1 /*
   2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.hpp"
  30 #include "opto/c2compiler.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/compile.hpp"
  34 #include "opto/escape.hpp"
  35 #include "opto/phaseX.hpp"
  36 #include "opto/rootnode.hpp"
  37 
  38 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  39   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  40   _collecting(true),
  41   _verify(false),
  42   _compile(C),
  43   _igvn(igvn),
  44   _node_map(C->comp_arena()) {
  45   // Add unknown java object.
  46   add_java_object(C->top(), PointsToNode::GlobalEscape);
  47   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  48   // Add ConP(#NULL) and ConN(#NULL) nodes.
  49   Node* oop_null = igvn->zerocon(T_OBJECT);
  50   assert(oop_null->_idx < nodes_size(), "should be created already");
  51   add_java_object(oop_null, PointsToNode::NoEscape);
  52   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  53   if (UseCompressedOops) {
  54     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  55     assert(noop_null->_idx < nodes_size(), "should be created already");
  56     map_ideal_node(noop_null, null_obj);
  57   }
  58   _pcmp_neq = NULL; // Should be initialized
  59   _pcmp_eq  = NULL;
  60 }
  61 
  62 bool ConnectionGraph::has_candidates(Compile *C) {
  63   // EA brings benefits only when the code has allocations and/or locks which
  64   // are represented by ideal Macro nodes.
  65   int cnt = C->macro_count();
  66   for( int i=0; i < cnt; i++ ) {
  67     Node *n = C->macro_node(i);
  68     if ( n->is_Allocate() )
  69       return true;
  70     if( n->is_Lock() ) {
  71       Node* obj = n->as_Lock()->obj_node()->uncast();
  72       if( !(obj->is_Parm() || obj->is_Con()) )
  73         return true;
  74     }
  75   }
  76   return false;
  77 }
  78 
  79 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  80   Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
  81   ResourceMark rm;
  82 
  83   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  84   // to create space for them in ConnectionGraph::_nodes[].
  85   Node* oop_null = igvn->zerocon(T_OBJECT);
  86   Node* noop_null = igvn->zerocon(T_NARROWOOP);
  87   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
  88   // Perform escape analysis
  89   if (congraph->compute_escape()) {
  90     // There are non escaping objects.
  91     C->set_congraph(congraph);
  92   }
  93   // Cleanup.
  94   if (oop_null->outcnt() == 0)
  95     igvn->hash_delete(oop_null);
  96   if (noop_null->outcnt() == 0)
  97     igvn->hash_delete(noop_null);
  98 }
  99 
 100 bool ConnectionGraph::compute_escape() {
 101   Compile* C = _compile;
 102   PhaseGVN* igvn = _igvn;
 103 
 104   // Worklists used by EA.
 105   Unique_Node_List delayed_worklist;
 106   GrowableArray<Node*> alloc_worklist;
 107   GrowableArray<Node*> ptr_cmp_worklist;
 108   GrowableArray<Node*> storestore_worklist;
 109   GrowableArray<PointsToNode*>   ptnodes_worklist;
 110   GrowableArray<JavaObjectNode*> java_objects_worklist;
 111   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 112   GrowableArray<FieldNode*>      oop_fields_worklist;
 113   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 114 
 115   { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
 116 
 117   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 118   ideal_nodes.map(C->unique(), NULL);  // preallocate space
 119   // Initialize worklist
 120   if (C->root() != NULL) {
 121     ideal_nodes.push(C->root());
 122   }
 123   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 124     Node* n = ideal_nodes.at(next);
 125     // Create PointsTo nodes and add them to Connection Graph. Called
 126     // only once per ideal node since ideal_nodes is Unique_Node list.
 127     add_node_to_connection_graph(n, &delayed_worklist);
 128     PointsToNode* ptn = ptnode_adr(n->_idx);
 129     if (ptn != NULL) {
 130       ptnodes_worklist.append(ptn);
 131       if (ptn->is_JavaObject()) {
 132         java_objects_worklist.append(ptn->as_JavaObject());
 133         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 134             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 135           // Only allocations and java static calls results are interesting.
 136           non_escaped_worklist.append(ptn->as_JavaObject());
 137         }
 138       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 139         oop_fields_worklist.append(ptn->as_Field());
 140       }
 141     }
 142     if (n->is_MergeMem()) {
 143       // Collect all MergeMem nodes to add memory slices for
 144       // scalar replaceable objects in split_unique_types().
 145       _mergemem_worklist.append(n->as_MergeMem());
 146     } else if (OptimizePtrCompare && n->is_Cmp() &&
 147                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 148       // Collect compare pointers nodes.
 149       ptr_cmp_worklist.append(n);
 150     } else if (n->is_MemBarStoreStore()) {
 151       // Collect all MemBarStoreStore nodes so that depending on the
 152       // escape status of the associated Allocate node some of them
 153       // may be eliminated.
 154       storestore_worklist.append(n);
 155 #ifdef ASSERT
 156     } else if(n->is_AddP()) {
 157       // Collect address nodes for graph verification.
 158       addp_worklist.append(n);
 159 #endif
 160     }
 161     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 162       Node* m = n->fast_out(i);   // Get user
 163       ideal_nodes.push(m);
 164     }
 165   }
 166   if (non_escaped_worklist.length() == 0) {
 167     _collecting = false;
 168     return false; // Nothing to do.
 169   }
 170   // Add final simple edges to graph.
 171   while(delayed_worklist.size() > 0) {
 172     Node* n = delayed_worklist.pop();
 173     add_final_edges(n);
 174   }
 175   int ptnodes_length = ptnodes_worklist.length();
 176 
 177 #ifdef ASSERT
 178   if (VerifyConnectionGraph) {
 179     // Verify that no new simple edges could be created and all
 180     // local vars has edges.
 181     _verify = true;
 182     for (int next = 0; next < ptnodes_length; ++next) {
 183       PointsToNode* ptn = ptnodes_worklist.at(next);
 184       add_final_edges(ptn->ideal_node());
 185       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 186         ptn->dump();
 187         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 188       }
 189     }
 190     _verify = false;
 191   }
 192 #endif
 193 
 194   // 2. Finish Graph construction by propagating references to all
 195   //    java objects through graph.
 196   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 197                                  java_objects_worklist, oop_fields_worklist)) {
 198     // All objects escaped or hit time or iterations limits.
 199     _collecting = false;
 200     return false;
 201   }
 202 
 203   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 204   //    scalar replaceable allocations on alloc_worklist for processing
 205   //    in split_unique_types().
 206   int non_escaped_length = non_escaped_worklist.length();
 207   for (int next = 0; next < non_escaped_length; next++) {
 208     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 209     if (ptn->escape_state() == PointsToNode::NoEscape &&
 210         ptn->scalar_replaceable()) {
 211       adjust_scalar_replaceable_state(ptn);
 212       if (ptn->scalar_replaceable()) {
 213         alloc_worklist.append(ptn->ideal_node());
 214       }
 215     }
 216   }
 217 
 218 #ifdef ASSERT
 219   if (VerifyConnectionGraph) {
 220     // Verify that graph is complete - no new edges could be added or needed.
 221     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 222                             java_objects_worklist, addp_worklist);
 223   }
 224   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 225   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 226          null_obj->edge_count() == 0 &&
 227          !null_obj->arraycopy_src() &&
 228          !null_obj->arraycopy_dst(), "sanity");
 229 #endif
 230 
 231   _collecting = false;
 232 
 233   } // TracePhase t3("connectionGraph")
 234 
 235   // 4. Optimize ideal graph based on EA information.
 236   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 237   if (has_non_escaping_obj) {
 238     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 239   }
 240 
 241 #ifndef PRODUCT
 242   if (PrintEscapeAnalysis) {
 243     dump(ptnodes_worklist); // Dump ConnectionGraph
 244   }
 245 #endif
 246 
 247   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 248 #ifdef ASSERT
 249   if (VerifyConnectionGraph) {
 250     int alloc_length = alloc_worklist.length();
 251     for (int next = 0; next < alloc_length; ++next) {
 252       Node* n = alloc_worklist.at(next);
 253       PointsToNode* ptn = ptnode_adr(n->_idx);
 254       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 255     }
 256   }
 257 #endif
 258 
 259   // 5. Separate memory graph for scalar replaceable allcations.
 260   if (has_scalar_replaceable_candidates &&
 261       C->AliasLevel() >= 3 && EliminateAllocations) {
 262     // Now use the escape information to create unique types for
 263     // scalar replaceable objects.
 264     split_unique_types(alloc_worklist);
 265     if (C->failing())  return false;
 266     C->print_method("After Escape Analysis", 2);
 267 
 268 #ifdef ASSERT
 269   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 270     tty->print("=== No allocations eliminated for ");
 271     C->method()->print_short_name();
 272     if(!EliminateAllocations) {
 273       tty->print(" since EliminateAllocations is off ===");
 274     } else if(!has_scalar_replaceable_candidates) {
 275       tty->print(" since there are no scalar replaceable candidates ===");
 276     } else if(C->AliasLevel() < 3) {
 277       tty->print(" since AliasLevel < 3 ===");
 278     }
 279     tty->cr();
 280 #endif
 281   }
 282   return has_non_escaping_obj;
 283 }
 284 
 285 // Utility function for nodes that load an object
 286 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 287   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 288   // ThreadLocal has RawPtr type.
 289   const Type* t = _igvn->type(n);
 290   if (t->make_ptr() != NULL) {
 291     Node* adr = n->in(MemNode::Address);
 292 #ifdef ASSERT
 293     if (!adr->is_AddP()) {
 294       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 295     } else {
 296       assert((ptnode_adr(adr->_idx) == NULL ||
 297               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 298     }
 299 #endif
 300     add_local_var_and_edge(n, PointsToNode::NoEscape,
 301                            adr, delayed_worklist);
 302   }
 303 }
 304 
 305 // Populate Connection Graph with PointsTo nodes and create simple
 306 // connection graph edges.
 307 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 308   assert(!_verify, "this method sould not be called for verification");
 309   PhaseGVN* igvn = _igvn;
 310   uint n_idx = n->_idx;
 311   PointsToNode* n_ptn = ptnode_adr(n_idx);
 312   if (n_ptn != NULL)
 313     return; // No need to redefine PointsTo node during first iteration.
 314 
 315   if (n->is_Call()) {
 316     // Arguments to allocation and locking don't escape.
 317     if (n->is_AbstractLock()) {
 318       // Put Lock and Unlock nodes on IGVN worklist to process them during
 319       // first IGVN optimization when escape information is still available.
 320       record_for_optimizer(n);
 321     } else if (n->is_Allocate()) {
 322       add_call_node(n->as_Call());
 323       record_for_optimizer(n);
 324     } else {
 325       if (n->is_CallStaticJava()) {
 326         const char* name = n->as_CallStaticJava()->_name;
 327         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 328           return; // Skip uncommon traps
 329       }
 330       // Don't mark as processed since call's arguments have to be processed.
 331       delayed_worklist->push(n);
 332       // Check if a call returns an object.
 333       if (n->as_Call()->returns_pointer() &&
 334           n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
 335         add_call_node(n->as_Call());
 336       }
 337     }
 338     return;
 339   }
 340   // Put this check here to process call arguments since some call nodes
 341   // point to phantom_obj.
 342   if (n_ptn == phantom_obj || n_ptn == null_obj)
 343     return; // Skip predefined nodes.
 344 
 345   int opcode = n->Opcode();
 346   switch (opcode) {
 347     case Op_AddP: {
 348       Node* base = get_addp_base(n);
 349       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 350       // Field nodes are created for all field types. They are used in
 351       // adjust_scalar_replaceable_state() and split_unique_types().
 352       // Note, non-oop fields will have only base edges in Connection
 353       // Graph because such fields are not used for oop loads and stores.
 354       int offset = address_offset(n, igvn);
 355       add_field(n, PointsToNode::NoEscape, offset);
 356       if (ptn_base == NULL) {
 357         delayed_worklist->push(n); // Process it later.
 358       } else {
 359         n_ptn = ptnode_adr(n_idx);
 360         add_base(n_ptn->as_Field(), ptn_base);
 361       }
 362       break;
 363     }
 364     case Op_CastX2P: {
 365       map_ideal_node(n, phantom_obj);
 366       break;
 367     }
 368     case Op_CastPP:
 369     case Op_CheckCastPP:
 370     case Op_EncodeP:
 371     case Op_DecodeN:
 372     case Op_EncodePKlass:
 373     case Op_DecodeNKlass: {
 374       add_local_var_and_edge(n, PointsToNode::NoEscape,
 375                              n->in(1), delayed_worklist);
 376       break;
 377     }
 378     case Op_CMoveP: {
 379       add_local_var(n, PointsToNode::NoEscape);
 380       // Do not add edges during first iteration because some could be
 381       // not defined yet.
 382       delayed_worklist->push(n);
 383       break;
 384     }
 385     case Op_ConP:
 386     case Op_ConN:
 387     case Op_ConNKlass: {
 388       // assume all oop constants globally escape except for null
 389       PointsToNode::EscapeState es;
 390       if (igvn->type(n) == TypePtr::NULL_PTR ||
 391           igvn->type(n) == TypeNarrowOop::NULL_PTR) {
 392         es = PointsToNode::NoEscape;
 393       } else {
 394         es = PointsToNode::GlobalEscape;
 395       }
 396       add_java_object(n, es);
 397       break;
 398     }
 399     case Op_CreateEx: {
 400       // assume that all exception objects globally escape
 401       add_java_object(n, PointsToNode::GlobalEscape);
 402       break;
 403     }
 404     case Op_LoadKlass:
 405     case Op_LoadNKlass: {
 406       // Unknown class is loaded
 407       map_ideal_node(n, phantom_obj);
 408       break;
 409     }
 410     case Op_LoadP:
 411     case Op_LoadN:
 412     case Op_LoadPLocked: {
 413       add_objload_to_connection_graph(n, delayed_worklist);
 414       break;
 415     }
 416     case Op_Parm: {
 417       map_ideal_node(n, phantom_obj);
 418       break;
 419     }
 420     case Op_PartialSubtypeCheck: {
 421       // Produces Null or notNull and is used in only in CmpP so
 422       // phantom_obj could be used.
 423       map_ideal_node(n, phantom_obj); // Result is unknown
 424       break;
 425     }
 426     case Op_Phi: {
 427       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 428       // ThreadLocal has RawPtr type.
