ++size;
1252             afterNodeInsertion(true);
1253         }
1254         return value;
1255     }
1256 
1257     public void forEach(BiConsumer<? super K, ? super V> action) {
1258         Node<K,V>[] tab;
1259         if (action == null)
1260             throw new NullPointerException();
1261         if (size > 0 && (tab = table) != null) {
1262             int mc = modCount;
1263             for (int i = 0; i < tab.length; ++i) {
1264                 for (Node<K,V> e = tab[i]; e != null; e = e.next)
1265                     action.accept(e.key, e.value);
1266             }
1267             if (modCount != mc)
1268                 throw new ConcurrentModificationException();
1269         }
1270     }
1271 
1272     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1273         Node<K,V>[] tab;
1274         if (function == null)
1275             throw new NullPointerException();
1276         if (size > 0 && (tab = table) != null) {
1277             int mc = modCount;
1278             for (int i = 0; i < tab.length; ++i) {
1279                 for (Node<K,V> e = tab[i]; e != null; e = e.next) {
1280                     e.value = function.apply(e.key, e.value);
1281                 }
1282             }
1283             if (modCount != mc)
1284                 throw new ConcurrentModificationException();
1285         }
1286     }
1287 
1288     /* ------------------------------------------------------------ */
1289     // Cloning and serialization
1290 
1291     /**
1292      * Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and
1293      * values themselves are not cloned.
1294      *
1295      * @return a shallow copy of this map
1296      */
1297     @SuppressWarnings("unchecked")
1298     public Object clone() {
1299         HashMap<K,V> result;
1300         try {
1301             result = (HashMap<K,V>)super.clone();
1302         } catch (CloneNotSupportedException e) {
1303             // this shouldn't happen, since we are Cloneable
1304             throw new InternalError(e);
1305         }
1306         result.reinitialize();
1307         result.putMapEntries(this, false);
1308         return result;
1309     }
1310 
1311     // These methods are also used when serializing HashSets
1312     final float loadFactor() { return loadFactor; }
1313     final int capacity() {
1314         return (table != null) ? table.length :
1315             (threshold > 0) ? threshold :
1316             DEFAULT_INITIAL_CAPACITY;
1317     }
1318 
1319     /**
1320      * Save the state of the <tt>HashMap</tt> instance to a stream (i.e.,
1321      * serialize it).
1322      *
1323      * @serialData The <i>capacity</i> of the HashMap (the length of the
1324      *             bucket array) is emitted (int), followed by the
1325      *             <i>size</i> (an int, the number of key-value
1326      *             mappings), followed by the key (Object) and value (Object)
1327      *             for each key-value mapping.  The key-value mappings are
1328      *             emitted in no particular order.
1329      */
1330     private void writeObject(java.io.ObjectOutputStream s)
1331         throws IOException {
1332         int buckets = capacity();
1333         // Write out the threshold, loadfactor, and any hidden stuff
1334         s.defaultWriteObject();
1335         s.writeInt(buckets);
1336         s.writeInt(size);
1337         internalWriteEntries(s);
1338     }
1339 
1340     /**
1341      * Reconstitute the {@code HashMap} instance from a stream (i.e.,
1342      * deserialize it).
1343      */
1344     private void readObject(java.io.ObjectInputStream s)
1345         throws IOException, ClassNotFoundException {
1346         // Read in the threshold (ignored), loadfactor, and any hidden stuff
1347         s.defaultReadObject();
1348         reinitialize();
1349         if (loadFactor <= 0 || Float.isNaN(loadFactor))
1350             throw new InvalidObjectException("Illegal load factor: " +
1351                                              loadFactor);
1352         s.readInt();                // Read and ignore number of buckets
1353         int mappings = s.readInt(); // Read number of mappings (size)
1354         if (mappings < 0)
1355             throw new InvalidObjectException("Illegal mappings count: " +
1356                                              mappings);
1357         else if (mappings > 0) { // (if zero, use defaults)
1358             // Size the table using given load factor only if within
1359             // range of 0.25...4.0
1360             float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
1361             float fc = (float)mappings / lf + 1.0f;
1362             int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
1363                        DEFAULT_INITIAL_CAPACITY :
1364                        (fc >= MAXIMUM_CAPACITY) ?
