/* * Copyright (c) 2008, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef CPU_ARM_VM_ASSEMBLER_ARM_64_HPP #define CPU_ARM_VM_ASSEMBLER_ARM_64_HPP enum AsmShift12 { lsl0, lsl12 }; enum AsmPrefetchOp { pldl1keep = 0b00000, pldl1strm, pldl2keep, pldl2strm, pldl3keep, pldl3strm, plil1keep = 0b01000, plil1strm, plil2keep, plil2strm, plil3keep, plil3strm, pstl1keep = 0b10000, pstl1strm, pstl2keep, pstl2strm, pstl3keep, pstl3strm, }; // Shifted register operand for data processing instructions. class AsmOperand VALUE_OBJ_CLASS_SPEC { private: Register _reg; AsmShift _shift; int _shift_imm; public: AsmOperand(Register reg) { assert(reg != SP, "SP is not allowed in shifted register operand"); _reg = reg; _shift = lsl; _shift_imm = 0; } AsmOperand(Register reg, AsmShift shift, int shift_imm) { assert(reg != SP, "SP is not allowed in shifted register operand"); assert(shift_imm >= 0, "shift amount should be non-negative"); _reg = reg; _shift = shift; _shift_imm = shift_imm; } Register reg() const { return _reg; } AsmShift shift() const { return _shift; } int shift_imm() const { return _shift_imm; } }; class Assembler : public AbstractAssembler { public: static const int LogInstructionSize = 2; static const int InstructionSize = 1 << LogInstructionSize; Assembler(CodeBuffer* code) : AbstractAssembler(code) {} static inline AsmCondition inverse(AsmCondition cond) { assert ((cond != al) && (cond != nv), "AL and NV conditions cannot be inversed"); return (AsmCondition)((int)cond ^ 1); } // Returns value of nzcv flags conforming to the given condition. static inline int flags_for_condition(AsmCondition cond) { switch(cond) { // NZCV case mi: case lt: return 0b1000; case eq: case le: return 0b0100; case hs: case hi: return 0b0010; case vs: return 0b0001; default: return 0b0000; } } // Immediate, encoded into logical instructions. class LogicalImmediate { private: bool _encoded; bool _is32bit; int _immN; int _immr; int _imms; static inline bool has_equal_subpatterns(uintx imm, int size); static inline int least_pattern_size(uintx imm); static inline int population_count(uintx x); static inline uintx set_least_zeroes(uintx x); #ifdef ASSERT uintx decode(); #endif void construct(uintx imm, bool is32); public: LogicalImmediate(uintx imm, bool is32 = false) { construct(imm, is32); } // Returns true if given immediate can be used in AArch64 logical instruction. bool is_encoded() const { return _encoded; } bool is32bit() const { return _is32bit; } int immN() const { assert(_encoded, "should be"); return _immN; } int immr() const { assert(_encoded, "should be"); return _immr; } int imms() const { assert(_encoded, "should be"); return _imms; } }; // Immediate, encoded into arithmetic add/sub instructions. class ArithmeticImmediate { private: bool _encoded; int _imm; AsmShift12 _shift; public: ArithmeticImmediate(intx x) { if (is_unsigned_imm_in_range(x, 12, 0)) { _encoded = true; _imm = x; _shift = lsl0; } else if (is_unsigned_imm_in_range(x, 12, 12)) { _encoded = true; _imm = x >> 12; _shift = lsl12; } else { _encoded = false; } } ArithmeticImmediate(intx x, AsmShift12 sh) { if (is_unsigned_imm_in_range(x, 12, 0)) { _encoded = true; _imm = x; _shift = sh; } else { _encoded = false; } } // Returns true if this immediate can be used in AArch64 arithmetic (add/sub/cmp/cmn) instructions. bool is_encoded() const { return _encoded; } int imm() const { assert(_encoded, "should be"); return _imm; } AsmShift12 shift() const { assert(_encoded, "should be"); return _shift; } }; static inline bool is_imm_in_range(intx value, int bits, int align_bits) { intx sign_bits = (value >> (bits + align_bits - 1)); return ((value & right_n_bits(align_bits)) == 0) && ((sign_bits == 0) || (sign_bits == -1)); } static inline int encode_imm(intx value, int bits, int align_bits, int low_bit_in_encoding) { assert (is_imm_in_range(value, bits, align_bits), "immediate value is out of range"); return ((value >> align_bits) & right_n_bits(bits)) << low_bit_in_encoding; } static inline bool is_unsigned_imm_in_range(intx value, int bits, int align_bits) { return (value >= 0) && ((value & right_n_bits(align_bits)) == 0) && ((value >> (align_bits + bits)) == 0); } static inline int encode_unsigned_imm(intx value, int bits, int align_bits, int low_bit_in_encoding) { assert (is_unsigned_imm_in_range(value, bits, align_bits), "immediate value is out of range"); return (value >> align_bits) << low_bit_in_encoding; } static inline bool is_offset_in_range(intx offset, int bits) { assert (bits == 14 || bits == 19 || bits == 26, "wrong bits number"); return is_imm_in_range(offset, bits, 2); } static inline int encode_offset(intx offset, int bits, int low_bit_in_encoding) { return encode_imm(offset, bits, 2, low_bit_in_encoding); } // Returns true if given value can be used as immediate in arithmetic (add/sub/cmp/cmn) instructions. static inline bool is_arith_imm_in_range(intx value) { return ArithmeticImmediate(value).is_encoded(); } // Load/store instructions #define F(mnemonic, opc) \ void mnemonic(Register rd, address literal_addr) { \ intx offset = literal_addr - pc(); \ assert (opc != 0b01 || offset == 0 || ((uintx)literal_addr & 7) == 0, "ldr target should be aligned"); \ assert (is_offset_in_range(offset, 19), "offset is out of range"); \ emit_int32(opc << 30 | 0b011 << 27 | encode_offset(offset, 19, 5) | rd->encoding_with_zr()); \ } F(ldr_w, 0b00) F(ldr, 0b01) F(ldrsw, 0b10) #undef F #define F(mnemonic, opc) \ void mnemonic(FloatRegister rt, address literal_addr) { \ intx offset = literal_addr - pc(); \ assert (offset == 0 || ((uintx)literal_addr & right_n_bits(2 + opc)) == 0, "ldr target should be aligned"); \ assert (is_offset_in_range(offset, 19), "offset is out of range"); \ emit_int32(opc << 30 | 0b011100 << 24 | encode_offset(offset, 19, 5) | rt->encoding()); \ } F(ldr_s, 0b00) F(ldr_d, 0b01) F(ldr_q, 0b10) #undef F #define F(mnemonic, size, o2, L, o1, o0) \ void mnemonic(Register rt, Register rn) { \ emit_int32(size << 30 | 0b001000 << 24 | o2 << 23 | L << 22 | o1 << 21 | 0b11111 << 16 | \ o0 << 15 | 0b11111 << 10 | rn->encoding_with_sp() << 5 | rt->encoding_with_zr()); \ } F(ldxrb, 0b00, 0, 1, 0, 0) F(ldaxrb, 0b00, 0, 1, 0, 1) F(ldarb, 0b00, 1, 1, 0, 1) F(ldxrh, 0b01, 0, 1, 0, 0) F(ldaxrh, 0b01, 0, 1, 0, 1) F(ldarh, 0b01, 1, 1, 0, 1) F(ldxr_w, 0b10, 0, 