 429       const Type* t = n->as_Phi()->type();
 430       if (t->make_ptr() != NULL) {
 431         add_local_var(n, PointsToNode::NoEscape);
 432         // Do not add edges during first iteration because some could be
 433         // not defined yet.
 434         delayed_worklist->push(n);
 435       }
 436       break;
 437     }
 438     case Op_Proj: {
 439       // we are only interested in the oop result projection from a call
 440       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 441           n->in(0)->as_Call()->returns_pointer()) {
 442         add_local_var_and_edge(n, PointsToNode::NoEscape,
 443                                n->in(0), delayed_worklist);
 444       }
 445       break;
 446     }
 447     case Op_Rethrow: // Exception object escapes
 448     case Op_Return: {
 449       if (n->req() > TypeFunc::Parms &&
 450           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 451         // Treat Return value as LocalVar with GlobalEscape escape state.
 452         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 453                                n->in(TypeFunc::Parms), delayed_worklist);
 454       }
 455       break;
 456     }
 457     case Op_GetAndSetP:
 458     case Op_GetAndSetN: {
 459       add_objload_to_connection_graph(n, delayed_worklist);
 460       // fallthrough
 461     }
 462     case Op_StoreP:
 463     case Op_StoreN:
 464     case Op_StoreNKlass:
 465     case Op_StorePConditional:
 466     case Op_CompareAndSwapP:
 467     case Op_CompareAndSwapN: {
 468       Node* adr = n->in(MemNode::Address);
 469       const Type *adr_type = igvn->type(adr);
 470       adr_type = adr_type->make_ptr();
 471       if (adr_type->isa_oopptr() ||
 472           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 473                         (adr_type == TypeRawPtr::NOTNULL &&
 474                          adr->in(AddPNode::Address)->is_Proj() &&
 475                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 476         delayed_worklist->push(n); // Process it later.
 477 #ifdef ASSERT
 478         assert(adr->is_AddP(), "expecting an AddP");
 479         if (adr_type == TypeRawPtr::NOTNULL) {
 480           // Verify a raw address for a store captured by Initialize node.
 481           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 482           assert(offs != Type::OffsetBot, "offset must be a constant");
 483         }
 484 #endif
 485       } else {
 486         // Ignore copy the displaced header to the BoxNode (OSR compilation).
 487         if (adr->is_BoxLock())
 488           break;
 489         // Stored value escapes in unsafe access.
 490         if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
 491           // Pointer stores in G1 barriers looks like unsafe access.
 492           // Ignore such stores to be able scalar replace non-escaping
 493           // allocations.
 494           if (UseG1GC && adr->is_AddP()) {
 495             Node* base = get_addp_base(adr);
 496             if (base->Opcode() == Op_LoadP &&
 497                 base->in(MemNode::Address)->is_AddP()) {
 498               adr = base->in(MemNode::Address);
 499               Node* tls = get_addp_base(adr);
 500               if (tls->Opcode() == Op_ThreadLocal) {
 501                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 502                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
 503                                      PtrQueue::byte_offset_of_buf())) {
 504                   break; // G1 pre barier previous oop value store.
 505                 }
 506                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
 507                                      PtrQueue::byte_offset_of_buf())) {
 508                   break; // G1 post barier card address store.
 509                 }
 510               }
 511             }
 512           }
 513           delayed_worklist->push(n); // Process unsafe access later.
 514           break;
 515         }
 516 #ifdef ASSERT
 517         n->dump(1);
 518         assert(false, "not unsafe or G1 barrier raw StoreP");
 519 #endif
 520       }
 521       break;
 522     }
 523     case Op_AryEq:
 524     case Op_StrComp:
 525     case Op_StrEquals:
 526     case Op_StrIndexOf: {
 527       add_local_var(n, PointsToNode::ArgEscape);
 528       delayed_worklist->push(n); // Process it later.
 529       break;
 530     }
 531     case Op_ThreadLocal: {
 532       add_java_object(n, PointsToNode::ArgEscape);
 533       break;
 534     }
 535     default:
 536       ; // Do nothing for nodes not related to EA.
 537   }
 538   return;
 539 }
 540 
 541 #ifdef ASSERT
 542 #define ELSE_FAIL(name)                               \
 543       /* Should not be called for not pointer type. */  \
 544       n->dump(1);                                       \
 545       assert(false, name);                              \
 546       break;
 547 #else
 548 #define ELSE_FAIL(name) \
 549       break;
 550 #endif
 551 
 552 // Add final simple edges to graph.
 553 void ConnectionGraph::add_final_edges(Node *n) {
 554   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 555 #ifdef ASSERT
 556   if (_verify && n_ptn->is_JavaObject())
 557     return; // This method does not change graph for JavaObject.
 558 #endif
 559 
 560   if (n->is_Call()) {
 561     process_call_arguments(n->as_Call());
 562     return;
 563   }
 564   assert(n->is_Store() || n->is_LoadStore() ||
 565          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 566          "node should be registered already");
 567   int opcode = n->Opcode();
 568   switch (opcode) {
 569     case Op_AddP: {
 570       Node* base = get_addp_base(n);
 571       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 572       assert(ptn_base != NULL, "field's base should be registered");
 573       add_base(n_ptn->as_Field(), ptn_base);
 574       break;
 575     }
 576     case Op_CastPP:
 577     case Op_CheckCastPP:
 578     case Op_EncodeP:
 579     case Op_DecodeN:
 580     case Op_EncodePKlass:
 581     case Op_DecodeNKlass: {
 582       add_local_var_and_edge(n, PointsToNode::NoEscape,
 583                              n->in(1), NULL);
 584       break;
 585     }
 586     case Op_CMoveP: {
 587       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 588         Node* in = n->in(i);
 589         if (in == NULL)
 590           continue;  // ignore NULL
 591         Node* uncast_in = in->uncast();
 592         if (uncast_in->is_top() || uncast_in == n)
 593           continue;  // ignore top or inputs which go back this node
 594         PointsToNode* ptn = ptnode_adr(in->_idx);
 595         assert(ptn != NULL, "node should be registered");
 596         add_edge(n_ptn, ptn);
 597       }
 598       break;
 599     }
 600     case Op_LoadP:
 601     case Op_LoadN:
 602     case Op_LoadPLocked: {
 603       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 604       // ThreadLocal has RawPtr type.
 605       const Type* t = _igvn->type(n);
 606       if (t->make_ptr() != NULL) {
 607         Node* adr = n->in(MemNode::Address);
 608         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 609         break;
 610       }
 611       ELSE_FAIL("Op_LoadP");
 612     }
 613     case Op_Phi: {
 614       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 615       // ThreadLocal has RawPtr type.
 616       const Type* t = n->as_Phi()->type();
 617       if (t->make_ptr() != NULL) {
 618         for (uint i = 1; i < n->req(); i++) {
 619           Node* in = n->in(i);
 620           if (in == NULL)
 621             continue;  // ignore NULL
 622           Node* uncast_in = in->uncast();
 623           if (uncast_in->is_top() || uncast_in == n)
 624             continue;  // ignore top or inputs which go back this node
 625           PointsToNode* ptn = ptnode_adr(in->_idx);
 626           assert(ptn != NULL, "node should be registered");
 627           add_edge(n_ptn, ptn);
 628         }
 629         break;
 630       }
 631       ELSE_FAIL("Op_Phi");
 632     }
 633     case Op_Proj: {
 634       // we are only interested in the oop result projection from a call
 635       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 636           n->in(0)->as_Call()->returns_pointer()) {
 637         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 638         break;
 639       }
 640       ELSE_FAIL("Op_Proj");
 641     }
 642     case Op_Rethrow: // Exception object escapes
 643     case Op_Return: {
 644       if (n->req() > TypeFunc::Parms &&
 645           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 646         // Treat Return value as LocalVar with GlobalEscape escape state.
 647         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 648                                n->in(TypeFunc::Parms), NULL);
 649         break;
 650       }
 651       ELSE_FAIL("Op_Return");
 652     }
 653     case Op_StoreP:
 654     case Op_StoreN:
 655     case Op_StoreNKlass:
 656     case Op_StorePConditional:
 657     case Op_CompareAndSwapP:
 658     case Op_CompareAndSwapN:
 659     case Op_GetAndSetP:
 660     case Op_GetAndSetN: {
 661       Node* adr = n->in(MemNode::Address);
 662       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
 663         const Type* t = _igvn->type(n);
 664         if (t->make_ptr() != NULL) {
 665           add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 666         }
 667       }
 668       const Type *adr_type = _igvn->type(adr);
 669       adr_type = adr_type->make_ptr();
 670       if (adr_type->isa_oopptr() ||
 671           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
 672                         (adr_type == TypeRawPtr::NOTNULL &&
 673                          adr->in(AddPNode::Address)->is_Proj() &&
 674                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 675         // Point Address to Value
 676         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 677         assert(adr_ptn != NULL &&
 678                adr_ptn->as_Field()->is_oop(), "node should be registered");
 679         Node *val = n->in(MemNode::ValueIn);
 680         PointsToNode* ptn = ptnode_adr(val->_idx);
 681         assert(ptn != NULL, "node should be registered");
 682         add_edge(adr_ptn, ptn);
 683         break;
 684       } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
 685         // Stored value escapes in unsafe access.
 686         Node *val = n->in(MemNode::ValueIn);
 687         PointsToNode* ptn = ptnode_adr(val->_idx);
 688         assert(ptn != NULL, "node should be registered");
 689         ptn->set_escape_state(PointsToNode::GlobalEscape);
 690         // Add edge to object for unsafe access with offset.
 691         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 692         assert(adr_ptn != NULL, "node should be registered");
 693         if (adr_ptn->is_Field()) {
 694           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 695           add_edge(adr_ptn, ptn);
 696         }
 697         break;
 698       }
 699       ELSE_FAIL("Op_StoreP");
 700     }
 701     case Op_AryEq:
 702     case Op_StrComp:
 703     case Op_StrEquals:
 704     case Op_StrIndexOf: {
 705       // char[] arrays passed to string intrinsic do not escape but
 706       // they are not scalar replaceable. Adjust escape state for them.
 707       // Start from in(2) edge since in(1) is memory edge.
 708       for (uint i = 2; i < n->req(); i++) {
 709         Node* adr = n->in(i);
 710         const Type* at = _igvn->type(adr);
 711         if (!adr->is_top() && at->isa_ptr()) {
 712           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 713                  at->isa_ptr() != NULL, "expecting a pointer");
 714           if (adr->is_AddP()) {
 715             adr = get_addp_base(adr);
 716           }
 717           PointsToNode* ptn = ptnode_adr(adr->_idx);
 718           assert(ptn != NULL, "node should be registered");
 719           add_edge(n_ptn, ptn);
 720         }
 721       }
 722       break;
 723     }
 724     default: {
 725       // This method should be called only for EA specific nodes which may
 726       // miss some edges when they were created.
 727 #ifdef ASSERT
 728       n->dump(1);
 729 #endif
 730       guarantee(false, "unknown node");
 731     }
 732   }
 733   return;
 734 }
 735 
 736 void ConnectionGraph::add_call_node(CallNode* call) {
 737   assert(call->returns_pointer(), "only for call which returns pointer");
 738   uint call_idx = call->_idx;
 739   if (call->is_Allocate()) {
 740     Node* k = call->in(AllocateNode::KlassNode);
 741     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 742     assert(kt != NULL, "TypeKlassPtr  required.");
 743     ciKlass* cik = kt->klass();
 744     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 745     bool scalar_replaceable = true;
 746     if (call->is_AllocateArray()) {
 747       if (!cik->is_array_klass()) { // StressReflectiveCode
 748         es = PointsToNode::GlobalEscape;
 749       } else {
 750         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 751         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 752           // Not scalar replaceable if the length is not constant or too big.
 753           scalar_replaceable = false;
 754         }
 755       }
 756     } else {  // Allocate instance
 757       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 758          !cik->is_instance_klass() || // StressReflectiveCode
 759           cik->as_instance_klass()->has_finalizer()) {
 760         es = PointsToNode::GlobalEscape;
 761       }
 762     }
 763     add_java_object(call, es);
 764     PointsToNode* ptn = ptnode_adr(call_idx);
 765     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 766       ptn->set_scalar_replaceable(false);
 767     }
 768   } else if (call->is_CallStaticJava()) {
 769     // Call nodes could be different types:
 770     //
 771     // 1. CallDynamicJavaNode (what happened during call is unknown):
 772     //
 773     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 774     //
 775     //    - all oop arguments are escaping globally;
 776     //
 777     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 778     //
 779     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 780     //
 781     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 782     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 783     //      during call is returned;
 784     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 785     //      which are returned and does not escape during call;
 786     //
 787     //    - oop arguments escaping status is defined by bytecode analysis;
 788     //
 789     // For a static call, we know exactly what method is being called.
 790     // Use bytecode estimator to record whether the call's return value escapes.
 791     ciMethod* meth = call->as_CallJava()->method();
 792     if (meth == NULL) {
 793       const char* name = call->as_CallStaticJava()->_name;
 794       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 795       // Returns a newly allocated unescaped object.
 796       add_java_object(call, PointsToNode::NoEscape);
 797       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 798     } else {
 799       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 800       call_analyzer->copy_dependencies(_compile->dependencies());
 801       if (call_analyzer->is_return_allocated()) {
 802         // Returns a newly allocated unescaped object, simply
 803         // update dependency information.
 804         // Mark it as NoEscape so that objects referenced by
 805         // it's fields will be marked as NoEscape at least.
 806         add_java_object(call, PointsToNode::NoEscape);
 807         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 808       } else {
 809         // Determine whether any arguments are returned.
 810         const TypeTuple* d = call->tf()->domain();
 811         bool ret_arg = false;
 812         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 813           if (d->field_at(i)->isa_ptr() != NULL &&
 814               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 815             ret_arg = true;
 816             break;
 817           }
 818         }
 819         if (ret_arg) {
 820           add_local_var(call, PointsToNode::ArgEscape);
 821         } else {
 822           // Returns unknown object.
 823           map_ideal_node(call, phantom_obj);
 824         }
 825       }
 826     }
 827   } else {
 828     // An other type of call, assume the worst case:
 829     // returned value is unknown and globally escapes.
