1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "oops/method.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/idealGraphPrinter.hpp"
  31 #include "opto/locknode.hpp"
  32 #include "opto/memnode.hpp"
  33 #include "opto/parse.hpp"
  34 #include "opto/rootnode.hpp"
  35 #include "opto/runtime.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/handles.inline.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "utilities/copy.hpp"
  40 
  41 // Static array so we can figure out which bytecodes stop us from compiling
  42 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  43 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  44 
  45 int nodes_created              = 0;
  46 int methods_parsed             = 0;
  47 int methods_seen               = 0;
  48 int blocks_parsed              = 0;
  49 int blocks_seen                = 0;
  50 
  51 int explicit_null_checks_inserted = 0;
  52 int explicit_null_checks_elided   = 0;
  53 int all_null_checks_found         = 0, implicit_null_checks              = 0;
  54 int implicit_null_throws          = 0;
  55 
  56 int reclaim_idx  = 0;
  57 int reclaim_in   = 0;
  58 int reclaim_node = 0;
  59 
  60 #ifndef PRODUCT
  61 bool Parse::BytecodeParseHistogram::_initialized = false;
  62 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
  63 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
  64 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
  65 uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
  66 #endif
  67 
  68 //------------------------------print_statistics-------------------------------
  69 #ifndef PRODUCT
  70 void Parse::print_statistics() {
  71   tty->print_cr("--- Compiler Statistics ---");
  72   tty->print("Methods seen: %d  Methods parsed: %d", methods_seen, methods_parsed);
  73   tty->print("  Nodes created: %d", nodes_created);
  74   tty->cr();
  75   if (methods_seen != methods_parsed)
  76     tty->print_cr("Reasons for parse failures (NOT cumulative):");
  77   tty->print_cr("Blocks parsed: %d  Blocks seen: %d", blocks_parsed, blocks_seen);
  78 
  79   if( explicit_null_checks_inserted )
  80     tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", explicit_null_checks_inserted, explicit_null_checks_elided, (100*explicit_null_checks_elided)/explicit_null_checks_inserted, all_null_checks_found);
  81   if( all_null_checks_found )
  82     tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
  83                   (100*implicit_null_checks)/all_null_checks_found);
  84   if( implicit_null_throws )
  85     tty->print_cr("%d implicit null exceptions at runtime",
  86                   implicit_null_throws);
  87 
  88   if( PrintParseStatistics && BytecodeParseHistogram::initialized() ) {
  89     BytecodeParseHistogram::print();
  90   }
  91 }
  92 #endif
  93 
  94 //------------------------------ON STACK REPLACEMENT---------------------------
  95 
  96 // Construct a node which can be used to get incoming state for
  97 // on stack replacement.
  98 Node *Parse::fetch_interpreter_state(int index,
  99                                      BasicType bt,
 100                                      Node *local_addrs,
 101                                      Node *local_addrs_base) {
 102   Node *mem = memory(Compile::AliasIdxRaw);
 103   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
 104   Node *ctl = control();
 105 
 106   // Very similar to LoadNode::make, except we handle un-aligned longs and
 107   // doubles on Sparc.  Intel can handle them just fine directly.
 108   Node *l;
 109   switch( bt ) {                // Signature is flattened
 110   case T_INT:     l = new (C) LoadINode( ctl, mem, adr, TypeRawPtr::BOTTOM ); break;
 111   case T_FLOAT:   l = new (C) LoadFNode( ctl, mem, adr, TypeRawPtr::BOTTOM ); break;
 112   case T_ADDRESS: l = new (C) LoadPNode( ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM  ); break;
 113   case T_OBJECT:  l = new (C) LoadPNode( ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM ); break;
 114   case T_LONG:
 115   case T_DOUBLE: {
 116     // Since arguments are in reverse order, the argument address 'adr'
 117     // refers to the back half of the long/double.  Recompute adr.
 118     adr = basic_plus_adr( local_addrs_base, local_addrs, -(index+1)*wordSize );
 119     if( Matcher::misaligned_doubles_ok ) {
 120       l = (bt == T_DOUBLE)
 121         ? (Node*)new (C) LoadDNode( ctl, mem, adr, TypeRawPtr::BOTTOM )
 122         : (Node*)new (C) LoadLNode( ctl, mem, adr, TypeRawPtr::BOTTOM );
 123     } else {
 124       l = (bt == T_DOUBLE)
 125         ? (Node*)new (C) LoadD_unalignedNode( ctl, mem, adr, TypeRawPtr::BOTTOM )
 126         : (Node*)new (C) LoadL_unalignedNode( ctl, mem, adr, TypeRawPtr::BOTTOM );
 127     }
 128     break;
 129   }
 130   default: ShouldNotReachHere();
 131   }
 132   return _gvn.transform(l);
 133 }
 134 
 135 // Helper routine to prevent the interpreter from handing
 136 // unexpected typestate to an OSR method.
 137 // The Node l is a value newly dug out of the interpreter frame.
 138 // The type is the type predicted by ciTypeFlow.  Note that it is
 139 // not a general type, but can only come from Type::get_typeflow_type.
 140 // The safepoint is a map which will feed an uncommon trap.
 141 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 142                                     SafePointNode* &bad_type_exit) {
 143 
 144   const TypeOopPtr* tp = type->isa_oopptr();
 145 
 146   // TypeFlow may assert null-ness if a type appears unloaded.
 147   if (type == TypePtr::NULL_PTR ||
 148       (tp != NULL && !tp->klass()->is_loaded())) {
 149     // Value must be null, not a real oop.
 150     Node* chk = _gvn.transform( new (C) CmpPNode(l, null()) );
 151     Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
 152     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 153     set_control(_gvn.transform( new (C) IfTrueNode(iff) ));
 154     Node* bad_type = _gvn.transform( new (C) IfFalseNode(iff) );
 155     bad_type_exit->control()->add_req(bad_type);
 156     l = null();
 157   }
 158 
 159   // Typeflow can also cut off paths from the CFG, based on
 160   // types which appear unloaded, or call sites which appear unlinked.
 161   // When paths are cut off, values at later merge points can rise
 162   // toward more specific classes.  Make sure these specific classes
 163   // are still in effect.
 164   if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
 165     // TypeFlow asserted a specific object type.  Value must have that type.
 166     Node* bad_type_ctrl = NULL;
 167     l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
 168     bad_type_exit->control()->add_req(bad_type_ctrl);
 169   }
 170 
 171   BasicType bt_l = _gvn.type(l)->basic_type();
 172   BasicType bt_t = type->basic_type();
 173   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 174   return l;
 175 }
 176 
 177 // Helper routine which sets up elements of the initial parser map when
 178 // performing a parse for on stack replacement.  Add values into map.
 179 // The only parameter contains the address of a interpreter arguments.
 180 void Parse::load_interpreter_state(Node* osr_buf) {
 181   int index;
 182   int max_locals = jvms()->loc_size();
 183   int max_stack  = jvms()->stk_size();
 184 
 185 
 186   // Mismatch between method and jvms can occur since map briefly held
 187   // an OSR entry state (which takes up one RawPtr word).
 188   assert(max_locals == method()->max_locals(), "sanity");
 189   assert(max_stack  >= method()->max_stack(),  "sanity");
 190   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 191   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 192 
 193   // Find the start block.
 194   Block* osr_block = start_block();
 195   assert(osr_block->start() == osr_bci(), "sanity");
 196 
 197   // Set initial BCI.
 198   set_parse_bci(osr_block->start());
 199 
 200   // Set initial stack depth.
 201   set_sp(osr_block->start_sp());
 202 
 203   // Check bailouts.  We currently do not perform on stack replacement
 204   // of loops in catch blocks or loops which branch with a non-empty stack.
 205   if (sp() != 0) {
 206     C->record_method_not_compilable("OSR starts with non-empty stack");
 207     return;
 208   }
 209   // Do not OSR inside finally clauses:
 210   if (osr_block->has_trap_at(osr_block->start())) {
 211     C->record_method_not_compilable("OSR starts with an immediate trap");
 212     return;
 213   }
 214 
 215   // Commute monitors from interpreter frame to compiler frame.
 216   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
 217   int mcnt = osr_block->flow()->monitor_count();
 218   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
 219   for (index = 0; index < mcnt; index++) {
 220     // Make a BoxLockNode for the monitor.
 221     Node *box = _gvn.transform(new (C) BoxLockNode(next_monitor()));
 222 
 223 
 224     // Displaced headers and locked objects are interleaved in the
 225     // temp OSR buffer.  We only copy the locked objects out here.
 226     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 227     Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
 228     // Try and copy the displaced header to the BoxNode
 229     Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
 230 
 231 
 232     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw);
 233 
 234     // Build a bogus FastLockNode (no code will be generated) and push the
 235     // monitor into our debug info.
 236     const FastLockNode *flock = _gvn.transform(new (C) FastLockNode( 0, lock_object, box ))->as_FastLock();
 237     map()->push_monitor(flock);
 238 
 239     // If the lock is our method synchronization lock, tuck it away in
 240     // _sync_lock for return and rethrow exit paths.
 241     if (index == 0 && method()->is_synchronized()) {
 242       _synch_lock = flock;
 243     }
 244   }
 245 
 246   // Use the raw liveness computation to make sure that unexpected
 247   // values don't propagate into the OSR frame.
 248   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 249   if (!live_locals.is_valid()) {
 250     // Degenerate or breakpointed method.
 251     C->record_method_not_compilable("OSR in empty or breakpointed method");
 252     return;
 253   }
 254 
 255   // Extract the needed locals from the interpreter frame.
 256   Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
 257 
 258   // find all the locals that the interpreter thinks contain live oops
 259   const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
 260   for (index = 0; index < max_locals; index++) {
 261 
 262     if (!live_locals.at(index)) {
 263       continue;
 264     }
 265 
 266     const Type *type = osr_block->local_type_at(index);
 267 
 268     if (type->isa_oopptr() != NULL) {
 269 
 270       // 6403625: Verify that the interpreter oopMap thinks that the oop is live
 271       // else we might load a stale oop if the MethodLiveness disagrees with the
 272       // result of the interpreter. If the interpreter says it is dead we agree
 273       // by making the value go to top.
