1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/connode.hpp"
  30 #include "opto/machnode.hpp"
  31 #include "opto/matcher.hpp"
  32 #include "opto/node.hpp"
  33 #include "opto/opcodes.hpp"
  34 #include "opto/regmask.hpp"
  35 #include "opto/type.hpp"
  36 #include "utilities/copy.hpp"
  37 
  38 class RegMask;
  39 // #include "phase.hpp"
  40 class PhaseTransform;
  41 class PhaseGVN;
  42 
  43 // Arena we are currently building Nodes in
  44 const uint Node::NotAMachineReg = 0xffff0000;
  45 
  46 #ifndef PRODUCT
  47 extern int nodes_created;
  48 #endif
  49 
  50 #ifdef ASSERT
  51 
  52 //-------------------------- construct_node------------------------------------
  53 // Set a breakpoint here to identify where a particular node index is built.
  54 void Node::verify_construction() {
  55   _debug_orig = NULL;
  56   int old_debug_idx = Compile::debug_idx();
  57   int new_debug_idx = old_debug_idx+1;
  58   if (new_debug_idx > 0) {
  59     // Arrange that the lowest five decimal digits of _debug_idx
  60     // will repeat thos of _idx.  In case this is somehow pathological,
  61     // we continue to assign negative numbers (!) consecutively.
  62     const int mod = 100000;
  63     int bump = (int)(_idx - new_debug_idx) % mod;
  64     if (bump < 0)  bump += mod;
  65     assert(bump >= 0 && bump < mod, "");
  66     new_debug_idx += bump;
  67   }
  68   Compile::set_debug_idx(new_debug_idx);
  69   set_debug_idx( new_debug_idx );
  70   assert(Compile::current()->unique() < (uint)MaxNodeLimit, "Node limit exceeded");
  71   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
  72     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
  73     BREAKPOINT;
  74   }
  75 #if OPTO_DU_ITERATOR_ASSERT
  76   _last_del = NULL;
  77   _del_tick = 0;
  78 #endif
  79   _hash_lock = 0;
  80 }
  81 
  82 
  83 // #ifdef ASSERT ...
  84 
  85 #if OPTO_DU_ITERATOR_ASSERT
  86 void DUIterator_Common::sample(const Node* node) {
  87   _vdui     = VerifyDUIterators;
  88   _node     = node;
  89   _outcnt   = node->_outcnt;
  90   _del_tick = node->_del_tick;
  91   _last     = NULL;
  92 }
  93 
  94 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
  95   assert(_node     == node, "consistent iterator source");
  96   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
  97 }
  98 
  99 void DUIterator_Common::verify_resync() {
 100   // Ensure that the loop body has just deleted the last guy produced.
 101   const Node* node = _node;
 102   // Ensure that at least one copy of the last-seen edge was deleted.
 103   // Note:  It is OK to delete multiple copies of the last-seen edge.
 104   // Unfortunately, we have no way to verify that all the deletions delete
 105   // that same edge.  On this point we must use the Honor System.
 106   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 107   assert(node->_last_del == _last, "must have deleted the edge just produced");
 108   // We liked this deletion, so accept the resulting outcnt and tick.
 109   _outcnt   = node->_outcnt;
 110   _del_tick = node->_del_tick;
 111 }
 112 
 113 void DUIterator_Common::reset(const DUIterator_Common& that) {
 114   if (this == &that)  return;  // ignore assignment to self
 115   if (!_vdui) {
 116     // We need to initialize everything, overwriting garbage values.
 117     _last = that._last;
 118     _vdui = that._vdui;
 119   }
 120   // Note:  It is legal (though odd) for an iterator over some node x
 121   // to be reassigned to iterate over another node y.  Some doubly-nested
 122   // progress loops depend on being able to do this.
 123   const Node* node = that._node;
 124   // Re-initialize everything, except _last.
 125   _node     = node;
 126   _outcnt   = node->_outcnt;
 127   _del_tick = node->_del_tick;
 128 }
 129 
 130 void DUIterator::sample(const Node* node) {
 131   DUIterator_Common::sample(node);      // Initialize the assertion data.
 132   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 133 }
 134 
 135 void DUIterator::verify(const Node* node, bool at_end_ok) {
 136   DUIterator_Common::verify(node, at_end_ok);
 137   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 138 }
 139 
 140 void DUIterator::verify_increment() {
 141   if (_refresh_tick & 1) {
 142     // We have refreshed the index during this loop.
 143     // Fix up _idx to meet asserts.
 144     if (_idx > _outcnt)  _idx = _outcnt;
 145   }
 146   verify(_node, true);
 147 }
 148 
 149 void DUIterator::verify_resync() {
 150   // Note:  We do not assert on _outcnt, because insertions are OK here.
 151   DUIterator_Common::verify_resync();
 152   // Make sure we are still in sync, possibly with no more out-edges:
 153   verify(_node, true);
 154 }
 155 
 156 void DUIterator::reset(const DUIterator& that) {
 157   if (this == &that)  return;  // self assignment is always a no-op
 158   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 159   assert(that._idx          == 0, "assign only the result of Node::outs()");
 160   assert(_idx               == that._idx, "already assigned _idx");
 161   if (!_vdui) {
 162     // We need to initialize everything, overwriting garbage values.
 163     sample(that._node);
 164   } else {
 165     DUIterator_Common::reset(that);
 166     if (_refresh_tick & 1) {
 167       _refresh_tick++;                  // Clear the "was refreshed" flag.
 168     }
 169     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 170   }
 171 }
 172 
 173 void DUIterator::refresh() {
 174   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 175   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 176 }
 177 
 178 void DUIterator::verify_finish() {
 179   // If the loop has killed the node, do not require it to re-run.
 180   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 181   // If this assert triggers, it means that a loop used refresh_out_pos
 182   // to re-synch an iteration index, but the loop did not correctly
 183   // re-run itself, using a "while (progress)" construct.
 184   // This iterator enforces the rule that you must keep trying the loop
 185   // until it "runs clean" without any need for refreshing.
 186   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 187 }
 188 
 189 
 190 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 191   DUIterator_Common::verify(node, at_end_ok);
 192   Node** out    = node->_out;
 193   uint   cnt    = node->_outcnt;
 194   assert(cnt == _outcnt, "no insertions allowed");
 195   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 196   // This last check is carefully designed to work for NO_OUT_ARRAY.
 197 }
 198 
 199 void DUIterator_Fast::verify_limit() {
 200   const Node* node = _node;
 201   verify(node, true);
 202   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 203 }
 204 
 205 void DUIterator_Fast::verify_resync() {
 206   const Node* node = _node;
 207   if (_outp == node->_out + _outcnt) {
 208     // Note that the limit imax, not the pointer i, gets updated with the
 209     // exact count of deletions.  (For the pointer it's always "--i".)
 210     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 211     // This is a limit pointer, with a name like "imax".
 212     // Fudge the _last field so that the common assert will be happy.
 213     _last = (Node*) node->_last_del;
 214     DUIterator_Common::verify_resync();
 215   } else {
 216     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 217     // A normal internal pointer.
 218     DUIterator_Common::verify_resync();
 219     // Make sure we are still in sync, possibly with no more out-edges:
 220     verify(node, true);
 221   }
 222 }
 223 
 224 void DUIterator_Fast::verify_relimit(uint n) {
 225   const Node* node = _node;
 226   assert((int)n > 0, "use imax -= n only with a positive count");
 227   // This must be a limit pointer, with a name like "imax".
 228   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 229   // The reported number of deletions must match what the node saw.
 230   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 231   // Fudge the _last field so that the common assert will be happy.
 232   _last = (Node*) node->_last_del;
 233   DUIterator_Common::verify_resync();
 234 }
 235 
 236 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 237   assert(_outp              == that._outp, "already assigned _outp");
 238   DUIterator_Common::reset(that);
 239 }
 240 
 241 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 242   // at_end_ok means the _outp is allowed to underflow by 1
 243   _outp += at_end_ok;
 244   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 245   _outp -= at_end_ok;
 246   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 247 }
 248 
 249 void DUIterator_Last::verify_limit() {
 250   // Do not require the limit address to be resynched.
 251   //verify(node, true);
 252   assert(_outp == _node->_out, "limit still correct");
 253 }
 254 
 255 void DUIterator_Last::verify_step(uint num_edges) {
 256   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 257   _outcnt   -= num_edges;
 258   _del_tick += num_edges;
 259   // Make sure we are still in sync, possibly with no more out-edges:
 260   const Node* node = _node;
 261   verify(node, true);
 262   assert(node->_last_del == _last, "must have deleted the edge just produced");
 263 }
 264 
 265 #endif //OPTO_DU_ITERATOR_ASSERT
 266 
 267 
 268 #endif //ASSERT
 269 
 270 
 271 // This constant used to initialize _out may be any non-null value.
 272 // The value NULL is reserved for the top node only.
 273 #define NO_OUT_ARRAY ((Node**)-1)
 274 
 275 // This funny expression handshakes with Node::operator new
 276 // to pull Compile::current out of the new node's _out field,
 277 // and then calls a subroutine which manages most field
 278 // initializations.  The only one which is tricky is the
 279 // _idx field, which is const, and so must be initialized
 280 // by a return value, not an assignment.