 830     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 831     map_ideal_node(call, phantom_obj);
 832   }
 833 }
 834 
 835 void ConnectionGraph::process_call_arguments(CallNode *call) {
 836     bool is_arraycopy = false;
 837     switch (call->Opcode()) {
 838 #ifdef ASSERT
 839     case Op_Allocate:
 840     case Op_AllocateArray:
 841     case Op_Lock:
 842     case Op_Unlock:
 843       assert(false, "should be done already");
 844       break;
 845 #endif
 846     case Op_CallLeafNoFP:
 847       is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
 848                       strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
 849       // fall through
 850     case Op_CallLeaf: {
 851       // Stub calls, objects do not escape but they are not scale replaceable.
 852       // Adjust escape state for outgoing arguments.
 853       const TypeTuple * d = call->tf()->domain();
 854       bool src_has_oops = false;
 855       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 856         const Type* at = d->field_at(i);
 857         Node *arg = call->in(i);
 858         const Type *aat = _igvn->type(arg);
 859         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 860           continue;
 861         if (arg->is_AddP()) {
 862           //
 863           // The inline_native_clone() case when the arraycopy stub is called
 864           // after the allocation before Initialize and CheckCastPP nodes.
 865           // Or normal arraycopy for object arrays case.
 866           //
 867           // Set AddP's base (Allocate) as not scalar replaceable since
 868           // pointer to the base (with offset) is passed as argument.
 869           //
 870           arg = get_addp_base(arg);
 871         }
 872         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 873         assert(arg_ptn != NULL, "should be registered");
 874         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 875         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 876           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 877                  aat->isa_ptr() != NULL, "expecting an Ptr");
 878           bool arg_has_oops = aat->isa_oopptr() &&
 879                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 880                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 881           if (i == TypeFunc::Parms) {
 882             src_has_oops = arg_has_oops;
 883           }
 884           //
 885           // src or dst could be j.l.Object when other is basic type array:
 886           //
 887           //   arraycopy(char[],0,Object*,0,size);
 888           //   arraycopy(Object*,0,char[],0,size);
 889           //
 890           // Don't add edges in such cases.
 891           //
 892           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 893                                        arg_has_oops && (i > TypeFunc::Parms);
 894 #ifdef ASSERT
 895           if (!(is_arraycopy ||
 896                 (call->as_CallLeaf()->_name != NULL &&
 897                  (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
 898                   strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
 899                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
 900                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
 901                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
 902                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0)
 903                   ))) {
 904             call->dump();
 905             fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
 906           }
 907 #endif
 908           // Always process arraycopy's destination object since
 909           // we need to add all possible edges to references in
 910           // source object.
 911           if (arg_esc >= PointsToNode::ArgEscape &&
 912               !arg_is_arraycopy_dest) {
 913             continue;
 914           }
 915           set_escape_state(arg_ptn, PointsToNode::ArgEscape);
 916           if (arg_is_arraycopy_dest) {
 917             Node* src = call->in(TypeFunc::Parms);
 918             if (src->is_AddP()) {
 919               src = get_addp_base(src);
 920             }
 921             PointsToNode* src_ptn = ptnode_adr(src->_idx);
 922             assert(src_ptn != NULL, "should be registered");
 923             if (arg_ptn != src_ptn) {
 924               // Special arraycopy edge:
 925               // A destination object's field can't have the source object
 926               // as base since objects escape states are not related.
 927               // Only escape state of destination object's fields affects
 928               // escape state of fields in source object.
 929               add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
 930             }
 931           }
 932         }
 933       }
 934       break;
 935     }
 936     case Op_CallStaticJava: {
 937       // For a static call, we know exactly what method is being called.
 938       // Use bytecode estimator to record the call's escape affects
 939 #ifdef ASSERT
 940       const char* name = call->as_CallStaticJava()->_name;
 941       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
 942 #endif
 943       ciMethod* meth = call->as_CallJava()->method();
 944       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
 945       // fall-through if not a Java method or no analyzer information
 946       if (call_analyzer != NULL) {
 947         PointsToNode* call_ptn = ptnode_adr(call->_idx);
 948         const TypeTuple* d = call->tf()->domain();
 949         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 950           const Type* at = d->field_at(i);
 951           int k = i - TypeFunc::Parms;
 952           Node* arg = call->in(i);
 953           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 954           if (at->isa_ptr() != NULL &&
 955               call_analyzer->is_arg_returned(k)) {
 956             // The call returns arguments.
 957             if (call_ptn != NULL) { // Is call's result used?
 958               assert(call_ptn->is_LocalVar(), "node should be registered");
 959               assert(arg_ptn != NULL, "node should be registered");
 960               add_edge(call_ptn, arg_ptn);
 961             }
 962           }
 963           if (at->isa_oopptr() != NULL &&
 964               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
 965             if (!call_analyzer->is_arg_stack(k)) {
 966               // The argument global escapes
 967               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
 968             } else {
 969               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
 970               if (!call_analyzer->is_arg_local(k)) {
 971                 // The argument itself doesn't escape, but any fields might
 972                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
 973               }
 974             }
 975           }
 976         }
 977         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
 978           // The call returns arguments.
 979           assert(call_ptn->edge_count() > 0, "sanity");
 980           if (!call_analyzer->is_return_local()) {
 981             // Returns also unknown object.
 982             add_edge(call_ptn, phantom_obj);
 983           }
 984         }
 985         break;
 986       }
 987     }
 988     default: {
 989       // Fall-through here if not a Java method or no analyzer information
 990       // or some other type of call, assume the worst case: all arguments
 991       // globally escape.
 992       const TypeTuple* d = call->tf()->domain();
 993       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 994         const Type* at = d->field_at(i);
 995         if (at->isa_oopptr() != NULL) {
 996           Node* arg = call->in(i);
 997           if (arg->is_AddP()) {
 998             arg = get_addp_base(arg);
 999           }
1000           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1001           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1002         }
1003       }
1004     }
1005   }
1006 }
1007 
1008 
1009 // Finish Graph construction.
1010 bool ConnectionGraph::complete_connection_graph(
1011                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1012                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1013                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1014                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1015   // Normally only 1-3 passes needed to build Connection Graph depending
1016   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1017   // Set limit to 20 to catch situation when something did go wrong and
1018   // bailout Escape Analysis.
1019   // Also limit build time to 30 sec (60 in debug VM).
1020 #define CG_BUILD_ITER_LIMIT 20
1021 #ifdef ASSERT
1022 #define CG_BUILD_TIME_LIMIT 60.0
1023 #else
1024 #define CG_BUILD_TIME_LIMIT 30.0
1025 #endif
1026 
1027   // Propagate GlobalEscape and ArgEscape escape states and check that
1028   // we still have non-escaping objects. The method pushs on _worklist
1029   // Field nodes which reference phantom_object.
1030   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1031     return false; // Nothing to do.
1032   }
1033   // Now propagate references to all JavaObject nodes.
1034   int java_objects_length = java_objects_worklist.length();
1035   elapsedTimer time;
1036   int new_edges = 1;
1037   int iterations = 0;
1038   do {
1039     while ((new_edges > 0) &&
1040           (iterations++   < CG_BUILD_ITER_LIMIT) &&
1041           (time.seconds() < CG_BUILD_TIME_LIMIT)) {
1042       time.start();
1043       new_edges = 0;
1044       // Propagate references to phantom_object for nodes pushed on _worklist
1045       // by find_non_escaped_objects() and find_field_value().
1046       new_edges += add_java_object_edges(phantom_obj, false);
1047       for (int next = 0; next < java_objects_length; ++next) {
1048         JavaObjectNode* ptn = java_objects_worklist.at(next);
1049         new_edges += add_java_object_edges(ptn, true);
1050       }
1051       if (new_edges > 0) {
1052         // Update escape states on each iteration if graph was updated.
1053         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1054           return false; // Nothing to do.
1055         }
1056       }
1057       time.stop();
1058     }
1059     if ((iterations     < CG_BUILD_ITER_LIMIT) &&
1060         (time.seconds() < CG_BUILD_TIME_LIMIT)) {
1061       time.start();
1062       // Find fields which have unknown value.
1063       int fields_length = oop_fields_worklist.length();
1064       for (int next = 0; next < fields_length; next++) {
1065         FieldNode* field = oop_fields_worklist.at(next);
1066         if (field->edge_count() == 0) {
1067           new_edges += find_field_value(field);
1068           // This code may added new edges to phantom_object.
1069           // Need an other cycle to propagate references to phantom_object.
1070         }
1071       }
1072       time.stop();
1073     } else {
1074       new_edges = 0; // Bailout
1075     }
1076   } while (new_edges > 0);
1077 
1078   // Bailout if passed limits.
1079   if ((iterations     >= CG_BUILD_ITER_LIMIT) ||
1080       (time.seconds() >= CG_BUILD_TIME_LIMIT)) {
1081     Compile* C = _compile;
1082     if (C->log() != NULL) {
1083       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1084       C->log()->text("%s", (iterations >= CG_BUILD_ITER_LIMIT) ? "iterations" : "time");
1085       C->log()->end_elem(" limit'");
1086     }
1087     assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1088            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
1089     // Possible infinite build_connection_graph loop,
1090     // bailout (no changes to ideal graph were made).
1091     return false;
1092   }
1093 #ifdef ASSERT
1094   if (Verbose && PrintEscapeAnalysis) {
1095     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1096                   iterations, nodes_size(), ptnodes_worklist.length());
1097   }
1098 #endif
1099 
1100 #undef CG_BUILD_ITER_LIMIT
1101 #undef CG_BUILD_TIME_LIMIT
1102 
1103   // Find fields initialized by NULL for non-escaping Allocations.
1104   int non_escaped_length = non_escaped_worklist.length();
1105   for (int next = 0; next < non_escaped_length; next++) {
1106     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1107     PointsToNode::EscapeState es = ptn->escape_state();
1108     assert(es <= PointsToNode::ArgEscape, "sanity");
1109     if (es == PointsToNode::NoEscape) {
1110       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1111         // Adding references to NULL object does not change escape states
1112         // since it does not escape. Also no fields are added to NULL object.
1113         add_java_object_edges(null_obj, false);
1114       }
1115     }
1116     Node* n = ptn->ideal_node();
1117     if (n->is_Allocate()) {
1118       // The object allocated by this Allocate node will never be
1119       // seen by an other thread. Mark it so that when it is
1120       // expanded no MemBarStoreStore is added.
1121       InitializeNode* ini = n->as_Allocate()->initialization();
1122       if (ini != NULL)
1123         ini->set_does_not_escape();
1124     }
1125   }
1126   return true; // Finished graph construction.
1127 }
1128 
1129 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1130 // and check that we still have non-escaping java objects.
1131 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1132                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1133   GrowableArray<PointsToNode*> escape_worklist;
1134   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1135   int ptnodes_length = ptnodes_worklist.length();
1136   for (int next = 0; next < ptnodes_length; ++next) {
1137     PointsToNode* ptn = ptnodes_worklist.at(next);
1138     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1139         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1140       escape_worklist.push(ptn);
1141     }
1142   }
1143   // Set escape states to referenced nodes (edges list).
1144   while (escape_worklist.length() > 0) {
1145     PointsToNode* ptn = escape_worklist.pop();
1146     PointsToNode::EscapeState es  = ptn->escape_state();
1147     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1148     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1149         es >= PointsToNode::ArgEscape) {
1150       // GlobalEscape or ArgEscape state of field means it has unknown value.
1151       if (add_edge(ptn, phantom_obj)) {
1152         // New edge was added
1153         add_field_uses_to_worklist(ptn->as_Field());
1154       }
1155     }
1156     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1157       PointsToNode* e = i.get();
1158       if (e->is_Arraycopy()) {
1159         assert(ptn->arraycopy_dst(), "sanity");
1160         // Propagate only fields escape state through arraycopy edge.
1161         if (e->fields_escape_state() < field_es) {
1162           set_fields_escape_state(e, field_es);
1163           escape_worklist.push(e);
1164         }
1165       } else if (es >= field_es) {
1166         // fields_escape_state is also set to 'es' if it is less than 'es'.
1167         if (e->escape_state() < es) {
1168           set_escape_state(e, es);
1169           escape_worklist.push(e);
1170         }
1171       } else {
1172         // Propagate field escape state.
1173         bool es_changed = false;
1174         if (e->fields_escape_state() < field_es) {
1175           set_fields_escape_state(e, field_es);
1176           es_changed = true;
1177         }
1178         if ((e->escape_state() < field_es) &&
1179             e->is_Field() && ptn->is_JavaObject() &&
1180             e->as_Field()->is_oop()) {
1181           // Change escape state of referenced fileds.
1182           set_escape_state(e, field_es);
1183           es_changed = true;;
1184         } else if (e->escape_state() < es) {
1185           set_escape_state(e, es);
1186           es_changed = true;;
1187         }
1188         if (es_changed) {
1189           escape_worklist.push(e);
1190         }
1191       }
1192     }
1193   }
1194   // Remove escaped objects from non_escaped list.
1195   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1196     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1197     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1198       non_escaped_worklist.delete_at(next);
1199     }
1200     if (ptn->escape_state() == PointsToNode::NoEscape) {
1201       // Find fields in non-escaped allocations which have unknown value.
1202       find_init_values(ptn, phantom_obj, NULL);
1203     }
1204   }
1205   return (non_escaped_worklist.length() > 0);
1206 }
1207 
1208 // Add all references to JavaObject node by walking over all uses.
1209 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1210   int new_edges = 0;
1211   if (populate_worklist) {
1212     // Populate _worklist by uses of jobj's uses.
1213     for (UseIterator i(jobj); i.has_next(); i.next()) {
1214       PointsToNode* use = i.get();
1215       if (use->is_Arraycopy())
1216         continue;
1217       add_uses_to_worklist(use);
1218       if (use->is_Field() && use->as_Field()->is_oop()) {
1219         // Put on worklist all field's uses (loads) and
1220         // related field nodes (same base and offset).
1221         add_field_uses_to_worklist(use->as_Field());
1222       }
1223     }
1224   }
1225   while(_worklist.length() > 0) {
1226     PointsToNode* use = _worklist.pop();
1227     if (PointsToNode::is_base_use(use)) {
1228       // Add reference from jobj to field and from field to jobj (field's base).