1365                        MAXIMUM_CAPACITY :
1366                        tableSizeFor((int)fc));
1367             float ft = (float)cap * lf;
1368             threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
1369                          (int)ft : Integer.MAX_VALUE);
1370             @SuppressWarnings({"rawtypes","unchecked"})
1371                 Node<K,V>[] tab = (Node<K,V>[])new Node[cap];
1372             table = tab;
1373 
1374             // Read the keys and values, and put the mappings in the HashMap
1375             for (int i = 0; i < mappings; i++) {
1376                 @SuppressWarnings("unchecked")
1377                     K key = (K) s.readObject();
1378                 @SuppressWarnings("unchecked")
1379                     V value = (V) s.readObject();
1380                 putVal(hash(key), key, value, false, false);
1381             }
1382         }
1383     }
1384 
1385     /* ------------------------------------------------------------ */
1386     // iterators
1387 
1388     abstract class HashIterator {
1389         Node<K,V> next;        // next entry to return
1390         Node<K,V> current;     // current entry
1391         int expectedModCount;  // for fast-fail
1392         int index;             // current slot
1393 
1394         HashIterator() {
1395             expectedModCount = modCount;
1396             Node<K,V>[] t = table;
1397             current = next = null;
1398             index = 0;
1399             if (t != null && size > 0) { // advance to first entry
1400                 do {} while (index < t.length && (next = t[index++]) == null);
1401             }
1402         }
1403 
1404         public final boolean hasNext() {
1405             return next != null;
1406         }
1407 
1408         final Node<K,V> nextNode() {
1409             Node<K,V>[] t;
1410             Node<K,V> e = next;
1411             if (modCount != expectedModCount)
1412                 throw new ConcurrentModificationException();
1413             if (e == null)
1414                 throw new NoSuchElementException();
1415             if ((next = (current = e).next) == null && (t = table) != null) {
1416                 do {} while (index < t.length && (next = t[index++]) == null);
1417             }
1418             return e;
1419         }
1420 
1421         public final void remove() {
1422             Node<K,V> p = current;
1423             if (p == null)
1424                 throw new IllegalStateException();
1425             if (modCount != expectedModCount)
1426                 throw new ConcurrentModificationException();
1427             current = null;
1428             K key = p.key;
1429             removeNode(hash(key), key, null, false, false);
1430             expectedModCount = modCount;
1431         }
1432     }
1433 
1434     final class KeyIterator extends HashIterator
1435         implements Iterator<K> {
1436         public final K next() { return nextNode().key; }
1437     }
1438 
1439     final class ValueIterator extends HashIterator
1440         implements Iterator<V> {
1441         public final V next() { return nextNode().value; }
1442     }
1443 
1444     final class EntryIterator extends HashIterator
1445         implements Iterator<Map.Entry<K,V>> {
1446         public final Map.Entry<K,V> next() { return nextNode(); }
1447     }
1448 
1449     /* ------------------------------------------------------------ */
1450     // spliterators
1451 
1452     static class HashMapSpliterator<K,V> {
1453         final HashMap<K,V> map;
1454         Node<K,V> current;          // current node
1455         int index;                  // current index, modified on advance/split
1456         int fence;                  // one past last index
1457         int est;                    // size estimate
1458         int expectedModCount;       // for comodification checks
1459 
1460         HashMapSpliterator(HashMap<K,V> m, int origin,
1461                            int fence, int est,
1462                            int expectedModCount) {
1463             this.map = m;
1464             this.index = origin;
1465             this.fence = fence;
1466             this.est = est;
1467             this.expectedModCount = expectedModCount;
1468         }
1469 
1470         final int getFence() { // initialize fence and size on first use
1471             int hi;
1472             if ((hi = fence) < 0) {
1473                 HashMap<K,V> m = map;
1474                 est = m.size;
1475                 expectedModCount = m.modCount;
1476                 Node<K,V>[] tab = m.table;
1477                 hi = fence = (tab == null) ? 0 : tab.length;
1478             }
1479             return hi;
1480         }
1481 
1482         public final long estimateSize() {
1483             getFence(); // force init
1484             return (long) est;
1485         }
1486     }
1487 
1488     static final class KeySpliterator<K,V>
1489         extends HashMapSpliterator<K,V>
1490         implements Spliterator<K> {
1491         KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,
1492                        int expectedModCount) {
1493             super(m, origin, fence, est, expectedModCount);
1494         }
1495 
1496         public KeySpliterator<K,V> trySplit() {
1497             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1498             return (lo >= mid || current != null) ? null :
1499                 new KeySpliterator<K,V>(map, lo, index = mid, est >>>= 1,
1500                                         expectedModCount);
1501         }
1502 
1503         public void forEachRemaining(Consumer<? super K> action) {
1504             int i, hi, mc;
1505             if (action == null)
1506                 throw new NullPointerException();
1507             HashMap<K,V> m = map;
1508             Node<K,V>[] tab = m.table;
1509             if ((hi = fence) < 0) {
1510                 mc = expectedModCount = m.modCount;
1511                 hi = fence = (tab == null) ? 0 : tab.length;
1512             }
1513             else
1514                 mc = expectedModCount;
1515             if (tab != null && tab.length >= hi &&
1516                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1517                 Node<K,V> p = current;
1518                 current = null;
1519                 do {
1520                     if (p == null)
1521                         p = tab[i++];
1522                     else {
1523                         action.accept(p.key);
1524                         p = p.next;
1525                     }
1526                 } while (p != null || i < hi);
1527                 if (m.modCount != mc)
1528                     throw new ConcurrentModificationException();
1529             }
1530         }
1531 
1532         public boolean tryAdvance(Consumer<? super K> action) {
1533             int hi;
1534             if (action == null)
1535                 throw new NullPointerException();
1536             Node<K,V>[] tab = map.table;
1537             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1538                 while (current != null || index < hi) {
