1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/addnode.hpp"
  28 #include "opto/callnode.hpp"
  29 #include "opto/connode.hpp"
  30 #include "opto/idealGraphPrinter.hpp"
  31 #include "opto/matcher.hpp"
  32 #include "opto/memnode.hpp"
  33 #include "opto/opcodes.hpp"
  34 #include "opto/regmask.hpp"
  35 #include "opto/rootnode.hpp"
  36 #include "opto/runtime.hpp"
  37 #include "opto/type.hpp"
  38 #include "opto/vectornode.hpp"
  39 #include "runtime/atomic.hpp"
  40 #include "runtime/os.hpp"
  41 #ifdef TARGET_ARCH_MODEL_x86_32
  42 # include "adfiles/ad_x86_32.hpp"
  43 #endif
  44 #ifdef TARGET_ARCH_MODEL_x86_64
  45 # include "adfiles/ad_x86_64.hpp"
  46 #endif
  47 #ifdef TARGET_ARCH_MODEL_sparc
  48 # include "adfiles/ad_sparc.hpp"
  49 #endif
  50 #ifdef TARGET_ARCH_MODEL_zero
  51 # include "adfiles/ad_zero.hpp"
  52 #endif
  53 #ifdef TARGET_ARCH_MODEL_arm
  54 # include "adfiles/ad_arm.hpp"
  55 #endif
  56 #ifdef TARGET_ARCH_MODEL_ppc
  57 # include "adfiles/ad_ppc.hpp"
  58 #endif
  59 
  60 OptoReg::Name OptoReg::c_frame_pointer;
  61 
  62 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
  63 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  64 RegMask Matcher::STACK_ONLY_mask;
  65 RegMask Matcher::c_frame_ptr_mask;
  66 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  67 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  68 
  69 //---------------------------Matcher-------------------------------------------
  70 Matcher::Matcher( Node_List &proj_list ) :
  71   PhaseTransform( Phase::Ins_Select ),
  72 #ifdef ASSERT
  73   _old2new_map(C->comp_arena()),
  74   _new2old_map(C->comp_arena()),
  75 #endif
  76   _shared_nodes(C->comp_arena()),
  77   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  78   _swallowed(swallowed),
  79   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  80   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  81   _must_clone(must_clone), _proj_list(proj_list),
  82   _register_save_policy(register_save_policy),
  83   _c_reg_save_policy(c_reg_save_policy),
  84   _register_save_type(register_save_type),
  85   _ruleName(ruleName),
  86   _allocation_started(false),
  87   _states_arena(Chunk::medium_size),
  88   _visited(&_states_arena),
  89   _shared(&_states_arena),
  90   _dontcare(&_states_arena) {
  91   C->set_matcher(this);
  92 
  93   idealreg2spillmask  [Op_RegI] = NULL;
  94   idealreg2spillmask  [Op_RegN] = NULL;
  95   idealreg2spillmask  [Op_RegL] = NULL;
  96   idealreg2spillmask  [Op_RegF] = NULL;
  97   idealreg2spillmask  [Op_RegD] = NULL;
  98   idealreg2spillmask  [Op_RegP] = NULL;
  99   idealreg2spillmask  [Op_VecS] = NULL;
 100   idealreg2spillmask  [Op_VecD] = NULL;
 101   idealreg2spillmask  [Op_VecX] = NULL;
 102   idealreg2spillmask  [Op_VecY] = NULL;
 103 
 104   idealreg2debugmask  [Op_RegI] = NULL;
 105   idealreg2debugmask  [Op_RegN] = NULL;
 106   idealreg2debugmask  [Op_RegL] = NULL;
 107   idealreg2debugmask  [Op_RegF] = NULL;
 108   idealreg2debugmask  [Op_RegD] = NULL;
 109   idealreg2debugmask  [Op_RegP] = NULL;
 110   idealreg2debugmask  [Op_VecS] = NULL;
 111   idealreg2debugmask  [Op_VecD] = NULL;
 112   idealreg2debugmask  [Op_VecX] = NULL;
 113   idealreg2debugmask  [Op_VecY] = NULL;
 114 
 115   idealreg2mhdebugmask[Op_RegI] = NULL;
 116   idealreg2mhdebugmask[Op_RegN] = NULL;
 117   idealreg2mhdebugmask[Op_RegL] = NULL;
 118   idealreg2mhdebugmask[Op_RegF] = NULL;
 119   idealreg2mhdebugmask[Op_RegD] = NULL;
 120   idealreg2mhdebugmask[Op_RegP] = NULL;
 121   idealreg2mhdebugmask[Op_VecS] = NULL;
 122   idealreg2mhdebugmask[Op_VecD] = NULL;
 123   idealreg2mhdebugmask[Op_VecX] = NULL;
 124   idealreg2mhdebugmask[Op_VecY] = NULL;
 125 
 126   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
 127 }
 128 
 129 //------------------------------warp_incoming_stk_arg------------------------
 130 // This warps a VMReg into an OptoReg::Name
 131 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
 132   OptoReg::Name warped;
 133   if( reg->is_stack() ) {  // Stack slot argument?
 134     warped = OptoReg::add(_old_SP, reg->reg2stack() );
 135     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
 136     if( warped >= _in_arg_limit )
 137       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
 138     if (!RegMask::can_represent_arg(warped)) {
 139       // the compiler cannot represent this method's calling sequence
 140       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
 141       return OptoReg::Bad;
 142     }
 143     return warped;
 144   }
 145   return OptoReg::as_OptoReg(reg);
 146 }
 147 
 148 //---------------------------compute_old_SP------------------------------------
 149 OptoReg::Name Compile::compute_old_SP() {
 150   int fixed    = fixed_slots();
 151   int preserve = in_preserve_stack_slots();
 152   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
 153 }
 154 
 155 
 156 
 157 #ifdef ASSERT
 158 void Matcher::verify_new_nodes_only(Node* xroot) {
 159   // Make sure that the new graph only references new nodes
 160   ResourceMark rm;
 161   Unique_Node_List worklist;
 162   VectorSet visited(Thread::current()->resource_area());
 163   worklist.push(xroot);
 164   while (worklist.size() > 0) {
 165     Node* n = worklist.pop();
 166     visited <<= n->_idx;
 167     assert(C->node_arena()->contains(n), "dead node");
 168     for (uint j = 0; j < n->req(); j++) {
 169       Node* in = n->in(j);
 170       if (in != NULL) {
 171         assert(C->node_arena()->contains(in), "dead node");
 172         if (!visited.test(in->_idx)) {
 173           worklist.push(in);
 174         }
 175       }
 176     }
 177   }
 178 }
 179 #endif
 180 
 181 
 182 //---------------------------match---------------------------------------------
 183 void Matcher::match( ) {
 184   if( MaxLabelRootDepth < 100 ) { // Too small?
 185     assert(false, "invalid MaxLabelRootDepth, increase it to 100 minimum");
 186     MaxLabelRootDepth = 100;
 187   }
 188   // One-time initialization of some register masks.
 189   init_spill_mask( C->root()->in(1) );
 190   _return_addr_mask = return_addr();
 191 #ifdef _LP64
 192   // Pointers take 2 slots in 64-bit land
 193   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 194 #endif
 195 
 196   // Map a Java-signature return type into return register-value
 197   // machine registers for 0, 1 and 2 returned values.
 198   const TypeTuple *range = C->tf()->range();
 199   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
 200     // Get ideal-register return type
 201     int ireg = range->field_at(TypeFunc::Parms)->ideal_reg();
 202     // Get machine return register
 203     uint sop = C->start()->Opcode();
 204     OptoRegPair regs = return_value(ireg, false);
 205 
 206     // And mask for same
 207     _return_value_mask = RegMask(regs.first());
 208     if( OptoReg::is_valid(regs.second()) )
 209       _return_value_mask.Insert(regs.second());
 210   }
 211 
 212   // ---------------
 213   // Frame Layout
 214 
 215   // Need the method signature to determine the incoming argument types,
 216   // because the types determine which registers the incoming arguments are
 217   // in, and this affects the matched code.
 218   const TypeTuple *domain = C->tf()->domain();
 219   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 220   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 221   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 222   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 223   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 224   uint i;
 225   for( i = 0; i<argcnt; i++ ) {
 226     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 227   }
 228 
 229   // Pass array of ideal registers and length to USER code (from the AD file)
 230   // that will convert this to an array of register numbers.
 231   const StartNode *start = C->start();
 232   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 233 #ifdef ASSERT
 234   // Sanity check users' calling convention.  Real handy while trying to
 235   // get the initial port correct.
 236   { for (uint i = 0; i<argcnt; i++) {
 237       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 238         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
 239         _parm_regs[i].set_bad();
 240         continue;
 241       }
 242       VMReg parm_reg = vm_parm_regs[i].first();
 243       assert(parm_reg->is_valid(), "invalid arg?");
 244       if (parm_reg->is_reg()) {
 245         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
 246         assert(can_be_java_arg(opto_parm_reg) ||
 247                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
 248                opto_parm_reg == inline_cache_reg(),
 249                "parameters in register must be preserved by runtime stubs");
 250       }
 251       for (uint j = 0; j < i; j++) {
 252         assert(parm_reg != vm_parm_regs[j].first(),
 253                "calling conv. must produce distinct regs");
 254       }
 255     }
 256   }
 257 #endif
 258 
 259   // Do some initial frame layout.
 260 
 261   // Compute the old incoming SP (may be called FP) as
 262   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
 263   _old_SP = C->compute_old_SP();
 264   assert( is_even(_old_SP), "must be even" );
 265 
 266   // Compute highest incoming stack argument as
 267   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 268   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 269   assert( is_even(_in_arg_limit), "out_preserve must be even" );
 270   for( i = 0; i < argcnt; i++ ) {
 271     // Permit args to have no register
 272     _calling_convention_mask[i].Clear();
 273     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 274       continue;
 275     }
 276     // calling_convention returns stack arguments as a count of
 277     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
 278     // the allocators point of view, taking into account all the
 279     // preserve area, locks & pad2.
 280 
 281     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
 282     if( OptoReg::is_valid(reg1))
 283       _calling_convention_mask[i].Insert(reg1);
 284 
 285     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
 286     if( OptoReg::is_valid(reg2))
 287       _calling_convention_mask[i].Insert(reg2);
 288 
 289     // Saved biased stack-slot register number
 290     _parm_regs[i].set_pair(reg2, reg1);
 291   }
 292 
 293   // Finally, make sure the incoming arguments take up an even number of
 294   // words, in case the arguments or locals need to contain doubleword stack
 295   // slots.  The rest of the system assumes that stack slot pairs (in
 296   // particular, in the spill area) which look aligned will in fact be
 297   // aligned relative to the stack pointer in the target machine.  Double
 298   // stack slots will always be allocated aligned.
 299   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
 300 
 301   // Compute highest outgoing stack argument as
 302   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
 303   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
 304   assert( is_even(_out_arg_limit), "out_preserve must be even" );
 305 
 306   if (!RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1))) {
 307     // the compiler cannot represent this method's calling sequence
 308     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
 309   }
 310 
 311   if (C->failing())  return;  // bailed out on incoming arg failure
 312 
 313   // ---------------
 314   // Collect roots of matcher trees.  Every node for which
 315   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
 316   // can be a valid interior of some tree.
 317   find_shared( C->root() );
 318   find_shared( C->top() );
 319 
 320   C->print_method("Before Matching");
 321 
 322   // Create new ideal node ConP #NULL even if it does exist in old space
 323   // to avoid false sharing if the corresponding mach node is not used.
