< prev index next >

src/java.base/share/classes/java/util/DualPivotQuicksort.java

Print this page

        

*** 1,7 **** /* ! * Copyright (c) 2009, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this --- 1,7 ---- /* ! * Copyright (c) 2009, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this
*** 23,3181 **** * questions. */ package java.util; /** ! * This class implements the Dual-Pivot Quicksort algorithm by ! * Vladimir Yaroslavskiy, Jon Bentley, and Josh Bloch. The algorithm ! * offers O(n log(n)) performance on many data sets that cause other ! * quicksorts to degrade to quadratic performance, and is typically * faster than traditional (one-pivot) Quicksort implementations. * ! * All exposed methods are package-private, designed to be invoked ! * from public methods (in class Arrays) after performing any ! * necessary array bounds checks and expanding parameters into the ! * required forms. * * @author Vladimir Yaroslavskiy * @author Jon Bentley * @author Josh Bloch * ! * @version 2011.02.11 m765.827.12i:5\7pm ! * @since 1.7 */ final class DualPivotQuicksort { /** * Prevents instantiation. */ private DualPivotQuicksort() {} ! /* ! * Tuning parameters. */ /** ! * The maximum number of runs in merge sort. */ ! private static final int MAX_RUN_COUNT = 67; /** ! * If the length of an array to be sorted is less than this ! * constant, Quicksort is used in preference to merge sort. */ ! private static final int QUICKSORT_THRESHOLD = 286; /** ! * If the length of an array to be sorted is less than this ! * constant, insertion sort is used in preference to Quicksort. */ ! private static final int INSERTION_SORT_THRESHOLD = 47; /** ! * If the length of a byte array to be sorted is greater than this ! * constant, counting sort is used in preference to insertion sort. */ ! private static final int COUNTING_SORT_THRESHOLD_FOR_BYTE = 29; /** ! * If the length of a short or char array to be sorted is greater ! * than this constant, counting sort is used in preference to Quicksort. */ ! private static final int COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR = 3200; ! /* ! * Sorting methods for seven primitive types. */ /** ! * Sorts the specified range of the array using the given ! * workspace array slice if possible for merging ! * ! * @param a the array to be sorted ! * @param left the index of the first element, inclusive, to be sorted ! * @param right the index of the last element, inclusive, to be sorted ! * @param work a workspace array (slice) ! * @param workBase origin of usable space in work array ! * @param workLen usable size of work array */ ! static void sort(int[] a, int left, int right, ! int[] work, int workBase, int workLen) { ! // Use Quicksort on small arrays ! if (right - left < QUICKSORT_THRESHOLD) { ! sort(a, left, right, true); ! return; ! } ! /* ! * Index run[i] is the start of i-th run ! * (ascending or descending sequence). ! */ ! int[] run = new int[MAX_RUN_COUNT + 1]; ! int count = 0; run[0] = left; ! // Check if the array is nearly sorted ! for (int k = left; k < right; run[count] = k) { ! // Equal items in the beginning of the sequence ! while (k < right && a[k] == a[k + 1]) ! k++; ! if (k == right) break; // Sequence finishes with equal items ! if (a[k] < a[k + 1]) { // ascending ! while (++k <= right && a[k - 1] <= a[k]); ! } else if (a[k] > a[k + 1]) { // descending ! while (++k <= right && a[k - 1] >= a[k]); ! // Transform into an ascending sequence ! for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) { ! int t = a[lo]; a[lo] = a[hi]; a[hi] = t; ! } ! } ! // Merge a transformed descending sequence followed by an ! // ascending sequence ! if (run[count] > left && a[run[count]] >= a[run[count] - 1]) { ! count--; ! } ! /* ! * The array is not highly structured, ! * use Quicksort instead of merge sort. ! */ ! if (++count == MAX_RUN_COUNT) { ! sort(a, left, right, true); ! return; ! } ! } ! // These invariants should hold true: ! // run[0] = 0 ! // run[<last>] = right + 1; (terminator) ! if (count == 0) { ! // A single equal run ! return; ! } else if (count == 1 && run[count] > right) { ! // Either a single ascending or a transformed descending run. ! // Always check that a final run is a proper terminator, otherwise ! // we have an unterminated trailing run, to handle downstream. ! return; ! } ! right++; ! if (run[count] < right) { ! // Corner case: the final run is not a terminator. This may happen ! // if a final run is an equals run, or there is a single-element run ! // at the end. Fix up by adding a proper terminator at the end. ! // Note that we terminate with (right + 1), incremented earlier. ! run[++count] = right; ! } ! ! // Determine alternation base for merge ! byte odd = 0; ! for (int n = 1; (n <<= 1) < count; odd ^= 1); ! ! // Use or create temporary array b for merging ! int[] b; // temp array; alternates with a ! int ao, bo; // array offsets from 'left' ! int blen = right - left; // space needed for b ! if (work == null || workLen < blen || workBase + blen > work.length) { ! work = new int[blen]; ! workBase = 0; ! } ! if (odd == 0) { ! System.arraycopy(a, left, work, workBase, blen); ! b = a; ! bo = 0; ! a = work; ! ao = workBase - left; ! } else { ! b = work; ! ao = 0; ! bo = workBase - left; ! } ! ! // Merging ! for (int last; count > 1; count = last) { ! for (int k = (last = 0) + 2; k <= count; k += 2) { ! int hi = run[k], mi = run[k - 1]; ! for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) { ! if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) { ! b[i + bo] = a[p++ + ao]; ! } else { ! b[i + bo] = a[q++ + ao]; ! } ! } ! run[++last] = hi; ! } ! if ((count & 1) != 0) { ! for (int i = right, lo = run[count - 1]; --i >= lo; ! b[i + bo] = a[i + ao] ! ); ! run[++last] = right; ! } ! int[] t = a; a = b; b = t; ! int o = ao; ao = bo; bo = o; } } /** ! * Sorts the specified range of the array by Dual-Pivot Quicksort. * * @param a the array to be sorted ! * @param left the index of the first element, inclusive, to be sorted ! * @param right the index of the last element, inclusive, to be sorted ! * @param leftmost indicates if this part is the leftmost in the range */ ! private static void sort(int[] a, int left, int right, boolean leftmost) { ! int length = right - left + 1; ! ! // Use insertion sort on tiny arrays ! if (length < INSERTION_SORT_THRESHOLD) { ! if (leftmost) { ! /* ! * Traditional (without sentinel) insertion sort, ! * optimized for server VM, is used in case of ! * the leftmost part. ! */ ! for (int i = left, j = i; i < right; j = ++i) { ! int ai = a[i + 1]; ! while (ai < a[j]) { ! a[j + 1] = a[j]; ! if (j-- == left) { ! break; ! } ! } ! a[j + 1] = ai; ! } ! } else { ! /* ! * Skip the longest ascending sequence. ! */ ! do { ! if (left >= right) { ! return; ! } ! } while (a[++left] >= a[left - 1]); ! ! /* ! * Every element from adjoining part plays the role ! * of sentinel, therefore this allows us to avoid the ! * left range check on each iteration. Moreover, we use ! * the more optimized algorithm, so called pair insertion ! * sort, which is faster (in the context of Quicksort) ! * than traditional implementation of insertion sort. ! */ ! for (int k = left; ++left <= right; k = ++left) { ! int a1 = a[k], a2 = a[left]; ! ! if (a1 < a2) { ! a2 = a1; a1 = a[left]; ! } ! while (a1 < a[--k]) { ! a[k + 2] = a[k]; ! } ! a[++k + 1] = a1; ! while (a2 < a[--k]) { ! a[k + 1] = a[k]; ! } ! a[k + 1] = a2; ! } ! int last = a[right]; ! ! while (last < a[--right]) { ! a[right + 1] = a[right]; ! } ! a[right + 1] = last; ! } ! return; } ! // Inexpensive approximation of length / 7 ! int seventh = (length >> 3) + (length >> 6) + 1; ! ! /* ! * Sort five evenly spaced elements around (and including) the ! * center element in the range. These elements will be used for ! * pivot selection as described below. The choice for spacing ! * these elements was empirically determined to work well on ! * a wide variety of inputs. ! */ ! int e3 = (left + right) >>> 1; // The midpoint ! int e2 = e3 - seventh; ! int e1 = e2 - seventh; ! int e4 = e3 + seventh; ! int e5 = e4 + seventh; ! ! // Sort these elements using insertion sort ! if (a[e2] < a[e1]) { int t = a[e2]; a[e2] = a[e1]; a[e1] = t; } ! if (a[e3] < a[e2]) { int t = a[e3]; a[e3] = a[e2]; a[e2] = t; ! if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } ! } ! if (a[e4] < a[e3]) { int t = a[e4]; a[e4] = a[e3]; a[e3] = t; ! if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; ! if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } ! } ! if (a[e5] < a[e4]) { int t = a[e5]; a[e5] = a[e4]; a[e4] = t; ! if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t; ! if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; ! if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } ! } } - } ! // Pointers ! int less = left; // The index of the first element of center part ! int great = right; // The index before the first element of right part - if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) { /* ! * Use the second and fourth of the five sorted elements as pivots. ! * These values are inexpensive approximations of the first and ! * second terciles of the array. Note that pivot1 <= pivot2. */ ! int pivot1 = a[e2]; ! int pivot2 = a[e4]; /* ! * The first and the last elements to be sorted are moved to the ! * locations formerly occupied by the pivots. When partitioning ! * is complete, the pivots are swapped back into their final ! * positions, and excluded from subsequent sorting. */ ! a[e2] = a[left]; ! a[e4] = a[right]; /* ! * Skip elements, which are less or greater than pivot values. */ ! while (a[++less] < pivot1); ! while (a[--great] > pivot2); /* ! * Partitioning: ! * ! * left part center part right part ! * +--------------------------------------------------------------+ ! * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | ! * +--------------------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * less k great ! * ! * Invariants: ! * ! * all in (left, less) < pivot1 ! * pivot1 <= all in [less, k) <= pivot2 ! * all in (great, right) > pivot2 * ! * Pointer k is the first index of ?-part. */ ! outer: ! for (int k = less - 1; ++k <= great; ) { ! int ak = a[k]; ! if (ak < pivot1) { // Move a[k] to left part ! a[k] = a[less]; ! /* ! * Here and below we use "a[i] = b; i++;" instead ! * of "a[i++] = b;" due to performance issue. ! */ ! a[less] = ak; ! ++less; ! } else if (ak > pivot2) { // Move a[k] to right part ! while (a[great] > pivot2) { ! if (great-- == k) { ! break outer; ! } ! } ! if (a[great] < pivot1) { // a[great] <= pivot2 ! a[k] = a[less]; ! a[less] = a[great]; ! ++less; ! } else { // pivot1 <= a[great] <= pivot2 ! a[k] = a[great]; ! } ! /* ! * Here and below we use "a[i] = b; i--;" instead ! * of "a[i--] = b;" due to performance issue. ! */ ! a[great] = ak; ! --great; } } ! // Swap pivots into their final positions ! a[left] = a[less - 1]; a[less - 1] = pivot1; ! a[right] = a[great + 1]; a[great + 1] = pivot2; ! ! // Sort left and right parts recursively, excluding known pivots ! sort(a, left, less - 2, leftmost); ! sort(a, great + 2, right, false); /* ! * If center part is too large (comprises > 4/7 of the array), ! * swap internal pivot values to ends. */ ! if (less < e1 && e5 < great) { /* ! * Skip elements, which are equal to pivot values. */ ! while (a[less] == pivot1) { ! ++less; ! } ! while (a[great] == pivot2) { ! --great; ! } /* ! * Partitioning: * ! * left part center part right part ! * +----------------------------------------------------------+ ! * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | ! * +----------------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * less k great * * Invariants: * ! * all in (*, less) == pivot1 ! * pivot1 < all in [less, k) < pivot2 ! * all in (great, *) == pivot2 * ! * Pointer k is the first index of ?-part. */ ! outer: ! for (int k = less - 1; ++k <= great; ) { int ak = a[k]; ! if (ak == pivot1) { // Move a[k] to left part ! a[k] = a[less]; ! a[less] = ak; ! ++less; ! } else if (ak == pivot2) { // Move a[k] to right part ! while (a[great] == pivot2) { ! if (great-- == k) { ! break outer; } } ! if (a[great] == pivot1) { // a[great] < pivot2 ! a[k] = a[less]; ! /* ! * Even though a[great] equals to pivot1, the ! * assignment a[less] = pivot1 may be incorrect, ! * if a[great] and pivot1 are floating-point zeros ! * of different signs. Therefore in float and ! * double sorting methods we have to use more ! * accurate assignment a[less] = a[great]. ! */ ! a[less] = pivot1; ! ++less; ! } else { // pivot1 < a[great] < pivot2 ! a[k] = a[great]; ! } ! a[great] = ak; ! --great; } } - } - - // Sort center part recursively - sort(a, less, great, false); ! } else { // Partitioning with one pivot ! /* ! * Use the third of the five sorted elements as pivot. ! * This value is inexpensive approximation of the median. ! */ ! int pivot = a[e3]; ! /* ! * Partitioning degenerates to the traditional 3-way ! * (or "Dutch National Flag") schema: ! * ! * left part center part right part ! * +-------------------------------------------------+ ! * | < pivot | == pivot | ? | > pivot | ! * +-------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * less k great ! * ! * Invariants: ! * ! * all in (left, less) < pivot ! * all in [less, k) == pivot ! * all in (great, right) > pivot ! * ! * Pointer k is the first index of ?-part. ! */ ! for (int k = less; k <= great; ++k) { ! if (a[k] == pivot) { ! continue; } ! int ak = a[k]; ! if (ak < pivot) { // Move a[k] to left part ! a[k] = a[less]; ! a[less] = ak; ! ++less; ! } else { // a[k] > pivot - Move a[k] to right part ! while (a[great] > pivot) { ! --great; ! } ! if (a[great] < pivot) { // a[great] <= pivot ! a[k] = a[less]; ! a[less] = a[great]; ! ++less; ! } else { // a[great] == pivot ! /* ! * Even though a[great] equals to pivot, the ! * assignment a[k] = pivot may be incorrect, ! * if a[great] and pivot are floating-point ! * zeros of different signs. Therefore in float ! * and double sorting methods we have to use ! * more accurate assignment a[k] = a[great]. ! */ a[k] = pivot; } - a[great] = ak; - --great; } - } ! /* ! * Sort left and right parts recursively. ! * All elements from center part are equal ! * and, therefore, already sorted. ! */ ! sort(a, left, less - 1, leftmost); ! sort(a, great + 1, right, false); } } /** ! * Sorts the specified range of the array using the given ! * workspace array slice if possible for merging * * @param a the array to be sorted ! * @param left the index of the first element, inclusive, to be sorted ! * @param right the index of the last element, inclusive, to be sorted ! * @param work a workspace array (slice) ! * @param workBase origin of usable space in work array ! * @param workLen usable size of work array */ ! static void sort(long[] a, int left, int right, ! long[] work, int workBase, int workLen) { ! // Use Quicksort on small arrays ! if (right - left < QUICKSORT_THRESHOLD) { ! sort(a, left, right, true); ! return; ! } ! /* ! * Index run[i] is the start of i-th run ! * (ascending or descending sequence). ! */ ! int[] run = new int[MAX_RUN_COUNT + 1]; ! int count = 0; run[0] = left; ! // Check if the array is nearly sorted ! for (int k = left; k < right; run[count] = k) { ! // Equal items in the beginning of the sequence ! while (k < right && a[k] == a[k + 1]) ! k++; ! if (k == right) break; // Sequence finishes with equal items ! if (a[k] < a[k + 1]) { // ascending ! while (++k <= right && a[k - 1] <= a[k]); ! } else if (a[k] > a[k + 1]) { // descending ! while (++k <= right && a[k - 1] >= a[k]); ! // Transform into an ascending sequence ! for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) { ! long t = a[lo]; a[lo] = a[hi]; a[hi] = t; } } ! ! // Merge a transformed descending sequence followed by an ! // ascending sequence ! if (run[count] > left && a[run[count]] >= a[run[count] - 1]) { ! count--; ! } /* ! * The array is not highly structured, ! * use Quicksort instead of merge sort. */ ! if (++count == MAX_RUN_COUNT) { ! sort(a, left, right, true); ! return; ! } ! } ! // These invariants should hold true: ! // run[0] = 0 ! // run[<last>] = right + 1; (terminator) ! if (count == 0) { ! // A single equal run ! return; ! } else if (count == 1 && run[count] > right) { ! // Either a single ascending or a transformed descending run. ! // Always check that a final run is a proper terminator, otherwise ! // we have an unterminated trailing run, to handle downstream. ! return; ! } ! right++; ! if (run[count] < right) { ! // Corner case: the final run is not a terminator. This may happen ! // if a final run is an equals run, or there is a single-element run ! // at the end. Fix up by adding a proper terminator at the end. ! // Note that we terminate with (right + 1), incremented earlier. ! run[++count] = right; ! } ! ! // Determine alternation base for merge ! byte odd = 0; ! for (int n = 1; (n <<= 1) < count; odd ^= 1); ! ! // Use or create temporary array b for merging ! long[] b; // temp array; alternates with a ! int ao, bo; // array offsets from 'left' ! int blen = right - left; // space needed for b ! if (work == null || workLen < blen || workBase + blen > work.length) { ! work = new long[blen]; ! workBase = 0; ! } ! if (odd == 0) { ! System.arraycopy(a, left, work, workBase, blen); ! b = a; ! bo = 0; ! a = work; ! ao = workBase - left; ! } else { ! b = work; ! ao = 0; ! bo = workBase - left; ! } ! ! // Merging ! for (int last; count > 1; count = last) { ! for (int k = (last = 0) + 2; k <= count; k += 2) { ! int hi = run[k], mi = run[k - 1]; ! for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) { ! if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) { ! b[i + bo] = a[p++ + ao]; ! } else { ! b[i + bo] = a[q++ + ao]; } } - run[++last] = hi; - } - if ((count & 1) != 0) { - for (int i = right, lo = run[count - 1]; --i >= lo; - b[i + bo] = a[i + ao] - ); - run[++last] = right; } - long[] t = a; a = b; b = t; - int o = ao; ao = bo; bo = o; - } - } ! /** ! * Sorts the specified range of the array by Dual-Pivot Quicksort. ! * ! * @param a the array to be sorted ! * @param left the index of the first element, inclusive, to be sorted ! * @param right the index of the last element, inclusive, to be sorted ! * @param leftmost indicates if this part is the leftmost in the range ! */ ! private static void sort(long[] a, int left, int right, boolean leftmost) { ! int length = right - left + 1; - // Use insertion sort on tiny arrays - if (length < INSERTION_SORT_THRESHOLD) { - if (leftmost) { /* ! * Traditional (without sentinel) insertion sort, ! * optimized for server VM, is used in case of ! * the leftmost part. */ ! for (int i = left, j = i; i < right; j = ++i) { ! long ai = a[i + 1]; ! while (ai < a[j]) { ! a[j + 1] = a[j]; ! if (j-- == left) { ! break; ! } } ! a[j + 1] = ai; ! } ! } else { ! /* ! * Skip the longest ascending sequence. ! */ ! do { ! if (left >= right) { ! return; } ! } while (a[++left] >= a[left - 1]); ! /* ! * Every element from adjoining part plays the role ! * of sentinel, therefore this allows us to avoid the ! * left range check on each iteration. Moreover, we use ! * the more optimized algorithm, so called pair insertion ! * sort, which is faster (in the context of Quicksort) ! * than traditional implementation of insertion sort. ! */ ! for (int k = left; ++left <= right; k = ++left) { ! long a1 = a[k], a2 = a[left]; ! if (a1 < a2) { ! a2 = a1; a1 = a[left]; ! } ! while (a1 < a[--k]) { ! a[k + 2] = a[k]; } ! a[++k + 1] = a1; ! while (a2 < a[--k]) { ! a[k + 1] = a[k]; } ! a[k + 1] = a2; } ! long last = a[right]; ! while (last < a[--right]) { ! a[right + 1] = a[right]; } ! a[right + 1] = last; } - return; } ! // Inexpensive approximation of length / 7 ! int seventh = (length >> 3) + (length >> 6) + 1; ! ! /* ! * Sort five evenly spaced elements around (and including) the ! * center element in the range. These elements will be used for ! * pivot selection as described below. The choice for spacing ! * these elements was empirically determined to work well on ! * a wide variety of inputs. ! */ ! int e3 = (left + right) >>> 1; // The midpoint ! int e2 = e3 - seventh; ! int e1 = e2 - seventh; ! int e4 = e3 + seventh; ! int e5 = e4 + seventh; ! // Sort these elements using insertion sort ! if (a[e2] < a[e1]) { long t = a[e2]; a[e2] = a[e1]; a[e1] = t; } ! if (a[e3] < a[e2]) { long t = a[e3]; a[e3] = a[e2]; a[e2] = t; ! if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } ! } ! if (a[e4] < a[e3]) { long t = a[e4]; a[e4] = a[e3]; a[e3] = t; ! if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; ! if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } ! } ! if (a[e5] < a[e4]) { long t = a[e5]; a[e5] = a[e4]; a[e4] = t; ! if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t; ! if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; ! if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } ! } } } ! // Pointers ! int less = left; // The index of the first element of center part ! int great = right; // The index before the first element of right part ! if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) { ! /* ! * Use the second and fourth of the five sorted elements as pivots. ! * These values are inexpensive approximations of the first and ! * second terciles of the array. Note that pivot1 <= pivot2. ! */ ! long pivot1 = a[e2]; ! long pivot2 = a[e4]; ! /* ! * The first and the last elements to be sorted are moved to the ! * locations formerly occupied by the pivots. When partitioning ! * is complete, the pivots are swapped back into their final ! * positions, and excluded from subsequent sorting. ! */ ! a[e2] = a[left]; ! a[e4] = a[right]; /* ! * Skip elements, which are less or greater than pivot values. */ ! while (a[++less] < pivot1); ! while (a[--great] > pivot2); ! /* ! * Partitioning: ! * ! * left part center part right part ! * +--------------------------------------------------------------+ ! * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | ! * +--------------------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * less k great ! * ! * Invariants: ! * ! * all in (left, less) < pivot1 ! * pivot1 <= all in [less, k) <= pivot2 ! * all in (great, right) > pivot2 ! * ! * Pointer k is the first index of ?