1, 0, 0) F(ldaxr_w, 0b10, 0, 1, 0, 1) F(ldar_w, 0b10, 1, 1, 0, 1) F(ldxr, 0b11, 0, 1, 0, 0) F(ldaxr, 0b11, 0, 1, 0, 1) F(ldar, 0b11, 1, 1, 0, 1) F(stlrb, 0b00, 1, 0, 0, 1) F(stlrh, 0b01, 1, 0, 0, 1) F(stlr_w, 0b10, 1, 0, 0, 1) F(stlr, 0b11, 1, 0, 0, 1) #undef F #define F(mnemonic, size, o2, L, o1, o0) \ void mnemonic(Register rs, Register rt, Register rn) { \ assert (rs != rt, "should be different"); \ assert (rs != rn, "should be different"); \ emit_int32(size << 30 | 0b001000 << 24 | o2 << 23 | L << 22 | o1 << 21 | rs->encoding_with_zr() << 16 | \ o0 << 15 | 0b11111 << 10 | rn->encoding_with_sp() << 5 | rt->encoding_with_zr()); \ } F(stxrb, 0b00, 0, 0, 0, 0) F(stlxrb, 0b00, 0, 0, 0, 1) F(stxrh, 0b01, 0, 0, 0, 0) F(stlxrh, 0b01, 0, 0, 0, 1) F(stxr_w, 0b10, 0, 0, 0, 0) F(stlxr_w, 0b10, 0, 0, 0, 1) F(stxr, 0b11, 0, 0, 0, 0) F(stlxr, 0b11, 0, 0, 0, 1) #undef F #define F(mnemonic, size, o2, L, o1, o0) \ void mnemonic(Register rt, Register rt2, Register rn) { \ assert (rt != rt2, "should be different"); \ emit_int32(size << 30 | 0b001000 << 24 | o2 << 23 | L << 22 | o1 << 21 | 0b11111 << 16 | \ o0 << 15 | rt2->encoding_with_zr() << 10 | rn->encoding_with_sp() << 5 | rt->encoding_with_zr()); \ } F(ldxp_w, 0b10, 0, 1, 1, 0) F(ldaxp_w, 0b10, 0, 1, 1, 1) F(ldxp, 0b11, 0, 1, 1, 0) F(ldaxp, 0b11, 0, 1, 1, 1) #undef F #define F(mnemonic, size, o2, L, o1, o0) \ void mnemonic(Register rs, Register rt, Register rt2, Register rn) { \ assert (rs != rt, "should be different"); \ assert (rs != rt2, "should be different"); \ assert (rs != rn, "should be different"); \ emit_int32(size << 30 | 0b001000 << 24 | o2 << 23 | L << 22 | o1 << 21 | rs->encoding_with_zr() << 16 | \ o0 << 15 | rt2->encoding_with_zr() << 10 | rn->encoding_with_sp() << 5 | rt->encoding_with_zr()); \ } F(stxp_w, 0b10, 0, 0, 1, 0) F(stlxp_w, 0b10, 0, 0, 1, 1) F(stxp, 0b11, 0, 0, 1, 0) F(stlxp, 0b11, 0, 0, 1, 1) #undef F #define F(mnemonic, opc, V, L) \ void mnemonic(Register rt, Register rt2, Register rn, int offset = 0) { \ assert (!L || rt != rt2, "should be different"); \ int align_bits = 2 + (opc >> 1); \ assert (is_imm_in_range(offset, 7, align_bits), "offset is out of range"); \ emit_int32(opc << 30 | 0b101 << 27 | V << 26 | L << 22 | encode_imm(offset, 7, align_bits, 15) | \ rt2->encoding_with_zr() << 10 | rn->encoding_with_sp() << 5 | rt->encoding_with_zr()); \ } F(stnp_w, 0b00, 0, 0) F(ldnp_w, 0b00, 0, 1) F(stnp, 0b10, 0, 0) F(ldnp, 0b10, 0, 1) #undef F #define F(mnemonic, opc, V, L) \ void mnemonic(FloatRegister rt, FloatRegister rt2, Register rn, int offset = 0) { \ assert (!L || (rt != rt2), "should be different"); \ int align_bits = 2 + opc; \ assert (is_imm_in_range(offset, 7, align_bits), "offset is out of range"); \ emit_int32(opc << 30 | 0b101 << 27 | V << 26 | L << 22 | encode_imm(offset, 7, align_bits, 15) | \ rt2->encoding() << 10 | rn->encoding_with_sp() << 5 | rt->encoding()); \ } F(stnp_s, 0b00, 1, 0) F(stnp_d, 0b01, 1, 0) F(stnp_q, 0b10, 1, 0) F(ldnp_s, 0b00, 1, 1) F(ldnp_d, 0b01, 1, 1) F(ldnp_q, 0b10, 1, 1) #undef F #define F(mnemonic, size, V, opc) \ void mnemonic(Register rt, Address addr) { \ assert((addr.mode() == basic_offset) || (rt != addr.base()), "should be different"); \ if (addr.index() == noreg) { \ if ((addr.mode() == basic_offset) && is_unsigned_imm_in_range(addr.disp(), 12, size)) { \ emit_int32(size << 30 | 0b111 << 27 | V << 26 | 0b01 << 24 | opc << 22 | \ encode_unsigned_imm(addr.disp(), 12, size, 10) | \ addr.base()->encoding_with_sp() << 5 | rt->encoding_with_zr()); \ } else { \ assert(is_imm_in_range(addr.disp(), 9, 0), "offset is out of range"); \ emit_int32(size << 30 | 0b111 << 27 | V << 26 | opc << 22 | encode_imm(addr.disp(), 9, 0, 12) | \ addr.mode() << 10 | addr.base()->encoding_with_sp() << 5 | rt->encoding_with_zr()); \ } \ } else { \ assert (addr.disp() == 0, "non-zero displacement for [reg + reg] address mode"); \ assert ((addr.shift_imm() == 0) || (addr.shift_imm() == size), "invalid shift amount"); \ emit_int32(size << 30 | 0b111 << 27 | V << 26 | opc << 22 | 1 << 21 | \ addr.index()->encoding_with_zr() << 16 | addr.extend() << 13 | (addr.shift_imm() != 0) << 12 | \ 0b10 << 10 | addr.base()->encoding_with_sp() << 5 | rt->encoding_with_zr()); \ } \ } F(strb, 0b00, 0, 0b00) F(ldrb, 0b00, 0, 0b01) F(ldrsb, 0b00, 0, 0b10) F(ldrsb_w, 0b00, 0, 0b11) F(strh, 0b01, 0, 0b00) F(ldrh, 0b01, 0, 0b01) F(ldrsh, 0b01, 0, 0b10) F(ldrsh_w, 0b01, 0, 0b11) F(str_w, 0b10, 0, 0b00) F(ldr_w, 0b10, 0, 0b01) F(ldrsw, 0b10, 0, 0b10) F(str, 0b11, 0, 0b00) F(ldr, 0b11, 0, 0b01) #undef F #define F(mnemonic, size, V, opc) \ void mnemonic(AsmPrefetchOp prfop, Address addr) { \ assert (addr.mode() == basic_offset, #mnemonic " supports only basic_offset address mode"); \ if (addr.index() == noreg) { \ if (is_unsigned_imm_in_range(addr.disp(), 12, size)) { \ emit_int32(size << 30 | 0b111 << 27 | V << 26 | 0b01 << 24 | opc << 22 | \ encode_unsigned_imm(addr.disp(), 12, size, 10) | \ addr.base()->encoding_with_sp() << 5 | prfop); \ } else { \ assert(is_imm_in_range(addr.disp(), 9, 0), "offset is out of range"); \ emit_int32(size << 30 | 0b111 << 27 | V << 26 | opc << 22 | encode_imm(addr.disp(), 9, 0, 12) | \ addr.base()->encoding_with_sp() << 5 | prfop); \ } \ } else { \ assert (addr.disp() == 0, "non-zero displacement for [reg + reg] address mode"); \ assert ((addr.shift_imm() == 0) || (addr.shift_imm() == size), "invalid shift amount"); \ emit_int32(size << 30 | 0b111 << 27 | V << 26 | opc << 22 | 1 << 21 | \ addr.index()->encoding_with_zr() << 16 | addr.extend() << 13 | (addr.shift_imm() != 0) << 12 | \ 0b10 << 10 | addr.base()->encoding_with_sp() << 5 | prfop); \ } \ } F(prfm, 0b11, 0, 0b10) #undef F #define F(mnemonic, size, V, opc) \ void mnemonic(FloatRegister rt, Address addr) { \ int align_bits = (((opc & 0b10) >> 1) << 2) | size; \ if (addr.index() == noreg) { \ if ((addr.mode() == basic_offset) && is_unsigned_imm_in_range(addr.disp(), 12, align_bits)) { \ emit_int32(size << 30 | 0b111 << 27 | V << 26 | 0b01 << 24 | opc << 22 | \ encode_unsigned_imm(addr.disp(), 12, align_bits, 10) | \ addr.base()->encoding_with_sp() << 5 | rt->encoding()); \ } else { \ assert(is_imm_in_range(addr.disp(), 9, 0), "offset is out of range"); \ emit_int32(size << 30 | 0b111 << 27 | V << 26 | opc << 22 | encode_imm(addr.disp(), 9, 0, 12) | \ addr.mode() << 10 | addr.base()->encoding_with_sp() << 5 | rt->encoding()); \ } \ } else { \ assert (addr.disp() == 0, "non-zero displacement for [reg + reg] address mode"); \ assert ((addr.shift_imm() == 0) || (addr.shift_imm() == align_bits), "invalid shift amount"); \ emit_int32(size << 30 | 0b111 << 27 | V << 26 | opc << 22 | 1 << 21 | \ addr.index()->encoding_with_zr() << 16 | addr.extend() << 13 | (addr.shift_imm() != 0) << 12 | \ 0b10 << 10 | addr.base()->encoding_with_sp() << 5 | rt->encoding()); \ } \ } F(str_b, 0b00, 1, 0b00) F(ldr_b, 0b00, 1, 0b01) F(str_h, 0b01, 1, 0b00) F(ldr_h, 0b01, 1, 0b01) F(str_s, 0b10, 1, 0b00) F(ldr_s, 0b10, 1, 0b01) F(str_d, 0b11, 1, 0b00) F(ldr_d, 0b11, 1, 0b01) F(str_q, 0b00, 1, 0b10) F(ldr_q, 0b00, 1, 0b11) #undef F #define F(mnemonic, opc, V, L) \ void mnemonic(Register rt, Register rt2, Address addr) { \ assert((addr.mode() == basic_offset) || ((rt != addr.base()) && (rt2 != addr.base())), "should be different"); \ assert(!L || (rt != rt2), "should be different"); \ assert(addr.index() == noreg, "[reg + reg] address mode is not available for load/store pair"); \ int align_bits = 2 + (opc >> 1); \ int mode_encoding = (addr.mode() == basic_offset) ? 0b10 : addr.mode(); \ assert(is_imm_in_range(addr.disp(), 7, align_bits), "offset is out of range"); \ emit_int32(opc << 30 | 0b101 << 27 | V << 26 | mode_encoding << 23 | L << 22 | \ encode_imm(addr.disp(), 7, align_bits, 15) | rt2->encoding_with_zr() << 10 | \ addr.base()->encoding_with_sp() << 5 | rt->encoding_with_zr()); \ } F(stp_w, 0b00, 0, 0) F(ldp_w, 0b00, 0, 1) F(ldpsw, 0b01, 0, 1) F(stp, 0b10, 0, 0) F(ldp, 0b10, 0, 1) #undef F #define F(mnemonic, opc, V, L) \ void mnemonic(FloatRegister rt, FloatRegister rt2, Address addr) { \ assert(!L || (rt != rt2), "should be different"); \ assert(addr.index() == noreg, "[reg + reg] address mode is not available for load/store pair"); \ int align_bits = 2 + opc; \ int mode_encoding = (addr.mode() == basic_offset) ? 0b10 : addr.mode(); \ assert(is_imm_in_range(addr.disp(), 7, align_bits), "offset is out of range"); \ emit_int32(opc << 30 | 0b101 << 27 | V << 26 | mode_encoding << 23 | L << 22 | \ encode_imm(addr.disp(), 7, align_bits, 15) | rt2->encoding() << 10 | \ addr.base()->encoding_with_sp() << 5 | rt->encoding()); \ } F(stp_s, 0b00, 1, 0) F(ldp_s, 0b00, 1, 1) F(stp_d, 0b01, 1, 0) F(ldp_d, 0b01, 1, 1) F(stp_q, 0b10, 1, 0) F(ldp_q, 0b10, 1, 1) #undef F // Data processing instructions #define F(mnemonic, sf, opc) \ void mnemonic(Register rd, Register rn, const LogicalImmediate& imm) { \ assert (imm.is_encoded(), "illegal immediate for logical instruction"); \ assert (imm.is32bit() == (sf == 0), "immediate size does not match instruction size"); \ emit_int32(sf << 31 | opc << 29 | 0b100100 << 23 | imm.immN() << 22 | imm.immr() << 16 | \ imm.imms() << 10 | rn->encoding_with_zr() << 5 | \ ((opc == 0b11) ? rd->encoding_with_zr() : rd->encoding_with_sp())); \ } \ void mnemonic(Register rd, Register rn, uintx imm) { \ LogicalImmediate limm(imm, (sf == 0)); \ mnemonic(rd, rn, limm); \ } \ void mnemonic(Register rd, Register rn, unsigned int imm) { \ mnemonic(rd, rn, (uintx)imm); \ } F(andr_w, 0, 0b00) F(orr_w, 0, 0b01) F(eor_w, 0, 0b10) F(ands_w, 0, 0b11) F(andr, 1, 0b00) F(orr, 1, 0b01) F(eor, 1, 0b10) F(ands, 1, 0b11) #undef F void tst(Register rn, unsigned int imm) { ands(ZR, rn, imm); } void tst_w(Register rn, unsigned int imm) { ands_w(ZR, rn, imm); } #define F(mnemonic, sf, opc, N) \ void mnemonic(Register rd, Register rn, AsmOperand operand) { \ assert (operand.shift_imm() >> (5 + sf) == 0, "shift amount is too large"); \ emit_int32(sf << 31 | opc << 29 | 0b01010 << 24 | operand.shift() << 22 | N << 21 | \ operand.reg()->encoding_with_zr() << 16 | operand.shift_imm() << 10 | \ rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \ } F(andr_w, 0, 0b00, 0) F(bic_w, 0, 0b00, 1) F(orr_w, 0, 0b01, 0) F(orn_w, 0, 0b01, 1) F(eor_w, 0, 0b10, 0) F(eon_w, 0, 0b10, 1) F(ands_w, 0, 0b11, 0) F(bics_w, 0, 0b11, 1) F(andr, 1, 0b00, 0) F(bic, 1, 0b00, 1) F(orr, 1, 0b01, 0) F(orn, 1, 0b01, 1) F(eor, 1, 0b10, 0) F(eon, 1, 0b10, 1) F(ands, 1, 0b11, 0) F(bics, 1, 0b11, 1) #undef F void tst(Register rn, AsmOperand operand) { ands(ZR, rn, operand); } void tst_w(Register rn, AsmOperand operand) { ands_w(ZR, rn, operand); } void mvn(Register rd, AsmOperand operand) { orn(rd, ZR, operand); } void mvn_w(Register rd, AsmOperand operand) { orn_w(rd, ZR, operand); } #define F(mnemonic, sf, op, S) \ void mnemonic(Register rd, Register rn, const ArithmeticImmediate& imm) { \ assert(imm.is_encoded(), "immediate is out of range"); \ emit_int32(sf << 31 | op << 30 | S << 29 | 0b10001 << 24 | imm.shift() << 22 | \ imm.imm() << 10 | rn->encoding_with_sp() << 5 | \ (S == 1 ? rd->encoding_with_zr() : rd->encoding_with_sp())); \ } \ void mnemonic(Register rd, Register rn, int imm) { \ mnemonic(rd, rn, ArithmeticImmediate(imm)); \ } \ void mnemonic(Register rd, Register rn, int imm, AsmShift12 shift) { \ mnemonic(rd, rn, ArithmeticImmediate(imm, shift)); \ } \ void mnemonic(Register rd, Register rn, Register rm, AsmExtendOp extend, int shift_imm = 0) { \ assert ((0 <= shift_imm) && (shift_imm <= 4), "shift amount is out of range"); \ emit_int32(sf << 31 | op << 30 | S << 29 | 0b01011001 << 21 | rm->encoding_with_zr() << 16 | \ extend << 13 | shift_imm << 10 | rn->encoding_with_sp() << 5 | \ (S == 1 ? rd->encoding_with_zr() : rd->encoding_with_sp())); \ } \ void mnemonic(Register rd, Register rn, AsmOperand operand) { \ assert (operand.shift() != ror, "illegal shift type"); \ assert (operand.shift_imm() >> (5 + sf) == 0, "shift amount is too large"); \ emit_int32(sf << 31 | op << 30 | S << 29 | 0b01011 << 24 | operand.shift() << 22 | \ operand.reg()->encoding_with_zr() << 16 | operand.shift_imm() << 10 | \ rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \ } F(add_w, 0, 0, 0) F(adds_w, 0, 0, 1) F(sub_w, 0, 1, 0) F(subs_w, 0, 1, 1) F(add, 1, 0, 0) F(adds, 1, 0, 1) F(sub, 1, 1, 0) F(subs, 1, 1, 1) #undef F void mov(Register rd, Register rm) { if ((rd == SP) || (rm == SP)) { add(rd, rm, 0); } else { orr(rd, ZR, rm); } } void mov_w(Register rd, Register rm) { if ((rd == SP) || (rm == SP)) { add_w(rd, rm, 0); } else { orr_w(rd, ZR, rm); } } void cmp(Register rn, int imm) { subs(ZR, rn, imm); } void cmp_w(Register