1539                     if (current == null)
1540                         current = tab[index++];
1541                     else {
1542                         K k = current.key;
1543                         current = current.next;
1544                         action.accept(k);
1545                         if (map.modCount != expectedModCount)
1546                             throw new ConcurrentModificationException();
1547                         return true;
1548                     }
1549                 }
1550             }
1551             return false;
1552         }
1553 
1554         public int characteristics() {
1555             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
1556                 Spliterator.DISTINCT;
1557         }
1558     }
1559 
1560     static final class ValueSpliterator<K,V>
1561         extends HashMapSpliterator<K,V>
1562         implements Spliterator<V> {
1563         ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,
1564                          int expectedModCount) {
1565             super(m, origin, fence, est, expectedModCount);
1566         }
1567 
1568         public ValueSpliterator<K,V> trySplit() {
1569             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1570             return (lo >= mid || current != null) ? null :
1571                 new ValueSpliterator<K,V>(map, lo, index = mid, est >>>= 1,
1572                                           expectedModCount);
1573         }
1574 
1575         public void forEachRemaining(Consumer<? super V> action) {
1576             int i, hi, mc;
1577             if (action == null)
1578                 throw new NullPointerException();
1579             HashMap<K,V> m = map;
1580             Node<K,V>[] tab = m.table;
1581             if ((hi = fence) < 0) {
1582                 mc = expectedModCount = m.modCount;
1583                 hi = fence = (tab == null) ? 0 : tab.length;
1584             }
1585             else
1586                 mc = expectedModCount;
1587             if (tab != null && tab.length >= hi &&
1588                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1589                 Node<K,V> p = current;
1590                 current = null;
1591                 do {
1592                     if (p == null)
1593                         p = tab[i++];
1594                     else {
1595                         action.accept(p.value);
1596                         p = p.next;
1597                     }
1598                 } while (p != null || i < hi);
1599                 if (m.modCount != mc)
1600                     throw new ConcurrentModificationException();
1601             }
1602         }
1603 
1604         public boolean tryAdvance(Consumer<? super V> action) {
1605             int hi;
1606             if (action == null)
1607                 throw new NullPointerException();
1608             Node<K,V>[] tab = map.table;
1609             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1610                 while (current != null || index < hi) {
1611                     if (current == null)
1612                         current = tab[index++];
1613                     else {
1614                         V v = current.value;
1615                         current = current.next;
1616                         action.accept(v);
1617                         if (map.modCount != expectedModCount)
1618                             throw new ConcurrentModificationException();
1619                         return true;
1620                     }
1621                 }
1622             }
1623             return false;
1624         }
1625 
1626         public int characteristics() {
1627             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
1628         }
1629     }
1630 
1631     static final class EntrySpliterator<K,V>
1632         extends HashMapSpliterator<K,V>
1633         implements Spliterator<Map.Entry<K,V>> {
1634         EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,
1635                          int expectedModCount) {
1636             super(m, origin, fence, est, expectedModCount);
1637         }
1638 
1639         public EntrySpliterator<K,V> trySplit() {
1640             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1641             return (lo >= mid || current != null) ? null :
1642                 new EntrySpliterator<K,V>(map, lo, index = mid, est >>>= 1,
1643                                           expectedModCount);
1644         }
1645 
1646         public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
1647             int i, hi, mc;
1648             if (action == null)
1649                 throw new NullPointerException();
1650             HashMap<K,V> m = map;
1651             Node<K,V>[] tab = m.table;
1652             if ((hi = fence) < 0) {
1653                 mc = expectedModCount = m.modCount;
1654                 hi = fence = (tab == null) ? 0 : tab.length;
1655             }
1656             else
1657                 mc = expectedModCount;
1658             if (tab != null && tab.length >= hi &&
1659                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1660                 Node<K,V> p = current;
1661                 current = null;
1662                 do {
1663                     if (p == null)
1664                         p = tab[i++];
1665                     else {
1666                         action.accept(p);
1667                         p = p.next;
1668                     }
1669                 } while (p != null || i < hi);
1670                 if (m.modCount != mc)
1671                     throw new ConcurrentModificationException();
1672             }
1673         }
1674 
1675         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
1676             int hi;
1677             if (action == null)
1678                 throw new NullPointerException();
1679             Node<K,V>[] tab = map.table;
1680             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1681                 while (current != null || index < hi) {
1682                     if (current == null)
1683                         current = tab[index++];
1684                     else {
1685                         Node<K,V> e = current;
1686                         current = current.next;
1687                         action.accept(e);
1688                         if (map.modCount != expectedModCount)
1689                             throw new ConcurrentModificationException();
1690                         return true;
1691                     }
1692                 }
1693             }
1694             return false;
1695         }
1696 
1697         public int characteristics() {
1698             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
1699                 Spliterator.DISTINCT;
1700         }
1701     }
1702 
1703     /* ------------------------------------------------------------ */
1704     // LinkedHashMap support
1705 
1706 
1707     /*
1708      * The following package-protected methods are designed to be
1709      * overridden by LinkedHashMap, but not by any other subclass.