 274       //
 275 
 276       if (!live_oops.at(index)) {
 277         if (C->log() != NULL) {
 278           C->log()->elem("OSR_mismatch local_index='%d'",index);
 279         }
 280         set_local(index, null());
 281         // and ignore it for the loads
 282         continue;
 283       }
 284     }
 285 
 286     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 287     if (type == Type::TOP || type == Type::HALF) {
 288       continue;
 289     }
 290     // If the type falls to bottom, then this must be a local that
 291     // is mixing ints and oops or some such.  Forcing it to top
 292     // makes it go dead.
 293     if (type == Type::BOTTOM) {
 294       continue;
 295     }
 296     // Construct code to access the appropriate local.
 297     BasicType bt = type->basic_type();
 298     if (type == TypePtr::NULL_PTR) {
 299       // Ptr types are mixed together with T_ADDRESS but NULL is
 300       // really for T_OBJECT types so correct it.
 301       bt = T_OBJECT;
 302     }
 303     Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
 304     set_local(index, value);
 305   }
 306 
 307   // Extract the needed stack entries from the interpreter frame.
 308   for (index = 0; index < sp(); index++) {
 309     const Type *type = osr_block->stack_type_at(index);
 310     if (type != Type::TOP) {
 311       // Currently the compiler bails out when attempting to on stack replace
 312       // at a bci with a non-empty stack.  We should not reach here.
 313       ShouldNotReachHere();
 314     }
 315   }
 316 
 317   // End the OSR migration
 318   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 319                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 320                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 321                     osr_buf);
 322 
 323   // Now that the interpreter state is loaded, make sure it will match
 324   // at execution time what the compiler is expecting now:
 325   SafePointNode* bad_type_exit = clone_map();
 326   bad_type_exit->set_control(new (C) RegionNode(1));
 327 
 328   assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
 329   for (index = 0; index < max_locals; index++) {
 330     if (stopped())  break;
 331     Node* l = local(index);
 332     if (l->is_top())  continue;  // nothing here
 333     const Type *type = osr_block->local_type_at(index);
 334     if (type->isa_oopptr() != NULL) {
 335       if (!live_oops.at(index)) {
 336         // skip type check for dead oops
 337         continue;
 338       }
 339     }
 340     if (osr_block->flow()->local_type_at(index)->is_return_address()) {
 341       // In our current system it's illegal for jsr addresses to be
 342       // live into an OSR entry point because the compiler performs
 343       // inlining of jsrs.  ciTypeFlow has a bailout that detect this
 344       // case and aborts the compile if addresses are live into an OSR
 345       // entry point.  Because of that we can assume that any address
 346       // locals at the OSR entry point are dead.  Method liveness
 347       // isn't precise enought to figure out that they are dead in all
 348       // cases so simply skip checking address locals all
 349       // together. Any type check is guaranteed to fail since the
 350       // interpreter type is the result of a load which might have any
 351       // value and the expected type is a constant.
 352       continue;
 353     }
 354     set_local(index, check_interpreter_type(l, type, bad_type_exit));
 355   }
 356 
 357   for (index = 0; index < sp(); index++) {
 358     if (stopped())  break;
 359     Node* l = stack(index);
 360     if (l->is_top())  continue;  // nothing here
 361     const Type *type = osr_block->stack_type_at(index);
 362     set_stack(index, check_interpreter_type(l, type, bad_type_exit));
 363   }
 364 
 365   if (bad_type_exit->control()->req() > 1) {
 366     // Build an uncommon trap here, if any inputs can be unexpected.
 367     bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
 368     record_for_igvn(bad_type_exit->control());
 369     SafePointNode* types_are_good = map();
 370     set_map(bad_type_exit);
 371     // The unexpected type happens because a new edge is active
 372     // in the CFG, which typeflow had previously ignored.
 373     // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
 374     // This x will be typed as Integer if notReached is not yet linked.
 375     // It could also happen due to a problem in ciTypeFlow analysis.
 376     uncommon_trap(Deoptimization::Reason_constraint,
 377                   Deoptimization::Action_reinterpret);
 378     set_map(types_are_good);
 379   }
 380 }
 381 
 382 //------------------------------Parse------------------------------------------
 383 // Main parser constructor.
 384 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
 385   : _exits(caller)
 386 {
 387   // Init some variables
 388   _caller = caller;
 389   _method = parse_method;
 390   _expected_uses = expected_uses;
 391   _depth = 1 + (caller->has_method() ? caller->depth() : 0);
 392   _wrote_final = false;
 393   _entry_bci = InvocationEntryBci;
 394   _tf = NULL;
 395   _block = NULL;
 396   debug_only(_block_count = -1);
 397   debug_only(_blocks = (Block*)-1);
 398 #ifndef PRODUCT
 399   if (PrintCompilation || PrintOpto) {
 400     // Make sure I have an inline tree, so I can print messages about it.
 401     JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
 402     InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method);
 403   }
 404   _max_switch_depth = 0;
 405   _est_switch_depth = 0;
 406 #endif
 407 
 408   _tf = TypeFunc::make(method());
 409   _iter.reset_to_method(method());
 410   _flow = method()->get_flow_analysis();
 411   if (_flow->failing()) {
 412     C->record_method_not_compilable_all_tiers(_flow->failure_reason());
 413   }
 414 
 415 #ifndef PRODUCT
 416   if (_flow->has_irreducible_entry()) {
 417     C->set_parsed_irreducible_loop(true);
 418   }
 419 #endif
 420 
 421   if (_expected_uses <= 0) {
 422     _prof_factor = 1;
 423   } else {
 424     float prof_total = parse_method->interpreter_invocation_count();
 425     if (prof_total <= _expected_uses) {
 426       _prof_factor = 1;
 427     } else {
 428       _prof_factor = _expected_uses / prof_total;
 429     }
 430   }
 431 
 432   CompileLog* log = C->log();
 433   if (log != NULL) {
 434     log->begin_head("parse method='%d' uses='%g'",
 435                     log->identify(parse_method), expected_uses);
 436     if (depth() == 1 && C->is_osr_compilation()) {
 437       log->print(" osr_bci='%d'", C->entry_bci());
 438     }
 439     log->stamp();
 440     log->end_head();
 441   }
 442 
 443   // Accumulate deoptimization counts.
 444   // (The range_check and store_check counts are checked elsewhere.)
 445   ciMethodData* md = method()->method_data();
 446   for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
 447     uint md_count = md->trap_count(reason);
 448     if (md_count != 0) {
 449       if (md_count == md->trap_count_limit())
 450         md_count += md->overflow_trap_count();
 451       uint total_count = C->trap_count(reason);
 452       uint old_count   = total_count;
 453       total_count += md_count;
 454       // Saturate the add if it overflows.
 455       if (total_count < old_count || total_count < md_count)
 456         total_count = (uint)-1;
 457       C->set_trap_count(reason, total_count);
 458       if (log != NULL)
 459         log->elem("observe trap='%s' count='%d' total='%d'",
 460                   Deoptimization::trap_reason_name(reason),
 461                   md_count, total_count);
 462     }
 463   }
 464   // Accumulate total sum of decompilations, also.
 465   C->set_decompile_count(C->decompile_count() + md->decompile_count());
 466 
 467   _count_invocations = C->do_count_invocations();
 468   _method_data_update = C->do_method_data_update();
 469 
 470   if (log != NULL && method()->has_exception_handlers()) {
 471     log->elem("observe that='has_exception_handlers'");
 472   }
 473 
 474   assert(method()->can_be_compiled(),       "Can not parse this method, cutout earlier");
 475   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
 476 
 477   // Always register dependence if JVMTI is enabled, because
 478   // either breakpoint setting or hotswapping of methods may
 479   // cause deoptimization.
 480   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 481     C->dependencies()->assert_evol_method(method());
 482   }
 483 
 484   methods_seen++;
 485 
 486   // Do some special top-level things.
 487   if (depth() == 1 && C->is_osr_compilation()) {
 488     _entry_bci = C->entry_bci();
 489     _flow = method()->get_osr_flow_analysis(osr_bci());
 490     if (_flow->failing()) {
 491       C->record_method_not_compilable(_flow->failure_reason());
 492 #ifndef PRODUCT
 493       if (PrintOpto && (Verbose || WizardMode)) {
 494         tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 495         if (Verbose) {
 496           method()->print();
 497           method()->print_codes();
 498           _flow->print();
 499         }
 500       }
 501 #endif
 502     }
 503     _tf = C->tf();     // the OSR entry type is different
 504   }
 505 
 506 #ifdef ASSERT
 507   if (depth() == 1) {
 508     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
 509     if (C->tf() != tf()) {
 510       MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
 511       assert(C->env()->system_dictionary_modification_counter_changed(),
 512              "Must invalidate if TypeFuncs differ");
 513     }
 514   } else {
 515     assert(!this->is_osr_parse(), "no recursive OSR");
 516   }
 517 #endif
 518 
 519   methods_parsed++;
 520 #ifndef PRODUCT
 521   // add method size here to guarantee that inlined methods are added too
 522   if (TimeCompiler)
 523     _total_bytes_compiled += method()->code_size();
 524 
 525   show_parse_info();
 526 #endif
 527 
 528   if (failing()) {
 529     if (log)  log->done("parse");
 530     return;
 531   }
 532 
 533   gvn().set_type(root(), root()->bottom_type());
 534   gvn().transform(top());
 535 
 536   // Import the results of the ciTypeFlow.
 537   init_blocks();
 538 
 539   // Merge point for all normal exits
 540   build_exits();
 541 
 542   // Setup the initial JVM state map.