 324   // The corresponding mach node is only used in rare cases for derived
 325   // pointers.
 326   Node* new_ideal_null = ConNode::make(C, TypePtr::NULL_PTR);
 327 
 328   // Swap out to old-space; emptying new-space
 329   Arena *old = C->node_arena()->move_contents(C->old_arena());
 330 
 331   // Save debug and profile information for nodes in old space:
 332   _old_node_note_array = C->node_note_array();
 333   if (_old_node_note_array != NULL) {
 334     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
 335                            (C->comp_arena(), _old_node_note_array->length(),
 336                             0, NULL));
 337   }
 338 
 339   // Pre-size the new_node table to avoid the need for range checks.
 340   grow_new_node_array(C->unique());
 341 
 342   // Reset node counter so MachNodes start with _idx at 0
 343   int nodes = C->unique(); // save value
 344   C->set_unique(0);
 345   C->reset_dead_node_list();
 346 
 347   // Recursively match trees from old space into new space.
 348   // Correct leaves of new-space Nodes; they point to old-space.
 349   _visited.Clear();             // Clear visit bits for xform call
 350   C->set_cached_top_node(xform( C->top(), nodes ));
 351   if (!C->failing()) {
 352     Node* xroot =        xform( C->root(), 1 );
 353     if (xroot == NULL) {
 354       Matcher::soft_match_failure();  // recursive matching process failed
 355       C->record_method_not_compilable("instruction match failed");
 356     } else {
 357       // During matching shared constants were attached to C->root()
 358       // because xroot wasn't available yet, so transfer the uses to
 359       // the xroot.
 360       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
 361         Node* n = C->root()->fast_out(j);
 362         if (C->node_arena()->contains(n)) {
 363           assert(n->in(0) == C->root(), "should be control user");
 364           n->set_req(0, xroot);
 365           --j;
 366           --jmax;
 367         }
 368       }
 369 
 370       // Generate new mach node for ConP #NULL
 371       assert(new_ideal_null != NULL, "sanity");
 372       _mach_null = match_tree(new_ideal_null);
 373       // Don't set control, it will confuse GCM since there are no uses.
 374       // The control will be set when this node is used first time
 375       // in find_base_for_derived().
 376       assert(_mach_null != NULL, "");
 377 
 378       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
 379 
 380 #ifdef ASSERT
 381       verify_new_nodes_only(xroot);
 382 #endif
 383     }
 384   }
 385   if (C->top() == NULL || C->root() == NULL) {
 386     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
 387   }
 388   if (C->failing()) {
 389     // delete old;
 390     old->destruct_contents();
 391     return;
 392   }
 393   assert( C->top(), "" );
 394   assert( C->root(), "" );
 395   validate_null_checks();
 396 
 397   // Now smoke old-space
 398   NOT_DEBUG( old->destruct_contents() );
 399 
 400   // ------------------------
 401   // Set up save-on-entry registers
 402   Fixup_Save_On_Entry( );
 403 }
 404 
 405 
 406 //------------------------------Fixup_Save_On_Entry----------------------------
 407 // The stated purpose of this routine is to take care of save-on-entry
 408 // registers.  However, the overall goal of the Match phase is to convert into
 409 // machine-specific instructions which have RegMasks to guide allocation.
 410 // So what this procedure really does is put a valid RegMask on each input
 411 // to the machine-specific variations of all Return, TailCall and Halt
 412 // instructions.  It also adds edgs to define the save-on-entry values (and of
 413 // course gives them a mask).
 414 
 415 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 416   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 417   // Do all the pre-defined register masks
 418   rms[TypeFunc::Control  ] = RegMask::Empty;
 419   rms[TypeFunc::I_O      ] = RegMask::Empty;
 420   rms[TypeFunc::Memory   ] = RegMask::Empty;
 421   rms[TypeFunc::ReturnAdr] = ret_adr;
 422   rms[TypeFunc::FramePtr ] = fp;
 423   return rms;
 424 }
 425 
 426 //---------------------------init_first_stack_mask-----------------------------
 427 // Create the initial stack mask used by values spilling to the stack.
 428 // Disallow any debug info in outgoing argument areas by setting the
 429 // initial mask accordingly.
 430 void Matcher::init_first_stack_mask() {
 431 
 432   // Allocate storage for spill masks as masks for the appropriate load type.
 433   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask) * (3*6+4));
 434 
 435   idealreg2spillmask  [Op_RegN] = &rms[0];
 436   idealreg2spillmask  [Op_RegI] = &rms[1];
 437   idealreg2spillmask  [Op_RegL] = &rms[2];
 438   idealreg2spillmask  [Op_RegF] = &rms[3];
 439   idealreg2spillmask  [Op_RegD] = &rms[4];
 440   idealreg2spillmask  [Op_RegP] = &rms[5];
 441 
 442   idealreg2debugmask  [Op_RegN] = &rms[6];
 443   idealreg2debugmask  [Op_RegI] = &rms[7];
 444   idealreg2debugmask  [Op_RegL] = &rms[8];
 445   idealreg2debugmask  [Op_RegF] = &rms[9];
 446   idealreg2debugmask  [Op_RegD] = &rms[10];
 447   idealreg2debugmask  [Op_RegP] = &rms[11];
 448 
 449   idealreg2mhdebugmask[Op_RegN] = &rms[12];
 450   idealreg2mhdebugmask[Op_RegI] = &rms[13];
 451   idealreg2mhdebugmask[Op_RegL] = &rms[14];
 452   idealreg2mhdebugmask[Op_RegF] = &rms[15];
 453   idealreg2mhdebugmask[Op_RegD] = &rms[16];
 454   idealreg2mhdebugmask[Op_RegP] = &rms[17];
 455 
 456   idealreg2spillmask  [Op_VecS] = &rms[18];
 457   idealreg2spillmask  [Op_VecD] = &rms[19];
 458   idealreg2spillmask  [Op_VecX] = &rms[20];
 459   idealreg2spillmask  [Op_VecY] = &rms[21];
 460 
 461   OptoReg::Name i;
 462 
 463   // At first, start with the empty mask
 464   C->FIRST_STACK_mask().Clear();
 465 
 466   // Add in the incoming argument area
 467   OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 468   for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
 469     C->FIRST_STACK_mask().Insert(i);
 470 
 471   // Add in all bits past the outgoing argument area
 472   guarantee(RegMask::can_represent_arg(OptoReg::add(_out_arg_limit,-1)),
 473             "must be able to represent all call arguments in reg mask");
 474   init = _out_arg_limit;
 475   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 476     C->FIRST_STACK_mask().Insert(i);
 477 
 478   // Finally, set the "infinite stack" bit.
 479   C->FIRST_STACK_mask().set_AllStack();
 480 
 481   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 482   RegMask aligned_stack_mask = C->FIRST_STACK_mask();
 483   // Keep spill masks aligned.
 484   aligned_stack_mask.clear_to_pairs();
 485   assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 486 
 487   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP];
 488 #ifdef _LP64
 489   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
 490    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
 491    idealreg2spillmask[Op_RegP]->OR(aligned_stack_mask);
 492 #else
 493    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
 494 #endif
 495   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
 496    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
 497   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL];
 498    idealreg2spillmask[Op_RegL]->OR(aligned_stack_mask);
 499   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF];
 500    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
 501   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD];
 502    idealreg2spillmask[Op_RegD]->OR(aligned_stack_mask);
 503 
 504   if (Matcher::vector_size_supported(T_BYTE,4)) {
 505     *idealreg2spillmask[Op_VecS] = *idealreg2regmask[Op_VecS];
 506      idealreg2spillmask[Op_VecS]->OR(C->FIRST_STACK_mask());
 507   }
 508   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 509     *idealreg2spillmask[Op_VecD] = *idealreg2regmask[Op_VecD];
 510      idealreg2spillmask[Op_VecD]->OR(aligned_stack_mask);
 511   }
 512   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 513      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecX);
 514      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 515     *idealreg2spillmask[Op_VecX] = *idealreg2regmask[Op_VecX];
 516      idealreg2spillmask[Op_VecX]->OR(aligned_stack_mask);
 517   }
 518   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 519      aligned_stack_mask.clear_to_sets(RegMask::SlotsPerVecY);
 520      assert(aligned_stack_mask.is_AllStack(), "should be infinite stack");
 521     *idealreg2spillmask[Op_VecY] = *idealreg2regmask[Op_VecY];
 522      idealreg2spillmask[Op_VecY]->OR(aligned_stack_mask);
 523   }
 524    if (UseFPUForSpilling) {
 525      // This mask logic assumes that the spill operations are
 526      // symmetric and that the registers involved are the same size.
 527      // On sparc for instance we may have to use 64 bit moves will
 528      // kill 2 registers when used with F0-F31.
 529      idealreg2spillmask[Op_RegI]->OR(*idealreg2regmask[Op_RegF]);
 530      idealreg2spillmask[Op_RegF]->OR(*idealreg2regmask[Op_RegI]);
 531 #ifdef _LP64
 532      idealreg2spillmask[Op_RegN]->OR(*idealreg2regmask[Op_RegF]);
 533      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 534      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 535      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegD]);
 536 #else
 537      idealreg2spillmask[Op_RegP]->OR(*idealreg2regmask[Op_RegF]);
 538 #ifdef ARM
 539      // ARM has support for moving 64bit values between a pair of
 540      // integer registers and a double register
 541      idealreg2spillmask[Op_RegL]->OR(*idealreg2regmask[Op_RegD]);
 542      idealreg2spillmask[Op_RegD]->OR(*idealreg2regmask[Op_RegL]);
 543 #endif
 544 #endif
 545    }
 546 
 547   // Make up debug masks.  Any spill slot plus callee-save registers.
 548   // Caller-save registers are assumed to be trashable by the various
 549   // inline-cache fixup routines.
 550   *idealreg2debugmask  [Op_RegN]= *idealreg2spillmask[Op_RegN];
 551   *idealreg2debugmask  [Op_RegI]= *idealreg2spillmask[Op_RegI];
 552   *idealreg2debugmask  [Op_RegL]= *idealreg2spillmask[Op_RegL];
 553   *idealreg2debugmask  [Op_RegF]= *idealreg2spillmask[Op_RegF];
 554   *idealreg2debugmask  [Op_RegD]= *idealreg2spillmask[Op_RegD];
 555   *idealreg2debugmask  [Op_RegP]= *idealreg2spillmask[Op_RegP];
 556 
 557   *idealreg2mhdebugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
 558   *idealreg2mhdebugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
 559   *idealreg2mhdebugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
 560   *idealreg2mhdebugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
 561   *idealreg2mhdebugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
 562   *idealreg2mhdebugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
 563 
 564   // Prevent stub compilations from attempting to reference
 565   // callee-saved registers from debug info
 566   bool exclude_soe = !Compile::current()->is_method_compilation();
 567 
 568   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 569     // registers the caller has to save do not work
 570     if( _register_save_policy[i] == 'C' ||
 571         _register_save_policy[i] == 'A' ||
 572         (_register_save_policy[i] == 'E' && exclude_soe) ) {
 573       idealreg2debugmask  [Op_RegN]->Remove(i);
 574       idealreg2debugmask  [Op_RegI]->Remove(i); // Exclude save-on-call
 575       idealreg2debugmask  [Op_RegL]->Remove(i); // registers from debug
 576       idealreg2debugmask  [Op_RegF]->Remove(i); // masks
 577       idealreg2debugmask  [Op_RegD]->Remove(i);
 578       idealreg2debugmask  [Op_RegP]->Remove(i);
 579 
 580       idealreg2mhdebugmask[Op_RegN]->Remove(i);
 581       idealreg2mhdebugmask[Op_RegI]->Remove(i);
 582       idealreg2mhdebugmask[Op_RegL]->Remove(i);
 583       idealreg2mhdebugmask[Op_RegF]->Remove(i);
 584       idealreg2mhdebugmask[Op_RegD]->Remove(i);
 585       idealreg2mhdebugmask[Op_RegP]->Remove(i);
 586     }
 587   }
 588 
 589   // Subtract the register we use to save the SP for MethodHandle
 590   // invokes to from the debug mask.