 281 //
 282 // (Aren't you thankful that Java finals don't require so many tricks?)
 283 #define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
 284 #ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
 285 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 286 #endif
 287 
 288 // Out-of-line code from node constructors.
 289 // Executed only when extra debug info. is being passed around.
 290 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 291   C->set_node_notes_at(idx, nn);
 292 }
 293 
 294 // Shared initialization code.
 295 inline int Node::Init(int req, Compile* C) {
 296   assert(Compile::current() == C, "must use operator new(Compile*)");
 297   int idx = C->next_unique();
 298 
 299   // Allocate memory for the necessary number of edges.
 300   if (req > 0) {
 301     // Allocate space for _in array to have double alignment.
 302     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
 303 #ifdef ASSERT
 304     _in[req-1] = this; // magic cookie for assertion check
 305 #endif
 306   }
 307   // If there are default notes floating around, capture them:
 308   Node_Notes* nn = C->default_node_notes();
 309   if (nn != NULL)  init_node_notes(C, idx, nn);
 310 
 311   // Note:  At this point, C is dead,
 312   // and we begin to initialize the new Node.
 313 
 314   _cnt = _max = req;
 315   _outcnt = _outmax = 0;
 316   _class_id = Class_Node;
 317   _flags = 0;
 318   _out = NO_OUT_ARRAY;
 319   return idx;
 320 }
 321 
 322 //------------------------------Node-------------------------------------------
 323 // Create a Node, with a given number of required edges.
 324 Node::Node(uint req)
 325   : _idx(IDX_INIT(req))
 326 {
 327   assert( req < (uint)(MaxNodeLimit - NodeLimitFudgeFactor), "Input limit exceeded" );
 328   debug_only( verify_construction() );
 329   NOT_PRODUCT(nodes_created++);
 330   if (req == 0) {
 331     assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
 332     _in = NULL;
 333   } else {
 334     assert( _in[req-1] == this, "Must pass arg count to 'new'" );
 335     Node** to = _in;
 336     for(uint i = 0; i < req; i++) {
 337       to[i] = NULL;
 338     }
 339   }
 340 }
 341 
 342 //------------------------------Node-------------------------------------------
 343 Node::Node(Node *n0)
 344   : _idx(IDX_INIT(1))
 345 {
 346   debug_only( verify_construction() );
 347   NOT_PRODUCT(nodes_created++);
 348   // Assert we allocated space for input array already
 349   assert( _in[0] == this, "Must pass arg count to 'new'" );
 350   assert( is_not_dead(n0), "can not use dead node");
 351   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 352 }
 353 
 354 //------------------------------Node-------------------------------------------
 355 Node::Node(Node *n0, Node *n1)
 356   : _idx(IDX_INIT(2))
 357 {
 358   debug_only( verify_construction() );
 359   NOT_PRODUCT(nodes_created++);
 360   // Assert we allocated space for input array already
 361   assert( _in[1] == this, "Must pass arg count to 'new'" );
 362   assert( is_not_dead(n0), "can not use dead node");
 363   assert( is_not_dead(n1), "can not use dead node");
 364   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 365   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 366 }
 367 
 368 //------------------------------Node-------------------------------------------
 369 Node::Node(Node *n0, Node *n1, Node *n2)
 370   : _idx(IDX_INIT(3))
 371 {
 372   debug_only( verify_construction() );
 373   NOT_PRODUCT(nodes_created++);
 374   // Assert we allocated space for input array already
 375   assert( _in[2] == this, "Must pass arg count to 'new'" );
 376   assert( is_not_dead(n0), "can not use dead node");
 377   assert( is_not_dead(n1), "can not use dead node");
 378   assert( is_not_dead(n2), "can not use dead node");
 379   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 380   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 381   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 382 }
 383 
 384 //------------------------------Node-------------------------------------------
 385 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 386   : _idx(IDX_INIT(4))
 387 {
 388   debug_only( verify_construction() );
 389   NOT_PRODUCT(nodes_created++);
 390   // Assert we allocated space for input array already
 391   assert( _in[3] == this, "Must pass arg count to 'new'" );
 392   assert( is_not_dead(n0), "can not use dead node");
 393   assert( is_not_dead(n1), "can not use dead node");
 394   assert( is_not_dead(n2), "can not use dead node");
 395   assert( is_not_dead(n3), "can not use dead node");
 396   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 397   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 398   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 399   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 400 }
 401 
 402 //------------------------------Node-------------------------------------------
 403 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 404   : _idx(IDX_INIT(5))
 405 {
 406   debug_only( verify_construction() );
 407   NOT_PRODUCT(nodes_created++);
 408   // Assert we allocated space for input array already
 409   assert( _in[4] == this, "Must pass arg count to 'new'" );
 410   assert( is_not_dead(n0), "can not use dead node");
 411   assert( is_not_dead(n1), "can not use dead node");
 412   assert( is_not_dead(n2), "can not use dead node");
 413   assert( is_not_dead(n3), "can not use dead node");
 414   assert( is_not_dead(n4), "can not use dead node");
 415   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 416   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 417   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 418   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 419   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 420 }
 421 
 422 //------------------------------Node-------------------------------------------
 423 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 424                      Node *n4, Node *n5)
 425   : _idx(IDX_INIT(6))
 426 {
 427   debug_only( verify_construction() );
 428   NOT_PRODUCT(nodes_created++);
 429   // Assert we allocated space for input array already
 430   assert( _in[5] == this, "Must pass arg count to 'new'" );
 431   assert( is_not_dead(n0), "can not use dead node");
 432   assert( is_not_dead(n1), "can not use dead node");
 433   assert( is_not_dead(n2), "can not use dead node");
 434   assert( is_not_dead(n3), "can not use dead node");
 435   assert( is_not_dead(n4), "can not use dead node");
 436   assert( is_not_dead(n5), "can not use dead node");
 437   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 438   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 439   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 440   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 441   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 442   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 443 }
 444 
 445 //------------------------------Node-------------------------------------------
 446 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 447                      Node *n4, Node *n5, Node *n6)
 448   : _idx(IDX_INIT(7))
 449 {
 450   debug_only( verify_construction() );
 451   NOT_PRODUCT(nodes_created++);
 452   // Assert we allocated space for input array already
 453   assert( _in[6] == this, "Must pass arg count to 'new'" );
 454   assert( is_not_dead(n0), "can not use dead node");
 455   assert( is_not_dead(n1), "can not use dead node");
 456   assert( is_not_dead(n2), "can not use dead node");
 457   assert( is_not_dead(n3), "can not use dead node");
 458   assert( is_not_dead(n4), "can not use dead node");
 459   assert( is_not_dead(n5), "can not use dead node");
 460   assert( is_not_dead(n6), "can not use dead node");
 461   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 462   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 463   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 464   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 465   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 466   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 467   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
 468 }
 469 
 470 
 471 //------------------------------clone------------------------------------------
 472 // Clone a Node.
 473 Node *Node::clone() const {
 474   Compile *compile = Compile::current();
 475   uint s = size_of();           // Size of inherited Node
 476   Node *n = (Node*)compile->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
 477   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 478   // Set the new input pointer array
 479   n->_in = (Node**)(((char*)n)+s);
 480   // Cannot share the old output pointer array, so kill it
 481   n->_out = NO_OUT_ARRAY;
 482   // And reset the counters to 0
 483   n->_outcnt = 0;
 484   n->_outmax = 0;
 485   // Unlock this guy, since he is not in any hash table.
 486   debug_only(n->_hash_lock = 0);
 487   // Walk the old node's input list to duplicate its edges
 488   uint i;
 489   for( i = 0; i < len(); i++ ) {
 490     Node *x = in(i);
 491     n->_in[i] = x;
 492     if (x != NULL) x->add_out(n);
 493   }
 494   if (is_macro())
 495     compile->add_macro_node(n);
 496 
 497   n->set_idx(compile->next_unique()); // Get new unique index as well
 498   debug_only( n->verify_construction() );
 499   NOT_PRODUCT(nodes_created++);
 500   // Do not patch over the debug_idx of a clone, because it makes it
 501   // impossible to break on the clone's moment of creation.
 502   //debug_only( n->set_debug_idx( debug_idx() ) );
 503 
 504   compile->copy_node_notes_to(n, (Node*) this);
 505 
 506   // MachNode clone
 507   uint nopnds;
 508   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 509     MachNode *mach  = n->as_Mach();
 510     MachNode *mthis = this->as_Mach();
 511     // Get address of _opnd_array.
 512     // It should be the same offset since it is the clone of this node.
 513     MachOper **from = mthis->_opnds;
 514     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 515                     pointer_delta((const void*)from,
 516                                   (const void*)(&mthis->_opnds), 1));
 517     mach->_opnds = to;
 518     for ( uint i = 0; i < nopnds; ++i ) {
 519       to[i] = from[i]->clone(compile);
 520     }
 521   }
 522   // cloning CallNode may need to clone JVMState
 523   if (n->is_Call()) {
 524     CallNode *call = n->as_Call();
 525     call->clone_jvms();
 526   }
 527   return n;                     // Return the clone
 528 }
 529 
 530 //---------------------------setup_is_top--------------------------------------
 531 // Call this when changing the top node, to reassert the invariants
 532 // required by Node::is_top.  See Compile::set_cached_top_node.
