1 /*
   2  * Copyright (c) 2008, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "interpreter/bytecodeHistogram.hpp"
  28 #include "interpreter/interp_masm.hpp"
  29 #include "interpreter/interpreter.hpp"
  30 #include "interpreter/interpreterRuntime.hpp"
  31 #include "interpreter/templateInterpreterGenerator.hpp"
  32 #include "interpreter/templateTable.hpp"
  33 #include "oops/arrayOop.hpp"
  34 #include "oops/methodData.hpp"
  35 #include "oops/method.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "prims/jvmtiThreadState.hpp"
  39 #include "prims/methodHandles.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/deoptimization.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/stubRoutines.hpp"
  45 #include "runtime/synchronizer.hpp"
  46 #include "runtime/timer.hpp"
  47 #include "runtime/vframeArray.hpp"
  48 #include "utilities/debug.hpp"
  49 #include "utilities/macros.hpp"
  50 
  51 // Size of interpreter code.  Increase if too small.  Interpreter will
  52 // fail with a guarantee ("not enough space for interpreter generation");
  53 // if too small.
  54 // Run with +PrintInterpreter to get the VM to print out the size.
  55 // Max size with JVMTI
  56 int TemplateInterpreter::InterpreterCodeSize = 180 * 1024;
  57 
  58 #define __ _masm->
  59 
  60 //------------------------------------------------------------------------------------------------------------------------
  61 
  62 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  63   address entry = __ pc();
  64 
  65   // callee-save register for saving LR, shared with generate_native_entry
  66   const Register Rsaved_ret_addr = AARCH64_ONLY(R21) NOT_AARCH64(Rtmp_save0);
  67 
  68   __ mov(Rsaved_ret_addr, LR);
  69 
  70   __ mov(R1, Rmethod);
  71   __ mov(R2, Rlocals);
  72   __ mov(R3, SP);
  73 
  74 #ifdef AARCH64
  75   // expand expr. stack and extended SP to avoid cutting SP in call_VM
  76   __ mov(Rstack_top, SP);
  77   __ str(Rstack_top, Address(FP, frame::interpreter_frame_extended_sp_offset * wordSize));
  78   __ check_stack_top();
  79 
  80   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), R1, R2, R3, false);
  81 
  82   __ ldp(ZR,      c_rarg1, Address(SP, 2*wordSize, post_indexed));
  83   __ ldp(c_rarg2, c_rarg3, Address(SP, 2*wordSize, post_indexed));
  84   __ ldp(c_rarg4, c_rarg5, Address(SP, 2*wordSize, post_indexed));
  85   __ ldp(c_rarg6, c_rarg7, Address(SP, 2*wordSize, post_indexed));
  86 
  87   __ ldp_d(V0, V1, Address(SP, 2*wordSize, post_indexed));
  88   __ ldp_d(V2, V3, Address(SP, 2*wordSize, post_indexed));
  89   __ ldp_d(V4, V5, Address(SP, 2*wordSize, post_indexed));
  90   __ ldp_d(V6, V7, Address(SP, 2*wordSize, post_indexed));
  91 #else
  92 
  93   // Safer to save R9 (when scratched) since callers may have been
  94   // written assuming R9 survives. This is suboptimal but
  95   // probably not important for this slow case call site.
  96   // Note for R9 saving: slow_signature_handler may copy register
  97   // arguments above the current SP (passed as R3). It is safe for
  98   // call_VM to use push and pop to protect additional values on the
  99   // stack if needed.
 100   __ call_VM(CAST_FROM_FN_PTR(address, InterpreterRuntime::slow_signature_handler), true /* save R9 if needed*/);
 101   __ add(SP, SP, wordSize);     // Skip R0
 102   __ pop(RegisterSet(R1, R3));  // Load arguments passed in registers
 103 #ifdef __ABI_HARD__
 104   // Few alternatives to an always-load-FP-registers approach:
 105   // - parse method signature to detect FP arguments
 106   // - keep a counter/flag on a stack indicationg number of FP arguments in the method.
 107   // The later has been originally implemented and tested but a conditional path could
 108   // eliminate any gain imposed by avoiding 8 double word loads.
 109   __ fldmiad(SP, FloatRegisterSet(D0, 8), writeback);
 110 #endif // __ABI_HARD__
 111 #endif // AARCH64
 112 
 113   __ ret(Rsaved_ret_addr);
 114 
 115   return entry;
 116 }
 117 
 118 
 119 //
 120 // Various method entries (that c++ and asm interpreter agree upon)
 121 //------------------------------------------------------------------------------------------------------------------------
 122 //
 123 //
 124 
 125 // Abstract method entry
 126 // Attempt to execute abstract method. Throw exception
 127 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 128   address entry_point = __ pc();
 129 
 130 #ifdef AARCH64
 131   __ restore_sp_after_call(Rtemp);
 132   __ restore_stack_top();
 133 #endif
 134 
 135   __ empty_expression_stack();
 136 
 137   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
 138 
 139   DEBUG_ONLY(STOP("generate_abstract_entry");) // Should not reach here
 140   return entry_point;
 141 }
 142 
 143 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
 144   if (!InlineIntrinsics) return NULL; // Generate a vanilla entry
 145 
 146   // TODO: ARM
 147   return NULL;
 148 
 149   address entry_point = __ pc();
 150   STOP("generate_math_entry");
 151   return entry_point;
 152 }
 153 
 154 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 155   address entry = __ pc();
 156 
 157   // Note: There should be a minimal interpreter frame set up when stack
 158   // overflow occurs since we check explicitly for it now.
 159   //
 160 #ifdef ASSERT
 161   { Label L;
 162     __ sub(Rtemp, FP, - frame::interpreter_frame_monitor_block_top_offset * wordSize);
 163     __ cmp(SP, Rtemp);  // Rtemp = maximal SP for current FP,
 164                         //  (stack grows negative)
 165     __ b(L, ls); // check if frame is complete
 166     __ stop ("interpreter frame not set up");
 167     __ bind(L);
 168   }
 169 #endif // ASSERT
 170 
 171   // Restore bcp under the assumption that the current frame is still
 172   // interpreted
 173   __ restore_bcp();
 174 
 175   // expression stack must be empty before entering the VM if an exception
 176   // happened
 177   __ empty_expression_stack();
 178 
 179   // throw exception
 180   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
 181 
 182   __ should_not_reach_here();
 183 
 184   return entry;
 185 }
 186 
 187 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler(const char* name) {
 188   address entry = __ pc();
 189 
 190   // index is in R4_ArrayIndexOutOfBounds_index
 191 
 192   InlinedString Lname(name);
 193 
 194   // expression stack must be empty before entering the VM if an exception happened
 195   __ empty_expression_stack();
 196 
 197   // setup parameters
 198   __ ldr_literal(R1, Lname);
 199   __ mov(R2, R4_ArrayIndexOutOfBounds_index);
 200 
 201   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), R1, R2);
 202 
 203   __ nop(); // to avoid filling CPU pipeline with invalid instructions
 204   __ nop();
 205   __ should_not_reach_here();
 206   __ bind_literal(Lname);
 207 
 208   return entry;
 209 }
 210 
 211 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 212   address entry = __ pc();
 213 
 214   // object is in R2_ClassCastException_obj
 215 
 216   // expression stack must be empty before entering the VM if an exception
 217   // happened
 218   __ empty_expression_stack();
 219 
 220   __ mov(R1, R2_ClassCastException_obj);
 221   __ call_VM(noreg,
 222              CAST_FROM_FN_PTR(address,
 223                               InterpreterRuntime::throw_ClassCastException),
 224              R1);
 225 
 226   __ should_not_reach_here();
 227 
 228   return entry;
 229 }
 230 
 231 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
 232   assert(!pass_oop || message == NULL, "either oop or message but not both");
 233   address entry = __ pc();
 234 
 235   InlinedString Lname(name);
 236   InlinedString Lmessage(message);
 237 
 238   if (pass_oop) {
 239     // object is at TOS
 240     __ pop_ptr(R2);
 241   }
 242 
 243   // expression stack must be empty before entering the VM if an exception happened
 244   __ empty_expression_stack();
 245 
 246   // setup parameters
 247   __ ldr_literal(R1, Lname);
 248 
 249   if (pass_oop) {
 250     __ call_VM(Rexception_obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), R1, R2);
 251   } else {
 252     if (message != NULL) {
 253       __ ldr_literal(R2, Lmessage);
 254     } else {
 255       __ mov(R2, 0);
 256     }
 257     __ call_VM(Rexception_obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), R1, R2);
 258   }
 259 
 260   // throw exception
 261   __ b(Interpreter::throw_exception_entry());
 262 
 263   __ nop(); // to avoid filling CPU pipeline with invalid instructions
 264   __ nop();
 265   __ bind_literal(Lname);
 266   if (!pass_oop && (message != NULL)) {
 267     __ bind_literal(Lmessage);
 268   }
 269 
 270   return entry;
 271 }
 272 
 273 address TemplateInterpreterGenerator::generate_continuation_for(TosState state) {
 274   // Not used.