 591   const RegMask save_mask = method_handle_invoke_SP_save_mask();
 592   idealreg2mhdebugmask[Op_RegN]->SUBTRACT(save_mask);
 593   idealreg2mhdebugmask[Op_RegI]->SUBTRACT(save_mask);
 594   idealreg2mhdebugmask[Op_RegL]->SUBTRACT(save_mask);
 595   idealreg2mhdebugmask[Op_RegF]->SUBTRACT(save_mask);
 596   idealreg2mhdebugmask[Op_RegD]->SUBTRACT(save_mask);
 597   idealreg2mhdebugmask[Op_RegP]->SUBTRACT(save_mask);
 598 }
 599 
 600 //---------------------------is_save_on_entry----------------------------------
 601 bool Matcher::is_save_on_entry( int reg ) {
 602   return
 603     _register_save_policy[reg] == 'E' ||
 604     _register_save_policy[reg] == 'A' || // Save-on-entry register?
 605     // Also save argument registers in the trampolining stubs
 606     (C->save_argument_registers() && is_spillable_arg(reg));
 607 }
 608 
 609 //---------------------------Fixup_Save_On_Entry-------------------------------
 610 void Matcher::Fixup_Save_On_Entry( ) {
 611   init_first_stack_mask();
 612 
 613   Node *root = C->root();       // Short name for root
 614   // Count number of save-on-entry registers.
 615   uint soe_cnt = number_of_saved_registers();
 616   uint i;
 617 
 618   // Find the procedure Start Node
 619   StartNode *start = C->start();
 620   assert( start, "Expect a start node" );
 621 
 622   // Save argument registers in the trampolining stubs
 623   if( C->save_argument_registers() )
 624     for( i = 0; i < _last_Mach_Reg; i++ )
 625       if( is_spillable_arg(i) )
 626         soe_cnt++;
 627 
 628   // Input RegMask array shared by all Returns.
 629   // The type for doubles and longs has a count of 2, but
 630   // there is only 1 returned value
 631   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
 632   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 633   // Returns have 0 or 1 returned values depending on call signature.
 634   // Return register is specified by return_value in the AD file.
 635   if (ret_edge_cnt > TypeFunc::Parms)
 636     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
 637 
 638   // Input RegMask array shared by all Rethrows.
 639   uint reth_edge_cnt = TypeFunc::Parms+1;
 640   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 641   // Rethrow takes exception oop only, but in the argument 0 slot.
 642   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
 643 #ifdef _LP64
 644   // Need two slots for ptrs in 64-bit land
 645   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
 646 #endif
 647 
 648   // Input RegMask array shared by all TailCalls
 649   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 650   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 651 
 652   // Input RegMask array shared by all TailJumps
 653   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 654   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 655 
 656   // TailCalls have 2 returned values (target & moop), whose masks come
 657   // from the usual MachNode/MachOper mechanism.  Find a sample
 658   // TailCall to extract these masks and put the correct masks into
 659   // the tail_call_rms array.
 660   for( i=1; i < root->req(); i++ ) {
 661     MachReturnNode *m = root->in(i)->as_MachReturn();
 662     if( m->ideal_Opcode() == Op_TailCall ) {
 663       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 664       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 665       break;
 666     }
 667   }
 668 
 669   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 670   // from the usual MachNode/MachOper mechanism.  Find a sample
 671   // TailJump to extract these masks and put the correct masks into
 672   // the tail_jump_rms array.
 673   for( i=1; i < root->req(); i++ ) {
 674     MachReturnNode *m = root->in(i)->as_MachReturn();
 675     if( m->ideal_Opcode() == Op_TailJump ) {
 676       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 677       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 678       break;
 679     }
 680   }
 681 
 682   // Input RegMask array shared by all Halts
 683   uint halt_edge_cnt = TypeFunc::Parms;
 684   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 685 
 686   // Capture the return input masks into each exit flavor
 687   for( i=1; i < root->req(); i++ ) {
 688     MachReturnNode *exit = root->in(i)->as_MachReturn();
 689     switch( exit->ideal_Opcode() ) {
 690       case Op_Return   : exit->_in_rms = ret_rms;  break;
 691       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 692       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 693       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 694       case Op_Halt     : exit->_in_rms = halt_rms; break;
 695       default          : ShouldNotReachHere();
 696     }
 697   }
 698 
 699   // Next unused projection number from Start.
 700   int proj_cnt = C->tf()->domain()->cnt();
 701 
 702   // Do all the save-on-entry registers.  Make projections from Start for
 703   // them, and give them a use at the exit points.  To the allocator, they
 704   // look like incoming register arguments.
 705   for( i = 0; i < _last_Mach_Reg; i++ ) {
 706     if( is_save_on_entry(i) ) {
 707 
 708       // Add the save-on-entry to the mask array
 709       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 710       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 711       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 712       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 713       // Halts need the SOE registers, but only in the stack as debug info.
 714       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 715       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 716 
 717       Node *mproj;
 718 
 719       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 720       // into a single RegD.
 721       if( (i&1) == 0 &&
 722           _register_save_type[i  ] == Op_RegF &&
 723           _register_save_type[i+1] == Op_RegF &&
 724           is_save_on_entry(i+1) ) {
 725         // Add other bit for double
 726         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 727         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 728         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 729         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 730         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 731         mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
 732         proj_cnt += 2;          // Skip 2 for doubles
 733       }
 734       else if( (i&1) == 1 &&    // Else check for high half of double
 735                _register_save_type[i-1] == Op_RegF &&
 736                _register_save_type[i  ] == Op_RegF &&
 737                is_save_on_entry(i-1) ) {
 738         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 739         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 740         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 741         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 742         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 743         mproj = C->top();
 744       }
 745       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 746       // into a single RegL.
 747       else if( (i&1) == 0 &&
 748           _register_save_type[i  ] == Op_RegI &&
 749           _register_save_type[i+1] == Op_RegI &&
 750         is_save_on_entry(i+1) ) {
 751         // Add other bit for long
 752         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 753         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 754         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 755         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 756         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 757         mproj = new (C) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
 758         proj_cnt += 2;          // Skip 2 for longs
 759       }
 760       else if( (i&1) == 1 &&    // Else check for high half of long
 761                _register_save_type[i-1] == Op_RegI &&
 762                _register_save_type[i  ] == Op_RegI &&
 763                is_save_on_entry(i-1) ) {
 764         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 765         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 766         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 767         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 768         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 769         mproj = C->top();
 770       } else {
 771         // Make a projection for it off the Start
 772         mproj = new (C) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 773       }
 774 
 775       ret_edge_cnt ++;
 776       reth_edge_cnt ++;
 777       tail_call_edge_cnt ++;
 778       tail_jump_edge_cnt ++;
 779       halt_edge_cnt ++;
 780 
 781       // Add a use of the SOE register to all exit paths
 782       for( uint j=1; j < root->req(); j++ )
 783         root->in(j)->add_req(mproj);
 784     } // End of if a save-on-entry register
 785   } // End of for all machine registers
 786 }
 787 
 788 //------------------------------init_spill_mask--------------------------------
 789 void Matcher::init_spill_mask( Node *ret ) {
 790   if( idealreg2regmask[Op_RegI] ) return; // One time only init
 791 
 792   OptoReg::c_frame_pointer = c_frame_pointer();
 793   c_frame_ptr_mask = c_frame_pointer();
 794 #ifdef _LP64
 795   // pointers are twice as big
 796   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 797 #endif
 798 
 799   // Start at OptoReg::stack0()
 800   STACK_ONLY_mask.Clear();
 801   OptoReg::Name init = OptoReg::stack2reg(0);
 802   // STACK_ONLY_mask is all stack bits
 803   OptoReg::Name i;
 804   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 805     STACK_ONLY_mask.Insert(i);
 806   // Also set the "infinite stack" bit.
 807   STACK_ONLY_mask.set_AllStack();
 808 
 809   // Copy the register names over into the shared world
 810   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 811     // SharedInfo::regName[i] = regName[i];
 812     // Handy RegMasks per machine register
 813     mreg2regmask[i].Insert(i);
 814   }
 815 
 816   // Grab the Frame Pointer
 817   Node *fp  = ret->in(TypeFunc::FramePtr);
 818   Node *mem = ret->in(TypeFunc::Memory);
 819   const TypePtr* atp = TypePtr::BOTTOM;
 820   // Share frame pointer while making spill ops
 821   set_shared(fp);
 822 
 823   // Compute generic short-offset Loads
 824 #ifdef _LP64
 825   MachNode *spillCP = match_tree(new (C) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
 826 #endif
 827   MachNode *spillI  = match_tree(new (C) LoadINode(NULL,mem,fp,atp));
 828   MachNode *spillL  = match_tree(new (C) LoadLNode(NULL,mem,fp,atp));
 829   MachNode *spillF  = match_tree(new (C) LoadFNode(NULL,mem,fp,atp));
 830   MachNode *spillD  = match_tree(new (C) LoadDNode(NULL,mem,fp,atp));
 831   MachNode *spillP  = match_tree(new (C) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
 832   assert(spillI != NULL && spillL != NULL && spillF != NULL &&
 833          spillD != NULL && spillP != NULL, "");
 834 
 835   // Get the ADLC notion of the right regmask, for each basic type.
 836 #ifdef _LP64
 837   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
 838 #endif
 839   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
 840   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
 841   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
 842   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
 843   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
 844 
 845   // Vector regmasks.