1710      * Nearly all other internal methods are also package-protected
1711      * but are declared final, so can be used by LinkedHashMap, view
1712      * classes, and HashSet.
1713      */
1714 
1715     // Create a regular (non-tree) node
1716     Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
1717         return new Node<K,V>(hash, key, value, next);
1718     }
1719 
1720     // For conversion from TreeNodes to plain nodes
1721     Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
1722         return new Node<K,V>(p.hash, p.key, p.value, next);
1723     }
1724 
1725     // Create a tree bin node
1726     TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
1727         return new TreeNode<K,V>(hash, key, value, next);
1728     }
1729 
1730     // For treeifyBin
1731     TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
1732         return new TreeNode<K,V>(p.hash, p.key, p.value, next);
1733     }
1734 
1735     /**
1736      * Reset to initial default state.  Called by clone and readObject.
1737      */
1738     void reinitialize() {
1739         table = null;
1740         entrySet = null;
1741         keySet = null;
1742         values = null;
1743         modCount = 0;
1744         threshold = 0;
1745         size = 0;
1746     }
1747 
1748     // Callbacks to allow LinkedHashMap post-actions
1749     void afterNodeAccess(Node<K,V> p) { }
1750     void afterNodeInsertion(boolean evict) { }
1751     void afterNodeRemoval(Node<K,V> p) { }
1752 
1753     // Called only from writeObject, to ensure compatible ordering.
1754     void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
1755         Node<K,V>[] tab;
1756         if (size > 0 && (tab = table) != null) {
1757             for (int i = 0; i < tab.length; ++i) {
1758                 for (Node<K,V> e = tab[i]; e != null; e = e.next) {
1759                     s.writeObject(e.key);
1760                     s.writeObject(e.value);
1761                 }
1762             }
1763         }
1764     }
1765 
1766     /* ------------------------------------------------------------ */
1767     // Tree bins
1768 
1769     /**
1770      * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
1771      * extends Node) so can be used as extension of either regular or
1772      * linked node.
1773      */
1774     static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
1775         TreeNode<K,V> parent;  // red-black tree links
1776         TreeNode<K,V> left;
1777         TreeNode<K,V> right;
1778         TreeNode<K,V> prev;    // needed to unlink next upon deletion
1779         boolean red;
1780         TreeNode(int hash, K key, V val, Node<K,V> next) {
1781             super(hash, key, val, next);
1782         }
1783 
1784         /**
1785          * Returns root of tree containing this node.
1786          */
1787         final TreeNode<K,V> root() {
1788             for (TreeNode<K,V> r = this, p;;) {
1789                 if ((p = r.parent) == null)
1790                     return r;
1791                 r = p;
1792             }
1793         }
1794 
1795         /**
1796          * Ensures that the given root is the first node of its bin.
1797          */
1798         static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
1799             int n;
1800             if (root != null && tab != null && (n = tab.length) > 0) {
1801                 int index = (n - 1) & root.hash;
1802                 TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
1803                 if (root != first) {
1804                     Node<K,V> rn;
1805                     tab[index] = root;
1806                     TreeNode<K,V> rp = root.prev;
1807                     if ((rn = root.next) != null)
1808                         ((TreeNode<K,V>)rn).prev = rp;
1809                     if (rp != null)
1810                         rp.next = rn;
1811                     if (first != null)
1812                         first.prev = root;
1813                     root.next = first;
1814                     root.prev = null;
1815                 }
1816                 assert checkInvariants(root);
1817             }
1818         }
1819 
1820         /**
1821          * Finds the node starting at root p with the given hash and key.