-part. ! */ ! outer: ! for (int k = less - 1; ++k <= great; ) { ! long ak = a[k]; ! if (ak < pivot1) { // Move a[k] to left part ! a[k] = a[less]; ! /* ! * Here and below we use "a[i] = b; i++;" instead ! * of "a[i++] = b;" due to performance issue. ! */ ! a[less] = ak; ! ++less; ! } else if (ak > pivot2) { // Move a[k] to right part ! while (a[great] > pivot2) { ! if (great-- == k) { ! break outer; ! } ! } ! if (a[great] < pivot1) { // a[great] <= pivot2 ! a[k] = a[less]; ! a[less] = a[great]; ! ++less; ! } else { // pivot1 <= a[great] <= pivot2 ! a[k] = a[great]; ! } ! /* ! * Here and below we use "a[i] = b; i--;" instead ! * of "a[i--] = b;" due to performance issue. ! */ ! a[great] = ak; ! --great; ! } ! } ! // Swap pivots into their final positions ! a[left] = a[less - 1]; a[less - 1] = pivot1; ! a[right] = a[great + 1]; a[great + 1] = pivot2; ! // Sort left and right parts recursively, excluding known pivots ! sort(a, left, less - 2, leftmost); ! sort(a, great + 2, right, false); /* ! * If center part is too large (comprises > 4/7 of the array), ! * swap internal pivot values to ends. */ ! if (less < e1 && e5 < great) { ! /* ! * Skip elements, which are equal to pivot values. ! */ ! while (a[less] == pivot1) { ! ++less; ! } ! while (a[great] == pivot2) { ! --great; } ! /* ! * Partitioning: ! * ! * left part center part right part ! * +----------------------------------------------------------+ ! * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | ! * +----------------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * less k great ! * ! * Invariants: ! * ! * all in (*, less) == pivot1 ! * pivot1 < all in [less, k) < pivot2 ! * all in (great, *) == pivot2 ! * ! * Pointer k is the first index of ?-part. ! */ ! outer: ! for (int k = less - 1; ++k <= great; ) { ! long ak = a[k]; ! if (ak == pivot1) { // Move a[k] to left part ! a[k] = a[less]; ! a[less] = ak; ! ++less; ! } else if (ak == pivot2) { // Move a[k] to right part ! while (a[great] == pivot2) { ! if (great-- == k) { ! break outer; ! } ! } ! if (a[great] == pivot1) { // a[great] < pivot2 ! a[k] = a[less]; ! /* ! * Even though a[great] equals to pivot1, the ! * assignment a[less] = pivot1 may be incorrect, ! * if a[great] and pivot1 are floating-point zeros ! * of different signs. Therefore in float and ! * double sorting methods we have to use more ! * accurate assignment a[less] = a[great]. ! */ ! a[less] = pivot1; ! ++less; ! } else { // pivot1 < a[great] < pivot2 ! a[k] = a[great]; ! } ! a[great] = ak; ! --great; ! } } - } ! // Sort center part recursively ! sort(a, less, great, false); ! } else { // Partitioning with one pivot ! /* ! * Use the third of the five sorted elements as pivot. ! * This value is inexpensive approximation of the median. ! */ ! long pivot = a[e3]; ! /* ! * Partitioning degenerates to the traditional 3-way ! * (or "Dutch National Flag") schema: ! * ! * left part center part right part ! * +-------------------------------------------------+ ! * | < pivot | == pivot | ? | > pivot | ! * +-------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * less k great ! * ! * Invariants: ! * ! * all in (left, less) < pivot ! * all in [less, k) == pivot ! * all in (great, right) > pivot ! * ! * Pointer k is the first index of ?-part. ! */ ! for (int k = less; k <= great; ++k) { ! if (a[k] == pivot) { ! continue; } ! long ak = a[k]; ! if (ak < pivot) { // Move a[k] to left part ! a[k] = a[less]; ! a[less] = ak; ! ++less; ! } else { // a[k] > pivot - Move a[k] to right part ! while (a[great] > pivot) { ! --great; ! } ! if (a[great] < pivot) { // a[great] <= pivot ! a[k] = a[less]; ! a[less] = a[great]; ! ++less; ! } else { // a[great] == pivot ! /* ! * Even though a[great] equals to pivot, the ! * assignment a[k] = pivot may be incorrect, ! * if a[great] and pivot are floating-point ! * zeros of different signs. Therefore in float ! * and double sorting methods we have to use ! * more accurate assignment a[k] = a[great]. ! */ ! a[k] = pivot; ! } ! a[great] = ak; ! --great; } - } ! /* ! * Sort left and right parts recursively. ! * All elements from center part are equal ! * and, therefore, already sorted. ! */ ! sort(a, left, less - 1, leftmost); ! sort(a, great + 1, right, false); ! } ! } ! /** ! * Sorts the specified range of the array using the given ! * workspace array slice if possible for merging ! * ! * @param a the array to be sorted ! * @param left the index of the first element, inclusive, to be sorted ! * @param right the index of the last element, inclusive, to be sorted ! * @param work a workspace array (slice) ! * @param workBase origin of usable space in work array ! * @param workLen usable size of work array ! */ ! static void sort(short[] a, int left, int right, ! short[] work, int workBase, int workLen) { ! // Use counting sort on large arrays ! if (right - left > COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR) { ! int[] count = new int[NUM_SHORT_VALUES]; ! for (int i = left - 1; ++i <= right; ! count[a[i] - Short.MIN_VALUE]++ ! ); ! for (int i = NUM_SHORT_VALUES, k = right + 1; k > left; ) { ! while (count[--i] == 0); ! short value = (short) (i + Short.MIN_VALUE); ! int s = count[i]; ! do { ! a[--k] = value; ! } while (--s > 0); } ! } else { // Use Dual-Pivot Quicksort on small arrays ! doSort(a, left, right, work, workBase, workLen); } } - /** The number of distinct short values. */ - private static final int NUM_SHORT_VALUES = 1 << 16; - /** ! * Sorts the specified range of the array. * ! * @param a the array to be sorted ! * @param left the index of the first element, inclusive, to be sorted ! * @param right the index of the last element, inclusive, to be sorted ! * @param work a workspace array (slice) ! * @param workBase origin of usable space in work array ! * @param workLen usable size of work array ! */ ! private static void doSort(short[] a, int left, int right, ! short[] work, int workBase, int workLen) { ! // Use Quicksort on small arrays ! if (right - left < QUICKSORT_THRESHOLD) { ! sort(a, left, right, true); ! return; } /* ! * Index run[i] is the start of i-th run ! * (ascending or descending sequence). */ ! int[] run = new int[MAX_RUN_COUNT + 1]; ! int count = 0; run[0] = left; ! ! // Check if the array is nearly sorted ! for (int k = left; k < right; run[count] = k) { ! // Equal items in the beginning of the sequence ! while (k < right && a[k] == a[k + 1]) ! k++; ! if (k == right) break; // Sequence finishes with equal items ! if (a[k] < a[k + 1]) { // ascending ! while (++k <= right && a[k - 1] <= a[k]); ! } else if (a[k] > a[k + 1]) { // descending ! while (++k <= right && a[k - 1] >= a[k]); ! // Transform into an ascending sequence ! for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) { ! short t = a[lo]; a[lo] = a[hi]; a[hi] = t; ! } ! } ! // Merge a transformed descending sequence followed by an ! // ascending sequence ! if (run[count] > left && a[run[count]] >= a[run[count] - 1]) { ! count--; ! } ! /* ! * The array is not highly structured, ! * use Quicksort instead of merge sort. ! */ ! if (++count == MAX_RUN_COUNT) { ! sort(a, left, right, true); ! return; ! } } ! // These invariants should hold true: ! // run[0] = 0 ! // run[<last>] = right + 1; (terminator) ! if (count == 0) { ! // A single equal run ! return; ! } else if (count == 1 && run[count] > right) { ! // Either a single ascending or a transformed descending run. ! // Always check that a final run is a proper terminator, otherwise ! // we have an unterminated trailing run, to handle downstream. ! return; ! } ! right++; ! if (run[count] < right) { ! // Corner case: the final run is not a terminator. This may happen ! // if a final run is an equals run, or there is a single-element run ! // at the end. Fix up by adding a proper terminator at the end. ! // Note that we terminate with (right + 1), incremented earlier. ! run[++count] = right; ! } ! ! // Determine alternation base for merge ! byte odd = 0; ! for (int n = 1; (n <<= 1) < count; odd ^= 1); ! ! // Use or create temporary array b for merging ! short[] b; // temp array; alternates with a ! int ao, bo; // array offsets from 'left' ! int blen = right - left; // space needed for b ! if (work == null || workLen < blen || workBase + blen > work.length) { ! work = new short[blen]; ! workBase = 0; ! } ! if (odd == 0) { ! System.arraycopy(a, left, work, workBase, blen); ! b = a; ! bo = 0; ! a = work; ! ao = workBase - left; ! } else { ! b = work; ! ao = 0; ! bo = workBase - left; ! } ! ! // Merging ! for (int last; count > 1; count = last) { ! for (int k = (last = 0) + 2; k <= count; k += 2) { ! int hi = run[k], mi = run[k - 1]; ! for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) { ! if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) { ! b[i + bo] = a[p++ + ao]; ! } else { ! b[i + bo] = a[q++ + ao]; ! } ! } ! run[++last] = hi; ! } ! if ((count & 1) != 0) { ! for (int i = right, lo = run[count - 1]; --i >= lo; ! b[i + bo] = a[i + ao] ! ); ! run[++last] = right; ! } ! short[] t = a; a = b; b = t; ! int o = ao; ao = bo; bo = o; } } /** ! * Sorts the specified range of the array by Dual-Pivot Quicksort. * ! * @param a the array to be sorted ! * @param left the index of the first element, inclusive, to be sorted ! * @param right the index of the last element, inclusive, to be sorted ! * @param leftmost indicates if this part is the leftmost in the range */ ! private static void sort(short[] a, int left, int right, boolean leftmost) { ! int length = right - left + 1; - // Use insertion sort on tiny arrays - if (length < INSERTION_SORT_THRESHOLD) { - if (leftmost) { /* ! * Traditional (without sentinel) insertion sort, ! * optimized for server VM, is used in case of ! * the leftmost part. */ ! for (int i = left, j = i; i < right; j = ++i) { ! short ai = a[i + 1]; ! while (ai < a[j]) { ! a[j + 1] = a[j]; ! if (j-- == left) { ! break; ! } ! } ! a[j + 1] = ai; } ! } else { /* ! * Skip the longest ascending sequence. */ ! do { ! if (left >= right) { ! return; ! } ! } while (a[++left] >= a[left - 1]); /* ! * Every element from adjoining part plays the role ! * of sentinel, therefore this allows us to avoid the ! * left range check on each iteration. Moreover, we use ! * the more optimized algorithm, so called pair insertion ! * sort, which is faster (in the context of Quicksort) ! * than traditional implementation of insertion sort. */ ! for (int k = left; ++left <= right; k = ++left) { ! short a1 = a[k], a2 = a[left]; ! if (a1 < a2) { ! a2 = a1; a1 = a[left]; ! } ! while (a1 < a[--k]) { ! a[k + 2] = a[k]; ! } ! a[++k + 1] = a1; ! while (a2 < a[--k]) { ! a[k + 1] = a[k]; } - a[k + 1] = a2; } - short last = a[right]; ! while (last < a[--right]) { ! a[right + 1] = a[right]; ! } ! a[right + 1] = last; } - return; } - // Inexpensive approximation of length / 7 - int seventh = (length >> 3) + (length >> 6) + 1; - /* ! * Sort five evenly spaced elements around (and including) the ! * center element in the range. These elements will be used for ! * pivot selection as described below. The choice for spacing ! * these elements was empirically determined to work well on ! * a wide variety of inputs. */ ! int e3 = (left + right) >>> 1; // The midpoint ! int e2 = e3 - seventh; ! int e1 = e2 - seventh; ! int e4 = e3 + seventh; ! int e5 = e4 + seventh; ! ! // Sort these elements using insertion sort ! if (a[e2] < a[e1]) { short t = a[e2]; a[e2] = a[e1]; a[e1] = t; } ! ! if (a[e3] < a[e2]) { short t = a[e3]; a[e3] = a[e2]; a[e2] = t; ! if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } ! if (a[e4] < a[e3]) { short t = a[e4]; a[e4] = a[e3]; a[e3] = t; ! if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; ! if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } } ! if (a[e5] < a[e4]) { short t = a[e5]; a[e5] = a[e4]; a[e4] = t; ! if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t; ! if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; ! if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } ! } } } ! // Pointers ! int less = left; // The index of the first element of center part ! int great = right; // The index before the first element of right part - if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) { /* ! * Use the second and fourth of the five sorted elements as pivots. ! * These values are inexpensive approximations of the first and ! * second terciles of the array. Note that pivot1 <= pivot2. */ ! short pivot1 = a[e2]; ! short pivot2 = a[e4]; /* ! * The first and the last elements to be sorted are moved to the ! * locations formerly occupied by the pivots. When partitioning ! * is complete, the pivots are swapped back into their final ! * positions, and excluded from subsequent sorting. */ ! a[e2] = a[left]; ! a[e4] = a[right]; /* ! * Skip elements, which are less or greater than pivot values. */ ! while (a[++less] < pivot1); ! while (a[--great] > pivot2); /* ! * Partitioning: ! * ! * left part center part right part ! * +--------------------------------------------------------------+ ! * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | ! * +--------------------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * less k great ! * ! * Invariants: ! * ! * all in (left, less) < pivot1 ! * pivot1 <= all in [less, k) <= pivot2 ! * all in (great, right) > pivot2 * ! * Pointer k is the first index of ?-part. */ ! outer: ! for (int k = less - 1; ++k <= great; ) { ! short ak = a[k]; ! if (ak < pivot1) { // Move a[k] to left part ! a[k] = a[less]; ! /* ! * Here and below we use "a[i] = b; i++;" instead ! * of "a[i++] = b;" due to performance issue. ! */ ! a[less] = ak; ! ++less; ! } else if (ak > pivot2) { // Move a[k] to right part ! while (a[great] > pivot2) { ! if (great-- == k) { ! break outer; ! } ! } ! if (a[great] < pivot1) { // a[great] <= pivot2 ! a[k] = a[less]; ! a[less] = a[great]; ! ++less; ! } else { // pivot1 <= a[great] <= pivot2 ! a[k] = a[great]; ! } ! /* ! * Here and below we use "a[i] = b; i--;" instead ! * of "a[i--] = b;" due to performance issue. ! */ ! a[great] = ak; ! --great; } } ! // Swap pivots into their final positions ! a[left] = a[less - 1]; a[less - 1] = pivot1; ! a[right] = a[great + 1]; a[great + 1] = pivot2; ! ! // Sort left and right parts recursively, excluding known pivots ! sort(a, left, less - 2, leftmost); ! sort(a, great + 2, right, false); /* ! * If center part is too large (comprises > 4/7 of the array), ! * swap internal pivot values to ends. */ ! if (less < e1 && e5 < great) { /* ! * Skip elements, which are equal to pivot values. */ ! while (a[less] == pivot1) { ! ++less; ! } ! while (a[great] == pivot2) { ! --great; ! } /* ! * Partitioning: * ! * left part center part right part ! * +----------------------------------------------------------+ ! * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | ! * +----------------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * less k great * * Invariants: * ! * all in (*, less) == pivot1 ! * pivot1 < all in [less, k) < pivot2 ! * all in (great, *) == pivot2 * ! * Pointer k is the first index of ?-part. */ ! outer: ! for (int k = less - 1; ++k <= great; ) { ! short ak = a[k]; ! if (ak == pivot1) { // Move a[k] to left part ! a[k] = a[less]; ! a[less] = ak; ! ++less; ! } else if (ak == pivot2) { // Move a[k] to right part ! while (a[great] == pivot2) { ! if (great-- == k) { ! break outer; } } ! if (a[great] == pivot1) { // a[great] < pivot2 ! a[k] = a[less]; ! /* ! * Even though a[great] equals to pivot1, the ! * assignment a[less] = pivot1 may be incorrect, ! * if a[great] and pivot1 are floating-point zeros ! * of different signs. Therefore in float and ! * double sorting methods we have to use more ! * accurate assignment a[less] = a[great]. ! */ ! a[less] = pivot1; ! ++less; ! } else { // pivot1 < a[great] < pivot2 ! a[k] = a[great]; ! } ! a[great] = ak; ! --great; } } - } ! // Sort center part recursively ! sort(a, less, great, false); ! ! } else { // Partitioning with one pivot ! /* ! * Use the third of the five sorted elements as pivot. ! * This value is inexpensive approximation of the median. ! */ ! short pivot = a[e3]; ! /* ! * Partitioning degenerates to the traditional 3-way ! * (or "Dutch National Flag") schema: ! * ! * left part center part right part ! * +-------------------------------------------------+ ! * | < pivot | == pivot | ? | > pivot | ! * +-------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * less k great ! * ! * Invariants: ! * ! * all in (left, less) < pivot ! * all in [less, k) == pivot ! * all in (great, right) > pivot ! * ! * Pointer k is the first index of ?-part. ! */ ! for (int k = less; k <= great; ++k) { ! if (a[k] == pivot) { ! continue; } ! short ak = a[k]; ! if (ak < pivot) { // Move a[k] to left part ! a[k] = a[less]; ! a[less] = ak; ! ++less; ! } else { // a[k] > pivot - Move a[k] to right part ! while (a[great] > pivot) { ! --great; ! } ! if (a[great] < pivot) { // a[great] <= pivot ! a[k] = a[less]; ! a[less] = a[great]; ! ++less; ! } else { // a[great] == pivot ! /* ! * Even though a[great] equals to pivot, the ! * assignment a[k] = pivot may be incorrect, ! * if a[great] and pivot are floating-point ! * zeros of different signs. Therefore in float ! * and double sorting methods we have to use ! * more accurate assignment a[k] = a[great]. ! */ a[k] = pivot; - } - a[great] = ak; - --great; - } - } ! /* ! * Sort left and right parts recursively. ! * All elements from center part are equal ! * and, therefore, already sorted. ! */ ! sort(a, left, less - 1, leftmost); ! sort(a, great + 1, right, false); ! } ! } ! /** ! * Sorts the specified range of the array using the given ! * workspace array slice if possible for merging ! * ! * @param a the array to be sorted ! * @param left the index of the first element, inclusive, to be sorted ! * @param right the index of the last element, inclusive, to be sorted ! * @param work a workspace array (slice) ! * @param workBase origin of usable space in work array ! * @param workLen usable size of work array ! */ ! static void sort(char[] a, int left, int right, ! char[] work, int workBase, int workLen) { ! // Use counting sort on large arrays ! if (right - left > COUNTING_SORT_THRESHOLD_FOR_SHORT_OR_CHAR) { ! int[] count = new int[NUM_CHAR_VALUES]; ! for (int i = left - 1; ++i <= right; ! count[a[i]]++ ! ); ! for (int i = NUM_CHAR_VALUES, k = right + 1; k > left; ) { ! while (count[--i] == 0); ! char value = (char) i; ! int s = count[i]; ! do { ! a[--k] = value; ! } while (--s > 0); } ! } else { // Use Dual-Pivot Quicksort on small arrays ! doSort(a, left, right, work, workBase, workLen); } } - /** The number of distinct char values. */ - private static final int NUM_CHAR_VALUES = 1 << 16; - /** ! * Sorts the specified range of the array. * * @param a the array to be sorted ! * @param left the index of the first element, inclusive, to be sorted ! * @param right the index of the last element, inclusive, to be sorted ! * @param work a workspace array (slice) ! * @param workBase origin of usable space in work array ! * @param workLen usable size of work array ! */ ! private static void doSort(char[] a, int left, int right, ! char[] work, int workBase, int workLen) { ! // Use Quicksort on small arrays ! if (right - left < QUICKSORT_THRESHOLD) { ! sort(a, left, right, true); ! return; ! } ! /* ! * Index run[i] is the start of i-th run ! * (ascending or descending sequence). ! */ ! int[] run = new int[MAX_RUN_COUNT + 1]; ! int count = 0; run[0] = left; ! // Check if the array is nearly sorted ! for (int k = left; k < right; run[count] = k) { ! // Equal items in the beginning of the sequence ! while (k < right && a[k] == a[k + 1]) ! k++; ! if (k == right) break; // Sequence finishes with equal items ! if (a[k] < a[k + 1]) { // ascending ! while (++k <= right && a[k - 1] <= a[k]); ! } else if (a[k] > a[k + 1]) { // descending ! while (++k <= right && a[k - 1] >= a[k]); ! // Transform into an ascending sequence ! for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) { ! char t = a[lo]; a[lo] = a[hi]; a[hi] = t; } } ! ! // Merge a transformed descending sequence followed by an ! // ascending sequence ! if (run[count] > left && a[run[count]] >= a[run[count] - 1]) { ! count--; ! } /* ! * The array is not highly structured, ! * use Quicksort instead of merge sort. */ ! if (++count == MAX_RUN_COUNT) { ! sort(a, left, right, true); ! return; ! } ! } ! // These invariants should hold true: ! // run[0] = 0 ! // run[<last>] = right + 1; (terminator) ! if (count == 0) { ! // A single equal run ! return; ! } else if (count == 1 && run[count] > right) { ! // Either a single ascending or a transformed descending run. ! // Always check that a final run is a proper terminator, otherwise ! // we have an unterminated trailing run, to handle downstream. ! return; ! } ! right++; ! if (run[count] < right) { ! // Corner case: the final run is not a terminator. This may happen ! // if a final run is an equals run, or there is a single-element run ! // at the end. Fix up by adding a proper terminator at the end. ! // Note that we terminate with (right + 1), incremented earlier. ! run[++count] = right; ! } ! ! // Determine alternation base for merge ! byte odd = 0; ! for (int n = 1; (n <<= 1) < count; odd ^= 1); ! ! // Use or create temporary array b for merging ! char[] b; // temp array; alternates with a ! int ao, bo; // array offsets from 'left' ! int blen = right - left; // space needed for b ! if (work == null || workLen < blen || workBase + blen > work.length) { ! work = new char[blen]; ! workBase = 0; ! } ! if (odd == 0) { ! System.arraycopy(a, left, work, workBase, blen); ! b = a; ! bo = 0; ! a = work; ! ao = workBase - left; ! } else { ! b = work; ! ao = 0; ! bo = workBase - left; ! } ! ! // Merging ! for (int last; count > 1; count = last) { ! for (int k = (last = 0) + 2; k <= count; k += 2) { ! int hi = run[k], mi = run[k - 1]; ! for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) { ! if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) { ! b[i + bo] = a[p++ + ao]; ! } else { ! b[i + bo] = a[q++ + ao]; } } - run[++last] = hi; } - if ((count & 1) != 0) { - for (int i = right, lo = run[count - 1]; --i >= lo; - b[i + bo] = a[i + ao] - ); - run[++last] = right; - } - char[] t = a; a = b; b = t; - int o = ao; ao = bo; bo = o; - } - } ! /** ! * Sorts the specified range of the array by Dual-Pivot Quicksort. ! * ! * @param a the array to be sorted ! * @param left the index of the first element, inclusive, to be sorted ! * @param right the index of the last element, inclusive, to be sorted ! * @param leftmost indicates if this part is the leftmost in the range ! */ ! private static void sort(char[] a, int left, int right, boolean leftmost) { ! int length = right - left + 1; - // Use insertion sort on tiny arrays - if (length < INSERTION_SORT_THRESHOLD) { - if (leftmost) { /* ! * Traditional (without sentinel) insertion sort, ! * optimized