 533 void Node::setup_is_top() {
 534   if (this == (Node*)Compile::current()->top()) {
 535     // This node has just become top.  Kill its out array.
 536     _outcnt = _outmax = 0;
 537     _out = NULL;                           // marker value for top
 538     assert(is_top(), "must be top");
 539   } else {
 540     if (_out == NULL)  _out = NO_OUT_ARRAY;
 541     assert(!is_top(), "must not be top");
 542   }
 543 }
 544 
 545 
 546 //------------------------------~Node------------------------------------------
 547 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 548 extern int reclaim_idx ;
 549 extern int reclaim_in  ;
 550 extern int reclaim_node;
 551 void Node::destruct() {
 552   // Eagerly reclaim unique Node numberings
 553   Compile* compile = Compile::current();
 554   if ((uint)_idx+1 == compile->unique()) {
 555     compile->set_unique(compile->unique()-1);
 556 #ifdef ASSERT
 557     reclaim_idx++;
 558 #endif
 559   }
 560   // Clear debug info:
 561   Node_Notes* nn = compile->node_notes_at(_idx);
 562   if (nn != NULL)  nn->clear();
 563   // Walk the input array, freeing the corresponding output edges
 564   _cnt = _max;  // forget req/prec distinction
 565   uint i;
 566   for( i = 0; i < _max; i++ ) {
 567     set_req(i, NULL);
 568     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 569   }
 570   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 571   // See if the input array was allocated just prior to the object
 572   int edge_size = _max*sizeof(void*);
 573   int out_edge_size = _outmax*sizeof(void*);
 574   char *edge_end = ((char*)_in) + edge_size;
 575   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
 576   char *out_edge_end = out_array + out_edge_size;
 577   int node_size = size_of();
 578 
 579   // Free the output edge array
 580   if (out_edge_size > 0) {
 581 #ifdef ASSERT
 582     if( out_edge_end == compile->node_arena()->hwm() )
 583       reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
 584 #endif
 585     compile->node_arena()->Afree(out_array, out_edge_size);
 586   }
 587 
 588   // Free the input edge array and the node itself
 589   if( edge_end == (char*)this ) {
 590 #ifdef ASSERT
 591     if( edge_end+node_size == compile->node_arena()->hwm() ) {
 592       reclaim_in  += edge_size;
 593       reclaim_node+= node_size;
 594     }
 595 #else
 596     // It was; free the input array and object all in one hit
 597     compile->node_arena()->Afree(_in,edge_size+node_size);
 598 #endif
 599   } else {
 600 
 601     // Free just the input array
 602 #ifdef ASSERT
 603     if( edge_end == compile->node_arena()->hwm() )
 604       reclaim_in  += edge_size;
 605 #endif
 606     compile->node_arena()->Afree(_in,edge_size);
 607 
 608     // Free just the object
 609 #ifdef ASSERT
 610     if( ((char*)this) + node_size == compile->node_arena()->hwm() )
 611       reclaim_node+= node_size;
 612 #else
 613     compile->node_arena()->Afree(this,node_size);
 614 #endif
 615   }
 616   if (is_macro()) {
 617     compile->remove_macro_node(this);
 618   }
 619 #ifdef ASSERT
 620   // We will not actually delete the storage, but we'll make the node unusable.
 621   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 622   _in = _out = (Node**) badAddress;
 623   _max = _cnt = _outmax = _outcnt = 0;
 624 #endif
 625 }
 626 
 627 //------------------------------grow-------------------------------------------
 628 // Grow the input array, making space for more edges
 629 void Node::grow( uint len ) {
 630   Arena* arena = Compile::current()->node_arena();
 631   uint new_max = _max;
 632   if( new_max == 0 ) {
 633     _max = 4;
 634     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
 635     Node** to = _in;
 636     to[0] = NULL;
 637     to[1] = NULL;
 638     to[2] = NULL;
 639     to[3] = NULL;
 640     return;
 641   }
 642   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 643   // Trimming to limit allows a uint8 to handle up to 255 edges.
 644   // Previously I was using only powers-of-2 which peaked at 128 edges.
 645   //if( new_max >= limit ) new_max = limit-1;
 646   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
 647   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
 648   _max = new_max;               // Record new max length
 649   // This assertion makes sure that Node::_max is wide enough to
 650   // represent the numerical value of new_max.
 651   assert(_max == new_max && _max > len, "int width of _max is too small");
 652 }
 653 
 654 //-----------------------------out_grow----------------------------------------
 655 // Grow the input array, making space for more edges
 656 void Node::out_grow( uint len ) {
 657   assert(!is_top(), "cannot grow a top node's out array");
 658   Arena* arena = Compile::current()->node_arena();
 659   uint new_max = _outmax;
 660   if( new_max == 0 ) {
 661     _outmax = 4;
 662     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
 663     return;
 664   }
 665   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 666   // Trimming to limit allows a uint8 to handle up to 255 edges.
 667   // Previously I was using only powers-of-2 which peaked at 128 edges.
 668   //if( new_max >= limit ) new_max = limit-1;
 669   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
 670   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
 671   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
 672   _outmax = new_max;               // Record new max length
 673   // This assertion makes sure that Node::_max is wide enough to
 674   // represent the numerical value of new_max.
 675   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
 676 }
 677 
 678 #ifdef ASSERT
 679 //------------------------------is_dead----------------------------------------
 680 bool Node::is_dead() const {
 681   // Mach and pinch point nodes may look like dead.
 682   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 683     return false;
 684   for( uint i = 0; i < _max; i++ )
 685     if( _in[i] != NULL )
 686       return false;
 687   dump();
 688   return true;
 689 }
 690 #endif
 691 
 692 //------------------------------add_req----------------------------------------
 693 // Add a new required input at the end
 694 void Node::add_req( Node *n ) {
 695   assert( is_not_dead(n), "can not use dead node");
 696 
 697   // Look to see if I can move precedence down one without reallocating
 698   if( (_cnt >= _max) || (in(_max-1) != NULL) )
 699     grow( _max+1 );
 700 
 701   // Find a precedence edge to move
 702   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
 703     uint i;
 704     for( i=_cnt; i<_max; i++ )
 705       if( in(i) == NULL )       // Find the NULL at end of prec edge list
 706         break;                  // There must be one, since we grew the array
 707     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 708   }
 709   _in[_cnt++] = n;            // Stuff over old prec edge
 710   if (n != NULL) n->add_out((Node *)this);
 711 }
 712 
 713 //---------------------------add_req_batch-------------------------------------
 714 // Add a new required input at the end
 715 void Node::add_req_batch( Node *n, uint m ) {
 716   assert( is_not_dead(n), "can not use dead node");
 717   // check various edge cases
 718   if ((int)m <= 1) {
 719     assert((int)m >= 0, "oob");
 720     if (m != 0)  add_req(n);
 721     return;
 722   }
 723 
 724   // Look to see if I can move precedence down one without reallocating
 725   if( (_cnt+m) > _max || _in[_max-m] )
 726     grow( _max+m );
 727 
 728   // Find a precedence edge to move
 729   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
 730     uint i;
 731     for( i=_cnt; i<_max; i++ )
 732       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
 733         break;                  // There must be one, since we grew the array
 734     // Slide all the precs over by m positions (assume #prec << m).
 735     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 736   }
 737 
 738   // Stuff over the old prec edges
 739   for(uint i=0; i<m; i++ ) {
 740     _in[_cnt++] = n;
 741   }
 742 
 743   // Insert multiple out edges on the node.
 744   if (n != NULL && !n->is_top()) {
 745     for(uint i=0; i<m; i++ ) {
 746       n->add_out((Node *)this);
 747     }
 748   }
 749 }
 750 
 751 //------------------------------del_req----------------------------------------
 752 // Delete the required edge and compact the edge array
 753 void Node::del_req( uint idx ) {
 754   assert( idx < _cnt, "oob");
 755   assert( !VerifyHashTableKeys || _hash_lock == 0,
 756           "remove node from hash table before modifying it");
 757   // First remove corresponding def-use edge
 758   Node *n = in(idx);
 759   if (n != NULL) n->del_out((Node *)this);
 760   _in[idx] = in(--_cnt);  // Compact the array
 761   _in[_cnt] = NULL;       // NULL out emptied slot
 762 }
 763 
 764 //------------------------------ins_req----------------------------------------
 765 // Insert a new required input at the end
 766 void Node::ins_req( uint idx, Node *n ) {
 767   assert( is_not_dead(n), "can not use dead node");
 768   add_req(NULL);                // Make space
 769   assert( idx < _max, "Must have allocated enough space");
 770   // Slide over
 771   if(_cnt-idx-1 > 0) {
 772     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 773   }
 774   _in[idx] = n;                            // Stuff over old required edge
 775   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
 776 }
 777 
 778 //-----------------------------find_edge---------------------------------------
 779 int Node::find_edge(Node* n) {
 780   for (uint i = 0; i < len(); i++) {
 781     if (_in[i] == n)  return i;
 782   }
 783   return -1;
 784 }
 785 
 786 //----------------------------replace_edge-------------------------------------
 787 int Node::replace_edge(Node* old, Node* neww) {
 788   if (old == neww)  return 0;  // nothing to do
 789   uint nrep = 0;
 790   for (uint i = 0; i < len(); i++) {
 791     if (in(i) == old) {
 792       if (i < req())
 793         set_req(i, neww);
 794       else
 795         set_prec(i, neww);
 796       nrep++;
 797     }
 798   }
 799   return nrep;
 800 }
 801 
 802 //-------------------------disconnect_inputs-----------------------------------
 803 // NULL out all inputs to eliminate incoming Def-Use edges.