1822          * The kc argument caches comparableClassFor(key) upon first use
1823          * comparing keys.
1824          */
1825         final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
1826             TreeNode<K,V> p = this;
1827             do {
1828                 int ph, dir; K pk;
1829                 TreeNode<K,V> pl = p.left, pr = p.right, q;
1830                 if ((ph = p.hash) > h)
1831                     p = pl;
1832                 else if (ph < h)
1833                     p = pr;
1834                 else if ((pk = p.key) == k || (k != null && k.equals(pk)))
1835                     return p;
1836                 else if (pl == null)
1837                     p = pr;
1838                 else if (pr == null)
1839                     p = pl;
1840                 else if ((kc != null ||
1841                           (kc = comparableClassFor(k)) != null) &&
1842                          (dir = compareComparables(kc, k, pk)) != 0)
1843                     p = (dir < 0) ? pl : pr;
1844                 else if ((q = pr.find(h, k, kc)) != null)
1845                     return q;
1846                 else
1847                     p = pl;
1848             } while (p != null);
1849             return null;
1850         }
1851 
1852         /**
1853          * Calls find for root node.
1854          */
1855         final TreeNode<K,V> getTreeNode(int h, Object k) {
1856             return ((parent != null) ? root() : this).find(h, k, null);
1857         }
1858 
1859         /**
1860          * Tie-breaking utility for ordering insertions when equal
1861          * hashCodes and non-comparable. We don't require a total
1862          * order, just a consistent insertion rule to maintain
1863          * equivalence across rebalancings. Tie-breaking further than
1864          * necessary simplifies testing a bit.
1865          */
1866         static int tieBreakOrder(Object a, Object b) {
1867             int d;
1868             if (a == null || b == null ||
1869                 (d = a.getClass().getName().
1870                  compareTo(b.getClass().getName())) == 0)
1871                 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
1872                      -1 : 1);
1873             return d;
1874         }
1875 
1876         /**
1877          * Forms tree of the nodes linked from this node.
1878          * @return root of tree
1879          */
1880         final void treeify(Node<K,V>[] tab) {
1881             TreeNode<K,V> root = null;
1882             for (TreeNode<K,V> x = this, next; x != null; x = next) {
1883                 next = (TreeNode<K,V>)x.next;
1884                 x.left = x.right = null;
1885                 if (root == null) {
1886                     x.parent = null;
1887                     x.red = false;
1888                     root = x;
1889                 }
1890                 else {
1891                     K k = x.key;
1892                     int h = x.hash;
1893                     Class<?> kc = null;
1894                     for (TreeNode<K,V> p = root;;) {
1895                         int dir, ph;
1896                         K pk = p.key;
1897                         if ((ph = p.hash) > h)
1898                             dir = -1;
1899                         else if (ph < h)
1900                             dir = 1;
1901                         else if ((kc == null &&
1902                                   (kc = comparableClassFor(k)) == null) ||
1903                                  (dir = compareComparables(kc, k, pk)) == 0)
1904                             dir = tieBreakOrder(k, pk);
1905 
1906                         TreeNode<K,V> xp = p;
1907                         if ((p = (dir <= 0) ? p.left : p.right) == null) {
1908                             x.parent = xp;
1909                             if (dir <= 0)
1910                                 xp.left = x;
1911                             else
1912                                 xp.right = x;
1913                             root = balanceInsertion(root, x);
1914                             break;
1915                         }
1916                     }
1917                 }
1918             }
1919             moveRootToFront(tab, root);
1920         }
1921 
1922         /**
1923          * Returns a list of non-TreeNodes replacing those linked from
1924          * this node.
1925          */
1926         final Node<K,V> untreeify(HashMap<K,V> map) {
1927             Node<K,V> hd = null, tl = null;
1928             for (Node<K,V> q = this; q != null; q = q.next) {
1929                 Node<K,V> p = map.replacementNode(q, null);
1930                 if (tl == null)
1931                     hd = p;
1932                 else
1933                     tl.next = p;
1934                 tl = p;
1935             }
1936             return hd;
1937         }
1938 
1939         /**
1940          * Tree version of putVal.