1229       use = PointsToNode::get_use_node(use)->as_Field();
1230       if (add_base(use->as_Field(), jobj)) {
1231         new_edges++;
1232       }
1233       continue;
1234     }
1235     assert(!use->is_JavaObject(), "sanity");
1236     if (use->is_Arraycopy()) {
1237       if (jobj == null_obj) // NULL object does not have field edges
1238         continue;
1239       // Added edge from Arraycopy node to arraycopy's source java object
1240       if (add_edge(use, jobj)) {
1241         jobj->set_arraycopy_src();
1242         new_edges++;
1243       }
1244       // and stop here.
1245       continue;
1246     }
1247     if (!add_edge(use, jobj))
1248       continue; // No new edge added, there was such edge already.
1249     new_edges++;
1250     if (use->is_LocalVar()) {
1251       add_uses_to_worklist(use);
1252       if (use->arraycopy_dst()) {
1253         for (EdgeIterator i(use); i.has_next(); i.next()) {
1254           PointsToNode* e = i.get();
1255           if (e->is_Arraycopy()) {
1256             if (jobj == null_obj) // NULL object does not have field edges
1257               continue;
1258             // Add edge from arraycopy's destination java object to Arraycopy node.
1259             if (add_edge(jobj, e)) {
1260               new_edges++;
1261               jobj->set_arraycopy_dst();
1262             }
1263           }
1264         }
1265       }
1266     } else {
1267       // Added new edge to stored in field values.
1268       // Put on worklist all field's uses (loads) and
1269       // related field nodes (same base and offset).
1270       add_field_uses_to_worklist(use->as_Field());
1271     }
1272   }
1273   return new_edges;
1274 }
1275 
1276 // Put on worklist all related field nodes.
1277 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1278   assert(field->is_oop(), "sanity");
1279   int offset = field->offset();
1280   add_uses_to_worklist(field);
1281   // Loop over all bases of this field and push on worklist Field nodes
1282   // with the same offset and base (since they may reference the same field).
1283   for (BaseIterator i(field); i.has_next(); i.next()) {
1284     PointsToNode* base = i.get();
1285     add_fields_to_worklist(field, base);
1286     // Check if the base was source object of arraycopy and go over arraycopy's
1287     // destination objects since values stored to a field of source object are
1288     // accessable by uses (loads) of fields of destination objects.
1289     if (base->arraycopy_src()) {
1290       for (UseIterator j(base); j.has_next(); j.next()) {
1291         PointsToNode* arycp = j.get();
1292         if (arycp->is_Arraycopy()) {
1293           for (UseIterator k(arycp); k.has_next(); k.next()) {
1294             PointsToNode* abase = k.get();
1295             if (abase->arraycopy_dst() && abase != base) {
1296               // Look for the same arracopy reference.
1297               add_fields_to_worklist(field, abase);
1298             }
1299           }
1300         }
1301       }
1302     }
1303   }
1304 }
1305 
1306 // Put on worklist all related field nodes.
1307 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1308   int offset = field->offset();
1309   if (base->is_LocalVar()) {
1310     for (UseIterator j(base); j.has_next(); j.next()) {
1311       PointsToNode* f = j.get();
1312       if (PointsToNode::is_base_use(f)) { // Field
1313         f = PointsToNode::get_use_node(f);
1314         if (f == field || !f->as_Field()->is_oop())
1315           continue;
1316         int offs = f->as_Field()->offset();
1317         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1318           add_to_worklist(f);
1319         }
1320       }
1321     }
1322   } else {
1323     assert(base->is_JavaObject(), "sanity");
1324     if (// Skip phantom_object since it is only used to indicate that
1325         // this field's content globally escapes.
1326         (base != phantom_obj) &&
1327         // NULL object node does not have fields.
1328         (base != null_obj)) {
1329       for (EdgeIterator i(base); i.has_next(); i.next()) {
1330         PointsToNode* f = i.get();
1331         // Skip arraycopy edge since store to destination object field
1332         // does not update value in source object field.
1333         if (f->is_Arraycopy()) {
1334           assert(base->arraycopy_dst(), "sanity");
1335           continue;
1336         }
1337         if (f == field || !f->as_Field()->is_oop())
1338           continue;
1339         int offs = f->as_Field()->offset();
1340         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1341           add_to_worklist(f);
1342         }
1343       }
1344     }
1345   }
1346 }
1347 
1348 // Find fields which have unknown value.
1349 int ConnectionGraph::find_field_value(FieldNode* field) {
1350   // Escaped fields should have init value already.
1351   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1352   int new_edges = 0;
1353   for (BaseIterator i(field); i.has_next(); i.next()) {
1354     PointsToNode* base = i.get();
1355     if (base->is_JavaObject()) {
1356       // Skip Allocate's fields which will be processed later.
1357       if (base->ideal_node()->is_Allocate())
1358         return 0;
1359       assert(base == null_obj, "only NULL ptr base expected here");
1360     }
1361   }
1362   if (add_edge(field, phantom_obj)) {
1363     // New edge was added
1364     new_edges++;
1365     add_field_uses_to_worklist(field);
1366   }
1367   return new_edges;
1368 }
1369 
1370 // Find fields initializing values for allocations.
1371 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1372   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1373   int new_edges = 0;
1374   Node* alloc = pta->ideal_node();
1375   if (init_val == phantom_obj) {
1376     // Do nothing for Allocate nodes since its fields values are "known".
1377     if (alloc->is_Allocate())
1378       return 0;
1379     assert(alloc->as_CallStaticJava(), "sanity");
1380 #ifdef ASSERT
1381     if (alloc->as_CallStaticJava()->method() == NULL) {
1382       const char* name = alloc->as_CallStaticJava()->_name;
1383       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1384     }
1385 #endif
1386     // Non-escaped allocation returned from Java or runtime call have
1387     // unknown values in fields.
1388     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1389       PointsToNode* field = i.get();
1390       if (field->is_Field() && field->as_Field()->is_oop()) {
1391         if (add_edge(field, phantom_obj)) {
1392           // New edge was added
1393           new_edges++;
1394           add_field_uses_to_worklist(field->as_Field());
1395         }
1396       }
1397     }
1398     return new_edges;
1399   }
1400   assert(init_val == null_obj, "sanity");
1401   // Do nothing for Call nodes since its fields values are unknown.
1402   if (!alloc->is_Allocate())
1403     return 0;
1404 
1405   InitializeNode* ini = alloc->as_Allocate()->initialization();
1406   Compile* C = _compile;
1407   bool visited_bottom_offset = false;
1408   GrowableArray<int> offsets_worklist;
1409 
1410   // Check if an oop field's initializing value is recorded and add
1411   // a corresponding NULL if field's value if it is not recorded.
1412   // Connection Graph does not record a default initialization by NULL
1413   // captured by Initialize node.
1414   //
1415   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1416     PointsToNode* field = i.get(); // Field (AddP)
1417     if (!field->is_Field() || !field->as_Field()->is_oop())
1418       continue; // Not oop field
1419     int offset = field->as_Field()->offset();
1420     if (offset == Type::OffsetBot) {
1421       if (!visited_bottom_offset) {
1422         // OffsetBot is used to reference array's element,
1423         // always add reference to NULL to all Field nodes since we don't
1424         // known which element is referenced.
1425         if (add_edge(field, null_obj)) {
1426           // New edge was added
1427           new_edges++;
1428           add_field_uses_to_worklist(field->as_Field());
1429           visited_bottom_offset = true;
1430         }
1431       }
1432     } else {
1433       // Check only oop fields.
1434       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1435       if (adr_type->isa_rawptr()) {
1436 #ifdef ASSERT
1437         // Raw pointers are used for initializing stores so skip it
1438         // since it should be recorded already
1439         Node* base = get_addp_base(field->ideal_node());
1440         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1441                (base->in(0) == alloc),"unexpected pointer type");
1442 #endif
1443         continue;
1444       }
1445       if (!offsets_worklist.contains(offset)) {
1446         offsets_worklist.append(offset);
1447         Node* value = NULL;
1448         if (ini != NULL) {
1449           // StoreP::memory_type() == T_ADDRESS
1450           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1451           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1452           // Make sure initializing store has the same type as this AddP.
1453           // This AddP may reference non existing field because it is on a
1454           // dead branch of bimorphic call which is not eliminated yet.
1455           if (store != NULL && store->is_Store() &&
1456               store->as_Store()->memory_type() == ft) {
1457             value = store->in(MemNode::ValueIn);
1458 #ifdef ASSERT
1459             if (VerifyConnectionGraph) {
1460               // Verify that AddP already points to all objects the value points to.
1461               PointsToNode* val = ptnode_adr(value->_idx);
1462               assert((val != NULL), "should be processed already");
1463               PointsToNode* missed_obj = NULL;
1464               if (val->is_JavaObject()) {
1465                 if (!field->points_to(val->as_JavaObject())) {
1466                   missed_obj = val;
1467                 }
1468               } else {
1469                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1470                   tty->print_cr("----------init store has invalid value -----");
1471                   store->dump();
1472                   val->dump();
1473                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1474                 }
1475                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1476                   PointsToNode* obj = j.get();
1477                   if (obj->is_JavaObject()) {
1478                     if (!field->points_to(obj->as_JavaObject())) {
1479                       missed_obj = obj;
1480                       break;
1481                     }
1482                   }
1483                 }
1484               }
1485               if (missed_obj != NULL) {
1486                 tty->print_cr("----------field---------------------------------");
1487                 field->dump();
1488                 tty->print_cr("----------missed referernce to object-----------");
1489                 missed_obj->dump();
1490                 tty->print_cr("----------object referernced by init store -----");
1491                 store->dump();
1492                 val->dump();
1493                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1494               }
1495             }
1496 #endif
1497           } else {
1498             // There could be initializing stores which follow allocation.
1499             // For example, a volatile field store is not collected
1500             // by Initialize node.
1501             //
1502             // Need to check for dependent loads to separate such stores from
1503             // stores which follow loads. For now, add initial value NULL so
1504             // that compare pointers optimization works correctly.
1505           }
1506         }
1507         if (value == NULL) {
1508           // A field's initializing value was not recorded. Add NULL.
1509           if (add_edge(field, null_obj)) {
1510             // New edge was added
1511             new_edges++;
1512             add_field_uses_to_worklist(field->as_Field());
1513           }
1514         }
1515       }
1516     }
1517   }
1518   return new_edges;
1519 }
1520 
1521 // Adjust scalar_replaceable state after Connection Graph is built.
1522 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1523   // Search for non-escaping objects which are not scalar replaceable
1524   // and mark them to propagate the state to referenced objects.
1525 
1526   // 1. An object is not scalar replaceable if the field into which it is
1527   // stored has unknown offset (stored into unknown element of an array).
1528   //
1529   for (UseIterator i(jobj); i.has_next(); i.next()) {
1530     PointsToNode* use = i.get();
1531     assert(!use->is_Arraycopy(), "sanity");
1532     if (use->is_Field()) {
1533       FieldNode* field = use->as_Field();
1534       assert(field->is_oop() && field->scalar_replaceable() &&
1535              field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
1536       if (field->offset() == Type::OffsetBot) {
1537         jobj->set_scalar_replaceable(false);
1538         return;
1539       }
1540     }
1541     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1542     // 2. An object is not scalar replaceable if it is merged with other objects.
1543     for (EdgeIterator j(use); j.has_next(); j.next()) {
1544       PointsToNode* ptn = j.get();
1545       if (ptn->is_JavaObject() && ptn != jobj) {
1546         // Mark all objects.
1547         jobj->set_scalar_replaceable(false);
1548          ptn->set_scalar_replaceable(false);
1549       }
1550     }
1551     if (!jobj->scalar_replaceable()) {
1552       return;
1553     }
1554   }
1555 
1556   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1557     // Non-escaping object node should point only to field nodes.
1558     FieldNode* field = j.get()->as_Field();
1559     int offset = field->as_Field()->offset();
1560 
1561     // 3. An object is not scalar replaceable if it has a field with unknown
1562     // offset (array's element is accessed in loop).
1563     if (offset == Type::OffsetBot) {
1564       jobj->set_scalar_replaceable(false);
1565       return;
1566     }
1567     // 4. Currently an object is not scalar replaceable if a LoadStore node
1568     // access its field since the field value is unknown after it.
1569     //
1570     Node* n = field->ideal_node();
1571     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1572       if (n->fast_out(i)->is_LoadStore()) {
1573         jobj->set_scalar_replaceable(false);
1574         return;
1575       }
1576     }
1577 
1578     // 5. Or the address may point to more then one object. This may produce
1579     // the false positive result (set not scalar replaceable)
1580     // since the flow-insensitive escape analysis can't separate
1581     // the case when stores overwrite the field's value from the case
1582     // when stores happened on different control branches.
1583     //
1584     // Note: it will disable scalar replacement in some cases:
1585     //
1586     //    Point p[] = new Point[1];
1587     //    p[0] = new Point(); // Will be not scalar replaced
1588     //
1589     // but it will save us from incorrect optimizations in next cases:
1590     //
1591     //    Point p[] = new Point[1];
1592     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1593     //
1594     if (field->base_count() > 1) {
1595       for (BaseIterator i(field); i.has_next(); i.next()) {
1596         PointsToNode* base = i.get();
1597         // Don't take into account LocalVar nodes which
1598         // may point to only one object which should be also
1599         // this field's base by now.
1600         if (base->is_JavaObject() && base != jobj) {
1601           // Mark all bases.
1602           jobj->set_scalar_replaceable(false);
1603           base->set_scalar_replaceable(false);
1604         }
1605       }
1606     }
1607   }
1608 }
1609 
1610 #ifdef ASSERT
1611 void ConnectionGraph::verify_connection_graph(
1612                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1613                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1614                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1615                          GrowableArray<Node*>& addp_worklist) {
1616   // Verify that graph is complete - no new edges could be added.
1617   int java_objects_length = java_objects_worklist.length();
1618   int non_escaped_length  = non_escaped_worklist.length();
1619   int new_edges = 0;
1620   for (int next = 0; next < java_objects_length; ++next) {
1621     JavaObjectNode* ptn = java_objects_worklist.at(next);
1622     new_edges += add_java_object_edges(ptn, true);
1623   }
1624   assert(new_edges == 0, "graph was not complete");
1625   // Verify that escape state is final.
1626   int length = non_escaped_worklist.length();
1627   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1628   assert((non_escaped_length == non_escaped_worklist.length()) &&
1629          (non_escaped_length == length) &&
1630          (_worklist.length() == 0), "escape state was not final");
1631 
1632   // Verify fields information.
