1 /*
   2  * Copyright (c) 2005, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciArrayKlass.hpp"
  27 #include "ci/ciEnv.hpp"
  28 #include "ci/ciKlass.hpp"
  29 #include "ci/ciMethod.hpp"
  30 #include "code/dependencies.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/handles.hpp"
  34 #include "runtime/handles.inline.hpp"
  35 #include "runtime/thread.inline.hpp"
  36 #include "utilities/copy.hpp"
  37 
  38 
  39 #ifdef ASSERT
  40 static bool must_be_in_vm() {
  41   Thread* thread = Thread::current();
  42   if (thread->is_Java_thread())
  43     return ((JavaThread*)thread)->thread_state() == _thread_in_vm;
  44   else
  45     return true;  //something like this: thread->is_VM_thread();
  46 }
  47 #endif //ASSERT
  48 
  49 void Dependencies::initialize(ciEnv* env) {
  50   Arena* arena = env->arena();
  51   _oop_recorder = env->oop_recorder();
  52   _log = env->log();
  53   _dep_seen = new(arena) GrowableArray<int>(arena, 500, 0, 0);
  54   DEBUG_ONLY(_deps[end_marker] = NULL);
  55   for (int i = (int)FIRST_TYPE; i < (int)TYPE_LIMIT; i++) {
  56     _deps[i] = new(arena) GrowableArray<ciBaseObject*>(arena, 10, 0, 0);
  57   }
  58   _content_bytes = NULL;
  59   _size_in_bytes = (size_t)-1;
  60 
  61   assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT), "sanity");
  62 }
  63 
  64 void Dependencies::assert_evol_method(ciMethod* m) {
  65   assert_common_1(evol_method, m);
  66 }
  67 
  68 void Dependencies::assert_leaf_type(ciKlass* ctxk) {
  69   if (ctxk->is_array_klass()) {
  70     // As a special case, support this assertion on an array type,
  71     // which reduces to an assertion on its element type.
  72     // Note that this cannot be done with assertions that
  73     // relate to concreteness or abstractness.
  74     ciType* elemt = ctxk->as_array_klass()->base_element_type();
  75     if (!elemt->is_instance_klass())  return;   // Ex:  int[][]
  76     ctxk = elemt->as_instance_klass();
  77     //if (ctxk->is_final())  return;            // Ex:  String[][]
  78   }
  79   check_ctxk(ctxk);
  80   assert_common_1(leaf_type, ctxk);
  81 }
  82 
  83 void Dependencies::assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck) {
  84   check_ctxk_abstract(ctxk);
  85   assert_common_2(abstract_with_unique_concrete_subtype, ctxk, conck);
  86 }
  87 
  88 void Dependencies::assert_abstract_with_no_concrete_subtype(ciKlass* ctxk) {
  89   check_ctxk_abstract(ctxk);
  90   assert_common_1(abstract_with_no_concrete_subtype, ctxk);
  91 }
  92 
  93 void Dependencies::assert_concrete_with_no_concrete_subtype(ciKlass* ctxk) {
  94   check_ctxk_concrete(ctxk);
  95   assert_common_1(concrete_with_no_concrete_subtype, ctxk);
  96 }
  97 
  98 void Dependencies::assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm) {
  99   check_ctxk(ctxk);
 100   assert_common_2(unique_concrete_method, ctxk, uniqm);
 101 }
 102 
 103 void Dependencies::assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2) {
 104   check_ctxk(ctxk);
 105   assert_common_3(abstract_with_exclusive_concrete_subtypes_2, ctxk, k1, k2);
 106 }
 107 
 108 void Dependencies::assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2) {
 109   check_ctxk(ctxk);
 110   assert_common_3(exclusive_concrete_methods_2, ctxk, m1, m2);
 111 }
 112 
 113 void Dependencies::assert_has_no_finalizable_subclasses(ciKlass* ctxk) {
 114   check_ctxk(ctxk);
 115   assert_common_1(no_finalizable_subclasses, ctxk);
 116 }
 117 
 118 void Dependencies::assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle) {
 119   check_ctxk(call_site->klass());
 120   assert_common_2(call_site_target_value, call_site, method_handle);
 121 }
 122 
 123 // Helper function.  If we are adding a new dep. under ctxk2,
 124 // try to find an old dep. under a broader* ctxk1.  If there is
 125 //
 126 bool Dependencies::maybe_merge_ctxk(GrowableArray<ciBaseObject*>* deps,
 127                                     int ctxk_i, ciKlass* ctxk2) {
 128   ciKlass* ctxk1 = deps->at(ctxk_i)->as_metadata()->as_klass();
 129   if (ctxk2->is_subtype_of(ctxk1)) {
 130     return true;  // success, and no need to change
 131   } else if (ctxk1->is_subtype_of(ctxk2)) {
 132     // new context class fully subsumes previous one
 133     deps->at_put(ctxk_i, ctxk2);
 134     return true;
 135   } else {
 136     return false;
 137   }
 138 }
 139 
 140 void Dependencies::assert_common_1(DepType dept, ciBaseObject* x) {
 141   assert(dep_args(dept) == 1, "sanity");
 142   log_dependency(dept, x);
 143   GrowableArray<ciBaseObject*>* deps = _deps[dept];
 144 
 145   // see if the same (or a similar) dep is already recorded
 146   if (note_dep_seen(dept, x)) {
 147     assert(deps->find(x) >= 0, "sanity");
 148   } else {
 149     deps->append(x);
 150   }
 151 }
 152 
 153 void Dependencies::assert_common_2(DepType dept,
 154                                    ciBaseObject* x0, ciBaseObject* x1) {
 155   assert(dep_args(dept) == 2, "sanity");
 156   log_dependency(dept, x0, x1);
 157   GrowableArray<ciBaseObject*>* deps = _deps[dept];
 158 
 159   // see if the same (or a similar) dep is already recorded
 160   bool has_ctxk = has_explicit_context_arg(dept);
 161   if (has_ctxk) {
 162     assert(dep_context_arg(dept) == 0, "sanity");
 163     if (note_dep_seen(dept, x1)) {
 164       // look in this bucket for redundant assertions
 165       const int stride = 2;
 166       for (int i = deps->length(); (i -= stride) >= 0; ) {
 167         ciBaseObject* y1 = deps->at(i+1);
 168         if (x1 == y1) {  // same subject; check the context
 169           if (maybe_merge_ctxk(deps, i+0, x0->as_metadata()->as_klass())) {
 170             return;
 171           }
 172         }
 173       }
 174     }
 175   } else {
 176     assert(dep_implicit_context_arg(dept) == 0, "sanity");
 177     if (note_dep_seen(dept, x0) && note_dep_seen(dept, x1)) {
 178       // look in this bucket for redundant assertions
 179       const int stride = 2;
 180       for (int i = deps->length(); (i -= stride) >= 0; ) {
 181         ciBaseObject* y0 = deps->at(i+0);
 182         ciBaseObject* y1 = deps->at(i+1);
 183         if (x0 == y0 && x1 == y1) {
 184           return;
 185         }
 186       }
 187     }
 188   }
 189 
 190   // append the assertion in the correct bucket:
 191   deps->append(x0);
 192   deps->append(x1);
 193 }
 194 
 195 void Dependencies::assert_common_3(DepType dept,
 196                                    ciKlass* ctxk, ciBaseObject* x, ciBaseObject* x2) {
 197   assert(dep_context_arg(dept) == 0, "sanity");
 198   assert(dep_args(dept) == 3, "sanity");
 199   log_dependency(dept, ctxk, x, x2);
 200   GrowableArray<ciBaseObject*>* deps = _deps[dept];
 201 
 202   // try to normalize an unordered pair:
 203   bool swap = false;
 204   switch (dept) {
 205   case abstract_with_exclusive_concrete_subtypes_2:
 206     swap = (x->ident() > x2->ident() && x->as_metadata()->as_klass() != ctxk);
 207     break;
 208   case exclusive_concrete_methods_2:
 209     swap = (x->ident() > x2->ident() && x->as_metadata()->as_method()->holder() != ctxk);
 210     break;
 211   }
 212   if (swap) { ciBaseObject* t = x; x = x2; x2 = t; }
 213 
 214   // see if the same (or a similar) dep is already recorded
 215   if (note_dep_seen(dept, x) && note_dep_seen(dept, x2)) {
 216     // look in this bucket for redundant assertions
 217     const int stride = 3;
 218     for (int i = deps->length(); (i -= stride) >= 0; ) {
 219       ciBaseObject* y  = deps->at(i+1);
 220       ciBaseObject* y2 = deps->at(i+2);
 221       if (x == y && x2 == y2) {  // same subjects; check the context
 222         if (maybe_merge_ctxk(deps, i+0, ctxk)) {
 223           return;
 224         }
 225       }
 226     }
 227   }
 228   // append the assertion in the correct bucket:
 229   deps->append(ctxk);
 230   deps->append(x);
 231   deps->append(x2);
 232 }
 233 
 234 /// Support for encoding dependencies into an nmethod:
 235 
 236 void Dependencies::copy_to(nmethod* nm) {
 237   address beg = nm->dependencies_begin();
 238   address end = nm->dependencies_end();
 239   guarantee(end - beg >= (ptrdiff_t) size_in_bytes(), "bad sizing");
 240   Copy::disjoint_words((HeapWord*) content_bytes(),
 241                        (HeapWord*) beg,
 242                        size_in_bytes() / sizeof(HeapWord));
 243   assert(size_in_bytes() % sizeof(HeapWord) == 0, "copy by words");
 244 }
 245 
 246 static int sort_dep(ciBaseObject** p1, ciBaseObject** p2, int narg) {