 543   SafePointNode* entry_map = create_entry_map();
 544 
 545   // Check for bailouts during map initialization
 546   if (failing() || entry_map == NULL) {
 547     if (log)  log->done("parse");
 548     return;
 549   }
 550 
 551   Node_Notes* caller_nn = C->default_node_notes();
 552   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
 553   if (DebugInlinedCalls || depth() == 1) {
 554     C->set_default_node_notes(make_node_notes(caller_nn));
 555   }
 556 
 557   if (is_osr_parse()) {
 558     Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
 559     entry_map->set_req(TypeFunc::Parms+0, top());
 560     set_map(entry_map);
 561     load_interpreter_state(osr_buf);
 562   } else {
 563     set_map(entry_map);
 564     do_method_entry();
 565   }
 566 
 567   // Check for bailouts during method entry.
 568   if (failing()) {
 569     if (log)  log->done("parse");
 570     C->set_default_node_notes(caller_nn);
 571     return;
 572   }
 573 
 574   entry_map = map();  // capture any changes performed by method setup code
 575   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 576 
 577   // We begin parsing as if we have just encountered a jump to the
 578   // method entry.
 579   Block* entry_block = start_block();
 580   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 581   set_map_clone(entry_map);
 582   merge_common(entry_block, entry_block->next_path_num());
 583 
 584 #ifndef PRODUCT
 585   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 586   set_parse_histogram( parse_histogram_obj );
 587 #endif
 588 
 589   // Parse all the basic blocks.
 590   do_all_blocks();
 591 
 592   C->set_default_node_notes(caller_nn);
 593 
 594   // Check for bailouts during conversion to graph
 595   if (failing()) {
 596     if (log)  log->done("parse");
 597     return;
 598   }
 599 
 600   // Fix up all exiting control flow.
 601   set_map(entry_map);
 602   do_exits();
 603 
 604   if (log)  log->done("parse nodes='%d' memory='%d'",
 605                       C->unique(), C->node_arena()->used());
 606 }
 607 
 608 //---------------------------do_all_blocks-------------------------------------
 609 void Parse::do_all_blocks() {
 610   bool has_irreducible = flow()->has_irreducible_entry();
 611 
 612   // Walk over all blocks in Reverse Post-Order.
 613   while (true) {
 614     bool progress = false;
 615     for (int rpo = 0; rpo < block_count(); rpo++) {
 616       Block* block = rpo_at(rpo);
 617 
 618       if (block->is_parsed()) continue;
 619 
 620       if (!block->is_merged()) {
 621         // Dead block, no state reaches this block
 622         continue;
 623       }
 624 
 625       // Prepare to parse this block.
 626       load_state_from(block);
 627 
 628       if (stopped()) {
 629         // Block is dead.
 630         continue;
 631       }
 632 
 633       blocks_parsed++;
 634 
 635       progress = true;
 636       if (block->is_loop_head() || block->is_handler() || has_irreducible && !block->is_ready()) {
 637         // Not all preds have been parsed.  We must build phis everywhere.
 638         // (Note that dead locals do not get phis built, ever.)
 639         ensure_phis_everywhere();
 640 
 641         if (block->is_SEL_head() &&
 642             (UseLoopPredicate || LoopLimitCheck)) {
 643           // Add predicate to single entry (not irreducible) loop head.
 644           assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
 645           // Need correct bci for predicate.
 646           // It is fine to set it here since do_one_block() will set it anyway.
 647           set_parse_bci(block->start());
 648           add_predicate();
 649           // Add new region for back branches.
 650           int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
 651           RegionNode *r = new (C) RegionNode(edges+1);
 652           _gvn.set_type(r, Type::CONTROL);
 653           record_for_igvn(r);
 654           r->init_req(edges, control());
 655           set_control(r);
 656           // Add new phis.
 657           ensure_phis_everywhere();
 658         }
 659 
 660         // Leave behind an undisturbed copy of the map, for future merges.
 661         set_map(clone_map());
 662       }
 663 
 664       if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
 665         // In the absence of irreducible loops, the Region and Phis
 666         // associated with a merge that doesn't involve a backedge can
 667         // be simplified now since the RPO parsing order guarantees
 668         // that any path which was supposed to reach here has already
 669         // been parsed or must be dead.
 670         Node* c = control();
 671         Node* result = _gvn.transform_no_reclaim(control());
 672         if (c != result && TraceOptoParse) {
 673           tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
 674         }
 675         if (result != top()) {
 676           record_for_igvn(result);
 677         }
 678       }
 679 
 680       // Parse the block.
 681       do_one_block();
 682 
 683       // Check for bailouts.
 684       if (failing())  return;
 685     }
 686 
 687     // with irreducible loops multiple passes might be necessary to parse everything
 688     if (!has_irreducible || !progress) {
 689       break;
 690     }
 691   }
 692 
 693   blocks_seen += block_count();
 694 
 695 #ifndef PRODUCT
 696   // Make sure there are no half-processed blocks remaining.
 697   // Every remaining unprocessed block is dead and may be ignored now.
 698   for (int rpo = 0; rpo < block_count(); rpo++) {
 699     Block* block = rpo_at(rpo);
 700     if (!block->is_parsed()) {
 701       if (TraceOptoParse) {
 702         tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
 703       }
 704       assert(!block->is_merged(), "no half-processed blocks");
 705     }
 706   }
 707 #endif
 708 }
 709 
 710 //-------------------------------build_exits----------------------------------
 711 // Build normal and exceptional exit merge points.
 712 void Parse::build_exits() {
 713   // make a clone of caller to prevent sharing of side-effects
 714   _exits.set_map(_exits.clone_map());
 715   _exits.clean_stack(_exits.sp());
 716   _exits.sync_jvms();
 717 
 718   RegionNode* region = new (C) RegionNode(1);
 719   record_for_igvn(region);
 720   gvn().set_type_bottom(region);
 721   _exits.set_control(region);
 722 
 723   // Note:  iophi and memphi are not transformed until do_exits.
 724   Node* iophi  = new (C) PhiNode(region, Type::ABIO);
 725   Node* memphi = new (C) PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 726   _exits.set_i_o(iophi);
 727   _exits.set_all_memory(memphi);
 728 
 729   // Add a return value to the exit state.  (Do not push it yet.)
 730   if (tf()->range()->cnt() > TypeFunc::Parms) {
 731     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 732     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 733     // becomes loaded during the subsequent parsing, the loaded and unloaded
 734     // types will not join when we transform and push in do_exits().
 735     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 736     if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
 737       ret_type = TypeOopPtr::BOTTOM;
 738     }
 739     int         ret_size = type2size[ret_type->basic_type()];
 740     Node*       ret_phi  = new (C) PhiNode(region, ret_type);
 741     _exits.ensure_stack(ret_size);
 742     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 743     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 744     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 745     // Note:  ret_phi is not yet pushed, until do_exits.
 746   }
 747 }
 748 
 749 
 750 //----------------------------build_start_state-------------------------------
 751 // Construct a state which contains only the incoming arguments from an
 752 // unknown caller.  The method & bci will be NULL & InvocationEntryBci.
 753 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 754   int        arg_size = tf->domain()->cnt();
 755   int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
 756   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 757   SafePointNode* map  = new (this) SafePointNode(max_size, NULL);
 758   record_for_igvn(map);
 759   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 760   Node_Notes* old_nn = default_node_notes();
 761   if (old_nn != NULL && has_method()) {
 762     Node_Notes* entry_nn = old_nn->clone(this);
 763     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 764     entry_jvms->set_offsets(0);
 765     entry_jvms->set_bci(entry_bci());
 766     entry_nn->set_jvms(entry_jvms);
 767     set_default_node_notes(entry_nn);
 768   }
 769   uint i;
 770   for (i = 0; i < (uint)arg_size; i++) {
 771     Node* parm = initial_gvn()->transform(new (this) ParmNode(start, i));
 772     map->init_req(i, parm);
 773     // Record all these guys for later GVN.
 774     record_for_igvn(parm);
 775   }
 776   for (; i < map->req(); i++) {
 777     map->init_req(i, top());
 778   }
 779   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 780   set_default_node_notes(old_nn);
 781   map->set_jvms(jvms);
 782   jvms->set_map(map);
 783   return jvms;
 784 }
 785 
 786 //-----------------------------make_node_notes---------------------------------
 787 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 788   if (caller_nn == NULL)  return NULL;
 789   Node_Notes* nn = caller_nn->clone(C);
 790   JVMState* caller_jvms = nn->jvms();
 791   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 792   jvms->set_offsets(0);
 793   jvms->set_bci(_entry_bci);
 794   nn->set_jvms(jvms);
 795   return nn;
 796 }
 797 
 798 
 799 //--------------------------return_values--------------------------------------
 800 void Compile::return_values(JVMState* jvms) {
 801   GraphKit kit(jvms);
 802   Node* ret = new (this) ReturnNode(TypeFunc::Parms,
 803                              kit.control(),
 804                              kit.i_o(),
 805                              kit.reset_memory(),
 806                              kit.frameptr(),
 807                              kit.returnadr());
 808   // Add zero or 1 return values
 809   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
 810   if (ret_size > 0) {
 811     kit.inc_sp(-ret_size);  // pop the return value(s)
 812     kit.sync_jvms();
 813     ret->add_req(kit.argument(0));
 814     // Note:  The second dummy edge is not needed by a ReturnNode.
 815   }
 816   // bind it to root
 817   root()->add_req(ret);
 818   record_for_igvn(ret);
 819   initial_gvn()->transform_no_reclaim(ret);
 820 }
 821 
 822 //------------------------rethrow_exceptions-----------------------------------
 823 // Bind all exception states in the list into a single RethrowNode.
 824 void Compile::rethrow_exceptions(JVMState* jvms) {
 825   GraphKit kit(jvms);
 826   if (!kit.has_exceptions())  return;  // nothing to generate
 827   // Load my combined exception state into the kit, with all phis transformed:
 828   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 829   Node* ex_oop = kit.use_exception_state(ex_map);
 830   RethrowNode* exit = new (this) RethrowNode(kit.control(),
 831                                       kit.i_o(), kit.reset_memory(),
 832                                       kit.frameptr(), kit.returnadr(),
 833                                       // like a return but with exception input
 834                                       ex_oop);
 835   // bind to root
 836   root()->add_req(exit);
 837   record_for_igvn(exit);
 838   initial_gvn()->transform_no_reclaim(exit);
 839 }
 840 
 841 //---------------------------do_exceptions-------------------------------------
 842 // Process exceptions arising from the current bytecode.