 804 // Return the number of edges between 'n' and 'this'
 805 int Node::disconnect_inputs(Node *n) {
 806   int edges_to_n = 0;
 807 
 808   uint cnt = req();
 809   for( uint i = 0; i < cnt; ++i ) {
 810     if( in(i) == 0 ) continue;
 811     if( in(i) == n ) ++edges_to_n;
 812     set_req(i, NULL);
 813   }
 814   // Remove precedence edges if any exist
 815   // Note: Safepoints may have precedence edges, even during parsing
 816   if( (req() != len()) && (in(req()) != NULL) ) {
 817     uint max = len();
 818     for( uint i = 0; i < max; ++i ) {
 819       if( in(i) == 0 ) continue;
 820       if( in(i) == n ) ++edges_to_n;
 821       set_prec(i, NULL);
 822     }
 823   }
 824 
 825   // Node::destruct requires all out edges be deleted first
 826   // debug_only(destruct();)   // no reuse benefit expected
 827   return edges_to_n;
 828 }
 829 
 830 //-----------------------------uncast---------------------------------------
 831 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 832 // Strip away casting.  (It is depth-limited.)
 833 Node* Node::uncast() const {
 834   // Should be inline:
 835   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 836   if (is_ConstraintCast() || is_CheckCastPP())
 837     return uncast_helper(this);
 838   else
 839     return (Node*) this;
 840 }
 841 
 842 //---------------------------uncast_helper-------------------------------------
 843 Node* Node::uncast_helper(const Node* p) {
 844 #ifdef ASSERT
 845   uint depth_count = 0;
 846   const Node* orig_p = p;
 847 #endif
 848 
 849   while (true) {
 850 #ifdef ASSERT
 851     if (depth_count >= K) {
 852       orig_p->dump(4);
 853       if (p != orig_p)
 854         p->dump(1);
 855     }
 856     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
 857 #endif
 858     if (p == NULL || p->req() != 2) {
 859       break;
 860     } else if (p->is_ConstraintCast()) {
 861       p = p->in(1);
 862     } else if (p->is_CheckCastPP()) {
 863       p = p->in(1);
 864     } else {
 865       break;
 866     }
 867   }
 868   return (Node*) p;
 869 }
 870 
 871 //------------------------------add_prec---------------------------------------
 872 // Add a new precedence input.  Precedence inputs are unordered, with
 873 // duplicates removed and NULLs packed down at the end.
 874 void Node::add_prec( Node *n ) {
 875   assert( is_not_dead(n), "can not use dead node");
 876 
 877   // Check for NULL at end
 878   if( _cnt >= _max || in(_max-1) )
 879     grow( _max+1 );
 880 
 881   // Find a precedence edge to move
 882   uint i = _cnt;
 883   while( in(i) != NULL ) i++;
 884   _in[i] = n;                                // Stuff prec edge over NULL
 885   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
 886 }
 887 
 888 //------------------------------rm_prec----------------------------------------
 889 // Remove a precedence input.  Precedence inputs are unordered, with
 890 // duplicates removed and NULLs packed down at the end.
 891 void Node::rm_prec( uint j ) {
 892 
 893   // Find end of precedence list to pack NULLs
 894   uint i;
 895   for( i=j; i<_max; i++ )
 896     if( !_in[i] )               // Find the NULL at end of prec edge list
 897       break;
 898   if (_in[j] != NULL) _in[j]->del_out((Node *)this);
 899   _in[j] = _in[--i];            // Move last element over removed guy
 900   _in[i] = NULL;                // NULL out last element
 901 }
 902 
 903 //------------------------------size_of----------------------------------------
 904 uint Node::size_of() const { return sizeof(*this); }
 905 
 906 //------------------------------ideal_reg--------------------------------------
 907 uint Node::ideal_reg() const { return 0; }
 908 
 909 //------------------------------jvms-------------------------------------------
 910 JVMState* Node::jvms() const { return NULL; }
 911 
 912 #ifdef ASSERT
 913 //------------------------------jvms-------------------------------------------
 914 bool Node::verify_jvms(const JVMState* using_jvms) const {
 915   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 916     if (jvms == using_jvms)  return true;
 917   }
 918   return false;
 919 }
 920 
 921 //------------------------------init_NodeProperty------------------------------
 922 void Node::init_NodeProperty() {
 923   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
 924   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
 925 }
 926 #endif
 927 
 928 //------------------------------format-----------------------------------------
 929 // Print as assembly
 930 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
 931 //------------------------------emit-------------------------------------------
 932 // Emit bytes starting at parameter 'ptr'.
 933 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
 934 //------------------------------size-------------------------------------------
 935 // Size of instruction in bytes
 936 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
 937 
 938 //------------------------------CFG Construction-------------------------------
 939 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
 940 // Goto and Return.
 941 const Node *Node::is_block_proj() const { return 0; }
 942 
 943 // Minimum guaranteed type
 944 const Type *Node::bottom_type() const { return Type::BOTTOM; }
 945 
 946 
 947 //------------------------------raise_bottom_type------------------------------
 948 // Get the worst-case Type output for this Node.
 949 void Node::raise_bottom_type(const Type* new_type) {
 950   if (is_Type()) {
 951     TypeNode *n = this->as_Type();
 952     if (VerifyAliases) {
 953       assert(new_type->higher_equal(n->type()), "new type must refine old type");
 954     }
 955     n->set_type(new_type);
 956   } else if (is_Load()) {
 957     LoadNode *n = this->as_Load();
 958     if (VerifyAliases) {
 959       assert(new_type->higher_equal(n->type()), "new type must refine old type");
 960     }
 961     n->set_type(new_type);
 962   }
 963 }
 964 
 965 //------------------------------Identity---------------------------------------
 966 // Return a node that the given node is equivalent to.
 967 Node *Node::Identity( PhaseTransform * ) {
 968   return this;                  // Default to no identities
 969 }
 970 
 971 //------------------------------Value------------------------------------------
 972 // Compute a new Type for a node using the Type of the inputs.
 973 const Type *Node::Value( PhaseTransform * ) const {
 974   return bottom_type();         // Default to worst-case Type
 975 }
 976 
 977 //------------------------------Ideal------------------------------------------
 978 //
 979 // 'Idealize' the graph rooted at this Node.
 980 //
 981 // In order to be efficient and flexible there are some subtle invariants
 982 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
 983 // these invariants, although its too slow to have on by default.  If you are
 984 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
 985 //
 986 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
 987 // pointer.  If ANY change is made, it must return the root of the reshaped
 988 // graph - even if the root is the same Node.  Example: swapping the inputs
 989 // to an AddINode gives the same answer and same root, but you still have to
 990 // return the 'this' pointer instead of NULL.
 991 //
 992 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
 993 // Identity call to return an old Node; basically if Identity can find
 994 // another Node have the Ideal call make no change and return NULL.
 995 // Example: AddINode::Ideal must check for add of zero; in this case it
 996 // returns NULL instead of doing any graph reshaping.
 997 //
 998 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
 999 // sharing there may be other users of the old Nodes relying on their current
1000 // semantics.  Modifying them will break the other users.
1001 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1002 // "X+3" unchanged in case it is shared.
1003 //
1004 // If you modify the 'this' pointer's inputs, you should use
1005 // 'set_req'.  If you are making a new Node (either as the new root or
1006 // some new internal piece) you may use 'init_req' to set the initial
1007 // value.  You can make a new Node with either 'new' or 'clone'.  In
1008 // either case, def-use info is correctly maintained.
1009 //
1010 // Example: reshape "(X+3)+4" into "X+7":
1011 //    set_req(1, in(1)->in(1));
1012 //    set_req(2, phase->intcon(7));
1013 //    return this;
1014 // Example: reshape "X*4" into "X<<2"
1015 //    return new (C) LShiftINode(in(1), phase->intcon(2));
1016 //
1017 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1018 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1019 //    Node *shift=phase->transform(new(C)LShiftINode(in(1),phase->intcon(5)));
1020 //    return new (C) AddINode(shift, in(1));
1021 //
1022 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1023 // These forms are faster than 'phase->transform(new (C) ConNode())' and Do
1024 // The Right Thing with def-use info.
1025 //
1026 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1027 // graph uses the 'this' Node it must be the root.  If you want a Node with
1028 // the same Opcode as the 'this' pointer use 'clone'.