 275   STOP("generate_continuation_for");
 276   return NULL;
 277 }
 278 
 279 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 280   address entry = __ pc();
 281 
 282   __ interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
 283 
 284 #ifdef AARCH64
 285   __ restore_sp_after_call(Rtemp);  // Restore SP to extended SP
 286   __ restore_stack_top();
 287 #else
 288   // Restore stack bottom in case i2c adjusted stack
 289   __ ldr(SP, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
 290   // and NULL it as marker that SP is now tos until next java call
 291   __ mov(Rtemp, (int)NULL_WORD);
 292   __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
 293 #endif // AARCH64
 294 
 295   __ restore_method();
 296   __ restore_bcp();
 297   __ restore_dispatch();
 298   __ restore_locals();
 299 
 300   const Register Rcache = R2_tmp;
 301   const Register Rindex = R3_tmp;
 302   __ get_cache_and_index_at_bcp(Rcache, Rindex, 1, index_size);
 303 
 304   __ add(Rtemp, Rcache, AsmOperand(Rindex, lsl, LogBytesPerWord));
 305   __ ldrb(Rtemp, Address(Rtemp, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
 306   __ check_stack_top();
 307   __ add(Rstack_top, Rstack_top, AsmOperand(Rtemp, lsl, Interpreter::logStackElementSize));
 308 
 309 #ifndef AARCH64
 310   __ convert_retval_to_tos(state);
 311 #endif // !AARCH64
 312 
 313   __ dispatch_next(state, step);
 314 
 315   return entry;
 316 }
 317 
 318 
 319 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step) {
 320   address entry = __ pc();
 321 
 322   __ interp_verify_oop(R0_tos, state, __FILE__, __LINE__);
 323 
 324 #ifdef AARCH64
 325   __ restore_sp_after_call(Rtemp);  // Restore SP to extended SP
 326   __ restore_stack_top();
 327 #else
 328   // The stack is not extended by deopt but we must NULL last_sp as this
 329   // entry is like a "return".
 330   __ mov(Rtemp, 0);
 331   __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
 332 #endif // AARCH64
 333 
 334   __ restore_method();
 335   __ restore_bcp();
 336   __ restore_dispatch();
 337   __ restore_locals();
 338 
 339   // handle exceptions
 340   { Label L;
 341     __ ldr(Rtemp, Address(Rthread, Thread::pending_exception_offset()));
 342     __ cbz(Rtemp, L);
 343     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
 344     __ should_not_reach_here();
 345     __ bind(L);
 346   }
 347 
 348   __ dispatch_next(state, step);
 349 
 350   return entry;
 351 }
 352 
 353 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 354 #ifdef AARCH64
 355   address entry = __ pc();
 356   switch (type) {
 357     case T_BOOLEAN:
 358       __ tst(R0, 0xff);
 359       __ cset(R0, ne);
 360       break;
 361     case T_CHAR   : __ zero_extend(R0, R0, 16);  break;
 362     case T_BYTE   : __ sign_extend(R0, R0,  8);  break;
 363     case T_SHORT  : __ sign_extend(R0, R0, 16);  break;
 364     case T_INT    : // fall through
 365     case T_LONG   : // fall through
 366     case T_VOID   : // fall through
 367     case T_FLOAT  : // fall through
 368     case T_DOUBLE : /* nothing to do */          break;
 369     case T_OBJECT :
 370       // retrieve result from frame
 371       __ ldr(R0, Address(FP, frame::interpreter_frame_oop_temp_offset * wordSize));
 372       // and verify it
 373       __ verify_oop(R0);
 374       break;
 375     default       : ShouldNotReachHere();
 376   }
 377   __ ret();
 378   return entry;
 379 #else
 380   // Result handlers are not used on 32-bit ARM
 381   // since the returned value is already in appropriate format.
 382   __ should_not_reach_here();  // to avoid empty code block
 383 
 384   // The result handler non-zero indicates an object is returned and this is
 385   // used in the native entry code.
 386   return type == T_OBJECT ? (address)(-1) : NULL;
 387 #endif // AARCH64
 388 }
 389 
 390 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 391   address entry = __ pc();
 392   __ push(state);
 393   __ call_VM(noreg, runtime_entry);
 394 
 395   // load current bytecode
 396   __ ldrb(R3_bytecode, Address(Rbcp));
 397   __ dispatch_only_normal(vtos);
 398   return entry;
 399 }
 400 
 401 
 402 // Helpers for commoning out cases in the various type of method entries.
 403 //
 404 
 405 // increment invocation count & check for overflow
 406 //
 407 // Note: checking for negative value instead of overflow
 408 //       so we have a 'sticky' overflow test
 409 //
 410 // In: Rmethod.
 411 //
 412 // Uses R0, R1, Rtemp.
 413 //
 414 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow,
 415                                                  Label* profile_method,
 416                                                  Label* profile_method_continue) {
 417   Label done;
 418   const Register Rcounters = Rtemp;
 419   const Address invocation_counter(Rcounters,
 420                 MethodCounters::invocation_counter_offset() +
 421                 InvocationCounter::counter_offset());
 422 
 423   // Note: In tiered we increment either counters in MethodCounters* or
 424   // in MDO depending if we're profiling or not.
 425   if (TieredCompilation) {
 426     int increment = InvocationCounter::count_increment;
 427     Label no_mdo;
 428     if (ProfileInterpreter) {
 429       // Are we profiling?
 430       __ ldr(R1_tmp, Address(Rmethod, Method::method_data_offset()));
 431       __ cbz(R1_tmp, no_mdo);
 432       // Increment counter in the MDO
 433       const Address mdo_invocation_counter(R1_tmp,
 434                     in_bytes(MethodData::invocation_counter_offset()) +
 435                     in_bytes(InvocationCounter::counter_offset()));
 436       const Address mask(R1_tmp, in_bytes(MethodData::invoke_mask_offset()));
 437       __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, R0_tmp, Rtemp, eq, overflow);
 438       __ b(done);
 439     }
 440     __ bind(no_mdo);
 441     __ get_method_counters(Rmethod, Rcounters, done);
 442     const Address mask(Rcounters, in_bytes(MethodCounters::invoke_mask_offset()));
 443     __ increment_mask_and_jump(invocation_counter, increment, mask, R0_tmp, R1_tmp, eq, overflow);
 444     __ bind(done);
 445   } else { // not TieredCompilation
 446     const Address backedge_counter(Rcounters,
 447                   MethodCounters::backedge_counter_offset() +
 448                   InvocationCounter::counter_offset());
 449 
 450     const Register Ricnt = R0_tmp;  // invocation counter
 451     const Register Rbcnt = R1_tmp;  // backedge counter
 452 
 453     __ get_method_counters(Rmethod, Rcounters, done);
 454 
 455     if (ProfileInterpreter) {
 456       const Register Riic = R1_tmp;
 457       __ ldr_s32(Riic, Address(Rcounters, MethodCounters::interpreter_invocation_counter_offset()));
 458       __ add(Riic, Riic, 1);
 459       __ str_32(Riic, Address(Rcounters, MethodCounters::interpreter_invocation_counter_offset()));
 460     }
 461 
 462     // Update standard invocation counters
 463 
 464     __ ldr_u32(Ricnt, invocation_counter);
 465     __ ldr_u32(Rbcnt, backedge_counter);
 466 
 467     __ add(Ricnt, Ricnt, InvocationCounter::count_increment);
 468 
 469 #ifdef AARCH64
 470     __ andr(Rbcnt, Rbcnt, (unsigned int)InvocationCounter::count_mask_value); // mask out the status bits
 471 #else
 472     __ bic(Rbcnt, Rbcnt, ~InvocationCounter::count_mask_value); // mask out the status bits
 473 #endif // AARCH64
 474 
 475     __ str_32(Ricnt, invocation_counter);            // save invocation count
 476     __ add(Ricnt, Ricnt, Rbcnt);                     // add both counters
 477 
 478     // profile_method is non-null only for interpreted method so
 479     // profile_method != NULL == !native_call
 480     // BytecodeInterpreter only calls for native so code is elided.
 481 
 482     if (ProfileInterpreter && profile_method != NULL) {
 483       assert(profile_method_continue != NULL, "should be non-null");
 484 
 485       // Test to see if we should create a method data oop
 486       // Reuse R1_tmp as we don't need backedge counters anymore.
 487       Address profile_limit(Rcounters, in_bytes(MethodCounters::interpreter_profile_limit_offset()));
 488       __ ldr_s32(R1_tmp, profile_limit);
 489       __ cmp_32(Ricnt, R1_tmp);
 490       __ b(*profile_method_continue, lt);
 491 
 492       // if no method data exists, go to profile_method
 493       __ test_method_data_pointer(R1_tmp, *profile_method);
 494     }
 495 
 496     Address invoke_limit(Rcounters, in_bytes(MethodCounters::interpreter_invocation_limit_offset()));
 497     __ ldr_s32(R1_tmp, invoke_limit);
 498     __ cmp_32(Ricnt, R1_tmp);
 499     __ b(*overflow, hs);
 500     __ bind(done);
 501   }
 502 }
 503 
 504 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) {
 505   // InterpreterRuntime::frequency_counter_overflow takes one argument
 506   // indicating if the counter overflow occurs at a backwards branch (non-NULL bcp).
 507   // The call returns the address of the verified entry point for the method or NULL
 508   // if the compilation did not complete (either went background or bailed out).
 509   __ mov(R1, (int)false);
 510   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R1);
 511 
 512   // jump to the interpreted entry.