 247   for (int i = 0; i < narg; i++) {
 248     int diff = p1[i]->ident() - p2[i]->ident();
 249     if (diff != 0)  return diff;
 250   }
 251   return 0;
 252 }
 253 static int sort_dep_arg_1(ciBaseObject** p1, ciBaseObject** p2)
 254 { return sort_dep(p1, p2, 1); }
 255 static int sort_dep_arg_2(ciBaseObject** p1, ciBaseObject** p2)
 256 { return sort_dep(p1, p2, 2); }
 257 static int sort_dep_arg_3(ciBaseObject** p1, ciBaseObject** p2)
 258 { return sort_dep(p1, p2, 3); }
 259 
 260 void Dependencies::sort_all_deps() {
 261   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 262     DepType dept = (DepType)deptv;
 263     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 264     if (deps->length() <= 1)  continue;
 265     switch (dep_args(dept)) {
 266     case 1: deps->sort(sort_dep_arg_1, 1); break;
 267     case 2: deps->sort(sort_dep_arg_2, 2); break;
 268     case 3: deps->sort(sort_dep_arg_3, 3); break;
 269     default: ShouldNotReachHere();
 270     }
 271   }
 272 }
 273 
 274 size_t Dependencies::estimate_size_in_bytes() {
 275   size_t est_size = 100;
 276   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 277     DepType dept = (DepType)deptv;
 278     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 279     est_size += deps->length()*2;  // tags and argument(s)
 280   }
 281   return est_size;
 282 }
 283 
 284 ciKlass* Dependencies::ctxk_encoded_as_null(DepType dept, ciBaseObject* x) {
 285   switch (dept) {
 286   case abstract_with_exclusive_concrete_subtypes_2:
 287     return x->as_metadata()->as_klass();
 288   case unique_concrete_method:
 289   case exclusive_concrete_methods_2:
 290     return x->as_metadata()->as_method()->holder();
 291   }
 292   return NULL;  // let NULL be NULL
 293 }
 294 
 295 Klass* Dependencies::ctxk_encoded_as_null(DepType dept, Metadata* x) {
 296   assert(must_be_in_vm(), "raw oops here");
 297   switch (dept) {
 298   case abstract_with_exclusive_concrete_subtypes_2:
 299     assert(x->is_klass(), "sanity");
 300     return (Klass*) x;
 301   case unique_concrete_method:
 302   case exclusive_concrete_methods_2:
 303     assert(x->is_method(), "sanity");
 304     return ((Method*)x)->method_holder();
 305   }
 306   return NULL;  // let NULL be NULL
 307 }
 308 
 309 void Dependencies::encode_content_bytes() {
 310   sort_all_deps();
 311 
 312   // cast is safe, no deps can overflow INT_MAX
 313   CompressedWriteStream bytes((int)estimate_size_in_bytes());
 314 
 315   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 316     DepType dept = (DepType)deptv;
 317     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 318     if (deps->length() == 0)  continue;
 319     int stride = dep_args(dept);
 320     int ctxkj  = dep_context_arg(dept);  // -1 if no context arg
 321     assert(stride > 0, "sanity");
 322     for (int i = 0; i < deps->length(); i += stride) {
 323       jbyte code_byte = (jbyte)dept;
 324       int skipj = -1;
 325       if (ctxkj >= 0 && ctxkj+1 < stride) {
 326         ciKlass*  ctxk = deps->at(i+ctxkj+0)->as_metadata()->as_klass();
 327         ciBaseObject* x     = deps->at(i+ctxkj+1);  // following argument
 328         if (ctxk == ctxk_encoded_as_null(dept, x)) {
 329           skipj = ctxkj;  // we win:  maybe one less oop to keep track of
 330           code_byte |= default_context_type_bit;
 331         }
 332       }
 333       bytes.write_byte(code_byte);
 334       for (int j = 0; j < stride; j++) {
 335         if (j == skipj)  continue;
 336         ciBaseObject* v = deps->at(i+j);
 337         int idx;
 338         if (v->is_object()) {
 339           idx = _oop_recorder->find_index(v->as_object()->constant_encoding());
 340         } else {
 341           ciMetadata* meta = v->as_metadata();
 342           idx = _oop_recorder->find_index(meta->constant_encoding());
 343         }
 344         bytes.write_int(idx);
 345       }
 346     }
 347   }
 348 
 349   // write a sentinel byte to mark the end
 350   bytes.write_byte(end_marker);
 351 
 352   // round it out to a word boundary
 353   while (bytes.position() % sizeof(HeapWord) != 0) {
 354     bytes.write_byte(end_marker);
 355   }
 356 
 357   // check whether the dept byte encoding really works
 358   assert((jbyte)default_context_type_bit != 0, "byte overflow");
 359 
 360   _content_bytes = bytes.buffer();
 361   _size_in_bytes = bytes.position();
 362 }
 363 
 364 
 365 const char* Dependencies::_dep_name[TYPE_LIMIT] = {
 366   "end_marker",
 367   "evol_method",
 368   "leaf_type",
 369   "abstract_with_unique_concrete_subtype",
 370   "abstract_with_no_concrete_subtype",
 371   "concrete_with_no_concrete_subtype",
 372   "unique_concrete_method",
 373   "abstract_with_exclusive_concrete_subtypes_2",
 374   "exclusive_concrete_methods_2",
 375   "no_finalizable_subclasses",
 376   "call_site_target_value"
 377 };
 378 
 379 int Dependencies::_dep_args[TYPE_LIMIT] = {
 380   -1,// end_marker
 381   1, // evol_method m
 382   1, // leaf_type ctxk
 383   2, // abstract_with_unique_concrete_subtype ctxk, k
 384   1, // abstract_with_no_concrete_subtype ctxk
 385   1, // concrete_with_no_concrete_subtype ctxk
 386   2, // unique_concrete_method ctxk, m
 387   3, // unique_concrete_subtypes_2 ctxk, k1, k2
 388   3, // unique_concrete_methods_2 ctxk, m1, m2
 389   1, // no_finalizable_subclasses ctxk
 390   2  // call_site_target_value call_site, method_handle
 391 };
 392 
 393 const char* Dependencies::dep_name(Dependencies::DepType dept) {
 394   if (!dept_in_mask(dept, all_types))  return "?bad-dep?";
 395   return _dep_name[dept];
 396 }
 397 
 398 int Dependencies::dep_args(Dependencies::DepType dept) {
 399   if (!dept_in_mask(dept, all_types))  return -1;
 400   return _dep_args[dept];
 401 }
 402 
 403 void Dependencies::check_valid_dependency_type(DepType dept) {
 404   guarantee(FIRST_TYPE <= dept && dept < TYPE_LIMIT, err_msg("invalid dependency type: %d", (int) dept));
 405 }
 406 
 407 // for the sake of the compiler log, print out current dependencies:
 408 void Dependencies::log_all_dependencies() {
 409   if (log() == NULL)  return;
 410   ciBaseObject* args[max_arg_count];
 411   for (int deptv = (int)FIRST_TYPE; deptv < (int)TYPE_LIMIT; deptv++) {
 412     DepType dept = (DepType)deptv;
 413     GrowableArray<ciBaseObject*>* deps = _deps[dept];
 414     if (deps->length() == 0)  continue;
 415     int stride = dep_args(dept);
 416     for (int i = 0; i < deps->length(); i += stride) {
 417       for (int j = 0; j < stride; j++) {
 418         // flush out the identities before printing
 419         args[j] = deps->at(i+j);
 420       }
 421       write_dependency_to(log(), dept, stride, args);
 422     }
 423   }
 424 }
 425 
 426 void Dependencies::write_dependency_to(CompileLog* log,
 427                                        DepType dept,
 428                                        int nargs, DepArgument args[],
 429                                        Klass* witness) {
 430   if (log == NULL) {
 431     return;
 432   }
 433   ciEnv* env = ciEnv::current();
 434   ciBaseObject* ciargs[max_arg_count];
 435   assert(nargs <= max_arg_count, "oob");
 436   for (int j = 0; j < nargs; j++) {
 437     if (args[j].is_oop()) {
 438       ciargs[j] = env->get_object(args[j].oop_value());
 439     } else {
 440       ciargs[j] = env->get_metadata(args[j].metadata_value());
 441     }
 442   }
 443   Dependencies::write_dependency_to(log, dept, nargs, ciargs, witness);
 444 }
 445 
 446 void Dependencies::write_dependency_to(CompileLog* log,
 447                                        DepType dept,
 448                                        int nargs, ciBaseObject* args[],
 449                                        Klass* witness) {
 450   if (log == NULL)  return;
 451   assert(nargs <= max_arg_count, "oob");
 452   int argids[max_arg_count];
 453   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 454   int j;
 455   for (j = 0; j < nargs; j++) {
 456     if (args[j]->is_object()) {
 457       argids[j] = log->identify(args[j]->as_object());
 458     } else {
 459       argids[j] = log->identify(args[j]->as_metadata());
 460     }
 461   }
 462   if (witness != NULL) {
 463     log->begin_elem("dependency_failed");
 464   } else {
 465     log->begin_elem("dependency");
 466   }
 467   log->print(" type='%s'", dep_name(dept));
 468   if (ctxkj >= 0) {
 469     log->print(" ctxk='%d'", argids[ctxkj]);
 470   }
 471   // write remaining arguments, if any.