 843 // Send caught exceptions to the proper handler within this method.
 844 // Unhandled exceptions feed into _exit.
 845 void Parse::do_exceptions() {
 846   if (!has_exceptions())  return;
 847 
 848   if (failing()) {
 849     // Pop them all off and throw them away.
 850     while (pop_exception_state() != NULL) ;
 851     return;
 852   }
 853 
 854   PreserveJVMState pjvms(this, false);
 855 
 856   SafePointNode* ex_map;
 857   while ((ex_map = pop_exception_state()) != NULL) {
 858     if (!method()->has_exception_handlers()) {
 859       // Common case:  Transfer control outward.
 860       // Doing it this early allows the exceptions to common up
 861       // even between adjacent method calls.
 862       throw_to_exit(ex_map);
 863     } else {
 864       // Have to look at the exception first.
 865       assert(stopped(), "catch_inline_exceptions trashes the map");
 866       catch_inline_exceptions(ex_map);
 867       stop_and_kill_map();      // we used up this exception state; kill it
 868     }
 869   }
 870 
 871   // We now return to our regularly scheduled program:
 872 }
 873 
 874 //---------------------------throw_to_exit-------------------------------------
 875 // Merge the given map into an exception exit from this method.
 876 // The exception exit will handle any unlocking of receiver.
 877 // The ex_oop must be saved within the ex_map, unlike merge_exception.
 878 void Parse::throw_to_exit(SafePointNode* ex_map) {
 879   // Pop the JVMS to (a copy of) the caller.
 880   GraphKit caller;
 881   caller.set_map_clone(_caller->map());
 882   caller.set_bci(_caller->bci());
 883   caller.set_sp(_caller->sp());
 884   // Copy out the standard machine state:
 885   for (uint i = 0; i < TypeFunc::Parms; i++) {
 886     caller.map()->set_req(i, ex_map->in(i));
 887   }
 888   // ...and the exception:
 889   Node*          ex_oop        = saved_ex_oop(ex_map);
 890   SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
 891   // Finally, collect the new exception state in my exits:
 892   _exits.add_exception_state(caller_ex_map);
 893 }
 894 
 895 //------------------------------do_exits---------------------------------------
 896 void Parse::do_exits() {
 897   set_parse_bci(InvocationEntryBci);
 898 
 899   // Now peephole on the return bits
 900   Node* region = _exits.control();
 901   _exits.set_control(gvn().transform(region));
 902 
 903   Node* iophi = _exits.i_o();
 904   _exits.set_i_o(gvn().transform(iophi));
 905 
 906   if (wrote_final()) {
 907     // This method (which must be a constructor by the rules of Java)
 908     // wrote a final.  The effects of all initializations must be
 909     // committed to memory before any code after the constructor
 910     // publishes the reference to the newly constructor object.
 911     // Rather than wait for the publication, we simply block the
 912     // writes here.  Rather than put a barrier on only those writes
 913     // which are required to complete, we force all writes to complete.
 914     //
 915     // "All bets are off" unless the first publication occurs after a
 916     // normal return from the constructor.  We do not attempt to detect
 917     // such unusual early publications.  But no barrier is needed on
 918     // exceptional returns, since they cannot publish normally.
 919     //
 920     _exits.insert_mem_bar(Op_MemBarRelease);
 921 #ifndef PRODUCT
 922     if (PrintOpto && (Verbose || WizardMode)) {
 923       method()->print_name();
 924       tty->print_cr(" writes finals and needs a memory barrier");
 925     }
 926 #endif
 927   }
 928 
 929   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
 930     // transform each slice of the original memphi:
 931     mms.set_memory(_gvn.transform(mms.memory()));
 932   }
 933 
 934   if (tf()->range()->cnt() > TypeFunc::Parms) {
 935     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 936     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
 937     assert(_exits.control()->is_top() || !_gvn.type(ret_phi)->empty(), "return value must be well defined");
 938     _exits.push_node(ret_type->basic_type(), ret_phi);
 939   }
 940 
 941   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
 942 
 943   // Unlock along the exceptional paths.
 944   // This is done late so that we can common up equivalent exceptions
 945   // (e.g., null checks) arising from multiple points within this method.
 946   // See GraphKit::add_exception_state, which performs the commoning.
 947   bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
 948 
 949   // record exit from a method if compiled while Dtrace is turned on.
 950   if (do_synch || C->env()->dtrace_method_probes()) {
 951     // First move the exception list out of _exits:
 952     GraphKit kit(_exits.transfer_exceptions_into_jvms());
 953     SafePointNode* normal_map = kit.map();  // keep this guy safe
 954     // Now re-collect the exceptions into _exits:
 955     SafePointNode* ex_map;
 956     while ((ex_map = kit.pop_exception_state()) != NULL) {
 957       Node* ex_oop = kit.use_exception_state(ex_map);
 958       // Force the exiting JVM state to have this method at InvocationEntryBci.
 959       // The exiting JVM state is otherwise a copy of the calling JVMS.
 960       JVMState* caller = kit.jvms();
 961       JVMState* ex_jvms = caller->clone_shallow(C);
 962       ex_jvms->set_map(kit.clone_map());
 963       ex_jvms->map()->set_jvms(ex_jvms);
 964       ex_jvms->set_bci(   InvocationEntryBci);
 965       kit.set_jvms(ex_jvms);
 966       if (do_synch) {
 967         // Add on the synchronized-method box/object combo
 968         kit.map()->push_monitor(_synch_lock);
 969         // Unlock!
 970         kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
 971       }
 972       if (C->env()->dtrace_method_probes()) {
 973         kit.make_dtrace_method_exit(method());
 974       }
 975       // Done with exception-path processing.
 976       ex_map = kit.make_exception_state(ex_oop);
 977       assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
 978       // Pop the last vestige of this method:
 979       ex_map->set_jvms(caller->clone_shallow(C));
 980       ex_map->jvms()->set_map(ex_map);
 981       _exits.push_exception_state(ex_map);
 982     }
 983     assert(_exits.map() == normal_map, "keep the same return state");
 984   }
 985 
 986   {
 987     // Capture very early exceptions (receiver null checks) from caller JVMS
 988     GraphKit caller(_caller);
 989     SafePointNode* ex_map;
 990     while ((ex_map = caller.pop_exception_state()) != NULL) {
 991       _exits.add_exception_state(ex_map);
 992     }
 993   }
 994 }
 995 
 996 //-----------------------------create_entry_map-------------------------------
 997 // Initialize our parser map to contain the types at method entry.
 998 // For OSR, the map contains a single RawPtr parameter.
 999 // Initial monitor locking for sync. methods is performed by do_method_entry.
1000 SafePointNode* Parse::create_entry_map() {
1001   // Check for really stupid bail-out cases.
1002   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1003   if (len >= 32760) {
1004     C->record_method_not_compilable_all_tiers("too many local variables");
1005     return NULL;
1006   }
1007 
1008   // If this is an inlined method, we may have to do a receiver null check.
1009   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1010     GraphKit kit(_caller);
1011     kit.null_check_receiver_before_call(method());
1012     _caller = kit.transfer_exceptions_into_jvms();
1013     if (kit.stopped()) {
1014       _exits.add_exception_states_from(_caller);
1015       _exits.set_jvms(_caller);
1016       return NULL;
1017     }
1018   }
1019 
1020   assert(method() != NULL, "parser must have a method");
1021 
1022   // Create an initial safepoint to hold JVM state during parsing
1023   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
1024   set_map(new (C) SafePointNode(len, jvms));
1025   jvms->set_map(map());
1026   record_for_igvn(map());
1027   assert(jvms->endoff() == len, "correct jvms sizing");
1028 
1029   SafePointNode* inmap = _caller->map();
1030   assert(inmap != NULL, "must have inmap");
1031 
1032   uint i;
1033 
1034   // Pass thru the predefined input parameters.
1035   for (i = 0; i < TypeFunc::Parms; i++) {
1036     map()->init_req(i, inmap->in(i));
1037   }
1038 
1039   if (depth() == 1) {
1040     assert(map()->memory()->Opcode() == Op_Parm, "");
1041     // Insert the memory aliasing node
1042     set_all_memory(reset_memory());
1043   }
1044   assert(merged_memory(), "");
1045 
1046   // Now add the locals which are initially bound to arguments:
1047   uint arg_size = tf()->domain()->cnt();
1048   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1049   for (i = TypeFunc::Parms; i < arg_size; i++) {
1050     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1051   }
1052 
1053   // Clear out the rest of the map (locals and stack)
1054   for (i = arg_size; i < len; i++) {
1055     map()->init_req(i, top());
1056   }
1057 
1058   SafePointNode* entry_map = stop();
1059   return entry_map;
1060 }
1061 
1062 //-----------------------------do_method_entry--------------------------------
1063 // Emit any code needed in the pseudo-block before BCI zero.
1064 // The main thing to do is lock the receiver of a synchronized method.
1065 void Parse::do_method_entry() {
1066   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1067   set_sp(0);                      // Java Stack Pointer
1068 
1069   NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1070 
1071   if (C->env()->dtrace_method_probes()) {
1072     make_dtrace_method_entry(method());
1073   }
1074 
1075   // If the method is synchronized, we need to construct a lock node, attach
1076   // it to the Start node, and pin it there.
1077   if (method()->is_synchronized()) {
1078     // Insert a FastLockNode right after the Start which takes as arguments
1079     // the current thread pointer, the "this" pointer & the address of the
1080     // stack slot pair used for the lock.  The "this" pointer is a projection
1081     // off the start node, but the locking spot has to be constructed by
1082     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1083     // becomes the second argument to the FastLockNode call.  The
1084     // FastLockNode becomes the new control parent to pin it to the start.
1085 
1086     // Setup Object Pointer
1087     Node *lock_obj = NULL;
1088     if(method()->is_static()) {
1089       ciInstance* mirror = _method->holder()->java_mirror();
1090       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1091       lock_obj = makecon(t_lock);
1092     } else {                  // Else pass the "this" pointer,
1093       lock_obj = local(0);    // which is Parm0 from StartNode
1094     }
1095     // Clear out dead values from the debug info.