1029 //
1030 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1031   return NULL;                  // Default to being Ideal already
1032 }
1033 
1034 // Some nodes have specific Ideal subgraph transformations only if they are
1035 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1036 // for the transformations to happen.
1037 bool Node::has_special_unique_user() const {
1038   assert(outcnt() == 1, "match only for unique out");
1039   Node* n = unique_out();
1040   int op  = Opcode();
1041   if( this->is_Store() ) {
1042     // Condition for back-to-back stores folding.
1043     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1044   } else if( op == Op_AddL ) {
1045     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1046     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1047   } else if( op == Op_SubI || op == Op_SubL ) {
1048     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1049     return n->Opcode() == op && n->in(2) == this;
1050   }
1051   return false;
1052 };
1053 
1054 //--------------------------find_exact_control---------------------------------
1055 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1056 Node* Node::find_exact_control(Node* ctrl) {
1057   if (ctrl == NULL && this->is_Region())
1058     ctrl = this->as_Region()->is_copy();
1059 
1060   if (ctrl != NULL && ctrl->is_CatchProj()) {
1061     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1062       ctrl = ctrl->in(0);
1063     if (ctrl != NULL && !ctrl->is_top())
1064       ctrl = ctrl->in(0);
1065   }
1066 
1067   if (ctrl != NULL && ctrl->is_Proj())
1068     ctrl = ctrl->in(0);
1069 
1070   return ctrl;
1071 }
1072 
1073 //--------------------------dominates------------------------------------------
1074 // Helper function for MemNode::all_controls_dominate().
1075 // Check if 'this' control node dominates or equal to 'sub' control node.
1076 // We already know that if any path back to Root or Start reaches 'this',
1077 // then all paths so, so this is a simple search for one example,
1078 // not an exhaustive search for a counterexample.
1079 bool Node::dominates(Node* sub, Node_List &nlist) {
1080   assert(this->is_CFG(), "expecting control");
1081   assert(sub != NULL && sub->is_CFG(), "expecting control");
1082 
1083   // detect dead cycle without regions
1084   int iterations_without_region_limit = DominatorSearchLimit;
1085 
1086   Node* orig_sub = sub;
1087   Node* dom      = this;
1088   bool  met_dom  = false;
1089   nlist.clear();
1090 
1091   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1092   // After seeing 'dom', continue up to Root or Start.
1093   // If we hit a region (backward split point), it may be a loop head.
1094   // Keep going through one of the region's inputs.  If we reach the
1095   // same region again, go through a different input.  Eventually we
1096   // will either exit through the loop head, or give up.
1097   // (If we get confused, break out and return a conservative 'false'.)
1098   while (sub != NULL) {
1099     if (sub->is_top())  break; // Conservative answer for dead code.
1100     if (sub == dom) {
1101       if (nlist.size() == 0) {
1102         // No Region nodes except loops were visited before and the EntryControl
1103         // path was taken for loops: it did not walk in a cycle.
1104         return true;
1105       } else if (met_dom) {
1106         break;          // already met before: walk in a cycle
1107       } else {
1108         // Region nodes were visited. Continue walk up to Start or Root
1109         // to make sure that it did not walk in a cycle.
1110         met_dom = true; // first time meet
1111         iterations_without_region_limit = DominatorSearchLimit; // Reset
1112      }
1113     }
1114     if (sub->is_Start() || sub->is_Root()) {
1115       // Success if we met 'dom' along a path to Start or Root.
1116       // We assume there are no alternative paths that avoid 'dom'.
1117       // (This assumption is up to the caller to ensure!)
1118       return met_dom;
1119     }
1120     Node* up = sub->in(0);
1121     // Normalize simple pass-through regions and projections:
1122     up = sub->find_exact_control(up);
1123     // If sub == up, we found a self-loop.  Try to push past it.
1124     if (sub == up && sub->is_Loop()) {
1125       // Take loop entry path on the way up to 'dom'.
1126       up = sub->in(1); // in(LoopNode::EntryControl);
1127     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1128       // Always take in(1) path on the way up to 'dom' for clone regions
1129       // (with only one input) or regions which merge > 2 paths
1130       // (usually used to merge fast/slow paths).
1131       up = sub->in(1);
1132     } else if (sub == up && sub->is_Region()) {
1133       // Try both paths for Regions with 2 input paths (it may be a loop head).
1134       // It could give conservative 'false' answer without information
1135       // which region's input is the entry path.
1136       iterations_without_region_limit = DominatorSearchLimit; // Reset
1137 
1138       bool region_was_visited_before = false;
1139       // Was this Region node visited before?
1140       // If so, we have reached it because we accidentally took a
1141       // loop-back edge from 'sub' back into the body of the loop,
1142       // and worked our way up again to the loop header 'sub'.
1143       // So, take the first unexplored path on the way up to 'dom'.
1144       for (int j = nlist.size() - 1; j >= 0; j--) {
1145         intptr_t ni = (intptr_t)nlist.at(j);
1146         Node* visited = (Node*)(ni & ~1);
1147         bool  visited_twice_already = ((ni & 1) != 0);
1148         if (visited == sub) {
1149           if (visited_twice_already) {
1150             // Visited 2 paths, but still stuck in loop body.  Give up.
1151             return false;
1152           }
1153           // The Region node was visited before only once.
1154           // (We will repush with the low bit set, below.)
1155           nlist.remove(j);
1156           // We will find a new edge and re-insert.
1157           region_was_visited_before = true;
1158           break;
1159         }
1160       }
1161 
1162       // Find an incoming edge which has not been seen yet; walk through it.
1163       assert(up == sub, "");
1164       uint skip = region_was_visited_before ? 1 : 0;
1165       for (uint i = 1; i < sub->req(); i++) {
1166         Node* in = sub->in(i);
1167         if (in != NULL && !in->is_top() && in != sub) {
1168           if (skip == 0) {
1169             up = in;
1170             break;
1171           }
1172           --skip;               // skip this nontrivial input
1173         }
1174       }
1175 
1176       // Set 0 bit to indicate that both paths were taken.
1177       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1178     }
1179 
1180     if (up == sub) {
1181       break;    // some kind of tight cycle
1182     }
1183     if (up == orig_sub && met_dom) {
1184       // returned back after visiting 'dom'
1185       break;    // some kind of cycle
1186     }
1187     if (--iterations_without_region_limit < 0) {
1188       break;    // dead cycle
1189     }
1190     sub = up;
1191   }
1192 
1193   // Did not meet Root or Start node in pred. chain.
1194   // Conservative answer for dead code.
1195   return false;
1196 }
1197 
1198 //------------------------------remove_dead_region-----------------------------
1199 // This control node is dead.  Follow the subgraph below it making everything
1200 // using it dead as well.  This will happen normally via the usual IterGVN
1201 // worklist but this call is more efficient.  Do not update use-def info
1202 // inside the dead region, just at the borders.
1203 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1204   // Con's are a popular node to re-hit in the hash table again.
1205   if( dead->is_Con() ) return;
1206 
1207   // Can't put ResourceMark here since igvn->_worklist uses the same arena
1208   // for verify pass with +VerifyOpto and we add/remove elements in it here.
1209   Node_List  nstack(Thread::current()->resource_area());
1210 
1211   Node *top = igvn->C->top();
1212   nstack.push(dead);
1213 
1214   while (nstack.size() > 0) {
1215     dead = nstack.pop();
1216     if (dead->outcnt() > 0) {
1217       // Keep dead node on stack until all uses are processed.
1218       nstack.push(dead);
1219       // For all Users of the Dead...    ;-)
1220       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1221         Node* use = dead->last_out(k);
1222         igvn->hash_delete(use);       // Yank from hash table prior to mod
1223         if (use->in(0) == dead) {     // Found another dead node
1224           assert (!use->is_Con(), "Control for Con node should be Root node.");
1225           use->set_req(0, top);       // Cut dead edge to prevent processing
1226           nstack.push(use);           // the dead node again.
1227         } else {                      // Else found a not-dead user
1228           for (uint j = 1; j < use->req(); j++) {
1229             if (use->in(j) == dead) { // Turn all dead inputs into TOP
1230               use->set_req(j, top);
1231             }
1232           }
1233           igvn->_worklist.push(use);
1234         }
1235         // Refresh the iterator, since any number of kills might have happened.
1236         k = dead->last_outs(kmin);
1237       }
1238     } else { // (dead->outcnt() == 0)
1239       // Done with outputs.
1240       igvn->hash_delete(dead);
1241       igvn->_worklist.remove(dead);
1242       igvn->set_type(dead, Type::TOP);
1243       if (dead->is_macro()) {
1244         igvn->C->remove_macro_node(dead);
1245       }
1246       // Kill all inputs to the dead guy
1247       for (uint i=0; i < dead->req(); i++) {
1248         Node *n = dead->in(i);      // Get input to dead guy
1249         if (n != NULL && !n->is_top()) { // Input is valid?
1250           dead->set_req(i, top);    // Smash input away
1251           if (n->outcnt() == 0) {   // Input also goes dead?