 472   for (j = 0; j < nargs; j++) {
 473     if (j == ctxkj)  continue;  // already logged
 474     if (j == 1) {
 475       log->print(  " x='%d'",    argids[j]);
 476     } else {
 477       log->print(" x%d='%d'", j, argids[j]);
 478     }
 479   }
 480   if (witness != NULL) {
 481     log->object("witness", witness);
 482     log->stamp();
 483   }
 484   log->end_elem();
 485 }
 486 
 487 void Dependencies::write_dependency_to(xmlStream* xtty,
 488                                        DepType dept,
 489                                        int nargs, DepArgument args[],
 490                                        Klass* witness) {
 491   if (xtty == NULL)  return;
 492   ttyLocker ttyl;
 493   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 494   if (witness != NULL) {
 495     xtty->begin_elem("dependency_failed");
 496   } else {
 497     xtty->begin_elem("dependency");
 498   }
 499   xtty->print(" type='%s'", dep_name(dept));
 500   if (ctxkj >= 0) {
 501     xtty->object("ctxk", args[ctxkj].metadata_value());
 502   }
 503   // write remaining arguments, if any.
 504   for (int j = 0; j < nargs; j++) {
 505     if (j == ctxkj)  continue;  // already logged
 506     if (j == 1) {
 507       if (args[j].is_oop()) {
 508         xtty->object("x", args[j].oop_value());
 509       } else {
 510         xtty->object("x", args[j].metadata_value());
 511       }
 512     } else {
 513       char xn[10]; sprintf(xn, "x%d", j);
 514       if (args[j].is_oop()) {
 515         xtty->object(xn, args[j].oop_value());
 516       } else {
 517         xtty->object(xn, args[j].metadata_value());
 518       }
 519     }
 520   }
 521   if (witness != NULL) {
 522     xtty->object("witness", witness);
 523     xtty->stamp();
 524   }
 525   xtty->end_elem();
 526 }
 527 
 528 void Dependencies::print_dependency(DepType dept, int nargs, DepArgument args[],
 529                                     Klass* witness) {
 530   ResourceMark rm;
 531   ttyLocker ttyl;   // keep the following output all in one block
 532   tty->print_cr("%s of type %s",
 533                 (witness == NULL)? "Dependency": "Failed dependency",
 534                 dep_name(dept));
 535   // print arguments
 536   int ctxkj = dep_context_arg(dept);  // -1 if no context arg
 537   for (int j = 0; j < nargs; j++) {
 538     DepArgument arg = args[j];
 539     bool put_star = false;
 540     if (arg.is_null())  continue;
 541     const char* what;
 542     if (j == ctxkj) {
 543       assert(arg.is_metadata(), "must be");
 544       what = "context";
 545       put_star = !Dependencies::is_concrete_klass((Klass*)arg.metadata_value());
 546     } else if (arg.is_method()) {
 547       what = "method ";
 548       put_star = !Dependencies::is_concrete_method((Method*)arg.metadata_value());
 549     } else if (arg.is_klass()) {
 550       what = "class  ";
 551     } else {
 552       what = "object ";
 553     }
 554     tty->print("  %s = %s", what, (put_star? "*": ""));
 555     if (arg.is_klass())
 556       tty->print("%s", ((Klass*)arg.metadata_value())->external_name());
 557     else if (arg.is_method())
 558       ((Method*)arg.metadata_value())->print_value();
 559     else
 560       ShouldNotReachHere(); // Provide impl for this type.
 561     tty->cr();
 562   }
 563   if (witness != NULL) {
 564     bool put_star = !Dependencies::is_concrete_klass(witness);
 565     tty->print_cr("  witness = %s%s",
 566                   (put_star? "*": ""),
 567                   witness->external_name());
 568   }
 569 }
 570 
 571 void Dependencies::DepStream::log_dependency(Klass* witness) {
 572   if (_deps == NULL && xtty == NULL)  return;  // fast cutout for runtime
 573   ResourceMark rm;
 574   int nargs = argument_count();
 575   DepArgument args[max_arg_count];
 576   for (int j = 0; j < nargs; j++) {
 577     if (type() == call_site_target_value) {
 578       args[j] = argument_oop(j);
 579     } else {
 580       args[j] = argument(j);
 581     }
 582   }
 583   if (_deps != NULL && _deps->log() != NULL) {
 584     Dependencies::write_dependency_to(_deps->log(),
 585                                       type(), nargs, args, witness);
 586   } else {
 587     Dependencies::write_dependency_to(xtty,
 588                                       type(), nargs, args, witness);
 589   }
 590 }
 591 
 592 void Dependencies::DepStream::print_dependency(Klass* witness, bool verbose) {
 593   int nargs = argument_count();
 594   DepArgument args[max_arg_count];
 595   for (int j = 0; j < nargs; j++) {
 596     args[j] = argument(j);
 597   }
 598   Dependencies::print_dependency(type(), nargs, args, witness);
 599   if (verbose) {
 600     if (_code != NULL) {
 601       tty->print("  code: ");
 602       _code->print_value_on(tty);
 603       tty->cr();
 604     }
 605   }
 606 }
 607 
 608 
 609 /// Dependency stream support (decodes dependencies from an nmethod):
 610 
 611 #ifdef ASSERT
 612 void Dependencies::DepStream::initial_asserts(size_t byte_limit) {
 613   assert(must_be_in_vm(), "raw oops here");
 614   _byte_limit = byte_limit;
 615   _type       = (DepType)(end_marker-1);  // defeat "already at end" assert
 616   assert((_code!=NULL) + (_deps!=NULL) == 1, "one or t'other");
 617 }
 618 #endif //ASSERT
 619 
 620 bool Dependencies::DepStream::next() {
 621   assert(_type != end_marker, "already at end");
 622   if (_bytes.position() == 0 && _code != NULL
 623       && _code->dependencies_size() == 0) {
 624     // Method has no dependencies at all.
 625     return false;
 626   }
 627   int code_byte = (_bytes.read_byte() & 0xFF);
 628   if (code_byte == end_marker) {
 629     DEBUG_ONLY(_type = end_marker);
 630     return false;
 631   } else {
 632     int ctxk_bit = (code_byte & Dependencies::default_context_type_bit);
 633     code_byte -= ctxk_bit;
 634     DepType dept = (DepType)code_byte;
 635     _type = dept;
 636     Dependencies::check_valid_dependency_type(dept);
 637     int stride = _dep_args[dept];
 638     assert(stride == dep_args(dept), "sanity");
 639     int skipj = -1;
 640     if (ctxk_bit != 0) {
 641       skipj = 0;  // currently the only context argument is at zero
 642       assert(skipj == dep_context_arg(dept), "zero arg always ctxk");
 643     }
 644     for (int j = 0; j < stride; j++) {
 645       _xi[j] = (j == skipj)? 0: _bytes.read_int();
 646     }
 647     DEBUG_ONLY(_xi[stride] = -1);   // help detect overruns
 648     return true;
 649   }
 650 }
 651 
 652 inline Metadata* Dependencies::DepStream::recorded_metadata_at(int i) {
 653   Metadata* o = NULL;
 654   if (_code != NULL) {
 655     o = _code->metadata_at(i);
 656   } else {
 657     o = _deps->oop_recorder()->metadata_at(i);
 658   }
 659   return o;
 660 }
 661 
 662 inline oop Dependencies::DepStream::recorded_oop_at(int i) {
 663   return (_code != NULL)
 664          ? _code->oop_at(i)
 665     : JNIHandles::resolve(_deps->oop_recorder()->oop_at(i));
 666 }
 667 
 668 Metadata* Dependencies::DepStream::argument(int i) {
 669   Metadata* result = recorded_metadata_at(argument_index(i));
 670 
 671   if (result == NULL) { // Explicit context argument can be compressed
 672     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
 673     if (ctxkj >= 0 && i == ctxkj && ctxkj+1 < argument_count()) {
 674       result = ctxk_encoded_as_null(type(), argument(ctxkj+1));
 675     }
 676   }
 677 
 678   assert(result == NULL || result->is_klass() || result->is_method(), "must be");
 679   return result;
 680 }
 681 
 682 /**
 683  * Returns a unique identifier for each dependency argument.