1096     kill_dead_locals();
1097     // Build the FastLockNode
1098     _synch_lock = shared_lock(lock_obj);
1099   }
1100 
1101   if (depth() == 1) {
1102     increment_and_test_invocation_counter(Tier2CompileThreshold);
1103   }
1104 }
1105 
1106 //------------------------------init_blocks------------------------------------
1107 // Initialize our parser map to contain the types/monitors at method entry.
1108 void Parse::init_blocks() {
1109   // Create the blocks.
1110   _block_count = flow()->block_count();
1111   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1112   Copy::zero_to_bytes(_blocks, sizeof(Block)*_block_count);
1113 
1114   int rpo;
1115 
1116   // Initialize the structs.
1117   for (rpo = 0; rpo < block_count(); rpo++) {
1118     Block* block = rpo_at(rpo);
1119     block->init_node(this, rpo);
1120   }
1121 
1122   // Collect predecessor and successor information.
1123   for (rpo = 0; rpo < block_count(); rpo++) {
1124     Block* block = rpo_at(rpo);
1125     block->init_graph(this);
1126   }
1127 }
1128 
1129 //-------------------------------init_node-------------------------------------
1130 void Parse::Block::init_node(Parse* outer, int rpo) {
1131   _flow = outer->flow()->rpo_at(rpo);
1132   _pred_count = 0;
1133   _preds_parsed = 0;
1134   _count = 0;
1135   assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1136   assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
1137   assert(_live_locals.size() == 0, "sanity");
1138 
1139   // entry point has additional predecessor
1140   if (flow()->is_start())  _pred_count++;
1141   assert(flow()->is_start() == (this == outer->start_block()), "");
1142 }
1143 
1144 //-------------------------------init_graph------------------------------------
1145 void Parse::Block::init_graph(Parse* outer) {
1146   // Create the successor list for this parser block.
1147   GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1148   GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1149   int ns = tfs->length();
1150   int ne = tfe->length();
1151   _num_successors = ns;
1152   _all_successors = ns+ne;
1153   _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1154   int p = 0;
1155   for (int i = 0; i < ns+ne; i++) {
1156     ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1157     Block* block2 = outer->rpo_at(tf2->rpo());
1158     _successors[i] = block2;
1159 
1160     // Accumulate pred info for the other block, too.
1161     if (i < ns) {
1162       block2->_pred_count++;
1163     } else {
1164       block2->_is_handler = true;
1165     }
1166 
1167     #ifdef ASSERT
1168     // A block's successors must be distinguishable by BCI.
1169     // That is, no bytecode is allowed to branch to two different
1170     // clones of the same code location.
1171     for (int j = 0; j < i; j++) {
1172       Block* block1 = _successors[j];
1173       if (block1 == block2)  continue;  // duplicates are OK
1174       assert(block1->start() != block2->start(), "successors have unique bcis");
1175     }
1176     #endif
1177   }
1178 
1179   // Note: We never call next_path_num along exception paths, so they
1180   // never get processed as "ready".  Also, the input phis of exception
1181   // handlers get specially processed, so that
1182 }
1183 
1184 //---------------------------successor_for_bci---------------------------------
1185 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1186   for (int i = 0; i < all_successors(); i++) {
1187     Block* block2 = successor_at(i);
1188     if (block2->start() == bci)  return block2;
1189   }
1190   // We can actually reach here if ciTypeFlow traps out a block
1191   // due to an unloaded class, and concurrently with compilation the
1192   // class is then loaded, so that a later phase of the parser is
1193   // able to see more of the bytecode CFG.  Or, the flow pass and
1194   // the parser can have a minor difference of opinion about executability
1195   // of bytecodes.  For example, "obj.field = null" is executable even
1196   // if the field's type is an unloaded class; the flow pass used to
1197   // make a trap for such code.
1198   return NULL;
1199 }
1200 
1201 
1202 //-----------------------------stack_type_at-----------------------------------
1203 const Type* Parse::Block::stack_type_at(int i) const {
1204   return get_type(flow()->stack_type_at(i));
1205 }
1206 
1207 
1208 //-----------------------------local_type_at-----------------------------------
1209 const Type* Parse::Block::local_type_at(int i) const {
1210   // Make dead locals fall to bottom.
1211   if (_live_locals.size() == 0) {
1212     MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1213     // This bitmap can be zero length if we saw a breakpoint.
1214     // In such cases, pretend they are all live.
1215     ((Block*)this)->_live_locals = live_locals;
1216   }
1217   if (_live_locals.size() > 0 && !_live_locals.at(i))
1218     return Type::BOTTOM;
1219 
1220   return get_type(flow()->local_type_at(i));
1221 }
1222 
1223 
1224 #ifndef PRODUCT
1225 
1226 //----------------------------name_for_bc--------------------------------------
1227 // helper method for BytecodeParseHistogram
1228 static const char* name_for_bc(int i) {
1229   return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1230 }
1231 
1232 //----------------------------BytecodeParseHistogram------------------------------------
1233 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1234   _parser   = p;
1235   _compiler = c;
1236   if( ! _initialized ) { _initialized = true; reset(); }
1237 }
1238 
1239 //----------------------------current_count------------------------------------
1240 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1241   switch( bph_type ) {
1242   case BPH_transforms: { return _parser->gvn().made_progress(); }
1243   case BPH_values:     { return _parser->gvn().made_new_values(); }
1244   default: { ShouldNotReachHere(); return 0; }
1245   }
1246 }
1247 
1248 //----------------------------initialized--------------------------------------
1249 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1250 
1251 //----------------------------reset--------------------------------------------
1252 void Parse::BytecodeParseHistogram::reset() {
1253   int i = Bytecodes::number_of_codes;
1254   while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1255 }
1256 
1257 //----------------------------set_initial_state--------------------------------
1258 // Record info when starting to parse one bytecode
1259 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1260   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1261     _initial_bytecode    = bc;
1262     _initial_node_count  = _compiler->unique();
1263     _initial_transforms  = current_count(BPH_transforms);
1264     _initial_values      = current_count(BPH_values);
1265   }
1266 }
1267 
1268 //----------------------------record_change--------------------------------
1269 // Record results of parsing one bytecode
1270 void Parse::BytecodeParseHistogram::record_change() {
1271   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1272     ++_bytecodes_parsed[_initial_bytecode];
1273     _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1274     _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1275     _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
1276   }
1277 }
1278 
1279 
1280 //----------------------------print--------------------------------------------
1281 void Parse::BytecodeParseHistogram::print(float cutoff) {
1282   ResourceMark rm;
1283   // print profile
1284   int total  = 0;
1285   int i      = 0;
1286   for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1287   int abs_sum = 0;
1288   tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
1289   tty->print_cr("Histogram of %d parsed bytecodes:", total);
1290   if( total == 0 ) { return; }
1291   tty->cr();
1292   tty->print_cr("absolute:  count of compiled bytecodes of this type");
1293   tty->print_cr("relative:  percentage contribution to compiled nodes");
1294   tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
1295   tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
1296   tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
1297   tty->print_cr("values  :  Average number of node values improved per bytecode");
1298   tty->print_cr("name    :  Bytecode name");
1299   tty->cr();
1300   tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
1301   tty->print_cr("----------------------------------------------------------------------");
1302   while (--i > 0) {
1303     int       abs = _bytecodes_parsed[i];
1304     float     rel = abs * 100.0F / total;
1305     float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1306     float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
1307     float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1308     float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
1309     if (cutoff <= rel) {
1310       tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1311       abs_sum += abs;
1312     }
1313   }
1314   tty->print_cr("----------------------------------------------------------------------");
1315   float rel_sum = abs_sum * 100.0F / total;
1316   tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1317   tty->print_cr("----------------------------------------------------------------------");
1318   tty->cr();
1319 }
1320 #endif
1321 
1322 //----------------------------load_state_from----------------------------------
1323 // Load block/map/sp.  But not do not touch iter/bci.
1324 void Parse::load_state_from(Block* block) {
1325   set_block(block);
1326   // load the block's JVM state:
1327   set_map(block->start_map());
1328   set_sp( block->start_sp());
1329 }
1330 
1331 
1332 //-----------------------------record_state------------------------------------
1333 void Parse::Block::record_state(Parse* p) {
1334   assert(!is_merged(), "can only record state once, on 1st inflow");
1335   assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1336   set_start_map(p->stop());
1337 }
1338 
1339 
1340 //------------------------------do_one_block-----------------------------------
1341 void Parse::do_one_block() {
1342   if (TraceOptoParse) {
1343     Block *b = block();
1344     int ns = b->num_successors();
1345     int nt = b->all_successors();
1346 
1347     tty->print("Parsing block #%d at bci [%d,%d), successors: ",
1348                   block()->rpo(), block()->start(), block()->limit());
1349     for (int i = 0; i < nt; i++) {
1350       tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo());
1351     }
1352     if (b->is_loop_head()) tty->print("  lphd");
1353     tty->print_cr("");
1354   }
1355 
1356   assert(block()->is_merged(), "must be merged before being parsed");
1357   block()->mark_parsed();
1358   ++_blocks_parsed;
1359 
1360   // Set iterator to start of block.
1361   iter().reset_to_bci(block()->start());
1362 
1363   CompileLog* log = C->log();
1364 
1365   // Parse bytecodes
1366   while (!stopped() && !failing()) {
1367     iter().next();
1368 
1369     // Learn the current bci from the iterator:
1370     set_parse_bci(iter().cur_bci());
1371 
1372     if (bci() == block()->limit()) {
1373       // Do not walk into the next block until directed by do_all_blocks.
1374       merge(bci());
1375       break;
1376     }
1377     assert(bci() < block()->limit(), "bci still in block");
1378 
1379     if (log != NULL) {
1380       // Output an optional context marker, to help place actions
1381       // that occur during parsing of this BC.  If there is no log
1382       // output until the next context string, this context string
1383       // will be silently ignored.