 513   __ b(do_continue);
 514 }
 515 
 516 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) {
 517   // Check if we've got enough room on the stack for
 518   //  - overhead;
 519   //  - locals;
 520   //  - expression stack.
 521   //
 522   // Registers on entry:
 523   //
 524   // R3 = number of additional locals
 525   // R11 = max expression stack slots (AArch64 only)
 526   // Rthread
 527   // Rmethod
 528   // Registers used: R0, R1, R2, Rtemp.
 529 
 530   const Register Radditional_locals = R3;
 531   const Register RmaxStack = AARCH64_ONLY(R11) NOT_AARCH64(R2);
 532 
 533   // monitor entry size
 534   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 535 
 536   // total overhead size: entry_size + (saved registers, thru expr stack bottom).
 537   // be sure to change this if you add/subtract anything to/from the overhead area
 538   const int overhead_size = (frame::sender_sp_offset - frame::interpreter_frame_initial_sp_offset)*wordSize + entry_size;
 539 
 540   // Pages reserved for VM runtime calls and subsequent Java calls.
 541   const int reserved_pages = JavaThread::stack_shadow_zone_size();
 542 
 543   // Thread::stack_size() includes guard pages, and they should not be touched.
 544   const int guard_pages = JavaThread::stack_guard_zone_size();
 545 
 546   __ ldr(R0, Address(Rthread, Thread::stack_base_offset()));
 547   __ ldr(R1, Address(Rthread, Thread::stack_size_offset()));
 548 #ifndef AARCH64
 549   __ ldr(Rtemp, Address(Rmethod, Method::const_offset()));
 550   __ ldrh(RmaxStack, Address(Rtemp, ConstMethod::max_stack_offset()));
 551 #endif // !AARCH64
 552   __ sub_slow(Rtemp, SP, overhead_size + reserved_pages + guard_pages + Method::extra_stack_words());
 553 
 554   // reserve space for additional locals
 555   __ sub(Rtemp, Rtemp, AsmOperand(Radditional_locals, lsl, Interpreter::logStackElementSize));
 556 
 557   // stack size
 558   __ sub(R0, R0, R1);
 559 
 560   // reserve space for expression stack
 561   __ sub(Rtemp, Rtemp, AsmOperand(RmaxStack, lsl, Interpreter::logStackElementSize));
 562 
 563   __ cmp(Rtemp, R0);
 564 
 565 #ifdef AARCH64
 566   Label L;
 567   __ b(L, hi);
 568   __ mov(SP, Rsender_sp);  // restore SP
 569   __ b(StubRoutines::throw_StackOverflowError_entry());
 570   __ bind(L);
 571 #else
 572   __ mov(SP, Rsender_sp, ls);  // restore SP
 573   __ b(StubRoutines::throw_StackOverflowError_entry(), ls);
 574 #endif // AARCH64
 575 }
 576 
 577 
 578 // Allocate monitor and lock method (asm interpreter)
 579 //
 580 void TemplateInterpreterGenerator::lock_method() {
 581   // synchronize method
 582 
 583   const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 584   assert ((entry_size % StackAlignmentInBytes) == 0, "should keep stack alignment");
 585 
 586   #ifdef ASSERT
 587     { Label L;
 588       __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset()));
 589       __ tbnz(Rtemp, JVM_ACC_SYNCHRONIZED_BIT, L);
 590       __ stop("method doesn't need synchronization");
 591       __ bind(L);
 592     }
 593   #endif // ASSERT
 594 
 595   // get synchronization object
 596   { Label done;
 597     __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset()));
 598 #ifdef AARCH64
 599     __ ldr(R0, Address(Rlocals, Interpreter::local_offset_in_bytes(0))); // get receiver (assume this is frequent case)
 600     __ tbz(Rtemp, JVM_ACC_STATIC_BIT, done);
 601 #else
 602     __ tst(Rtemp, JVM_ACC_STATIC);
 603     __ ldr(R0, Address(Rlocals, Interpreter::local_offset_in_bytes(0)), eq); // get receiver (assume this is frequent case)
 604     __ b(done, eq);
 605 #endif // AARCH64
 606     __ load_mirror(R0, Rmethod, Rtemp);
 607     __ bind(done);
 608   }
 609 
 610   // add space for monitor & lock
 611 
 612 #ifdef AARCH64
 613   __ check_extended_sp(Rtemp);
 614   __ sub(SP, SP, entry_size);                  // adjust extended SP
 615   __ mov(Rtemp, SP);
 616   __ str(Rtemp, Address(FP, frame::interpreter_frame_extended_sp_offset * wordSize));
 617 #endif // AARCH64
 618 
 619   __ sub(Rstack_top, Rstack_top, entry_size);
 620   __ check_stack_top_on_expansion();
 621                                               // add space for a monitor entry
 622   __ str(Rstack_top, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize));
 623                                               // set new monitor block top
 624   __ str(R0, Address(Rstack_top, BasicObjectLock::obj_offset_in_bytes()));
 625                                               // store object
 626   __ mov(R1, Rstack_top);                     // monitor entry address
 627   __ lock_object(R1);
 628 }
 629 
 630 #ifdef AARCH64
 631 
 632 //
 633 // Generate a fixed interpreter frame. This is identical setup for interpreted methods
 634 // and for native methods hence the shared code.
 635 //
 636 // On entry:
 637 //   R10 = ConstMethod
 638 //   R11 = max expr. stack (in slots), if !native_call
 639 //
 640 // On exit:
 641 //   Rbcp, Rstack_top are initialized, SP is extended
 642 //
 643 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 644   // Incoming registers
 645   const Register RconstMethod = R10;
 646   const Register RmaxStack = R11;
 647   // Temporary registers
 648   const Register RextendedSP = R0;
 649   const Register Rcache = R1;
 650   const Register Rmdp = ProfileInterpreter ? R2 : ZR;
 651 
 652   // Generates the following stack layout (stack grows up in this picture):
 653   //
 654   // [ expr. stack bottom ]
 655   // [ saved Rbcp         ]
 656   // [ current Rlocals    ]
 657   // [ cache              ]
 658   // [ mdx                ]
 659   // [ mirror             ]
 660   // [ Method*            ]
 661   // [ extended SP        ]
 662   // [ expr. stack top    ]
 663   // [ sender_sp          ]
 664   // [ saved FP           ] <--- FP
 665   // [ saved LR           ]
 666 
 667   // initialize fixed part of activation frame
 668   __ stp(FP, LR, Address(SP, -2*wordSize, pre_indexed));
 669   __ mov(FP, SP);                                     // establish new FP
 670 
 671   // setup Rbcp
 672   if (native_call) {
 673     __ mov(Rbcp, ZR);                                 // bcp = 0 for native calls
 674   } else {
 675     __ add(Rbcp, RconstMethod, in_bytes(ConstMethod::codes_offset())); // get codebase
 676   }
 677 
 678   // Rstack_top & RextendedSP
 679   __ sub(Rstack_top, SP, 10*wordSize);
 680   if (native_call) {
 681     __ sub(RextendedSP, Rstack_top, round_to(wordSize, StackAlignmentInBytes));    // reserve 1 slot for exception handling
 682   } else {
 683     __ sub(RextendedSP, Rstack_top, AsmOperand(RmaxStack, lsl, Interpreter::logStackElementSize));
 684     __ align_reg(RextendedSP, RextendedSP, StackAlignmentInBytes);
 685   }
 686   __ mov(SP, RextendedSP);
 687   __ check_stack_top();
 688 
 689   // Load Rmdp
 690   if (ProfileInterpreter) {
 691     __ ldr(Rtemp, Address(Rmethod, Method::method_data_offset()));
 692     __ tst(Rtemp, Rtemp);
 693     __ add(Rtemp, Rtemp, in_bytes(MethodData::data_offset()));
 694     __ csel(Rmdp, ZR, Rtemp, eq);
 695   }
 696 
 697   // Load Rcache
 698   __ ldr(Rtemp, Address(RconstMethod, ConstMethod::constants_offset()));
 699   __ ldr(Rcache, Address(Rtemp, ConstantPool::cache_offset_in_bytes()));
 700   // Get mirror and store it in the frame as GC root for this Method*
 701   __ load_mirror(Rtemp, Rmethod, Rtemp);
 702 
 703   // Build fixed frame
 704   __ stp(Rstack_top, Rbcp, Address(FP, -10*wordSize));
 705   __ stp(Rlocals, Rcache,  Address(FP,  -8*wordSize));
 706   __ stp(Rmdp, Rtemp,          Address(FP,  -6*wordSize));
 707   __ stp(Rmethod, RextendedSP, Address(FP,  -4*wordSize));
 708   __ stp(ZR, Rsender_sp,   Address(FP,  -2*wordSize));
 709   assert(frame::interpreter_frame_initial_sp_offset == -10, "interpreter frame broken");
 710   assert(frame::interpreter_frame_stack_top_offset  == -2, "stack top broken");
 711 }
 712 
 713 #else // AARCH64
 714 
 715 //
 716 // Generate a fixed interpreter frame. This is identical setup for interpreted methods
 717 // and for native methods hence the shared code.