 846   if (Matcher::vector_size_supported(T_BYTE,4)) {
 847     TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
 848     MachNode *spillVectS = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTS));
 849     idealreg2regmask[Op_VecS] = &spillVectS->out_RegMask();
 850   }
 851   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 852     MachNode *spillVectD = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTD));
 853     idealreg2regmask[Op_VecD] = &spillVectD->out_RegMask();
 854   }
 855   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 856     MachNode *spillVectX = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTX));
 857     idealreg2regmask[Op_VecX] = &spillVectX->out_RegMask();
 858   }
 859   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 860     MachNode *spillVectY = match_tree(new (C) LoadVectorNode(NULL,mem,fp,atp,TypeVect::VECTY));
 861     idealreg2regmask[Op_VecY] = &spillVectY->out_RegMask();
 862   }
 863 }
 864 
 865 #ifdef ASSERT
 866 static void match_alias_type(Compile* C, Node* n, Node* m) {
 867   if (!VerifyAliases)  return;  // do not go looking for trouble by default
 868   const TypePtr* nat = n->adr_type();
 869   const TypePtr* mat = m->adr_type();
 870   int nidx = C->get_alias_index(nat);
 871   int midx = C->get_alias_index(mat);
 872   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
 873   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
 874     for (uint i = 1; i < n->req(); i++) {
 875       Node* n1 = n->in(i);
 876       const TypePtr* n1at = n1->adr_type();
 877       if (n1at != NULL) {
 878         nat = n1at;
 879         nidx = C->get_alias_index(n1at);
 880       }
 881     }
 882   }
 883   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
 884   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
 885     switch (n->Opcode()) {
 886     case Op_PrefetchRead:
 887     case Op_PrefetchWrite:
 888     case Op_PrefetchAllocation:
 889       nidx = Compile::AliasIdxRaw;
 890       nat = TypeRawPtr::BOTTOM;
 891       break;
 892     }
 893   }
 894   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
 895     switch (n->Opcode()) {
 896     case Op_ClearArray:
 897       midx = Compile::AliasIdxRaw;
 898       mat = TypeRawPtr::BOTTOM;
 899       break;
 900     }
 901   }
 902   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
 903     switch (n->Opcode()) {
 904     case Op_Return:
 905     case Op_Rethrow:
 906     case Op_Halt:
 907     case Op_TailCall:
 908     case Op_TailJump:
 909       nidx = Compile::AliasIdxBot;
 910       nat = TypePtr::BOTTOM;
 911       break;
 912     }
 913   }
 914   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
 915     switch (n->Opcode()) {
 916     case Op_StrComp:
 917     case Op_StrEquals:
 918     case Op_StrIndexOf:
 919     case Op_AryEq:
 920     case Op_MemBarVolatile:
 921     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
 922       nidx = Compile::AliasIdxTop;
 923       nat = NULL;
 924       break;
 925     }
 926   }
 927   if (nidx != midx) {
 928     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
 929       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
 930       n->dump();
 931       m->dump();
 932     }
 933     assert(C->subsume_loads() && C->must_alias(nat, midx),
 934            "must not lose alias info when matching");
 935   }
 936 }
 937 #endif
 938 
 939 
 940 //------------------------------MStack-----------------------------------------
 941 // State and MStack class used in xform() and find_shared() iterative methods.
 942 enum Node_State { Pre_Visit,  // node has to be pre-visited
 943                       Visit,  // visit node
 944                  Post_Visit,  // post-visit node
 945              Alt_Post_Visit   // alternative post-visit path
 946                 };
 947 
 948 class MStack: public Node_Stack {
 949   public:
 950     MStack(int size) : Node_Stack(size) { }
 951 
 952     void push(Node *n, Node_State ns) {
 953       Node_Stack::push(n, (uint)ns);
 954     }
 955     void push(Node *n, Node_State ns, Node *parent, int indx) {
 956       ++_inode_top;
 957       if ((_inode_top + 1) >= _inode_max) grow();
 958       _inode_top->node = parent;
 959       _inode_top->indx = (uint)indx;
 960       ++_inode_top;
 961       _inode_top->node = n;
 962       _inode_top->indx = (uint)ns;
 963     }
 964     Node *parent() {
 965       pop();
 966       return node();
 967     }
 968     Node_State state() const {
 969       return (Node_State)index();
 970     }
 971     void set_state(Node_State ns) {
 972       set_index((uint)ns);
 973     }
 974 };
 975 
 976 
 977 //------------------------------xform------------------------------------------
 978 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
 979 // Node in new-space.  Given a new-space Node, recursively walk his children.
 980 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
 981 Node *Matcher::xform( Node *n, int max_stack ) {
 982   // Use one stack to keep both: child's node/state and parent's node/index
 983   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
 984   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
 985 
 986   while (mstack.is_nonempty()) {
 987     n = mstack.node();          // Leave node on stack
 988     Node_State nstate = mstack.state();
 989     if (nstate == Visit) {
 990       mstack.set_state(Post_Visit);
 991       Node *oldn = n;
 992       // Old-space or new-space check
 993       if (!C->node_arena()->contains(n)) {
 994         // Old space!
 995         Node* m;
 996         if (has_new_node(n)) {  // Not yet Label/Reduced
 997           m = new_node(n);
 998         } else {
 999           if (!is_dontcare(n)) { // Matcher can match this guy
1000             // Calls match special.  They match alone with no children.
1001             // Their children, the incoming arguments, match normally.
1002             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
1003             if (C->failing())  return NULL;
1004             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
1005           } else {                  // Nothing the matcher cares about
1006             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
1007               // Convert to machine-dependent projection
1008               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
1009 #ifdef ASSERT
1010               _new2old_map.map(m->_idx, n);
1011 #endif
1012               if (m->in(0) != NULL) // m might be top
1013                 collect_null_checks(m, n);
1014             } else {                // Else just a regular 'ol guy
1015               m = n->clone();       // So just clone into new-space
1016 #ifdef ASSERT
1017               _new2old_map.map(m->_idx, n);
1018 #endif
1019               // Def-Use edges will be added incrementally as Uses
1020               // of this node are matched.
1021               assert(m->outcnt() == 0, "no Uses of this clone yet");
1022             }
1023           }
1024 
1025           set_new_node(n, m);       // Map old to new
1026           if (_old_node_note_array != NULL) {
1027             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
1028                                                   n->_idx);
1029             C->set_node_notes_at(m->_idx, nn);
1030           }
1031           debug_only(match_alias_type(C, n, m));
1032         }
1033         n = m;    // n is now a new-space node
1034         mstack.set_node(n);
1035       }
1036 
1037       // New space!
1038       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
1039 
1040       int i;
1041       // Put precedence edges on stack first (match them last).
1042       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
1043         Node *m = oldn->in(i);
1044         if (m == NULL) break;
1045         // set -1 to call add_prec() instead of set_req() during Step1
1046         mstack.push(m, Visit, n, -1);
1047       }
1048 
1049       // For constant debug info, I'd rather have unmatched constants.
1050       int cnt = n->req();
1051       JVMState* jvms = n->jvms();
1052       int debug_cnt = jvms ? jvms->debug_start() : cnt;
1053 
1054       // Now do only debug info.  Clone constants rather than matching.
1055       // Constants are represented directly in the debug info without
1056       // the need for executable machine instructions.
1057       // Monitor boxes are also represented directly.
1058       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
1059         Node *m = n->in(i);          // Get input
1060         int op = m->Opcode();
1061         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
1062         if( op == Op_ConI || op == Op_ConP || op == Op_ConN || op == Op_ConNKlass ||
1063             op == Op_ConF || op == Op_ConD || op == Op_ConL
1064             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
1065             ) {
1066           m = m->clone();
1067 #ifdef ASSERT
1068           _new2old_map.map(m->_idx, n);
1069 #endif
1070           mstack.push(m, Post_Visit, n, i); // Don't need to visit
1071           mstack.push(m->in(0), Visit, m, 0);
1072         } else {
1073           mstack.push(m, Visit, n, i);
1074         }
1075       }
1076 
1077       // And now walk his children, and convert his inputs to new-space.
1078       for( ; i >= 0; --i ) { // For all normal inputs do
1079         Node *m = n->in(i);  // Get input
1080         if(m != NULL)
1081           mstack.push(m, Visit, n, i);
1082       }
1083 
1084     }
1085     else if (nstate == Post_Visit) {
1086       // Set xformed input
1087       Node *p = mstack.parent();
1088       if (p != NULL) { // root doesn't have parent
1089         int i = (int)mstack.index();
1090         if (i >= 0)
1091           p->set_req(i, n); // required input
1092         else if (i == -1)
1093           p->add_prec(n);   // precedence input
1094         else
1095           ShouldNotReachHere();
1096       }
1097       mstack.pop(); // remove processed node from stack
1098     }
1099     else {
1100       ShouldNotReachHere();
1101     }
1102   } // while (mstack.is_nonempty())
1103   return n; // Return new-space Node
1104 }
1105 
1106 //------------------------------warp_outgoing_stk_arg------------------------
1107 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
1108   // Convert outgoing argument location to a pre-biased stack offset
1109   if (reg->is_stack()) {
1110     OptoReg::Name warped = reg->reg2stack();
1111     // Adjust the stack slot offset to be the register number used
1112     // by the allocator.
1113     warped = OptoReg::add(begin_out_arg_area, warped);
1114     // Keep track of the largest numbered stack slot used for an arg.
1115     // Largest used slot per call-site indicates the amount of stack
1116     // that is killed by the call.
1117     if( warped >= out_arg_limit_per_call )
1118       out_arg_limit_per_call = OptoReg::add(warped,1);
1119     if (!RegMask::can_represent_arg(warped)) {
1120       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
1121       return OptoReg::Bad;
1122     }
1123     return warped;
1124   }
1125   return OptoReg::as_OptoReg(reg);
1126 }
1127 
1128 
1129 //------------------------------match_sfpt-------------------------------------
1130 // Helper function to match call instructions.  Calls match special.
1131 // They match alone with no children.  Their children, the incoming
1132 // arguments, match normally.
1133 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
1134   MachSafePointNode *msfpt = NULL;
1135   MachCallNode      *mcall = NULL;
1136   uint               cnt;
1137   // Split out case for SafePoint vs Call
1138   CallNode *call;
1139   const TypeTuple *domain;
1140   ciMethod*        method = NULL;
1141   bool             is_method_handle_invoke = false;  // for special kill effects
1142   if( sfpt->is_Call() ) {
1143     call = sfpt->as_Call();
1144     domain = call->tf()->domain();
1145     cnt = domain->cnt();
1146 
1147     // Match just the call, nothing else
1148     MachNode *m = match_tree(call);
1149     if (C->failing())  return NULL;
1150     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
1151 
1152     // Copy data from the Ideal SafePoint to the machine version
1153     mcall = m->as_MachCall();
1154 
1155     mcall->set_tf(         call->tf());
1156     mcall->set_entry_point(call->entry_point());
1157     mcall->set_cnt(        call->cnt());
1158 
1159     if( mcall->is_MachCallJava() ) {
1160       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
1161       const CallJavaNode *call_java =  call->as_CallJava();
1162       method = call_java->method();
1163       mcall_java->_method = method;
1164       mcall_java->_bci = call_java->_bci;
1165       mcall_java->_optimized_virtual = call_java->is_optimized_virtual();
1166       is_method_handle_invoke = call_java->is_method_handle_invoke();
1167       mcall_java->_method_handle_invoke = is_method_handle_invoke;
1168       if (is_method_handle_invoke) {
1169         C->set_has_method_handle_invokes(true);
1170       }
1171       if( mcall_java->is_MachCallStaticJava() )
1172         mcall_java->as_MachCallStaticJava()->_name =
1173          call_java->as_CallStaticJava()->_name;
1174       if( mcall_java->is_MachCallDynamicJava() )
1175         mcall_java->as_MachCallDynamicJava()->_vtable_index =
1176          call_java->as_CallDynamicJava()->_vtable_index;
1177     }
1178     else if( mcall->is_MachCallRuntime() ) {
1179       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1180     }
1181     msfpt = mcall;
1182   }
1183   // This is a non-call safepoint
1184   else {
1185     call = NULL;
1186     domain = NULL;
1187     MachNode *mn = match_tree(sfpt);
1188     if (C->failing())  return NULL;
1189     msfpt = mn->as_MachSafePoint();
1190     cnt = TypeFunc::Parms;
1191   }
1192 
1193   // Advertise the correct memory effects (for anti-dependence computation).
1194   msfpt->set_adr_type(sfpt->adr_type());
1195 
1196   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1197   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1198   // Empty them all.
1199   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1200 
1201   // Do all the pre-defined non-Empty register masks
1202   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1203   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1204 
1205   // Place first outgoing argument can possibly be put.
1206   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1207   assert( is_even(begin_out_arg_area), "" );
1208   // Compute max outgoing register number per call site.
1209   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1210   // Calls to C may hammer extra stack slots above and beyond any arguments.
1211   // These are usually backing store for register arguments for varargs.