1384       log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
1385     }
1386 
1387     if (block()->has_trap_at(bci())) {
1388       // We must respect the flow pass's traps, because it will refuse
1389       // to produce successors for trapping blocks.
1390       int trap_index = block()->flow()->trap_index();
1391       assert(trap_index != 0, "trap index must be valid");
1392       uncommon_trap(trap_index);
1393       break;
1394     }
1395 
1396     NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1397 
1398 #ifdef ASSERT
1399     int pre_bc_sp = sp();
1400     int inputs, depth;
1401     bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1402     assert(!have_se || pre_bc_sp >= inputs, err_msg_res("have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs));
1403 #endif //ASSERT
1404 
1405     do_one_bytecode();
1406 
1407     assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth, "correct depth prediction");
1408 
1409     do_exceptions();
1410 
1411     NOT_PRODUCT( parse_histogram()->record_change(); );
1412 
1413     if (log != NULL)
1414       log->clear_context();  // skip marker if nothing was printed
1415 
1416     // Fall into next bytecode.  Each bytecode normally has 1 sequential
1417     // successor which is typically made ready by visiting this bytecode.
1418     // If the successor has several predecessors, then it is a merge
1419     // point, starts a new basic block, and is handled like other basic blocks.
1420   }
1421 }
1422 
1423 
1424 //------------------------------merge------------------------------------------
1425 void Parse::set_parse_bci(int bci) {
1426   set_bci(bci);
1427   Node_Notes* nn = C->default_node_notes();
1428   if (nn == NULL)  return;
1429 
1430   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1431   if (!DebugInlinedCalls && depth() > 1) {
1432     return;
1433   }
1434 
1435   // Update the JVMS annotation, if present.
1436   JVMState* jvms = nn->jvms();
1437   if (jvms != NULL && jvms->bci() != bci) {
1438     // Update the JVMS.
1439     jvms = jvms->clone_shallow(C);
1440     jvms->set_bci(bci);
1441     nn->set_jvms(jvms);
1442   }
1443 }
1444 
1445 //------------------------------merge------------------------------------------
1446 // Merge the current mapping into the basic block starting at bci
1447 void Parse::merge(int target_bci) {
1448   Block* target = successor_for_bci(target_bci);
1449   if (target == NULL) { handle_missing_successor(target_bci); return; }
1450   assert(!target->is_ready(), "our arrival must be expected");
1451   int pnum = target->next_path_num();
1452   merge_common(target, pnum);
1453 }
1454 
1455 //-------------------------merge_new_path--------------------------------------
1456 // Merge the current mapping into the basic block, using a new path
1457 void Parse::merge_new_path(int target_bci) {
1458   Block* target = successor_for_bci(target_bci);
1459   if (target == NULL) { handle_missing_successor(target_bci); return; }
1460   assert(!target->is_ready(), "new path into frozen graph");
1461   int pnum = target->add_new_path();
1462   merge_common(target, pnum);
1463 }
1464 
1465 //-------------------------merge_exception-------------------------------------
1466 // Merge the current mapping into the basic block starting at bci
1467 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
1468 void Parse::merge_exception(int target_bci) {
1469   assert(sp() == 1, "must have only the throw exception on the stack");
1470   Block* target = successor_for_bci(target_bci);
1471   if (target == NULL) { handle_missing_successor(target_bci); return; }
1472   assert(target->is_handler(), "exceptions are handled by special blocks");
1473   int pnum = target->add_new_path();
1474   merge_common(target, pnum);
1475 }
1476 
1477 //--------------------handle_missing_successor---------------------------------
1478 void Parse::handle_missing_successor(int target_bci) {
1479 #ifndef PRODUCT
1480   Block* b = block();
1481   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1482   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1483 #endif
1484   ShouldNotReachHere();
1485 }
1486 
1487 //--------------------------merge_common---------------------------------------
1488 void Parse::merge_common(Parse::Block* target, int pnum) {
1489   if (TraceOptoParse) {
1490     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1491   }
1492 
1493   // Zap extra stack slots to top
1494   assert(sp() == target->start_sp(), "");
1495   clean_stack(sp());
1496 
1497   if (!target->is_merged()) {   // No prior mapping at this bci
1498     if (TraceOptoParse) { tty->print(" with empty state");  }
1499 
1500     // If this path is dead, do not bother capturing it as a merge.
1501     // It is "as if" we had 1 fewer predecessors from the beginning.
1502     if (stopped()) {
1503       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1504       return;
1505     }
1506 
1507     // Record that a new block has been merged.
1508     ++_blocks_merged;
1509 
1510     // Make a region if we know there are multiple or unpredictable inputs.
1511     // (Also, if this is a plain fall-through, we might see another region,
1512     // which must not be allowed into this block's map.)
1513     if (pnum > PhiNode::Input         // Known multiple inputs.
1514         || target->is_handler()       // These have unpredictable inputs.
1515         || target->is_loop_head()     // Known multiple inputs
1516         || control()->is_Region()) {  // We must hide this guy.
1517 
1518       int current_bci = bci();
1519       set_parse_bci(target->start()); // Set target bci
1520       if (target->is_SEL_head()) {
1521         DEBUG_ONLY( target->mark_merged_backedge(block()); )
1522         if (target->start() == 0) {
1523           // Add loop predicate for the special case when
1524           // there are backbranches to the method entry.
1525           add_predicate();
1526         }
1527       }
1528       // Add a Region to start the new basic block.  Phis will be added
1529       // later lazily.
1530       int edges = target->pred_count();
1531       if (edges < pnum)  edges = pnum;  // might be a new path!
1532       RegionNode *r = new (C) RegionNode(edges+1);
1533       gvn().set_type(r, Type::CONTROL);
1534       record_for_igvn(r);
1535       // zap all inputs to NULL for debugging (done in Node(uint) constructor)
1536       // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
1537       r->init_req(pnum, control());
1538       set_control(r);
1539       set_parse_bci(current_bci); // Restore bci
1540     }
1541 
1542     // Convert the existing Parser mapping into a mapping at this bci.
1543     store_state_to(target);
1544     assert(target->is_merged(), "do not come here twice");
1545 
1546   } else {                      // Prior mapping at this bci
1547     if (TraceOptoParse) {  tty->print(" with previous state"); }
1548 #ifdef ASSERT
1549     if (target->is_SEL_head()) {
1550       target->mark_merged_backedge(block());
1551     }
1552 #endif
1553     // We must not manufacture more phis if the target is already parsed.
1554     bool nophi = target->is_parsed();
1555 
1556     SafePointNode* newin = map();// Hang on to incoming mapping
1557     Block* save_block = block(); // Hang on to incoming block;
1558     load_state_from(target);    // Get prior mapping
1559 
1560     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1561     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1562     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1563     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1564 
1565     // Iterate over my current mapping and the old mapping.
1566     // Where different, insert Phi functions.
1567     // Use any existing Phi functions.
1568     assert(control()->is_Region(), "must be merging to a region");
1569     RegionNode* r = control()->as_Region();
1570 
1571     // Compute where to merge into
1572     // Merge incoming control path
1573     r->init_req(pnum, newin->control());
1574 
1575     if (pnum == 1) {            // Last merge for this Region?
1576       if (!block()->flow()->is_irreducible_entry()) {
1577         Node* result = _gvn.transform_no_reclaim(r);
1578         if (r != result && TraceOptoParse) {
1579           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1580         }
1581       }
1582       record_for_igvn(r);
1583     }
1584 
1585     // Update all the non-control inputs to map:
1586     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1587     bool check_elide_phi = target->is_SEL_backedge(save_block);
1588     for (uint j = 1; j < newin->req(); j++) {
1589       Node* m = map()->in(j);   // Current state of target.
1590       Node* n = newin->in(j);   // Incoming change to target state.
1591       PhiNode* phi;
1592       if (m->is_Phi() && m->as_Phi()->region() == r)
1593         phi = m->as_Phi();
1594       else
1595         phi = NULL;
1596       if (m != n) {             // Different; must merge
1597         switch (j) {
1598         // Frame pointer and Return Address never changes
1599         case TypeFunc::FramePtr:// Drop m, use the original value
1600         case TypeFunc::ReturnAdr:
1601           break;
1602         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1603           assert(phi == NULL, "the merge contains phis, not vice versa");
1604           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1605           continue;
1606         default:                // All normal stuff
1607           if (phi == NULL) {
1608             const JVMState* jvms = map()->jvms();
1609             if (EliminateNestedLocks &&
1610                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1611               // BoxLock nodes are not commoning.
1612               // Use old BoxLock node as merged box.
1613               assert(newin->jvms()->is_monitor_box(j), "sanity");
1614               // This assert also tests that nodes are BoxLock.
1615               assert(BoxLockNode::same_slot(n, m), "sanity");
1616               C->gvn_replace_by(n, m);
1617             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1618               phi = ensure_phi(j, nophi);
1619             }
1620           }
1621           break;
1622         }
1623       }
1624       // At this point, n might be top if:
1625       //  - there is no phi (because TypeFlow detected a conflict), or
1626       //  - the corresponding control edges is top (a dead incoming path)
1627       // It is a bug if we create a phi which sees a garbage value on a live path.
1628 
1629       if (phi != NULL) {
1630         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1631         assert(phi->region() == r, "");
1632         phi->set_req(pnum, n);  // Then add 'n' to the merge
1633         if (pnum == PhiNode::Input) {
1634           // Last merge for this Phi.
1635           // So far, Phis have had a reasonable type from ciTypeFlow.
1636           // Now _gvn will join that with the meet of current inputs.
1637           // BOTTOM is never permissible here, 'cause pessimistically
1638           // Phis of pointers cannot lose the basic pointer type.