for server VM, is used in case of ! * the leftmost part. */ ! for (int i = left, j = i; i < right; j = ++i) { ! char ai = a[i + 1]; ! while (ai < a[j]) { ! a[j + 1] = a[j]; ! if (j-- == left) { ! break; ! } } ! a[j + 1] = ai; ! } ! } else { ! /* ! * Skip the longest ascending sequence. ! */ ! do { ! if (left >= right) { ! return; } ! } while (a[++left] >= a[left - 1]); ! /* ! * Every element from adjoining part plays the role ! * of sentinel, therefore this allows us to avoid the ! * left range check on each iteration. Moreover, we use ! * the more optimized algorithm, so called pair insertion ! * sort, which is faster (in the context of Quicksort) ! * than traditional implementation of insertion sort. ! */ ! for (int k = left; ++left <= right; k = ++left) { ! char a1 = a[k], a2 = a[left]; ! if (a1 < a2) { ! a2 = a1; a1 = a[left]; } ! while (a1 < a[--k]) { ! a[k + 2] = a[k]; ! } ! a[++k + 1] = a1; ! while (a2 < a[--k]) { ! a[k + 1] = a[k]; } ! a[k + 1] = a2; } ! char last = a[right]; ! while (last < a[--right]) { ! a[right + 1] = a[right]; } ! a[right + 1] = last; } - return; } ! // Inexpensive approximation of length / 7 ! int seventh = (length >> 3) + (length >> 6) + 1; ! ! /* ! * Sort five evenly spaced elements around (and including) the ! * center element in the range. These elements will be used for ! * pivot selection as described below. The choice for spacing ! * these elements was empirically determined to work well on ! * a wide variety of inputs. ! */ ! int e3 = (left + right) >>> 1; // The midpoint ! int e2 = e3 - seventh; ! int e1 = e2 - seventh; ! int e4 = e3 + seventh; ! int e5 = e4 + seventh; ! // Sort these elements using insertion sort ! if (a[e2] < a[e1]) { char t = a[e2]; a[e2] = a[e1]; a[e1] = t; } ! if (a[e3] < a[e2]) { char t = a[e3]; a[e3] = a[e2]; a[e2] = t; ! if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } ! } ! if (a[e4] < a[e3]) { char t = a[e4]; a[e4] = a[e3]; a[e3] = t; ! if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; ! if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } ! } ! if (a[e5] < a[e4]) { char t = a[e5]; a[e5] = a[e4]; a[e4] = t; ! if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t; ! if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; ! if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } ! } } } ! // Pointers ! int less = left; // The index of the first element of center part ! int great = right; // The index before the first element of right part ! ! if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) { ! /* ! * Use the second and fourth of the five sorted elements as pivots. ! * These values are inexpensive approximations of the first and ! * second terciles of the array. Note that pivot1 <= pivot2. ! */ ! char pivot1 = a[e2]; ! char pivot2 = a[e4]; ! /* ! * The first and the last elements to be sorted are moved to the ! * locations formerly occupied by the pivots. When partitioning ! * is complete, the pivots are swapped back into their final ! * positions, and excluded from subsequent sorting. ! */ ! a[e2] = a[left]; ! a[e4] = a[right]; ! /* ! * Skip elements, which are less or greater than pivot values. ! */ ! while (a[++less] < pivot1); ! while (a[--great] > pivot2); /* ! * Partitioning: ! * ! * left part center part right part ! * +--------------------------------------------------------------+ ! * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | ! * +--------------------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * less k great ! * ! * Invariants: ! * ! * all in (left, less) < pivot1 ! * pivot1 <= all in [less, k) <= pivot2 ! * all in (great, right) > pivot2 ! * ! * Pointer k is the first index of ?-part. */ ! outer: ! for (int k = less - 1; ++k <= great; ) { ! char ak = a[k]; ! if (ak < pivot1) { // Move a[k] to left part ! a[k] = a[less]; ! /* ! * Here and below we use "a[i] = b; i++;" instead ! * of "a[i++] = b;" due to performance issue. ! */ ! a[less] = ak; ! ++less; ! } else if (ak > pivot2) { // Move a[k] to right part ! while (a[great] > pivot2) { ! if (great-- == k) { ! break outer; ! } ! } ! if (a[great] < pivot1) { // a[great] <= pivot2 ! a[k] = a[less]; ! a[less] = a[great]; ! ++less; ! } else { // pivot1 <= a[great] <= pivot2 ! a[k] = a[great]; ! } ! /* ! * Here and below we use "a[i] = b; i--;" instead ! * of "a[i--] = b;" due to performance issue. ! */ ! a[great] = ak; ! --great; ! } ! } ! // Swap pivots into their final positions ! a[left] = a[less - 1]; a[less - 1] = pivot1; ! a[right] = a[great + 1]; a[great + 1] = pivot2; ! // Sort left and right parts recursively, excluding known pivots ! sort(a, left, less - 2, leftmost); ! sort(a, great + 2, right, false); ! /* ! * If center part is too large (comprises > 4/7 of the array), ! * swap internal pivot values to ends. ! */ ! if (less < e1 && e5 < great) { ! /* ! * Skip elements, which are equal to pivot values. ! */ ! while (a[less] == pivot1) { ! ++less; ! } ! while (a[great] == pivot2) { ! --great; } ! /* ! * Partitioning: ! * ! * left part center part right part ! * +----------------------------------------------------------+ ! * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | ! * +----------------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * less k great ! * ! * Invariants: ! * ! * all in (*, less) == pivot1 ! * pivot1 < all in [less, k) < pivot2 ! * all in (great, *) == pivot2 ! * ! * Pointer k is the first index of ?-part. ! */ ! outer: ! for (int k = less - 1; ++k <= great; ) { ! char ak = a[k]; ! if (ak == pivot1) { // Move a[k] to left part ! a[k] = a[less]; ! a[less] = ak; ! ++less; ! } else if (ak == pivot2) { // Move a[k] to right part ! while (a[great] == pivot2) { ! if (great-- == k) { ! break outer; ! } ! } ! if (a[great] == pivot1) { // a[great] < pivot2 ! a[k] = a[less]; ! /* ! * Even though a[great] equals to pivot1, the ! * assignment a[less] = pivot1 may be incorrect, ! * if a[great] and pivot1 are floating-point zeros ! * of different signs. Therefore in float and ! * double sorting methods we have to use more ! * accurate assignment a[less] = a[great]. ! */ ! a[less] = pivot1; ! ++less; ! } else { // pivot1 < a[great] < pivot2 ! a[k] = a[great]; ! } ! a[great] = ak; ! --great; ! } } } - // Sort center part recursively - sort(a, less, great, false); - - } else { // Partitioning with one pivot /* ! * Use the third of the five sorted elements as pivot. ! * This value is inexpensive approximation of the median. */ ! char pivot = a[e3]; ! /* ! * Partitioning degenerates to the traditional 3-way ! * (or "Dutch National Flag") schema: ! * ! * left part center part right part ! * +-------------------------------------------------+ ! * | < pivot | == pivot | ? | > pivot | ! * +-------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * less k great ! * ! * Invariants: ! * ! * all in (left, less) < pivot ! * all in [less, k) == pivot ! * all in (great, right) > pivot ! * ! * Pointer k is the first index of ?-part. ! */ ! for (int k = less; k <= great; ++k) { ! if (a[k] == pivot) { ! continue; ! } ! char ak = a[k]; ! if (ak < pivot) { // Move a[k] to left part ! a[k] = a[less]; ! a[less] = ak; ! ++less; ! } else { // a[k] > pivot - Move a[k] to right part ! while (a[great] > pivot) { ! --great; ! } ! if (a[great] < pivot) { // a[great] <= pivot ! a[k] = a[less]; ! a[less] = a[great]; ! ++less; ! } else { // a[great] == pivot ! /* ! * Even though a[great] equals to pivot, the ! * assignment a[k] = pivot may be incorrect, ! * if a[great] and pivot are floating-point ! * zeros of different signs. Therefore in float ! * and double sorting methods we have to use ! * more accurate assignment a[k] = a[great]. ! */ ! a[k] = pivot; ! } ! a[great] = ak; ! --great; } - } ! /* ! * Sort left and right parts recursively. ! * All elements from center part are equal ! * and, therefore, already sorted. ! */ ! sort(a, left, less - 1, leftmost); ! sort(a, great + 1, right, false); ! } ! } ! /** The number of distinct byte values. */ ! private static final int NUM_BYTE_VALUES = 1 << 8; ! /** ! * Sorts the specified range of the array. ! * ! * @param a the array to be sorted ! * @param left the index of the first element, inclusive, to be sorted ! * @param right the index of the last element, inclusive, to be sorted ! */ ! static void sort(byte[] a, int left, int right) { ! // Use counting sort on large arrays ! if (right - left > COUNTING_SORT_THRESHOLD_FOR_BYTE) { ! int[] count = new int[NUM_BYTE_VALUES]; ! for (int i = left - 1; ++i <= right; ! count[a[i] - Byte.MIN_VALUE]++ ! ); ! for (int i = NUM_BYTE_VALUES, k = right + 1; k > left; ) { ! while (count[--i] == 0); ! byte value = (byte) (i + Byte.MIN_VALUE); ! int s = count[i]; ! do { ! a[--k] = value; ! } while (--s > 0); ! } ! } else { // Use insertion sort on small arrays ! for (int i = left, j = i; i < right; j = ++i) { ! byte ai = a[i + 1]; ! while (ai < a[j]) { ! a[j + 1] = a[j]; ! if (j-- == left) { ! break; ! } ! } ! a[j + 1] = ai; ! } ! } ! } ! /** ! * Sorts the specified range of the array using the given ! * workspace array slice if possible for merging ! * ! * @param a the array to be sorted ! * @param left the index of the first element, inclusive, to be sorted ! * @param right the index of the last element, inclusive, to be sorted ! * @param work a workspace array (slice) ! * @param workBase origin of usable space in work array ! * @param workLen usable size of work array ! */ ! static void sort(float[] a, int left, int right, ! float[] work, int workBase, int workLen) { ! /* ! * Phase 1: Move NaNs to the end of the array. ! */ ! while (left <= right && Float.isNaN(a[right])) { ! --right; ! } ! for (int k = right; --k >= left; ) { ! float ak = a[k]; ! if (ak != ak) { // a[k] is NaN ! a[k] = a[right]; ! a[right] = ak; ! --right; ! } ! } ! /* ! * Phase 2: Sort everything except NaNs (which are already in place). ! */ ! doSort(a, left, right, work, workBase, workLen); ! /* ! * Phase 3: Place negative zeros before positive zeros. ! */ ! int hi = right; ! /* ! * Find the first zero, or first positive, or last negative element. ! */ ! while (left < hi) { ! int middle = (left + hi) >>> 1; ! float middleValue = a[middle]; ! if (middleValue < 0.0f) { ! left = middle + 1; ! } else { ! hi = middle; } } /* ! * Skip the last negative value (if any) or all leading negative zeros. */ ! while (left <= right && Float.floatToRawIntBits(a[left]) < 0) { ! ++left; ! } ! /* ! * Move negative zeros to the beginning of the sub-range. ! * ! * Partitioning: ! * ! * +----------------------------------------------------+ ! * | < 0.0 | -0.0 | 0.0 | ? ( >= 0.0 ) | ! * +----------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * left p k ! * ! * Invariants: ! * ! * all in (*, left) < 0.0 ! * all in [left, p) == -0.0 ! * all in [p, k) == 0.0 ! * all in [k, right] >= 0.0 ! * ! * Pointer k is the first index of ?-part. ! */ ! for (int k = left, p = left - 1; ++k <= right; ) { ! float ak = a[k]; ! if (ak != 0.0f) { ! break; ! } ! if (Float.floatToRawIntBits(ak) < 0) { // ak is -0.0f ! a[k] = 0.0f; ! a[++p] = -0.0f; } } } /** ! * Sorts the specified range of the array. * ! * @param a the array to be sorted ! * @param left the index of the first element, inclusive, to be sorted ! * @param right the index of the last element, inclusive, to be sorted ! * @param work a workspace array (slice) ! * @param workBase origin of usable space in work array ! * @param workLen usable size of work array */ ! private static void doSort(float[] a, int left, int right, ! float[] work, int workBase, int workLen) { ! // Use Quicksort on small arrays ! if (right - left < QUICKSORT_THRESHOLD) { ! sort(a, left, right, true); ! return; } /* ! * Index run[i] is the start of i-th run ! * (ascending or descending sequence). */ ! int[] run = new int[MAX_RUN_COUNT + 1]; ! int count = 0; run[0] = left; ! ! // Check if the array is nearly sorted ! for (int k = left; k < right; run[count] = k) { ! // Equal items in the beginning of the sequence ! while (k < right && a[k] == a[k + 1]) ! k++; ! if (k == right) break; // Sequence finishes with equal items ! if (a[k] < a[k + 1]) { // ascending ! while (++k <= right && a[k - 1] <= a[k]); ! } else if (a[k] > a[k + 1]) { // descending ! while (++k <= right && a[k - 1] >= a[k]); ! // Transform into an ascending sequence ! for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) { ! float t = a[lo]; a[lo] = a[hi]; a[hi] = t; ! } ! } ! // Merge a transformed descending sequence followed by an ! // ascending sequence ! if (run[count] > left && a[run[count]] >= a[run[count] - 1]) { ! count--; ! } ! /* ! * The array is not highly structured, ! * use Quicksort instead of merge sort. ! */ ! if (++count == MAX_RUN_COUNT) { ! sort(a, left, right, true); ! return; ! } } ! // These invariants should hold true: ! // run[0] = 0 ! // run[<last>] = right + 1; (terminator) ! if (count == 0) { ! // A single equal run ! return; ! } else if (count == 1 && run[count] > right) { ! // Either a single ascending or a transformed descending run. ! // Always check that a final run is a proper terminator, otherwise ! // we have an unterminated trailing run, to handle downstream. ! return; ! } ! right++; ! if (run[count] < right) { ! // Corner case: the final run is not a terminator. This may happen ! // if a final run is an equals run, or there is a single-element run ! // at the end. Fix up by adding a proper terminator at the end. ! // Note that we terminate with (right + 1), incremented earlier. ! run[++count] = right; ! } ! ! // Determine alternation base for merge ! byte odd = 0; ! for (int n = 1; (n <<= 1) < count; odd ^= 1); ! ! // Use or create temporary array b for merging ! float[] b; // temp array; alternates with a ! int ao, bo; // array offsets from 'left' ! int blen = right - left; // space needed for b ! if (work == null || workLen < blen || workBase + blen > work.length) { ! work = new float[blen]; ! workBase = 0; ! } ! if (odd == 0) { ! System.arraycopy(a, left, work, workBase, blen); ! b = a; ! bo = 0; ! a = work; ! ao = workBase - left; ! } else { ! b = work; ! ao = 0; ! bo = workBase - left; ! } ! ! // Merging ! for (int last; count > 1; count = last) { ! for (int k = (last = 0) + 2; k <= count; k += 2) { ! int hi = run[k], mi = run[k - 1]; ! for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) { ! if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) { ! b[i + bo] = a[p++ + ao]; ! } else { ! b[i + bo] = a[q++ + ao]; ! } ! } ! run[++last] = hi; ! } ! if ((count & 1) != 0) { ! for (int i = right, lo = run[count - 1]; --i >= lo; ! b[i + bo] = a[i + ao] ! ); ! run[++last] = right; ! } ! float[] t = a; a = b; b = t; ! int o = ao; ao = bo; bo = o; } } /** ! * Sorts the specified range of the array by Dual-Pivot Quicksort. * ! * @param a the array to be sorted ! * @param left the index of the first element, inclusive, to be sorted ! * @param right the index of the last element, inclusive, to be sorted ! * @param leftmost indicates if this part is the leftmost in the range */ ! private static void sort(float[] a, int left, int right, boolean leftmost) { ! int length = right - left + 1; - // Use insertion sort on tiny arrays - if (length < INSERTION_SORT_THRESHOLD) { - if (leftmost) { /* ! * Traditional (without sentinel) insertion sort, ! * optimized for server VM, is used in case of ! * the leftmost part. */ ! for (int i = left, j = i; i < right; j = ++i) { ! float ai = a[i + 1]; ! while (ai < a[j]) { ! a[j + 1] = a[j]; ! if (j-- == left) { ! break; ! } ! } ! a[j + 1] = ai; } ! } else { /* ! * Skip the longest ascending sequence. */ ! do { ! if (left >= right) { ! return; ! } ! } while (a[++left] >= a[left - 1]); /* ! * Every element from adjoining part plays the role ! * of sentinel, therefore this allows us to avoid the ! * left range check on each iteration. Moreover, we use ! * the more optimized algorithm, so called pair insertion ! * sort, which is faster (in the context of Quicksort) ! * than traditional implementation of insertion sort. */ ! for (int k = left; ++left <= right; k = ++left) { ! float a1 = a[k], a2 = a[left]; ! if (a1 < a2) { ! a2 = a1; a1 = a[left]; ! } ! while (a1 < a[--k]) { ! a[k + 2] = a[k]; ! } ! a[++k + 1] = a1; ! while (a2 < a[--k]) { ! a[k + 1] = a[k]; } - a[k + 1] = a2; } - float last = a[right]; ! while (last < a[--right]) { ! a[right + 1] = a[right]; ! } ! a[right + 1] = last; } - return; } - // Inexpensive approximation of length / 7 - int seventh = (length >> 3) + (length >> 6) + 1; - /* ! * Sort five evenly spaced elements around (and including) the ! * center element in the range. These elements will be used for ! * pivot selection as described below. The choice for spacing ! * these elements was empirically determined to work well on ! * a wide variety of inputs. */ ! int e3 = (left + right) >>> 1; // The midpoint ! int e2 = e3 - seventh; ! int e1 = e2 - seventh; ! int e4 = e3 + seventh; ! int e5 = e4 + seventh; ! ! // Sort these elements using insertion sort ! if (a[e2] < a[e1]) { float t = a[e2]; a[e2] = a[e1]; a[e1] = t; } ! ! if (a[e3] < a[e2]) { float t = a[e3]; a[e3] = a[e2]; a[e2] = t; ! if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } ! if (a[e4] < a[e3]) { float t = a[e4]; a[e4] = a[e3]; a[e3] = t; ! if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; ! if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } } ! if (a[e5] < a[e4]) { float t = a[e5]; a[e5] = a[e4]; a[e4] = t; ! if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t; ! if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; ! if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } ! } } } ! // Pointers ! int less = left; // The index of the first element of center part ! int great = right; // The index before the first element of right part ! ! if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) { ! /* ! * Use the second and fourth of the five sorted elements as pivots. ! * These values are inexpensive approximations of the first and ! * second terciles of the array. Note that pivot1 <= pivot2. ! */ ! float pivot1 = a[e2]; ! float pivot2 = a[e4]; ! ! /* ! * The first and the last elements to be sorted are moved to the ! * locations formerly occupied by the pivots. When partitioning ! * is complete, the pivots are swapped back into their final ! * positions, and excluded from subsequent sorting. ! */ ! a[e2] = a[left]; ! a[e4] = a[right]; ! /* ! * Skip elements, which are less or greater than pivot values. ! */ ! while (a[++less] < pivot1); ! while (a[--great] > pivot2); ! /* ! * Partitioning: ! * ! * left part center part right part ! * +--------------------------------------------------------------+ ! * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | ! * +--------------------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * less k great ! * ! * Invariants: ! * ! * all in (left, less) < pivot1 ! * pivot1 <= all in [less, k) <= pivot2 ! * all in (great, right) > pivot2 ! * ! * Pointer k is the first index of ?-part. ! */ ! outer: ! for (int k = less - 1; ++k <= great; ) { ! float ak = a[k]; ! if (ak < pivot1) { // Move a[k] to left part ! a[k] = a[less]; ! /* ! * Here and below we use "a[i] = b; i++;" instead ! * of "a[i++] = b;" due to performance issue. ! */ ! a[less] = ak; ! ++less; ! } else if (ak > pivot2) { // Move a[k] to right part ! while (a[great] > pivot2) { ! if (great-- == k) { ! break outer; ! } ! } ! if (a[great] < pivot1) { // a[great] <= pivot2 ! a[k] = a[less]; ! a[less] = a[great]; ! ++less; ! } else { // pivot1 <= a[great] <= pivot2 ! a[k] = a[great]; ! } ! /* ! * Here and below we use "a[i] = b; i--;" instead ! * of "a[i--] = b;" due to performance issue. ! */ ! a[great] = ak; ! --great; ! } ! } ! ! // Swap pivots into their final positions ! a[left] = a[less - 1]; a[less - 1] = pivot1; ! a[right] = a[great + 1]; a[great + 1] = pivot2; ! ! // Sort left and right parts recursively, excluding known pivots ! sort(a, left, less - 2, leftmost); ! sort(a, great + 2, right, false); ! ! /* ! * If center part is too large (comprises > 4/7 of the array), ! * swap internal pivot values to ends. ! */ ! if (less < e1 && e5 < great) { ! /* ! * Skip elements, which are equal to pivot values. ! */ ! while (a[less] == pivot1) { ! ++less; ! } ! ! while (a[great] == pivot2) { ! --great; ! } ! ! /* ! * Partitioning: ! * ! * left part center part right part ! * +----------------------------------------------------------+ ! * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | ! * +----------------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * less k great ! * ! * Invariants: ! * ! * all in (*, less) == pivot1 ! * pivot1 < all in [less, k) < pivot2 ! * all in (great, *) == pivot2 ! * ! * Pointer k is the first index of ?-part. ! */ ! outer: ! for (int k = less - 1; ++k <= great; ) { ! float ak = a[k]; ! if (ak == pivot1) { // Move a[k] to left part ! a[k] = a[less]; ! a[less] = ak; ! ++less; ! } else if (ak == pivot2) { // Move a[k] to right part ! while (a[great] == pivot2) { ! if (great-- == k) { ! break outer; ! } ! } ! if (a[great] == pivot1) { // a[great] < pivot2 ! a[k] = a[less]; ! /* ! * Even though a[great] equals to pivot1, the ! * assignment a[less] = pivot1 may be incorrect, ! * if a[great] and pivot1 are floating-point zeros ! * of different signs. Therefore in float and ! * double sorting methods we have to use more ! * accurate assignment a[less] = a[great]. ! */ ! a[less] = a[great]; ! ++less; ! } else { // pivot1 < a[great] < pivot2 ! a[k] = a[great]; ! } ! a[great] = ak; ! --great; ! } ! } ! } ! ! // Sort center part recursively ! sort(a, less, great, false); ! ! } else { // Partitioning with one pivot ! /* ! * Use the third of the five sorted elements as pivot. ! * This value is inexpensive approximation of the median. ! */ ! float pivot = a[e3]; ! ! /* ! * Partitioning degenerates to the traditional 3-way ! * (or "Dutch National Flag") schema: ! * ! * left part center part right part ! * +-------------------------------------------------+ ! * | < pivot | == pivot | ? | > pivot | ! * +-------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * less k great ! * ! * Invariants: ! * ! * all in (left, less) < pivot ! * all in [less, k) == pivot ! * all in (great, right) > pivot ! * ! * Pointer k is the first index of ?