1212   if( call != NULL && call->is_CallRuntime() )
1213     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1214 
1215 
1216   // Do the normal argument list (parameters) register masks
1217   int argcnt = cnt - TypeFunc::Parms;
1218   if( argcnt > 0 ) {          // Skip it all if we have no args
1219     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1220     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1221     int i;
1222     for( i = 0; i < argcnt; i++ ) {
1223       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1224     }
1225     // V-call to pick proper calling convention
1226     call->calling_convention( sig_bt, parm_regs, argcnt );
1227 
1228 #ifdef ASSERT
1229     // Sanity check users' calling convention.  Really handy during
1230     // the initial porting effort.  Fairly expensive otherwise.
1231     { for (int i = 0; i<argcnt; i++) {
1232       if( !parm_regs[i].first()->is_valid() &&
1233           !parm_regs[i].second()->is_valid() ) continue;
1234       VMReg reg1 = parm_regs[i].first();
1235       VMReg reg2 = parm_regs[i].second();
1236       for (int j = 0; j < i; j++) {
1237         if( !parm_regs[j].first()->is_valid() &&
1238             !parm_regs[j].second()->is_valid() ) continue;
1239         VMReg reg3 = parm_regs[j].first();
1240         VMReg reg4 = parm_regs[j].second();
1241         if( !reg1->is_valid() ) {
1242           assert( !reg2->is_valid(), "valid halvsies" );
1243         } else if( !reg3->is_valid() ) {
1244           assert( !reg4->is_valid(), "valid halvsies" );
1245         } else {
1246           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1247           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1248           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1249           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1250           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1251           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1252         }
1253       }
1254     }
1255     }
1256 #endif
1257 
1258     // Visit each argument.  Compute its outgoing register mask.
1259     // Return results now can have 2 bits returned.
1260     // Compute max over all outgoing arguments both per call-site
1261     // and over the entire method.
1262     for( i = 0; i < argcnt; i++ ) {
1263       // Address of incoming argument mask to fill in
1264       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1265       if( !parm_regs[i].first()->is_valid() &&
1266           !parm_regs[i].second()->is_valid() ) {
1267         continue;               // Avoid Halves
1268       }
1269       // Grab first register, adjust stack slots and insert in mask.
1270       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1271       if (OptoReg::is_valid(reg1))
1272         rm->Insert( reg1 );
1273       // Grab second register (if any), adjust stack slots and insert in mask.
1274       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1275       if (OptoReg::is_valid(reg2))
1276         rm->Insert( reg2 );
1277     } // End of for all arguments
1278 
1279     // Compute number of stack slots needed to restore stack in case of
1280     // Pascal-style argument popping.
1281     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1282   }
1283 
1284   if (is_method_handle_invoke) {
1285     // Kill some extra stack space in case method handles want to do
1286     // a little in-place argument insertion.
1287     // FIXME: Is this still necessary?
1288     int regs_per_word  = NOT_LP64(1) LP64_ONLY(2); // %%% make a global const!
1289     out_arg_limit_per_call += Method::extra_stack_entries() * regs_per_word;
1290     // Do not update mcall->_argsize because (a) the extra space is not
1291     // pushed as arguments and (b) _argsize is dead (not used anywhere).
1292   }
1293 
1294   // Compute the max stack slot killed by any call.  These will not be
1295   // available for debug info, and will be used to adjust FIRST_STACK_mask
1296   // after all call sites have been visited.
1297   if( _out_arg_limit < out_arg_limit_per_call)
1298     _out_arg_limit = out_arg_limit_per_call;
1299 
1300   if (mcall) {
1301     // Kill the outgoing argument area, including any non-argument holes and
1302     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1303     // Since the max-per-method covers the max-per-call-site and debug info
1304     // is excluded on the max-per-method basis, debug info cannot land in
1305     // this killed area.
1306     uint r_cnt = mcall->tf()->range()->cnt();
1307     MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1308     if (!RegMask::can_represent_arg(OptoReg::Name(out_arg_limit_per_call-1))) {
1309       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
1310     } else {
1311       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1312         proj->_rout.Insert(OptoReg::Name(i));
1313     }
1314     if( proj->_rout.is_NotEmpty() )
1315       _proj_list.push(proj);
1316   }
1317   // Transfer the safepoint information from the call to the mcall
1318   // Move the JVMState list
1319   msfpt->set_jvms(sfpt->jvms());
1320   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1321     jvms->set_map(sfpt);
1322   }
1323 
1324   // Debug inputs begin just after the last incoming parameter
1325   assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
1326           (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
1327 
1328   // Move the OopMap
1329   msfpt->_oop_map = sfpt->_oop_map;
1330 
1331   // Registers killed by the call are set in the local scheduling pass
1332   // of Global Code Motion.
1333   return msfpt;
1334 }
1335 
1336 //---------------------------match_tree----------------------------------------
1337 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1338 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1339 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1340 // a Load's result RegMask for memoization in idealreg2regmask[]
1341 MachNode *Matcher::match_tree( const Node *n ) {
1342   assert( n->Opcode() != Op_Phi, "cannot match" );
1343   assert( !n->is_block_start(), "cannot match" );
1344   // Set the mark for all locally allocated State objects.
1345   // When this call returns, the _states_arena arena will be reset
1346   // freeing all State objects.
1347   ResourceMark rm( &_states_arena );
1348 
1349   LabelRootDepth = 0;
1350 
1351   // StoreNodes require their Memory input to match any LoadNodes
1352   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1353 #ifdef ASSERT
1354   Node* save_mem_node = _mem_node;
1355   _mem_node = n->is_Store() ? (Node*)n : NULL;
1356 #endif
1357   // State object for root node of match tree
1358   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1359   State *s = new (&_states_arena) State;
1360   s->_kids[0] = NULL;
1361   s->_kids[1] = NULL;
1362   s->_leaf = (Node*)n;
1363   // Label the input tree, allocating labels from top-level arena
1364   Label_Root( n, s, n->in(0), mem );
1365   if (C->failing())  return NULL;
1366 
1367   // The minimum cost match for the whole tree is found at the root State
1368   uint mincost = max_juint;
1369   uint cost = max_juint;
1370   uint i;
1371   for( i = 0; i < NUM_OPERANDS; i++ ) {
1372     if( s->valid(i) &&                // valid entry and
1373         s->_cost[i] < cost &&         // low cost and
1374         s->_rule[i] >= NUM_OPERANDS ) // not an operand
1375       cost = s->_cost[mincost=i];
1376   }
1377   if (mincost == max_juint) {
1378 #ifndef PRODUCT
1379     tty->print("No matching rule for:");
1380     s->dump();
1381 #endif
1382     Matcher::soft_match_failure();
1383     return NULL;
1384   }
1385   // Reduce input tree based upon the state labels to machine Nodes
1386   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1387 #ifdef ASSERT
1388   _old2new_map.map(n->_idx, m);
1389   _new2old_map.map(m->_idx, (Node*)n);
1390 #endif
1391 
1392   // Add any Matcher-ignored edges
1393   uint cnt = n->req();
1394   uint start = 1;
1395   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1396   if( n->is_AddP() ) {
1397     assert( mem == (Node*)1, "" );
1398     start = AddPNode::Base+1;
1399   }
1400   for( i = start; i < cnt; i++ ) {
1401     if( !n->match_edge(i) ) {
1402       if( i < m->req() )
1403         m->ins_req( i, n->in(i) );
1404       else
1405         m->add_req( n->in(i) );
1406     }
1407   }
1408 
1409   debug_only( _mem_node = save_mem_node; )
1410   return m;
1411 }
1412 
1413 
1414 //------------------------------match_into_reg---------------------------------
1415 // Choose to either match this Node in a register or part of the current
1416 // match tree.  Return true for requiring a register and false for matching
1417 // as part of the current match tree.
1418 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1419 
1420   const Type *t = m->bottom_type();
1421 
1422   if (t->singleton()) {
1423     // Never force constants into registers.  Allow them to match as
1424     // constants or registers.  Copies of the same value will share
1425     // the same register.  See find_shared_node.
1426     return false;
1427   } else {                      // Not a constant
1428     // Stop recursion if they have different Controls.
1429     Node* m_control = m->in(0);
1430     // Control of load's memory can post-dominates load's control.
1431     // So use it since load can't float above its memory.
1432     Node* mem_control = (m->is_Load()) ? m->in(MemNode::Memory)->in(0) : NULL;
1433     if (control && m_control && control != m_control && control != mem_control) {
1434 
1435       // Actually, we can live with the most conservative control we
1436       // find, if it post-dominates the others.  This allows us to
1437       // pick up load/op/store trees where the load can float a little
1438       // above the store.
1439       Node *x = control;
1440       const uint max_scan = 6;  // Arbitrary scan cutoff
1441       uint j;
1442       for (j=0; j<max_scan; j++) {
1443         if (x->is_Region())     // Bail out at merge points
1444           return true;
1445         x = x->in(0);
1446         if (x == m_control)     // Does 'control' post-dominate
1447           break;                // m->in(0)?  If so, we can use it
1448         if (x == mem_control)   // Does 'control' post-dominate
1449           break;                // mem_control?  If so, we can use it
1450       }
1451       if (j == max_scan)        // No post-domination before scan end?
1452         return true;            // Then break the match tree up
1453     }
1454     if ((m->is_DecodeN() && Matcher::narrow_oop_use_complex_address()) ||
1455         (m->is_DecodeNKlass() && Matcher::narrow_klass_use_complex_address())) {
1456       // These are commonly used in address expressions and can
1457       // efficiently fold into them on X64 in some cases.
1458       return false;
1459     }
1460   }
1461 
1462   // Not forceable cloning.  If shared, put it into a register.
1463   return shared;
1464 }
1465 
1466 
1467 //------------------------------Instruction Selection--------------------------
1468 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1469 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1470 // things the Matcher does not match (e.g., Memory), and things with different
1471 // Controls (hence forced into different blocks).  We pass in the Control
1472 // selected for this entire State tree.
1473 
1474 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1475 // Store and the Load must have identical Memories (as well as identical
1476 // pointers).  Since the Matcher does not have anything for Memory (and
1477 // does not handle DAGs), I have to match the Memory input myself.  If the
1478 // Tree root is a Store, I require all Loads to have the identical memory.
1479 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1480   // Since Label_Root is a recursive function, its possible that we might run
1481   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1482   LabelRootDepth++;
1483   if (LabelRootDepth > MaxLabelRootDepth) {
1484     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
1485     return NULL;
1486   }
1487   uint care = 0;                // Edges matcher cares about
1488   uint cnt = n->req();
1489   uint i = 0;
1490 
1491   // Examine children for memory state
1492   // Can only subsume a child into your match-tree if that child's memory state
1493   // is not modified along the path to another input.
1494   // It is unsafe even if the other inputs are separate roots.
1495   Node *input_mem = NULL;
1496   for( i = 1; i < cnt; i++ ) {
1497     if( !n->match_edge(i) ) continue;
1498     Node *m = n->in(i);         // Get ith input
1499     assert( m, "expect non-null children" );
1500     if( m->is_Load() ) {
1501       if( input_mem == NULL ) {
1502         input_mem = m->in(MemNode::Memory);
1503       } else if( input_mem != m->in(MemNode::Memory) ) {
1504         input_mem = NodeSentinel;
1505       }
1506     }
1507   }
1508 
1509   for( i = 1; i < cnt; i++ ){// For my children
1510     if( !n->match_edge(i) ) continue;
1511     Node *m = n->in(i);         // Get ith input
1512     // Allocate states out of a private arena
1513     State *s = new (&_states_arena) State;
1514     svec->_kids[care++] = s;
1515     assert( care <= 2, "binary only for now" );
1516 
1517     // Recursively label the State tree.