 684  */
 685 uintptr_t Dependencies::DepStream::get_identifier(int i) {
 686   if (has_oop_argument()) {
 687     return (uintptr_t)(oopDesc*)argument_oop(i);
 688   } else {
 689     return (uintptr_t)argument(i);
 690   }
 691 }
 692 
 693 oop Dependencies::DepStream::argument_oop(int i) {
 694   oop result = recorded_oop_at(argument_index(i));
 695   assert(result == NULL || result->is_oop(), "must be");
 696   return result;
 697 }
 698 
 699 Klass* Dependencies::DepStream::context_type() {
 700   assert(must_be_in_vm(), "raw oops here");
 701 
 702   // Most dependencies have an explicit context type argument.
 703   {
 704     int ctxkj = dep_context_arg(type());  // -1 if no explicit context arg
 705     if (ctxkj >= 0) {
 706       Metadata* k = argument(ctxkj);
 707       assert(k != NULL && k->is_klass(), "type check");
 708       return (Klass*)k;
 709     }
 710   }
 711 
 712   // Some dependencies are using the klass of the first object
 713   // argument as implicit context type (e.g. call_site_target_value).
 714   {
 715     int ctxkj = dep_implicit_context_arg(type());
 716     if (ctxkj >= 0) {
 717       Klass* k = argument_oop(ctxkj)->klass();
 718       assert(k != NULL && k->is_klass(), "type check");
 719       return (Klass*) k;
 720     }
 721   }
 722 
 723   // And some dependencies don't have a context type at all,
 724   // e.g. evol_method.
 725   return NULL;
 726 }
 727 
 728 // ----------------- DependencySignature --------------------------------------
 729 bool DependencySignature::equals(DependencySignature const& s1, DependencySignature const& s2) {
 730   if ((s1.type() != s2.type()) || (s1.args_count() != s2.args_count())) {
 731     return false;
 732   }
 733 
 734   for (int i = 0; i < s1.args_count(); i++) {
 735     if (s1.arg(i) != s2.arg(i)) {
 736       return false;
 737     }
 738   }
 739   return true;
 740 }
 741 
 742 /// Checking dependencies:
 743 
 744 // This hierarchy walker inspects subtypes of a given type,
 745 // trying to find a "bad" class which breaks a dependency.
 746 // Such a class is called a "witness" to the broken dependency.
 747 // While searching around, we ignore "participants", which
 748 // are already known to the dependency.
 749 class ClassHierarchyWalker {
 750  public:
 751   enum { PARTICIPANT_LIMIT = 3 };
 752 
 753  private:
 754   // optional method descriptor to check for:
 755   Symbol* _name;
 756   Symbol* _signature;
 757 
 758   // special classes which are not allowed to be witnesses:
 759   Klass*    _participants[PARTICIPANT_LIMIT+1];
 760   int       _num_participants;
 761 
 762   // cache of method lookups
 763   Method* _found_methods[PARTICIPANT_LIMIT+1];
 764 
 765   // if non-zero, tells how many witnesses to convert to participants
 766   int       _record_witnesses;
 767 
 768   void initialize(Klass* participant) {
 769     _record_witnesses = 0;
 770     _participants[0]  = participant;
 771     _found_methods[0] = NULL;
 772     _num_participants = 0;
 773     if (participant != NULL) {
 774       // Terminating NULL.
 775       _participants[1] = NULL;
 776       _found_methods[1] = NULL;
 777       _num_participants = 1;
 778     }
 779   }
 780 
 781   void initialize_from_method(Method* m) {
 782     assert(m != NULL && m->is_method(), "sanity");
 783     _name      = m->name();
 784     _signature = m->signature();
 785   }
 786 
 787  public:
 788   // The walker is initialized to recognize certain methods and/or types
 789   // as friendly participants.
 790   ClassHierarchyWalker(Klass* participant, Method* m) {
 791     initialize_from_method(m);
 792     initialize(participant);
 793   }
 794   ClassHierarchyWalker(Method* m) {
 795     initialize_from_method(m);
 796     initialize(NULL);
 797   }
 798   ClassHierarchyWalker(Klass* participant = NULL) {
 799     _name      = NULL;
 800     _signature = NULL;
 801     initialize(participant);
 802   }
 803 
 804   // This is common code for two searches:  One for concrete subtypes,
 805   // the other for concrete method implementations and overrides.
 806   bool doing_subtype_search() {
 807     return _name == NULL;
 808   }
 809 
 810   int num_participants() { return _num_participants; }
 811   Klass* participant(int n) {
 812     assert((uint)n <= (uint)_num_participants, "oob");
 813     return _participants[n];
 814   }
 815 
 816   // Note:  If n==num_participants, returns NULL.
 817   Method* found_method(int n) {
 818     assert((uint)n <= (uint)_num_participants, "oob");
 819     Method* fm = _found_methods[n];
 820     assert(n == _num_participants || fm != NULL, "proper usage");
 821     assert(fm == NULL || fm->method_holder() == _participants[n], "sanity");
 822     return fm;
 823   }
 824 
 825 #ifdef ASSERT
 826   // Assert that m is inherited into ctxk, without intervening overrides.
 827   // (May return true even if this is not true, in corner cases where we punt.)
 828   bool check_method_context(Klass* ctxk, Method* m) {
 829     if (m->method_holder() == ctxk)
 830       return true;  // Quick win.
 831     if (m->is_private())
 832       return false; // Quick lose.  Should not happen.
 833     if (!(m->is_public() || m->is_protected()))
 834       // The override story is complex when packages get involved.
 835       return true;  // Must punt the assertion to true.
 836     Klass* k = ctxk;
 837     Method* lm = k->lookup_method(m->name(), m->signature());
 838     if (lm == NULL && k->oop_is_instance()) {
 839       // It might be an interface method
 840         lm = ((InstanceKlass*)k)->lookup_method_in_ordered_interfaces(m->name(),
 841                                                                 m->signature());
 842     }
 843     if (lm == m)
 844       // Method m is inherited into ctxk.
 845       return true;
 846     if (lm != NULL) {
 847       if (!(lm->is_public() || lm->is_protected())) {
 848         // Method is [package-]private, so the override story is complex.
 849         return true;  // Must punt the assertion to true.
 850       }
 851       if (lm->is_static()) {
 852         // Static methods don't override non-static so punt
 853         return true;
 854       }
 855       if (   !Dependencies::is_concrete_method(lm)
 856           && !Dependencies::is_concrete_method(m)
 857           && lm->method_holder()->is_subtype_of(m->method_holder()))
 858         // Method m is overridden by lm, but both are non-concrete.
 859         return true;
 860     }
 861     ResourceMark rm;
 862     tty->print_cr("Dependency method not found in the associated context:");
 863     tty->print_cr("  context = %s", ctxk->external_name());
 864     tty->print(   "  method = "); m->print_short_name(tty); tty->cr();
 865     if (lm != NULL) {
 866       tty->print( "  found = "); lm->print_short_name(tty); tty->cr();
 867     }
 868     return false;
 869   }
 870 #endif
 871 
 872   void add_participant(Klass* participant) {
 873     assert(_num_participants + _record_witnesses < PARTICIPANT_LIMIT, "oob");
 874     int np = _num_participants++;
 875     _participants[np] = participant;
 876     _participants[np+1] = NULL;
 877     _found_methods[np+1] = NULL;
 878   }
 879 
 880   void record_witnesses(int add) {
 881     if (add > PARTICIPANT_LIMIT)  add = PARTICIPANT_LIMIT;
 882     assert(_num_participants + add < PARTICIPANT_LIMIT, "oob");
 883     _record_witnesses = add;
 884   }
 885 
 886   bool is_witness(Klass* k) {
 887     if (doing_subtype_search()) {
 888       return Dependencies::is_concrete_klass(k);
 889     } else {
 890       Method* m = InstanceKlass::cast(k)->find_method(_name, _signature);
 891       if (m == NULL || !Dependencies::is_concrete_method(m))  return false;
 892       _found_methods[_num_participants] = m;
 893       // Note:  If add_participant(k) is called,
 894       // the method m will already be memoized for it.