-part. ! */ ! for (int k = less; k <= great; ++k) { ! if (a[k] == pivot) { ! continue; ! } ! float ak = a[k]; ! if (ak < pivot) { // Move a[k] to left part ! a[k] = a[less]; ! a[less] = ak; ! ++less; ! } else { // a[k] > pivot - Move a[k] to right part ! while (a[great] > pivot) { ! --great; ! } ! if (a[great] < pivot) { // a[great] <= pivot ! a[k] = a[less]; ! a[less] = a[great]; ! ++less; ! } else { // a[great] == pivot ! /* ! * Even though a[great] equals to pivot, the ! * assignment a[k] = pivot may be incorrect, ! * if a[great] and pivot are floating-point ! * zeros of different signs. Therefore in float ! * and double sorting methods we have to use ! * more accurate assignment a[k] = a[great]. ! */ ! a[k] = a[great]; ! } ! a[great] = ak; ! --great; } } - - /* - * Sort left and right parts recursively. - * All elements from center part are equal - * and, therefore, already sorted. - */ - sort(a, left, less - 1, leftmost); - sort(a, great + 1, right, false); } } /** ! * Sorts the specified range of the array using the given ! * workspace array slice if possible for merging * * @param a the array to be sorted ! * @param left the index of the first element, inclusive, to be sorted ! * @param right the index of the last element, inclusive, to be sorted ! * @param work a workspace array (slice) ! * @param workBase origin of usable space in work array ! * @param workLen usable size of work array */ ! static void sort(double[] a, int left, int right, ! double[] work, int workBase, int workLen) { ! /* ! * Phase 1: Move NaNs to the end of the array. ! */ ! while (left <= right && Double.isNaN(a[right])) { ! --right; ! } ! for (int k = right; --k >= left; ) { ! double ak = a[k]; ! if (ak != ak) { // a[k] is NaN ! a[k] = a[right]; ! a[right] = ak; ! --right; ! } ! } ! ! /* ! * Phase 2: Sort everything except NaNs (which are already in place). ! */ ! doSort(a, left, right, work, workBase, workLen); /* ! * Phase 3: Place negative zeros before positive zeros. */ ! int hi = right; /* ! * Find the first zero, or first positive, or last negative element. */ ! while (left < hi) { ! int middle = (left + hi) >>> 1; ! double middleValue = a[middle]; ! if (middleValue < 0.0d) { ! left = middle + 1; ! } else { ! hi = middle; } ! } ! /* ! * Skip the last negative value (if any) or all leading negative zeros. ! */ ! while (left <= right && Double.doubleToRawLongBits(a[left]) < 0) { ! ++left; ! } ! /* ! * Move negative zeros to the beginning of the sub-range. ! * ! * Partitioning: ! * ! * +----------------------------------------------------+ ! * | < 0.0 | -0.0 | 0.0 | ? ( >= 0.0 ) | ! * +----------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * left p k ! * ! * Invariants: ! * ! * all in (*, left) < 0.0 ! * all in [left, p) == -0.0 ! * all in [p, k) == 0.0 ! * all in [k, right] >= 0.0 ! * ! * Pointer k is the first index of ?-part. ! */ ! for (int k = left, p = left - 1; ++k <= right; ) { ! double ak = a[k]; ! if (ak != 0.0d) { ! break; ! } ! if (Double.doubleToRawLongBits(ak) < 0) { // ak is -0.0d ! a[k] = 0.0d; ! a[++p] = -0.0d; } } } /** ! * Sorts the specified range of the array. * * @param a the array to be sorted ! * @param left the index of the first element, inclusive, to be sorted ! * @param right the index of the last element, inclusive, to be sorted ! * @param work a workspace array (slice) ! * @param workBase origin of usable space in work array ! * @param workLen usable size of work array */ ! private static void doSort(double[] a, int left, int right, ! double[] work, int workBase, int workLen) { ! // Use Quicksort on small arrays ! if (right - left < QUICKSORT_THRESHOLD) { ! sort(a, left, right, true); ! return; } ! /* ! * Index run[i] is the start of i-th run ! * (ascending or descending sequence). ! */ ! int[] run = new int[MAX_RUN_COUNT + 1]; ! int count = 0; run[0] = left; ! ! // Check if the array is nearly sorted ! for (int k = left; k < right; run[count] = k) { ! // Equal items in the beginning of the sequence ! while (k < right && a[k] == a[k + 1]) ! k++; ! if (k == right) break; // Sequence finishes with equal items ! if (a[k] < a[k + 1]) { // ascending ! while (++k <= right && a[k - 1] <= a[k]); ! } else if (a[k] > a[k + 1]) { // descending ! while (++k <= right && a[k - 1] >= a[k]); ! // Transform into an ascending sequence ! for (int lo = run[count] - 1, hi = k; ++lo < --hi; ) { ! double t = a[lo]; a[lo] = a[hi]; a[hi] = t; ! } ! } ! // Merge a transformed descending sequence followed by an ! // ascending sequence ! if (run[count] > left && a[run[count]] >= a[run[count] - 1]) { ! count--; } /* ! * The array is not highly structured, ! * use Quicksort instead of merge sort. */ ! if (++count == MAX_RUN_COUNT) { ! sort(a, left, right, true); return; } - } ! // These invariants should hold true: ! // run[0] = 0 ! // run[<last>] = right + 1; (terminator) ! if (count == 0) { ! // A single equal run ! return; ! } else if (count == 1 && run[count] > right) { ! // Either a single ascending or a transformed descending run. ! // Always check that a final run is a proper terminator, otherwise ! // we have an unterminated trailing run, to handle downstream. ! return; ! } ! right++; ! if (run[count] < right) { ! // Corner case: the final run is not a terminator. This may happen ! // if a final run is an equals run, or there is a single-element run ! // at the end. Fix up by adding a proper terminator at the end. ! // Note that we terminate with (right + 1), incremented earlier. ! run[++count] = right; ! } ! ! // Determine alternation base for merge ! byte odd = 0; ! for (int n = 1; (n <<= 1) < count; odd ^= 1); ! ! // Use or create temporary array b for merging ! double[] b; // temp array; alternates with a ! int ao, bo; // array offsets from 'left' ! int blen = right - left; // space needed for b ! if (work == null || workLen < blen || workBase + blen > work.length) { ! work = new double[blen]; ! workBase = 0; ! } ! if (odd == 0) { ! System.arraycopy(a, left, work, workBase, blen); ! b = a; ! bo = 0; ! a = work; ! ao = workBase - left; ! } else { ! b = work; ! ao = 0; ! bo = workBase - left; ! } ! ! // Merging ! for (int last; count > 1; count = last) { ! for (int k = (last = 0) + 2; k <= count; k += 2) { ! int hi = run[k], mi = run[k - 1]; ! for (int i = run[k - 2], p = i, q = mi; i < hi; ++i) { ! if (q >= hi || p < mi && a[p + ao] <= a[q + ao]) { ! b[i + bo] = a[p++ + ao]; ! } else { ! b[i + bo] = a[q++ + ao]; ! } } - run[++last] = hi; - } - if ((count & 1) != 0) { - for (int i = right, lo = run[count - 1]; --i >= lo; - b[i + bo] = a[i + ao] - ); - run[++last] = right; } - double[] t = a; a = b; b = t; - int o = ao; ao = bo; bo = o; - } - } ! /** ! * Sorts the specified range of the array by Dual-Pivot Quicksort. ! * ! * @param a the array to be sorted ! * @param left the index of the first element, inclusive, to be sorted ! * @param right the index of the last element, inclusive, to be sorted ! * @param leftmost indicates if this part is the leftmost in the range ! */ ! private static void sort(double[] a, int left, int right, boolean leftmost) { ! int length = right - left + 1; - // Use insertion sort on tiny arrays - if (length < INSERTION_SORT_THRESHOLD) { - if (leftmost) { /* ! * Traditional (without sentinel) insertion sort, ! * optimized for server VM, is used in case of ! * the leftmost part. */ ! for (int i = left, j = i; i < right; j = ++i) { ! double ai = a[i + 1]; ! while (ai < a[j]) { ! a[j + 1] = a[j]; ! if (j-- == left) { ! break; } } - a[j + 1] = ai; } ! } else { /* ! * Skip the longest ascending sequence. */ ! do { ! if (left >= right) { ! return; ! } ! } while (a[++left] >= a[left - 1]); /* ! * Every element from adjoining part plays the role ! * of sentinel, therefore this allows us to avoid the ! * left range check on each iteration. Moreover, we use ! * the more optimized algorithm, so called pair insertion ! * sort, which is faster (in the context of Quicksort) ! * than traditional implementation of insertion sort. */ ! for (int k = left; ++left <= right; k = ++left) { ! double a1 = a[k], a2 = a[left]; ! if (a1 < a2) { ! a2 = a1; a1 = a[left]; ! } ! while (a1 < a[--k]) { ! a[k + 2] = a[k]; ! } ! a[++k + 1] = a1; ! while (a2 < a[--k]) { ! a[k + 1] = a[k]; } - a[k + 1] = a2; } - double last = a[right]; ! while (last < a[--right]) { ! a[right + 1] = a[right]; } ! a[right + 1] = last; } - return; } ! // Inexpensive approximation of length / 7 ! int seventh = (length >> 3) + (length >> 6) + 1; /* ! * Sort five evenly spaced elements around (and including) the ! * center element in the range. These elements will be used for ! * pivot selection as described below. The choice for spacing ! * these elements was empirically determined to work well on ! * a wide variety of inputs. */ ! int e3 = (left + right) >>> 1; // The midpoint ! int e2 = e3 - seventh; ! int e1 = e2 - seventh; ! int e4 = e3 + seventh; ! int e5 = e4 + seventh; ! // Sort these elements using insertion sort ! if (a[e2] < a[e1]) { double t = a[e2]; a[e2] = a[e1]; a[e1] = t; } ! if (a[e3] < a[e2]) { double t = a[e3]; a[e3] = a[e2]; a[e2] = t; ! if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } ! } ! if (a[e4] < a[e3]) { double t = a[e4]; a[e4] = a[e3]; a[e3] = t; ! if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; ! if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } } } ! if (a[e5] < a[e4]) { double t = a[e5]; a[e5] = a[e4]; a[e4] = t; ! if (t < a[e3]) { a[e4] = a[e3]; a[e3] = t; ! if (t < a[e2]) { a[e3] = a[e2]; a[e2] = t; ! if (t < a[e1]) { a[e2] = a[e1]; a[e1] = t; } ! } ! } } ! // Pointers ! int less = left; // The index of the first element of center part ! int great = right; // The index before the first element of right part - if (a[e1] != a[e2] && a[e2] != a[e3] && a[e3] != a[e4] && a[e4] != a[e5]) { /* ! * Use the second and fourth of the five sorted elements as pivots. ! * These values are inexpensive approximations of the first and ! * second terciles of the array. Note that pivot1 <= pivot2. */ ! double pivot1 = a[e2]; ! double pivot2 = a[e4]; /* ! * The first and the last elements to be sorted are moved to the ! * locations formerly occupied by the pivots. When partitioning ! * is complete, the pivots are swapped back into their final ! * positions, and excluded from subsequent sorting. */ ! a[e2] = a[left]; ! a[e4] = a[right]; /* ! * Skip elements, which are less or greater than pivot values. */ ! while (a[++less] < pivot1); ! while (a[--great] > pivot2); /* ! * Partitioning: ! * ! * left part center part right part ! * +--------------------------------------------------------------+ ! * | < pivot1 | pivot1 <= && <= pivot2 | ? | > pivot2 | ! * +--------------------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * less k great ! * ! * Invariants: ! * ! * all in (left, less) < pivot1 ! * pivot1 <= all in [less, k) <= pivot2 ! * all in (great, right) > pivot2 * ! * Pointer k is the first index of ?-part. */ ! outer: ! for (int k = less - 1; ++k <= great; ) { ! double ak = a[k]; ! if (ak < pivot1) { // Move a[k] to left part ! a[k] = a[less]; ! /* ! * Here and below we use "a[i] = b; i++;" instead ! * of "a[i++] = b;" due to performance issue. ! */ ! a[less] = ak; ! ++less; ! } else if (ak > pivot2) { // Move a[k] to right part ! while (a[great] > pivot2) { ! if (great-- == k) { ! break outer; ! } ! } ! if (a[great] < pivot1) { // a[great] <= pivot2 ! a[k] = a[less]; ! a[less] = a[great]; ! ++less; ! } else { // pivot1 <= a[great] <= pivot2 ! a[k] = a[great]; ! } ! /* ! * Here and below we use "a[i] = b; i--;" instead ! * of "a[i--] = b;" due to performance issue. ! */ ! a[great] = ak; ! --great; } } ! // Swap pivots into their final positions ! a[left] = a[less - 1]; a[less - 1] = pivot1; ! a[right] = a[great + 1]; a[great + 1] = pivot2; ! ! // Sort left and right parts recursively, excluding known pivots ! sort(a, left, less - 2, leftmost); ! sort(a, great + 2, right, false); /* ! * If center part is too large (comprises > 4/7 of the array), ! * swap internal pivot values to ends. */ ! if (less < e1 && e5 < great) { /* ! * Skip elements, which are equal to pivot values. */ ! while (a[less] == pivot1) { ! ++less; ! } ! while (a[great] == pivot2) { ! --great; ! } /* ! * Partitioning: * ! * left part center part right part ! * +----------------------------------------------------------+ ! * | == pivot1 | pivot1 < && < pivot2 | ? | == pivot2 | ! * +----------------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * less k great * * Invariants: * ! * all in (*, less) == pivot1 ! * pivot1 < all in [less, k) < pivot2 ! * all in (great, *) == pivot2 * ! * Pointer k is the first index of ?-part. */ ! outer: ! for (int k = less - 1; ++k <= great; ) { ! double ak = a[k]; ! if (ak == pivot1) { // Move a[k] to left part ! a[k] = a[less]; ! a[less] = ak; ! ++less; ! } else if (ak == pivot2) { // Move a[k] to right part ! while (a[great] == pivot2) { ! if (great-- == k) { ! break outer; } } ! if (a[great] == pivot1) { // a[great] < pivot2 ! a[k] = a[less]; ! /* ! * Even though a[great] equals to pivot1, the ! * assignment a[less] = pivot1 may be incorrect, ! * if a[great] and pivot1 are floating-point zeros ! * of different signs. Therefore in float and ! * double sorting methods we have to use more ! * accurate assignment a[less] = a[great]. ! */ ! a[less] = a[great]; ! ++less; ! } else { // pivot1 < a[great] < pivot2 ! a[k] = a[great]; ! } ! a[great] = ak; ! --great; } } - } ! // Sort center part recursively ! sort(a, less, great, false); ! } else { // Partitioning with one pivot ! /* ! * Use the third of the five sorted elements as pivot. ! * This value is inexpensive approximation of the median. ! */ ! double pivot = a[e3]; ! /* ! * Partitioning degenerates to the traditional 3-way ! * (or "Dutch National Flag") schema: ! * ! * left part center part right part ! * +-------------------------------------------------+ ! * | < pivot | == pivot | ? | > pivot | ! * +-------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * less k great * ! * Invariants: * ! * all in (left, less) < pivot ! * all in [less, k) == pivot ! * all in (great, right) > pivot * ! * Pointer k is the first index of ?-part. */ ! for (int k = less; k <= great; ++k) { ! if (a[k] == pivot) { ! continue; } ! double ak = a[k]; ! if (ak < pivot) { // Move a[k] to left part ! a[k] = a[less]; ! a[less] = ak; ! ++less; ! } else { // a[k] > pivot - Move a[k] to right part ! while (a[great] > pivot) { ! --great; ! } ! if (a[great] < pivot) { // a[great] <= pivot ! a[k] = a[less]; ! a[less] = a[great]; ! ++less; ! } else { // a[great] == pivot ! /* ! * Even though a[great] equals to pivot, the ! * assignment a[k] = pivot may be incorrect, ! * if a[great] and pivot are floating-point ! * zeros of different signs. Therefore in float ! * and double sorting methods we have to use ! * more accurate assignment a[k] = a[great]. ! */ ! a[k] = a[great]; ! } ! a[great] = ak; ! --great; } } /* ! * Sort left and right parts recursively. ! * All elements from center part are equal ! * and, therefore, already sorted. */ ! sort(a, left, less - 1, leftmost); ! sort(a, great + 1, right, false); } } } --- 23,4156 ---- * questions. */ package java.util; + import java.util.concurrent.CountedCompleter; + import java.util.concurrent.RecursiveTask; + /** ! * This class implements powerful and fully optimized versions, both ! * sequential and parallel, of the Dual-Pivot Quicksort algorithm by ! * Vladimir Yaroslavskiy, Jon Bentley and Josh Bloch. This algorithm ! * offers O(n log(n)) performance on all data sets, and is typically * faster than traditional (one-pivot) Quicksort implementations. * ! * There are also additional algorithms, invoked from the Dual-Pivot ! * Quicksort, such as mixed insertion sort, merging of runs and heap ! * sort, counting sort and parallel merge sort. * * @author Vladimir Yaroslavskiy * @author Jon Bentley * @author Josh Bloch + * @author Doug Lea + * + * @version 2018.08.18 * ! * @since 1.7 * 14 */ final class DualPivotQuicksort { /** * Prevents instantiation. */ private DualPivotQuicksort() {} ! /** ! * Max array size to use mixed insertion sort. */ + private static final int MAX_MIXED_INSERTION_SORT_SIZE = 114; /** ! * Max array size to use insertion sort. */ ! private static final int MAX_INSERTION_SORT_SIZE = 41; /** ! * Min array size to perform sorting in parallel. */ ! private static final int MIN_PARALLEL_SORT_SIZE = 4 << 10; /** ! * Min array size to try merging of runs. */ ! private static final int MIN_TRY_MERGE_SIZE = 4 << 10; /** ! * Min size of the first run to continue with scanning. */ ! private static final int MIN_FIRST_RUN_SIZE = 16; /** ! * Min factor for the first runs to continue scanning. */ ! private static final int MIN_FIRST_RUNS_FACTOR = 7; ! /** ! * Max capacity of the index array for tracking runs. */ + private static final int MAX_RUN_CAPACITY = 5 << 10; /** ! * Min number of runs, required by parallel merging. */ ! private static final int MIN_RUN_COUNT = 4; ! /** ! * Min array size to use parallel merging of parts. ! */ ! private static final int MIN_PARALLEL_MERGE_PARTS_SIZE = 4 << 10; ! /** ! * Min size of a byte array to use counting sort. ! */ ! private static final int MIN_BYTE_COUNTING_SORT_SIZE = 64; ! /** ! * Min size of a short or char array to use counting sort. ! */ ! private static final int MIN_SHORT_OR_CHAR_COUNTING_SORT_SIZE = 1750; ! /** ! * Max double recursive partitioning depth before using heap sort. ! */ ! private static final int MAX_RECURSION_DEPTH = 64 << 1; ! /** ! * Calculates the double depth of parallel merging. ! * Depth is negative, if tasks split before sorting. ! * ! * @param parallelism the parallelism level ! * @param size the target size ! * @return the depth of parallel merging ! */ ! private static int getDepth(int parallelism, int size) { ! int depth = 0; ! while ((parallelism >>= 3) > 0 && (size >>= 2) > 0) { ! depth -= 2; } + return depth; } /** ! * Sorts the specified range of the array using parallel merge ! * sort and/or Dual-Pivot Quicksort. ! * ! * To balance the faster splitting and parallelism of merge sort ! * with the faster element partitioning of Quicksort, ranges are ! * subdivided in tiers such that, if there is enough parallelism, ! * the four-way parallel merge is started, still ensuring enough ! * parallelism to process the partitions. * * @param a the array to be sorted ! * @param parallelism the parallelism level ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted */ ! static void sort(int[] a, int parallelism, int low, int high) { ! int size = high - low; ! if (parallelism > 1 && size > MIN_PARALLEL_SORT_SIZE) { ! int depth = getDepth(parallelism, size >> 12); ! int[] b = depth == 0 ? null : new int[size]; ! new Sorter(null, a, b, low, size, low, depth).invoke(); ! } else { ! sort(null, a, 0, low, high); } + } ! /** ! * Sorts the specified array using the Dual-Pivot Quicksort and/or ! * other sorts in special-cases, possibly with parallel partitions. ! * ! * @param sorter parallel context ! * @param a the array to be sorted ! * @param bits the combination of recursion depth and bit flag, where ! * the right bit "0" indicates that array is the leftmost part ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! static void sort(Sorter sorter, int[] a, int bits, int low, int high) { ! while (true) { ! int end = high - 1, size = high - low; ! /* ! * Run mixed insertion sort on small non-leftmost parts. ! */ ! if (size < MAX_MIXED_INSERTION_SORT_SIZE && (bits & 1) > 0) { ! mixedInsertionSort(a, low, high - 3 * ((size >> 5) << 3), high); ! return; } ! ! /* ! * Invoke insertion sort on small leftmost part. ! */ ! if (size < MAX_INSERTION_SORT_SIZE) { ! insertionSort(a, low, high); ! return; } ! /* ! * Check if the whole array or large non-leftmost ! * parts are nearly sorted and then merge runs. ! */ ! if ((bits == 0 || size > MIN_TRY_MERGE_SIZE && (bits & 1) > 0) ! && tryMergeRuns(sorter, a, low, size)) { ! return; ! } /* ! * Switch to heap sort if execution ! * time is becoming quadratic. */ ! if ((bits += 2) > MAX_RECURSION_DEPTH) { ! heapSort(a, low, high); ! return; ! } /* ! * Use an inexpensive approximation of the golden ratio ! * to select five sample elements and determine pivots. */ ! int step = (size >> 3) * 3 + 3; /* ! * Five elements around (and including) the central element ! * will be used for pivot selection as described below. The ! * unequal choice of spacing these elements was empirically ! * determined to work well on a wide variety of inputs. */ ! int e1 = low + step; ! int e5 = end - step; ! int e3 = (e1 + e5) >>> 1; ! int e2 = (e1 + e3) >>> 1; ! int e4 = (e3 + e5) >>> 1; ! int a3 = a[e3]; /* ! * Sort these elements in place by the combination ! * of 4-element sorting network and insertion sort. * ! * 5 ------o-----------o------------ ! * | | ! * 4 ------|-----o-----o-----o------ ! * | | | ! * 2 ------o-----|-----o-----o------ ! * | | ! * 1 ------------o-----o------------ */ ! if (a[e5] < a[e2]) { int t = a[e5]; a[e5] = a[e2]; a[e2] = t; } ! if (a[e4] < a[e1]) { int t = a[e4]; a[e4] = a[e1]; a[e1] = t; } ! if (a[e5] < a[e4]) { int t = a[e5]; a[e5] = a[e4]; a[e4] = t; } ! if (a[e2] < a[e1]) { int t = a[e2]; a[e2] = a[e1]; a[e1] = t; } ! if (a[e4] < a[e2]) { int t = a[e4]; a[e4] = a[e2]; a[e2] = t; } ! ! if (a3 < a[e2]) { ! if (a3 < a[e1]) { ! a[e3] = a[e2]; a[e2] = a[e1]; a[e1] = a3; ! } else { ! a[e3] = a[e2]; a[e2] = a3; ! } ! } else if (a3 > a[e4]) { ! if (a3 > a[e5]) { ! a[e3] = a[e4]; a[e4] = a[e5]; a[e5] = a3; ! } else { ! a[e3] = a[e4]; a[e4] = a3; } } ! // Pointers ! int lower = low; // The index of the last element of the left part ! int upper = end; // The index of the first element of the right part /* ! * Partitioning with 2 pivots in case of different elements. */ ! if (a[e1] < a[e2] && a[e2] < a[e3] && a[e3] < a[e4] && a[e4] < a[e5]) { ! /* ! * Use the first and fifth of the five sorted elements as ! * the pivots. These values are inexpensive approximation ! * of tertiles. Note, that pivot1 < pivot2. */ ! int pivot1 = a[e1]; ! int pivot2 = a[e5]; ! /* ! * The first and the last elements to be sorted are moved ! * to the locations formerly occupied by the pivots. When ! * partitioning is completed, the pivots are swapped back ! * into their final positions, and excluded from the next ! * subsequent sorting. ! */ ! a[e1] = a[lower]; ! a[e5] = a[upper]; ! ! /* ! * Skip elements, which are less or greater than the pivots. ! */ ! while (a[++lower] < pivot1); ! while (a[--upper] > pivot2); /* ! * Backward 3-interval partitioning * ! * left part central part right part ! * +------------------------------------------------------------+ ! * | < pivot1 | ? | pivot1 <= && <= pivot2 | > pivot2 | ! * +------------------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * lower k upper * * Invariants: * ! * all in (low, lower] < pivot1 ! * pivot1 <= all in (k, upper) <= pivot2 ! * all in [upper, end) > pivot2 * ! * Pointer k is the last index of ?