1518     s->_kids[0] = NULL;
1519     s->_kids[1] = NULL;
1520     s->_leaf = m;
1521 
1522     // Check for leaves of the State Tree; things that cannot be a part of
1523     // the current tree.  If it finds any, that value is matched as a
1524     // register operand.  If not, then the normal matching is used.
1525     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1526         //
1527         // Stop recursion if this is LoadNode and the root of this tree is a
1528         // StoreNode and the load & store have different memories.
1529         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1530         // Can NOT include the match of a subtree when its memory state
1531         // is used by any of the other subtrees
1532         (input_mem == NodeSentinel) ) {
1533 #ifndef PRODUCT
1534       // Print when we exclude matching due to different memory states at input-loads
1535       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel)
1536         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) {
1537         tty->print_cr("invalid input_mem");
1538       }
1539 #endif
1540       // Switch to a register-only opcode; this value must be in a register
1541       // and cannot be subsumed as part of a larger instruction.
1542       s->DFA( m->ideal_reg(), m );
1543 
1544     } else {
1545       // If match tree has no control and we do, adopt it for entire tree
1546       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1547         control = m->in(0);         // Pick up control
1548       // Else match as a normal part of the match tree.
1549       control = Label_Root(m,s,control,mem);
1550       if (C->failing()) return NULL;
1551     }
1552   }
1553 
1554 
1555   // Call DFA to match this node, and return
1556   svec->DFA( n->Opcode(), n );
1557 
1558 #ifdef ASSERT
1559   uint x;
1560   for( x = 0; x < _LAST_MACH_OPER; x++ )
1561     if( svec->valid(x) )
1562       break;
1563 
1564   if (x >= _LAST_MACH_OPER) {
1565     n->dump();
1566     svec->dump();
1567     assert( false, "bad AD file" );
1568   }
1569 #endif
1570   return control;
1571 }
1572 
1573 
1574 // Con nodes reduced using the same rule can share their MachNode
1575 // which reduces the number of copies of a constant in the final
1576 // program.  The register allocator is free to split uses later to
1577 // split live ranges.
1578 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1579   if (!leaf->is_Con() && !leaf->is_DecodeNarrowPtr()) return NULL;
1580 
1581   // See if this Con has already been reduced using this rule.
1582   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1583   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1584   if (last != NULL && rule == last->rule()) {
1585     // Don't expect control change for DecodeN
1586     if (leaf->is_DecodeNarrowPtr())
1587       return last;
1588     // Get the new space root.
1589     Node* xroot = new_node(C->root());
1590     if (xroot == NULL) {
1591       // This shouldn't happen give the order of matching.
1592       return NULL;
1593     }
1594 
1595     // Shared constants need to have their control be root so they
1596     // can be scheduled properly.
1597     Node* control = last->in(0);
1598     if (control != xroot) {
1599       if (control == NULL || control == C->root()) {
1600         last->set_req(0, xroot);
1601       } else {
1602         assert(false, "unexpected control");
1603         return NULL;
1604       }
1605     }
1606     return last;
1607   }
1608   return NULL;
1609 }
1610 
1611 
1612 //------------------------------ReduceInst-------------------------------------
1613 // Reduce a State tree (with given Control) into a tree of MachNodes.
1614 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into
1615 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1616 // Each MachNode has a number of complicated MachOper operands; each
1617 // MachOper also covers a further tree of Ideal Nodes.
1618 
1619 // The root of the Ideal match tree is always an instruction, so we enter
1620 // the recursion here.  After building the MachNode, we need to recurse
1621 // the tree checking for these cases:
1622 // (1) Child is an instruction -
1623 //     Build the instruction (recursively), add it as an edge.
1624 //     Build a simple operand (register) to hold the result of the instruction.
1625 // (2) Child is an interior part of an instruction -
1626 //     Skip over it (do nothing)
1627 // (3) Child is the start of a operand -
1628 //     Build the operand, place it inside the instruction
1629 //     Call ReduceOper.
1630 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1631   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1632 
1633   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1634   if (shared_node != NULL) {
1635     return shared_node;
1636   }
1637 
1638   // Build the object to represent this state & prepare for recursive calls
1639   MachNode *mach = s->MachNodeGenerator( rule, C );
1640   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
1641   assert( mach->_opnds[0] != NULL, "Missing result operand" );
1642   Node *leaf = s->_leaf;
1643   // Check for instruction or instruction chain rule
1644   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1645     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1646            "duplicating node that's already been matched");
1647     // Instruction
1648     mach->add_req( leaf->in(0) ); // Set initial control
1649     // Reduce interior of complex instruction
1650     ReduceInst_Interior( s, rule, mem, mach, 1 );
1651   } else {
1652     // Instruction chain rules are data-dependent on their inputs
1653     mach->add_req(0);             // Set initial control to none
1654     ReduceInst_Chain_Rule( s, rule, mem, mach );
1655   }
1656 
1657   // If a Memory was used, insert a Memory edge
1658   if( mem != (Node*)1 ) {
1659     mach->ins_req(MemNode::Memory,mem);
1660 #ifdef ASSERT
1661     // Verify adr type after matching memory operation
1662     const MachOper* oper = mach->memory_operand();
1663     if (oper != NULL && oper != (MachOper*)-1) {
1664       // It has a unique memory operand.  Find corresponding ideal mem node.
1665       Node* m = NULL;
1666       if (leaf->is_Mem()) {
1667         m = leaf;
1668       } else {
1669         m = _mem_node;
1670         assert(m != NULL && m->is_Mem(), "expecting memory node");
1671       }
1672       const Type* mach_at = mach->adr_type();
1673       // DecodeN node consumed by an address may have different type
1674       // then its input. Don't compare types for such case.
1675       if (m->adr_type() != mach_at &&
1676           (m->in(MemNode::Address)->is_DecodeNarrowPtr() ||
1677            m->in(MemNode::Address)->is_AddP() &&
1678            m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr() ||
1679            m->in(MemNode::Address)->is_AddP() &&
1680            m->in(MemNode::Address)->in(AddPNode::Address)->is_AddP() &&
1681            m->in(MemNode::Address)->in(AddPNode::Address)->in(AddPNode::Address)->is_DecodeNarrowPtr())) {
1682         mach_at = m->adr_type();
1683       }
1684       if (m->adr_type() != mach_at) {
1685         m->dump();
1686         tty->print_cr("mach:");
1687         mach->dump(1);
1688       }
1689       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1690     }
1691 #endif
1692   }
1693 
1694   // If the _leaf is an AddP, insert the base edge
1695   if( leaf->is_AddP() )
1696     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1697 
1698   uint num_proj = _proj_list.size();
1699 
1700   // Perform any 1-to-many expansions required
1701   MachNode *ex = mach->Expand(s,_proj_list, mem);
1702   if( ex != mach ) {
1703     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1704     if( ex->in(1)->is_Con() )
1705       ex->in(1)->set_req(0, C->root());
1706     // Remove old node from the graph
1707     for( uint i=0; i<mach->req(); i++ ) {
1708       mach->set_req(i,NULL);
1709     }
1710 #ifdef ASSERT
1711     _new2old_map.map(ex->_idx, s->_leaf);
1712 #endif
1713   }
1714 
1715   // PhaseChaitin::fixup_spills will sometimes generate spill code
1716   // via the matcher.  By the time, nodes have been wired into the CFG,
1717   // and any further nodes generated by expand rules will be left hanging
1718   // in space, and will not get emitted as output code.  Catch this.
1719   // Also, catch any new register allocation constraints ("projections")
1720   // generated belatedly during spill code generation.
1721   if (_allocation_started) {
1722     guarantee(ex == mach, "no expand rules during spill generation");
1723     guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
1724   }
1725 
1726   if (leaf->is_Con() || leaf->is_DecodeNarrowPtr()) {
1727     // Record the con for sharing
1728     _shared_nodes.map(leaf->_idx, ex);
1729   }
1730 
1731   return ex;
1732 }
1733 
1734 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1735   // 'op' is what I am expecting to receive
1736   int op = _leftOp[rule];
1737   // Operand type to catch childs result
1738   // This is what my child will give me.
1739   int opnd_class_instance = s->_rule[op];
1740   // Choose between operand class or not.
1741   // This is what I will receive.
1742   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1743   // New rule for child.  Chase operand classes to get the actual rule.
1744   int newrule = s->_rule[catch_op];
1745 
1746   if( newrule < NUM_OPERANDS ) {
1747     // Chain from operand or operand class, may be output of shared node
1748     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1749             "Bad AD file: Instruction chain rule must chain from operand");
1750     // Insert operand into array of operands for this instruction
1751     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
1752 
1753     ReduceOper( s, newrule, mem, mach );
1754   } else {
1755     // Chain from the result of an instruction
1756     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1757     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
1758     Node *mem1 = (Node*)1;
1759     debug_only(Node *save_mem_node = _mem_node;)
1760     mach->add_req( ReduceInst(s, newrule, mem1) );
1761     debug_only(_mem_node = save_mem_node;)
1762   }
1763   return;
1764 }
1765 
1766 
1767 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1768   if( s->_leaf->is_Load() ) {
1769     Node *mem2 = s->_leaf->in(MemNode::Memory);
1770     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1771     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1772     mem = mem2;
1773   }
1774   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1775     if( mach->in(0) == NULL )
1776       mach->set_req(0, s->_leaf->in(0));
1777   }
1778 
1779   // Now recursively walk the state tree & add operand list.
1780   for( uint i=0; i<2; i++ ) {   // binary tree
1781     State *newstate = s->_kids[i];
1782     if( newstate == NULL ) break;      // Might only have 1 child
1783     // 'op' is what I am expecting to receive
1784     int op;
1785     if( i == 0 ) {
1786       op = _leftOp[rule];
1787     } else {
1788       op = _rightOp[rule];
1789     }
1790     // Operand type to catch childs result
1791     // This is what my child will give me.
1792     int opnd_class_instance = newstate->_rule[op];
1793     // Choose between operand class or not.
1794     // This is what I will receive.
1795     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1796     // New rule for child.  Chase operand classes to get the actual rule.
1797     int newrule = newstate->_rule[catch_op];
1798 
1799     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1800       // Operand/operandClass
1801       // Insert operand into array of operands for this instruction
1802       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
1803       ReduceOper( newstate, newrule, mem, mach );
1804 
1805     } else {                    // Child is internal operand or new instruction
1806       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1807         // internal operand --> call ReduceInst_Interior
1808         // Interior of complex instruction.  Do nothing but recurse.
1809         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1810       } else {
1811         // instruction --> call build operand(  ) to catch result
1812         //             --> ReduceInst( newrule )
1813         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
1814         Node *mem1 = (Node*)1;
1815         debug_only(Node *save_mem_node = _mem_node;)
1816         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1817         debug_only(_mem_node = save_mem_node;)
1818       }
1819     }
1820     assert( mach->_opnds[num_opnds-1], "" );
1821   }
1822   return num_opnds;
1823 }
1824 
1825 // This routine walks the interior of possible complex operands.
1826 // At each point we check our children in the match tree:
1827 // (1) No children -
1828 //     We are a leaf; add _leaf field as an input to the MachNode
1829 // (2) Child is an internal operand -
1830 //     Skip over it ( do nothing )
1831 // (3) Child is an instruction -
1832 //     Call ReduceInst recursively and
1833 //     and instruction as an input to the MachNode
1834 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1835   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1836   State *kid = s->_kids[0];
1837   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1838 
1839   // Leaf?  And not subsumed?