 895       return true;
 896     }
 897   }
 898 
 899   bool is_participant(Klass* k) {
 900     if (k == _participants[0]) {
 901       return true;
 902     } else if (_num_participants <= 1) {
 903       return false;
 904     } else {
 905       return in_list(k, &_participants[1]);
 906     }
 907   }
 908   bool ignore_witness(Klass* witness) {
 909     if (_record_witnesses == 0) {
 910       return false;
 911     } else {
 912       --_record_witnesses;
 913       add_participant(witness);
 914       return true;
 915     }
 916   }
 917   static bool in_list(Klass* x, Klass** list) {
 918     for (int i = 0; ; i++) {
 919       Klass* y = list[i];
 920       if (y == NULL)  break;
 921       if (y == x)  return true;
 922     }
 923     return false;  // not in list
 924   }
 925 
 926  private:
 927   // the actual search method:
 928   Klass* find_witness_anywhere(Klass* context_type,
 929                                  bool participants_hide_witnesses,
 930                                  bool top_level_call = true);
 931   // the spot-checking version:
 932   Klass* find_witness_in(KlassDepChange& changes,
 933                          Klass* context_type,
 934                            bool participants_hide_witnesses);
 935  public:
 936   Klass* find_witness_subtype(Klass* context_type, KlassDepChange* changes = NULL) {
 937     assert(doing_subtype_search(), "must set up a subtype search");
 938     // When looking for unexpected concrete types,
 939     // do not look beneath expected ones.
 940     const bool participants_hide_witnesses = true;
 941     // CX > CC > C' is OK, even if C' is new.
 942     // CX > { CC,  C' } is not OK if C' is new, and C' is the witness.
 943     if (changes != NULL) {
 944       return find_witness_in(*changes, context_type, participants_hide_witnesses);
 945     } else {
 946       return find_witness_anywhere(context_type, participants_hide_witnesses);
 947     }
 948   }
 949   Klass* find_witness_definer(Klass* context_type, KlassDepChange* changes = NULL) {
 950     assert(!doing_subtype_search(), "must set up a method definer search");
 951     // When looking for unexpected concrete methods,
 952     // look beneath expected ones, to see if there are overrides.
 953     const bool participants_hide_witnesses = true;
 954     // CX.m > CC.m > C'.m is not OK, if C'.m is new, and C' is the witness.
 955     if (changes != NULL) {
 956       return find_witness_in(*changes, context_type, !participants_hide_witnesses);
 957     } else {
 958       return find_witness_anywhere(context_type, !participants_hide_witnesses);
 959     }
 960   }
 961 };
 962 
 963 #ifndef PRODUCT
 964 static int deps_find_witness_calls = 0;
 965 static int deps_find_witness_steps = 0;
 966 static int deps_find_witness_recursions = 0;
 967 static int deps_find_witness_singles = 0;
 968 static int deps_find_witness_print = 0; // set to -1 to force a final print
 969 static bool count_find_witness_calls() {
 970   if (TraceDependencies || LogCompilation) {
 971     int pcount = deps_find_witness_print + 1;
 972     bool final_stats      = (pcount == 0);
 973     bool initial_call     = (pcount == 1);
 974     bool occasional_print = ((pcount & ((1<<10) - 1)) == 0);
 975     if (pcount < 0)  pcount = 1; // crude overflow protection
 976     deps_find_witness_print = pcount;
 977     if (VerifyDependencies && initial_call) {
 978       tty->print_cr("Warning:  TraceDependencies results may be inflated by VerifyDependencies");
 979     }
 980     if (occasional_print || final_stats) {
 981       // Every now and then dump a little info about dependency searching.
 982       if (xtty != NULL) {
 983        ttyLocker ttyl;
 984        xtty->elem("deps_find_witness calls='%d' steps='%d' recursions='%d' singles='%d'",
 985                    deps_find_witness_calls,
 986                    deps_find_witness_steps,
 987                    deps_find_witness_recursions,
 988                    deps_find_witness_singles);
 989       }
 990       if (final_stats || (TraceDependencies && WizardMode)) {
 991         ttyLocker ttyl;
 992         tty->print_cr("Dependency check (find_witness) "
 993                       "calls=%d, steps=%d (avg=%.1f), recursions=%d, singles=%d",
 994                       deps_find_witness_calls,
 995                       deps_find_witness_steps,
 996                       (double)deps_find_witness_steps / deps_find_witness_calls,
 997                       deps_find_witness_recursions,
 998                       deps_find_witness_singles);
 999       }
1000     }
1001     return true;
1002   }
1003   return false;
1004 }
1005 #else
1006 #define count_find_witness_calls() (0)
1007 #endif //PRODUCT
1008 
1009 
1010 Klass* ClassHierarchyWalker::find_witness_in(KlassDepChange& changes,
1011                                                Klass* context_type,
1012                                                bool participants_hide_witnesses) {
1013   assert(changes.involves_context(context_type), "irrelevant dependency");
1014   Klass* new_type = changes.new_type();
1015 
1016   (void)count_find_witness_calls();
1017   NOT_PRODUCT(deps_find_witness_singles++);
1018 
1019   // Current thread must be in VM (not native mode, as in CI):
1020   assert(must_be_in_vm(), "raw oops here");
1021   // Must not move the class hierarchy during this check:
1022   assert_locked_or_safepoint(Compile_lock);
1023 
1024   int nof_impls = InstanceKlass::cast(context_type)->nof_implementors();
1025   if (nof_impls > 1) {
1026     // Avoid this case: *I.m > { A.m, C }; B.m > C
1027     // %%% Until this is fixed more systematically, bail out.
1028     // See corresponding comment in find_witness_anywhere.
1029     return context_type;
1030   }
1031 
1032   assert(!is_participant(new_type), "only old classes are participants");
1033   if (participants_hide_witnesses) {
1034     // If the new type is a subtype of a participant, we are done.
1035     for (int i = 0; i < num_participants(); i++) {
1036       Klass* part = participant(i);
1037       if (part == NULL)  continue;
1038       assert(changes.involves_context(part) == new_type->is_subtype_of(part),
1039              "correct marking of participants, b/c new_type is unique");
1040       if (changes.involves_context(part)) {
1041         // new guy is protected from this check by previous participant
1042         return NULL;
1043       }
1044     }
1045   }
1046 
1047   if (is_witness(new_type) &&
1048       !ignore_witness(new_type)) {
1049     return new_type;
1050   }
1051 
1052   return NULL;
1053 }
1054 
1055 
1056 // Walk hierarchy under a context type, looking for unexpected types.
1057 // Do not report participant types, and recursively walk beneath
1058 // them only if participants_hide_witnesses is false.
1059 // If top_level_call is false, skip testing the context type,
1060 // because the caller has already considered it.
1061 Klass* ClassHierarchyWalker::find_witness_anywhere(Klass* context_type,
1062                                                      bool participants_hide_witnesses,
1063                                                      bool top_level_call) {
1064   // Current thread must be in VM (not native mode, as in CI):
1065   assert(must_be_in_vm(), "raw oops here");
1066   // Must not move the class hierarchy during this check:
1067   assert_locked_or_safepoint(Compile_lock);
1068 
1069   bool do_counts = count_find_witness_calls();
1070 
1071   // Check the root of the sub-hierarchy first.
1072   if (top_level_call) {
1073     if (do_counts) {
1074       NOT_PRODUCT(deps_find_witness_calls++);
1075       NOT_PRODUCT(deps_find_witness_steps++);
1076     }
1077     if (is_participant(context_type)) {
1078       if (participants_hide_witnesses)  return NULL;
1079       // else fall through to search loop...
1080     } else if (is_witness(context_type) && !ignore_witness(context_type)) {
1081       // The context is an abstract class or interface, to start with.
1082       return context_type;
1083     }
1084   }
1085 
1086   // Now we must check each implementor and each subclass.
1087   // Use a short worklist to avoid blowing the stack.
1088   // Each worklist entry is a *chain* of subklass siblings to process.
1089   const int CHAINMAX = 100;  // >= 1 + InstanceKlass::implementors_limit
1090   Klass* chains[CHAINMAX];
1091   int    chaini = 0;  // index into worklist
1092   Klass* chain;       // scratch variable
1093 #define ADD_SUBCLASS_CHAIN(k)                     {  \
1094     assert(chaini < CHAINMAX, "oob");                \
1095     chain = InstanceKlass::cast(k)->subklass();      \
1096     if (chain != NULL)  chains[chaini++] = chain;    }
1097 
1098   // Look for non-abstract subclasses.
1099   // (Note:  Interfaces do not have subclasses.)
1100   ADD_SUBCLASS_CHAIN(context_type);
1101 
1102   // If it is an interface, search its direct implementors.
1103   // (Their subclasses are additional indirect implementors.
1104   // See InstanceKlass::add_implementor.)
1105   // (Note:  nof_implementors is always zero for non-interfaces.)
1106   int nof_impls = InstanceKlass::cast(context_type)->nof_implementors();
1107   if (nof_impls > 1) {
1108     // Avoid this case: *I.m > { A.m, C }; B.m > C
1109     // Here, I.m has 2 concrete implementations, but m appears unique
1110     // as A.m, because the search misses B.m when checking C.
1111     // The inherited method B.m was getting missed by the walker
1112     // when interface 'I' was the starting point.
1113     // %%% Until this is fixed more systematically, bail out.
1114     // (Old CHA had the same limitation.)