 718 
 719 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
 720   // Generates the following stack layout:
 721   //
 722   // [ expr. stack bottom ]
 723   // [ saved Rbcp         ]
 724   // [ current Rlocals    ]
 725   // [ cache              ]
 726   // [ mdx                ]
 727   // [ Method*            ]
 728   // [ last_sp            ]
 729   // [ sender_sp          ]
 730   // [ saved FP           ] <--- FP
 731   // [ saved LR           ]
 732 
 733   // initialize fixed part of activation frame
 734   __ push(LR);                                        // save return address
 735   __ push(FP);                                        // save FP
 736   __ mov(FP, SP);                                     // establish new FP
 737 
 738   __ push(Rsender_sp);
 739 
 740   __ mov(R0, 0);
 741   __ push(R0);                                        // leave last_sp as null
 742 
 743   // setup Rbcp
 744   if (native_call) {
 745     __ mov(Rbcp, 0);                                  // bcp = 0 for native calls
 746   } else {
 747     __ ldr(Rtemp, Address(Rmethod, Method::const_offset())); // get ConstMethod*
 748     __ add(Rbcp, Rtemp, ConstMethod::codes_offset()); // get codebase
 749   }
 750 
 751   __ push(Rmethod);                                    // save Method*
 752   // Get mirror and store it in the frame as GC root for this Method*
 753   __ load_mirror(Rtemp, Rmethod, Rtemp);
 754   __ push(Rtemp);
 755 
 756   if (ProfileInterpreter) {
 757     __ ldr(Rtemp, Address(Rmethod, Method::method_data_offset()));
 758     __ tst(Rtemp, Rtemp);
 759     __ add(Rtemp, Rtemp, in_bytes(MethodData::data_offset()), ne);
 760     __ push(Rtemp);                                    // set the mdp (method data pointer)
 761   } else {
 762     __ push(R0);
 763   }
 764 
 765   __ ldr(Rtemp, Address(Rmethod, Method::const_offset()));
 766   __ ldr(Rtemp, Address(Rtemp, ConstMethod::constants_offset()));
 767   __ ldr(Rtemp, Address(Rtemp, ConstantPool::cache_offset_in_bytes()));
 768   __ push(Rtemp);                                      // set constant pool cache
 769   __ push(Rlocals);                                    // set locals pointer
 770   __ push(Rbcp);                                       // set bcp
 771   __ push(R0);                                         // reserve word for pointer to expression stack bottom
 772   __ str(SP, Address(SP, 0));                          // set expression stack bottom
 773 }
 774 
 775 #endif // AARCH64
 776 
 777 // End of helpers
 778 
 779 //------------------------------------------------------------------------------------------------------------------------
 780 // Entry points
 781 //
 782 // Here we generate the various kind of entries into the interpreter.
 783 // The two main entry type are generic bytecode methods and native call method.
 784 // These both come in synchronized and non-synchronized versions but the
 785 // frame layout they create is very similar. The other method entry
 786 // types are really just special purpose entries that are really entry
 787 // and interpretation all in one. These are for trivial methods like
 788 // accessor, empty, or special math methods.
 789 //
 790 // When control flow reaches any of the entry types for the interpreter
 791 // the following holds ->
 792 //
 793 // Arguments:
 794 //
 795 // Rmethod: Method*
 796 // Rthread: thread
 797 // Rsender_sp:  sender sp
 798 // Rparams (SP on 32-bit ARM): pointer to method parameters
 799 //
 800 // LR: return address
 801 //
 802 // Stack layout immediately at entry
 803 //
 804 // [ optional padding(*)] <--- SP (AArch64)
 805 // [ parameter n        ] <--- Rparams (SP on 32-bit ARM)
 806 //   ...
 807 // [ parameter 1        ]
 808 // [ expression stack   ] (caller's java expression stack)
 809 
 810 // Assuming that we don't go to one of the trivial specialized
 811 // entries the stack will look like below when we are ready to execute
 812 // the first bytecode (or call the native routine). The register usage
 813 // will be as the template based interpreter expects.
 814 //
 815 // local variables follow incoming parameters immediately; i.e.
 816 // the return address is saved at the end of the locals.
 817 //
 818 // [ reserved stack (*) ] <--- SP (AArch64)
 819 // [ expr. stack        ] <--- Rstack_top (SP on 32-bit ARM)
 820 // [ monitor entry      ]
 821 //   ...
 822 // [ monitor entry      ]
 823 // [ expr. stack bottom ]
 824 // [ saved Rbcp         ]
 825 // [ current Rlocals    ]
 826 // [ cache              ]
 827 // [ mdx                ]
 828 // [ mirror             ]
 829 // [ Method*            ]
 830 //
 831 // 32-bit ARM:
 832 // [ last_sp            ]
 833 //
 834 // AArch64:
 835 // [ extended SP (*)    ]
 836 // [ stack top (*)      ]
 837 //
 838 // [ sender_sp          ]
 839 // [ saved FP           ] <--- FP
 840 // [ saved LR           ]
 841 // [ optional padding(*)]
 842 // [ local variable m   ]
 843 //   ...
 844 // [ local variable 1   ]
 845 // [ parameter n        ]
 846 //   ...
 847 // [ parameter 1        ] <--- Rlocals
 848 //
 849 // (*) - AArch64 only
 850 //
 851 
 852 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 853 #if INCLUDE_ALL_GCS
 854   if (UseG1GC) {
 855     // Code: _aload_0, _getfield, _areturn
 856     // parameter size = 1
 857     //
 858     // The code that gets generated by this routine is split into 2 parts:
 859     //    1. The "intrinsified" code for G1 (or any SATB based GC),
 860     //    2. The slow path - which is an expansion of the regular method entry.
 861     //
 862     // Notes:-
 863     // * In the G1 code we do not check whether we need to block for
 864     //   a safepoint. If G1 is enabled then we must execute the specialized
 865     //   code for Reference.get (except when the Reference object is null)
 866     //   so that we can log the value in the referent field with an SATB
 867     //   update buffer.
 868     //   If the code for the getfield template is modified so that the
 869     //   G1 pre-barrier code is executed when the current method is
 870     //   Reference.get() then going through the normal method entry
 871     //   will be fine.
 872     // * The G1 code can, however, check the receiver object (the instance
 873     //   of java.lang.Reference) and jump to the slow path if null. If the
 874     //   Reference object is null then we obviously cannot fetch the referent
 875     //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 876     //   regular method entry code to generate the NPE.
 877     //
 878     // This code is based on generate_accessor_enty.
 879     //
 880     // Rmethod: Method*
 881     // Rthread: thread
 882     // Rsender_sp: sender sp, must be preserved for slow path, set SP to it on fast path
 883     // Rparams: parameters
 884 
 885     address entry = __ pc();
 886     Label slow_path;
 887     const Register Rthis = R0;
 888     const Register Rret_addr = Rtmp_save1;
 889     assert_different_registers(Rthis, Rret_addr, Rsender_sp);
 890 
 891     const int referent_offset = java_lang_ref_Reference::referent_offset;
 892     guarantee(referent_offset > 0, "referent offset not initialized");
 893 
 894     // Check if local 0 != NULL
 895     // If the receiver is null then it is OK to jump to the slow path.
 896     __ ldr(Rthis, Address(Rparams));
 897     __ cbz(Rthis, slow_path);
 898 
 899     // Generate the G1 pre-barrier code to log the value of
 900     // the referent field in an SATB buffer.
 901 
 902     // Load the value of the referent field.
 903     __ load_heap_oop(R0, Address(Rthis, referent_offset));
 904 
 905     // Preserve LR
 906     __ mov(Rret_addr, LR);
 907 
 908     __ g1_write_barrier_pre(noreg,   // store_addr
 909                             noreg,   // new_val
 910                             R0,      // pre_val
 911                             Rtemp,   // tmp1
 912                             R1_tmp); // tmp2
 913 
 914     // _areturn
 915     __ mov(SP, Rsender_sp);
 916     __ ret(Rret_addr);
 917 
 918     // generate a vanilla interpreter entry as the slow path
 919     __ bind(slow_path);
 920     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
 921     return entry;
 922   }
 923 #endif // INCLUDE_ALL_GCS
 924 
 925   // If G1 is not enabled then attempt to go through the normal entry point
 926   return NULL;
 927 }
 928 
 929 // Not supported
 930 address TemplateInterpreterGenerator::generate_CRC32_update_entry() { return NULL; }
 931 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { return NULL; }
 932 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) { return NULL; }
 933 
 934 //
 935 // Interpreter stub for calling a native method. (asm interpreter)
 936 // This sets up a somewhat different looking stack for calling the native method
 937 // than the typical interpreter frame setup.