1252             if (!n->is_Con())
1253               nstack.push(n);       // Clear it out as well
1254           } else if (n->outcnt() == 1 &&
1255                      n->has_special_unique_user()) {
1256             igvn->add_users_to_worklist( n );
1257           } else if (n->outcnt() <= 2 && n->is_Store()) {
1258             // Push store's uses on worklist to enable folding optimization for
1259             // store/store and store/load to the same address.
1260             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1261             // and remove_globally_dead_node().
1262             igvn->add_users_to_worklist( n );
1263           }
1264         }
1265       }
1266     } // (dead->outcnt() == 0)
1267   }   // while (nstack.size() > 0) for outputs
1268   return;
1269 }
1270 
1271 //------------------------------remove_dead_region-----------------------------
1272 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1273   Node *n = in(0);
1274   if( !n ) return false;
1275   // Lost control into this guy?  I.e., it became unreachable?
1276   // Aggressively kill all unreachable code.
1277   if (can_reshape && n->is_top()) {
1278     kill_dead_code(this, phase->is_IterGVN());
1279     return false; // Node is dead.
1280   }
1281 
1282   if( n->is_Region() && n->as_Region()->is_copy() ) {
1283     Node *m = n->nonnull_req();
1284     set_req(0, m);
1285     return true;
1286   }
1287   return false;
1288 }
1289 
1290 //------------------------------Ideal_DU_postCCP-------------------------------
1291 // Idealize graph, using DU info.  Must clone result into new-space
1292 Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
1293   return NULL;                 // Default to no change
1294 }
1295 
1296 //------------------------------hash-------------------------------------------
1297 // Hash function over Nodes.
1298 uint Node::hash() const {
1299   uint sum = 0;
1300   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1301     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1302   return (sum>>2) + _cnt + Opcode();
1303 }
1304 
1305 //------------------------------cmp--------------------------------------------
1306 // Compare special parts of simple Nodes
1307 uint Node::cmp( const Node &n ) const {
1308   return 1;                     // Must be same
1309 }
1310 
1311 //------------------------------rematerialize-----------------------------------
1312 // Should we clone rather than spill this instruction?
1313 bool Node::rematerialize() const {
1314   if ( is_Mach() )
1315     return this->as_Mach()->rematerialize();
1316   else
1317     return (_flags & Flag_rematerialize) != 0;
1318 }
1319 
1320 //------------------------------needs_anti_dependence_check---------------------
1321 // Nodes which use memory without consuming it, hence need antidependences.
1322 bool Node::needs_anti_dependence_check() const {
1323   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1324     return false;
1325   else
1326     return in(1)->bottom_type()->has_memory();
1327 }
1328 
1329 
1330 // Get an integer constant from a ConNode (or CastIINode).
1331 // Return a default value if there is no apparent constant here.
1332 const TypeInt* Node::find_int_type() const {
1333   if (this->is_Type()) {
1334     return this->as_Type()->type()->isa_int();
1335   } else if (this->is_Con()) {
1336     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1337     return this->bottom_type()->isa_int();
1338   }
1339   return NULL;
1340 }
1341 
1342 // Get a pointer constant from a ConstNode.
1343 // Returns the constant if it is a pointer ConstNode
1344 intptr_t Node::get_ptr() const {
1345   assert( Opcode() == Op_ConP, "" );
1346   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1347 }
1348 
1349 // Get a narrow oop constant from a ConNNode.
1350 intptr_t Node::get_narrowcon() const {
1351   assert( Opcode() == Op_ConN, "" );
1352   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1353 }
1354 
1355 // Get a long constant from a ConNode.
1356 // Return a default value if there is no apparent constant here.
1357 const TypeLong* Node::find_long_type() const {
1358   if (this->is_Type()) {
1359     return this->as_Type()->type()->isa_long();
1360   } else if (this->is_Con()) {
1361     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1362     return this->bottom_type()->isa_long();
1363   }
1364   return NULL;
1365 }
1366 
1367 // Get a double constant from a ConstNode.
1368 // Returns the constant if it is a double ConstNode
1369 jdouble Node::getd() const {
1370   assert( Opcode() == Op_ConD, "" );
1371   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1372 }
1373 
1374 // Get a float constant from a ConstNode.
1375 // Returns the constant if it is a float ConstNode
1376 jfloat Node::getf() const {
1377   assert( Opcode() == Op_ConF, "" );
1378   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1379 }
1380 
1381 #ifndef PRODUCT
1382 
1383 //----------------------------NotANode----------------------------------------
1384 // Used in debugging code to avoid walking across dead or uninitialized edges.
1385 static inline bool NotANode(const Node* n) {
1386   if (n == NULL)                   return true;
1387   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1388   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1389   return false;
1390 }
1391 
1392 
1393 //------------------------------find------------------------------------------
1394 // Find a neighbor of this Node with the given _idx
1395 // If idx is negative, find its absolute value, following both _in and _out.
1396 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
1397                         VectorSet* old_space, VectorSet* new_space ) {
1398   int node_idx = (idx >= 0) ? idx : -idx;
1399   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1400   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
1401   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
1402   if( v->test(n->_idx) ) return;
1403   if( (int)n->_idx == node_idx
1404       debug_only(|| n->debug_idx() == node_idx) ) {
1405     if (result != NULL)
1406       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1407                  (uintptr_t)result, (uintptr_t)n, node_idx);
1408     result = n;
1409   }
1410   v->set(n->_idx);
1411   for( uint i=0; i<n->len(); i++ ) {
1412     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1413     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
1414   }
1415   // Search along forward edges also:
1416   if (idx < 0 && !only_ctrl) {
1417     for( uint j=0; j<n->outcnt(); j++ ) {
1418       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1419     }
1420   }
1421 #ifdef ASSERT
1422   // Search along debug_orig edges last, checking for cycles
1423   Node* orig = n->debug_orig();
1424   if (orig != NULL) {
1425     do {
1426       if (NotANode(orig))  break;
1427       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
1428       orig = orig->debug_orig();
1429     } while (orig != NULL && orig != n->debug_orig());
1430   }
1431 #endif //ASSERT
1432 }
1433 
1434 // call this from debugger:
1435 Node* find_node(Node* n, int idx) {
1436   return n->find(idx);
1437 }
1438 
1439 //------------------------------find-------------------------------------------
1440 Node* Node::find(int idx) const {
1441   ResourceArea *area = Thread::current()->resource_area();
1442   VectorSet old_space(area), new_space(area);
1443   Node* result = NULL;
1444   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
1445   return result;
1446 }
1447 
1448 //------------------------------find_ctrl--------------------------------------
1449 // Find an ancestor to this node in the control history with given _idx
1450 Node* Node::find_ctrl(int idx) const {
1451   ResourceArea *area = Thread::current()->resource_area();
1452   VectorSet old_space(area), new_space(area);
1453   Node* result = NULL;
1454   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
1455   return result;
1456 }
1457 #endif
1458 
1459 
1460 
1461 #ifndef PRODUCT
1462 int Node::_in_dump_cnt = 0;
1463 
1464 // -----------------------------Name-------------------------------------------
1465 extern const char *NodeClassNames[];
1466 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1467 
1468 static bool is_disconnected(const Node* n) {
1469   for (uint i = 0; i < n->req(); i++) {
1470     if (n->in(i) != NULL)  return false;
1471   }
1472   return true;
1473 }
1474 
1475 #ifdef ASSERT
1476 static void dump_orig(Node* orig) {
1477   Compile* C = Compile::current();
1478   if (NotANode(orig))  orig = NULL;
1479   if (orig != NULL && !C->node_arena()->contains(orig))  orig = NULL;
1480   if (orig == NULL)  return;
1481   tty->print(" !orig=");
1482   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1483   if (NotANode(fast))  fast = NULL;
1484   while (orig != NULL) {
1485     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1486     if (discon)  tty->print("[");
1487     if (!Compile::current()->node_arena()->contains(orig))
1488       tty->print("o");
1489     tty->print("%d", orig->_idx);
1490     if (discon)  tty->print("]");
1491     orig = orig->debug_orig();
1492     if (NotANode(orig))  orig = NULL;
1493     if (orig != NULL && !C->node_arena()->contains(orig))  orig = NULL;
1494     if (orig != NULL)  tty->print(",");
1495     if (fast != NULL) {
1496       // Step fast twice for each single step of orig:
1497       fast = fast->debug_orig();
1498       if (NotANode(fast))  fast = NULL;
1499       if (fast != NULL && fast != orig) {
1500         fast = fast->debug_orig();
1501         if (NotANode(fast))  fast = NULL;
1502       }
1503       if (fast == orig) {
1504         tty->print("...");
1505         break;
1506       }
1507     }
1508   }
1509 }
1510 
1511 void Node::set_debug_orig(Node* orig) {
1512   _debug_orig = orig;
1513   if (BreakAtNode == 0)  return;
1514   if (NotANode(orig))  orig = NULL;
1515   int trip = 10;
1516   while (orig != NULL) {
1517     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1518       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1519                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1520       BREAKPOINT;
1521     }
1522     orig = orig->debug_orig();
1523     if (NotANode(orig))  orig = NULL;
1524     if (trip-- <= 0)  break;
1525   }
1526 }
1527 #endif //ASSERT
1528 
1529 //------------------------------dump------------------------------------------
1530 // Dump a Node
1531 void Node::dump() const {
1532   Compile* C = Compile::current();
1533   bool is_new = C->node_arena()->contains(this);
1534   _in_dump_cnt++;
1535   tty->print("%c%d\t%s\t=== ",
1536              is_new ? ' ' : 'o', _idx, Name());
1537 
1538   // Dump the required and precedence inputs
1539   dump_req();
1540   dump_prec();
1541   // Dump the outputs
1542   dump_out();
1543 
1544   if (is_disconnected(this)) {
1545 #ifdef ASSERT
1546     tty->print("  [%d]",debug_idx());
1547     dump_orig(debug_orig());
1548 #endif
1549     tty->cr();
1550     _in_dump_cnt--;
1551     return;                     // don't process dead nodes
1552   }
1553 
1554   // Dump node-specific info
1555   dump_spec(tty);
1556 #ifdef ASSERT
1557   // Dump the non-reset _debug_idx
1558   if( Verbose && WizardMode ) {
1559     tty->print("  [%d]",debug_idx());
1560   }
1561 #endif
1562 
1563   const Type *t = bottom_type();
1564 
1565   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1566     const TypeInstPtr  *toop = t->isa_instptr();
1567     const TypeKlassPtr *tkls = t->isa_klassptr();
1568     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1569     if( klass && klass->is_loaded() && klass->is_interface() ) {
1570       tty->print("  Interface:");
1571     } else if( toop ) {
1572       tty->print("  Oop:");
1573     } else if( tkls ) {
1574       tty->print("  Klass:");
1575     }
1576     t->dump();
1577   } else if( t == Type::MEMORY ) {
1578     tty->print("  Memory:");
1579     MemNode::dump_adr_type(this, adr_type(), tty);
1580   } else if( Verbose || WizardMode ) {
1581     tty->print("  Type:");
1582     if( t ) {
1583       t->dump();
1584     } else {
1585       tty->print("no type");
1586     }
1587   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1588     // Dump MachSpillcopy vector type.