-part */ ! for (int unused = --lower, k = ++upper; --k > lower; ) { int ak = a[k]; ! ! if (ak < pivot1) { // Move a[k] to the left side ! while (lower < k) { ! if (a[++lower] >= pivot1) { ! if (a[lower] > pivot2) { ! a[k] = a[--upper]; ! a[upper] = a[lower]; ! } else { ! a[k] = a[lower]; ! } ! a[lower] = ak; ! break; } } ! } else if (ak > pivot2) { // Move a[k] to the right side ! a[k] = a[--upper]; ! a[upper] = ak; } } ! /* ! * Swap the pivots into their final positions. ! */ ! a[low] = a[lower]; a[lower] = pivot1; ! a[end] = a[upper]; a[upper] = pivot2; ! /* ! * Sort non-left parts recursively (possibly in parallel), ! * excluding known pivots. ! */ ! if (size > MIN_PARALLEL_SORT_SIZE && sorter != null) { ! sorter.forkSorter(bits | 1, lower + 1, upper); ! sorter.forkSorter(bits | 1, upper + 1, high); ! } else { ! sort(sorter, a, bits | 1, lower + 1, upper); ! sort(sorter, a, bits | 1, upper + 1, high); } ! ! } else { // Use single pivot in case of many equal elements ! ! /* ! * Use the third of the five sorted elements as the pivot. ! * This value is inexpensive approximation of the median. ! */ ! int pivot = a[e3]; ! ! /* ! * The first element to be sorted is moved to the ! * location formerly occupied by the pivot. After ! * completion of partitioning the pivot is swapped ! * back into its final position, and excluded from ! * the next subsequent sorting. ! */ ! a[e3] = a[lower]; ! ! /* ! * Traditional 3-way (Dutch National Flag) partitioning ! * ! * left part central part right part ! * +------------------------------------------------------+ ! * | < pivot | ? | == pivot | > pivot | ! * +------------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * lower k upper ! * ! * Invariants: ! * ! * all in (low, lower] < pivot ! * all in (k, upper) == pivot ! * all in [upper, end] > pivot ! * ! * Pointer k is the last index of ?-part ! */ ! for (int k = ++upper; --k > lower; ) { ! int ak = a[k]; ! ! if (ak != pivot) { a[k] = pivot; + + if (ak < pivot) { // Move a[k] to the left side + while (a[++lower] < pivot); + + if (a[lower] > pivot) { + a[--upper] = a[lower]; + } + a[lower] = ak; + } else { // ak > pivot - Move a[k] to the right side + a[--upper] = ak; + } } } ! /* ! * Swap the pivot into its final position. ! */ ! a[low] = a[lower]; a[lower] = pivot; ! ! /* ! * Sort the right part (possibly in parallel), excluding ! * known pivot. All elements from the central part are ! * equal and therefore already sorted. ! */ ! if (size > MIN_PARALLEL_SORT_SIZE && sorter != null) { ! sorter.forkSorter(bits | 1, upper, high); ! } else { ! sort(sorter, a, bits | 1, upper, high); ! } ! } ! high = lower; // Iterate along the left part } } /** ! * Sorts the specified range of the array using mixed insertion sort. ! * ! * Mixed insertion sort is combination of simple insertion sort, ! * pin insertion sort and pair insertion sort. ! * ! * In the context of Dual-Pivot Quicksort, the pivot element ! * from the left part plays the role of sentinel, because it ! * is less than any elements from the given part. Therefore, ! * expensive check of the left range can be skipped on each ! * iteration unless it is the leftmost call. * * @param a the array to be sorted ! * @param low the index of the first element, inclusive, to be sorted ! * @param end the index of the last element for simple insertion sort ! * @param high the index of the last element, exclusive, to be sorted */ ! private static void mixedInsertionSort(int[] a, int low, int end, int high) { ! if (end == high) { ! /* ! * Invoke simple insertion sort on tiny array. ! */ ! for (int i; ++low < end; ) { ! int ai = a[i = low]; ! while (ai < a[--i]) { ! a[i + 1] = a[i]; } + a[i + 1] = ai; } ! } else { /* ! * Start with pin insertion sort on small part. ! * ! * Pin insertion sort is extended simple insertion sort. ! * The main idea of this sort is to put elements larger ! * than an element called pin to the end of array (the ! * proper area for such elements). It avoids expensive ! * movements of these elements through the whole array. */ ! int pin = a[end]; ! for (int i, p = high; ++low < end; ) { ! int ai = a[i = low]; ! if (ai < a[i - 1]) { // Small element ! ! /* ! * Insert small element into sorted part. ! */ ! a[i] = a[--i]; ! ! while (ai < a[--i]) { ! a[i + 1] = a[i]; ! } ! a[i + 1] = ai; ! ! } else if (p > i && ai > pin) { // Large element ! ! /* ! * Find element smaller than pin. ! */ ! while (a[--p] > pin); ! ! /* ! * Swap it with large element. ! */ ! if (p > i) { ! ai = a[p]; ! a[p] = a[i]; ! } ! ! /* ! * Insert small element into sorted part. ! */ ! while (ai < a[--i]) { ! a[i + 1] = a[i]; } + a[i + 1] = ai; } } ! /* ! * Continue with pair insertion sort on remain part. ! */ ! for (int i; low < high; ++low) { ! int a1 = a[i = low], a2 = a[++low]; /* ! * Insert two elements per iteration: at first, insert the ! * larger element and then insert the smaller element, but ! * from the position where the larger element was inserted. */ ! if (a1 > a2) { ! ! while (a1 < a[--i]) { ! a[i + 2] = a[i]; } ! a[++i + 1] = a1; ! ! while (a2 < a[--i]) { ! a[i + 1] = a[i]; } ! a[i + 1] = a2; ! } else if (a1 < a[i - 1]) { ! while (a2 < a[--i]) { ! a[i + 2] = a[i]; } ! a[++i + 1] = a2; ! while (a1 < a[--i]) { ! a[i + 1] = a[i]; } ! a[i + 1] = a1; } ! } ! } ! } ! /** ! * Sorts the specified range of the array using insertion sort. ! * ! * @param a the array to be sorted ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! private static void insertionSort(int[] a, int low, int high) { ! for (int i, k = low; ++k < high; ) { ! int ai = a[i = k]; ! ! if (ai < a[i - 1]) { ! while (--i >= low && ai < a[i]) { ! a[i + 1] = a[i]; } ! a[i + 1] = ai; } } + } ! /** ! * Sorts the specified range of the array using heap sort. ! * ! * @param a the array to be sorted ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! private static void heapSort(int[] a, int low, int high) { ! for (int k = (low + high) >>> 1; k > low; ) { ! pushDown(a, --k, a[k], low, high); ! } ! while (--high > low) { ! int max = a[low]; ! pushDown(a, low, a[high], low, high); ! a[high] = max; ! } ! } ! /** ! * Pushes specified element down during heap sort. ! * ! * @param a the given array ! * @param p the start index ! * @param value the given element ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! private static void pushDown(int[] a, int p, int value, int low, int high) { ! for (int k ;; a[p] = a[p = k]) { ! k = (p << 1) - low + 2; // Index of the right child ! if (k > high) { ! break; } ! if (k == high || a[k] < a[k - 1]) { ! --k; ! } ! if (a[k] <= value) { ! break; } } + a[p] = value; + } ! /** ! * Tries to sort the specified range of the array. ! * ! * @param sorter parallel context ! * @param a the array to be sorted ! * @param low the index of the first element to be sorted ! * @param size the array size ! * @return true if finally sorted, false otherwise ! */ ! private static boolean tryMergeRuns(Sorter sorter, int[] a, int low, int size) { ! /* ! * The run array is constructed only if initial runs are ! * long enough to continue, run[i] then holds start index ! * of the i-th sequence of elements in non-descending order. ! */ ! int[] run = null; ! int high = low + size; ! int count = 1, last = low; ! /* ! * Identify all possible runs. ! */ ! for (int k = low + 1; k < high; ) { /* ! * Find the end index of the current run. */ ! if (a[k - 1] < a[k]) { ! // Identify ascending sequence ! while (++k < high && a[k - 1] <= a[k]); ! ! } else if (a[k - 1] > a[k]) { ! // Identify descending sequence ! while (++k < high && a[k - 1] >= a[k]); ! ! // Reverse into ascending order ! for (int i = last - 1, j = k; ++i < --j && a[i] > a[j]; ) { ! int ai = a[i]; a[i] = a[j]; a[j] = ai; ! } ! } else { // Identify constant sequence ! for (int ak = a[k]; ++k < high && ak == a[k]; ); ! if (k < high) { ! continue; ! } ! } /* ! * Check special cases. */ ! if (run == null) { ! if (k == high) { ! /* ! * The array is monotonous sequence, ! * and therefore already sorted. ! */ ! return true; } ! if (k - low < MIN_FIRST_RUN_SIZE) { ! ! /* ! * The first run is too small ! * to proceed with scanning. ! */ ! return false; } ! run = new int[((size >> 10) | 0x7F) & 0x3FF]; ! run[0] = low; ! } else if (a[last - 1] > a[last]) { ! if (count > (k - low) >> MIN_FIRST_RUNS_FACTOR) { ! ! /* ! * The first runs are not long ! * enough to continue scanning. ! */ ! return false; } ! ! if (++count == MAX_RUN_CAPACITY) { ! ! /* ! * Array is not highly structured. ! */ ! return false; } ! if (count == run.length) { ! /* ! * Increase capacity of index array. ! */ ! run = Arrays.copyOf(run, count << 1); ! } ! } ! run[count] = (last = k); ! } ! /* ! * Merge runs of highly structured array. ! */ ! if (count > 1) { ! int[] b; int offset = low; ! if (sorter == null || (b = (int[]) sorter.b) == null) { ! b = new int[size]; ! } else { ! offset = sorter.offset; } ! mergeRuns(a, b, offset, 1, sorter != null, run, 0, count); } + return true; } /** ! * Merges the specified runs. * ! * @param a the source array ! * @param b the temporary buffer used in merging ! * @param offset the start index in the source, inclusive ! * @param aim specifies merging: to source ( > 0), buffer ( < 0) or any ( == 0) ! * @param parallel indicates whether merging is performed in parallel ! * @param run the start indexes of the runs, inclusive ! * @param lo the start index of the first run, inclusive ! * @param hi the start index of the last run, inclusive ! * @return the destination where runs are merged ! */ ! private static int[] mergeRuns(int[] a, int[] b, int offset, ! int aim, boolean parallel, int[] run, int lo, int hi) { ! ! if (hi - lo == 1) { ! if (aim >= 0) { ! return a; ! } ! for (int i = run[hi], j = i - offset, low = run[lo]; i > low; ! b[--j] = a[--i] ! ); ! return b; } /* ! * Split into approximately equal parts. */ ! int mi = lo, rmi = (run[lo] + run[hi]) >>> 1; ! while (run[++mi + 1] <= rmi); ! /* ! * Merge the left and right parts. ! */ ! int[] a1, a2; ! if (parallel && hi - lo > MIN_RUN_COUNT) { ! RunMerger merger = new RunMerger(a, b, offset, 0, run, mi, hi).forkMe(); ! a1 = mergeRuns(a, b, offset, -aim, true, run, lo, mi); ! a2 = (int[]) merger.getDestination(); ! } else { ! a1 = mergeRuns(a, b, offset, -aim, false, run, lo, mi); ! a2 = mergeRuns(a, b, offset, 0, false, run, mi, hi); } ! int[] dst = a1 == a ? b : a; ! int k = a1 == a ? run[lo] - offset : run[lo]; ! int lo1 = a1 == b ? run[lo] - offset : run[lo]; ! int hi1 = a1 == b ? run[mi] - offset : run[mi]; ! int lo2 = a2 == b ? run[mi] - offset : run[mi]; ! int hi2 = a2 == b ? run[hi] - offset : run[hi]; ! ! if (parallel) { ! new Merger(null, dst, k, a1, lo1, hi1, a2, lo2, hi2).invoke(); ! } else { ! mergeParts(null, dst, k, a1, lo1, hi1, a2, lo2, hi2); } + return dst; } /** ! * Merges the sorted parts. * ! * @param merger parallel context ! * @param dst the destination where parts are merged ! * @param k the start index of the destination, inclusive ! * @param a1 the first part ! * @param lo1 the start index of the first part, inclusive ! * @param hi1 the end index of the first part, exclusive ! * @param a2 the second part ! * @param lo2 the start index of the second part, inclusive ! * @param hi2 the end index of the second part, exclusive */ ! private static void mergeParts(Merger merger, int[] dst, int k, ! int[] a1, int lo1, int hi1, int[] a2, int lo2, int hi2) { ! ! if (merger != null && a1 == a2) { ! ! while (true) { /* ! * The first part must be larger. */ ! if (hi1 - lo1 < hi2 - lo2) { ! int lo = lo1; lo1 = lo2; lo2 = lo; ! int hi = hi1; hi1 = hi2; hi2 = hi; } ! /* ! * Small parts will be merged sequentially. */ ! if (hi1 - lo1 < MIN_PARALLEL_MERGE_PARTS_SIZE) { ! break; ! } /* ! * Find the median of the larger part. */ ! int mi1 = (lo1 + hi1) >>> 1; ! int key = a1[mi1]; ! int mi2 = hi2; ! /* ! * Partition the smaller part. ! */ ! for (int loo = lo2; loo < mi2; ) { ! int t = (loo + mi2) >>> 1; ! if (key > a2[t]) { ! loo = t + 1; ! } else { ! mi2 = t; } } ! int d = mi2 - lo2 + mi1 - lo1; ! ! /* ! * Merge the right sub-parts in parallel. ! */ ! merger.forkMerger(dst, k + d, a1, mi1, hi1, a2, mi2, hi2); ! ! /* ! * Process the sub-left parts. ! */ ! hi1 = mi1; ! hi2 = mi2; } } /* ! * Merge small parts sequentially. */ ! while (lo1 < hi1 && lo2 < hi2) { ! dst[k++] = a1[lo1] < a2[lo2] ? a1[lo1++] : a2[lo2++]; } ! if (dst != a1 || k < lo1) { ! while (lo1 < hi1) { ! dst[k++] = a1[lo1++]; } } ! if (dst != a2 || k < lo2) { ! while (lo2 < hi2) { ! dst[k++] = a2[lo2++]; } } + } + + // [long] + + /** + * Sorts the specified range of the array using parallel merge + * sort and/or Dual-Pivot Quicksort. + * + * To balance the faster splitting and parallelism of merge sort + * with the faster element partitioning of Quicksort, ranges are + * subdivided in tiers such that, if there is enough parallelism, + * the four-way parallel merge is started, still ensuring enough + * parallelism to process the partitions. + * + * @param a the array to be sorted + * @param parallelism the parallelism level + * @param low the index of the first element, inclusive, to be sorted + * @param high the index of the last element, exclusive, to be sorted + */ + static void sort(long[] a, int parallelism, int low, int high) { + int size = high - low; + + if (parallelism > 1 && size > MIN_PARALLEL_SORT_SIZE) { + int depth = getDepth(parallelism, size >> 12); + long[] b = depth == 0 ? null : new long[size]; + new Sorter(null, a, b, low, size, low, depth).invoke(); + } else { + sort(null, a, 0, low, high); + } + } ! /** ! * Sorts the specified array using the Dual-Pivot Quicksort and/or ! * other sorts in special-cases, possibly with parallel partitions. ! * ! * @param sorter parallel context ! * @param a the array to be sorted ! * @param bits the combination of recursion depth and bit flag, where ! * the right bit "0" indicates that array is the leftmost part ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! static void sort(Sorter sorter, long[] a, int bits, int low, int high) { ! while (true) { ! int end = high - 1, size = high - low; /* ! * Run mixed insertion sort on small non-leftmost parts. */ ! if (size < MAX_MIXED_INSERTION_SORT_SIZE && (bits & 1) > 0) { ! mixedInsertionSort(a, low, high - 3 * ((size >> 5) << 3), high); ! return; ! } /* ! * Invoke insertion sort on small leftmost part. */ ! if (size < MAX_INSERTION_SORT_SIZE) { ! insertionSort(a, low, high); ! return; ! } /* ! * Check if the whole array or large non-leftmost ! * parts are nearly sorted and then merge runs. */ ! if ((bits == 0 || size > MIN_TRY_MERGE_SIZE && (bits & 1) > 0) ! && tryMergeRuns(sorter, a, low, size)) { ! return; ! } /* ! * Switch to heap sort if execution ! * time is becoming quadratic. ! */ ! if ((bits += 2) > MAX_RECURSION_DEPTH) { ! heapSort(a, low, high); ! return; ! } ! ! /* ! * Use an inexpensive approximation of the golden ratio ! * to select five sample elements and determine pivots. ! */ ! int step = (size >> 3) * 3 + 3; ! ! /* ! * Five elements around (and including) the central element ! * will be used for pivot selection as described below. The ! * unequal choice of spacing these elements was empirically ! * determined to work well on a wide variety of inputs. ! */ ! int e1 = low + step; ! int e5 = end - step; ! int e3 = (e1 + e5) >>> 1; ! int e2 = (e1 + e3) >>> 1; ! int e4 = (e3 + e5) >>> 1; ! long a3 = a[e3]; ! ! /* ! * Sort these elements in place by the combination ! * of 4-element sorting network and insertion sort. * ! * 5 ------o-----------o------------ ! * | | ! * 4 ------|-----o-----o-----o------ ! * | | | ! * 2 ------o-----|-----o-----o------ ! * | | ! * 1 ------------o-----o------------ */ ! if (a[e5] < a[e2]) { long t = a[e5]; a[e5] = a[e2]; a[e2] = t; } ! if (a[e4] < a[e1]) { long t = a[e4]; a[e4] = a[e1]; a[e1] = t; } ! if (a[e5] < a[e4]) { long t = a[e5]; a[e5] = a[e4]; a[e4] = t; } ! if (a[e2] < a[e1]) { long t = a[e2]; a[e2] = a[e1]; a[e1] = t; } ! if (a[e4] < a[e2]) { long t = a[e4]; a[e4] = a[e2]; a[e2] = t; } ! ! if (a3 < a[e2]) { ! if (a3 < a[e1]) { ! a[e3] = a[e2]; a[e2] = a[e1]; a[e1] = a3; ! } else { ! a[e3] = a[e2]; a[e2] = a3; ! } ! } else if (a3 > a[e4]) { ! if (a3 > a[e5]) { ! a[e3] = a[e4]; a[e4] = a[e5]; a[e5] = a3; ! } else { ! a[e3] = a[e4]; a[e4] = a3; } } ! // Pointers ! int lower = low; // The index of the last element of the left part ! int upper = end; // The index of the first element of the right part /* ! * Partitioning with 2 pivots in case of different elements. */ ! if (a[e1] < a[e2] && a[e2] < a[e3] && a[e3] < a[e4] && a[e4] < a[e5]) { ! /* ! * Use the first and fifth of the five sorted elements as ! * the pivots. These values are inexpensive approximation ! * of tertiles. Note, that pivot1 < pivot2. */ ! long pivot1 = a[e1]; ! long pivot2 = a[e5]; ! /* ! * The first and the last elements to be sorted are moved ! * to the locations formerly occupied by the pivots. When ! * partitioning is completed, the pivots are swapped back ! * into their final positions, and excluded from the next ! * subsequent sorting. ! */ ! a[e1] = a[lower]; ! a[e5] = a[upper]; /* ! * Skip elements, which are less or greater than the pivots. ! */ ! while (a[++lower] < pivot1); ! while (a[--upper] > pivot2); ! ! /* ! * Backward 3-interval partitioning * ! * left part central part right part ! * +------------------------------------------------------------+ ! * | < pivot1 | ? | pivot1 <= && <= pivot2 | > pivot2 | ! * +------------------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * lower k upper * * Invariants: * ! * all in (low, lower] < pivot1 ! * pivot1 <= all in (k, upper) <= pivot2 ! * all in [upper, end) > pivot2 * ! * Pointer k is the last index of ?-part */ ! for (int unused = --lower, k = ++upper; --k > lower; ) { ! long ak = a[k]; ! ! if (ak < pivot1) { // Move a[k] to the left side ! while (lower < k) { ! if (a[++lower] >= pivot1) { ! if (a[lower] > pivot2) { ! a[k] = a[--upper]; ! a[upper] = a[lower]; ! } else { ! a[k] = a[lower]; ! } ! a[lower] = ak; ! break; } } ! } else if (ak > pivot2) { // Move a[k] to the right side ! a[k] = a[--upper]; ! a[upper] = ak; } } ! /* ! * Swap the pivots into their final positions. ! */ ! a[low] = a[lower]; a[lower] = pivot1; ! a[end] = a[upper]; a[upper] = pivot2; ! /* ! * Sort non-left parts recursively (possibly in parallel), ! * excluding known pivots. ! */ ! if (size > MIN_PARALLEL_SORT_SIZE && sorter != null) { ! sorter.forkSorter(bits | 1, lower + 1, upper); ! sorter.forkSorter(bits | 1, upper + 1, high); ! } else { ! sort(sorter, a, bits | 1, lower + 1, upper); ! sort(sorter, a, bits | 1, upper + 1, high); } ! ! } else { // Use single pivot in case of many equal elements ! ! /* ! * Use the third of the five sorted elements as the pivot. ! * This value is inexpensive approximation of the median. ! */ ! long pivot = a[e3]; ! ! /* ! * The first element to be sorted is moved to the ! * location formerly occupied by the pivot. After ! * completion of partitioning the pivot is swapped ! * back into its final position, and excluded from ! * the next subsequent sorting. ! */ ! a[e3] = a[lower]; ! ! /* ! * Traditional 3-way (Dutch National Flag) partitioning ! * ! * left part central part right part ! * +------------------------------------------------------+ ! * | < pivot | ? | == pivot | > pivot | ! * +------------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * lower k upper ! * ! * Invariants: ! * ! * all in (low, lower] < pivot ! * all in (k, upper) == pivot ! * all in [upper, end] > pivot ! * ! * Pointer k is the last index of ?