1115     return context_type;
1116   }
1117   if (nof_impls > 0) {
1118     Klass* impl = InstanceKlass::cast(context_type)->implementor();
1119     assert(impl != NULL, "just checking");
1120     // If impl is the same as the context_type, then more than one
1121     // implementor has seen. No exact info in this case.
1122     if (impl == context_type) {
1123       return context_type;  // report an inexact witness to this sad affair
1124     }
1125     if (do_counts)
1126       { NOT_PRODUCT(deps_find_witness_steps++); }
1127     if (is_participant(impl)) {
1128       if (!participants_hide_witnesses) {
1129         ADD_SUBCLASS_CHAIN(impl);
1130       }
1131     } else if (is_witness(impl) && !ignore_witness(impl)) {
1132       return impl;
1133     } else {
1134       ADD_SUBCLASS_CHAIN(impl);
1135     }
1136   }
1137 
1138   // Recursively process each non-trivial sibling chain.
1139   while (chaini > 0) {
1140     Klass* chain = chains[--chaini];
1141     for (Klass* sub = chain; sub != NULL; sub = sub->next_sibling()) {
1142       if (do_counts) { NOT_PRODUCT(deps_find_witness_steps++); }
1143       if (is_participant(sub)) {
1144         if (participants_hide_witnesses)  continue;
1145         // else fall through to process this guy's subclasses
1146       } else if (is_witness(sub) && !ignore_witness(sub)) {
1147         return sub;
1148       }
1149       if (chaini < (VerifyDependencies? 2: CHAINMAX)) {
1150         // Fast path.  (Partially disabled if VerifyDependencies.)
1151         ADD_SUBCLASS_CHAIN(sub);
1152       } else {
1153         // Worklist overflow.  Do a recursive call.  Should be rare.
1154         // The recursive call will have its own worklist, of course.
1155         // (Note that sub has already been tested, so that there is
1156         // no need for the recursive call to re-test.  That's handy,
1157         // since the recursive call sees sub as the context_type.)
1158         if (do_counts) { NOT_PRODUCT(deps_find_witness_recursions++); }
1159         Klass* witness = find_witness_anywhere(sub,
1160                                                  participants_hide_witnesses,
1161                                                  /*top_level_call=*/ false);
1162         if (witness != NULL)  return witness;
1163       }
1164     }
1165   }
1166 
1167   // No witness found.  The dependency remains unbroken.
1168   return NULL;
1169 #undef ADD_SUBCLASS_CHAIN
1170 }
1171 
1172 
1173 bool Dependencies::is_concrete_klass(Klass* k) {
1174   if (k->is_abstract())  return false;
1175   // %%% We could treat classes which are concrete but
1176   // have not yet been instantiated as virtually abstract.
1177   // This would require a deoptimization barrier on first instantiation.
1178   //if (k->is_not_instantiated())  return false;
1179   return true;
1180 }
1181 
1182 bool Dependencies::is_concrete_method(Method* m) {
1183   // Statics are irrelevant to virtual call sites.
1184   if (m->is_static())  return false;
1185 
1186   // We could also return false if m does not yet appear to be
1187   // executed, if the VM version supports this distinction also.
1188   // Default methods are considered "concrete" as well.
1189   return !m->is_abstract() &&
1190          !m->is_overpass(); // error functions aren't concrete
1191 }
1192 
1193 
1194 Klass* Dependencies::find_finalizable_subclass(Klass* k) {
1195   if (k->is_interface())  return NULL;
1196   if (k->has_finalizer()) return k;
1197   k = k->subklass();
1198   while (k != NULL) {
1199     Klass* result = find_finalizable_subclass(k);
1200     if (result != NULL) return result;
1201     k = k->next_sibling();
1202   }
1203   return NULL;
1204 }
1205 
1206 
1207 bool Dependencies::is_concrete_klass(ciInstanceKlass* k) {
1208   if (k->is_abstract())  return false;
1209   // We could also return false if k does not yet appear to be
1210   // instantiated, if the VM version supports this distinction also.
1211   //if (k->is_not_instantiated())  return false;
1212   return true;
1213 }
1214 
1215 bool Dependencies::is_concrete_method(ciMethod* m) {
1216   // Statics are irrelevant to virtual call sites.
1217   if (m->is_static())  return false;
1218 
1219   // We could also return false if m does not yet appear to be
1220   // executed, if the VM version supports this distinction also.
1221   return !m->is_abstract();
1222 }
1223 
1224 
1225 bool Dependencies::has_finalizable_subclass(ciInstanceKlass* k) {
1226   return k->has_finalizable_subclass();
1227 }
1228 
1229 
1230 // Any use of the contents (bytecodes) of a method must be
1231 // marked by an "evol_method" dependency, if those contents
1232 // can change.  (Note: A method is always dependent on itself.)
1233 Klass* Dependencies::check_evol_method(Method* m) {
1234   assert(must_be_in_vm(), "raw oops here");
1235   // Did somebody do a JVMTI RedefineClasses while our backs were turned?
1236   // Or is there a now a breakpoint?
1237   // (Assumes compiled code cannot handle bkpts; change if UseFastBreakpoints.)
1238   if (m->is_old()
1239       || m->number_of_breakpoints() > 0) {
1240     return m->method_holder();
1241   } else {
1242     return NULL;
1243   }
1244 }
1245 
1246 // This is a strong assertion:  It is that the given type
1247 // has no subtypes whatever.  It is most useful for
1248 // optimizing checks on reflected types or on array types.
1249 // (Checks on types which are derived from real instances
1250 // can be optimized more strongly than this, because we
1251 // know that the checked type comes from a concrete type,
1252 // and therefore we can disregard abstract types.)
1253 Klass* Dependencies::check_leaf_type(Klass* ctxk) {
1254   assert(must_be_in_vm(), "raw oops here");
1255   assert_locked_or_safepoint(Compile_lock);
1256   InstanceKlass* ctx = InstanceKlass::cast(ctxk);
1257   Klass* sub = ctx->subklass();
1258   if (sub != NULL) {
1259     return sub;
1260   } else if (ctx->nof_implementors() != 0) {
1261     // if it is an interface, it must be unimplemented
1262     // (if it is not an interface, nof_implementors is always zero)
1263     Klass* impl = ctx->implementor();
1264     assert(impl != NULL, "must be set");
1265     return impl;
1266   } else {
1267     return NULL;
1268   }
1269 }
1270 
1271 // Test the assertion that conck is the only concrete subtype* of ctxk.
1272 // The type conck itself is allowed to have have further concrete subtypes.
1273 // This allows the compiler to narrow occurrences of ctxk by conck,
1274 // when dealing with the types of actual instances.
1275 Klass* Dependencies::check_abstract_with_unique_concrete_subtype(Klass* ctxk,
1276                                                                    Klass* conck,
1277                                                                    KlassDepChange* changes) {
1278   ClassHierarchyWalker wf(conck);
1279   return wf.find_witness_subtype(ctxk, changes);
1280 }
1281 
1282 // If a non-concrete class has no concrete subtypes, it is not (yet)
1283 // instantiatable.  This can allow the compiler to make some paths go
1284 // dead, if they are gated by a test of the type.
1285 Klass* Dependencies::check_abstract_with_no_concrete_subtype(Klass* ctxk,
1286                                                                KlassDepChange* changes) {
1287   // Find any concrete subtype, with no participants:
1288   ClassHierarchyWalker wf;
1289   return wf.find_witness_subtype(ctxk, changes);
1290 }
1291 
1292 
1293 // If a concrete class has no concrete subtypes, it can always be
1294 // exactly typed.  This allows the use of a cheaper type test.
1295 Klass* Dependencies::check_concrete_with_no_concrete_subtype(Klass* ctxk,
1296                                                                KlassDepChange* changes) {
1297   // Find any concrete subtype, with only the ctxk as participant:
1298   ClassHierarchyWalker wf(ctxk);
1299   return wf.find_witness_subtype(ctxk, changes);
1300 }
1301 
1302 
1303 // Find the unique concrete proper subtype of ctxk, or NULL if there
1304 // is more than one concrete proper subtype.  If there are no concrete
1305 // proper subtypes, return ctxk itself, whether it is concrete or not.
1306 // The returned subtype is allowed to have have further concrete subtypes.
1307 // That is, return CC1 for CX > CC1 > CC2, but NULL for CX > { CC1, CC2 }.
1308 Klass* Dependencies::find_unique_concrete_subtype(Klass* ctxk) {
1309   ClassHierarchyWalker wf(ctxk);   // Ignore ctxk when walking.
1310   wf.record_witnesses(1);          // Record one other witness when walking.
1311   Klass* wit = wf.find_witness_subtype(ctxk);
1312   if (wit != NULL)  return NULL;   // Too many witnesses.
1313   Klass* conck = wf.participant(0);
1314   if (conck == NULL) {
1315 #ifndef PRODUCT
1316     // Make sure the dependency mechanism will pass this discovery:
1317     if (VerifyDependencies) {
1318       // Turn off dependency tracing while actually testing deps.