1633   int addp_length = addp_worklist.length();
1634   for (int next = 0; next < addp_length; ++next ) {
1635     Node* n = addp_worklist.at(next);
1636     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1637     if (field->is_oop()) {
1638       // Verify that field has all bases
1639       Node* base = get_addp_base(n);
1640       PointsToNode* ptn = ptnode_adr(base->_idx);
1641       if (ptn->is_JavaObject()) {
1642         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1643       } else {
1644         assert(ptn->is_LocalVar(), "sanity");
1645         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1646           PointsToNode* e = i.get();
1647           if (e->is_JavaObject()) {
1648             assert(field->has_base(e->as_JavaObject()), "sanity");
1649           }
1650         }
1651       }
1652       // Verify that all fields have initializing values.
1653       if (field->edge_count() == 0) {
1654         tty->print_cr("----------field does not have references----------");
1655         field->dump();
1656         for (BaseIterator i(field); i.has_next(); i.next()) {
1657           PointsToNode* base = i.get();
1658           tty->print_cr("----------field has next base---------------------");
1659           base->dump();
1660           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1661             tty->print_cr("----------base has fields-------------------------");
1662             for (EdgeIterator j(base); j.has_next(); j.next()) {
1663               j.get()->dump();
1664             }
1665             tty->print_cr("----------base has references---------------------");
1666             for (UseIterator j(base); j.has_next(); j.next()) {
1667               j.get()->dump();
1668             }
1669           }
1670         }
1671         for (UseIterator i(field); i.has_next(); i.next()) {
1672           i.get()->dump();
1673         }
1674         assert(field->edge_count() > 0, "sanity");
1675       }
1676     }
1677   }
1678 }
1679 #endif
1680 
1681 // Optimize ideal graph.
1682 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1683                                            GrowableArray<Node*>& storestore_worklist) {
1684   Compile* C = _compile;
1685   PhaseIterGVN* igvn = _igvn;
1686   if (EliminateLocks) {
1687     // Mark locks before changing ideal graph.
1688     int cnt = C->macro_count();
1689     for( int i=0; i < cnt; i++ ) {
1690       Node *n = C->macro_node(i);
1691       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1692         AbstractLockNode* alock = n->as_AbstractLock();
1693         if (!alock->is_non_esc_obj()) {
1694           if (not_global_escape(alock->obj_node())) {
1695             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1696             // The lock could be marked eliminated by lock coarsening
1697             // code during first IGVN before EA. Replace coarsened flag
1698             // to eliminate all associated locks/unlocks.
1699             alock->set_non_esc_obj();
1700           }
1701         }
1702       }
1703     }
1704   }
1705 
1706   if (OptimizePtrCompare) {
1707     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1708     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1709     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1710     // Optimize objects compare.
1711     while (ptr_cmp_worklist.length() != 0) {
1712       Node *n = ptr_cmp_worklist.pop();
1713       Node *res = optimize_ptr_compare(n);
1714       if (res != NULL) {
1715 #ifndef PRODUCT
1716         if (PrintOptimizePtrCompare) {
1717           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1718           if (Verbose) {
1719             n->dump(1);
1720           }
1721         }
1722 #endif
1723         igvn->replace_node(n, res);
1724       }
1725     }
1726     // cleanup
1727     if (_pcmp_neq->outcnt() == 0)
1728       igvn->hash_delete(_pcmp_neq);
1729     if (_pcmp_eq->outcnt()  == 0)
1730       igvn->hash_delete(_pcmp_eq);
1731   }
1732 
1733   // For MemBarStoreStore nodes added in library_call.cpp, check
1734   // escape status of associated AllocateNode and optimize out
1735   // MemBarStoreStore node if the allocated object never escapes.
1736   while (storestore_worklist.length() != 0) {
1737     Node *n = storestore_worklist.pop();
1738     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1739     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1740     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1741     if (not_global_escape(alloc)) {
1742       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1743       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1744       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1745       igvn->register_new_node_with_optimizer(mb);
1746       igvn->replace_node(storestore, mb);
1747     }
1748   }
1749 }
1750 
1751 // Optimize objects compare.
1752 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1753   assert(OptimizePtrCompare, "sanity");
1754   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1755   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1756   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1757   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1758   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1759   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1760 
1761   // Check simple cases first.
1762   if (jobj1 != NULL) {
1763     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1764       if (jobj1 == jobj2) {
1765         // Comparing the same not escaping object.
1766         return _pcmp_eq;
1767       }
1768       Node* obj = jobj1->ideal_node();
1769       // Comparing not escaping allocation.
1770       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1771           !ptn2->points_to(jobj1)) {
1772         return _pcmp_neq; // This includes nullness check.
1773       }
1774     }
1775   }
1776   if (jobj2 != NULL) {
1777     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1778       Node* obj = jobj2->ideal_node();
1779       // Comparing not escaping allocation.
1780       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1781           !ptn1->points_to(jobj2)) {
1782         return _pcmp_neq; // This includes nullness check.
1783       }
1784     }
1785   }
1786   if (jobj1 != NULL && jobj1 != phantom_obj &&
1787       jobj2 != NULL && jobj2 != phantom_obj &&
1788       jobj1->ideal_node()->is_Con() &&
1789       jobj2->ideal_node()->is_Con()) {
1790     // Klass or String constants compare. Need to be careful with
1791     // compressed pointers - compare types of ConN and ConP instead of nodes.
1792     const Type* t1 = jobj1->ideal_node()->bottom_type()->make_ptr();
1793     const Type* t2 = jobj2->ideal_node()->bottom_type()->make_ptr();
1794     assert(t1 != NULL && t2 != NULL, "sanity");
1795     if (t1->make_ptr() == t2->make_ptr()) {
1796       return _pcmp_eq;
1797     } else {
1798       return _pcmp_neq;
1799     }
1800   }
1801   if (ptn1->meet(ptn2)) {
1802     return NULL; // Sets are not disjoint
1803   }
1804 
1805   // Sets are disjoint.
1806   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1807   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1808   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1809   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1810   if (set1_has_unknown_ptr && set2_has_null_ptr ||
1811       set2_has_unknown_ptr && set1_has_null_ptr) {
1812     // Check nullness of unknown object.
1813     return NULL;
1814   }
1815 
1816   // Disjointness by itself is not sufficient since
1817   // alias analysis is not complete for escaped objects.
1818   // Disjoint sets are definitely unrelated only when
1819   // at least one set has only not escaping allocations.
1820   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1821     if (ptn1->non_escaping_allocation()) {
1822       return _pcmp_neq;
1823     }
1824   }
1825   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
1826     if (ptn2->non_escaping_allocation()) {
1827       return _pcmp_neq;
1828     }
1829   }
1830   return NULL;
1831 }
1832 
1833 // Connection Graph constuction functions.
1834 
1835 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
1836   PointsToNode* ptadr = _nodes.at(n->_idx);
1837   if (ptadr != NULL) {
1838     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
1839     return;
1840   }
1841   Compile* C = _compile;
1842   ptadr = new (C->comp_arena()) LocalVarNode(C, n, es);
1843   _nodes.at_put(n->_idx, ptadr);
1844 }
1845 
1846 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
1847   PointsToNode* ptadr = _nodes.at(n->_idx);
1848   if (ptadr != NULL) {
1849     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
1850     return;
1851   }
1852   Compile* C = _compile;
1853   ptadr = new (C->comp_arena()) JavaObjectNode(C, n, es);
1854   _nodes.at_put(n->_idx, ptadr);
1855 }
1856 
1857 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
1858   PointsToNode* ptadr = _nodes.at(n->_idx);
1859   if (ptadr != NULL) {
1860     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
1861     return;
1862   }
1863   bool unsafe = false;
1864   bool is_oop = is_oop_field(n, offset, &unsafe);
1865   if (unsafe) {
1866     es = PointsToNode::GlobalEscape;
1867   }
1868   Compile* C = _compile;
1869   FieldNode* field = new (C->comp_arena()) FieldNode(C, n, es, offset, is_oop);
1870   _nodes.at_put(n->_idx, field);
1871 }
1872 
1873 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
1874                                     PointsToNode* src, PointsToNode* dst) {
1875   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
1876   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
1877   PointsToNode* ptadr = _nodes.at(n->_idx);
1878   if (ptadr != NULL) {
1879     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
1880     return;
1881   }
1882   Compile* C = _compile;
1883   ptadr = new (C->comp_arena()) ArraycopyNode(C, n, es);
1884   _nodes.at_put(n->_idx, ptadr);
1885   // Add edge from arraycopy node to source object.
1886   (void)add_edge(ptadr, src);
1887   src->set_arraycopy_src();
1888   // Add edge from destination object to arraycopy node.
1889   (void)add_edge(dst, ptadr);
1890   dst->set_arraycopy_dst();
1891 }
1892 
1893 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
1894   const Type* adr_type = n->as_AddP()->bottom_type();
1895   BasicType bt = T_INT;
1896   if (offset == Type::OffsetBot) {
1897     // Check only oop fields.
1898     if (!adr_type->isa_aryptr() ||
1899         (adr_type->isa_aryptr()->klass() == NULL) ||
1900          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
1901       // OffsetBot is used to reference array's element. Ignore first AddP.
1902       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
1903         bt = T_OBJECT;
1904       }
1905     }
1906   } else if (offset != oopDesc::klass_offset_in_bytes()) {
1907     if (adr_type->isa_instptr()) {
1908       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
1909       if (field != NULL) {
1910         bt = field->layout_type();
1911       } else {
1912         // Check for unsafe oop field access
1913         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1914           int opcode = n->fast_out(i)->Opcode();
1915           if (opcode == Op_StoreP || opcode == Op_LoadP ||
1916               opcode == Op_StoreN || opcode == Op_LoadN) {
1917             bt = T_OBJECT;
1918             (*unsafe) = true;
1919             break;
1920           }
1921         }
1922       }
1923     } else if (adr_type->isa_aryptr()) {
1924       if (offset == arrayOopDesc::length_offset_in_bytes()) {
1925         // Ignore array length load.
1926       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
1927         // Ignore first AddP.
1928       } else {
1929         const Type* elemtype = adr_type->isa_aryptr()->elem();
1930         bt = elemtype->array_element_basic_type();
1931       }
1932     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
1933       // Allocation initialization, ThreadLocal field access, unsafe access
1934       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1935         int opcode = n->fast_out(i)->Opcode();
1936         if (opcode == Op_StoreP || opcode == Op_LoadP ||
1937             opcode == Op_StoreN || opcode == Op_LoadN) {
1938           bt = T_OBJECT;
1939           break;
1940         }
1941       }
1942     }
1943   }
1944   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
1945 }
1946 
1947 // Returns unique pointed java object or NULL.
1948 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
1949   assert(!_collecting, "should not call when contructed graph");
1950   // If the node was created after the escape computation we can't answer.
1951   uint idx = n->_idx;
1952   if (idx >= nodes_size()) {
1953     return NULL;
1954   }
1955   PointsToNode* ptn = ptnode_adr(idx);
1956   if (ptn->is_JavaObject()) {
1957     return ptn->as_JavaObject();
1958   }
1959   assert(ptn->is_LocalVar(), "sanity");
1960   // Check all java objects it points to.
1961   JavaObjectNode* jobj = NULL;
1962   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1963     PointsToNode* e = i.get();
1964     if (e->is_JavaObject()) {
1965       if (jobj == NULL) {
1966         jobj = e->as_JavaObject();
1967       } else if (jobj != e) {
1968         return NULL;
1969       }
1970     }
1971   }
1972   return jobj;
1973 }
1974 
1975 // Return true if this node points only to non-escaping allocations.
1976 bool PointsToNode::non_escaping_allocation() {
1977   if (is_JavaObject()) {
1978     Node* n = ideal_node();
1979     if (n->is_Allocate() || n->is_CallStaticJava()) {
1980       return (escape_state() == PointsToNode::NoEscape);
1981     } else {
1982       return false;
1983     }
1984   }
1985   assert(is_LocalVar(), "sanity");
1986   // Check all java objects it points to.
1987   for (EdgeIterator i(this); i.has_next(); i.next()) {
1988     PointsToNode* e = i.get();
1989     if (e->is_JavaObject()) {
1990       Node* n = e->ideal_node();
1991       if ((e->escape_state() != PointsToNode::NoEscape) ||
1992           !(n->is_Allocate() || n->is_CallStaticJava())) {
1993         return false;
1994       }
1995     }
1996   }
1997   return true;
1998 }
1999 
2000 // Return true if we know the node does not escape globally.
2001 bool ConnectionGraph::not_global_escape(Node *n) {
2002   assert(!_collecting, "should not call during graph construction");
2003   // If the node was created after the escape computation we can't answer.
2004   uint idx = n->_idx;
2005   if (idx >= nodes_size()) {
2006     return false;
2007   }
2008   PointsToNode* ptn = ptnode_adr(idx);
2009   PointsToNode::EscapeState es = ptn->escape_state();
2010   // If we have already computed a value, return it.
2011   if (es >= PointsToNode::GlobalEscape)
2012     return false;
2013   if (ptn->is_JavaObject()) {
2014     return true; // (es < PointsToNode::GlobalEscape);
2015   }
2016   assert(ptn->is_LocalVar(), "sanity");
2017   // Check all java objects it points to.
2018   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2019     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2020       return false;
2021   }
2022   return true;
2023 }
2024 
2025 
2026 // Helper functions
2027 
2028 // Return true if this node points to specified node or nodes it points to.
2029 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2030   if (is_JavaObject()) {
2031     return (this == ptn);
2032   }
2033   assert(is_LocalVar() || is_Field(), "sanity");
2034   for (EdgeIterator i(this); i.has_next(); i.next()) {
2035     if (i.get() == ptn)
2036       return true;
2037   }
2038   return false;
2039 }
2040 
2041 // Return true if one node points to an other.
2042 bool PointsToNode::meet(PointsToNode* ptn) {
2043   if (this == ptn) {
2044     return true;
2045   } else if (ptn->is_JavaObject()) {
2046     return this->points_to(ptn->as_JavaObject());
2047   } else if (this->is_JavaObject()) {
2048     return ptn->points_to(this->as_JavaObject());
2049   }
2050   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2051   int ptn_count =  ptn->edge_count();
2052   for (EdgeIterator i(this); i.has_next(); i.next()) {
2053     PointsToNode* this_e = i.get();
2054     for (int j = 0; j < ptn_count; j++) {
2055       if (this_e == ptn->edge(j))
2056         return true;
2057     }
2058   }
2059   return false;
2060 }
2061 
2062 #ifdef ASSERT
2063 // Return true if bases point to this java object.