-part ! */ ! for (int k = ++upper; --k > lower; ) { ! long ak = a[k]; ! ! if (ak != pivot) { a[k] = pivot; ! if (ak < pivot) { // Move a[k] to the left side ! while (a[++lower] < pivot); ! if (a[lower] > pivot) { ! a[--upper] = a[lower]; ! } ! a[lower] = ak; ! } else { // ak > pivot - Move a[k] to the right side ! a[--upper] = ak; ! } ! } ! } ! /* ! * Swap the pivot into its final position. ! */ ! a[low] = a[lower]; a[lower] = pivot; ! /* ! * Sort the right part (possibly in parallel), excluding ! * known pivot. All elements from the central part are ! * equal and therefore already sorted. ! */ ! if (size > MIN_PARALLEL_SORT_SIZE && sorter != null) { ! sorter.forkSorter(bits | 1, upper, high); ! } else { ! sort(sorter, a, bits | 1, upper, high); ! } } ! high = lower; // Iterate along the left part } } /** ! * Sorts the specified range of the array using mixed insertion sort. ! * ! * Mixed insertion sort is combination of simple insertion sort, ! * pin insertion sort and pair insertion sort. ! * ! * In the context of Dual-Pivot Quicksort, the pivot element ! * from the left part plays the role of sentinel, because it ! * is less than any elements from the given part. Therefore, ! * expensive check of the left range can be skipped on each ! * iteration unless it is the leftmost call. * * @param a the array to be sorted ! * @param low the index of the first element, inclusive, to be sorted ! * @param end the index of the last element for simple insertion sort ! * @param high the index of the last element, exclusive, to be sorted ! */ ! private static void mixedInsertionSort(long[] a, int low, int end, int high) { ! if (end == high) { ! /* ! * Invoke simple insertion sort on tiny array. ! */ ! for (int i; ++low < end; ) { ! long ai = a[i = low]; ! while (ai < a[--i]) { ! a[i + 1] = a[i]; } + a[i + 1] = ai; } ! } else { /* ! * Start with pin insertion sort on small part. ! * ! * Pin insertion sort is extended simple insertion sort. ! * The main idea of this sort is to put elements larger ! * than an element called pin to the end of array (the ! * proper area for such elements). It avoids expensive ! * movements of these elements through the whole array. */ ! long pin = a[end]; ! for (int i, p = high; ++low < end; ) { ! long ai = a[i = low]; ! if (ai < a[i - 1]) { // Small element ! ! /* ! * Insert small element into sorted part. ! */ ! a[i] = a[--i]; ! ! while (ai < a[--i]) { ! a[i + 1] = a[i]; ! } ! a[i + 1] = ai; ! ! } else if (p > i && ai > pin) { // Large element ! ! /* ! * Find element smaller than pin. ! */ ! while (a[--p] > pin); ! ! /* ! * Swap it with large element. ! */ ! if (p > i) { ! ai = a[p]; ! a[p] = a[i]; ! } ! ! /* ! * Insert small element into sorted part. ! */ ! while (ai < a[--i]) { ! a[i + 1] = a[i]; } + a[i + 1] = ai; } } ! /* ! * Continue with pair insertion sort on remain part. ! */ ! for (int i; low < high; ++low) { ! long a1 = a[i = low], a2 = a[++low]; /* ! * Insert two elements per iteration: at first, insert the ! * larger element and then insert the smaller element, but ! * from the position where the larger element was inserted. */ ! if (a1 > a2) { ! ! while (a1 < a[--i]) { ! a[i + 2] = a[i]; } ! a[++i + 1] = a1; ! ! while (a2 < a[--i]) { ! a[i + 1] = a[i]; } ! a[i + 1] = a2; ! } else if (a1 < a[i - 1]) { ! while (a2 < a[--i]) { ! a[i + 2] = a[i]; } ! a[++i + 1] = a2; ! while (a1 < a[--i]) { ! a[i + 1] = a[i]; } ! a[i + 1] = a1; } ! } ! } ! } ! /** ! * Sorts the specified range of the array using insertion sort. ! * ! * @param a the array to be sorted ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! private static void insertionSort(long[] a, int low, int high) { ! for (int i, k = low; ++k < high; ) { ! long ai = a[i = k]; ! ! if (ai < a[i - 1]) { ! while (--i >= low && ai < a[i]) { ! a[i + 1] = a[i]; } ! a[i + 1] = ai; } } + } ! /** ! * Sorts the specified range of the array using heap sort. ! * ! * @param a the array to be sorted ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! private static void heapSort(long[] a, int low, int high) { ! for (int k = (low + high) >>> 1; k > low; ) { ! pushDown(a, --k, a[k], low, high); ! } ! while (--high > low) { ! long max = a[low]; ! pushDown(a, low, a[high], low, high); ! a[high] = max; ! } ! } ! /** ! * Pushes specified element down during heap sort. ! * ! * @param a the given array ! * @param p the start index ! * @param value the given element ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! private static void pushDown(long[] a, int p, long value, int low, int high) { ! for (int k ;; a[p] = a[p = k]) { ! k = (p << 1) - low + 2; // Index of the right child ! if (k > high) { ! break; } ! if (k == high || a[k] < a[k - 1]) { ! --k; ! } ! if (a[k] <= value) { ! break; } } + a[p] = value; + } ! /** ! * Tries to sort the specified range of the array. ! * ! * @param sorter parallel context ! * @param a the array to be sorted ! * @param low the index of the first element to be sorted ! * @param size the array size ! * @return true if finally sorted, false otherwise ! */ ! private static boolean tryMergeRuns(Sorter sorter, long[] a, int low, int size) { ! /* ! * The run array is constructed only if initial runs are ! * long enough to continue, run[i] then holds start index ! * of the i-th sequence of elements in non-descending order. ! */ ! int[] run = null; ! int high = low + size; ! int count = 1, last = low; ! /* ! * Identify all possible runs. ! */ ! for (int k = low + 1; k < high; ) { /* ! * Find the end index of the current run. */ ! if (a[k - 1] < a[k]) { ! // Identify ascending sequence ! while (++k < high && a[k - 1] <= a[k]); ! } else if (a[k - 1] > a[k]) { ! // Identify descending sequence ! while (++k < high && a[k - 1] >= a[k]); ! // Reverse into ascending order ! for (int i = last - 1, j = k; ++i < --j && a[i] > a[j]; ) { ! long ai = a[i]; a[i] = a[j]; a[j] = ai; } + } else { // Identify constant sequence + for (long ak = a[k]; ++k < high && ak == a[k]; ); ! if (k < high) { ! continue; } } /* ! * Check special cases. */ ! if (run == null) { ! if (k == high) { ! /* ! * The array is monotonous sequence, ! * and therefore already sorted. ! */ ! return true; } ! if (k - low < MIN_FIRST_RUN_SIZE) { ! /* ! * The first run is too small ! * to proceed with scanning. ! */ ! return false; ! } ! run = new int[((size >> 10) | 0x7F) & 0x3FF]; ! run[0] = low; ! } else if (a[last - 1] > a[last]) { ! if (count > (k - low) >> MIN_FIRST_RUNS_FACTOR) { ! /* ! * The first runs are not long ! * enough to continue scanning. ! */ ! return false; ! } ! if (++count == MAX_RUN_CAPACITY) { ! /* ! * Array is not highly structured. ! */ ! return false; ! } ! if (count == run.length) { ! /* ! * Increase capacity of index array. ! */ ! run = Arrays.copyOf(run, count << 1); ! } } + run[count] = (last = k); } /* ! * Merge runs of highly structured array. */ ! if (count > 1) { ! long[] b; int offset = low; ! if (sorter == null || (b = (long[]) sorter.b) == null) { ! b = new long[size]; ! } else { ! offset = sorter.offset; } + mergeRuns(a, b, offset, 1, sorter != null, run, 0, count); } + return true; } /** ! * Merges the specified runs. * ! * @param a the source array ! * @param b the temporary buffer used in merging ! * @param offset the start index in the source, inclusive ! * @param aim specifies merging: to source ( > 0), buffer ( < 0) or any ( == 0) ! * @param parallel indicates whether merging is performed in parallel ! * @param run the start indexes of the runs, inclusive ! * @param lo the start index of the first run, inclusive ! * @param hi the start index of the last run, inclusive ! * @return the destination where runs are merged */ ! private static long[] mergeRuns(long[] a, long[] b, int offset, ! int aim, boolean parallel, int[] run, int lo, int hi) { ! ! if (hi - lo == 1) { ! if (aim >= 0) { ! return a; ! } ! for (int i = run[hi], j = i - offset, low = run[lo]; i > low; ! b[--j] = a[--i] ! ); ! return b; } /* ! * Split into approximately equal parts. */ ! int mi = lo, rmi = (run[lo] + run[hi]) >>> 1; ! while (run[++mi + 1] <= rmi); ! /* ! * Merge the left and right parts. ! */ ! long[] a1, a2; ! if (parallel && hi - lo > MIN_RUN_COUNT) { ! RunMerger merger = new RunMerger(a, b, offset, 0, run, mi, hi).forkMe(); ! a1 = mergeRuns(a, b, offset, -aim, true, run, lo, mi); ! a2 = (long[]) merger.getDestination(); ! } else { ! a1 = mergeRuns(a, b, offset, -aim, false, run, lo, mi); ! a2 = mergeRuns(a, b, offset, 0, false, run, mi, hi); } ! long[] dst = a1 == a ? b : a; ! int k = a1 == a ? run[lo] - offset : run[lo]; ! int lo1 = a1 == b ? run[lo] - offset : run[lo]; ! int hi1 = a1 == b ? run[mi] - offset : run[mi]; ! int lo2 = a2 == b ? run[mi] - offset : run[mi]; ! int hi2 = a2 == b ? run[hi] - offset : run[hi]; ! ! if (parallel) { ! new Merger(null, dst, k, a1, lo1, hi1, a2, lo2, hi2).invoke(); ! } else { ! mergeParts(null, dst, k, a1, lo1, hi1, a2, lo2, hi2); } + return dst; } /** ! * Merges the sorted parts. * ! * @param merger parallel context ! * @param dst the destination where parts are merged ! * @param k the start index of the destination, inclusive ! * @param a1 the first part ! * @param lo1 the start index of the first part, inclusive ! * @param hi1 the end index of the first part, exclusive ! * @param a2 the second part ! * @param lo2 the start index of the second part, inclusive ! * @param hi2 the end index of the second part, exclusive */ ! private static void mergeParts(Merger merger, long[] dst, int k, ! long[] a1, int lo1, int hi1, long[] a2, int lo2, int hi2) { ! ! if (merger != null && a1 == a2) { ! ! while (true) { /* ! * The first part must be larger. */ ! if (hi1 - lo1 < hi2 - lo2) { ! int lo = lo1; lo1 = lo2; lo2 = lo; ! int hi = hi1; hi1 = hi2; hi2 = hi; } ! /* ! * Small parts will be merged sequentially. */ ! if (hi1 - lo1 < MIN_PARALLEL_MERGE_PARTS_SIZE) { ! break; ! } /* ! * Find the median of the larger part. */ ! int mi1 = (lo1 + hi1) >>> 1; ! long key = a1[mi1]; ! int mi2 = hi2; ! /* ! * Partition the smaller part. ! */ ! for (int loo = lo2; loo < mi2; ) { ! int t = (loo + mi2) >>> 1; ! if (key > a2[t]) { ! loo = t + 1; ! } else { ! mi2 = t; } } ! int d = mi2 - lo2 + mi1 - lo1; ! ! /* ! * Merge the right sub-parts in parallel. ! */ ! merger.forkMerger(dst, k + d, a1, mi1, hi1, a2, mi2, hi2); ! ! /* ! * Process the sub-left parts. ! */ ! hi1 = mi1; ! hi2 = mi2; } } /* ! * Merge small parts sequentially. */ ! while (lo1 < hi1 && lo2 < hi2) { ! dst[k++] = a1[lo1] < a2[lo2] ? a1[lo1++] : a2[lo2++]; } ! if (dst != a1 || k < lo1) { ! while (lo1 < hi1) { ! dst[k++] = a1[lo1++]; } } ! if (dst != a2 || k < lo2) { ! while (lo2 < hi2) { ! dst[k++] = a2[lo2++]; } } + } ! // [byte] ! /** ! * Sorts the specified range of the array using ! * counting sort or insertion sort. ! * ! * @param a the array to be sorted ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! static void sort(byte[] a, int low, int high) { ! if (high - low > MIN_BYTE_COUNTING_SORT_SIZE) { ! countingSort(a, low, high); ! } else { ! insertionSort(a, low, high); ! } ! } ! /** ! * Sorts the specified range of the array using insertion sort. ! * ! * @param a the array to be sorted ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! private static void insertionSort(byte[] a, int low, int high) { ! for (int i, k = low; ++k < high; ) { ! byte ai = a[i = k]; ! ! if (ai < a[i - 1]) { ! while (--i >= low && ai < a[i]) { ! a[i + 1] = a[i]; } + a[i + 1] = ai; } } } /** ! * The number of distinct byte values. ! */ ! private static final int NUM_BYTE_VALUES = 1 << 8; ! ! /** ! * Max index of byte counter. ! */ ! private static final int MAX_BYTE_INDEX = Byte.MAX_VALUE + NUM_BYTE_VALUES + 1; ! ! /** ! * Sorts the specified range of the array using counting sort. * * @param a the array to be sorted ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted */ ! private static void countingSort(byte[] a, int low, int high) { ! int[] count = new int[NUM_BYTE_VALUES]; /* ! * Compute a histogram with the number of each values. */ ! for (int i = high; i > low; ++count[a[--i] & 0xFF]); /* ! * Place values on their final positions. */ ! if (high - low > NUM_BYTE_VALUES) { ! for (int i = MAX_BYTE_INDEX; --i > Byte.MAX_VALUE; ) { ! int value = i & 0xFF; ! for (low = high - count[value]; high > low; ! a[--high] = (byte) value ! ); } ! } else { ! for (int i = MAX_BYTE_INDEX; high > low; ) { ! while (count[--i & 0xFF] == 0); ! int value = i & 0xFF; ! int c = count[value]; ! do { ! a[--high] = (byte) value; ! } while (--c > 0); } } } + // [char] + /** ! * Sorts the specified range of the array using ! * counting sort or Dual-Pivot Quicksort. * * @param a the array to be sorted ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted */ ! static void sort(char[] a, int low, int high) { ! if (high - low > MIN_SHORT_OR_CHAR_COUNTING_SORT_SIZE) { ! countingSort(a, low, high); ! } else { ! sort(a, 0, low, high); } + } ! /** ! * Sorts the specified array using the Dual-Pivot Quicksort and/or ! * other sorts in special-cases, possibly with parallel partitions. ! * ! * @param a the array to be sorted ! * @param bits the combination of recursion depth and bit flag, where ! * the right bit "0" indicates that array is the leftmost part ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! static void sort(char[] a, int bits, int low, int high) { ! while (true) { ! int end = high - 1, size = high - low; ! /* ! * Invoke insertion sort on small leftmost part. ! */ ! if (size < MAX_INSERTION_SORT_SIZE) { ! insertionSort(a, low, high); ! return; } /* ! * Switch to counting sort if execution ! * time is becoming quadratic. */ ! if ((bits += 2) > MAX_RECURSION_DEPTH) { ! countingSort(a, low, high); return; } ! /* ! * Use an inexpensive approximation of the golden ratio ! * to select five sample elements and determine pivots. ! */ ! int step = (size >> 3) * 3 + 3; ! /* ! * Five elements around (and including) the central element ! * will be used for pivot selection as described below. The ! * unequal choice of spacing these elements was empirically ! * determined to work well on a wide variety of inputs. ! */ ! int e1 = low + step; ! int e5 = end - step; ! int e3 = (e1 + e5) >>> 1; ! int e2 = (e1 + e3) >>> 1; ! int e4 = (e3 + e5) >>> 1; ! char a3 = a[e3]; ! ! /* ! * Sort these elements in place by the combination ! * of 4-element sorting network and insertion sort. ! * ! * 5 ------o-----------o------------ ! * | | ! * 4 ------|-----o-----o-----o------ ! * | | | ! * 2 ------o-----|-----o-----o------ ! * | | ! * 1 ------------o-----o------------ ! */ ! if (a[e5] < a[e2]) { char t = a[e5]; a[e5] = a[e2]; a[e2] = t; } ! if (a[e4] < a[e1]) { char t = a[e4]; a[e4] = a[e1]; a[e1] = t; } ! if (a[e5] < a[e4]) { char t = a[e5]; a[e5] = a[e4]; a[e4] = t; } ! if (a[e2] < a[e1]) { char t = a[e2]; a[e2] = a[e1]; a[e1] = t; } ! if (a[e4] < a[e2]) { char t = a[e4]; a[e4] = a[e2]; a[e2] = t; } ! ! if (a3 < a[e2]) { ! if (a3 < a[e1]) { ! a[e3] = a[e2]; a[e2] = a[e1]; a[e1] = a3; ! } else { ! a[e3] = a[e2]; a[e2] = a3; ! } ! } else if (a3 > a[e4]) { ! if (a3 > a[e5]) { ! a[e3] = a[e4]; a[e4] = a[e5]; a[e5] = a3; ! } else { ! a[e3] = a[e4]; a[e4] = a3; } } ! // Pointers ! int lower = low; // The index of the last element of the left part ! int upper = end; // The index of the first element of the right part ! ! /* ! * Partitioning with 2 pivots in case of different elements. ! */ ! if (a[e1] < a[e2] && a[e2] < a[e3] && a[e3] < a[e4] && a[e4] < a[e5]) { ! ! /* ! * Use the first and fifth of the five sorted elements as ! * the pivots. These values are inexpensive approximation ! * of tertiles. Note, that pivot1 < pivot2. ! */ ! char pivot1 = a[e1]; ! char pivot2 = a[e5]; ! ! /* ! * The first and the last elements to be sorted are moved ! * to the locations formerly occupied by the pivots. When ! * partitioning is completed, the pivots are swapped back ! * into their final positions, and excluded from the next ! * subsequent sorting. ! */ ! a[e1] = a[lower]; ! a[e5] = a[upper]; ! ! /* ! * Skip elements, which are less or greater than the pivots. ! */ ! while (a[++lower] < pivot1); ! while (a[--upper] > pivot2); /* ! * Backward 3-interval partitioning ! * ! * left part central part right part ! * +------------------------------------------------------------+ ! * | < pivot1 | ? | pivot1 <= && <= pivot2 | > pivot2 | ! * +------------------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * lower k upper ! * ! * Invariants: ! * ! * all in (low, lower] < pivot1 ! * pivot1 <= all in (k, upper) <= pivot2 ! * all in [upper, end) > pivot2 ! * ! * Pointer k is the last index of ?-part */ ! for (int unused = --lower, k = ++upper; --k > lower; ) { ! char ak = a[k]; ! ! if (ak < pivot1) { // Move a[k] to the left side ! while (lower < k) { ! if (a[++lower] >= pivot1) { ! if (a[lower] > pivot2) { ! a[k] = a[--upper]; ! a[upper] = a[lower]; ! } else { ! a[k] = a[lower]; ! } ! a[lower] = ak; ! break; ! } } + } else if (ak > pivot2) { // Move a[k] to the right side + a[k] = a[--upper]; + a[upper] = ak; } } ! /* ! * Swap the pivots into their final positions. */ ! a[low] = a[lower]; a[lower] = pivot1; ! a[end] = a[upper]; a[upper] = pivot2; /* ! * Sort non-left parts recursively, ! * excluding known pivots. */ ! sort(a, bits | 1, lower + 1, upper); ! sort(a, bits | 1, upper + 1, high); ! } else { // Use single pivot in case of many equal elements ! ! /* ! * Use the third of the five sorted elements as the pivot. ! * This value is inexpensive approximation of the median. ! */ ! char pivot = a[e3]; ! ! /* ! * The first element to be sorted is moved to the ! * location formerly occupied by the pivot. After ! * completion of partitioning the pivot is swapped ! * back into its final position, and excluded from ! * the next subsequent sorting. ! */ ! a[e3] = a[lower]; ! ! /* ! * Traditional 3-way (Dutch National Flag) partitioning ! * ! * left part central part right part ! * +------------------------------------------------------+ ! * | < pivot | ? | == pivot | > pivot | ! * +------------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * lower k upper ! * ! * Invariants: ! * ! * all in (low, lower] < pivot ! * all in (k, upper) == pivot ! * all in [upper, end] > pivot ! * ! * Pointer k is the last index of ?-part ! */ ! for (int k = ++upper; --k > lower; ) { ! char ak = a[k]; ! ! if (ak != pivot) { ! a[k] = pivot; ! ! if (ak < pivot) { // Move a[k] to the left side ! while (a[++lower] < pivot); ! if (a[lower] > pivot) { ! a[--upper] = a[lower]; ! } ! a[lower] = ak; ! } else { // ak > pivot - Move a[k] to the right side ! a[--upper] = ak; ! } } } ! /* ! * Swap the pivot into its final position. ! */ ! a[low] = a[lower]; a[lower] = pivot; ! ! /* ! * Sort the right part, excluding known pivot. ! * All elements from the central part are ! * equal and therefore already sorted. ! */ ! sort(a, bits | 1, upper, high); ! } ! high = lower; // Iterate along the left part ! } ! } ! ! /** ! * Sorts the specified range of the array using insertion sort. ! * ! * @param a the array to be sorted ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! private static void insertionSort(char[] a, int low, int high) { ! for (int i, k = low; ++k < high; ) { ! char ai = a[i = k]; ! ! if (ai < a[i - 1]) { ! while (--i >= low && ai < a[i]) { ! a[i + 1] = a[i]; } ! a[i + 1] = ai; } } + } + + /** + * The number of distinct char values. + */ + private static final int NUM_CHAR_VALUES = 1 << 16; ! /** ! * Sorts the specified range of the array using counting sort. ! * ! * @param a the array to be sorted ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! private static void countingSort(char[] a, int low, int high) { ! int[] count = new int[NUM_CHAR_VALUES]; /* ! * Compute a histogram with the number of each values. */ ! for (int i = high; i > low; ++count[a[--i]]); ! /* ! * Place values on their final positions. ! */ ! if (high - low > NUM_CHAR_VALUES) { ! for (int i = NUM_CHAR_VALUES; i > 0; ) { ! for (low = high - count[--i]; high > low; ! a[--high] = (char) i ! ); ! } ! } else { ! for (int i = NUM_CHAR_VALUES; high > low; ) { ! while (count[--i] == 0); ! int c = count[i]; ! do { ! a[--high] = (char) i; ! } while (--c > 0); } } ! } ! ! // [short] ! ! /** ! * Sorts the specified range of the array using ! * counting sort or Dual-Pivot Quicksort. ! * ! * @param a the array to be sorted ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! static void sort(short[] a, int low, int high) { ! if (high - low > MIN_SHORT_OR_CHAR_COUNTING_SORT_SIZE) { ! countingSort(a, low, high); ! } else { ! sort(a, 0, low, high); } + } ! /** ! * Sorts the specified array using the Dual-Pivot Quicksort and/or ! * other sorts in special-cases, possibly with parallel partitions. ! * ! * @param a the array to be sorted ! * @param bits the combination of recursion depth and bit flag, where ! * the right bit "0" indicates that array is the leftmost part ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! static void sort(short[] a, int bits, int low, int high) { ! while (true) { ! int end = high - 1, size = high - low; /* ! * Invoke insertion sort on small leftmost part. */ ! if (size < MAX_INSERTION_SORT_SIZE) { ! insertionSort(a, low, high); ! return; ! } /* ! * Switch to counting sort if execution ! * time is becoming quadratic. */ ! if ((bits += 2) > MAX_RECURSION_DEPTH) { ! countingSort(a, low, high); ! return; ! } /* ! * Use an inexpensive approximation of the golden ratio ! * to select five sample elements and determine pivots. */ ! int step = (size >> 3) * 3 + 3; /* ! * Five elements around (and including) the central element ! * will be used for pivot selection as described below. The ! * unequal choice of spacing these elements was empirically ! * determined to work well on a wide variety of inputs. ! */ ! int e1 = low + step; ! int e5 = end - step; ! int e3 = (e1 + e5) >>> 1; ! int e2 = (e1 + e3) >>> 1; ! int e4 = (e3 + e5) >>> 1; ! short a3 = a[e3]; ! ! /* ! * Sort these elements in place by the combination ! * of 4-element sorting network and insertion sort. * ! * 5 ------o-----------o------------ ! * | | ! * 4 ------|-----o-----o-----o------ ! * | | | ! * 2 ------o-----|-----o-----o------ ! * | | ! * 1 ------------o-----o------------ */ ! if (a[e5] < a[e2]) { short t = a[e5]; a[e5] = a[e2]; a[e2] = t; } ! if (a[e4] < a[e1]) { short t = a[e4]; a[e4] = a[e1]; a[e1] = t; } ! if (a[e5] < a[e4]) { short t = a[e5]; a[e5] = a[e4]; a[e4] = t; } ! if (a[e2] < a[e1]) { short t = a[e2]; a[e2] = a[e1]; a[e1] = t; } ! if (a[e4] < a[e2]) { short t = a[e4]; a[e4] = a[e2]; a[e2] = t; } ! ! if (a3 < a[e2]) { ! if (a3 < a[e1]) { ! a[e3] = a[e2]; a[e2] = a[e1]; a[e1] = a3; ! } else { ! a[e3] = a[e2]; a[e2] = a3; ! } ! } else if (a3 > a[e4]) { ! if (a3 > a[e5]) { ! a[e3] = a[e4]; a[e4] = a[e5]; a[e5] = a3; ! } else { ! a[e3] = a[e4]; a[e4] = a3; } } ! // Pointers ! int lower = low; // The index of the last element of the left part ! int upper = end; // The index of the first element of the right part /* ! * Partitioning with 2 pivots in case of different elements. */ ! if (a[e1] < a[e2] && a[e2] < a[e3] && a[e3] < a[e4] && a[e4] < a[e5]) { ! /* ! * Use the first and fifth of the five sorted elements as ! * the pivots. These values are inexpensive approximation ! * of tertiles. Note, that pivot1 < pivot2. */ ! short pivot1 = a[e1]; ! short pivot2 = a[e5]; ! /* ! * The first and the last elements to be sorted are moved ! * to the locations formerly occupied by the pivots. When ! * partitioning is completed, the pivots are swapped back ! * into their final positions, and excluded from the next ! * subsequent sorting. ! */ ! a[e1] = a[lower]; ! a[e5] = a[upper]; ! ! /* ! * Skip elements, which are less or greater than the pivots. ! */ ! while (a[++lower] < pivot1); ! while (a[--upper] > pivot2); /* ! * Backward 3-interval partitioning * ! * left part central part right part ! * +------------------------------------------------------------+ ! * | < pivot1 | ? | pivot1 <= && <= pivot2 | > pivot2 | ! * +------------------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * lower k upper * * Invariants: * ! * all in (low, lower] < pivot1 ! * pivot1 <= all in (k, upper) <= pivot2 ! * all in [upper, end) > pivot2 * ! * Pointer k is the last index of ?-part */ ! for (int unused = --lower, k = ++upper; --k > lower; ) { ! short ak = a[k]; ! ! if (ak < pivot1) { // Move a[k] to the left side ! while (lower < k) { ! if (a[++lower] >= pivot1) { ! if (a[lower] > pivot2) { ! a[k] = a[--upper]; ! a[upper] = a[lower]; ! } else { ! a[k] = a[lower]; ! } ! a[lower] = ak; ! break; } } ! } else if (ak > pivot2) { // Move a[k] to the right side ! a[k] = a[--upper]; ! a[upper] = ak; } } ! /* ! * Swap the pivots into their final positions. ! */ ! a[low] = a[lower]; a[lower] = pivot1; ! a[end] = a[upper]; a[upper] = pivot2; ! /* ! * Sort non-left parts recursively, ! * excluding known pivots. ! */ ! sort(a, bits | 1, lower + 1, upper); ! sort(a, bits | 1, upper + 1, high); ! } else { // Use single pivot in case of many equal elements ! ! /* ! * Use the third of the five sorted elements as the pivot. ! * This value is inexpensive approximation of the median. ! */ ! short pivot = a[e3]; ! ! /* ! * The first element to be sorted is moved to the ! * location formerly occupied by the pivot. After ! * completion of partitioning the pivot is swapped ! * back into its final position, and excluded from ! * the next subsequent sorting. ! */ ! a[e3] = a[lower]; ! ! /* ! * Traditional 3-way (Dutch National Flag) partitioning ! * ! * left part central part right part ! * +------------------------------------------------------+ ! * | < pivot | ? | == pivot | > pivot | ! * +------------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * lower k upper ! * ! * Invariants: ! * ! * all in (low, lower] < pivot ! * all in (k, upper) == pivot ! * all in [upper, end] > pivot ! * ! * Pointer k is the last index of ?