1639           debug_only(const Type* bt1 = phi->bottom_type());
1640           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1641           map()->set_req(j, _gvn.transform_no_reclaim(phi));
1642           debug_only(const Type* bt2 = phi->bottom_type());
1643           assert(bt2->higher_equal(bt1), "must be consistent with type-flow");
1644           record_for_igvn(phi);
1645         }
1646       }
1647     } // End of for all values to be merged
1648 
1649     if (pnum == PhiNode::Input &&
1650         !r->in(0)) {         // The occasional useless Region
1651       assert(control() == r, "");
1652       set_control(r->nonnull_req());
1653     }
1654 
1655     // newin has been subsumed into the lazy merge, and is now dead.
1656     set_block(save_block);
1657 
1658     stop();                     // done with this guy, for now
1659   }
1660 
1661   if (TraceOptoParse) {
1662     tty->print_cr(" on path %d", pnum);
1663   }
1664 
1665   // Done with this parser state.
1666   assert(stopped(), "");
1667 }
1668 
1669 
1670 //--------------------------merge_memory_edges---------------------------------
1671 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1672   // (nophi means we must not create phis, because we already parsed here)
1673   assert(n != NULL, "");
1674   // Merge the inputs to the MergeMems
1675   MergeMemNode* m = merged_memory();
1676 
1677   assert(control()->is_Region(), "must be merging to a region");
1678   RegionNode* r = control()->as_Region();
1679 
1680   PhiNode* base = NULL;
1681   MergeMemNode* remerge = NULL;
1682   for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1683     Node *p = mms.force_memory();
1684     Node *q = mms.memory2();
1685     if (mms.is_empty() && nophi) {
1686       // Trouble:  No new splits allowed after a loop body is parsed.
1687       // Instead, wire the new split into a MergeMem on the backedge.
1688       // The optimizer will sort it out, slicing the phi.
1689       if (remerge == NULL) {
1690         assert(base != NULL, "");
1691         assert(base->in(0) != NULL, "should not be xformed away");
1692         remerge = MergeMemNode::make(C, base->in(pnum));
1693         gvn().set_type(remerge, Type::MEMORY);
1694         base->set_req(pnum, remerge);
1695       }
1696       remerge->set_memory_at(mms.alias_idx(), q);
1697       continue;
1698     }
1699     assert(!q->is_MergeMem(), "");
1700     PhiNode* phi;
1701     if (p != q) {
1702       phi = ensure_memory_phi(mms.alias_idx(), nophi);
1703     } else {
1704       if (p->is_Phi() && p->as_Phi()->region() == r)
1705         phi = p->as_Phi();
1706       else
1707         phi = NULL;
1708     }
1709     // Insert q into local phi
1710     if (phi != NULL) {
1711       assert(phi->region() == r, "");
1712       p = phi;
1713       phi->set_req(pnum, q);
1714       if (mms.at_base_memory()) {
1715         base = phi;  // delay transforming it
1716       } else if (pnum == 1) {
1717         record_for_igvn(phi);
1718         p = _gvn.transform_no_reclaim(phi);
1719       }
1720       mms.set_memory(p);// store back through the iterator
1721     }
1722   }
1723   // Transform base last, in case we must fiddle with remerging.
1724   if (base != NULL && pnum == 1) {
1725     record_for_igvn(base);
1726     m->set_base_memory( _gvn.transform_no_reclaim(base) );
1727   }
1728 }
1729 
1730 
1731 //------------------------ensure_phis_everywhere-------------------------------
1732 void Parse::ensure_phis_everywhere() {
1733   ensure_phi(TypeFunc::I_O);
1734 
1735   // Ensure a phi on all currently known memories.
1736   for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1737     ensure_memory_phi(mms.alias_idx());
1738     debug_only(mms.set_memory());  // keep the iterator happy
1739   }
1740 
1741   // Note:  This is our only chance to create phis for memory slices.
1742   // If we miss a slice that crops up later, it will have to be
1743   // merged into the base-memory phi that we are building here.
1744   // Later, the optimizer will comb out the knot, and build separate
1745   // phi-loops for each memory slice that matters.
1746 
1747   // Monitors must nest nicely and not get confused amongst themselves.
1748   // Phi-ify everything up to the monitors, though.
1749   uint monoff = map()->jvms()->monoff();
1750   uint nof_monitors = map()->jvms()->nof_monitors();
1751 
1752   assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
1753   bool check_elide_phi = block()->is_SEL_head();
1754   for (uint i = TypeFunc::Parms; i < monoff; i++) {
1755     if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
1756       ensure_phi(i);
1757     }
1758   }
1759 
1760   // Even monitors need Phis, though they are well-structured.
1761   // This is true for OSR methods, and also for the rare cases where
1762   // a monitor object is the subject of a replace_in_map operation.
1763   // See bugs 4426707 and 5043395.
1764   for (uint m = 0; m < nof_monitors; m++) {
1765     ensure_phi(map()->jvms()->monitor_obj_offset(m));
1766   }
1767 }
1768 
1769 
1770 //-----------------------------add_new_path------------------------------------
1771 // Add a previously unaccounted predecessor to this block.
1772 int Parse::Block::add_new_path() {
1773   // If there is no map, return the lowest unused path number.
1774   if (!is_merged())  return pred_count()+1;  // there will be a map shortly
1775 
1776   SafePointNode* map = start_map();
1777   if (!map->control()->is_Region())
1778     return pred_count()+1;  // there may be a region some day
1779   RegionNode* r = map->control()->as_Region();
1780 
1781   // Add new path to the region.
1782   uint pnum = r->req();
1783   r->add_req(NULL);
1784 
1785   for (uint i = 1; i < map->req(); i++) {
1786     Node* n = map->in(i);
1787     if (i == TypeFunc::Memory) {
1788       // Ensure a phi on all currently known memories.
1789       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1790         Node* phi = mms.memory();
1791         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1792           assert(phi->req() == pnum, "must be same size as region");
1793           phi->add_req(NULL);
1794         }
1795       }
1796     } else {
1797       if (n->is_Phi() && n->as_Phi()->region() == r) {
1798         assert(n->req() == pnum, "must be same size as region");
1799         n->add_req(NULL);
1800       }
1801     }
1802   }
1803 
1804   return pnum;
1805 }
1806 
1807 //------------------------------ensure_phi-------------------------------------
1808 // Turn the idx'th entry of the current map into a Phi
1809 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
1810   SafePointNode* map = this->map();
1811   Node* region = map->control();
1812   assert(region->is_Region(), "");
1813 
1814   Node* o = map->in(idx);
1815   assert(o != NULL, "");
1816 
1817   if (o == top())  return NULL; // TOP always merges into TOP
1818 
1819   if (o->is_Phi() && o->as_Phi()->region() == region) {
1820     return o->as_Phi();
1821   }
1822 
1823   // Now use a Phi here for merging
1824   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1825   const JVMState* jvms = map->jvms();
1826   const Type* t;
1827   if (jvms->is_loc(idx)) {
1828     t = block()->local_type_at(idx - jvms->locoff());
1829   } else if (jvms->is_stk(idx)) {
1830     t = block()->stack_type_at(idx - jvms->stkoff());
1831   } else if (jvms->is_mon(idx)) {
1832     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
1833     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
1834   } else if ((uint)idx < TypeFunc::Parms) {
1835     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
1836   } else {
1837     assert(false, "no type information for this phi");
1838   }
1839 
1840   // If the type falls to bottom, then this must be a local that
1841   // is mixing ints and oops or some such.  Forcing it to top
1842   // makes it go dead.
1843   if (t == Type::BOTTOM) {
1844     map->set_req(idx, top());
1845     return NULL;
1846   }
1847 
1848   // Do not create phis for top either.
1849   // A top on a non-null control flow must be an unused even after the.phi.
1850   if (t == Type::TOP || t == Type::HALF) {
1851     map->set_req(idx, top());
1852     return NULL;
1853   }
1854 
1855   PhiNode* phi = PhiNode::make(region, o, t);
1856   gvn().set_type(phi, t);
1857   if (C->do_escape_analysis()) record_for_igvn(phi);
1858   map->set_req(idx, phi);
1859   return phi;
1860 }
1861 
1862 //--------------------------ensure_memory_phi----------------------------------
1863 // Turn the idx'th slice of the current memory into a Phi
1864 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
1865   MergeMemNode* mem = merged_memory();
1866   Node* region = control();
1867   assert(region->is_Region(), "");
1868 
1869   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
1870   assert(o != NULL && o != top(), "");
1871 
1872   PhiNode* phi;
1873   if (o->is_Phi() && o->as_Phi()->region() == region) {
1874     phi = o->as_Phi();
1875     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
1876       // clone the shared base memory phi to make a new memory split
1877       assert(!nocreate, "Cannot build a phi for a block already parsed.");
1878       const Type* t = phi->bottom_type();
1879       const TypePtr* adr_type = C->get_adr_type(idx);
1880       phi = phi->slice_memory(adr_type);
1881       gvn().set_type(phi, t);
1882     }
1883     return phi;
1884   }
1885 
1886   // Now use a Phi here for merging
1887   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1888   const Type* t = o->bottom_type();
1889   const TypePtr* adr_type = C->get_adr_type(idx);
1890   phi = PhiNode::make(region, o, t, adr_type);
1891   gvn().set_type(phi, t);
1892   if (idx == Compile::AliasIdxBot)
1893     mem->set_base_memory(phi);
1894   else
1895     mem->set_memory_at(idx, phi);
1896   return phi;
1897 }
1898 
1899 //------------------------------call_register_finalizer-----------------------
1900 // Check the klass of the receiver and call register_finalizer if the
1901 // class need finalization.
1902 void Parse::call_register_finalizer() {
1903   Node* receiver = local(0);
1904   assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
1905          "must have non-null instance type");
1906 
1907   const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
1908   if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
1909     // The type isn't known exactly so see if CHA tells us anything.
1910     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1911     if (!Dependencies::has_finalizable_subclass(ik)) {
1912       // No finalizable subclasses so skip the dynamic check.
1913       C->dependencies()->assert_has_no_finalizable_subclasses(ik);
1914       return;
1915     }
1916   }
1917 
1918   // Insert a dynamic test for whether the instance needs
1919   // finalization.  In general this will fold up since the concrete
1920   // class is often visible so the access flags are constant.