1941          */
1942         final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
1943                                        int h, K k, V v) {
1944             Class<?> kc = null;
1945             boolean searched = false;
1946             TreeNode<K,V> root = (parent != null) ? root() : this;
1947             for (TreeNode<K,V> p = root;;) {
1948                 int dir, ph; K pk;
1949                 if ((ph = p.hash) > h)
1950                     dir = -1;
1951                 else if (ph < h)
1952                     dir = 1;
1953                 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
1954                     return p;
1955                 else if ((kc == null &&
1956                           (kc = comparableClassFor(k)) == null) ||
1957                          (dir = compareComparables(kc, k, pk)) == 0) {
1958                     if (!searched) {
1959                         TreeNode<K,V> q, ch;
1960                         searched = true;
1961                         if (((ch = p.left) != null &&
1962                              (q = ch.find(h, k, kc)) != null) ||
1963                             ((ch = p.right) != null &&
1964                              (q = ch.find(h, k, kc)) != null))
1965                             return q;
1966                     }
1967                     dir = tieBreakOrder(k, pk);
1968                 }
1969 
1970                 TreeNode<K,V> xp = p;
1971                 if ((p = (dir <= 0) ? p.left : p.right) == null) {
1972                     Node<K,V> xpn = xp.next;
1973                     TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
1974                     if (dir <= 0)
1975                         xp.left = x;
1976                     else
1977                         xp.right = x;
1978                     xp.next = x;
1979                     x.parent = x.prev = xp;
1980                     if (xpn != null)
1981                         ((TreeNode<K,V>)xpn).prev = x;
1982                     moveRootToFront(tab, balanceInsertion(root, x));
1983                     return null;
1984                 }
1985             }
1986         }
1987 
1988         /**
1989          * Removes the given node, that must be present before this call.
1990          * This is messier than typical red-black deletion code because we
1991          * cannot swap the contents of an interior node with a leaf
1992          * successor that is pinned by "next" pointers that are accessible
1993          * independently during traversal. So instead we swap the tree
1994          * linkages. If the current tree appears to have too few nodes,
1995          * the bin is converted back to a plain bin. (The test triggers
1996          * somewhere between 2 and 6 nodes, depending on tree structure).
1997          */
1998         final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
1999                                   boolean movable) {
2000             int n;
2001             if (tab == null || (n = tab.length) == 0)
2002                 return;
2003             int index = (n - 1) & hash;
2004             TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
2005             TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
2006             if (pred == null)
2007                 tab[index] = first = succ;
2008             else
2009                 pred.next = succ;
2010             if (succ != null)
2011                 succ.prev = pred;
2012             if (first == null)
2013                 return;
2014             if (root.parent != null)
2015                 root = root.root();
2016             if (root == null || root.right == null ||
2017                 (rl = root.left) == null || rl.left == null) {
2018                 tab[index] = first.untreeify(map);  // too small
2019                 return;
2020             }
2021             TreeNode<K,V> p = this, pl = left, pr = right, replacement;
2022             if (pl != null && pr != null) {
2023                 TreeNode<K,V> s = pr, sl;
2024                 while ((sl = s.left) != null) // find successor
2025                     s = sl;
2026                 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2027                 TreeNode<K,V> sr = s.right;
2028                 TreeNode<K,V> pp = p.parent;
2029                 if (s == pr) { // p was s's direct parent
2030                     p.parent = s;
2031                     s.right = p;
2032                 }
2033                 else {
2034                     TreeNode<K,V> sp = s.parent;
2035                     if ((p.parent = sp) != null) {
2036                         if (s == sp.left)
2037                             sp.left = p;
2038                         else
2039                             sp.right = p;
2040                     }
2041                     if ((s.right = pr) != null)
2042                         pr.parent = s;
2043                 }
2044                 p.left = null;
2045                 if ((p.right = sr) != null)
2046                     sr.parent = p;
2047                 if ((s.left = pl) != null)
2048                     pl.parent = s;
2049                 if ((s.parent = pp) == null)
2050                     root = s;
2051                 else if (p == pp.left)
2052                     pp.left = s;
2053                 else
2054                     pp.right = s;
2055                 if (sr != null)
2056                     replacement = sr;
2057                 else
2058                     replacement = p;
2059             }
2060             else if (pl != null)
2061                 replacement = pl;
2062             else if (pr != null)
2063                 replacement = pr;
2064             else
2065                 replacement = p;
2066             if (replacement != p) {
2067                 TreeNode<K,V> pp = replacement.parent = p.parent;
2068                 if (pp == null)
2069                     root = replacement;
2070                 else if (p == pp.left)
2071                     pp.left = replacement;
2072                 else
2073                     pp.right = replacement;
2074                 p.left = p.right = p.parent = null;
2075             }
2076 
2077             TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);
2078 
2079             if (replacement == p) {  // detach
2080                 TreeNode<K,V> pp = p.parent;
2081                 p.parent = null;
2082                 if (pp != null) {
2083                     if (p == pp.left)
2084                         pp.left = null;
2085                     else if (p == pp.right)
2086                         pp.right = null;
2087                 }
2088             }
2089             if (movable)
2090                 moveRootToFront(tab, r);
2091         }
2092 
2093         /**
2094          * Splits nodes in a tree bin into lower and upper tree bins,
2095          * or untreeifies if now too small. Called only from resize;
2096          * see above discussion about split bits and indices.