-part ! */ ! for (int k = ++upper; --k > lower; ) { ! short ak = a[k]; ! ! if (ak != pivot) { ! a[k] = pivot; ! ! if (ak < pivot) { // Move a[k] to the left side ! while (a[++lower] < pivot); ! ! if (a[lower] > pivot) { ! a[--upper] = a[lower]; ! } ! a[lower] = ak; ! } else { // ak > pivot - Move a[k] to the right side ! a[--upper] = ak; ! } ! } ! } ! ! /* ! * Swap the pivot into its final position. ! */ ! a[low] = a[lower]; a[lower] = pivot; ! ! /* ! * Sort the right part, excluding known pivot. ! * All elements from the central part are ! * equal and therefore already sorted. ! */ ! sort(a, bits | 1, upper, high); ! } ! high = lower; // Iterate along the left part ! } ! } ! ! /** ! * Sorts the specified range of the array using insertion sort. ! * ! * @param a the array to be sorted ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! private static void insertionSort(short[] a, int low, int high) { ! for (int i, k = low; ++k < high; ) { ! short ai = a[i = k]; ! ! if (ai < a[i - 1]) { ! while (--i >= low && ai < a[i]) { ! a[i + 1] = a[i]; ! } ! a[i + 1] = ai; ! } ! } ! } ! ! /** ! * The number of distinct short values. ! */ ! private static final int NUM_SHORT_VALUES = 1 << 16; ! ! /** ! * Max index of short counter. ! */ ! private static final int MAX_SHORT_INDEX = Short.MAX_VALUE + NUM_SHORT_VALUES + 1; ! ! /** ! * Sorts the specified range of the array using counting sort. ! * ! * @param a the array to be sorted ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! private static void countingSort(short[] a, int low, int high) { ! int[] count = new int[NUM_SHORT_VALUES]; ! ! /* ! * Compute a histogram with the number of each values. ! */ ! for (int i = high; i > low; ++count[a[--i] & 0xFFFF]); ! ! /* ! * Place values on their final positions. ! */ ! if (high - low > NUM_SHORT_VALUES) { ! for (int i = MAX_SHORT_INDEX; --i > Short.MAX_VALUE; ) { ! int value = i & 0xFFFF; ! ! for (low = high - count[value]; high > low; ! a[--high] = (short) value ! ); ! } ! } else { ! for (int i = MAX_SHORT_INDEX; high > low; ) { ! while (count[--i & 0xFFFF] == 0); ! ! int value = i & 0xFFFF; ! int c = count[value]; ! ! do { ! a[--high] = (short) value; ! } while (--c > 0); ! } ! } ! } ! ! // [float] ! ! /** ! * Sorts the specified range of the array using parallel merge ! * sort and/or Dual-Pivot Quicksort. ! * ! * To balance the faster splitting and parallelism of merge sort ! * with the faster element partitioning of Quicksort, ranges are ! * subdivided in tiers such that, if there is enough parallelism, ! * the four-way parallel merge is started, still ensuring enough ! * parallelism to process the partitions. ! * ! * @param a the array to be sorted ! * @param parallelism the parallelism level ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! static void sort(float[] a, int parallelism, int low, int high) { ! /* ! * Phase 1. Count the number of negative zero -0.0f, ! * turn them into positive zero, and move all NaNs ! * to the end of the array. ! */ ! int numNegativeZero = 0; ! ! for (int k = high; k > low; ) { ! float ak = a[--k]; ! ! if (ak == 0.0f && Float.floatToRawIntBits(ak) < 0) { // ak is -0.0f ! numNegativeZero += 1; ! a[k] = 0.0f; ! } else if (ak != ak) { // ak is NaN ! a[k] = a[--high]; ! a[high] = ak; ! } ! } ! ! /* ! * Phase 2. Sort everything except NaNs, ! * which are already in place. ! */ ! int size = high - low; ! ! if (parallelism > 1 && size > MIN_PARALLEL_SORT_SIZE) { ! int depth = getDepth(parallelism, size >> 12); ! float[] b = depth == 0 ? null : new float[size]; ! new Sorter(null, a, b, low, size, low, depth).invoke(); ! } else { ! sort(null, a, 0, low, high); ! } ! ! /* ! * Phase 3. Turn positive zero 0.0f ! * back into negative zero -0.0f. ! */ ! if (++numNegativeZero == 1) { ! return; ! } ! ! /* ! * Find the position one less than ! * the index of the first zero. ! */ ! while (low <= high) { ! int middle = (low + high) >>> 1; ! ! if (a[middle] < 0) { ! low = middle + 1; ! } else { ! high = middle - 1; ! } ! } ! ! /* ! * Replace the required number of 0.0f by -0.0f. ! */ ! while (--numNegativeZero > 0) { ! a[++high] = -0.0f; ! } ! } ! ! /** ! * Sorts the specified array using the Dual-Pivot Quicksort and/or ! * other sorts in special-cases, possibly with parallel partitions. ! * ! * @param sorter parallel context ! * @param a the array to be sorted ! * @param bits the combination of recursion depth and bit flag, where ! * the right bit "0" indicates that array is the leftmost part ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! static void sort(Sorter sorter, float[] a, int bits, int low, int high) { ! while (true) { ! int end = high - 1, size = high - low; ! ! /* ! * Run mixed insertion sort on small non-leftmost parts. ! */ ! if (size < MAX_MIXED_INSERTION_SORT_SIZE && (bits & 1) > 0) { ! mixedInsertionSort(a, low, high - 3 * ((size >> 5) << 3), high); ! return; ! } ! ! /* ! * Invoke insertion sort on small leftmost part. ! */ ! if (size < MAX_INSERTION_SORT_SIZE) { ! insertionSort(a, low, high); ! return; ! } ! ! /* ! * Check if the whole array or large non-leftmost ! * parts are nearly sorted and then merge runs. ! */ ! if ((bits == 0 || size > MIN_TRY_MERGE_SIZE && (bits & 1) > 0) ! && tryMergeRuns(sorter, a, low, size)) { ! return; ! } ! ! /* ! * Switch to heap sort if execution ! * time is becoming quadratic. ! */ ! if ((bits += 2) > MAX_RECURSION_DEPTH) { ! heapSort(a, low, high); ! return; ! } ! ! /* ! * Use an inexpensive approximation of the golden ratio ! * to select five sample elements and determine pivots. ! */ ! int step = (size >> 3) * 3 + 3; ! ! /* ! * Five elements around (and including) the central element ! * will be used for pivot selection as described below. The ! * unequal choice of spacing these elements was empirically ! * determined to work well on a wide variety of inputs. ! */ ! int e1 = low + step; ! int e5 = end - step; ! int e3 = (e1 + e5) >>> 1; ! int e2 = (e1 + e3) >>> 1; ! int e4 = (e3 + e5) >>> 1; ! float a3 = a[e3]; ! ! /* ! * Sort these elements in place by the combination ! * of 4-element sorting network and insertion sort. * ! * 5 ------o-----------o------------ ! * | | ! * 4 ------|-----o-----o-----o------ ! * | | | ! * 2 ------o-----|-----o-----o------ ! * | | ! * 1 ------------o-----o------------ ! */ ! if (a[e5] < a[e2]) { float t = a[e5]; a[e5] = a[e2]; a[e2] = t; } ! if (a[e4] < a[e1]) { float t = a[e4]; a[e4] = a[e1]; a[e1] = t; } ! if (a[e5] < a[e4]) { float t = a[e5]; a[e5] = a[e4]; a[e4] = t; } ! if (a[e2] < a[e1]) { float t = a[e2]; a[e2] = a[e1]; a[e1] = t; } ! if (a[e4] < a[e2]) { float t = a[e4]; a[e4] = a[e2]; a[e2] = t; } ! ! if (a3 < a[e2]) { ! if (a3 < a[e1]) { ! a[e3] = a[e2]; a[e2] = a[e1]; a[e1] = a3; ! } else { ! a[e3] = a[e2]; a[e2] = a3; ! } ! } else if (a3 > a[e4]) { ! if (a3 > a[e5]) { ! a[e3] = a[e4]; a[e4] = a[e5]; a[e5] = a3; ! } else { ! a[e3] = a[e4]; a[e4] = a3; ! } ! } ! ! // Pointers ! int lower = low; // The index of the last element of the left part ! int upper = end; // The index of the first element of the right part ! ! /* ! * Partitioning with 2 pivots in case of different elements. ! */ ! if (a[e1] < a[e2] && a[e2] < a[e3] && a[e3] < a[e4] && a[e4] < a[e5]) { ! ! /* ! * Use the first and fifth of the five sorted elements as ! * the pivots. These values are inexpensive approximation ! * of tertiles. Note, that pivot1 < pivot2. ! */ ! float pivot1 = a[e1]; ! float pivot2 = a[e5]; ! ! /* ! * The first and the last elements to be sorted are moved ! * to the locations formerly occupied by the pivots. When ! * partitioning is completed, the pivots are swapped back ! * into their final positions, and excluded from the next ! * subsequent sorting. ! */ ! a[e1] = a[lower]; ! a[e5] = a[upper]; ! ! /* ! * Skip elements, which are less or greater than the pivots. ! */ ! while (a[++lower] < pivot1); ! while (a[--upper] > pivot2); ! ! /* ! * Backward 3-interval partitioning ! * ! * left part central part right part ! * +------------------------------------------------------------+ ! * | < pivot1 | ? | pivot1 <= && <= pivot2 | > pivot2 | ! * +------------------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * lower k upper ! * ! * Invariants: ! * ! * all in (low, lower] < pivot1 ! * pivot1 <= all in (k, upper) <= pivot2 ! * all in [upper, end) > pivot2 ! * ! * Pointer k is the last index of ?-part ! */ ! for (int unused = --lower, k = ++upper; --k > lower; ) { ! float ak = a[k]; ! ! if (ak < pivot1) { // Move a[k] to the left side ! while (lower < k) { ! if (a[++lower] >= pivot1) { ! if (a[lower] > pivot2) { ! a[k] = a[--upper]; ! a[upper] = a[lower]; ! } else { ! a[k] = a[lower]; ! } ! a[lower] = ak; ! break; ! } ! } ! } else if (ak > pivot2) { // Move a[k] to the right side ! a[k] = a[--upper]; ! a[upper] = ak; ! } ! } ! ! /* ! * Swap the pivots into their final positions. ! */ ! a[low] = a[lower]; a[lower] = pivot1; ! a[end] = a[upper]; a[upper] = pivot2; ! ! /* ! * Sort non-left parts recursively (possibly in parallel), ! * excluding known pivots. ! */ ! if (size > MIN_PARALLEL_SORT_SIZE && sorter != null) { ! sorter.forkSorter(bits | 1, lower + 1, upper); ! sorter.forkSorter(bits | 1, upper + 1, high); ! } else { ! sort(sorter, a, bits | 1, lower + 1, upper); ! sort(sorter, a, bits | 1, upper + 1, high); ! } ! ! } else { // Use single pivot in case of many equal elements ! ! /* ! * Use the third of the five sorted elements as the pivot. ! * This value is inexpensive approximation of the median. ! */ ! float pivot = a[e3]; ! ! /* ! * The first element to be sorted is moved to the ! * location formerly occupied by the pivot. After ! * completion of partitioning the pivot is swapped ! * back into its final position, and excluded from ! * the next subsequent sorting. ! */ ! a[e3] = a[lower]; ! ! /* ! * Traditional 3-way (Dutch National Flag) partitioning ! * ! * left part central part right part ! * +------------------------------------------------------+ ! * | < pivot | ? | == pivot | > pivot | ! * +------------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * lower k upper ! * ! * Invariants: ! * ! * all in (low, lower] < pivot ! * all in (k, upper) == pivot ! * all in [upper, end] > pivot ! * ! * Pointer k is the last index of ?-part ! */ ! for (int k = ++upper; --k > lower; ) { ! float ak = a[k]; ! ! if (ak != pivot) { ! a[k] = pivot; ! ! if (ak < pivot) { // Move a[k] to the left side ! while (a[++lower] < pivot); ! ! if (a[lower] > pivot) { ! a[--upper] = a[lower]; ! } ! a[lower] = ak; ! } else { // ak > pivot - Move a[k] to the right side ! a[--upper] = ak; ! } ! } ! } ! ! /* ! * Swap the pivot into its final position. ! */ ! a[low] = a[lower]; a[lower] = pivot; ! ! /* ! * Sort the right part (possibly in parallel), excluding ! * known pivot. All elements from the central part are ! * equal and therefore already sorted. ! */ ! if (size > MIN_PARALLEL_SORT_SIZE && sorter != null) { ! sorter.forkSorter(bits | 1, upper, high); ! } else { ! sort(sorter, a, bits | 1, upper, high); ! } ! } ! high = lower; // Iterate along the left part ! } ! } ! ! /** ! * Sorts the specified range of the array using mixed insertion sort. ! * ! * Mixed insertion sort is combination of simple insertion sort, ! * pin insertion sort and pair insertion sort. ! * ! * In the context of Dual-Pivot Quicksort, the pivot element ! * from the left part plays the role of sentinel, because it ! * is less than any elements from the given part. Therefore, ! * expensive check of the left range can be skipped on each ! * iteration unless it is the leftmost call. ! * ! * @param a the array to be sorted ! * @param low the index of the first element, inclusive, to be sorted ! * @param end the index of the last element for simple insertion sort ! * @param high the index of the last element, exclusive, to be sorted ! */ ! private static void mixedInsertionSort(float[] a, int low, int end, int high) { ! if (end == high) { ! ! /* ! * Invoke simple insertion sort on tiny array. ! */ ! for (int i; ++low < end; ) { ! float ai = a[i = low]; ! ! while (ai < a[--i]) { ! a[i + 1] = a[i]; ! } ! a[i + 1] = ai; ! } ! } else { ! ! /* ! * Start with pin insertion sort on small part. * ! * Pin insertion sort is extended simple insertion sort. ! * The main idea of this sort is to put elements larger ! * than an element called pin to the end of array (the ! * proper area for such elements). It avoids expensive ! * movements of these elements through the whole array. ! */ ! float pin = a[end]; ! ! for (int i, p = high; ++low < end; ) { ! float ai = a[i = low]; ! ! if (ai < a[i - 1]) { // Small element ! ! /* ! * Insert small element into sorted part. ! */ ! a[i] = a[--i]; ! ! while (ai < a[--i]) { ! a[i + 1] = a[i]; ! } ! a[i + 1] = ai; ! ! } else if (p > i && ai > pin) { // Large element ! ! /* ! * Find element smaller than pin. ! */ ! while (a[--p] > pin); ! ! /* ! * Swap it with large element. ! */ ! if (p > i) { ! ai = a[p]; ! a[p] = a[i]; ! } ! ! /* ! * Insert small element into sorted part. ! */ ! while (ai < a[--i]) { ! a[i + 1] = a[i]; ! } ! a[i + 1] = ai; ! } ! } ! ! /* ! * Continue with pair insertion sort on remain part. ! */ ! for (int i; low < high; ++low) { ! float a1 = a[i = low], a2 = a[++low]; ! ! /* ! * Insert two elements per iteration: at first, insert the ! * larger element and then insert the smaller element, but ! * from the position where the larger element was inserted. ! */ ! if (a1 > a2) { ! ! while (a1 < a[--i]) { ! a[i + 2] = a[i]; ! } ! a[++i + 1] = a1; ! ! while (a2 < a[--i]) { ! a[i + 1] = a[i]; ! } ! a[i + 1] = a2; ! ! } else if (a1 < a[i - 1]) { ! ! while (a2 < a[--i]) { ! a[i + 2] = a[i]; ! } ! a[++i + 1] = a2; ! ! while (a1 < a[--i]) { ! a[i + 1] = a[i]; ! } ! a[i + 1] = a1; ! } ! } ! } ! } ! ! /** ! * Sorts the specified range of the array using insertion sort. ! * ! * @param a the array to be sorted ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! private static void insertionSort(float[] a, int low, int high) { ! for (int i, k = low; ++k < high; ) { ! float ai = a[i = k]; ! ! if (ai < a[i - 1]) { ! while (--i >= low && ai < a[i]) { ! a[i + 1] = a[i]; ! } ! a[i + 1] = ai; ! } ! } ! } ! ! /** ! * Sorts the specified range of the array using heap sort. ! * ! * @param a the array to be sorted ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! private static void heapSort(float[] a, int low, int high) { ! for (int k = (low + high) >>> 1; k > low; ) { ! pushDown(a, --k, a[k], low, high); ! } ! while (--high > low) { ! float max = a[low]; ! pushDown(a, low, a[high], low, high); ! a[high] = max; ! } ! } ! ! /** ! * Pushes specified element down during heap sort. ! * ! * @param a the given array ! * @param p the start index ! * @param value the given element ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! private static void pushDown(float[] a, int p, float value, int low, int high) { ! for (int k ;; a[p] = a[p = k]) { ! k = (p << 1) - low + 2; // Index of the right child ! ! if (k > high) { ! break; ! } ! if (k == high || a[k] < a[k - 1]) { ! --k; ! } ! if (a[k] <= value) { ! break; ! } ! } ! a[p] = value; ! } ! ! /** ! * Tries to sort the specified range of the array. ! * ! * @param sorter parallel context ! * @param a the array to be sorted ! * @param low the index of the first element to be sorted ! * @param size the array size ! * @return true if finally sorted, false otherwise ! */ ! private static boolean tryMergeRuns(Sorter sorter, float[] a, int low, int size) { ! ! /* ! * The run array is constructed only if initial runs are ! * long enough to continue, run[i] then holds start index ! * of the i-th sequence of elements in non-descending order. ! */ ! int[] run = null; ! int high = low + size; ! int count = 1, last = low; ! ! /* ! * Identify all possible runs. ! */ ! for (int k = low + 1; k < high; ) { ! ! /* ! * Find the end index of the current run. ! */ ! if (a[k - 1] < a[k]) { ! ! // Identify ascending sequence ! while (++k < high && a[k - 1] <= a[k]); ! ! } else if (a[k - 1] > a[k]) { ! ! // Identify descending sequence ! while (++k < high && a[k - 1] >= a[k]); ! ! // Reverse into ascending order ! for (int i = last - 1, j = k; ++i < --j && a[i] > a[j]; ) { ! float ai = a[i]; a[i] = a[j]; a[j] = ai; ! } ! } else { // Identify constant sequence ! for (float ak = a[k]; ++k < high && ak == a[k]; ); ! ! if (k < high) { ! continue; ! } ! } ! ! /* ! * Check special cases. ! */ ! if (run == null) { ! if (k == high) { ! ! /* ! * The array is monotonous sequence, ! * and therefore already sorted. ! */ ! return true; ! } ! ! if (k - low < MIN_FIRST_RUN_SIZE) { ! ! /* ! * The first run is too small ! * to proceed with scanning. ! */ ! return false; ! } ! ! run = new int[((size >> 10) | 0x7F) & 0x3FF]; ! run[0] = low; ! ! } else if (a[last - 1] > a[last]) { ! ! if (count > (k - low) >> MIN_FIRST_RUNS_FACTOR) { ! ! /* ! * The first runs are not long ! * enough to continue scanning. ! */ ! return false; ! } ! ! if (++count == MAX_RUN_CAPACITY) { ! ! /* ! * Array is not highly structured. ! */ ! return false; ! } ! ! if (count == run.length) { ! ! /* ! * Increase capacity of index array. ! */ ! run = Arrays.copyOf(run, count << 1); ! } ! } ! run[count] = (last = k); ! } ! ! /* ! * Merge runs of highly structured array. ! */ ! if (count > 1) { ! float[] b; int offset = low; ! ! if (sorter == null || (b = (float[]) sorter.b) == null) { ! b = new float[size]; ! } else { ! offset = sorter.offset; ! } ! mergeRuns(a, b, offset, 1, sorter != null, run, 0, count); ! } ! return true; ! } ! ! /** ! * Merges the specified runs. ! * ! * @param a the source array ! * @param b the temporary buffer used in merging ! * @param offset the start index in the source, inclusive ! * @param aim specifies merging: to source ( > 0), buffer ( < 0) or any ( == 0) ! * @param parallel indicates whether merging is performed in parallel ! * @param run the start indexes of the runs, inclusive ! * @param lo the start index of the first run, inclusive ! * @param hi the start index of the last run, inclusive ! * @return the destination where runs are merged ! */ ! private static float[] mergeRuns(float[] a, float[] b, int offset, ! int aim, boolean parallel, int[] run, int lo, int hi) { ! ! if (hi - lo == 1) { ! if (aim >= 0) { ! return a; ! } ! for (int i = run[hi], j = i - offset, low = run[lo]; i > low; ! b[--j] = a[--i] ! ); ! return b; ! } ! ! /* ! * Split into approximately equal parts. ! */ ! int mi = lo, rmi = (run[lo] + run[hi]) >>> 1; ! while (run[++mi + 1] <= rmi); ! ! /* ! * Merge the left and right parts. ! */ ! float[] a1, a2; ! ! if (parallel && hi - lo > MIN_RUN_COUNT) { ! RunMerger merger = new RunMerger(a, b, offset, 0, run, mi, hi).forkMe(); ! a1 = mergeRuns(a, b, offset, -aim, true, run, lo, mi); ! a2 = (float[]) merger.getDestination(); ! } else { ! a1 = mergeRuns(a, b, offset, -aim, false, run, lo, mi); ! a2 = mergeRuns(a, b, offset, 0, false, run, mi, hi); ! } ! ! float[] dst = a1 == a ? b : a; ! ! int k = a1 == a ? run[lo] - offset : run[lo]; ! int lo1 = a1 == b ? run[lo] - offset : run[lo]; ! int hi1 = a1 == b ? run[mi] - offset : run[mi]; ! int lo2 = a2 == b ? run[mi] - offset : run[mi]; ! int hi2 = a2 == b ? run[hi] - offset : run[hi]; ! ! if (parallel) { ! new Merger(null, dst, k, a1, lo1, hi1, a2, lo2, hi2).invoke(); ! } else { ! mergeParts(null, dst, k, a1, lo1, hi1, a2, lo2, hi2); ! } ! return dst; ! } ! ! /** ! * Merges the sorted parts. ! * ! * @param merger parallel context ! * @param dst the destination where parts are merged ! * @param k the start index of the destination, inclusive ! * @param a1 the first part ! * @param lo1 the start index of the first part, inclusive ! * @param hi1 the end index of the first part, exclusive ! * @param a2 the second part ! * @param lo2 the start index of the second part, inclusive ! * @param hi2 the end index of the second part, exclusive ! */ ! private static void mergeParts(Merger merger, float[] dst, int k, ! float[] a1, int lo1, int hi1, float[] a2, int lo2, int hi2) { ! ! if (merger != null && a1 == a2) { ! ! while (true) { ! ! /* ! * The first part must be larger. ! */ ! if (hi1 - lo1 < hi2 - lo2) { ! int lo = lo1; lo1 = lo2; lo2 = lo; ! int hi = hi1; hi1 = hi2; hi2 = hi; ! } ! ! /* ! * Small parts will be merged sequentially. ! */ ! if (hi1 - lo1 < MIN_PARALLEL_MERGE_PARTS_SIZE) { ! break; ! } ! ! /* ! * Find the median of the larger part. ! */ ! int mi1 = (lo1 + hi1) >>> 1; ! float key = a1[mi1]; ! int mi2 = hi2; ! ! /* ! * Partition the smaller part. ! */ ! for (int loo = lo2; loo < mi2; ) { ! int t = (loo + mi2) >>> 1; ! ! if (key > a2[t]) { ! loo = t + 1; ! } else { ! mi2 = t; ! } ! } ! ! int d = mi2 - lo2 + mi1 - lo1; ! ! /* ! * Merge the right sub-parts in parallel. ! */ ! merger.forkMerger(dst, k + d, a1, mi1, hi1, a2, mi2, hi2); ! ! /* ! * Process the sub-left parts. ! */ ! hi1 = mi1; ! hi2 = mi2; ! } ! } ! ! /* ! * Merge small parts sequentially. ! */ ! while (lo1 < hi1 && lo2 < hi2) { ! dst[k++] = a1[lo1] < a2[lo2] ? a1[lo1++] : a2[lo2++]; ! } ! if (dst != a1 || k < lo1) { ! while (lo1 < hi1) { ! dst[k++] = a1[lo1++]; ! } ! } ! if (dst != a2 || k < lo2) { ! while (lo2 < hi2) { ! dst[k++] = a2[lo2++]; ! } ! } ! } ! ! // [double] ! ! /** ! * Sorts the specified range of the array using parallel merge ! * sort and/or Dual-Pivot Quicksort. ! * ! * To balance the faster splitting and parallelism of merge sort ! * with the faster element partitioning of Quicksort, ranges are ! * subdivided in tiers such that, if there is enough parallelism, ! * the four-way parallel merge is started, still ensuring enough ! * parallelism to process the partitions. ! * ! * @param a the array to be sorted ! * @param parallelism the parallelism level ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! static void sort(double[] a, int parallelism, int low, int high) { ! /* ! * Phase 1. Count the number of negative zero -0.0d, ! * turn them into positive zero, and move all NaNs ! * to the end of the array. ! */ ! int numNegativeZero = 0; ! ! for (int k = high; k > low; ) { ! double ak = a[--k]; ! ! if (ak == 0.0d && Double.doubleToRawLongBits(ak) < 0) { // ak is -0.0d ! numNegativeZero += 1; ! a[k] = 0.0d; ! } else if (ak != ak) { // ak is NaN ! a[k] = a[--high]; ! a[high] = ak; ! } ! } ! ! /* ! * Phase 2. Sort everything except NaNs, ! * which are already in place. ! */ ! int size = high - low; ! ! if (parallelism > 1 && size > MIN_PARALLEL_SORT_SIZE) { ! int depth = getDepth(parallelism, size >> 12); ! double[] b = depth == 0 ? null : new double[size]; ! new Sorter(null, a, b, low, size, low, depth).invoke(); ! } else { ! sort(null, a, 0, low, high); ! } ! ! /* ! * Phase 3. Turn positive zero 0.0d ! * back into negative zero -0.0d. ! */ ! if (++numNegativeZero == 1) { ! return; ! } ! ! /* ! * Find the position one less than ! * the index of the first zero. ! */ ! while (low <= high) { ! int middle = (low + high) >>> 1; ! ! if (a[middle] < 0) { ! low = middle + 1; ! } else { ! high = middle - 1; ! } ! } ! ! /* ! * Replace the required number of 0.0d by -0.0d. ! */ ! while (--numNegativeZero > 0) { ! a[++high] = -0.0d; ! } ! } ! ! /** ! * Sorts the specified array using the Dual-Pivot Quicksort and/or ! * other sorts in special-cases, possibly with parallel partitions. ! * ! * @param sorter parallel context ! * @param a the array to be sorted ! * @param bits the combination of recursion depth and bit flag, where ! * the right bit "0" indicates that array is the leftmost part ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! static void sort(Sorter sorter, double[] a, int bits, int low, int high) { ! while (true) { ! int end = high - 1, size = high - low; ! ! /* ! * Run mixed insertion sort on small non-leftmost parts. ! */ ! if (size < MAX_MIXED_INSERTION_SORT_SIZE && (bits & 1) > 0) { ! mixedInsertionSort(a, low, high - 3 * ((size >> 5) << 3), high); ! return; ! } ! ! /* ! * Invoke insertion sort on small leftmost part. ! */ ! if (size < MAX_INSERTION_SORT_SIZE) { ! insertionSort(a, low, high); ! return; ! } ! ! /* ! * Check if the whole array or large non-leftmost ! * parts are nearly sorted and then merge runs. ! */ ! if ((bits == 0 || size > MIN_TRY_MERGE_SIZE && (bits & 1) > 0) ! && tryMergeRuns(sorter, a, low, size)) { ! return; ! } ! ! /* ! * Switch to heap sort if execution ! * time is becoming quadratic. ! */ ! if ((bits += 2) > MAX_RECURSION_DEPTH) { ! heapSort(a, low, high); ! return; ! } ! ! /* ! * Use an inexpensive approximation of the golden ratio ! * to select five sample elements and determine pivots. ! */ ! int step = (size >> 3) * 3 + 3; ! ! /* ! * Five elements around (and including) the central element ! * will be used for pivot selection as described below. The ! * unequal choice of spacing these elements was empirically ! * determined to work well on a wide variety of inputs. ! */ ! int e1 = low + step; ! int e5 = end - step; ! int e3 = (e1 + e5) >>> 1; ! int e2 = (e1 + e3) >>> 1; ! int e4 = (e3 + e5) >>> 1; ! double a3 = a[e3]; ! ! /* ! * Sort these elements in place by the combination ! * of 4-element sorting network and insertion sort. ! * ! * 5 ------o-----------o------------ ! * | | ! * 4 ------|-----o-----o-----o------ ! * | | | ! * 2 ------o-----|-----o-----o------ ! * | | ! * 1 ------------o-----o------------ ! */ ! if (a[e5] < a[e2]) { double t = a[e5]; a[e5] = a[e2]; a[e2] = t; } ! if (a[e4] < a[e1]) { double t = a[e4]; a[e4] = a[e1]; a[e1] = t; } ! if (a[e5] < a[e4]) { double t = a[e5]; a[e5] = a[e4]; a[e4] = t; } ! if (a[e2] < a[e1]) { double t = a[e2]; a[e2] = a[e1]; a[e1] = t; } ! if (a[e4] < a[e2]) { double t = a[e4]; a[e4] = a[e2]; a[e2] = t; } ! ! if (a3 < a[e2]) { ! if (a3 < a[e1]) { ! a[e3] = a[e2]; a[e2] = a[e1]; a[e1] = a3; ! } else { ! a[e3] = a[e2]; a[e2] = a3; ! } ! } else if (a3 > a[e4]) { ! if (a3 > a[e5]) { ! a[e3] = a[e4]; a[e4] = a[e5]; a[e5] = a3; ! } else { ! a[e3] = a[e4]; a[e4] = a3; ! } ! } ! ! // Pointers ! int lower = low; // The index of the last element of the left part ! int upper = end; // The index of the first element of the right part ! ! /* ! * Partitioning with 2 pivots in case of different elements. ! */ ! if (a[e1] < a[e2] && a[e2] < a[e3] && a[e3] < a[e4] && a[e4] < a[e5]) { ! ! /* ! * Use the first and fifth of the five sorted elements as ! * the pivots. These values are inexpensive approximation ! * of tertiles. Note, that pivot1 < pivot2. ! */ ! double pivot1 = a[e1]; ! double pivot2 = a[e5]; ! ! /* ! * The first and the last elements to be sorted are moved ! * to the locations formerly occupied by the pivots. When ! * partitioning is completed, the pivots are swapped back ! * into their final positions, and excluded from the next ! * subsequent sorting. ! */ ! a[e1] = a[lower]; ! a[e5] = a[upper]; ! ! /* ! * Skip elements, which are less or greater than the pivots. ! */ ! while (a[++lower] < pivot1); ! while (a[--upper] > pivot2); ! ! /* ! * Backward 3-interval partitioning ! * ! * left part central part right part ! * +------------------------------------------------------------+ ! * | < pivot1 | ? | pivot1 <= && <= pivot2 | > pivot2 | ! * +------------------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * lower k upper ! * ! * Invariants: ! * ! * all in (low, lower] < pivot1 ! * pivot1 <= all in (k, upper) <= pivot2 ! * all in [upper, end) > pivot2 ! * ! * Pointer k is the last index of ?-part ! */ ! for (int unused = --lower, k = ++upper; --k > lower; ) { ! double ak = a[k]; ! ! if (ak < pivot1) { // Move a[k] to the left side ! while (lower < k) { ! if (a[++lower] >= pivot1) { ! if (a[lower] > pivot2) { ! a[k] = a[--upper]; ! a[upper] = a[lower]; ! } else { ! a[k] = a[lower]; ! } ! a[lower] = ak; ! break; ! } ! } ! } else if (ak > pivot2) { // Move a[k] to the right side ! a[k] = a[--upper]; ! a[upper] = ak; ! } ! } ! ! /* ! * Swap the pivots into their final positions. ! */ ! a[low] = a[lower]; a[lower] = pivot1; ! a[end] = a[upper]; a[upper] = pivot2; ! ! /* ! * Sort non-left parts recursively (possibly in parallel), ! * excluding known pivots. ! */ ! if (size > MIN_PARALLEL_SORT_SIZE && sorter != null) { ! sorter.forkSorter(bits | 1, lower + 1, upper); ! sorter.forkSorter(bits | 1, upper + 1, high); ! } else { ! sort(sorter, a, bits | 1, lower + 1, upper); ! sort(sorter, a, bits | 1, upper + 1, high); ! } ! ! } else { // Use single pivot in case of many equal elements ! ! /* ! * Use the third of the five sorted elements as the pivot. ! * This value is inexpensive approximation of the median. ! */ ! double pivot = a[e3]; ! ! /* ! * The first element to be sorted is moved to the ! * location formerly occupied by the pivot. After ! * completion of partitioning the pivot is swapped ! * back into its final position, and excluded from ! * the next subsequent sorting. ! */ ! a[e3] = a[lower]; ! ! /* ! * Traditional 3-way (Dutch National Flag) partitioning ! * ! * left part central part right part ! * +------------------------------------------------------+ ! * | < pivot | ? | == pivot | > pivot | ! * +------------------------------------------------------+ ! * ^ ^ ^ ! * | | | ! * lower k upper ! * ! * Invariants: ! * ! * all in (low, lower] < pivot ! * all in (k, upper) == pivot ! * all in [upper, end] > pivot ! * ! * Pointer k is the last index of ?-part ! */ ! for (int k = ++upper; --k > lower; ) { ! double ak = a[k]; ! ! if (ak != pivot) { ! a[k] = pivot; ! ! if (ak < pivot) { // Move a[k] to the left side ! while (a[++lower] < pivot); ! ! if (a[lower] > pivot) { ! a[--upper] = a[lower]; ! } ! a[lower] = ak; ! } else { // ak > pivot - Move a[k] to the right side ! a[--upper] = ak; ! } ! } ! } ! ! /* ! * Swap the pivot into its final position. ! */ ! a[low] = a[lower]; a[lower] = pivot; ! ! /* ! * Sort the right part (possibly in parallel), excluding ! * known pivot. All elements from the central part are ! * equal and therefore already sorted. ! */ ! if (size > MIN_PARALLEL_SORT_SIZE && sorter != null) { ! sorter.forkSorter(bits | 1, upper, high); ! } else { ! sort(sorter, a, bits | 1, upper, high); ! } ! } ! high = lower; // Iterate along the left part ! } ! } ! ! /** ! * Sorts the specified range of the array using mixed insertion sort. ! * ! * Mixed insertion sort is combination of simple insertion sort, ! * pin insertion sort and pair insertion sort. ! * ! * In the context of Dual-Pivot Quicksort, the pivot element ! * from the left part plays the role of sentinel, because it ! * is less than any elements from the given part. Therefore, ! * expensive check of the left range can be skipped on each ! * iteration unless it is the leftmost call. ! * ! * @param a the array to be sorted ! * @param low the index of the first element, inclusive, to be sorted ! * @param end the index of the last element for simple insertion sort ! * @param high the index of the last element, exclusive, to be sorted ! */ ! private static void mixedInsertionSort(double[] a, int low, int end, int high) { ! if (end == high) { ! ! /* ! * Invoke simple insertion sort on tiny array. ! */ ! for (int i; ++low < end; ) { ! double ai = a[i = low]; ! ! while (ai < a[--i]) { ! a[i + 1] = a[i]; ! } ! a[i + 1] = ai; ! } ! } else { ! ! /* ! * Start with pin insertion sort on small part. * ! * Pin insertion sort is extended simple insertion sort. ! * The main idea of this sort is to put elements larger ! * than an element called pin to the end of array (the ! * proper area for such elements). It avoids expensive ! * movements of these elements through the whole array. */ ! double pin = a[end]; ! ! for (int i, p = high; ++low < end; ) { ! double ai = a[i = low]; ! ! if (ai < a[i - 1]) { // Small element ! ! /* ! * Insert small element into sorted part. ! */ ! a[i] = a[--i]; ! ! while (ai < a[--i]) { ! a[i + 1] = a[i]; ! } ! a[i + 1] = ai; ! ! } else if (p > i && ai > pin) { // Large element ! ! /* ! * Find element smaller than pin. ! */ ! while (a[--p] > pin); ! ! /* ! * Swap it with large element. ! */ ! if (p > i) { ! ai = a[p]; ! a[p] = a[i]; ! } ! ! /* ! * Insert small element into sorted part. ! */ ! while (ai < a[--i]) { ! a[i + 1] = a[i]; ! } ! a[i + 1] = ai; ! } ! } ! ! /* ! * Continue with pair insertion sort on remain part. ! */ ! for (int i; low < high; ++low) { ! double a1 = a[i = low], a2 = a[++low]; ! ! /* ! * Insert two elements per iteration: at first, insert the ! * larger element and then insert the smaller element, but ! * from the position where the larger element was inserted. ! */ ! if (a1 > a2) { ! ! while (a1 < a[--i]) { ! a[i + 2] = a[i]; ! } ! a[++i + 1] = a1; ! ! while (a2 < a[--i]) { ! a[i + 1] = a[i]; ! } ! a[i + 1] = a2; ! ! } else if (a1 < a[i - 1]) { ! ! while (a2 < a[--i]) { ! a[i + 2] = a[i]; ! } ! a[++i + 1] = a2; ! ! while (a1 < a[--i]) { ! a[i + 1] = a[i]; ! } ! a[i + 1] = a1; ! } ! } ! } ! } ! ! /** ! * Sorts the specified range of the array using insertion sort. ! * ! * @param a the array to be sorted ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! private static void insertionSort(double[] a, int low, int high) { ! for (int i, k = low; ++k < high; ) { ! double ai = a[i = k]; ! ! if (ai < a[i - 1]) { ! while (--i >= low && ai < a[i]) { ! a[i + 1] = a[i]; ! } ! a[i + 1] = ai; ! } ! } ! } ! ! /** ! * Sorts the specified range of the array using heap sort. ! * ! * @param a the array to be sorted ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! private static void heapSort(double[] a, int low, int high) { ! for (int k = (low + high) >>> 1; k > low; ) { ! pushDown(a, --k, a[k], low, high); ! } ! while (--high > low) { ! double max = a[low]; ! pushDown(a, low, a[high], low, high); ! a[high] = max; ! } ! } ! ! /** ! * Pushes specified element down during heap sort. ! * ! * @param a the given array ! * @param p the start index ! * @param value the given element ! * @param low the index of the first element, inclusive, to be sorted ! * @param high the index of the last element, exclusive, to be sorted ! */ ! private static void pushDown(double[] a, int p, double value, int low, int high) { ! for (int k ;; a[p] = a[p = k]) { ! k = (p << 1) - low + 2; // Index of the right child ! ! if (k > high) { ! break; ! } ! if (k == high || a[k] < a[k - 1]) { ! --k; ! } ! if (a[k] <= value) { ! break; ! } ! } ! a[p] = value; ! } ! ! /** ! * Tries to sort the specified range of the array. ! * ! * @param sorter parallel context ! * @param a the array to be sorted ! * @param low the index of the first element to be sorted ! * @param size the array size ! * @return true if finally sorted, false otherwise ! */ ! private static boolean tryMergeRuns(Sorter sorter, double[] a, int low, int size) { ! ! /* ! * The run array is constructed only if initial runs are ! * long enough to continue, run[i] then holds start index ! * of the i-th sequence of elements in non-descending order. ! */ ! int[] run = null; ! int high = low + size; ! int count = 1, last = low; ! ! /* ! * Identify all possible runs. ! */ ! for (int k = low + 1; k < high; ) { ! ! /* ! * Find the end index of the current run. ! */ ! if (a[k - 1] < a[k]) { ! ! // Identify ascending sequence ! while (++k < high && a[k - 1] <= a[k]); ! ! } else if (a[k - 1] > a[k]) { ! ! // Identify descending sequence ! while (++k < high && a[k - 1] >= a[k]); ! ! // Reverse into ascending order ! for (int i = last - 1, j = k; ++i < --j && a[i] > a[j]; ) { ! double ai = a[i]; a[i] = a[j]; a[j] = ai; } ! } else { // Identify constant sequence ! for (double ak = a[k]; ++k < high && ak == a[k]; ); ! ! if (k < high) { ! continue; } } /* ! * Check special cases. */ ! if (run == null) { ! if (k == high) { ! ! /* ! * The array is monotonous sequence, ! * and therefore already sorted. ! */ ! return true; ! } ! ! if (k - low < MIN_FIRST_RUN_SIZE) { ! ! /* ! * The first run is too small ! * to proceed with scanning. ! */ ! return false; ! } ! ! run = new int[((size >> 10) | 0x7F) & 0x3FF]; ! run[0] = low; ! ! } else if (a[last - 1] > a[last]) { ! ! if (count > (k - low) >> MIN_FIRST_RUNS_FACTOR) { ! ! /* ! * The first runs are not long ! * enough to continue scanning. ! */ ! return false; ! } ! ! if (++count == MAX_RUN_CAPACITY) { ! ! /* ! * Array is not highly structured. ! */ ! return false; ! } ! ! if (count == run.length) { ! ! /* ! * Increase capacity of index array. ! */ ! run = Arrays.copyOf(run, count << 1); ! } ! } ! run[count] = (last = k); ! } ! ! /* ! * Merge runs of highly structured array. ! */ ! if (count > 1) { ! double[] b; int offset = low; ! ! if (sorter == null || (b = (double[]) sorter.b) == null) { ! b = new double[size]; ! } else { ! offset = sorter.offset; ! } ! mergeRuns(a, b, offset, 1, sorter != null, run, 0, count); ! } ! return true; ! } ! ! /** ! * Merges the specified runs. ! * ! * @param a the source array ! * @param b the temporary buffer used in merging ! * @param offset the start index in the source, inclusive ! * @param aim specifies merging: to source ( > 0), buffer ( < 0) or any ( == 0) ! * @param parallel indicates whether merging is performed in parallel ! * @param run the start indexes of the runs, inclusive ! * @param lo the start index of the first run, inclusive ! * @param hi the start index of the last run, inclusive ! * @return the destination where runs are merged ! */ ! private static double[] mergeRuns(double[] a, double[] b, int offset, ! int aim, boolean parallel, int[] run, int lo, int hi) { ! ! if (hi - lo == 1) { ! if (aim >= 0) { ! return a; ! } ! for (int i = run[hi], j = i - offset, low = run[lo]; i > low; ! b[--j] = a[--i] ! ); ! return b; ! } ! ! /* ! * Split into approximately equal parts. ! */ ! int mi = lo, rmi = (run[lo] + run[hi]) >>> 1; ! while (run[++mi + 1] <= rmi); ! ! /* ! * Merge the left and right parts. ! */ ! double[] a1, a2; ! ! if (parallel && hi - lo > MIN_RUN_COUNT) { ! RunMerger merger = new RunMerger(a, b, offset, 0, run, mi, hi).forkMe(); ! a1 = mergeRuns(a, b, offset, -aim, true, run, lo, mi); ! a2 = (double[]) merger.getDestination(); ! } else { ! a1 = mergeRuns(a, b, offset, -aim, false, run, lo, mi); ! a2 = mergeRuns(a, b, offset, 0, false, run, mi, hi); ! } ! ! double[] dst = a1 == a ? b : a; ! ! int k = a1 == a ? run[lo] - offset : run[lo]; ! int lo1 = a1 == b ? run[lo] - offset : run[lo]; ! int hi1 = a1 == b ? run[mi] - offset : run[mi]; ! int lo2 = a2 == b ? run[mi] - offset : run[mi]; ! int hi2 = a2 == b ? run[hi] - offset : run[hi]; ! ! if (parallel) { ! new Merger(null, dst, k, a1, lo1, hi1, a2, lo2, hi2).invoke(); ! } else { ! mergeParts(null, dst, k, a1, lo1, hi1, a2, lo2, hi2); ! } ! return dst; ! } ! ! /** ! * Merges the sorted parts. ! * ! * @param merger parallel context ! * @param dst the destination where parts are merged ! * @param k the start index of the destination, inclusive ! * @param a1 the first part ! * @param lo1 the start index of the first part, inclusive ! * @param hi1 the end index of the first part, exclusive ! * @param a2 the second part ! * @param lo2 the start index of the second part, inclusive ! * @param hi2 the end index of the second part, exclusive ! */ ! private static void mergeParts(Merger merger, double[] dst, int k, ! double[] a1, int lo1, int hi1, double[] a2, int lo2, int hi2) { ! ! if (merger != null && a1 == a2) { ! ! while (true) { ! ! /* ! * The first part must be larger. ! */ ! if (hi1 - lo1 < hi2 - lo2) { ! int lo = lo1; lo1 = lo2; lo2 = lo; ! int hi = hi1; hi1 = hi2; hi2 = hi; ! } ! ! /* ! * Small parts will be merged sequentially. ! */ ! if (hi1 - lo1 < MIN_PARALLEL_MERGE_PARTS_SIZE) { ! break; ! } ! ! /* ! * Find the median of the larger part. ! */ ! int mi1 = (lo1 + hi1) >>> 1; ! double key = a1[mi1]; ! int mi2 = hi2; ! ! /* ! * Partition the smaller part. ! */ ! for (int loo = lo2; loo < mi2; ) { ! int t = (loo + mi2) >>> 1; ! ! if (key > a2[t]) { ! loo = t + 1; ! } else { ! mi2 = t; ! } ! } ! ! int d = mi2 - lo2 + mi1 - lo1; ! ! /* ! * Merge the right sub-parts in parallel. ! */ ! merger.forkMerger(dst, k + d, a1, mi1, hi1, a2, mi2, hi2); ! ! /* ! * Process the sub-left parts. ! */ ! hi1 = mi1; ! hi2 = mi2; ! } ! } ! ! /* ! * Merge small parts sequentially. ! */ ! while (lo1 < hi1 && lo2 < hi2) { ! dst[k++] = a1[lo1] < a2[lo2] ? a1[lo1++] : a2[lo2++]; ! } ! if (dst != a1 || k < lo1) { ! while (lo1 < hi1) { ! dst[k++] = a1[lo1++]; ! } ! } ! if (dst != a2 || k < lo2) { ! while (lo2 < hi2) { ! dst[k++] = a2[lo2++]; ! } ! } ! } ! ! // [class] ! ! /** ! * This class implements parallel sorting. ! */ ! private static final class Sorter extends CountedCompleter<Void> { ! private static final long serialVersionUID = 20180818L; ! private final Object a, b; ! private final int low, size, offset, depth; ! ! private Sorter(CountedCompleter<?> parent, ! Object a, Object b, int low, int size, int offset, int depth) { ! super(parent); ! this.a = a; ! this.b = b; ! this.low = low; ! this.size = size; ! this.offset = offset; ! this.depth = depth; ! } ! ! @Override ! public final void compute() { ! if (depth < 0) { ! setPendingCount(2); ! int half = size >> 1; ! new Sorter(this, b, a, low, half, offset, depth + 1).fork(); ! new Sorter(this, b, a, low + half, size - half, offset, depth + 1).compute(); ! } else { ! if (a instanceof int[]) { ! sort(this, (int[]) a, depth, low, low + size); ! } else if (a instanceof long[]) { ! sort(this, (long[]) a, depth, low, low + size); ! } else if (a instanceof float[]) { ! sort(this, (float[]) a, depth, low, low + size); ! } else if (a instanceof double[]) { ! sort(this, (double[]) a, depth, low, low + size); ! } else { ! throw new IllegalArgumentException( ! "Unknown type of array: " + a.getClass().getName()); ! } ! } ! tryComplete(); ! } ! ! @Override ! public final void onCompletion(CountedCompleter<?> caller) { ! if (depth < 0) { ! int mi = low + (size >> 1); ! boolean src = (depth & 1) == 0; ! ! new Merger(null, ! a, ! src ? low : low - offset, ! b, ! src ? low - offset : low, ! src ? mi - offset : mi, ! b, ! src ? mi - offset : mi, ! src ? low + size - offset : low + size ! ).invoke(); ! } ! } ! ! private void forkSorter(int depth, int low, int high) { ! addToPendingCount(1); ! Object a = this.a; // Use local variable for performance ! new Sorter(this, a, b, low, high - low, offset, depth).fork(); ! } ! } ! ! /** ! * This class implements parallel merging. ! */ ! private static final class Merger extends CountedCompleter<Void> { ! private static final long serialVersionUID = 20180818L; ! private final Object dst, a1, a2; ! private final int k, lo1, hi1, lo2, hi2; ! ! private Merger(CountedCompleter<?> parent, Object dst, int k, ! Object a1, int lo1, int hi1, Object a2, int lo2, int hi2) { ! super(parent); ! this.dst = dst; ! this.k = k; ! this.a1 = a1; ! this.lo1 = lo1; ! this.hi1 = hi1; ! this.a2 = a2; ! this.lo2 = lo2; ! this.hi2 = hi2; ! } ! ! @Override ! public final void compute() { ! if (dst instanceof int[]) { ! mergeParts(this, (int[]) dst, k, ! (int[]) a1, lo1, hi1, (int[]) a2, lo2, hi2); ! } else if (dst instanceof long[]) { ! mergeParts(this, (long[]) dst, k, ! (long[]) a1, lo1, hi1, (long[]) a2, lo2, hi2); ! } else if (dst instanceof float[]) { ! mergeParts(this, (float[]) dst, k, ! (float[]) a1, lo1, hi1, (float[]) a2, lo2, hi2); ! } else if (dst instanceof double[]) { ! mergeParts(this, (double[]) dst, k, ! (double[]) a1, lo1, hi1, (double[]) a2, lo2, hi2); ! } else { ! throw new IllegalArgumentException( ! "Unknown type of array: " + dst.getClass().getName()); ! } ! propagateCompletion(); ! } ! ! private void forkMerger(Object dst, int k, ! Object a1, int lo1, int hi1, Object a2, int lo2, int hi2) { ! addToPendingCount(1); ! new Merger(this, dst, k, a1, lo1, hi1, a2, lo2, hi2).fork(); ! } ! } ! ! /** ! * This class implements parallel merging of runs. ! */ ! private static final class RunMerger extends RecursiveTask<Object> { ! private static final long serialVersionUID = 20180818L; ! private final Object a, b; ! private final int[] run; ! private final int offset, aim, lo, hi; ! ! private RunMerger(Object a, Object b, int offset, ! int aim, int[] run, int lo, int hi) { ! this.a = a; ! this.b = b; ! this.offset = offset; ! this.aim = aim; ! this.run = run; ! this.lo = lo; ! this.hi = hi; ! } ! ! @Override ! protected final Object compute() { ! if (a instanceof int[]) { ! return mergeRuns((int[]) a, (int[]) b, offset, aim, true, run, lo, hi); ! } ! if (a instanceof long[]) { ! return mergeRuns((long[]) a, (long[]) b, offset, aim, true, run, lo, hi); ! } ! if (a instanceof float[]) { ! return mergeRuns((float[]) a, (float[]) b, offset, aim, true, run, lo, hi); ! } ! if (a instanceof double[]) { ! return mergeRuns((double[]) a, (double[]) b, offset, aim, true, run, lo, hi); ! } ! throw new IllegalArgumentException( ! "Unknown type of array: " + a.getClass().getName()); ! } ! ! private RunMerger forkMe() { ! fork(); ! return this; ! } ! ! private Object getDestination() { ! join(); ! return getRawResult(); } } }
< prev index next >