 938 //
 939 
 940 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
 941   // determine code generation flags
 942   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
 943 
 944   // Incoming registers:
 945   //
 946   // Rmethod: Method*
 947   // Rthread: thread
 948   // Rsender_sp: sender sp
 949   // Rparams: parameters
 950 
 951   address entry_point = __ pc();
 952 
 953   // Register allocation
 954   const Register Rsize_of_params = AARCH64_ONLY(R20) NOT_AARCH64(R6);
 955   const Register Rsig_handler    = AARCH64_ONLY(R21) NOT_AARCH64(Rtmp_save0 /* R4 */);
 956   const Register Rnative_code    = AARCH64_ONLY(R22) NOT_AARCH64(Rtmp_save1 /* R5 */);
 957   const Register Rresult_handler = AARCH64_ONLY(Rsig_handler) NOT_AARCH64(R6);
 958 
 959 #ifdef AARCH64
 960   const Register RconstMethod = R10; // also used in generate_fixed_frame (should match)
 961   const Register Rsaved_result = Rnative_code;
 962   const FloatRegister Dsaved_result = V8;
 963 #else
 964   const Register Rsaved_result_lo = Rtmp_save0;  // R4
 965   const Register Rsaved_result_hi = Rtmp_save1;  // R5
 966   FloatRegister saved_result_fp;
 967 #endif // AARCH64
 968 
 969 
 970 #ifdef AARCH64
 971   __ ldr(RconstMethod, Address(Rmethod, Method::const_offset()));
 972   __ ldrh(Rsize_of_params,  Address(RconstMethod, ConstMethod::size_of_parameters_offset()));
 973 #else
 974   __ ldr(Rsize_of_params, Address(Rmethod, Method::const_offset()));
 975   __ ldrh(Rsize_of_params,  Address(Rsize_of_params, ConstMethod::size_of_parameters_offset()));
 976 #endif // AARCH64
 977 
 978   // native calls don't need the stack size check since they have no expression stack
 979   // and the arguments are already on the stack and we only add a handful of words
 980   // to the stack
 981 
 982   // compute beginning of parameters (Rlocals)
 983   __ sub(Rlocals, Rparams, wordSize);
 984   __ add(Rlocals, Rlocals, AsmOperand(Rsize_of_params, lsl, Interpreter::logStackElementSize));
 985 
 986 #ifdef AARCH64
 987   int extra_stack_reserve = 2*wordSize; // extra space for oop_temp
 988   if(__ can_post_interpreter_events()) {
 989     // extra space for saved results
 990     extra_stack_reserve += 2*wordSize;
 991   }
 992   // reserve extra stack space and nullify oop_temp slot
 993   __ stp(ZR, ZR, Address(SP, -extra_stack_reserve, pre_indexed));
 994 #else
 995   // reserve stack space for oop_temp
 996   __ mov(R0, 0);
 997   __ push(R0);
 998 #endif // AARCH64
 999 
1000   generate_fixed_frame(true); // Note: R9 is now saved in the frame
1001 
1002   // make sure method is native & not abstract
1003 #ifdef ASSERT
1004   __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset()));
1005   {
1006     Label L;
1007     __ tbnz(Rtemp, JVM_ACC_NATIVE_BIT, L);
1008     __ stop("tried to execute non-native method as native");
1009     __ bind(L);
1010   }
1011   { Label L;
1012     __ tbz(Rtemp, JVM_ACC_ABSTRACT_BIT, L);
1013     __ stop("tried to execute abstract method in interpreter");
1014     __ bind(L);
1015   }
1016 #endif
1017 
1018   // increment invocation count & check for overflow
1019   Label invocation_counter_overflow;
1020   if (inc_counter) {
1021     if (synchronized) {
1022       // Avoid unlocking method's monitor in case of exception, as it has not
1023       // been locked yet.
1024       __ set_do_not_unlock_if_synchronized(true, Rtemp);
1025     }
1026     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1027   }
1028 
1029   Label continue_after_compile;
1030   __ bind(continue_after_compile);
1031 
1032   if (inc_counter && synchronized) {
1033     __ set_do_not_unlock_if_synchronized(false, Rtemp);
1034   }
1035 
1036   // check for synchronized methods
1037   // Must happen AFTER invocation_counter check and stack overflow check,
1038   // so method is not locked if overflows.
1039   //
1040   if (synchronized) {
1041     lock_method();
1042   } else {
1043     // no synchronization necessary
1044 #ifdef ASSERT
1045       { Label L;
1046         __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset()));
1047         __ tbz(Rtemp, JVM_ACC_SYNCHRONIZED_BIT, L);
1048         __ stop("method needs synchronization");
1049         __ bind(L);
1050       }
1051 #endif
1052   }
1053 
1054   // start execution
1055 #ifdef ASSERT
1056   { Label L;
1057     __ ldr(Rtemp, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize));
1058     __ cmp(Rtemp, Rstack_top);
1059     __ b(L, eq);
1060     __ stop("broken stack frame setup in interpreter");
1061     __ bind(L);
1062   }
1063 #endif
1064   __ check_extended_sp(Rtemp);
1065 
1066   // jvmti/dtrace support
1067   __ notify_method_entry();
1068 #if R9_IS_SCRATCHED
1069   __ restore_method();
1070 #endif
1071 
1072   {
1073     Label L;
1074     __ ldr(Rsig_handler, Address(Rmethod, Method::signature_handler_offset()));
1075     __ cbnz(Rsig_handler, L);
1076     __ mov(R1, Rmethod);
1077     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R1, true);
1078     __ ldr(Rsig_handler, Address(Rmethod, Method::signature_handler_offset()));
1079     __ bind(L);
1080   }
1081 
1082   {
1083     Label L;
1084     __ ldr(Rnative_code, Address(Rmethod, Method::native_function_offset()));
1085     __ cbnz(Rnative_code, L);
1086     __ mov(R1, Rmethod);
1087     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R1);
1088     __ ldr(Rnative_code, Address(Rmethod, Method::native_function_offset()));
1089     __ bind(L);
1090   }
1091 
1092   // Allocate stack space for arguments
1093 
1094 #ifdef AARCH64
1095   __ sub(Rtemp, SP, Rsize_of_params, ex_uxtw, LogBytesPerWord);
1096   __ align_reg(SP, Rtemp, StackAlignmentInBytes);
1097 
1098   // Allocate more stack space to accomodate all arguments passed on GP and FP registers:
1099   // 8 * wordSize for GPRs
1100   // 8 * wordSize for FPRs
1101   int reg_arguments = round_to(8*wordSize + 8*wordSize, StackAlignmentInBytes);
1102 #else
1103 
1104   // C functions need aligned stack
1105   __ bic(SP, SP, StackAlignmentInBytes - 1);
1106   // Multiply by BytesPerLong instead of BytesPerWord, because calling convention
1107   // may require empty slots due to long alignment, e.g. func(int, jlong, int, jlong)
1108   __ sub(SP, SP, AsmOperand(Rsize_of_params, lsl, LogBytesPerLong));
1109 
1110 #ifdef __ABI_HARD__
1111   // Allocate more stack space to accomodate all GP as well as FP registers:
1112   // 4 * wordSize
1113   // 8 * BytesPerLong
1114   int reg_arguments = round_to((4*wordSize) + (8*BytesPerLong), StackAlignmentInBytes);
1115 #else
1116   // Reserve at least 4 words on the stack for loading
1117   // of parameters passed on registers (R0-R3).
1118   // See generate_slow_signature_handler().
1119   // It is also used for JNIEnv & class additional parameters.
1120   int reg_arguments = 4 * wordSize;
1121 #endif // __ABI_HARD__
1122 #endif // AARCH64
1123 
1124   __ sub(SP, SP, reg_arguments);
1125 
1126 
1127   // Note: signature handler blows R4 (32-bit ARM) or R21 (AArch64) besides all scratch registers.
1128   // See AbstractInterpreterGenerator::generate_slow_signature_handler().
1129   __ call(Rsig_handler);
1130 #if R9_IS_SCRATCHED
1131   __ restore_method();
1132 #endif
1133   __ mov(Rresult_handler, R0);
1134 
1135   // Pass JNIEnv and mirror for static methods
1136   {
1137     Label L;
1138     __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset()));
1139     __ add(R0, Rthread, in_bytes(JavaThread::jni_environment_offset()));
1140     __ tbz(Rtemp, JVM_ACC_STATIC_BIT, L);
1141     __ load_mirror(Rtemp, Rmethod, Rtemp);
1142     __ add(R1, FP, frame::interpreter_frame_oop_temp_offset * wordSize);
1143     __ str(Rtemp, Address(R1, 0));
1144     __ bind(L);
1145   }
1146 
1147   __ set_last_Java_frame(SP, FP, true, Rtemp);
1148 
1149   // Changing state to _thread_in_native must be the last thing to do
1150   // before the jump to native code. At this moment stack must be
1151   // safepoint-safe and completely prepared for stack walking.
1152 #ifdef ASSERT
1153   {
1154     Label L;
1155     __ ldr_u32(Rtemp, Address(Rthread, JavaThread::thread_state_offset()));
1156     __ cmp_32(Rtemp, _thread_in_Java);
1157     __ b(L, eq);
1158     __ stop("invalid thread state");
1159     __ bind(L);
1160   }
1161 #endif
1162 
1163 #ifdef AARCH64
1164   __ mov(Rtemp, _thread_in_native);
1165   __ add(Rtemp2, Rthread, in_bytes(JavaThread::thread_state_offset()));
1166   // STLR is used to force all preceding writes to be observed prior to thread state change
1167   __ stlr_w(Rtemp, Rtemp2);
1168 #else
1169   // Force all preceding writes to be observed prior to thread state change
1170   __ membar(MacroAssembler::StoreStore, Rtemp);
1171 
1172   __ mov(Rtemp, _thread_in_native);
1173   __ str(Rtemp, Address(Rthread, JavaThread::thread_state_offset()));
1174 #endif // AARCH64
1175 
1176   __ call(Rnative_code);
1177 #if R9_IS_SCRATCHED
1178   __ restore_method();
1179 #endif
1180 
1181   // Set FPSCR/FPCR to a known state
1182   if (AlwaysRestoreFPU) {
1183     __ restore_default_fp_mode();
1184   }
1185 
1186   // Do safepoint check
1187   __ mov(Rtemp, _thread_in_native_trans);
1188   __ str_32(Rtemp, Address(Rthread, JavaThread::thread_state_offset()));
1189 
1190     // Force this write out before the read below
1191   __ membar(MacroAssembler::StoreLoad, Rtemp);
1192 
1193   __ ldr_global_s32(Rtemp, SafepointSynchronize::address_of_state());
1194 
1195   // Protect the return value in the interleaved code: save it to callee-save registers.