1840   if( kid == NULL && !_swallowed[rule] ) {
1841     mach->add_req( s->_leaf );  // Add leaf pointer
1842     return;                     // Bail out
1843   }
1844 
1845   if( s->_leaf->is_Load() ) {
1846     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1847     mem = s->_leaf->in(MemNode::Memory);
1848     debug_only(_mem_node = s->_leaf;)
1849   }
1850   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1851     if( !mach->in(0) )
1852       mach->set_req(0,s->_leaf->in(0));
1853     else {
1854       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1855     }
1856   }
1857 
1858   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1859     int newrule;
1860     if( i == 0 )
1861       newrule = kid->_rule[_leftOp[rule]];
1862     else
1863       newrule = kid->_rule[_rightOp[rule]];
1864 
1865     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1866       // Internal operand; recurse but do nothing else
1867       ReduceOper( kid, newrule, mem, mach );
1868 
1869     } else {                    // Child is a new instruction
1870       // Reduce the instruction, and add a direct pointer from this
1871       // machine instruction to the newly reduced one.
1872       Node *mem1 = (Node*)1;
1873       debug_only(Node *save_mem_node = _mem_node;)
1874       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1875       debug_only(_mem_node = save_mem_node;)
1876     }
1877   }
1878 }
1879 
1880 
1881 // -------------------------------------------------------------------------
1882 // Java-Java calling convention
1883 // (what you use when Java calls Java)
1884 
1885 //------------------------------find_receiver----------------------------------
1886 // For a given signature, return the OptoReg for parameter 0.
1887 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1888   VMRegPair regs;
1889   BasicType sig_bt = T_OBJECT;
1890   calling_convention(&sig_bt, &regs, 1, is_outgoing);
1891   // Return argument 0 register.  In the LP64 build pointers
1892   // take 2 registers, but the VM wants only the 'main' name.
1893   return OptoReg::as_OptoReg(regs.first());
1894 }
1895 
1896 // A method-klass-holder may be passed in the inline_cache_reg
1897 // and then expanded into the inline_cache_reg and a method_oop register
1898 //   defined in ad_<arch>.cpp
1899 
1900 
1901 //------------------------------find_shared------------------------------------
1902 // Set bits if Node is shared or otherwise a root
1903 void Matcher::find_shared( Node *n ) {
1904   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
1905   MStack mstack(C->unique() * 2);
1906   // Mark nodes as address_visited if they are inputs to an address expression
1907   VectorSet address_visited(Thread::current()->resource_area());
1908   mstack.push(n, Visit);     // Don't need to pre-visit root node
1909   while (mstack.is_nonempty()) {
1910     n = mstack.node();       // Leave node on stack
1911     Node_State nstate = mstack.state();
1912     uint nop = n->Opcode();
1913     if (nstate == Pre_Visit) {
1914       if (address_visited.test(n->_idx)) { // Visited in address already?
1915         // Flag as visited and shared now.
1916         set_visited(n);
1917       }
1918       if (is_visited(n)) {   // Visited already?
1919         // Node is shared and has no reason to clone.  Flag it as shared.
1920         // This causes it to match into a register for the sharing.
1921         set_shared(n);       // Flag as shared and
1922         mstack.pop();        // remove node from stack
1923         continue;
1924       }
1925       nstate = Visit; // Not already visited; so visit now
1926     }
1927     if (nstate == Visit) {
1928       mstack.set_state(Post_Visit);
1929       set_visited(n);   // Flag as visited now
1930       bool mem_op = false;
1931 
1932       switch( nop ) {  // Handle some opcodes special
1933       case Op_Phi:             // Treat Phis as shared roots
1934       case Op_Parm:
1935       case Op_Proj:            // All handled specially during matching
1936       case Op_SafePointScalarObject:
1937         set_shared(n);
1938         set_dontcare(n);
1939         break;
1940       case Op_If:
1941       case Op_CountedLoopEnd:
1942         mstack.set_state(Alt_Post_Visit); // Alternative way
1943         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
1944         // with matching cmp/branch in 1 instruction.  The Matcher needs the
1945         // Bool and CmpX side-by-side, because it can only get at constants
1946         // that are at the leaves of Match trees, and the Bool's condition acts
1947         // as a constant here.
1948         mstack.push(n->in(1), Visit);         // Clone the Bool
1949         mstack.push(n->in(0), Pre_Visit);     // Visit control input
1950         continue; // while (mstack.is_nonempty())
1951       case Op_ConvI2D:         // These forms efficiently match with a prior
1952       case Op_ConvI2F:         //   Load but not a following Store
1953         if( n->in(1)->is_Load() &&        // Prior load
1954             n->outcnt() == 1 &&           // Not already shared
1955             n->unique_out()->is_Store() ) // Following store
1956           set_shared(n);       // Force it to be a root
1957         break;
1958       case Op_ReverseBytesI:
1959       case Op_ReverseBytesL:
1960         if( n->in(1)->is_Load() &&        // Prior load
1961             n->outcnt() == 1 )            // Not already shared
1962           set_shared(n);                  // Force it to be a root
1963         break;
1964       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
1965       case Op_IfFalse:
1966       case Op_IfTrue:
1967       case Op_MachProj:
1968       case Op_MergeMem:
1969       case Op_Catch:
1970       case Op_CatchProj:
1971       case Op_CProj:
1972       case Op_JumpProj:
1973       case Op_JProj:
1974       case Op_NeverBranch:
1975         set_dontcare(n);
1976         break;
1977       case Op_Jump:
1978         mstack.push(n->in(1), Pre_Visit);     // Switch Value (could be shared)
1979         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
1980         continue;                             // while (mstack.is_nonempty())
1981       case Op_StrComp:
1982       case Op_StrEquals:
1983       case Op_StrIndexOf:
1984       case Op_AryEq:
1985         set_shared(n); // Force result into register (it will be anyways)
1986         break;
1987       case Op_ConP: {  // Convert pointers above the centerline to NUL
1988         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1989         const TypePtr* tp = tn->type()->is_ptr();
1990         if (tp->_ptr == TypePtr::AnyNull) {
1991           tn->set_type(TypePtr::NULL_PTR);
1992         }
1993         break;
1994       }
1995       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
1996         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1997         const TypePtr* tp = tn->type()->make_ptr();
1998         if (tp && tp->_ptr == TypePtr::AnyNull) {
1999           tn->set_type(TypeNarrowOop::NULL_PTR);
2000         }
2001         break;
2002       }
2003       case Op_Binary:         // These are introduced in the Post_Visit state.
2004         ShouldNotReachHere();
2005         break;
2006       case Op_ClearArray:
2007       case Op_SafePoint:
2008         mem_op = true;
2009         break;
2010       default:
2011         if( n->is_Store() ) {
2012           // Do match stores, despite no ideal reg
2013           mem_op = true;
2014           break;
2015         }
2016         if( n->is_Mem() ) { // Loads and LoadStores
2017           mem_op = true;
2018           // Loads must be root of match tree due to prior load conflict
2019           if( C->subsume_loads() == false )
2020             set_shared(n);
2021         }
2022         // Fall into default case
2023         if( !n->ideal_reg() )
2024           set_dontcare(n);  // Unmatchable Nodes
2025       } // end_switch
2026 
2027       for(int i = n->req() - 1; i >= 0; --i) { // For my children
2028         Node *m = n->in(i); // Get ith input
2029         if (m == NULL) continue;  // Ignore NULLs
2030         uint mop = m->Opcode();
2031 
2032         // Must clone all producers of flags, or we will not match correctly.
2033         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
2034         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
2035         // are also there, so we may match a float-branch to int-flags and
2036         // expect the allocator to haul the flags from the int-side to the
2037         // fp-side.  No can do.
2038         if( _must_clone[mop] ) {
2039           mstack.push(m, Visit);
2040           continue; // for(int i = ...)
2041         }
2042 
2043         if( mop == Op_AddP && m->in(AddPNode::Base)->is_DecodeNarrowPtr()) {
2044           // Bases used in addresses must be shared but since
2045           // they are shared through a DecodeN they may appear
2046           // to have a single use so force sharing here.
2047           set_shared(m->in(AddPNode::Base)->in(1));
2048         }
2049 
2050         // Clone addressing expressions as they are "free" in memory access instructions
2051         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
2052           // Some inputs for address expression are not put on stack
2053           // to avoid marking them as shared and forcing them into register
2054           // if they are used only in address expressions.
2055           // But they should be marked as shared if there are other uses
2056           // besides address expressions.
2057 
2058           Node *off = m->in(AddPNode::Offset);
2059           if( off->is_Con() &&
2060               // When there are other uses besides address expressions
2061               // put it on stack and mark as shared.
2062               !is_visited(m) ) {
2063             address_visited.test_set(m->_idx); // Flag as address_visited
2064             Node *adr = m->in(AddPNode::Address);
2065 
2066             // Intel, ARM and friends can handle 2 adds in addressing mode
2067             if( clone_shift_expressions && adr->is_AddP() &&
2068                 // AtomicAdd is not an addressing expression.
2069                 // Cheap to find it by looking for screwy base.
2070                 !adr->in(AddPNode::Base)->is_top() &&
2071                 // Are there other uses besides address expressions?
2072                 !is_visited(adr) ) {
2073               address_visited.set(adr->_idx); // Flag as address_visited
2074               Node *shift = adr->in(AddPNode::Offset);
2075               // Check for shift by small constant as well
2076               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() &&
2077                   shift->in(2)->get_int() <= 3 &&
2078                   // Are there other uses besides address expressions?
2079                   !is_visited(shift) ) {
2080                 address_visited.set(shift->_idx); // Flag as address_visited
2081                 mstack.push(shift->in(2), Visit);
2082                 Node *conv = shift->in(1);
2083 #ifdef _LP64
2084                 // Allow Matcher to match the rule which bypass
2085                 // ConvI2L operation for an array index on LP64
2086                 // if the index value is positive.
2087                 if( conv->Opcode() == Op_ConvI2L &&
2088                     conv->as_Type()->type()->is_long()->_lo >= 0 &&
2089                     // Are there other uses besides address expressions?
2090                     !is_visited(conv) ) {
2091                   address_visited.set(conv->_idx); // Flag as address_visited
2092                   mstack.push(conv->in(1), Pre_Visit);
2093                 } else
2094 #endif
2095                 mstack.push(conv, Pre_Visit);
2096               } else {
2097                 mstack.push(shift, Pre_Visit);
2098               }
2099               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
2100               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
2101             } else {  // Sparc, Alpha, PPC and friends
2102               mstack.push(adr, Pre_Visit);
2103             }
2104 
2105             // Clone X+offset as it also folds into most addressing expressions
2106             mstack.push(off, Visit);
2107             mstack.push(m->in(AddPNode::Base), Pre_Visit);
2108             continue; // for(int i = ...)
2109           } // if( off->is_Con() )
2110         }   // if( mem_op &&
2111         mstack.push(m, Pre_Visit);
2112       }     // for(int i = ...)
2113     }
2114     else if (nstate == Alt_Post_Visit) {
2115       mstack.pop(); // Remove node from stack
2116       // We cannot remove the Cmp input from the Bool here, as the Bool may be
2117       // shared and all users of the Bool need to move the Cmp in parallel.
2118       // This leaves both the Bool and the If pointing at the Cmp.  To
2119       // prevent the Matcher from trying to Match the Cmp along both paths
2120       // BoolNode::match_edge always returns a zero.