2097          *
2098          * @param map the map
2099          * @param tab the table for recording bin heads
2100          * @param index the index of the table being split
2101          * @param bit the bit of hash to split on
2102          */
2103         final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
2104             TreeNode<K,V> b = this;
2105             // Relink into lo and hi lists, preserving order
2106             TreeNode<K,V> loHead = null, loTail = null;
2107             TreeNode<K,V> hiHead = null, hiTail = null;
2108             int lc = 0, hc = 0;
2109             for (TreeNode<K,V> e = b, next; e != null; e = next) {
2110                 next = (TreeNode<K,V>)e.next;
2111                 e.next = null;
2112                 if ((e.hash & bit) == 0) {
2113                     if ((e.prev = loTail) == null)
2114                         loHead = e;
2115                     else
2116                         loTail.next = e;
2117                     loTail = e;
2118                     ++lc;
2119                 }
2120                 else {
2121                     if ((e.prev = hiTail) == null)
2122                         hiHead = e;
2123                     else
2124                         hiTail.next = e;
2125                     hiTail = e;
2126                     ++hc;
2127                 }
2128             }
2129 
2130             if (loHead != null) {
2131                 if (lc <= UNTREEIFY_THRESHOLD)
2132                     tab[index] = loHead.untreeify(map);
2133                 else {
2134                     tab[index] = loHead;
2135                     if (hiHead != null) // (else is already treeified)
2136                         loHead.treeify(tab);
2137                 }
2138             }
2139             if (hiHead != null) {
2140                 if (hc <= UNTREEIFY_THRESHOLD)
2141                     tab[index + bit] = hiHead.untreeify(map);
2142                 else {
2143                     tab[index + bit] = hiHead;
2144                     if (loHead != null)
2145                         hiHead.treeify(tab);
2146                 }
2147             }
2148         }
2149 
2150         /* ------------------------------------------------------------ */
2151         // Red-black tree methods, all adapted from CLR
2152 
2153         static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2154                                               TreeNode<K,V> p) {
2155             TreeNode<K,V> r, pp, rl;
2156             if (p != null && (r = p.right) != null) {
2157                 if ((rl = p.right = r.left) != null)
2158                     rl.parent = p;
2159                 if ((pp = r.parent = p.parent) == null)
2160                     (root = r).red = false;
2161                 else if (pp.left == p)
2162                     pp.left = r;
2163                 else
2164                     pp.right = r;
2165                 r.left = p;
2166                 p.parent = r;
2167             }
2168             return root;
2169         }
2170 
2171         static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2172                                                TreeNode<K,V> p) {
2173             TreeNode<K,V> l, pp, lr;
2174             if (p != null && (l = p.left) != null) {
2175                 if ((lr = p.left = l.right) != null)
2176                     lr.parent = p;
2177                 if ((pp = l.parent = p.parent) == null)
2178                     (root = l).red = false;
2179                 else if (pp.right == p)
2180                     pp.right = l;
2181                 else
2182                     pp.left = l;
2183                 l.right = p;
2184                 p.parent = l;
2185             }
2186             return root;
2187         }
2188 
2189         static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2190                                                     TreeNode<K,V> x) {
2191             x.red = true;
2192             for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2193                 if ((xp = x.parent) == null) {
2194                     x.red = false;
2195                     return x;
2196                 }
2197                 else if (!xp.red || (xpp = xp.parent) == null)
2198                     return root;
2199                 if (xp == (xppl = xpp.left)) {
2200                     if ((xppr = xpp.right) != null && xppr.red) {
2201                         xppr.red = false;
2202                         xp.red = false;
2203                         xpp.red = true;
2204                         x = xpp;
2205                     }
2206                     else {
2207                         if (x == xp.right) {
2208                             root = rotateLeft(root, x = xp);
2209                             xpp = (xp = x.parent) == null ? null : xp.parent;
2210                         }
2211                         if (xp != null) {
2212                             xp.red = false;
2213                             if (xpp != null) {
2214                                 xpp.red = true;
2215                                 root = rotateRight(root, xpp);
2216                             }
2217                         }
2218                     }
2219                 }
2220                 else {
2221                     if (xppl != null && xppl.red) {
2222                         xppl.red = false;
2223                         xp.red = false;
2224                         xpp.red = true;
2225                         x = xpp;
2226                     }
2227                     else {
2228                         if (x == xp.left) {
2229                             root = rotateRight(root, x = xp);
2230                             xpp = (xp = x.parent) == null ? null : xp.parent;
2231                         }
2232                         if (xp != null) {
2233                             xp.red = false;