1196 #ifdef AARCH64
1197   __ mov(Rsaved_result, R0);
1198   __ fmov_d(Dsaved_result, D0);
1199 #else
1200   __ mov(Rsaved_result_lo, R0);
1201   __ mov(Rsaved_result_hi, R1);
1202 #ifdef __ABI_HARD__
1203   // preserve native FP result in a callee-saved register
1204   saved_result_fp = D8;
1205   __ fcpyd(saved_result_fp, D0);
1206 #else
1207   saved_result_fp = fnoreg;
1208 #endif // __ABI_HARD__
1209 #endif // AARCH64
1210 
1211   {
1212     __ ldr_u32(R3, Address(Rthread, JavaThread::suspend_flags_offset()));
1213     __ cmp(Rtemp, SafepointSynchronize::_not_synchronized);
1214     __ cond_cmp(R3, 0, eq);
1215 
1216 #ifdef AARCH64
1217     Label L;
1218     __ b(L, eq);
1219     __ mov(R0, Rthread);
1220     __ call(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans), relocInfo::none);
1221     __ bind(L);
1222 #else
1223   __ mov(R0, Rthread, ne);
1224   __ call(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans), relocInfo::none, ne);
1225 #if R9_IS_SCRATCHED
1226   __ restore_method();
1227 #endif
1228 #endif // AARCH64
1229   }
1230 
1231   // Perform Native->Java thread transition
1232   __ mov(Rtemp, _thread_in_Java);
1233   __ str_32(Rtemp, Address(Rthread, JavaThread::thread_state_offset()));
1234 
1235   // Zero handles and last_java_sp
1236   __ reset_last_Java_frame(Rtemp);
1237   __ ldr(R3, Address(Rthread, JavaThread::active_handles_offset()));
1238   __ str_32(__ zero_register(Rtemp), Address(R3, JNIHandleBlock::top_offset_in_bytes()));
1239   if (CheckJNICalls) {
1240     __ str(__ zero_register(Rtemp), Address(Rthread, JavaThread::pending_jni_exception_check_fn_offset()));
1241   }
1242 
1243   // Unbox if the result is non-zero object
1244 #ifdef AARCH64
1245   {
1246     Label L, Lnull;
1247     __ mov_slow(Rtemp, AbstractInterpreter::result_handler(T_OBJECT));
1248     __ cmp(Rresult_handler, Rtemp);
1249     __ b(L, ne);
1250     __ cbz(Rsaved_result, Lnull);
1251     __ ldr(Rsaved_result, Address(Rsaved_result));
1252     __ bind(Lnull);
1253     // Store oop on the stack for GC
1254     __ str(Rsaved_result, Address(FP, frame::interpreter_frame_oop_temp_offset * wordSize));
1255     __ bind(L);
1256   }
1257 #else
1258   __ tst(Rsaved_result_lo, Rresult_handler);
1259   __ ldr(Rsaved_result_lo, Address(Rsaved_result_lo), ne);
1260 
1261   // Store oop on the stack for GC
1262   __ cmp(Rresult_handler, 0);
1263   __ str(Rsaved_result_lo, Address(FP, frame::interpreter_frame_oop_temp_offset * wordSize), ne);
1264 #endif // AARCH64
1265 
1266 #ifdef AARCH64
1267   // Restore SP (drop native parameters area), to keep SP in sync with extended_sp in frame
1268   __ restore_sp_after_call(Rtemp);
1269   __ check_stack_top();
1270 #endif // AARCH64
1271 
1272   // reguard stack if StackOverflow exception happened while in native.
1273   {
1274     __ ldr_u32(Rtemp, Address(Rthread, JavaThread::stack_guard_state_offset()));
1275     __ cmp_32(Rtemp, JavaThread::stack_guard_yellow_reserved_disabled);
1276 #ifdef AARCH64
1277     Label L;
1278     __ b(L, ne);
1279     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages), relocInfo::none);
1280     __ bind(L);
1281 #else
1282   __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages), relocInfo::none, eq);
1283 #if R9_IS_SCRATCHED
1284   __ restore_method();
1285 #endif
1286 #endif // AARCH64
1287   }
1288 
1289   // check pending exceptions
1290   {
1291     __ ldr(Rtemp, Address(Rthread, Thread::pending_exception_offset()));
1292 #ifdef AARCH64
1293     Label L;
1294     __ cbz(Rtemp, L);
1295     __ mov_pc_to(Rexception_pc);
1296     __ b(StubRoutines::forward_exception_entry());
1297     __ bind(L);
1298 #else
1299     __ cmp(Rtemp, 0);
1300     __ mov(Rexception_pc, PC, ne);
1301     __ b(StubRoutines::forward_exception_entry(), ne);
1302 #endif // AARCH64
1303   }
1304 
1305   if (synchronized) {
1306     // address of first monitor
1307     __ sub(R1, FP, - (frame::interpreter_frame_monitor_block_bottom_offset - frame::interpreter_frame_monitor_size()) * wordSize);
1308     __ unlock_object(R1);
1309   }
1310 
1311   // jvmti/dtrace support
1312   // Note: This must happen _after_ handling/throwing any exceptions since
1313   //       the exception handler code notifies the runtime of method exits
1314   //       too. If this happens before, method entry/exit notifications are
1315   //       not properly paired (was bug - gri 11/22/99).
1316 #ifdef AARCH64
1317   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI, true, Rsaved_result, noreg, Dsaved_result);
1318 #else
1319   __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI, true, Rsaved_result_lo, Rsaved_result_hi, saved_result_fp);
1320 #endif // AARCH64
1321 
1322   // Restore the result. Oop result is restored from the stack.
1323 #ifdef AARCH64
1324   __ mov(R0, Rsaved_result);
1325   __ fmov_d(D0, Dsaved_result);
1326 
1327   __ blr(Rresult_handler);
1328 #else
1329   __ cmp(Rresult_handler, 0);
1330   __ ldr(R0, Address(FP, frame::interpreter_frame_oop_temp_offset * wordSize), ne);
1331   __ mov(R0, Rsaved_result_lo, eq);
1332   __ mov(R1, Rsaved_result_hi);
1333 
1334 #ifdef __ABI_HARD__
1335   // reload native FP result
1336   __ fcpyd(D0, D8);
1337 #endif // __ABI_HARD__
1338 
1339 #ifdef ASSERT
1340   if (VerifyOops) {
1341     Label L;
1342     __ cmp(Rresult_handler, 0);
1343     __ b(L, eq);
1344     __ verify_oop(R0);
1345     __ bind(L);
1346   }
1347 #endif // ASSERT
1348 #endif // AARCH64
1349 
1350   // Restore FP/LR, sender_sp and return
1351 #ifdef AARCH64
1352   __ ldr(Rtemp, Address(FP, frame::interpreter_frame_sender_sp_offset * wordSize));
1353   __ ldp(FP, LR, Address(FP));
1354   __ mov(SP, Rtemp);
1355 #else
1356   __ mov(Rtemp, FP);
1357   __ ldmia(FP, RegisterSet(FP) | RegisterSet(LR));
1358   __ ldr(SP, Address(Rtemp, frame::interpreter_frame_sender_sp_offset * wordSize));
1359 #endif // AARCH64
1360 
1361   __ ret();
1362 
1363   if (inc_counter) {
1364     // Handle overflow of counter and compile method
1365     __ bind(invocation_counter_overflow);
1366     generate_counter_overflow(continue_after_compile);
1367   }
1368 
1369   return entry_point;
1370 }
1371 
1372 //
1373 // Generic interpreted method entry to (asm) interpreter
1374 //
1375 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1376   // determine code generation flags
1377   bool inc_counter  = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1378 
1379   // Rmethod: Method*
1380   // Rthread: thread
1381   // Rsender_sp: sender sp (could differ from SP if we were called via c2i)
1382   // Rparams: pointer to the last parameter in the stack
1383 
1384   address entry_point = __ pc();
1385 
1386   const Register RconstMethod = AARCH64_ONLY(R10) NOT_AARCH64(R3);
1387 
1388 #ifdef AARCH64
1389   const Register RmaxStack = R11;
1390   const Register RlocalsBase = R12;
1391 #endif // AARCH64
1392 
1393   __ ldr(RconstMethod, Address(Rmethod, Method::const_offset()));
1394 
1395   __ ldrh(R2, Address(RconstMethod, ConstMethod::size_of_parameters_offset()));
1396   __ ldrh(R3, Address(RconstMethod, ConstMethod::size_of_locals_offset()));
1397 
1398   // setup Rlocals
1399   __ sub(Rlocals, Rparams, wordSize);
1400   __ add(Rlocals, Rlocals, AsmOperand(R2, lsl, Interpreter::logStackElementSize));
1401 
1402   __ sub(R3, R3, R2); // number of additional locals
1403 
1404 #ifdef AARCH64
1405   // setup RmaxStack
1406   __ ldrh(RmaxStack, Address(RconstMethod, ConstMethod::max_stack_offset()));
1407   __ add(RmaxStack, RmaxStack, MAX2(1, Method::extra_stack_entries())); // reserve slots for exception handler and JSR292 appendix argument
1408 #endif // AARCH64
1409 
1410   // see if we've got enough room on the stack for locals plus overhead.