2121 
2122       // We reorder the Op_If in a pre-order manner, so we can visit without
2123       // accidentally sharing the Cmp (the Bool and the If make 2 users).
2124       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
2125     }
2126     else if (nstate == Post_Visit) {
2127       mstack.pop(); // Remove node from stack
2128 
2129       // Now hack a few special opcodes
2130       switch( n->Opcode() ) {       // Handle some opcodes special
2131       case Op_StorePConditional:
2132       case Op_StoreIConditional:
2133       case Op_StoreLConditional:
2134       case Op_CompareAndSwapI:
2135       case Op_CompareAndSwapL:
2136       case Op_CompareAndSwapP:
2137       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
2138         Node *newval = n->in(MemNode::ValueIn );
2139         Node *oldval  = n->in(LoadStoreConditionalNode::ExpectedIn);
2140         Node *pair = new (C) BinaryNode( oldval, newval );
2141         n->set_req(MemNode::ValueIn,pair);
2142         n->del_req(LoadStoreConditionalNode::ExpectedIn);
2143         break;
2144       }
2145       case Op_CMoveD:              // Convert trinary to binary-tree
2146       case Op_CMoveF:
2147       case Op_CMoveI:
2148       case Op_CMoveL:
2149       case Op_CMoveN:
2150       case Op_CMoveP: {
2151         // Restructure into a binary tree for Matching.  It's possible that
2152         // we could move this code up next to the graph reshaping for IfNodes
2153         // or vice-versa, but I do not want to debug this for Ladybird.
2154         // 10/2/2000 CNC.
2155         Node *pair1 = new (C) BinaryNode(n->in(1),n->in(1)->in(1));
2156         n->set_req(1,pair1);
2157         Node *pair2 = new (C) BinaryNode(n->in(2),n->in(3));
2158         n->set_req(2,pair2);
2159         n->del_req(3);
2160         break;
2161       }
2162       case Op_LoopLimit: {
2163         Node *pair1 = new (C) BinaryNode(n->in(1),n->in(2));
2164         n->set_req(1,pair1);
2165         n->set_req(2,n->in(3));
2166         n->del_req(3);
2167         break;
2168       }
2169       case Op_StrEquals: {
2170         Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
2171         n->set_req(2,pair1);
2172         n->set_req(3,n->in(4));
2173         n->del_req(4);
2174         break;
2175       }
2176       case Op_StrComp:
2177       case Op_StrIndexOf: {
2178         Node *pair1 = new (C) BinaryNode(n->in(2),n->in(3));
2179         n->set_req(2,pair1);
2180         Node *pair2 = new (C) BinaryNode(n->in(4),n->in(5));
2181         n->set_req(3,pair2);
2182         n->del_req(5);
2183         n->del_req(4);
2184         break;
2185       }
2186       default:
2187         break;
2188       }
2189     }
2190     else {
2191       ShouldNotReachHere();
2192     }
2193   } // end of while (mstack.is_nonempty())
2194 }
2195 
2196 #ifdef ASSERT
2197 // machine-independent root to machine-dependent root
2198 void Matcher::dump_old2new_map() {
2199   _old2new_map.dump();
2200 }
2201 #endif
2202 
2203 //---------------------------collect_null_checks-------------------------------
2204 // Find null checks in the ideal graph; write a machine-specific node for
2205 // it.  Used by later implicit-null-check handling.  Actually collects
2206 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2207 // value being tested.
2208 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2209   Node *iff = proj->in(0);
2210   if( iff->Opcode() == Op_If ) {
2211     // During matching If's have Bool & Cmp side-by-side
2212     BoolNode *b = iff->in(1)->as_Bool();
2213     Node *cmp = iff->in(2);
2214     int opc = cmp->Opcode();
2215     if (opc != Op_CmpP && opc != Op_CmpN) return;
2216 
2217     const Type* ct = cmp->in(2)->bottom_type();
2218     if (ct == TypePtr::NULL_PTR ||
2219         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2220 
2221       bool push_it = false;
2222       if( proj->Opcode() == Op_IfTrue ) {
2223         extern int all_null_checks_found;
2224         all_null_checks_found++;
2225         if( b->_test._test == BoolTest::ne ) {
2226           push_it = true;
2227         }
2228       } else {
2229         assert( proj->Opcode() == Op_IfFalse, "" );
2230         if( b->_test._test == BoolTest::eq ) {
2231           push_it = true;
2232         }
2233       }
2234       if( push_it ) {
2235         _null_check_tests.push(proj);
2236         Node* val = cmp->in(1);
2237 #ifdef _LP64
2238         if (val->bottom_type()->isa_narrowoop() &&
2239             !Matcher::narrow_oop_use_complex_address()) {
2240           //
2241           // Look for DecodeN node which should be pinned to orig_proj.
2242           // On platforms (Sparc) which can not handle 2 adds
2243           // in addressing mode we have to keep a DecodeN node and
2244           // use it to do implicit NULL check in address.
2245           //
2246           // DecodeN node was pinned to non-null path (orig_proj) during
2247           // CastPP transformation in final_graph_reshaping_impl().
2248           //
2249           uint cnt = orig_proj->outcnt();
2250           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2251             Node* d = orig_proj->raw_out(i);
2252             if (d->is_DecodeN() && d->in(1) == val) {
2253               val = d;
2254               val->set_req(0, NULL); // Unpin now.
2255               // Mark this as special case to distinguish from
2256               // a regular case: CmpP(DecodeN, NULL).
2257               val = (Node*)(((intptr_t)val) | 1);
2258               break;
2259             }
2260           }
2261         }
2262 #endif
2263         _null_check_tests.push(val);
2264       }
2265     }
2266   }
2267 }
2268 
2269 //---------------------------validate_null_checks------------------------------
2270 // Its possible that the value being NULL checked is not the root of a match
2271 // tree.  If so, I cannot use the value in an implicit null check.
2272 void Matcher::validate_null_checks( ) {
2273   uint cnt = _null_check_tests.size();
2274   for( uint i=0; i < cnt; i+=2 ) {
2275     Node *test = _null_check_tests[i];
2276     Node *val = _null_check_tests[i+1];
2277     bool is_decoden = ((intptr_t)val) & 1;
2278     val = (Node*)(((intptr_t)val) & ~1);
2279     if (has_new_node(val)) {
2280       Node* new_val = new_node(val);
2281       if (is_decoden) {
2282         assert(val->is_DecodeNarrowPtr() && val->in(0) == NULL, "sanity");
2283         // Note: new_val may have a control edge if
2284         // the original ideal node DecodeN was matched before
2285         // it was unpinned in Matcher::collect_null_checks().
2286         // Unpin the mach node and mark it.
2287         new_val->set_req(0, NULL);
2288         new_val = (Node*)(((intptr_t)new_val) | 1);
2289       }
2290       // Is a match-tree root, so replace with the matched value
2291       _null_check_tests.map(i+1, new_val);
2292     } else {
2293       // Yank from candidate list
2294       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2295       _null_check_tests.map(i,_null_check_tests[--cnt]);
2296       _null_check_tests.pop();
2297       _null_check_tests.pop();
2298       i-=2;
2299     }
2300   }
2301 }
2302 
2303 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2304 // atomic instruction acting as a store_load barrier without any
2305 // intervening volatile load, and thus we don't need a barrier here.
2306 // We retain the Node to act as a compiler ordering barrier.
2307 bool Matcher::post_store_load_barrier(const Node *vmb) {
2308   Compile *C = Compile::current();
2309   assert( vmb->is_MemBar(), "" );
2310   assert( vmb->Opcode() != Op_MemBarAcquire, "" );
2311   const MemBarNode *mem = (const MemBarNode*)vmb;
2312 
2313   // Get the Proj node, ctrl, that can be used to iterate forward
2314   Node *ctrl = NULL;
2315   DUIterator_Fast imax, i = mem->fast_outs(imax);
2316   while( true ) {
2317     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
2318     assert( ctrl->is_Proj(), "only projections here" );
2319     ProjNode *proj = (ProjNode*)ctrl;
2320     if( proj->_con == TypeFunc::Control &&
2321         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
2322       break;
2323     i++;
2324   }
2325 
2326   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
2327     Node *x = ctrl->fast_out(j);
2328     int xop = x->Opcode();
2329 
2330     // We don't need current barrier if we see another or a lock
2331     // before seeing volatile load.
2332     //
2333     // Op_Fastunlock previously appeared in the Op_* list below.
2334     // With the advent of 1-0 lock operations we're no longer guaranteed
2335     // that a monitor exit operation contains a serializing instruction.
2336 
2337     if (xop == Op_MemBarVolatile ||
2338         xop == Op_FastLock ||
2339         xop == Op_CompareAndSwapL ||
2340         xop == Op_CompareAndSwapP ||
2341         xop == Op_CompareAndSwapN ||
2342         xop == Op_CompareAndSwapI)
2343       return true;
2344 
2345     if (x->is_MemBar()) {
2346       // We must retain this membar if there is an upcoming volatile
2347       // load, which will be preceded by acquire membar.
2348       if (xop == Op_MemBarAcquire)
2349         return false;
2350       // For other kinds of barriers, check by pretending we
2351       // are them, and seeing if we can be removed.
2352       else
2353         return post_store_load_barrier((const MemBarNode*)x);
2354     }
2355 
2356     // Delicate code to detect case of an upcoming fastlock block
2357     if( x->is_If() && x->req() > 1 &&
2358         !C->node_arena()->contains(x) ) { // Unmatched old-space only
2359       Node *iff = x;
2360       Node *bol = iff->in(1);
2361       // The iff might be some random subclass of If or bol might be Con-Top
2362       if (!bol->is_Bool())  return false;
2363       assert( bol->req() > 1, "" );
2364       return (bol->in(1)->Opcode() == Op_FastUnlock);
2365     }
2366     // probably not necessary to check for these
2367     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
2368       return false;
2369   }
2370   return false;
2371 }
2372 
2373 //=============================================================================
2374 //---------------------------State---------------------------------------------
2375 State::State(void) {
2376 #ifdef ASSERT
2377   _id = 0;
2378   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2379   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2380   //memset(_cost, -1, sizeof(_cost));
2381   //memset(_rule, -1, sizeof(_rule));
2382 #endif
2383   memset(_valid, 0, sizeof(_valid));
2384 }
2385 
2386 #ifdef ASSERT
2387 State::~State() {
2388   _id = 99;
2389   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2390   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2391   memset(_cost, -3, sizeof(_cost));
2392   memset(_rule, -3, sizeof(_rule));
2393 }
2394 #endif
2395 
2396 #ifndef PRODUCT
2397 //---------------------------dump----------------------------------------------
2398 void State::dump() {
2399   tty->print("\n");
2400   dump(0);
2401 }
2402 
2403 void State::dump(int depth) {
2404   for( int j = 0; j < depth; j++ )
2405     tty->print("   ");
2406   tty->print("--N: ");
2407   _leaf->dump();
2408   uint i;
2409   for( i = 0; i < _LAST_MACH_OPER; i++ )
2410     // Check for valid entry
2411     if( valid(i) ) {
2412       for( int j = 0; j < depth; j++ )
2413         tty->print("   ");
2414         assert(_cost[i] != max_juint, "cost must be a valid value");
2415         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2416         tty->print_cr("%s  %d  %s",
2417                       ruleName[i], _cost[i], ruleName[_rule[i]] );
2418       }
2419   tty->print_cr("");
2420 
2421   for( i=0; i<2; i++ )
2422     if( _kids[i] )
2423       _kids[i]->dump(depth+1);
2424 }
2425 #endif