rn, int imm) { subs_w(ZR, rn, imm); } void cmp(Register rn, Register rm) { assert (rm != SP, "SP should not be used as the 2nd operand of cmp"); if (rn == SP) { subs(ZR, rn, rm, ex_uxtx); } else { subs(ZR, rn, rm); } } void cmp_w(Register rn, Register rm) { assert ((rn != SP) && (rm != SP), "SP should not be used in 32-bit cmp"); subs_w(ZR, rn, rm); } void cmp(Register rn, AsmOperand operand) { assert (rn != SP, "SP is not allowed in cmp with shifted register (AsmOperand)"); subs(ZR, rn, operand); } void cmn(Register rn, int imm) { adds(ZR, rn, imm); } void cmn_w(Register rn, int imm) { adds_w(ZR, rn, imm); } void cmn(Register rn, Register rm) { assert (rm != SP, "SP should not be used as the 2nd operand of cmp"); if (rn == SP) { adds(ZR, rn, rm, ex_uxtx); } else { adds(ZR, rn, rm); } } void cmn_w(Register rn, Register rm) { assert ((rn != SP) && (rm != SP), "SP should not be used in 32-bit cmp"); adds_w(ZR, rn, rm); } void neg(Register rd, Register rm) { sub(rd, ZR, rm); } void neg_w(Register rd, Register rm) { sub_w(rd, ZR, rm); } #define F(mnemonic, sf, op, S) \ void mnemonic(Register rd, Register rn, Register rm) { \ emit_int32(sf << 31 | op << 30 | S << 29 | 0b11010000 << 21 | rm->encoding_with_zr() << 16 | \ rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \ } F(adc_w, 0, 0, 0) F(adcs_w, 0, 0, 1) F(sbc_w, 0, 1, 0) F(sbcs_w, 0, 1, 1) F(adc, 1, 0, 0) F(adcs, 1, 0, 1) F(sbc, 1, 1, 0) F(sbcs, 1, 1, 1) #undef F #define F(mnemonic, sf, N) \ void mnemonic(Register rd, Register rn, Register rm, int lsb) { \ assert ((lsb >> (5 + sf)) == 0, "illegal least significant bit position"); \ emit_int32(sf << 31 | 0b100111 << 23 | N << 22 | rm->encoding_with_zr() << 16 | \ lsb << 10 | rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \ } F(extr_w, 0, 0) F(extr, 1, 1) #undef F #define F(mnemonic, sf, opc) \ void mnemonic(Register rd, int imm, int shift) { \ assert ((imm >> 16) == 0, "immediate is out of range"); \ assert (((shift & 0xf) == 0) && ((shift >> (5 + sf)) == 0), "invalid shift"); \ emit_int32(sf << 31 | opc << 29 | 0b100101 << 23 | (shift >> 4) << 21 | \ imm << 5 | rd->encoding_with_zr()); \ } F(movn_w, 0, 0b00) F(movz_w, 0, 0b10) F(movk_w, 0, 0b11) F(movn, 1, 0b00) F(movz, 1, 0b10) F(movk, 1, 0b11) #undef F void mov(Register rd, int imm) { assert ((imm >> 16) == 0, "immediate is out of range"); movz(rd, imm, 0); } void mov_w(Register rd, int imm) { assert ((imm >> 16) == 0, "immediate is out of range"); movz_w(rd, imm, 0); } #define F(mnemonic, sf, op, S) \ void mnemonic(Register rn, int imm, int nzcv, AsmCondition cond) { \ assert ((imm >> 5) == 0, "immediate is out of range"); \ assert ((nzcv >> 4) == 0, "illegal nzcv"); \ emit_int32(sf << 31 | op << 30 | S << 29 | 0b11010010 << 21 | imm << 16 | \ cond << 12 | 1 << 11 | rn->encoding_with_zr() << 5 | nzcv); \ } F(ccmn_w, 0, 0, 1) F(ccmp_w, 0, 1, 1) F(ccmn, 1, 0, 1) F(ccmp, 1, 1, 1) #undef F #define F(mnemonic, sf, op, S) \ void mnemonic(Register rn, Register rm, int nzcv, AsmCondition cond) { \ assert ((nzcv >> 4) == 0, "illegal nzcv"); \ emit_int32(sf << 31 | op << 30 | S << 29 | 0b11010010 << 21 | rm->encoding_with_zr() << 16 | \ cond << 12 | rn->encoding_with_zr() << 5 | nzcv); \ } F(ccmn_w, 0, 0, 1) F(ccmp_w, 0, 1, 1) F(ccmn, 1, 0, 1) F(ccmp, 1, 1, 1) #undef F #define F(mnemonic, sf, op, S, op2) \ void mnemonic(Register rd, Register rn, Register rm, AsmCondition cond) { \ emit_int32(sf << 31 | op << 30 | S << 29 | 0b11010100 << 21 | rm->encoding_with_zr() << 16 | \ cond << 12 | op2 << 10 | rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \ } F(csel_w, 0, 0, 0, 0b00) F(csinc_w, 0, 0, 0, 0b01) F(csinv_w, 0, 1, 0, 0b00) F(csneg_w, 0, 1, 0, 0b01) F(csel, 1, 0, 0, 0b00) F(csinc, 1, 0, 0, 0b01) F(csinv, 1, 1, 0, 0b00) F(csneg, 1, 1, 0, 0b01) #undef F void cset(Register rd, AsmCondition cond) { csinc(rd, ZR, ZR, inverse(cond)); } void cset_w(Register rd, AsmCondition cond) { csinc_w(rd, ZR, ZR, inverse(cond)); } void csetm(Register rd, AsmCondition cond) { csinv(rd, ZR, ZR, inverse(cond)); } void csetm_w(Register rd, AsmCondition cond) { csinv_w(rd, ZR, ZR, inverse(cond)); } void cinc(Register rd, Register rn, AsmCondition cond) { csinc(rd, rn, rn, inverse(cond)); } void cinc_w(Register rd, Register rn, AsmCondition cond) { csinc_w(rd, rn, rn, inverse(cond)); } void cinv(Register rd, Register rn, AsmCondition cond) { csinv(rd, rn, rn, inverse(cond)); } void cinv_w(Register rd, Register rn, AsmCondition cond) { csinv_w(rd, rn, rn, inverse(cond)); } #define F(mnemonic, sf, S, opcode) \ void mnemonic(Register rd, Register rn) { \ emit_int32(sf << 31 | 1 << 30 | S << 29 | 0b11010110 << 21 | opcode << 10 | \ rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \ } F(rbit_w, 0, 0, 0b000000) F(rev16_w, 0, 0, 0b000001) F(rev_w, 0, 0, 0b000010) F(clz_w, 0, 0, 0b000100) F(cls_w, 0, 0, 0b000101) F(rbit, 1, 0, 0b000000) F(rev16, 1, 0, 0b000001) F(rev32, 1, 0, 0b000010) F(rev, 1, 0, 0b000011) F(clz, 1, 0, 0b000100) F(cls, 1, 0, 0b000101) #undef F #define F(mnemonic, sf, S, opcode) \ void mnemonic(Register rd, Register rn, Register rm) { \ emit_int32(sf << 31 | S << 29 | 0b11010110 << 21 | rm->encoding_with_zr() << 16 | \ opcode << 10 | rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \ } F(udiv_w, 0, 0, 0b000010) F(sdiv_w, 0, 0, 0b000011) F(lslv_w, 0, 0, 0b001000) F(lsrv_w, 0, 0, 0b001001) F(asrv_w, 0, 0, 0b001010) F(rorv_w, 0, 0, 0b001011) F(udiv, 1, 0, 0b000010) F(sdiv, 1, 0, 0b000011) F(lslv, 1, 0, 0b001000) F(lsrv, 1, 0, 0b001001) F(asrv, 1, 0, 0b001010) F(rorv, 1, 0, 0b001011) #undef F #define F(mnemonic, sf, op31, o0) \ void mnemonic(Register rd, Register rn, Register rm, Register ra) { \ emit_int32(sf << 31 | 0b11011 << 24 | op31 << 21 | rm->encoding_with_zr() << 16 | \ o0 << 15 | ra->encoding_with_zr() << 10 | rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \ } F(madd_w, 0, 0b000, 0) F(msub_w, 0, 0b000, 1) F(madd, 1, 0b000, 0) F(msub, 1, 0b000, 1) F(smaddl, 1, 0b001, 0) F(smsubl, 1, 0b001, 1) F(umaddl, 1, 0b101, 0) F(umsubl, 1, 0b101, 1) #undef F void mul(Register rd, Register rn, Register rm) { madd(rd, rn, rm, ZR); } void mul_w(Register rd, Register rn, Register rm) { madd_w(rd, rn, rm, ZR); } #define F(mnemonic, sf, op31, o0) \ void mnemonic(Register rd, Register rn, Register rm) { \ emit_int32(sf << 31 | 0b11011 << 24 | op31 << 21 | rm->encoding_with_zr() << 16 | \ o0 << 15 | 0b11111 << 10 | rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \ } F(smulh, 1, 0b010, 0) F(umulh, 1, 0b110, 0) #undef F #define F(mnemonic, op) \ void mnemonic(Register rd, address addr) { \ intx offset; \ if (op == 0) { \ offset = addr - pc(); \ } else { \ offset = (((intx)addr) - (((intx)pc()) & ~0xfff)) >> 12; \ } \ assert (is_imm_in_range(offset, 21, 0), "offset is out of range"); \ emit_int32(op << 31 | (offset & 3) << 29 | 0b10000 << 24 | \ encode_imm(offset >> 2, 19, 0, 5) | rd->encoding_with_zr()); \ } \ F(adr, 0) F(adrp, 1) #undef F void adr(Register rd, Label& L) { adr(rd, target(L)); } #define F(mnemonic, sf, opc, N) \ void mnemonic(Register rd, Register rn, int immr, int imms) { \ assert ((immr >> (5 + sf)) == 0, "immr is out of range"); \ assert ((imms >> (5 + sf)) == 0, "imms is out of range"); \ emit_int32(sf << 31 | opc << 29 | 0b100110 << 23 | N << 22 | immr << 16 | \ imms << 10 | rn->encoding_with_zr() << 5 | rd->encoding_with_zr()); \ } F(sbfm_w, 0, 0b00, 0) F(bfm_w, 0, 0b01, 0) F(ubfm_w, 0, 0b10, 0) F(sbfm, 1, 0b00, 1) F(bfm, 1, 0b01, 1) F(ubfm, 1, 0b10, 1) #undef F #define F(alias, mnemonic, sf, immr, imms) \ void alias(Register rd, Register rn, int lsb, int width) { \ assert ((lsb >> (5 + sf)) == 0, "lsb is out of range"); \ assert ((1 <= width) && (width <= (32 << sf) - lsb), "width is out of range"); \ mnemonic(rd, rn, immr, imms); \ } F(bfi_w, bfm_w, 0, (-lsb) & 0x1f, width - 1) F(bfi, bfm, 1, (-lsb) & 0x3f, width - 1) F(bfxil_w, bfm_w, 0, lsb, lsb + width - 1) F(bfxil, bfm, 1, lsb, lsb + width - 1) F(sbfiz_w, sbfm_w, 0, (-lsb) & 0x1f, width - 1) F(sbfiz, sbfm, 1, (-lsb) & 0x3f, width - 1) F(sbfx_w, sbfm_w, 0, lsb, lsb + width - 1) F(sbfx, sbfm, 1, lsb, lsb + width - 1) F(ubfiz_w, ubfm_w, 0, (-lsb) & 0x1f, width - 1) F(ubfiz, ubfm, 1, (-lsb) & 0x3f, width - 1) F(ubfx_w, ubfm_w, 0, lsb, lsb + width - 1) F(ubfx, ubfm, 1, lsb, lsb + width - 1) #undef F #define F(alias, mnemonic, sf, immr, imms) \ void alias(Register rd, Register rn, int shift) { \ assert ((shift >> (5 + sf)) == 0, "shift is out of range"); \ mnemonic(rd, rn, immr, imms); \ } F(_asr_w, sbfm_w, 0, shift, 31) F(_asr, sbfm, 1, shift, 63) F(_lsl_w, ubfm_w, 0, (-shift) & 0x1f, 31 - shift) F(_lsl, ubfm, 1, (-shift) & 0x3f, 63 - shift) F(_lsr_w, ubfm_w, 0, shift, 31) F(_lsr, ubfm, 1, shift, 63) #undef F #define F(alias, mnemonic, immr, imms) \ void alias(Register rd, Register rn) { \ mnemonic(rd, rn, immr, imms); \ } F(sxtb_w, sbfm_w, 0, 7) F(sxtb, sbfm, 0, 7) F(sxth_w, sbfm_w, 0, 15) F(sxth, sbfm, 0, 15) F(sxtw, sbfm, 0, 31) F(uxtb_w, ubfm_w, 0, 7) F(uxtb, ubfm, 0, 7) F(uxth_w, ubfm_w, 0, 15) F(uxth, ubfm, 0, 15) #undef F // Branch instructions #define F(mnemonic, op) \ void mnemonic(Register rn) { \ emit_int32(0b1101011 << 25 | op << 21 | 0b11111 << 16 | rn->encoding_with_zr() << 5); \ } F(br, 0b00) F(blr, 0b01) F(ret, 0b10) #undef F void ret() { ret(LR); } #define F(mnemonic, op) \ void mnemonic(address target) { \ intx offset = target - pc(); \ assert (is_offset_in_range(offset, 26), "offset is out of range"); \ emit_int32(op << 31 | 0b00101 << 26 | encode_offset(offset, 26, 0)); \ } F(b, 0) F(bl, 1) #undef F void b(address target, AsmCondition cond) { if (cond == al) { b(target); } else { intx offset = target - pc(); assert (is_offset_in_range(offset, 19), "offset is out of range"); emit_int32(0b0101010 << 25 | encode_offset(offset, 19, 5) | cond); } } #define F(mnemonic, sf, op) \ void mnemonic(Register rt, address target) { \ intx offset = target - pc(); \ assert (is_offset_in_range(offset, 19), "offset is out of range"); \ emit_int32(sf << 31 | 0b011010 << 25 | op << 24 | encode_offset(offset, 19, 5) | rt->encoding_with_zr()); \ } \ F(cbz_w, 0, 0) F(cbnz_w, 0, 1) F(cbz, 1, 0) F(cbnz, 1, 1) #undef F #define F(mnemonic, op) \ void mnemonic(Register rt, int bit, address target) { \ intx offset = target - pc(); \ assert (is_offset_in_range(offset, 14), "offset is out of range"); \ assert (0 <= bit && bit < 64, "bit number is out of range"); \ emit_int32((bit >> 5) << 31 | 0b011011 << 25 | op << 24 | (bit & 0x1f) << 19 | \ encode_offset(offset, 14, 5) | rt->encoding_with_zr()); \ } \ F(tbz, 0) F(tbnz, 1) #undef F // System instructions enum DMB_Opt { DMB_ld = 0b1101, DMB_st = 0b1110, DMB_all = 0b1111 }; #define F(mnemonic, L, op0, op1, CRn, op2, Rt) \ void mnemonic(DMB_Opt option) { \ emit_int32(0b1101010100 << 22 | L << 21 | op0 << 19 | op1 << 16 | \ CRn << 12 | option << 8 | op2 << 5 | Rt); \ } F(dsb, 0, 0b00, 0b011, 0b0011, 0b100, 0b11111) F(dmb, 0, 0b00, 0b011, 0b0011, 0b101, 0b11111) #undef F #define F(mnemonic, L, op0, op1, CRn, Rt) \ void mnemonic(int imm) { \ assert ((imm >> 7) == 0, "immediate is out of range"); \ emit_int32(0b1101010100 << 22 | L << 21 | op0 << 19 | op1 << 16 | \ CRn << 12 | imm << 5 | Rt); \ } F(hint, 0, 0b00, 0b011, 0b0010, 0b11111) #undef F void nop() { hint(0); } void yield() { hint(1); } #define F(mnemonic, opc, op2, LL) \ void mnemonic(int imm = 0) { \ assert ((imm >> 16) == 0, "immediate is out of range"); \ emit_int32(0b11010100 << 24 | opc << 21 | imm << 5 | op2 << 2 | LL); \ } F(brk, 0b001, 0b000, 0b00) F(hlt, 0b010, 0b000, 0b00) #undef F enum SystemRegister { // o0<1> op1<3> CRn<4> CRm<4> op2<3> SysReg_NZCV = 0b101101000010000, SysReg_FPCR = 0b101101000100000, }; void mrs(Register rt, SystemRegister systemReg) { assert ((systemReg >> 15) == 0, "systemReg is out of range"); emit_int32(0b110101010011 << 20 | systemReg << 5 | rt->encoding_with_zr()); } void msr(SystemRegister systemReg, Register rt) { assert ((systemReg >> 15) == 0, "systemReg is out of range"); emit_int32(0b110101010001 << 20 | systemReg << 5 | rt->encoding_with_zr()); } // Floating-point instructions #define F(mnemonic, M, S, type, opcode2) \ void mnemonic(FloatRegister rn, FloatRegister rm) { \ emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \ rm->encoding() << 16 | 0b1000 << 10 | rn->encoding() << 5 | opcode2); \ } F(fcmp_s, 0, 0, 0b00, 0b00000) F(fcmpe_s, 0, 0, 0b00, 0b01000) F(fcmp_d, 0, 0, 0b01, 0b00000) F(fcmpe_d, 0, 0, 0b01, 0b10000) #undef F #define F(mnemonic, M, S, type, opcode2) \ void mnemonic(FloatRegister rn) { \ emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \ 0b1000 << 10 | rn->encoding() << 5 | opcode2); \ } F(fcmp0_s, 0, 0, 0b00, 