2064 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2065   for (BaseIterator i(this); i.has_next(); i.next()) {
2066     if (i.get() == jobj)
2067       return true;
2068   }
2069   return false;
2070 }
2071 #endif
2072 
2073 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2074   const Type *adr_type = phase->type(adr);
2075   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2076       adr->in(AddPNode::Address)->is_Proj() &&
2077       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2078     // We are computing a raw address for a store captured by an Initialize
2079     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2080     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2081     assert(offs != Type::OffsetBot ||
2082            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2083            "offset must be a constant or it is initialization of array");
2084     return offs;
2085   }
2086   const TypePtr *t_ptr = adr_type->isa_ptr();
2087   assert(t_ptr != NULL, "must be a pointer type");
2088   return t_ptr->offset();
2089 }
2090 
2091 Node* ConnectionGraph::get_addp_base(Node *addp) {
2092   assert(addp->is_AddP(), "must be AddP");
2093   //
2094   // AddP cases for Base and Address inputs:
2095   // case #1. Direct object's field reference:
2096   //     Allocate
2097   //       |
2098   //     Proj #5 ( oop result )
2099   //       |
2100   //     CheckCastPP (cast to instance type)
2101   //      | |
2102   //     AddP  ( base == address )
2103   //
2104   // case #2. Indirect object's field reference:
2105   //      Phi
2106   //       |
2107   //     CastPP (cast to instance type)
2108   //      | |
2109   //     AddP  ( base == address )
2110   //
2111   // case #3. Raw object's field reference for Initialize node:
2112   //      Allocate
2113   //        |
2114   //      Proj #5 ( oop result )
2115   //  top   |
2116   //     \  |
2117   //     AddP  ( base == top )
2118   //
2119   // case #4. Array's element reference:
2120   //   {CheckCastPP | CastPP}
2121   //     |  | |
2122   //     |  AddP ( array's element offset )
2123   //     |  |
2124   //     AddP ( array's offset )
2125   //
2126   // case #5. Raw object's field reference for arraycopy stub call:
2127   //          The inline_native_clone() case when the arraycopy stub is called
2128   //          after the allocation before Initialize and CheckCastPP nodes.
2129   //      Allocate
2130   //        |
2131   //      Proj #5 ( oop result )
2132   //       | |
2133   //       AddP  ( base == address )
2134   //
2135   // case #6. Constant Pool, ThreadLocal, CastX2P or
2136   //          Raw object's field reference:
2137   //      {ConP, ThreadLocal, CastX2P, raw Load}
2138   //  top   |
2139   //     \  |
2140   //     AddP  ( base == top )
2141   //
2142   // case #7. Klass's field reference.
2143   //      LoadKlass
2144   //       | |
2145   //       AddP  ( base == address )
2146   //
2147   // case #8. narrow Klass's field reference.
2148   //      LoadNKlass
2149   //       |
2150   //      DecodeN
2151   //       | |
2152   //       AddP  ( base == address )
2153   //
2154   Node *base = addp->in(AddPNode::Base);
2155   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
2156     base = addp->in(AddPNode::Address);
2157     while (base->is_AddP()) {
2158       // Case #6 (unsafe access) may have several chained AddP nodes.
2159       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2160       base = base->in(AddPNode::Address);
2161     }
2162     Node* uncast_base = base->uncast();
2163     int opcode = uncast_base->Opcode();
2164     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2165            opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2166            (uncast_base->is_Mem() && uncast_base->bottom_type() == TypeRawPtr::NOTNULL) ||
2167            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
2168   }
2169   return base;
2170 }
2171 
2172 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2173   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2174   Node* addp2 = addp->raw_out(0);
2175   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2176       addp2->in(AddPNode::Base) == n &&
2177       addp2->in(AddPNode::Address) == addp) {
2178     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2179     //
2180     // Find array's offset to push it on worklist first and
2181     // as result process an array's element offset first (pushed second)
2182     // to avoid CastPP for the array's offset.
2183     // Otherwise the inserted CastPP (LocalVar) will point to what
2184     // the AddP (Field) points to. Which would be wrong since
2185     // the algorithm expects the CastPP has the same point as
2186     // as AddP's base CheckCastPP (LocalVar).
2187     //
2188     //    ArrayAllocation
2189     //     |
2190     //    CheckCastPP
2191     //     |
2192     //    memProj (from ArrayAllocation CheckCastPP)
2193     //     |  ||
2194     //     |  ||   Int (element index)
2195     //     |  ||    |   ConI (log(element size))
2196     //     |  ||    |   /
2197     //     |  ||   LShift
2198     //     |  ||  /
2199     //     |  AddP (array's element offset)
2200     //     |  |
2201     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2202     //     | / /
2203     //     AddP (array's offset)
2204     //      |
2205     //     Load/Store (memory operation on array's element)
2206     //
2207     return addp2;
2208   }
2209   return NULL;
2210 }
2211 
2212 //
2213 // Adjust the type and inputs of an AddP which computes the
2214 // address of a field of an instance
2215 //
2216 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2217   PhaseGVN* igvn = _igvn;
2218   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2219   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2220   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2221   if (t == NULL) {
2222     // We are computing a raw address for a store captured by an Initialize
2223     // compute an appropriate address type (cases #3 and #5).
2224     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2225     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2226     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2227     assert(offs != Type::OffsetBot, "offset must be a constant");
2228     t = base_t->add_offset(offs)->is_oopptr();
2229   }
2230   int inst_id =  base_t->instance_id();
2231   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2232                              "old type must be non-instance or match new type");
2233 
2234   // The type 't' could be subclass of 'base_t'.
2235   // As result t->offset() could be large then base_t's size and it will
2236   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2237   // constructor verifies correctness of the offset.
2238   //
2239   // It could happened on subclass's branch (from the type profiling
2240   // inlining) which was not eliminated during parsing since the exactness
2241   // of the allocation type was not propagated to the subclass type check.
2242   //
2243   // Or the type 't' could be not related to 'base_t' at all.
2244   // It could happened when CHA type is different from MDO type on a dead path
2245   // (for example, from instanceof check) which is not collapsed during parsing.
2246   //
2247   // Do nothing for such AddP node and don't process its users since
2248   // this code branch will go away.
2249   //
2250   if (!t->is_known_instance() &&
2251       !base_t->klass()->is_subtype_of(t->klass())) {
2252      return false; // bail out
2253   }
2254   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2255   // Do NOT remove the next line: ensure a new alias index is allocated
2256   // for the instance type. Note: C++ will not remove it since the call
2257   // has side effect.
2258   int alias_idx = _compile->get_alias_index(tinst);
2259   igvn->set_type(addp, tinst);
2260   // record the allocation in the node map
2261   set_map(addp, get_map(base->_idx));
2262   // Set addp's Base and Address to 'base'.
2263   Node *abase = addp->in(AddPNode::Base);
2264   Node *adr   = addp->in(AddPNode::Address);
2265   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2266       adr->in(0)->_idx == (uint)inst_id) {
2267     // Skip AddP cases #3 and #5.
2268   } else {
2269     assert(!abase->is_top(), "sanity"); // AddP case #3
2270     if (abase != base) {
2271       igvn->hash_delete(addp);
2272       addp->set_req(AddPNode::Base, base);
2273       if (abase == adr) {
2274         addp->set_req(AddPNode::Address, base);
2275       } else {
2276         // AddP case #4 (adr is array's element offset AddP node)
2277 #ifdef ASSERT
2278         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2279         assert(adr->is_AddP() && atype != NULL &&
2280                atype->instance_id() == inst_id, "array's element offset should be processed first");
2281 #endif
2282       }
2283       igvn->hash_insert(addp);
2284     }
2285   }
2286   // Put on IGVN worklist since at least addp's type was changed above.
2287   record_for_optimizer(addp);
2288   return true;
2289 }
2290 
2291 //
2292 // Create a new version of orig_phi if necessary. Returns either the newly
2293 // created phi or an existing phi.  Sets create_new to indicate whether a new
2294 // phi was created.  Cache the last newly created phi in the node map.
2295 //
2296 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2297   Compile *C = _compile;
2298   PhaseGVN* igvn = _igvn;
2299   new_created = false;
2300   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2301   // nothing to do if orig_phi is bottom memory or matches alias_idx
2302   if (phi_alias_idx == alias_idx) {
2303     return orig_phi;
2304   }
2305   // Have we recently created a Phi for this alias index?
2306   PhiNode *result = get_map_phi(orig_phi->_idx);
2307   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2308     return result;
2309   }
2310   // Previous check may fail when the same wide memory Phi was split into Phis
2311   // for different memory slices. Search all Phis for this region.
2312   if (result != NULL) {
2313     Node* region = orig_phi->in(0);
2314     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2315       Node* phi = region->fast_out(i);
2316       if (phi->is_Phi() &&
2317           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2318         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2319         return phi->as_Phi();
2320       }
2321     }
2322   }
2323   if ((int) (C->live_nodes() + 2*NodeLimitFudgeFactor) > MaxNodeLimit) {
2324     if (C->do_escape_analysis() == true && !C->failing()) {
2325       // Retry compilation without escape analysis.
2326       // If this is the first failure, the sentinel string will "stick"
2327       // to the Compile object, and the C2Compiler will see it and retry.
2328       C->record_failure(C2Compiler::retry_no_escape_analysis());
2329     }
2330     return NULL;
2331   }
2332   orig_phi_worklist.append_if_missing(orig_phi);
2333   const TypePtr *atype = C->get_adr_type(alias_idx);
2334   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2335   C->copy_node_notes_to(result, orig_phi);
2336   igvn->set_type(result, result->bottom_type());
2337   record_for_optimizer(result);
2338   set_map(orig_phi, result);
2339   new_created = true;
2340   return result;
2341 }
2342 
2343 //
2344 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2345 // specified alias index.
2346 //
2347 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2348   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2349   Compile *C = _compile;
2350   PhaseGVN* igvn = _igvn;
2351   bool new_phi_created;
2352   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2353   if (!new_phi_created) {
2354     return result;
2355   }
2356   GrowableArray<PhiNode *>  phi_list;
2357   GrowableArray<uint>  cur_input;
2358   PhiNode *phi = orig_phi;
2359   uint idx = 1;
2360   bool finished = false;
2361   while(!finished) {
2362     while (idx < phi->req()) {
2363       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2364       if (mem != NULL && mem->is_Phi()) {
2365         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2366         if (new_phi_created) {
2367           // found an phi for which we created a new split, push current one on worklist and begin
2368           // processing new one
2369           phi_list.push(phi);
2370           cur_input.push(idx);
2371           phi = mem->as_Phi();
2372           result = newphi;
2373           idx = 1;
2374           continue;
2375         } else {
2376           mem = newphi;
2377         }
2378       }
2379       if (C->failing()) {
2380         return NULL;
2381       }
2382       result->set_req(idx++, mem);
2383     }
2384 #ifdef ASSERT
2385     // verify that the new Phi has an input for each input of the original
2386     assert( phi->req() == result->req(), "must have same number of inputs.");
2387     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2388 #endif
2389     // Check if all new phi's inputs have specified alias index.
2390     // Otherwise use old phi.
2391     for (uint i = 1; i < phi->req(); i++) {
2392       Node* in = result->in(i);
2393       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2394     }
2395     // we have finished processing a Phi, see if there are any more to do
2396     finished = (phi_list.length() == 0 );
2397     if (!finished) {
2398       phi = phi_list.pop();
2399       idx = cur_input.pop();
2400       PhiNode *prev_result = get_map_phi(phi->_idx);
2401       prev_result->set_req(idx++, result);
2402       result = prev_result;
2403     }
2404   }
2405   return result;
2406 }
2407 
2408 //
2409 // The next methods are derived from methods in MemNode.
2410 //
2411 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2412   Node *mem = mmem;
2413   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2414   // means an array I have not precisely typed yet.  Do not do any
2415   // alias stuff with it any time soon.
2416   if (toop->base() != Type::AnyPtr &&
2417       !(toop->klass() != NULL &&
2418         toop->klass()->is_java_lang_Object() &&
2419         toop->offset() == Type::OffsetBot)) {
2420     mem = mmem->memory_at(alias_idx);
2421     // Update input if it is progress over what we have now
2422   }
2423   return mem;
2424 }
2425 
2426 //
2427 // Move memory users to their memory slices.
2428 //
2429 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2430   Compile* C = _compile;
2431   PhaseGVN* igvn = _igvn;
2432   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2433   assert(tp != NULL, "ptr type");
2434   int alias_idx = C->get_alias_index(tp);
2435   int general_idx = C->get_general_index(alias_idx);
2436 
2437   // Move users first
2438   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2439     Node* use = n->fast_out(i);
2440     if (use->is_MergeMem()) {
2441       MergeMemNode* mmem = use->as_MergeMem();
2442       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2443       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2444         continue; // Nothing to do
2445       }
2446       // Replace previous general reference to mem node.
2447       uint orig_uniq = C->unique();
2448       Node* m = find_inst_mem(n, general_idx, orig_phis);
2449       assert(orig_uniq == C->unique(), "no new nodes");
2450       mmem->set_memory_at(general_idx, m);
2451       --imax;
2452       --i;
2453     } else if (use->is_MemBar()) {
2454       assert(!use->is_Initialize(), "initializing stores should not be moved");
2455       if (use->req() > MemBarNode::Precedent &&
2456           use->in(MemBarNode::Precedent) == n) {
2457         // Don't move related membars.
2458         record_for_optimizer(use);
2459         continue;
2460       }
2461       tp = use->as_MemBar()->adr_type()->isa_ptr();
2462       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
2463           alias_idx == general_idx) {
2464         continue; // Nothing to do
2465       }
2466       // Move to general memory slice.
2467       uint orig_uniq = C->unique();
2468       Node* m = find_inst_mem(n, general_idx, orig_phis);
2469       assert(orig_uniq == C->unique(), "no new nodes");
2470       igvn->hash_delete(use);
2471       imax -= use->replace_edge(n, m);
2472       igvn->hash_insert(use);
2473       record_for_optimizer(use);
2474       --i;
2475 #ifdef ASSERT
2476     } else if (use->is_Mem()) {
2477       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2478         // Don't move related cardmark.