1589     t->dump();
1590   }
1591   if (is_new) {
1592     debug_only(dump_orig(debug_orig()));
1593     Node_Notes* nn = C->node_notes_at(_idx);
1594     if (nn != NULL && !nn->is_clear()) {
1595       if (nn->jvms() != NULL) {
1596         tty->print(" !jvms:");
1597         nn->jvms()->dump_spec(tty);
1598       }
1599     }
1600   }
1601   tty->cr();
1602   _in_dump_cnt--;
1603 }
1604 
1605 //------------------------------dump_req--------------------------------------
1606 void Node::dump_req() const {
1607   // Dump the required input edges
1608   for (uint i = 0; i < req(); i++) {    // For all required inputs
1609     Node* d = in(i);
1610     if (d == NULL) {
1611       tty->print("_ ");
1612     } else if (NotANode(d)) {
1613       tty->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1614     } else {
1615       tty->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1616     }
1617   }
1618 }
1619 
1620 
1621 //------------------------------dump_prec-------------------------------------
1622 void Node::dump_prec() const {
1623   // Dump the precedence edges
1624   int any_prec = 0;
1625   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1626     Node* p = in(i);
1627     if (p != NULL) {
1628       if( !any_prec++ ) tty->print(" |");
1629       if (NotANode(p)) { tty->print("NotANode "); continue; }
1630       tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1631     }
1632   }
1633 }
1634 
1635 //------------------------------dump_out--------------------------------------
1636 void Node::dump_out() const {
1637   // Delimit the output edges
1638   tty->print(" [[");
1639   // Dump the output edges
1640   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1641     Node* u = _out[i];
1642     if (u == NULL) {
1643       tty->print("_ ");
1644     } else if (NotANode(u)) {
1645       tty->print("NotANode ");
1646     } else {
1647       tty->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1648     }
1649   }
1650   tty->print("]] ");
1651 }
1652 
1653 //------------------------------dump_nodes-------------------------------------
1654 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1655   Node* s = (Node*)start; // remove const
1656   if (NotANode(s)) return;
1657 
1658   uint depth = (uint)ABS(d);
1659   int direction = d;
1660   Compile* C = Compile::current();
1661   GrowableArray <Node *> nstack(C->unique());
1662 
1663   nstack.append(s);
1664   int begin = 0;
1665   int end = 0;
1666   for(uint i = 0; i < depth; i++) {
1667     end = nstack.length();
1668     for(int j = begin; j < end; j++) {
1669       Node* tp  = nstack.at(j);
1670       uint limit = direction > 0 ? tp->len() : tp->outcnt();
1671       for(uint k = 0; k < limit; k++) {
1672         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1673 
1674         if (NotANode(n))  continue;
1675         // do not recurse through top or the root (would reach unrelated stuff)
1676         if (n->is_Root() || n->is_top())  continue;
1677         if (only_ctrl && !n->is_CFG()) continue;
1678 
1679         bool on_stack = nstack.contains(n);
1680         if (!on_stack) {
1681           nstack.append(n);
1682         }
1683       }
1684     }
1685     begin = end;
1686   }
1687   end = nstack.length();
1688   if (direction > 0) {
1689     for(int j = end-1; j >= 0; j--) {
1690       nstack.at(j)->dump();
1691     }
1692   } else {
1693     for(int j = 0; j < end; j++) {
1694       nstack.at(j)->dump();
1695     }
1696   }
1697 }
1698 
1699 //------------------------------dump-------------------------------------------
1700 void Node::dump(int d) const {
1701   dump_nodes(this, d, false);
1702 }
1703 
1704 //------------------------------dump_ctrl--------------------------------------
1705 // Dump a Node's control history to depth
1706 void Node::dump_ctrl(int d) const {
1707   dump_nodes(this, d, true);
1708 }
1709 
1710 // VERIFICATION CODE
1711 // For each input edge to a node (ie - for each Use-Def edge), verify that
1712 // there is a corresponding Def-Use edge.
1713 //------------------------------verify_edges-----------------------------------
1714 void Node::verify_edges(Unique_Node_List &visited) {
1715   uint i, j, idx;
1716   int  cnt;
1717   Node *n;
1718 
1719   // Recursive termination test
1720   if (visited.member(this))  return;
1721   visited.push(this);
1722 
1723   // Walk over all input edges, checking for correspondence
1724   for( i = 0; i < len(); i++ ) {
1725     n = in(i);
1726     if (n != NULL && !n->is_top()) {
1727       // Count instances of (Node *)this
1728       cnt = 0;
1729       for (idx = 0; idx < n->_outcnt; idx++ ) {
1730         if (n->_out[idx] == (Node *)this)  cnt++;
1731       }
1732       assert( cnt > 0,"Failed to find Def-Use edge." );
1733       // Check for duplicate edges
1734       // walk the input array downcounting the input edges to n
1735       for( j = 0; j < len(); j++ ) {
1736         if( in(j) == n ) cnt--;
1737       }
1738       assert( cnt == 0,"Mismatched edge count.");
1739     } else if (n == NULL) {
1740       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
1741     } else {
1742       assert(n->is_top(), "sanity");
1743       // Nothing to check.
1744     }
1745   }
1746   // Recursive walk over all input edges
1747   for( i = 0; i < len(); i++ ) {
1748     n = in(i);
1749     if( n != NULL )
1750       in(i)->verify_edges(visited);
1751   }
1752 }
1753 
1754 //------------------------------verify_recur-----------------------------------
1755 static const Node *unique_top = NULL;
1756 
1757 void Node::verify_recur(const Node *n, int verify_depth,
1758                         VectorSet &old_space, VectorSet &new_space) {
1759   if ( verify_depth == 0 )  return;
1760   if (verify_depth > 0)  --verify_depth;
1761 
1762   Compile* C = Compile::current();
1763 
1764   // Contained in new_space or old_space?
1765   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
1766   // Check for visited in the proper space.  Numberings are not unique
1767   // across spaces so we need a separate VectorSet for each space.