1411   generate_stack_overflow_check();
1412 
1413 #ifdef AARCH64
1414 
1415   // allocate space for locals
1416   {
1417     __ sub(RlocalsBase, Rparams, AsmOperand(R3, lsl, Interpreter::logStackElementSize));
1418     __ align_reg(SP, RlocalsBase, StackAlignmentInBytes);
1419   }
1420 
1421   // explicitly initialize locals
1422   {
1423     Label zero_loop, done;
1424     __ cbz(R3, done);
1425 
1426     __ tbz(R3, 0, zero_loop);
1427     __ subs(R3, R3, 1);
1428     __ str(ZR, Address(RlocalsBase, wordSize, post_indexed));
1429     __ b(done, eq);
1430 
1431     __ bind(zero_loop);
1432     __ subs(R3, R3, 2);
1433     __ stp(ZR, ZR, Address(RlocalsBase, 2*wordSize, post_indexed));
1434     __ b(zero_loop, ne);
1435 
1436     __ bind(done);
1437   }
1438 
1439 #else
1440   // allocate space for locals
1441   // explicitly initialize locals
1442 
1443   // Loop is unrolled 4 times
1444   Label loop;
1445   __ mov(R0, 0);
1446   __ bind(loop);
1447 
1448   // #1
1449   __ subs(R3, R3, 1);
1450   __ push(R0, ge);
1451 
1452   // #2
1453   __ subs(R3, R3, 1, ge);
1454   __ push(R0, ge);
1455 
1456   // #3
1457   __ subs(R3, R3, 1, ge);
1458   __ push(R0, ge);
1459 
1460   // #4
1461   __ subs(R3, R3, 1, ge);
1462   __ push(R0, ge);
1463 
1464   __ b(loop, gt);
1465 #endif // AARCH64
1466 
1467   // initialize fixed part of activation frame
1468   generate_fixed_frame(false);
1469 
1470   __ restore_dispatch();
1471 
1472   // make sure method is not native & not abstract
1473 #ifdef ASSERT
1474   __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset()));
1475   {
1476     Label L;
1477     __ tbz(Rtemp, JVM_ACC_NATIVE_BIT, L);
1478     __ stop("tried to execute native method as non-native");
1479     __ bind(L);
1480   }
1481   { Label L;
1482     __ tbz(Rtemp, JVM_ACC_ABSTRACT_BIT, L);
1483     __ stop("tried to execute abstract method in interpreter");
1484     __ bind(L);
1485   }
1486 #endif
1487 
1488   // increment invocation count & check for overflow
1489   Label invocation_counter_overflow;
1490   Label profile_method;
1491   Label profile_method_continue;
1492   if (inc_counter) {
1493     if (synchronized) {
1494       // Avoid unlocking method's monitor in case of exception, as it has not
1495       // been locked yet.
1496       __ set_do_not_unlock_if_synchronized(true, Rtemp);
1497     }
1498     generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1499     if (ProfileInterpreter) {
1500       __ bind(profile_method_continue);
1501     }
1502   }
1503   Label continue_after_compile;
1504   __ bind(continue_after_compile);
1505 
1506   if (inc_counter && synchronized) {
1507     __ set_do_not_unlock_if_synchronized(false, Rtemp);
1508   }
1509 #if R9_IS_SCRATCHED
1510   __ restore_method();
1511 #endif
1512 
1513   // check for synchronized methods
1514   // Must happen AFTER invocation_counter check and stack overflow check,
1515   // so method is not locked if overflows.
1516   //
1517   if (synchronized) {
1518     // Allocate monitor and lock method
1519     lock_method();
1520   } else {
1521     // no synchronization necessary
1522 #ifdef ASSERT
1523       { Label L;
1524         __ ldr_u32(Rtemp, Address(Rmethod, Method::access_flags_offset()));
1525         __ tbz(Rtemp, JVM_ACC_SYNCHRONIZED_BIT, L);
1526         __ stop("method needs synchronization");
1527         __ bind(L);
1528       }
1529 #endif
1530   }
1531 
1532   // start execution
1533 #ifdef ASSERT
1534   { Label L;
1535     __ ldr(Rtemp, Address(FP, frame::interpreter_frame_monitor_block_top_offset * wordSize));
1536     __ cmp(Rtemp, Rstack_top);
1537     __ b(L, eq);
1538     __ stop("broken stack frame setup in interpreter");
1539     __ bind(L);
1540   }
1541 #endif
1542   __ check_extended_sp(Rtemp);
1543 
1544   // jvmti support
1545   __ notify_method_entry();
1546 #if R9_IS_SCRATCHED
1547   __ restore_method();
1548 #endif
1549 
1550   __ dispatch_next(vtos);
1551 
1552   // invocation counter overflow
1553   if (inc_counter) {
1554     if (ProfileInterpreter) {
1555       // We have decided to profile this method in the interpreter
1556       __ bind(profile_method);
1557 
1558       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1559       __ set_method_data_pointer_for_bcp();
1560 
1561       __ b(profile_method_continue);
1562     }
1563 
1564     // Handle overflow of counter and compile method
1565     __ bind(invocation_counter_overflow);
1566     generate_counter_overflow(continue_after_compile);
1567   }
1568 
1569   return entry_point;
1570 }
1571 
1572 //------------------------------------------------------------------------------------------------------------------------
1573 // Exceptions
1574 
1575 void TemplateInterpreterGenerator::generate_throw_exception() {
1576   // Entry point in previous activation (i.e., if the caller was interpreted)
1577   Interpreter::_rethrow_exception_entry = __ pc();
1578   // Rexception_obj: exception
1579 
1580 #ifndef AARCH64
1581   // Clear interpreter_frame_last_sp.
1582   __ mov(Rtemp, 0);
1583   __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
1584 #endif // !AARCH64
1585 
1586 #if R9_IS_SCRATCHED
1587   __ restore_method();
1588 #endif
1589   __ restore_bcp();
1590   __ restore_dispatch();
1591   __ restore_locals();
1592 
1593 #ifdef AARCH64
1594   __ restore_sp_after_call(Rtemp);
1595 #endif // AARCH64
1596 
1597   // Entry point for exceptions thrown within interpreter code
1598   Interpreter::_throw_exception_entry = __ pc();
1599 
1600   // expression stack is undefined here
1601   // Rexception_obj: exception
1602   // Rbcp: exception bcp
1603   __ verify_oop(Rexception_obj);
1604 
1605   // expression stack must be empty before entering the VM in case of an exception
1606   __ empty_expression_stack();
1607   // find exception handler address and preserve exception oop
1608   __ mov(R1, Rexception_obj);
1609   __ call_VM(Rexception_obj, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), R1);
1610   // R0: exception handler entry point
1611   // Rexception_obj: preserved exception oop
1612   // Rbcp: bcp for exception handler
1613   __ push_ptr(Rexception_obj);                    // push exception which is now the only value on the stack
1614   __ jump(R0);                                    // jump to exception handler (may be _remove_activation_entry!)
1615 
1616   // If the exception is not handled in the current frame the frame is removed and
1617   // the exception is rethrown (i.e. exception continuation is _rethrow_exception).
1618   //
1619   // Note: At this point the bci is still the bxi for the instruction which caused
1620   //       the exception and the expression stack is empty. Thus, for any VM calls
1621   //       at this point, GC will find a legal oop map (with empty expression stack).
1622 
1623   // In current activation
1624   // tos: exception
1625   // Rbcp: exception bcp
1626 
1627   //
1628   // JVMTI PopFrame support
1629   //
1630    Interpreter::_remove_activation_preserving_args_entry = __ pc();
1631 
1632 #ifdef AARCH64
1633   __ restore_sp_after_call(Rtemp); // restore SP to extended SP
1634 #endif // AARCH64
1635 
1636   __ empty_expression_stack();
1637 
1638   // Set the popframe_processing bit in _popframe_condition indicating that we are
1639   // currently handling popframe, so that call_VMs that may happen later do not trigger new
1640   // popframe handling cycles.
1641 
1642   __ ldr_s32(Rtemp, Address(Rthread, JavaThread::popframe_condition_offset()));
1643   __ orr(Rtemp, Rtemp, (unsigned)JavaThread::popframe_processing_bit);
1644   __ str_32(Rtemp, Address(Rthread, JavaThread::popframe_condition_offset()));
1645 
1646   {
1647     // Check to see whether we are returning to a deoptimized frame.
1648     // (The PopFrame call ensures that the caller of the popped frame is
1649     // either interpreted or compiled and deoptimizes it if compiled.)
1650     // In this case, we can't call dispatch_next() after the frame is
1651     // popped, but instead must save the incoming arguments and restore
1652     // them after deoptimization has occurred.
1653     //
1654     // Note that we don't compare the return PC against the
1655     // deoptimization blob's unpack entry because of the presence of
1656     // adapter frames in C2.