2479         continue;
2480       }
2481       // Memory nodes should have new memory input.
2482       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2483       assert(tp != NULL, "ptr type");
2484       int idx = C->get_alias_index(tp);
2485       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2486              "Following memory nodes should have new memory input or be on the same memory slice");
2487     } else if (use->is_Phi()) {
2488       // Phi nodes should be split and moved already.
2489       tp = use->as_Phi()->adr_type()->isa_ptr();
2490       assert(tp != NULL, "ptr type");
2491       int idx = C->get_alias_index(tp);
2492       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2493     } else {
2494       use->dump();
2495       assert(false, "should not be here");
2496 #endif
2497     }
2498   }
2499 }
2500 
2501 //
2502 // Search memory chain of "mem" to find a MemNode whose address
2503 // is the specified alias index.
2504 //
2505 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2506   if (orig_mem == NULL)
2507     return orig_mem;
2508   Compile* C = _compile;
2509   PhaseGVN* igvn = _igvn;
2510   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2511   bool is_instance = (toop != NULL) && toop->is_known_instance();
2512   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
2513   Node *prev = NULL;
2514   Node *result = orig_mem;
2515   while (prev != result) {
2516     prev = result;
2517     if (result == start_mem)
2518       break;  // hit one of our sentinels
2519     if (result->is_Mem()) {
2520       const Type *at = igvn->type(result->in(MemNode::Address));
2521       if (at == Type::TOP)
2522         break; // Dead
2523       assert (at->isa_ptr() != NULL, "pointer type required.");
2524       int idx = C->get_alias_index(at->is_ptr());
2525       if (idx == alias_idx)
2526         break; // Found
2527       if (!is_instance && (at->isa_oopptr() == NULL ||
2528                            !at->is_oopptr()->is_known_instance())) {
2529         break; // Do not skip store to general memory slice.
2530       }
2531       result = result->in(MemNode::Memory);
2532     }
2533     if (!is_instance)
2534       continue;  // don't search further for non-instance types
2535     // skip over a call which does not affect this memory slice
2536     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2537       Node *proj_in = result->in(0);
2538       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2539         break;  // hit one of our sentinels
2540       } else if (proj_in->is_Call()) {
2541         CallNode *call = proj_in->as_Call();
2542         if (!call->may_modify(toop, igvn)) {
2543           result = call->in(TypeFunc::Memory);
2544         }
2545       } else if (proj_in->is_Initialize()) {
2546         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2547         // Stop if this is the initialization for the object instance which
2548         // which contains this memory slice, otherwise skip over it.
2549         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2550           result = proj_in->in(TypeFunc::Memory);
2551         }
2552       } else if (proj_in->is_MemBar()) {
2553         result = proj_in->in(TypeFunc::Memory);
2554       }
2555     } else if (result->is_MergeMem()) {
2556       MergeMemNode *mmem = result->as_MergeMem();
2557       result = step_through_mergemem(mmem, alias_idx, toop);
2558       if (result == mmem->base_memory()) {
2559         // Didn't find instance memory, search through general slice recursively.
2560         result = mmem->memory_at(C->get_general_index(alias_idx));
2561         result = find_inst_mem(result, alias_idx, orig_phis);
2562         if (C->failing()) {
2563           return NULL;
2564         }
2565         mmem->set_memory_at(alias_idx, result);
2566       }
2567     } else if (result->is_Phi() &&
2568                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2569       Node *un = result->as_Phi()->unique_input(igvn);
2570       if (un != NULL) {
2571         orig_phis.append_if_missing(result->as_Phi());
2572         result = un;
2573       } else {
2574         break;
2575       }
2576     } else if (result->is_ClearArray()) {
2577       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2578         // Can not bypass initialization of the instance
2579         // we are looking for.
2580         break;
2581       }
2582       // Otherwise skip it (the call updated 'result' value).
2583     } else if (result->Opcode() == Op_SCMemProj) {
2584       assert(result->in(0)->is_LoadStore(), "sanity");
2585       const Type *at = igvn->type(result->in(0)->in(MemNode::Address));
2586       if (at != Type::TOP) {
2587         assert (at->isa_ptr() != NULL, "pointer type required.");
2588         int idx = C->get_alias_index(at->is_ptr());
2589         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
2590         break;
2591       }
2592       result = result->in(0)->in(MemNode::Memory);
2593     }
2594   }
2595   if (result->is_Phi()) {
2596     PhiNode *mphi = result->as_Phi();
2597     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2598     const TypePtr *t = mphi->adr_type();
2599     if (!is_instance) {
2600       // Push all non-instance Phis on the orig_phis worklist to update inputs
2601       // during Phase 4 if needed.
2602       orig_phis.append_if_missing(mphi);
2603     } else if (C->get_alias_index(t) != alias_idx) {
2604       // Create a new Phi with the specified alias index type.
2605       result = split_memory_phi(mphi, alias_idx, orig_phis);
2606     }
2607   }
2608   // the result is either MemNode, PhiNode, InitializeNode.
2609   return result;
2610 }
2611 
2612 //
2613 //  Convert the types of unescaped object to instance types where possible,
2614 //  propagate the new type information through the graph, and update memory
2615 //  edges and MergeMem inputs to reflect the new type.
2616 //
2617 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2618 //  The processing is done in 4 phases:
2619 //
2620 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2621 //            types for the CheckCastPP for allocations where possible.
2622 //            Propagate the the new types through users as follows:
2623 //               casts and Phi:  push users on alloc_worklist
2624 //               AddP:  cast Base and Address inputs to the instance type
2625 //                      push any AddP users on alloc_worklist and push any memnode
2626 //                      users onto memnode_worklist.
2627 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2628 //            search the Memory chain for a store with the appropriate type
2629 //            address type.  If a Phi is found, create a new version with
2630 //            the appropriate memory slices from each of the Phi inputs.
2631 //            For stores, process the users as follows:
2632 //               MemNode:  push on memnode_worklist
2633 //               MergeMem: push on mergemem_worklist
2634 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2635 //            moving the first node encountered of each  instance type to the
2636 //            the input corresponding to its alias index.
2637 //            appropriate memory slice.
2638 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2639 //
2640 // In the following example, the CheckCastPP nodes are the cast of allocation
2641 // results and the allocation of node 29 is unescaped and eligible to be an
2642 // instance type.
2643 //
2644 // We start with:
2645 //
2646 //     7 Parm #memory
2647 //    10  ConI  "12"
2648 //    19  CheckCastPP   "Foo"
2649 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2650 //    29  CheckCastPP   "Foo"
2651 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2652 //
2653 //    40  StoreP  25   7  20   ... alias_index=4
2654 //    50  StoreP  35  40  30   ... alias_index=4
2655 //    60  StoreP  45  50  20   ... alias_index=4
2656 //    70  LoadP    _  60  30   ... alias_index=4
2657 //    80  Phi     75  50  60   Memory alias_index=4
2658 //    90  LoadP    _  80  30   ... alias_index=4
2659 //   100  LoadP    _  80  20   ... alias_index=4
2660 //
2661 //
2662 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2663 // and creating a new alias index for node 30.  This gives:
2664 //
2665 //     7 Parm #memory
2666 //    10  ConI  "12"
2667 //    19  CheckCastPP   "Foo"
2668 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2669 //    29  CheckCastPP   "Foo"  iid=24
2670 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2671 //
2672 //    40  StoreP  25   7  20   ... alias_index=4
2673 //    50  StoreP  35  40  30   ... alias_index=6
2674 //    60  StoreP  45  50  20   ... alias_index=4
2675 //    70  LoadP    _  60  30   ... alias_index=6
2676 //    80  Phi     75  50  60   Memory alias_index=4
2677 //    90  LoadP    _  80  30   ... alias_index=6
2678 //   100  LoadP    _  80  20   ... alias_index=4
2679 //
2680 // In phase 2, new memory inputs are computed for the loads and stores,
2681 // And a new version of the phi is created.  In phase 4, the inputs to
2682 // node 80 are updated and then the memory nodes are updated with the
2683 // values computed in phase 2.  This results in:
2684 //
2685 //     7 Parm #memory
2686 //    10  ConI  "12"
2687 //    19  CheckCastPP   "Foo"
2688 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2689 //    29  CheckCastPP   "Foo"  iid=24
2690 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2691 //
2692 //    40  StoreP  25  7   20   ... alias_index=4
2693 //    50  StoreP  35  7   30   ... alias_index=6
2694 //    60  StoreP  45  40  20   ... alias_index=4
2695 //    70  LoadP    _  50  30   ... alias_index=6
2696 //    80  Phi     75  40  60   Memory alias_index=4
2697 //   120  Phi     75  50  50   Memory alias_index=6
2698 //    90  LoadP    _ 120  30   ... alias_index=6
2699 //   100  LoadP    _  80  20   ... alias_index=4
2700 //
2701 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
2702   GrowableArray<Node *>  memnode_worklist;
2703   GrowableArray<PhiNode *>  orig_phis;
2704   PhaseIterGVN  *igvn = _igvn;
2705   uint new_index_start = (uint) _compile->num_alias_types();
2706   Arena* arena = Thread::current()->resource_area();
2707   VectorSet visited(arena);
2708   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2709   uint unique_old = _compile->unique();
2710 
2711   //  Phase 1:  Process possible allocations from alloc_worklist.
2712   //  Create instance types for the CheckCastPP for allocations where possible.
2713   //
2714   // (Note: don't forget to change the order of the second AddP node on
2715   //  the alloc_worklist if the order of the worklist processing is changed,
2716   //  see the comment in find_second_addp().)
2717   //
2718   while (alloc_worklist.length() != 0) {
2719     Node *n = alloc_worklist.pop();
2720     uint ni = n->_idx;
2721     if (n->is_Call()) {
2722       CallNode *alloc = n->as_Call();
2723       // copy escape information to call node
2724       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2725       PointsToNode::EscapeState es = ptn->escape_state();
2726       // We have an allocation or call which returns a Java object,
2727       // see if it is unescaped.
2728       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2729         continue;
2730       // Find CheckCastPP for the allocate or for the return value of a call
2731       n = alloc->result_cast();
2732       if (n == NULL) {            // No uses except Initialize node
2733         if (alloc->is_Allocate()) {
2734           // Set the scalar_replaceable flag for allocation
2735           // so it could be eliminated if it has no uses.
2736           alloc->as_Allocate()->_is_scalar_replaceable = true;
2737         }
2738         continue;
2739       }
2740       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2741         assert(!alloc->is_Allocate(), "allocation should have unique type");
2742         continue;
2743       }
2744 
2745       // The inline code for Object.clone() casts the allocation result to
2746       // java.lang.Object and then to the actual type of the allocated
2747       // object. Detect this case and use the second cast.
2748       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2749       // the allocation result is cast to java.lang.Object and then
2750       // to the actual Array type.
2751       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2752           && (alloc->is_AllocateArray() ||
2753               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2754         Node *cast2 = NULL;
2755         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2756           Node *use = n->fast_out(i);
2757           if (use->is_CheckCastPP()) {
2758             cast2 = use;
2759             break;
2760           }
2761         }
2762         if (cast2 != NULL) {
2763           n = cast2;
2764         } else {
2765           // Non-scalar replaceable if the allocation type is unknown statically
2766           // (reflection allocation), the object can't be restored during
2767           // deoptimization without precise type.
2768           continue;
2769         }
2770       }
2771       if (alloc->is_Allocate()) {
2772         // Set the scalar_replaceable flag for allocation
2773         // so it could be eliminated.
2774         alloc->as_Allocate()->_is_scalar_replaceable = true;
2775       }
2776       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
2777       // in order for an object to be scalar-replaceable, it must be:
2778       //   - a direct allocation (not a call returning an object)
2779       //   - non-escaping
2780       //   - eligible to be a unique type
2781       //   - not determined to be ineligible by escape analysis
2782       set_map(alloc, n);
2783       set_map(n, alloc);
2784       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
2785       if (t == NULL)
2786         continue;  // not a TypeOopPtr
2787       const TypeOopPtr* tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
2788       igvn->hash_delete(n);
2789       igvn->set_type(n,  tinst);
2790       n->raise_bottom_type(tinst);
2791       igvn->hash_insert(n);
2792       record_for_optimizer(n);
2793       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
2794 
2795         // First, put on the worklist all Field edges from Connection Graph
2796         // which is more accurate then putting immediate users from Ideal Graph.
2797         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
2798           PointsToNode* tgt = e.get();
2799           Node* use = tgt->ideal_node();
2800           assert(tgt->is_Field() && use->is_AddP(),
2801                  "only AddP nodes are Field edges in CG");
2802           if (use->outcnt() > 0) { // Don't process dead nodes
2803             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
2804             if (addp2 != NULL) {
2805               assert(alloc->is_AllocateArray(),"array allocation was expected");
2806               alloc_worklist.append_if_missing(addp2);
2807             }
2808             alloc_worklist.append_if_missing(use);
2809           }
2810         }
2811 
2812         // An allocation may have an Initialize which has raw stores. Scan
2813         // the users of the raw allocation result and push AddP users
2814         // on alloc_worklist.