1768   if( v->test_set(n->_idx) ) return;
1769 
1770   if (n->is_Con() && n->bottom_type() == Type::TOP) {
1771     if (C->cached_top_node() == NULL)
1772       C->set_cached_top_node((Node*)n);
1773     assert(C->cached_top_node() == n, "TOP node must be unique");
1774   }
1775 
1776   for( uint i = 0; i < n->len(); i++ ) {
1777     Node *x = n->in(i);
1778     if (!x || x->is_top()) continue;
1779 
1780     // Verify my input has a def-use edge to me
1781     if (true /*VerifyDefUse*/) {
1782       // Count use-def edges from n to x
1783       int cnt = 0;
1784       for( uint j = 0; j < n->len(); j++ )
1785         if( n->in(j) == x )
1786           cnt++;
1787       // Count def-use edges from x to n
1788       uint max = x->_outcnt;
1789       for( uint k = 0; k < max; k++ )
1790         if (x->_out[k] == n)
1791           cnt--;
1792       assert( cnt == 0, "mismatched def-use edge counts" );
1793     }
1794 
1795     verify_recur(x, verify_depth, old_space, new_space);
1796   }
1797 
1798 }
1799 
1800 //------------------------------verify-----------------------------------------
1801 // Check Def-Use info for my subgraph
1802 void Node::verify() const {
1803   Compile* C = Compile::current();
1804   Node* old_top = C->cached_top_node();
1805   ResourceMark rm;
1806   ResourceArea *area = Thread::current()->resource_area();
1807   VectorSet old_space(area), new_space(area);
1808   verify_recur(this, -1, old_space, new_space);
1809   C->set_cached_top_node(old_top);
1810 }
1811 #endif
1812 
1813 
1814 //------------------------------walk-------------------------------------------
1815 // Graph walk, with both pre-order and post-order functions
1816 void Node::walk(NFunc pre, NFunc post, void *env) {
1817   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
1818   walk_(pre, post, env, visited);
1819 }
1820 
1821 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
1822   if( visited.test_set(_idx) ) return;
1823   pre(*this,env);               // Call the pre-order walk function
1824   for( uint i=0; i<_max; i++ )
1825     if( in(i) )                 // Input exists and is not walked?
1826       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
1827   post(*this,env);              // Call the post-order walk function
1828 }
1829 
1830 void Node::nop(Node &, void*) {}
1831 
1832 //------------------------------Registers--------------------------------------
1833 // Do we Match on this edge index or not?  Generally false for Control
1834 // and true for everything else.  Weird for calls & returns.
1835 uint Node::match_edge(uint idx) const {
1836   return idx;                   // True for other than index 0 (control)
1837 }
1838 
1839 // Register classes are defined for specific machines
1840 const RegMask &Node::out_RegMask() const {
1841   ShouldNotCallThis();
1842   return *(new RegMask());
1843 }
1844 
1845 const RegMask &Node::in_RegMask(uint) const {
1846   ShouldNotCallThis();
1847   return *(new RegMask());
1848 }
1849 
1850 //=============================================================================
1851 //-----------------------------------------------------------------------------
1852 void Node_Array::reset( Arena *new_arena ) {
1853   _a->Afree(_nodes,_max*sizeof(Node*));
1854   _max   = 0;
1855   _nodes = NULL;
1856   _a     = new_arena;
1857 }
1858 
1859 //------------------------------clear------------------------------------------
1860 // Clear all entries in _nodes to NULL but keep storage
1861 void Node_Array::clear() {
1862   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
1863 }
1864 
1865 //-----------------------------------------------------------------------------
1866 void Node_Array::grow( uint i ) {
1867   if( !_max ) {
1868     _max = 1;
1869     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
1870     _nodes[0] = NULL;
1871   }
1872   uint old = _max;
1873   while( i >= _max ) _max <<= 1;        // Double to fit
1874   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
1875   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
1876 }
1877 
1878 //-----------------------------------------------------------------------------
1879 void Node_Array::insert( uint i, Node *n ) {
1880   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
1881   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
1882   _nodes[i] = n;
1883 }
1884 
1885 //-----------------------------------------------------------------------------
1886 void Node_Array::remove( uint i ) {
1887   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
1888   _nodes[_max-1] = NULL;
1889 }
1890 
1891 //-----------------------------------------------------------------------------
1892 void Node_Array::sort( C_sort_func_t func) {
1893   qsort( _nodes, _max, sizeof( Node* ), func );
1894 }
1895 
1896 //-----------------------------------------------------------------------------
1897 void Node_Array::dump() const {
1898 #ifndef PRODUCT
1899   for( uint i = 0; i < _max; i++ ) {
1900     Node *nn = _nodes[i];
1901     if( nn != NULL ) {
1902       tty->print("%5d--> ",i); nn->dump();
1903     }
1904   }
1905 #endif
1906 }
1907 
1908 //--------------------------is_iteratively_computed------------------------------
1909 // Operation appears to be iteratively computed (such as an induction variable)
1910 // It is possible for this operation to return false for a loop-varying
1911 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
1912 bool Node::is_iteratively_computed() {
1913   if (ideal_reg()) { // does operation have a result register?
1914     for (uint i = 1; i < req(); i++) {
1915       Node* n = in(i);
1916       if (n != NULL && n->is_Phi()) {
1917         for (uint j = 1; j < n->req(); j++) {
1918           if (n->in(j) == this) {
1919             return true;
1920           }
1921         }
1922       }
1923     }
1924   }
1925   return false;
1926 }
1927 
1928 //--------------------------find_similar------------------------------
1929 // Return a node with opcode "opc" and same inputs as "this" if one can
1930 // be found; Otherwise return NULL;
1931 Node* Node::find_similar(int opc) {
1932   if (req() >= 2) {
1933     Node* def = in(1);
1934     if (def && def->outcnt() >= 2) {
1935       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
1936         Node* use = def->fast_out(i);
1937         if (use->Opcode() == opc &&
1938             use->req() == req()) {
1939           uint j;
1940           for (j = 0; j < use->req(); j++) {
1941             if (use->in(j) != in(j)) {
1942               break;
1943             }
1944           }
1945           if (j == use->req()) {
1946             return use;
1947           }
1948         }
1949       }
1950     }
1951   }
1952   return NULL;
1953 }
1954 
1955 
1956 //--------------------------unique_ctrl_out------------------------------
1957 // Return the unique control out if only one. Null if none or more than one.
1958 Node* Node::unique_ctrl_out() {
1959   Node* found = NULL;
1960   for (uint i = 0; i < outcnt(); i++) {
1961     Node* use = raw_out(i);
1962     if (use->is_CFG() && use != this) {
1963       if (found != NULL) return NULL;
1964       found = use;
1965     }
1966   }
1967   return found;
1968 }
1969 
1970 //=============================================================================
1971 //------------------------------yank-------------------------------------------
1972 // Find and remove
1973 void Node_List::yank( Node *n ) {
1974   uint i;
1975   for( i = 0; i < _cnt; i++ )
1976     if( _nodes[i] == n )
1977       break;
1978 
1979   if( i < _cnt )
1980     _nodes[i] = _nodes[--_cnt];
1981 }
1982 
1983 //------------------------------dump-------------------------------------------
1984 void Node_List::dump() const {
1985 #ifndef PRODUCT
1986   for( uint i = 0; i < _cnt; i++ )
1987     if( _nodes[i] ) {
1988       tty->print("%5d--> ",i);
1989       _nodes[i]->dump();
1990     }
1991 #endif
1992 }
1993 
1994 //=============================================================================
1995 //------------------------------remove-----------------------------------------
1996 void Unique_Node_List::remove( Node *n ) {
1997   if( _in_worklist[n->_idx] ) {
1998     for( uint i = 0; i < size(); i++ )
1999       if( _nodes[i] == n ) {
2000         map(i,Node_List::pop());
2001         _in_worklist >>= n->_idx;
2002         return;
2003       }
2004     ShouldNotReachHere();
2005   }
2006 }
2007 
2008 //-----------------------remove_useless_nodes----------------------------------
2009 // Remove useless nodes from worklist
2010 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2011 
2012   for( uint i = 0; i < size(); ++i ) {
2013     Node *n = at(i);
2014     assert( n != NULL, "Did not expect null entries in worklist");
2015     if( ! useful.test(n->_idx) ) {
2016       _in_worklist >>= n->_idx;
2017       map(i,Node_List::pop());
2018       // Node *replacement = Node_List::pop();
2019       // if( i != size() ) { // Check if removing last entry
2020       //   _nodes[i] = replacement;
2021       // }
2022       --i;  // Visit popped node
2023       // If it was last entry, loop terminates since size() was also reduced
2024     }
2025   }
2026 }
2027 
2028 //=============================================================================
2029 void Node_Stack::grow() {
2030   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2031   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2032   size_t max = old_max << 1;             // max * 2
2033   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2034   _inode_max = _inodes + max;
2035   _inode_top = _inodes + old_top;        // restore _top
2036 }
2037 
2038 // Node_Stack is used to map nodes.
2039 Node* Node_Stack::find(uint idx) const {
2040   uint sz = size();
2041   for (uint i=0; i < sz; i++) {
2042     if (idx == index_at(i) )
2043       return node_at(i);
2044   }
2045   return NULL;
2046 }
2047 
2048 //=============================================================================
2049 uint TypeNode::size_of() const { return sizeof(*this); }
2050 #ifndef PRODUCT
2051 void TypeNode::dump_spec(outputStream *st) const {
2052   if( !Verbose && !WizardMode ) {
2053     // standard dump does this in Verbose and WizardMode
2054     st->print(" #"); _type->dump_on(st);
2055   }
2056 }
2057 #endif
2058 uint TypeNode::hash() const {
2059   return Node::hash() + _type->hash();
2060 }
2061 uint TypeNode::cmp( const Node &n ) const
2062 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2063 const Type *TypeNode::bottom_type() const { return _type; }
2064 const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
2065 
2066 //------------------------------ideal_reg--------------------------------------
2067 uint TypeNode::ideal_reg() const {
2068   return _type->ideal_reg();
2069 }