2234                             if (xpp != null) {
2235                                 xpp.red = true;
2236                                 root = rotateLeft(root, xpp);
2237                             }
2238                         }
2239                     }
2240                 }
2241             }
2242         }
2243 
2244         static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2245                                                    TreeNode<K,V> x) {
2246             for (TreeNode<K,V> xp, xpl, xpr;;)  {
2247                 if (x == null || x == root)
2248                     return root;
2249                 else if ((xp = x.parent) == null) {
2250                     x.red = false;
2251                     return x;
2252                 }
2253                 else if (x.red) {
2254                     x.red = false;
2255                     return root;
2256                 }
2257                 else if ((xpl = xp.left) == x) {
2258                     if ((xpr = xp.right) != null && xpr.red) {
2259                         xpr.red = false;
2260                         xp.red = true;
2261                         root = rotateLeft(root, xp);
2262                         xpr = (xp = x.parent) == null ? null : xp.right;
2263                     }
2264                     if (xpr == null)
2265                         x = xp;
2266                     else {
2267                         TreeNode<K,V> sl = xpr.left, sr = xpr.right;
2268                         if ((sr == null || !sr.red) &&
2269                             (sl == null || !sl.red)) {
2270                             xpr.red = true;
2271                             x = xp;
2272                         }
2273                         else {
2274                             if (sr == null || !sr.red) {
2275                                 if (sl != null)
2276                                     sl.red = false;
2277                                 xpr.red = true;
2278                                 root = rotateRight(root, xpr);
2279                                 xpr = (xp = x.parent) == null ?
2280                                     null : xp.right;
2281                             }
2282                             if (xpr != null) {
2283                                 xpr.red = (xp == null) ? false : xp.red;
2284                                 if ((sr = xpr.right) != null)
2285                                     sr.red = false;
2286                             }
2287                             if (xp != null) {
2288                                 xp.red = false;
2289                                 root = rotateLeft(root, xp);
2290                             }
2291                             x = root;
2292                         }
2293                     }
2294                 }
2295                 else { // symmetric
2296                     if (xpl != null && xpl.red) {
2297                         xpl.red = false;
2298                         xp.red = true;
2299                         root = rotateRight(root, xp);
2300                         xpl = (xp = x.parent) == null ? null : xp.left;
2301                     }
2302                     if (xpl == null)
2303                         x = xp;
2304                     else {
2305                         TreeNode<K,V> sl = xpl.left, sr = xpl.right;
2306                         if ((sl == null || !sl.red) &&
2307                             (sr == null || !sr.red)) {
2308                             xpl.red = true;
2309                             x = xp;
2310                         }
2311                         else {
2312                             if (sl == null || !sl.red) {
2313                                 if (sr != null)
2314                                     sr.red = false;
2315                                 xpl.red = true;
2316                                 root = rotateLeft(root, xpl);
2317                                 xpl = (xp = x.parent) == null ?
2318                                     null : xp.left;
2319                             }
2320                             if (xpl != null) {
2321                                 xpl.red = (xp == null) ? false : xp.red;
2322                                 if ((sl = xpl.left) != null)
2323                                     sl.red = false;
2324                             }
2325                             if (xp != null) {
2326                                 xp.red = false;
2327                                 root = rotateRight(root, xp);
2328                             }
2329                             x = root;
2330                         }
2331                     }
2332                 }
2333             }
2334         }
2335 
2336         /**
2337          * Recursive invariant check
2338          */
2339         static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
2340             TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
2341                 tb = t.prev, tn = (TreeNode<K,V>)t.next;
2342             if (tb != null && tb.next != t)
2343                 return false;
2344             if (tn != null && tn.prev != t)
2345                 return false;
2346             if (tp != null && t != tp.left && t != tp.right)
2347                 return false;
2348             if (tl != null && (tl.parent != t || tl.hash > t.hash))
2349                 return false;
2350             if (tr != null && (tr.parent != t || tr.hash < t.hash))
2351                 return false;
2352             if (t.red && tl != null && tl.red && tr != null && tr.red)
2353                 return false;
2354             if (tl != null && !checkInvariants(tl))
2355                 return false;
2356             if (tr != null && !checkInvariants(tr))
2357                 return false;
2358             return true;
2359         }
2360     }
2361 
2362 }