0b01000) F(fcmpe0_s, 0, 0, 0b00, 0b11000) F(fcmp0_d, 0, 0, 0b01, 0b01000) F(fcmpe0_d, 0, 0, 0b01, 0b11000) #undef F #define F(mnemonic, M, S, type, op) \ void mnemonic(FloatRegister rn, FloatRegister rm, int nzcv, AsmCondition cond) { \ assert ((nzcv >> 4) == 0, "illegal nzcv"); \ emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \ rm->encoding() << 16 | cond << 12 | 0b01 << 10 | rn->encoding() << 5 | op << 4 | nzcv); \ } F(fccmp_s, 0, 0, 0b00, 0) F(fccmpe_s, 0, 0, 0b00, 1) F(fccmp_d, 0, 0, 0b01, 0) F(fccmpe_d, 0, 0, 0b01, 1) #undef F #define F(mnemonic, M, S, type) \ void mnemonic(FloatRegister rd, FloatRegister rn, FloatRegister rm, AsmCondition cond) { \ emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \ rm->encoding() << 16 | cond << 12 | 0b11 << 10 | rn->encoding() << 5 | rd->encoding()); \ } F(fcsel_s, 0, 0, 0b00) F(fcsel_d, 0, 0, 0b01) #undef F #define F(mnemonic, M, S, type, opcode) \ void mnemonic(FloatRegister rd, FloatRegister rn) { \ emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \ opcode << 15 | 0b10000 << 10 | rn->encoding() << 5 | rd->encoding()); \ } F(fmov_s, 0, 0, 0b00, 0b000000) F(fabs_s, 0, 0, 0b00, 0b000001) F(fneg_s, 0, 0, 0b00, 0b000010) F(fsqrt_s, 0, 0, 0b00, 0b000011) F(fcvt_ds, 0, 0, 0b00, 0b000101) F(fcvt_hs, 0, 0, 0b00, 0b000111) F(frintn_s, 0, 0, 0b00, 0b001000) F(frintp_s, 0, 0, 0b00, 0b001001) F(frintm_s, 0, 0, 0b00, 0b001010) F(frintz_s, 0, 0, 0b00, 0b001011) F(frinta_s, 0, 0, 0b00, 0b001100) F(frintx_s, 0, 0, 0b00, 0b001110) F(frinti_s, 0, 0, 0b00, 0b001111) F(fmov_d, 0, 0, 0b01, 0b000000) F(fabs_d, 0, 0, 0b01, 0b000001) F(fneg_d, 0, 0, 0b01, 0b000010) F(fsqrt_d, 0, 0, 0b01, 0b000011) F(fcvt_sd, 0, 0, 0b01, 0b000100) F(fcvt_hd, 0, 0, 0b01, 0b000111) F(frintn_d, 0, 0, 0b01, 0b001000) F(frintp_d, 0, 0, 0b01, 0b001001) F(frintm_d, 0, 0, 0b01, 0b001010) F(frintz_d, 0, 0, 0b01, 0b001011) F(frinta_d, 0, 0, 0b01, 0b001100) F(frintx_d, 0, 0, 0b01, 0b001110) F(frinti_d, 0, 0, 0b01, 0b001111) F(fcvt_sh, 0, 0, 0b11, 0b000100) F(fcvt_dh, 0, 0, 0b11, 0b000101) #undef F #define F(mnemonic, M, S, type, opcode) \ void mnemonic(FloatRegister rd, FloatRegister rn, FloatRegister rm) { \ emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \ rm->encoding() << 16 | opcode << 12 | 0b10 << 10 | rn->encoding() << 5 | rd->encoding()); \ } F(fmul_s, 0, 0, 0b00, 0b0000) F(fdiv_s, 0, 0, 0b00, 0b0001) F(fadd_s, 0, 0, 0b00, 0b0010) F(fsub_s, 0, 0, 0b00, 0b0011) F(fmax_s, 0, 0, 0b00, 0b0100) F(fmin_s, 0, 0, 0b00, 0b0101) F(fmaxnm_s, 0, 0, 0b00, 0b0110) F(fminnm_s, 0, 0, 0b00, 0b0111) F(fnmul_s, 0, 0, 0b00, 0b1000) F(fmul_d, 0, 0, 0b01, 0b0000) F(fdiv_d, 0, 0, 0b01, 0b0001) F(fadd_d, 0, 0, 0b01, 0b0010) F(fsub_d, 0, 0, 0b01, 0b0011) F(fmax_d, 0, 0, 0b01, 0b0100) F(fmin_d, 0, 0, 0b01, 0b0101) F(fmaxnm_d, 0, 0, 0b01, 0b0110) F(fminnm_d, 0, 0, 0b01, 0b0111) F(fnmul_d, 0, 0, 0b01, 0b1000) #undef F #define F(mnemonic, M, S, type, o1, o0) \ void mnemonic(FloatRegister rd, FloatRegister rn, FloatRegister rm, FloatRegister ra) { \ emit_int32(M << 31 | S << 29 | 0b11111 << 24 | type << 22 | o1 << 21 | rm->encoding() << 16 | \ o0 << 15 | ra->encoding() << 10 | rn->encoding() << 5 | rd->encoding()); \ } F(fmadd_s, 0, 0, 0b00, 0, 0) F(fmsub_s, 0, 0, 0b00, 0, 1) F(fnmadd_s, 0, 0, 0b00, 1, 0) F(fnmsub_s, 0, 0, 0b00, 1, 1) F(fmadd_d, 0, 0, 0b01, 0, 0) F(fmsub_d, 0, 0, 0b01, 0, 1) F(fnmadd_d, 0, 0, 0b01, 1, 0) F(fnmsub_d, 0, 0, 0b01, 1, 1) #undef F #define F(mnemonic, M, S, type) \ void mnemonic(FloatRegister rd, int imm8) { \ assert ((imm8 >> 8) == 0, "immediate is out of range"); \ emit_int32(M << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \ imm8 << 13 | 0b100 << 10 | rd->encoding()); \ } F(fmov_s, 0, 0, 0b00) F(fmov_d, 0, 0, 0b01) #undef F #define F(mnemonic, sf, S, type, rmode, opcode) \ void mnemonic(Register rd, FloatRegister rn) { \ emit_int32(sf << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \ rmode << 19 | opcode << 16 | rn->encoding() << 5 | rd->encoding_with_zr()); \ } F(fcvtns_ws, 0, 0, 0b00, 0b00, 0b000) F(fcvtnu_ws, 0, 0, 0b00, 0b00, 0b001) F(fcvtas_ws, 0, 0, 0b00, 0b00, 0b100) F(fcvtau_ws, 0, 0, 0b00, 0b00, 0b101) F(fmov_ws, 0, 0, 0b00, 0b00, 0b110) F(fcvtps_ws, 0, 0, 0b00, 0b01, 0b000) F(fcvtpu_ws, 0, 0, 0b00, 0b01, 0b001) F(fcvtms_ws, 0, 0, 0b00, 0b10, 0b000) F(fcvtmu_ws, 0, 0, 0b00, 0b10, 0b001) F(fcvtzs_ws, 0, 0, 0b00, 0b11, 0b000) F(fcvtzu_ws, 0, 0, 0b00, 0b11, 0b001) F(fcvtns_wd, 0, 0, 0b01, 0b00, 0b000) F(fcvtnu_wd, 0, 0, 0b01, 0b00, 0b001) F(fcvtas_wd, 0, 0, 0b01, 0b00, 0b100) F(fcvtau_wd, 0, 0, 0b01, 0b00, 0b101) F(fcvtps_wd, 0, 0, 0b01, 0b01, 0b000) F(fcvtpu_wd, 0, 0, 0b01, 0b01, 0b001) F(fcvtms_wd, 0, 0, 0b01, 0b10, 0b000) F(fcvtmu_wd, 0, 0, 0b01, 0b10, 0b001) F(fcvtzs_wd, 0, 0, 0b01, 0b11, 0b000) F(fcvtzu_wd, 0, 0, 0b01, 0b11, 0b001) F(fcvtns_xs, 1, 0, 0b00, 0b00, 0b000) F(fcvtnu_xs, 1, 0, 0b00, 0b00, 0b001) F(fcvtas_xs, 1, 0, 0b00, 0b00, 0b100) F(fcvtau_xs, 1, 0, 0b00, 0b00, 0b101) F(fcvtps_xs, 1, 0, 0b00, 0b01, 0b000) F(fcvtpu_xs, 1, 0, 0b00, 0b01, 0b001) F(fcvtms_xs, 1, 0, 0b00, 0b10, 0b000) F(fcvtmu_xs, 1, 0, 0b00, 0b10, 0b001) F(fcvtzs_xs, 1, 0, 0b00, 0b11, 0b000) F(fcvtzu_xs, 1, 0, 0b00, 0b11, 0b001) F(fcvtns_xd, 1, 0, 0b01, 0b00, 0b000) F(fcvtnu_xd, 1, 0, 0b01, 0b00, 0b001) F(fcvtas_xd, 1, 0, 0b01, 0b00, 0b100) F(fcvtau_xd, 1, 0, 0b01, 0b00, 0b101) F(fmov_xd, 1, 0, 0b01, 0b00, 0b110) F(fcvtps_xd, 1, 0, 0b01, 0b01, 0b000) F(fcvtpu_xd, 1, 0, 0b01, 0b01, 0b001) F(fcvtms_xd, 1, 0, 0b01, 0b10, 0b000) F(fcvtmu_xd, 1, 0, 0b01, 0b10, 0b001) F(fcvtzs_xd, 1, 0, 0b01, 0b11, 0b000) F(fcvtzu_xd, 1, 0, 0b01, 0b11, 0b001) F(fmov_xq, 1, 0, 0b10, 0b01, 0b110) #undef F #define F(mnemonic, sf, S, type, rmode, opcode) \ void mnemonic(FloatRegister rd, Register rn) { \ emit_int32(sf << 31 | S << 29 | 0b11110 << 24 | type << 22 | 1 << 21 | \ rmode << 19 | opcode << 16 | rn->encoding_with_zr() << 5 | rd->encoding()); \ } F(scvtf_sw, 0, 0, 0b00, 0b00, 0b010) F(ucvtf_sw, 0, 0, 0b00, 0b00, 0b011) F(fmov_sw, 0, 0, 0b00, 0b00, 0b111) F(scvtf_dw, 0, 0, 0b01, 0b00, 0b010) F(ucvtf_dw, 0, 0, 0b01, 0b00, 0b011) F(scvtf_sx, 1, 0, 0b00, 0b00, 0b010) F(ucvtf_sx, 1, 0, 0b00, 0b00, 0b011) F(scvtf_dx, 1, 0, 0b01, 0b00, 0b010) F(ucvtf_dx, 1, 0, 0b01, 0b00, 0b011) F(fmov_dx, 1, 0, 0b01, 0b00, 0b111) F(fmov_qx, 1, 0, 0b10, 0b01, 0b111) #undef F #define F(mnemonic, opcode) \ void mnemonic(FloatRegister