2815         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
2816         assert (raw_result != NULL, "must have an allocation result");
2817         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
2818           Node *use = raw_result->fast_out(i);
2819           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
2820             Node* addp2 = find_second_addp(use, raw_result);
2821             if (addp2 != NULL) {
2822               assert(alloc->is_AllocateArray(),"array allocation was expected");
2823               alloc_worklist.append_if_missing(addp2);
2824             }
2825             alloc_worklist.append_if_missing(use);
2826           } else if (use->is_MemBar()) {
2827             memnode_worklist.append_if_missing(use);
2828           }
2829         }
2830       }
2831     } else if (n->is_AddP()) {
2832       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
2833       if (jobj == NULL || jobj == phantom_obj) {
2834 #ifdef ASSERT
2835         ptnode_adr(get_addp_base(n)->_idx)->dump();
2836         ptnode_adr(n->_idx)->dump();
2837         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2838 #endif
2839         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2840         return;
2841       }
2842       Node *base = get_map(jobj->idx());  // CheckCastPP node
2843       if (!split_AddP(n, base)) continue; // wrong type from dead path
2844     } else if (n->is_Phi() ||
2845                n->is_CheckCastPP() ||
2846                n->is_EncodeP() ||
2847                n->is_DecodeN() ||
2848                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
2849       if (visited.test_set(n->_idx)) {
2850         assert(n->is_Phi(), "loops only through Phi's");
2851         continue;  // already processed
2852       }
2853       JavaObjectNode* jobj = unique_java_object(n);
2854       if (jobj == NULL || jobj == phantom_obj) {
2855 #ifdef ASSERT
2856         ptnode_adr(n->_idx)->dump();
2857         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
2858 #endif
2859         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
2860         return;
2861       } else {
2862         Node *val = get_map(jobj->idx());   // CheckCastPP node
2863         TypeNode *tn = n->as_Type();
2864         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
2865         assert(tinst != NULL && tinst->is_known_instance() &&
2866                tinst->instance_id() == jobj->idx() , "instance type expected.");
2867 
2868         const Type *tn_type = igvn->type(tn);
2869         const TypeOopPtr *tn_t;
2870         if (tn_type->isa_narrowoop()) {
2871           tn_t = tn_type->make_ptr()->isa_oopptr();
2872         } else {
2873           tn_t = tn_type->isa_oopptr();
2874         }
2875         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
2876           if (tn_type->isa_narrowoop()) {
2877             tn_type = tinst->make_narrowoop();
2878           } else {
2879             tn_type = tinst;
2880           }
2881           igvn->hash_delete(tn);
2882           igvn->set_type(tn, tn_type);
2883           tn->set_type(tn_type);
2884           igvn->hash_insert(tn);
2885           record_for_optimizer(n);
2886         } else {
2887           assert(tn_type == TypePtr::NULL_PTR ||
2888                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
2889                  "unexpected type");
2890           continue; // Skip dead path with different type
2891         }
2892       }
2893     } else {
2894       debug_only(n->dump();)
2895       assert(false, "EA: unexpected node");
2896       continue;
2897     }
2898     // push allocation's users on appropriate worklist
2899     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2900       Node *use = n->fast_out(i);
2901       if(use->is_Mem() && use->in(MemNode::Address) == n) {
2902         // Load/store to instance's field
2903         memnode_worklist.append_if_missing(use);
2904       } else if (use->is_MemBar()) {
2905         memnode_worklist.append_if_missing(use);
2906       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
2907         Node* addp2 = find_second_addp(use, n);
2908         if (addp2 != NULL) {
2909           alloc_worklist.append_if_missing(addp2);
2910         }
2911         alloc_worklist.append_if_missing(use);
2912       } else if (use->is_Phi() ||
2913                  use->is_CheckCastPP() ||
2914                  use->is_EncodeNarrowPtr() ||
2915                  use->is_DecodeNarrowPtr() ||
2916                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
2917         alloc_worklist.append_if_missing(use);
2918 #ifdef ASSERT
2919       } else if (use->is_Mem()) {
2920         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
2921       } else if (use->is_MergeMem()) {
2922         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
2923       } else if (use->is_SafePoint()) {
2924         // Look for MergeMem nodes for calls which reference unique allocation
2925         // (through CheckCastPP nodes) even for debug info.
2926         Node* m = use->in(TypeFunc::Memory);
2927         if (m->is_MergeMem()) {
2928           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
2929         }
2930       } else {
2931         uint op = use->Opcode();
2932         if (!(op == Op_CmpP || op == Op_Conv2B ||
2933               op == Op_CastP2X || op == Op_StoreCM ||
2934               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
2935               op == Op_StrEquals || op == Op_StrIndexOf)) {
2936           n->dump();
2937           use->dump();
2938           assert(false, "EA: missing allocation reference path");
2939         }
2940 #endif
2941       }
2942     }
2943 
2944   }
2945   // New alias types were created in split_AddP().
2946   uint new_index_end = (uint) _compile->num_alias_types();
2947   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
2948 
2949   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2950   //            compute new values for Memory inputs  (the Memory inputs are not
2951   //            actually updated until phase 4.)
2952   if (memnode_worklist.length() == 0)
2953     return;  // nothing to do
2954   while (memnode_worklist.length() != 0) {
2955     Node *n = memnode_worklist.pop();
2956     if (visited.test_set(n->_idx))
2957       continue;
2958     if (n->is_Phi() || n->is_ClearArray()) {
2959       // we don't need to do anything, but the users must be pushed
2960     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
2961       // we don't need to do anything, but the users must be pushed
2962       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
2963       if (n == NULL)
2964         continue;
2965     } else {
2966       assert(n->is_Mem(), "memory node required.");
2967       Node *addr = n->in(MemNode::Address);
2968       const Type *addr_t = igvn->type(addr);
2969       if (addr_t == Type::TOP)
2970         continue;
2971       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
2972       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
2973       assert ((uint)alias_idx < new_index_end, "wrong alias index");
2974       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
2975       if (_compile->failing()) {
2976         return;
2977       }
2978       if (mem != n->in(MemNode::Memory)) {
2979         // We delay the memory edge update since we need old one in
2980         // MergeMem code below when instances memory slices are separated.
2981         set_map(n, mem);
2982       }
2983       if (n->is_Load()) {
2984         continue;  // don't push users
2985       } else if (n->is_LoadStore()) {
2986         // get the memory projection
2987         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2988           Node *use = n->fast_out(i);
2989           if (use->Opcode() == Op_SCMemProj) {
2990             n = use;
2991             break;
2992           }
2993         }
2994         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
2995       }
2996     }
2997     // push user on appropriate worklist
2998     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2999       Node *use = n->fast_out(i);
3000       if (use->is_Phi() || use->is_ClearArray()) {
3001         memnode_worklist.append_if_missing(use);
3002       } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
3003         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3004           continue;
3005         memnode_worklist.append_if_missing(use);
3006       } else if (use->is_MemBar()) {
3007         memnode_worklist.append_if_missing(use);
3008 #ifdef ASSERT
3009       } else if(use->is_Mem()) {
3010         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3011       } else if (use->is_MergeMem()) {
3012         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3013       } else {
3014         uint op = use->Opcode();
3015         if (!(op == Op_StoreCM ||
3016               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
3017                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
3018               op == Op_AryEq || op == Op_StrComp ||
3019               op == Op_StrEquals || op == Op_StrIndexOf)) {
3020           n->dump();
3021           use->dump();
3022           assert(false, "EA: missing memory path");
3023         }
3024 #endif
3025       }
3026     }
3027   }
3028 
3029   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3030   //            Walk each memory slice moving the first node encountered of each
3031   //            instance type to the the input corresponding to its alias index.
3032   uint length = _mergemem_worklist.length();
3033   for( uint next = 0; next < length; ++next ) {
3034     MergeMemNode* nmm = _mergemem_worklist.at(next);
3035     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3036     // Note: we don't want to use MergeMemStream here because we only want to
3037     // scan inputs which exist at the start, not ones we add during processing.
3038     // Note 2: MergeMem may already contains instance memory slices added
3039     // during find_inst_mem() call when memory nodes were processed above.
3040     igvn->hash_delete(nmm);
3041     uint nslices = nmm->req();
3042     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3043       Node* mem = nmm->in(i);
3044       Node* cur = NULL;
3045       if (mem == NULL || mem->is_top())
3046         continue;
3047       // First, update mergemem by moving memory nodes to corresponding slices
3048       // if their type became more precise since this mergemem was created.
3049       while (mem->is_Mem()) {
3050         const Type *at = igvn->type(mem->in(MemNode::Address));
3051         if (at != Type::TOP) {
3052           assert (at->isa_ptr() != NULL, "pointer type required.");
3053           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3054           if (idx == i) {
3055             if (cur == NULL)
3056               cur = mem;
3057           } else {
3058             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3059               nmm->set_memory_at(idx, mem);
3060             }
3061           }
3062         }
3063         mem = mem->in(MemNode::Memory);
3064       }
3065       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3066       // Find any instance of the current type if we haven't encountered
3067       // already a memory slice of the instance along the memory chain.
3068       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3069         if((uint)_compile->get_general_index(ni) == i) {
3070           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3071           if (nmm->is_empty_memory(m)) {
3072             Node* result = find_inst_mem(mem, ni, orig_phis);
3073             if (_compile->failing()) {
3074               return;
3075             }
3076             nmm->set_memory_at(ni, result);
3077           }
3078         }
3079       }
3080     }
3081     // Find the rest of instances values
3082     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3083       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3084       Node* result = step_through_mergemem(nmm, ni, tinst);
3085       if (result == nmm->base_memory()) {
3086         // Didn't find instance memory, search through general slice recursively.
3087         result = nmm->memory_at(_compile->get_general_index(ni));
3088         result = find_inst_mem(result, ni, orig_phis);
3089         if (_compile->failing()) {
3090           return;
3091         }
3092         nmm->set_memory_at(ni, result);
3093       }
3094     }
3095     igvn->hash_insert(nmm);
3096     record_for_optimizer(nmm);
3097   }
3098 
3099   //  Phase 4:  Update the inputs of non-instance memory Phis and
3100   //            the Memory input of memnodes
3101   // First update the inputs of any non-instance Phi's from
3102   // which we split out an instance Phi.  Note we don't have
3103   // to recursively process Phi's encounted on the input memory
3104   // chains as is done in split_memory_phi() since they  will
3105   // also be processed here.
3106   for (int j = 0; j < orig_phis.length(); j++) {
3107     PhiNode *phi = orig_phis.at(j);
3108     int alias_idx = _compile->get_alias_index(phi->adr_type());
3109     igvn->hash_delete(phi);
3110     for (uint i = 1; i < phi->req(); i++) {
3111       Node *mem = phi->in(i);
3112       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3113       if (_compile->failing()) {
3114         return;
3115       }
3116       if (mem != new_mem) {
3117         phi->set_req(i, new_mem);
3118       }
3119     }
3120     igvn->hash_insert(phi);
3121     record_for_optimizer(phi);
3122   }
3123 
3124   // Update the memory inputs of MemNodes with the value we computed
3125   // in Phase 2 and move stores memory users to corresponding memory slices.
3126   // Disable memory split verification code until the fix for 6984348.
3127   // Currently it produces false negative results since it does not cover all cases.
3128 #if 0 // ifdef ASSERT
3129   visited.Reset();
3130   Node_Stack old_mems(arena, _compile->unique() >> 2);
3131 #endif
3132   for (uint i = 0; i < ideal_nodes.size(); i++) {
3133     Node*    n = ideal_nodes.at(i);
3134     Node* nmem = get_map(n->_idx);
3135     assert(nmem != NULL, "sanity");
3136     if (n->is_Mem()) {
3137 #if 0 // ifdef ASSERT
3138       Node* old_mem = n->in(MemNode::Memory);
3139       if (!visited.test_set(old_mem->_idx)) {
3140         old_mems.push(old_mem, old_mem->outcnt());
3141       }
3142 #endif
3143       assert(n->in(MemNode::Memory) != nmem, "sanity");
3144       if (!n->is_Load()) {
3145         // Move memory users of a store first.
3146         move_inst_mem(n, orig_phis);
3147       }
3148       // Now update memory input
3149       igvn->hash_delete(n);
3150       n->set_req(MemNode::Memory, nmem);
3151       igvn->hash_insert(n);
3152       record_for_optimizer(n);
3153     } else {
3154       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3155              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3156     }
3157   }
3158 #if 0 // ifdef ASSERT
3159   // Verify that memory was split correctly
3160   while (old_mems.is_nonempty()) {
3161     Node* old_mem = old_mems.node();
3162     uint  old_cnt = old_mems.index();
3163     old_mems.pop();
3164     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3165   }
3166 #endif
3167 }
3168 
3169 #ifndef PRODUCT
3170 static const char *node_type_names[] = {
3171   "UnknownType",
3172   "JavaObject",
3173   "LocalVar",
3174   "Field",
3175   "Arraycopy"
3176 };
3177 
3178 static const char *esc_names[] = {
3179   "UnknownEscape",
3180   "NoEscape",
3181   "ArgEscape",
3182   "GlobalEscape"
3183 };
3184 
3185 void PointsToNode::dump(bool print_state) const {
3186   NodeType nt = node_type();
3187   tty->print("%s ", node_type_names[(int) nt]);
3188   if (print_state) {
3189     EscapeState es = escape_state();
3190     EscapeState fields_es = fields_escape_state();
3191     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3192     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3193       tty->print("NSR ");
3194   }
3195   if (is_Field()) {
3196     FieldNode* f = (FieldNode*)this;
3197     if (f->is_oop())
3198       tty->print("oop ");
3199     if (f->offset() > 0)
3200       tty->print("+%d ", f->offset());
3201     tty->print("(");
3202     for (BaseIterator i(f); i.has_next(); i.next()) {
3203       PointsToNode* b = i.get();
3204       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3205     }
3206     tty->print(" )");
3207   }
3208   tty->print("[");
3209   for (EdgeIterator i(this); i.has_next(); i.next()) {
3210     PointsToNode* e = i.get();
3211     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3212   }
3213   tty->print(" [");
3214   for (UseIterator i(this); i.has_next(); i.next()) {
3215     PointsToNode* u = i.get();
3216     bool is_base = false;
3217     if (PointsToNode::is_base_use(u)) {
3218       is_base = true;
3219       u = PointsToNode::get_use_node(u)->as_Field();
3220     }
3221     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3222   }
3223   tty->print(" ]]  ");
3224   if (_node == NULL)
3225     tty->print_cr("<null>");
3226   else
3227     _node->dump();
3228 }
3229 
3230 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3231   bool first = true;
3232   int ptnodes_length = ptnodes_worklist.length();
3233   for (int i = 0; i < ptnodes_length; i++) {
3234     PointsToNode *ptn = ptnodes_worklist.at(i);
3235     if (ptn == NULL || !ptn->is_JavaObject())
3236       continue;
3237     PointsToNode::EscapeState es = ptn->escape_state();
3238     if (ptn->ideal_node()->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
3239       if (first) {
3240         tty->cr();
3241         tty->print("======== Connection graph for ");
3242         _compile->method()->print_short_name();
3243         tty->cr();
3244         first = false;
3245       }
3246       ptn->dump();
3247       // Print all locals and fields which reference this allocation
3248       for (UseIterator j(ptn); j.has_next(); j.next()) {
3249         PointsToNode* use = j.get();
3250         if (use->is_LocalVar()) {
3251           use->dump(Verbose);
3252         } else if (Verbose) {
3253           use->dump();
3254         }
3255       }
3256       tty->cr();
3257     }
3258   }
3259 }
3260 #endif