1921   Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
1922   Node* klass = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), klass_addr, TypeInstPtr::KLASS) );
1923 
1924   Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset()));
1925   Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT);
1926 
1927   Node* mask  = _gvn.transform(new (C) AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
1928   Node* check = _gvn.transform(new (C) CmpINode(mask, intcon(0)));
1929   Node* test  = _gvn.transform(new (C) BoolNode(check, BoolTest::ne));
1930 
1931   IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
1932 
1933   RegionNode* result_rgn = new (C) RegionNode(3);
1934   record_for_igvn(result_rgn);
1935 
1936   Node *skip_register = _gvn.transform(new (C) IfFalseNode(iff));
1937   result_rgn->init_req(1, skip_register);
1938 
1939   Node *needs_register = _gvn.transform(new (C) IfTrueNode(iff));
1940   set_control(needs_register);
1941   if (stopped()) {
1942     // There is no slow path.
1943     result_rgn->init_req(2, top());
1944   } else {
1945     Node *call = make_runtime_call(RC_NO_LEAF,
1946                                    OptoRuntime::register_finalizer_Type(),
1947                                    OptoRuntime::register_finalizer_Java(),
1948                                    NULL, TypePtr::BOTTOM,
1949                                    receiver);
1950     make_slow_call_ex(call, env()->Throwable_klass(), true);
1951 
1952     Node* fast_io  = call->in(TypeFunc::I_O);
1953     Node* fast_mem = call->in(TypeFunc::Memory);
1954     // These two phis are pre-filled with copies of of the fast IO and Memory
1955     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
1956     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
1957 
1958     result_rgn->init_req(2, control());
1959     io_phi    ->init_req(2, i_o());
1960     mem_phi   ->init_req(2, reset_memory());
1961 
1962     set_all_memory( _gvn.transform(mem_phi) );
1963     set_i_o(        _gvn.transform(io_phi) );
1964   }
1965 
1966   set_control( _gvn.transform(result_rgn) );
1967 }
1968 
1969 //------------------------------return_current---------------------------------
1970 // Append current _map to _exit_return
1971 void Parse::return_current(Node* value) {
1972   if (RegisterFinalizersAtInit &&
1973       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
1974     call_register_finalizer();
1975   }
1976 
1977   // Do not set_parse_bci, so that return goo is credited to the return insn.
1978   set_bci(InvocationEntryBci);
1979   if (method()->is_synchronized() && GenerateSynchronizationCode) {
1980     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1981   }
1982   if (C->env()->dtrace_method_probes()) {
1983     make_dtrace_method_exit(method());
1984   }
1985   SafePointNode* exit_return = _exits.map();
1986   exit_return->in( TypeFunc::Control  )->add_req( control() );
1987   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
1988   Node *mem = exit_return->in( TypeFunc::Memory   );
1989   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
1990     if (mms.is_empty()) {
1991       // get a copy of the base memory, and patch just this one input
1992       const TypePtr* adr_type = mms.adr_type(C);
1993       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
1994       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
1995       gvn().set_type_bottom(phi);
1996       phi->del_req(phi->req()-1);  // prepare to re-patch
1997       mms.set_memory(phi);
1998     }
1999     mms.memory()->add_req(mms.memory2());
2000   }
2001 
2002   // frame pointer is always same, already captured
2003   if (value != NULL) {
2004     // If returning oops to an interface-return, there is a silent free
2005     // cast from oop to interface allowed by the Verifier.  Make it explicit
2006     // here.
2007     Node* phi = _exits.argument(0);
2008     const TypeInstPtr *tr = phi->bottom_type()->isa_instptr();
2009     if( tr && tr->klass()->is_loaded() &&
2010         tr->klass()->is_interface() ) {
2011       const TypeInstPtr *tp = value->bottom_type()->isa_instptr();
2012       if (tp && tp->klass()->is_loaded() &&
2013           !tp->klass()->is_interface()) {
2014         // sharpen the type eagerly; this eases certain assert checking
2015         if (tp->higher_equal(TypeInstPtr::NOTNULL))
2016           tr = tr->join(TypeInstPtr::NOTNULL)->is_instptr();
2017         value = _gvn.transform(new (C) CheckCastPPNode(0,value,tr));
2018       }
2019     }
2020     phi->add_req(value);
2021   }
2022 
2023   stop_and_kill_map();          // This CFG path dies here
2024 }
2025 
2026 
2027 //------------------------------add_safepoint----------------------------------
2028 void Parse::add_safepoint() {
2029   // See if we can avoid this safepoint.  No need for a SafePoint immediately
2030   // after a Call (except Leaf Call) or another SafePoint.
2031   Node *proj = control();
2032   bool add_poll_param = SafePointNode::needs_polling_address_input();
2033   uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms;
2034   if( proj->is_Proj() ) {
2035     Node *n0 = proj->in(0);
2036     if( n0->is_Catch() ) {
2037       n0 = n0->in(0)->in(0);
2038       assert( n0->is_Call(), "expect a call here" );
2039     }
2040     if( n0->is_Call() ) {
2041       if( n0->as_Call()->guaranteed_safepoint() )
2042         return;
2043     } else if( n0->is_SafePoint() && n0->req() >= parms ) {
2044       return;
2045     }
2046   }
2047 
2048   // Clear out dead values from the debug info.
2049   kill_dead_locals();
2050 
2051   // Clone the JVM State
2052   SafePointNode *sfpnt = new (C) SafePointNode(parms, NULL);
2053 
2054   // Capture memory state BEFORE a SafePoint.  Since we can block at a
2055   // SafePoint we need our GC state to be safe; i.e. we need all our current
2056   // write barriers (card marks) to not float down after the SafePoint so we
2057   // must read raw memory.  Likewise we need all oop stores to match the card
2058   // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
2059   // state on a deopt).
2060 
2061   // We do not need to WRITE the memory state after a SafePoint.  The control
2062   // edge will keep card-marks and oop-stores from floating up from below a
2063   // SafePoint and our true dependency added here will keep them from floating
2064   // down below a SafePoint.
2065 
2066   // Clone the current memory state
2067   Node* mem = MergeMemNode::make(C, map()->memory());
2068 
2069   mem = _gvn.transform(mem);
2070 
2071   // Pass control through the safepoint
2072   sfpnt->init_req(TypeFunc::Control  , control());
2073   // Fix edges normally used by a call
2074   sfpnt->init_req(TypeFunc::I_O      , top() );
2075   sfpnt->init_req(TypeFunc::Memory   , mem   );
2076   sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2077   sfpnt->init_req(TypeFunc::FramePtr , top() );
2078 
2079   // Create a node for the polling address
2080   if( add_poll_param ) {
2081     Node *polladr = ConPNode::make(C, (address)os::get_polling_page());
2082     sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2083   }
2084 
2085   // Fix up the JVM State edges
2086   add_safepoint_edges(sfpnt);
2087   Node *transformed_sfpnt = _gvn.transform(sfpnt);
2088   set_control(transformed_sfpnt);
2089 
2090   // Provide an edge from root to safepoint.  This makes the safepoint
2091   // appear useful until the parse has completed.
2092   if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
2093     assert(C->root() != NULL, "Expect parse is still valid");
2094     C->root()->add_prec(transformed_sfpnt);
2095   }
2096 }
2097 
2098 #ifndef PRODUCT
2099 //------------------------show_parse_info--------------------------------------
2100 void Parse::show_parse_info() {
2101   InlineTree* ilt = NULL;
2102   if (C->ilt() != NULL) {
2103     JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2104     ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2105   }
2106   if (PrintCompilation && Verbose) {
2107     if (depth() == 1) {
2108       if( ilt->count_inlines() ) {
2109         tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
2110                      ilt->count_inline_bcs());
2111         tty->cr();
2112       }
2113     } else {
2114       if (method()->is_synchronized())         tty->print("s");
2115       if (method()->has_exception_handlers())  tty->print("!");
2116       // Check this is not the final compiled version
2117       if (C->trap_can_recompile()) {
2118         tty->print("-");
2119       } else {
2120         tty->print(" ");
2121       }
2122       method()->print_short_name();
2123       if (is_osr_parse()) {
2124         tty->print(" @ %d", osr_bci());
2125       }
2126       tty->print(" (%d bytes)",method()->code_size());
2127       if (ilt->count_inlines()) {
2128         tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2129                    ilt->count_inline_bcs());
2130       }
2131       tty->cr();
2132     }
2133   }
2134   if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2135     // Print that we succeeded; suppress this message on the first osr parse.
2136 
2137     if (method()->is_synchronized())         tty->print("s");
2138     if (method()->has_exception_handlers())  tty->print("!");
2139     // Check this is not the final compiled version
2140     if (C->trap_can_recompile() && depth() == 1) {
2141       tty->print("-");
2142     } else {
2143       tty->print(" ");
2144     }
2145     if( depth() != 1 ) { tty->print("   "); }  // missing compile count
2146     for (int i = 1; i < depth(); ++i) { tty->print("  "); }
2147     method()->print_short_name();
2148     if (is_osr_parse()) {
2149       tty->print(" @ %d", osr_bci());
2150     }
2151     if (ilt->caller_bci() != -1) {
2152       tty->print(" @ %d", ilt->caller_bci());
2153     }
2154     tty->print(" (%d bytes)",method()->code_size());
2155     if (ilt->count_inlines()) {
2156       tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2157                  ilt->count_inline_bcs());
2158     }
2159     tty->cr();
2160   }
2161 }
2162 
2163 
2164 //------------------------------dump-------------------------------------------
2165 // Dump information associated with the bytecodes of current _method
2166 void Parse::dump() {
2167   if( method() != NULL ) {
2168     // Iterate over bytecodes
2169     ciBytecodeStream iter(method());
2170     for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2171       dump_bci( iter.cur_bci() );
2172       tty->cr();
2173     }
2174   }
2175 }
2176 
2177 // Dump information associated with a byte code index, 'bci'
2178 void Parse::dump_bci(int bci) {
2179   // Output info on merge-points, cloning, and within _jsr..._ret
2180   // NYI
2181   tty->print(" bci:%d", bci);
2182 }
2183 
2184 #endif