1319       FlagSetting fs(TraceDependencies, false);
1320       if (!Dependencies::is_concrete_klass(ctxk)) {
1321         guarantee(NULL ==
1322                   (void *)check_abstract_with_no_concrete_subtype(ctxk),
1323                   "verify dep.");
1324       } else {
1325         guarantee(NULL ==
1326                   (void *)check_concrete_with_no_concrete_subtype(ctxk),
1327                   "verify dep.");
1328       }
1329     }
1330 #endif //PRODUCT
1331     return ctxk;                   // Return ctxk as a flag for "no subtypes".
1332   } else {
1333 #ifndef PRODUCT
1334     // Make sure the dependency mechanism will pass this discovery:
1335     if (VerifyDependencies) {
1336       // Turn off dependency tracing while actually testing deps.
1337       FlagSetting fs(TraceDependencies, false);
1338       if (!Dependencies::is_concrete_klass(ctxk)) {
1339         guarantee(NULL == (void *)
1340                   check_abstract_with_unique_concrete_subtype(ctxk, conck),
1341                   "verify dep.");
1342       }
1343     }
1344 #endif //PRODUCT
1345     return conck;
1346   }
1347 }
1348 
1349 // Test the assertion that the k[12] are the only concrete subtypes of ctxk,
1350 // except possibly for further subtypes of k[12] themselves.
1351 // The context type must be abstract.  The types k1 and k2 are themselves
1352 // allowed to have further concrete subtypes.
1353 Klass* Dependencies::check_abstract_with_exclusive_concrete_subtypes(
1354                                                 Klass* ctxk,
1355                                                 Klass* k1,
1356                                                 Klass* k2,
1357                                                 KlassDepChange* changes) {
1358   ClassHierarchyWalker wf;
1359   wf.add_participant(k1);
1360   wf.add_participant(k2);
1361   return wf.find_witness_subtype(ctxk, changes);
1362 }
1363 
1364 // Search ctxk for concrete implementations.  If there are klen or fewer,
1365 // pack them into the given array and return the number.
1366 // Otherwise, return -1, meaning the given array would overflow.
1367 // (Note that a return of 0 means there are exactly no concrete subtypes.)
1368 // In this search, if ctxk is concrete, it will be reported alone.
1369 // For any type CC reported, no proper subtypes of CC will be reported.
1370 int Dependencies::find_exclusive_concrete_subtypes(Klass* ctxk,
1371                                                    int klen,
1372                                                    Klass* karray[]) {
1373   ClassHierarchyWalker wf;
1374   wf.record_witnesses(klen);
1375   Klass* wit = wf.find_witness_subtype(ctxk);
1376   if (wit != NULL)  return -1;  // Too many witnesses.
1377   int num = wf.num_participants();
1378   assert(num <= klen, "oob");
1379   // Pack the result array with the good news.
1380   for (int i = 0; i < num; i++)
1381     karray[i] = wf.participant(i);
1382 #ifndef PRODUCT
1383   // Make sure the dependency mechanism will pass this discovery:
1384   if (VerifyDependencies) {
1385     // Turn off dependency tracing while actually testing deps.
1386     FlagSetting fs(TraceDependencies, false);
1387     switch (Dependencies::is_concrete_klass(ctxk)? -1: num) {
1388     case -1: // ctxk was itself concrete
1389       guarantee(num == 1 && karray[0] == ctxk, "verify dep.");
1390       break;
1391     case 0:
1392       guarantee(NULL == (void *)check_abstract_with_no_concrete_subtype(ctxk),
1393                 "verify dep.");
1394       break;
1395     case 1:
1396       guarantee(NULL == (void *)
1397                 check_abstract_with_unique_concrete_subtype(ctxk, karray[0]),
1398                 "verify dep.");
1399       break;
1400     case 2:
1401       guarantee(NULL == (void *)
1402                 check_abstract_with_exclusive_concrete_subtypes(ctxk,
1403                                                                 karray[0],
1404                                                                 karray[1]),
1405                 "verify dep.");
1406       break;
1407     default:
1408       ShouldNotReachHere();  // klen > 2 yet supported
1409     }
1410   }
1411 #endif //PRODUCT
1412   return num;
1413 }
1414 
1415 // If a class (or interface) has a unique concrete method uniqm, return NULL.
1416 // Otherwise, return a class that contains an interfering method.
1417 Klass* Dependencies::check_unique_concrete_method(Klass* ctxk, Method* uniqm,
1418                                                     KlassDepChange* changes) {
1419   // Here is a missing optimization:  If uniqm->is_final(),
1420   // we don't really need to search beneath it for overrides.
1421   // This is probably not important, since we don't use dependencies
1422   // to track final methods.  (They can't be "definalized".)
1423   ClassHierarchyWalker wf(uniqm->method_holder(), uniqm);
1424   return wf.find_witness_definer(ctxk, changes);
1425 }
1426 
1427 // Find the set of all non-abstract methods under ctxk that match m.
1428 // (The method m must be defined or inherited in ctxk.)
1429 // Include m itself in the set, unless it is abstract.
1430 // If this set has exactly one element, return that element.
1431 Method* Dependencies::find_unique_concrete_method(Klass* ctxk, Method* m) {
1432   // Return NULL if m is marked old; must have been a redefined method.
1433   if (m->is_old()) {
1434     return NULL;
1435   }
1436   ClassHierarchyWalker wf(m);
1437   assert(wf.check_method_context(ctxk, m), "proper context");
1438   wf.record_witnesses(1);
1439   Klass* wit = wf.find_witness_definer(ctxk);
1440   if (wit != NULL)  return NULL;  // Too many witnesses.
1441   Method* fm = wf.found_method(0);  // Will be NULL if num_parts == 0.
1442   if (Dependencies::is_concrete_method(m)) {
1443     if (fm == NULL) {
1444       // It turns out that m was always the only implementation.
1445       fm = m;
1446     } else if (fm != m) {
1447       // Two conflicting implementations after all.
1448       // (This can happen if m is inherited into ctxk and fm overrides it.)
1449       return NULL;
1450     }
1451   }
1452 #ifndef PRODUCT
1453   // Make sure the dependency mechanism will pass this discovery:
1454   if (VerifyDependencies && fm != NULL) {
1455     guarantee(NULL == (void *)check_unique_concrete_method(ctxk, fm),
1456               "verify dep.");
1457   }
1458 #endif //PRODUCT
1459   return fm;
1460 }
1461 
1462 Klass* Dependencies::check_exclusive_concrete_methods(Klass* ctxk,
1463                                                         Method* m1,
1464                                                         Method* m2,
1465                                                         KlassDepChange* changes) {
1466   ClassHierarchyWalker wf(m1);
1467   wf.add_participant(m1->method_holder());
1468   wf.add_participant(m2->method_holder());
1469   return wf.find_witness_definer(ctxk, changes);
1470 }
1471 
1472 // Find the set of all non-abstract methods under ctxk that match m[0].
1473 // (The method m[0] must be defined or inherited in ctxk.)
1474 // Include m itself in the set, unless it is abstract.
1475 // Fill the given array m[0..(mlen-1)] with this set, and return the length.
1476 // (The length may be zero if no concrete methods are found anywhere.)
1477 // If there are too many concrete methods to fit in marray, return -1.
1478 int Dependencies::find_exclusive_concrete_methods(Klass* ctxk,
1479                                                   int mlen,
1480                                                   Method* marray[]) {
1481   Method* m0 = marray[0];
1482   ClassHierarchyWalker wf(m0);
1483   assert(wf.check_method_context(ctxk, m0), "proper context");
1484   wf.record_witnesses(mlen);
1485   bool participants_hide_witnesses = true;
1486   Klass* wit = wf.find_witness_definer(ctxk);
1487   if (wit != NULL)  return -1;  // Too many witnesses.
1488   int num = wf.num_participants();
1489   assert(num <= mlen, "oob");
1490   // Keep track of whether m is also part of the result set.
1491   int mfill = 0;
1492   assert(marray[mfill] == m0, "sanity");
1493   if (Dependencies::is_concrete_method(m0))
1494     mfill++;  // keep m0 as marray[0], the first result
1495   for (int i = 0; i < num; i++) {
1496     Method* fm = wf.found_method(i);
1497     if (fm == m0)  continue;  // Already put this guy in the list.
1498     if (mfill == mlen) {
1499       return -1;              // Oops.  Too many methods after all!
1500     }
1501     marray[mfill++] = fm;
1502   }
1503 #ifndef PRODUCT
1504   // Make sure the dependency mechanism will pass this discovery:
1505   if (VerifyDependencies) {
1506     // Turn off dependency tracing while actually testing deps.