Vd, FloatRegister Vn) { \ emit_int32( opcode << 10 | Vn->encoding() << 5 | Vd->encoding()); \ } F(aese, 0b0100111000101000010010); F(aesd, 0b0100111000101000010110); F(aesmc, 0b0100111000101000011010); F(aesimc, 0b0100111000101000011110); #undef F #ifdef COMPILER2 typedef VFP::double_num double_num; typedef VFP::float_num float_num; #endif void vcnt(FloatRegister Dd, FloatRegister Dn, int quad = 0, int size = 0) { // emitted at VM startup to detect whether the instruction is available assert(!VM_Version::is_initialized() || VM_Version::has_simd(), "simd instruction"); assert(size == 0, "illegal size value"); emit_int32(0x0e205800 | quad << 30 | size << 22 | Dn->encoding() << 5 | Dd->encoding()); } #ifdef COMPILER2 void addv(FloatRegister Dd, FloatRegister Dm, int quad, int size) { // emitted at VM startup to detect whether the instruction is available assert(VM_Version::has_simd(), "simd instruction"); assert((quad & ~1) == 0, "illegal value"); assert(size >= 0 && size < 3, "illegal value"); assert(((size << 1) | quad) != 4, "illegal values (size 2, quad 0)"); emit_int32(0x0e31b800 | quad << 30 | size << 22 | Dm->encoding() << 5 | Dd->encoding()); } enum VElem_Size { VELEM_SIZE_8 = 0x00, VELEM_SIZE_16 = 0x01, VELEM_SIZE_32 = 0x02, VELEM_SIZE_64 = 0x03 }; enum VLD_Type { VLD1_TYPE_1_REG = 0b0111, VLD1_TYPE_2_REGS = 0b1010, VLD1_TYPE_3_REGS = 0b0110, VLD1_TYPE_4_REGS = 0b0010 }; enum VFloat_Arith_Size { VFA_SIZE_F32 = 0b0, VFA_SIZE_F64 = 0b1 }; #define F(mnemonic, U, S, P) \ void mnemonic(FloatRegister fd, FloatRegister fn, FloatRegister fm, \ int size, int quad) { \ assert(VM_Version::has_simd(), "simd instruction"); \ assert(!(size == VFA_SIZE_F64 && !quad), "reserved"); \ assert((size & 1) == size, "overflow"); \ emit_int32(quad << 30 | U << 29 | 0b01110 << 24 | \ S << 23 | size << 22 | 1 << 21 | P << 11 | 1 << 10 | \ fm->encoding() << 16 | \ fn->encoding() << 5 | \ fd->encoding()); \ } F(vaddF, 0, 0, 0b11010) // Vd = Vn + Vm (float) F(vsubF, 0, 1, 0b11010) // Vd = Vn - Vm (float) F(vmulF, 1, 0, 0b11011) // Vd = Vn - Vm (float) F(vdivF, 1, 0, 0b11111) // Vd = Vn / Vm (float) #undef F #define F(mnemonic, U) \ void mnemonic(FloatRegister fd, FloatRegister fm, FloatRegister fn, \ int size, int quad) { \ assert(VM_Version::has_simd(), "simd instruction"); \ assert(!(size == VELEM_SIZE_64 && !quad), "reserved"); \ assert((size & 0b11) == size, "overflow"); \ int R = 0; /* rounding */ \ int S = 0; /* saturating */ \ emit_int32(quad << 30 | U << 29 | 0b01110 << 24 | size << 22 | \ 1 << 21 | R << 12 | S << 11 | 0b10001 << 10 | \ fm->encoding() << 16 | \ fn->encoding() << 5 | \ fd->encoding()); \ } F(vshlSI, 0) // Vd = ashift(Vn,Vm) (int) F(vshlUI, 1) // Vd = lshift(Vn,Vm) (int) #undef F #define F(mnemonic, U, P, M) \ void mnemonic(FloatRegister fd, FloatRegister fn, FloatRegister fm, \ int size, int quad) { \ assert(VM_Version::has_simd(), "simd instruction"); \ assert(!(size == VELEM_SIZE_64 && !quad), "reserved"); \ assert(!(size == VELEM_SIZE_64 && M), "reserved"); \ assert((size & 0b11) == size, "overflow"); \ emit_int32(quad << 30 | U << 29 | 0b01110 << 24 | size << 22 | \ 1 << 21 | P << 11 | 1 << 10 | \ fm->encoding() << 16 | \ fn->encoding() << 5 | \ fd->encoding()); \ } F(vmulI, 0, 0b10011, true) // Vd = Vn * Vm (int) F(vaddI, 0, 0b10000, false) // Vd = Vn + Vm (int) F(vsubI, 1, 0b10000, false) // Vd = Vn - Vm (int) #undef F #define F(mnemonic, U, O) \ void mnemonic(FloatRegister fd, FloatRegister fn, FloatRegister fm, \ int quad) { \ assert(VM_Version::has_simd(), "simd instruction"); \ emit_int32(quad << 30 | U << 29 | 0b01110 << 24 | O << 22 | \ 1 << 21 | 0b00011 << 11 | 1 << 10 | \ fm->encoding() << 16 | \ fn->encoding() << 5 | \ fd->encoding()); \ } F(vandI, 0, 0b00) // Vd = Vn & Vm (int) F(vorI, 0, 0b10) // Vd = Vn | Vm (int) F(vxorI, 1, 0b00) // Vd = Vn ^ Vm (int) #undef F void vnegI(FloatRegister fd, FloatRegister fn, int size, int quad) { int U = 1; assert(VM_Version::has_simd(), "simd instruction"); assert(quad || size != VELEM_SIZE_64, "reserved"); emit_int32(quad << 30 | U << 29 | 0b01110 << 24 | size << 22 | 0b100000101110 << 10 | fn->encoding() << 5 | fd->encoding() << 0); } void vshli(FloatRegister fd, FloatRegister fn, int esize, int imm, int quad) { assert(VM_Version::has_simd(), "simd instruction"); if (imm >= esize) { // maximum shift gives all zeroes, direction doesn't matter, // but only available for shift right vshri(fd, fn, esize, esize, true /* unsigned */, quad); return; } assert(imm >= 0 && imm < esize, "out of range"); int imm7 = esize + imm; int immh = imm7 >> 3; assert(immh != 0, "encoding constraint"); assert((uint)immh < 16, "sanity"); assert(((immh >> 2) | quad) != 0b10, "reserved"); emit_int32(quad << 30 | 0b011110 << 23 | imm7 << 16 | 0b010101 << 10 | fn->encoding() << 5 | fd->encoding() << 0); } void vshri(FloatRegister fd, FloatRegister fn, int esize, int imm, bool U /* unsigned */, int quad) { assert(VM_Version::has_simd(), "simd instruction"); assert(imm > 0, "out of range"); if (imm >= esize) { // maximum shift (all zeroes) imm = esize; } int imm7 = 2 * esize - imm ; int immh = imm7 >> 3; assert(immh != 0, "encoding constraint"); assert((uint)immh < 16, "sanity"); assert(((immh >> 2) | quad) != 0b10, "reserved"); emit_int32(quad << 30 | U << 29 | 0b011110 << 23 | imm7 << 16 | 0b000001 << 10 | fn->encoding() << 5 | fd->encoding() << 0); } void vshrUI(FloatRegister fd, FloatRegister fm, int size, int imm, int quad) { vshri(fd, fm, size, imm, true /* unsigned */, quad); } void vshrSI(FloatRegister fd, FloatRegister fm, int size, int imm, int quad) { vshri(fd, fm, size, imm, false /* signed */, quad); } void vld1(FloatRegister Vt, Address addr, VElem_Size size, int bits) { assert(VM_Version::has_simd(), "simd instruction"); assert(bits == 128, "unsupported"); assert(addr.disp() == 0 || addr.disp() == 16, "must be"); int type = 0b11; // 2D int quad = 1; int L = 1; int opcode = VLD1_TYPE_1_REG; emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 | Vt->encoding() << 0 | addr.encoding_simd()); } void vst1(FloatRegister Vt, Address addr, VElem_Size size, int bits) { assert(VM_Version::has_simd(), "simd instruction"); assert(bits == 128, "unsupported"); assert(addr.disp() == 0 || addr.disp() == 16, "must be"); int type = 0b11; // 2D int quad = 1; int L = 0; int opcode = VLD1_TYPE_1_REG; emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 | Vt->encoding() << 0 | addr.encoding_simd()); } void vld1(FloatRegister Vt, FloatRegister Vt2, Address addr, VElem_Size size, int bits) { assert(VM_Version::has_simd(), "simd instruction"); assert(bits == 128, "unsupported"); assert(Vt->successor() == Vt2, "Registers must be ordered"); assert(addr.disp() == 0 || addr.disp() == 32, "must be"); int type = 0b11; // 2D int quad = 1; int L = 1; int opcode = VLD1_TYPE_2_REGS; emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 | Vt->encoding() << 0 | addr.encoding_simd()); } void vst1(FloatRegister Vt, FloatRegister Vt2, Address addr, VElem_Size size, int bits) { assert(VM_Version::has_simd(), "simd instruction"); assert(Vt->successor() == Vt2, "Registers must be ordered"); assert(bits == 128, "unsupported"); assert(addr.disp() == 0 || addr.disp() == 32, "must be"); int type = 0b11; // 2D int quad = 1; int L = 0; int opcode = VLD1_TYPE_2_REGS; emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 | Vt->encoding() << 0 | addr.encoding_simd()); } void vld1(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, Address addr, VElem_Size size, int bits) { assert(VM_Version::has_simd(), "simd instruction"); assert(bits == 128, "unsupported"); assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3, "Registers must be ordered"); assert(addr.disp() == 0 || addr.disp() == 48, "must be"); int type = 0b11; // 2D int quad = 1; int L = 1; int opcode = VLD1_TYPE_3_REGS; emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 | Vt->encoding() << 0 | addr.encoding_simd()); } void vst1(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, Address addr, VElem_Size size, int bits) { assert(VM_Version::has_simd(), "simd instruction"); assert(bits == 128, "unsupported"); assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3, "Registers must be ordered"); assert(addr.disp() == 0 || addr.disp() == 48, "must be"); int type = 0b11; // 2D int quad = 1; int L = 0; int opcode = VLD1_TYPE_3_REGS; emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 | Vt->encoding() << 0 | addr.encoding_simd()); } void vld1(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, FloatRegister Vt4, Address addr, VElem_Size size, int bits) { assert(VM_Version::has_simd(), "simd instruction"); assert(bits == 128, "unsupported"); assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 && Vt3->successor() == Vt4, "Registers must be ordered"); assert(addr.disp() == 0 || addr.disp() == 64, "must be"); int type = 0b11; // 2D int quad = 1; int L = 1; int opcode = VLD1_TYPE_4_REGS; emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 | Vt->encoding() << 0 | addr.encoding_simd()); } void vst1(FloatRegister Vt, FloatRegister Vt2, FloatRegister Vt3, FloatRegister Vt4, Address addr, VElem_Size size, int bits) { assert(VM_Version::has_simd(), "simd instruction"); assert(bits == 128, "unsupported"); assert(Vt->successor() == Vt2 && Vt2->successor() == Vt3 && Vt3->successor() == Vt4, "Registers must be ordered"); assert(addr.disp() == 0 || addr.disp() == 64, "must be"); int type = 0b11; // 2D int quad = 1; int L = 0; int opcode = VLD1_TYPE_4_REGS; emit_int32(quad << 30 | 0b11 << 26 | L << 22 | opcode << 12 | size << 10 | Vt->encoding() << 0 | addr.encoding_simd()); } void rev32(FloatRegister Vd, FloatRegister Vn, VElem_Size size, int quad) { assert(VM_Version::has_simd(), "simd instruction"); assert(size == VELEM_SIZE_8 || size == VELEM_SIZE_16, "must be"); emit_int32(quad << 30 | 0b101110 << 24 | size << 22 | 0b100000000010 << 10 | Vn->encoding() << 5 | Vd->encoding()); } void eor(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm, VElem_Size size, int quad) { assert(VM_Version::has_simd(), "simd instruction"); assert(size == VELEM_SIZE_8, "must be"); emit_int32(quad << 30 | 0b101110001 << 21 | Vm->encoding() << 16 | 0b000111 << 10 | Vn->encoding() << 5 | Vd->encoding()); } void orr(FloatRegister Vd, FloatRegister Vn, FloatRegister Vm, VElem_Size size, int quad) { assert(VM_Version::has_simd(), "simd instruction"); assert(size == VELEM_SIZE_8, "must be"); emit_int32(quad << 30 | 0b001110101 << 21 | Vm->encoding() << 16 | 0b000111 << 10 | Vn->encoding() << 5 | Vd->encoding()); } void vmovI(FloatRegister Dd, int imm8, VElem_Size size, int quad) { assert(VM_Version::has_simd(), "simd instruction"); assert(imm8 >= 0 && imm8 < 256, "out of range"); int op; int cmode; switch (size) { case VELEM_SIZE_8: op = 0; cmode = 0b1110; break; case VELEM_SIZE_16: op = 0; cmode = 0b1000; break; case VELEM_SIZE_32: op = 0; cmode = 0b0000; break; default: cmode = 0; ShouldNotReachHere(); } int abc = imm8 >> 5; int defgh = imm8 & 0b11111; emit_int32(quad << 30 | op << 29 | 0b1111 << 24 | abc << 16 | cmode << 12 | 0b01 << 10 | defgh << 5 | Dd->encoding() << 0); } void vdupI(FloatRegister Dd, Register Rn, VElem_Size size, int quad) { assert(VM_Version::has_simd(), "simd instruction"); assert(size <= 3, "unallocated encoding"); assert(size != 3 || quad == 1, "reserved"); int imm5 = 1 << size; #ifdef ASSERT switch (size) { case VELEM_SIZE_8: assert(imm5 == 0b00001, "sanity"); break; case VELEM_SIZE_16: assert(imm5 == 0b00010, "sanity"); break; case VELEM_SIZE_32: assert(imm5 == 0b00100, "sanity"); break; case VELEM_SIZE_64: assert(imm5 == 0b01000, "sanity"); break; default: ShouldNotReachHere(); } #endif emit_int32(quad << 30 | 0b111 << 25 | 0b11 << 10 | imm5 << 16 | Rn->encoding() << 5 | Dd->encoding() << 0); } void vdup(FloatRegister Vd, FloatRegister Vn, VElem_Size size, int quad) { assert(VM_Version::has_simd(), "simd instruction"); int index = 0; int bytes = 1 << size; int range = 16 / bytes; assert(index < range, "overflow"); assert(size != VELEM_SIZE_64 || quad, "reserved"); assert(8 << VELEM_SIZE_8 == 8, "sanity"); assert(8 << VELEM_SIZE_16 == 16, "sanity"); assert(8 << VELEM_SIZE_32 == 32, "sanity"); assert(8 << VELEM_SIZE_64 == 64, "sanity"); int imm5 = (index << (size + 1)) | bytes; emit_int32(quad << 30 | 0b001110000 << 21 | imm5 << 16 | 0b000001 << 10 | Vn->encoding() << 5 | Vd->encoding() << 0); } void vdupF(FloatRegister Vd, FloatRegister Vn, int quad) { vdup(Vd, Vn, VELEM_SIZE_32, quad); } void vdupD(FloatRegister Vd, FloatRegister Vn, int quad) { vdup(Vd, Vn, VELEM_SIZE_64, quad); } #endif }; #endif // CPU_ARM_VM_ASSEMBLER_ARM_64_HPP