1507     FlagSetting fs(TraceDependencies, false);
1508     switch (mfill) {
1509     case 1:
1510       guarantee(NULL == (void *)check_unique_concrete_method(ctxk, marray[0]),
1511                 "verify dep.");
1512       break;
1513     case 2:
1514       guarantee(NULL == (void *)
1515                 check_exclusive_concrete_methods(ctxk, marray[0], marray[1]),
1516                 "verify dep.");
1517       break;
1518     default:
1519       ShouldNotReachHere();  // mlen > 2 yet supported
1520     }
1521   }
1522 #endif //PRODUCT
1523   return mfill;
1524 }
1525 
1526 
1527 Klass* Dependencies::check_has_no_finalizable_subclasses(Klass* ctxk, KlassDepChange* changes) {
1528   Klass* search_at = ctxk;
1529   if (changes != NULL)
1530     search_at = changes->new_type(); // just look at the new bit
1531   return find_finalizable_subclass(search_at);
1532 }
1533 
1534 
1535 Klass* Dependencies::check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes) {
1536   assert(call_site    ->is_a(SystemDictionary::CallSite_klass()),     "sanity");
1537   assert(method_handle->is_a(SystemDictionary::MethodHandle_klass()), "sanity");
1538   if (changes == NULL) {
1539     // Validate all CallSites
1540     if (java_lang_invoke_CallSite::target(call_site) != method_handle)
1541       return call_site->klass();  // assertion failed
1542   } else {
1543     // Validate the given CallSite
1544     if (call_site == changes->call_site() && java_lang_invoke_CallSite::target(call_site) != changes->method_handle()) {
1545       assert(method_handle != changes->method_handle(), "must be");
1546       return call_site->klass();  // assertion failed
1547     }
1548   }
1549   return NULL;  // assertion still valid
1550 }
1551 
1552 
1553 void Dependencies::DepStream::trace_and_log_witness(Klass* witness) {
1554   if (witness != NULL) {
1555     if (TraceDependencies) {
1556       print_dependency(witness, /*verbose=*/ true);
1557     }
1558     // The following is a no-op unless logging is enabled:
1559     log_dependency(witness);
1560   }
1561 }
1562 
1563 
1564 Klass* Dependencies::DepStream::check_klass_dependency(KlassDepChange* changes) {
1565   assert_locked_or_safepoint(Compile_lock);
1566   Dependencies::check_valid_dependency_type(type());
1567 
1568   Klass* witness = NULL;
1569   switch (type()) {
1570   case evol_method:
1571     witness = check_evol_method(method_argument(0));
1572     break;
1573   case leaf_type:
1574     witness = check_leaf_type(context_type());
1575     break;
1576   case abstract_with_unique_concrete_subtype:
1577     witness = check_abstract_with_unique_concrete_subtype(context_type(), type_argument(1), changes);
1578     break;
1579   case abstract_with_no_concrete_subtype:
1580     witness = check_abstract_with_no_concrete_subtype(context_type(), changes);
1581     break;
1582   case concrete_with_no_concrete_subtype:
1583     witness = check_concrete_with_no_concrete_subtype(context_type(), changes);
1584     break;
1585   case unique_concrete_method:
1586     witness = check_unique_concrete_method(context_type(), method_argument(1), changes);
1587     break;
1588   case abstract_with_exclusive_concrete_subtypes_2:
1589     witness = check_abstract_with_exclusive_concrete_subtypes(context_type(), type_argument(1), type_argument(2), changes);
1590     break;
1591   case exclusive_concrete_methods_2:
1592     witness = check_exclusive_concrete_methods(context_type(), method_argument(1), method_argument(2), changes);
1593     break;
1594   case no_finalizable_subclasses:
1595     witness = check_has_no_finalizable_subclasses(context_type(), changes);
1596     break;
1597   default:
1598     witness = NULL;
1599     break;
1600   }
1601   trace_and_log_witness(witness);
1602   return witness;
1603 }
1604 
1605 
1606 Klass* Dependencies::DepStream::check_call_site_dependency(CallSiteDepChange* changes) {
1607   assert_locked_or_safepoint(Compile_lock);
1608   Dependencies::check_valid_dependency_type(type());
1609 
1610   Klass* witness = NULL;
1611   switch (type()) {
1612   case call_site_target_value:
1613     witness = check_call_site_target_value(argument_oop(0), argument_oop(1), changes);
1614     break;
1615   default:
1616     witness = NULL;
1617     break;
1618   }
1619   trace_and_log_witness(witness);
1620   return witness;
1621 }
1622 
1623 
1624 Klass* Dependencies::DepStream::spot_check_dependency_at(DepChange& changes) {
1625   // Handle klass dependency
1626   if (changes.is_klass_change() && changes.as_klass_change()->involves_context(context_type()))
1627     return check_klass_dependency(changes.as_klass_change());
1628 
1629   // Handle CallSite dependency
1630   if (changes.is_call_site_change())
1631     return check_call_site_dependency(changes.as_call_site_change());
1632 
1633   // irrelevant dependency; skip it
1634   return NULL;
1635 }
1636 
1637 
1638 void DepChange::print() {
1639   int nsup = 0, nint = 0;
1640   for (ContextStream str(*this); str.next(); ) {
1641     Klass* k = str.klass();
1642     switch (str.change_type()) {
1643     case Change_new_type:
1644       tty->print_cr("  dependee = %s", InstanceKlass::cast(k)->external_name());
1645       break;
1646     case Change_new_sub:
1647       if (!WizardMode) {
1648         ++nsup;
1649       } else {
1650         tty->print_cr("  context super = %s", InstanceKlass::cast(k)->external_name());
1651       }
1652       break;
1653     case Change_new_impl:
1654       if (!WizardMode) {
1655         ++nint;
1656       } else {
1657         tty->print_cr("  context interface = %s", InstanceKlass::cast(k)->external_name());
1658       }
1659       break;
1660     }
1661   }
1662   if (nsup + nint != 0) {
1663     tty->print_cr("  context supers = %d, interfaces = %d", nsup, nint);
1664   }
1665 }
1666 
1667 void DepChange::ContextStream::start() {
1668   Klass* new_type = _changes.is_klass_change() ? _changes.as_klass_change()->new_type() : (Klass*) NULL;
1669   _change_type = (new_type == NULL ? NO_CHANGE : Start_Klass);
1670   _klass = new_type;
1671   _ti_base = NULL;
1672   _ti_index = 0;
1673   _ti_limit = 0;
1674 }
1675 
1676 bool DepChange::ContextStream::next() {
1677   switch (_change_type) {
1678   case Start_Klass:             // initial state; _klass is the new type
1679     _ti_base = InstanceKlass::cast(_klass)->transitive_interfaces();
1680     _ti_index = 0;
1681     _change_type = Change_new_type;
1682     return true;
1683   case Change_new_type:
1684     // fall through:
1685     _change_type = Change_new_sub;
1686   case Change_new_sub:
1687     // 6598190: brackets workaround Sun Studio C++ compiler bug 6629277
1688     {
1689       _klass = InstanceKlass::cast(_klass)->super();
1690       if (_klass != NULL) {
1691         return true;
1692       }
1693     }
1694     // else set up _ti_limit and fall through:
1695     _ti_limit = (_ti_base == NULL) ? 0 : _ti_base->length();
1696     _change_type = Change_new_impl;
1697   case Change_new_impl:
1698     if (_ti_index < _ti_limit) {
1699       _klass = _ti_base->at(_ti_index++);
1700       return true;
1701     }
1702     // fall through:
1703     _change_type = NO_CHANGE;  // iterator is exhausted
1704   case NO_CHANGE:
1705     break;
1706   default:
1707     ShouldNotReachHere();
1708   }
1709   return false;
1710 }
1711 
1712 void KlassDepChange::initialize() {
1713   // entire transaction must be under this lock:
1714   assert_lock_strong(Compile_lock);
1715 
1716   // Mark all dependee and all its superclasses
1717   // Mark transitive interfaces
1718   for (ContextStream str(*this); str.next(); ) {
1719     Klass* d = str.klass();
1720     assert(!InstanceKlass::cast(d)->is_marked_dependent(), "checking");
1721     InstanceKlass::cast(d)->set_is_marked_dependent(true);
1722   }
1723 }
1724 
1725 KlassDepChange::~KlassDepChange() {
1726   // Unmark all dependee and all its superclasses
1727   // Unmark transitive interfaces
1728   for (ContextStream str(*this); str.next(); ) {
1729     Klass* d = str.klass();
1730     InstanceKlass::cast(d)->set_is_marked_dependent(false);
1731   }
1732 }
1733 
1734 bool KlassDepChange::involves_context(Klass* k) {
1735   if (k == NULL || !k->oop_is_instance()) {
1736     return false;
1737   }
1738   InstanceKlass* ik = InstanceKlass::cast(k);
1739   bool is_contained = ik->is_marked_dependent();
1740   assert(is_contained == new_type()->is_subtype_of(k),
1741          "correct marking of potential context types");
1742   return is_contained;
1743 }
1744 
1745 #ifndef PRODUCT
1746 void Dependencies::print_statistics() {
1747   if (deps_find_witness_print != 0) {
1748     // Call one final time, to flush out the data.
1749     deps_find_witness_print = -1;
1750     count_find_witness_calls();
1751   }
1752 }
1753 #endif