1657     Label caller_not_deoptimized;
1658     __ ldr(R0, Address(FP, frame::return_addr_offset * wordSize));
1659     __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), R0);
1660     __ cbnz_32(R0, caller_not_deoptimized);
1661 #ifdef AARCH64
1662     __ NOT_TESTED();
1663 #endif
1664 
1665     // Compute size of arguments for saving when returning to deoptimized caller
1666     __ restore_method();
1667     __ ldr(R0, Address(Rmethod, Method::const_offset()));
1668     __ ldrh(R0, Address(R0, ConstMethod::size_of_parameters_offset()));
1669 
1670     __ logical_shift_left(R1, R0, Interpreter::logStackElementSize);
1671     // Save these arguments
1672     __ restore_locals();
1673     __ sub(R2, Rlocals, R1);
1674     __ add(R2, R2, wordSize);
1675     __ mov(R0, Rthread);
1676     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R0, R1, R2);
1677 
1678     __ remove_activation(vtos, LR,
1679                          /* throw_monitor_exception */ false,
1680                          /* install_monitor_exception */ false,
1681                          /* notify_jvmdi */ false);
1682 
1683     // Inform deoptimization that it is responsible for restoring these arguments
1684     __ mov(Rtemp, JavaThread::popframe_force_deopt_reexecution_bit);
1685     __ str_32(Rtemp, Address(Rthread, JavaThread::popframe_condition_offset()));
1686 
1687     // Continue in deoptimization handler
1688     __ ret();
1689 
1690     __ bind(caller_not_deoptimized);
1691   }
1692 
1693   __ remove_activation(vtos, R4,
1694                        /* throw_monitor_exception */ false,
1695                        /* install_monitor_exception */ false,
1696                        /* notify_jvmdi */ false);
1697 
1698 #ifndef AARCH64
1699   // Finish with popframe handling
1700   // A previous I2C followed by a deoptimization might have moved the
1701   // outgoing arguments further up the stack. PopFrame expects the
1702   // mutations to those outgoing arguments to be preserved and other
1703   // constraints basically require this frame to look exactly as
1704   // though it had previously invoked an interpreted activation with
1705   // no space between the top of the expression stack (current
1706   // last_sp) and the top of stack. Rather than force deopt to
1707   // maintain this kind of invariant all the time we call a small
1708   // fixup routine to move the mutated arguments onto the top of our
1709   // expression stack if necessary.
1710   __ mov(R1, SP);
1711   __ ldr(R2, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
1712   // PC must point into interpreter here
1713   __ set_last_Java_frame(SP, FP, true, Rtemp);
1714   __ mov(R0, Rthread);
1715   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::popframe_move_outgoing_args), R0, R1, R2);
1716   __ reset_last_Java_frame(Rtemp);
1717 #endif // !AARCH64
1718 
1719 #ifdef AARCH64
1720   __ restore_sp_after_call(Rtemp);
1721   __ restore_stack_top();
1722 #else
1723   // Restore the last_sp and null it out
1724   __ ldr(SP, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
1725   __ mov(Rtemp, (int)NULL_WORD);
1726   __ str(Rtemp, Address(FP, frame::interpreter_frame_last_sp_offset * wordSize));
1727 #endif // AARCH64
1728 
1729   __ restore_bcp();
1730   __ restore_dispatch();
1731   __ restore_locals();
1732   __ restore_method();
1733 
1734   // The method data pointer was incremented already during
1735   // call profiling. We have to restore the mdp for the current bcp.
1736   if (ProfileInterpreter) {
1737     __ set_method_data_pointer_for_bcp();
1738   }
1739 
1740   // Clear the popframe condition flag
1741   assert(JavaThread::popframe_inactive == 0, "adjust this code");
1742   __ str_32(__ zero_register(Rtemp), Address(Rthread, JavaThread::popframe_condition_offset()));
1743 
1744 #if INCLUDE_JVMTI
1745   {
1746     Label L_done;
1747 
1748     __ ldrb(Rtemp, Address(Rbcp, 0));
1749     __ cmp(Rtemp, Bytecodes::_invokestatic);
1750     __ b(L_done, ne);
1751 
1752     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
1753     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
1754 
1755     // get local0
1756     __ ldr(R1, Address(Rlocals, 0));
1757     __ mov(R2, Rmethod);
1758     __ mov(R3, Rbcp);
1759     __ call_VM(R0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R1, R2, R3);
1760 
1761     __ cbz(R0, L_done);
1762 
1763     __ str(R0, Address(Rstack_top));
1764     __ bind(L_done);
1765   }
1766 #endif // INCLUDE_JVMTI
1767 
1768   __ dispatch_next(vtos);
1769   // end of PopFrame support
1770 
1771   Interpreter::_remove_activation_entry = __ pc();
1772 
1773   // preserve exception over this code sequence
1774   __ pop_ptr(R0_tos);
1775   __ str(R0_tos, Address(Rthread, JavaThread::vm_result_offset()));
1776   // remove the activation (without doing throws on illegalMonitorExceptions)
1777   __ remove_activation(vtos, Rexception_pc, false, true, false);
1778   // restore exception
1779   __ get_vm_result(Rexception_obj, Rtemp);
1780 
1781   // Inbetween activations - previous activation type unknown yet
1782   // compute continuation point - the continuation point expects
1783   // the following registers set up:
1784   //
1785   // Rexception_obj: exception
1786   // Rexception_pc: return address/pc that threw exception
1787   // SP: expression stack of caller
1788   // FP: frame pointer of caller
1789   __ mov(c_rarg0, Rthread);
1790   __ mov(c_rarg1, Rexception_pc);
1791   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), c_rarg0, c_rarg1);
1792   // Note that an "issuing PC" is actually the next PC after the call
1793 
1794   __ jump(R0);                             // jump to exception handler of caller
1795 }
1796 
1797 
1798 //
1799 // JVMTI ForceEarlyReturn support
1800 //
1801 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
1802   address entry = __ pc();
1803 
1804 #ifdef AARCH64
1805   __ restore_sp_after_call(Rtemp); // restore SP to extended SP
1806 #endif // AARCH64
1807 
1808   __ restore_bcp();
1809   __ restore_dispatch();
1810   __ restore_locals();
1811 
1812   __ empty_expression_stack();
1813 
1814   __ load_earlyret_value(state);
1815 
1816   // Clear the earlyret state
1817   __ ldr(Rtemp, Address(Rthread, JavaThread::jvmti_thread_state_offset()));
1818 
1819   assert(JvmtiThreadState::earlyret_inactive == 0, "adjust this code");
1820   __ str_32(__ zero_register(R2), Address(Rtemp, JvmtiThreadState::earlyret_state_offset()));
1821 
1822   __ remove_activation(state, LR,
1823                        false, /* throw_monitor_exception */
1824                        false, /* install_monitor_exception */
1825                        true); /* notify_jvmdi */
1826 
1827 #ifndef AARCH64
1828   // According to interpreter calling conventions, result is returned in R0/R1,
1829   // so ftos (S0) and dtos (D0) are moved to R0/R1.
1830   // This conversion should be done after remove_activation, as it uses
1831   // push(state) & pop(state) to preserve return value.
1832   __ convert_tos_to_retval(state);
1833 #endif // !AARCH64
1834   __ ret();
1835 
1836   return entry;
1837 } // end of ForceEarlyReturn support
1838 
1839 
1840 //------------------------------------------------------------------------------------------------------------------------
1841 // Helper for vtos entry point generation
1842 
1843 void TemplateInterpreterGenerator::set_vtos_entry_points (Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
1844   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
1845   Label L;
1846 
1847 #ifdef __SOFTFP__
1848   dep = __ pc();                // fall through
1849 #else
1850   fep = __ pc(); __ push(ftos); __ b(L);
1851   dep = __ pc(); __ push(dtos); __ b(L);
1852 #endif // __SOFTFP__
1853 
1854   lep = __ pc(); __ push(ltos); __ b(L);
1855 
1856   if (AARCH64_ONLY(true) NOT_AARCH64(VerifyOops)) {  // can't share atos entry with itos on AArch64 or if VerifyOops
1857     aep = __ pc(); __ push(atos); __ b(L);
1858   } else {
1859     aep = __ pc();              // fall through
1860   }
1861 
1862 #ifdef __SOFTFP__
1863   fep = __ pc();                // fall through
1864 #endif // __SOFTFP__
1865 
1866   bep = cep = sep =             // fall through
1867   iep = __ pc(); __ push(itos); // fall through
1868   vep = __ pc(); __ bind(L);    // fall through
1869   generate_and_dispatch(t);
1870 }
1871 
1872 //------------------------------------------------------------------------------------------------------------------------
1873 
1874 // Non-product code
1875 #ifndef PRODUCT
1876 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
1877   address entry = __ pc();
1878 
1879   // prepare expression stack
1880   __ push(state);       // save tosca
1881 
1882   // pass tosca registers as arguments
1883   __ mov(R2, R0_tos);
1884 #ifdef AARCH64
1885   __ mov(R3, ZR);
1886 #else
1887   __ mov(R3, R1_tos_hi);
1888 #endif // AARCH64
1889   __ mov(R1, LR);       // save return address
1890 
1891   // call tracer
1892   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), R1, R2, R3);
1893 
1894   __ mov(LR, R0);       // restore return address
1895   __ pop(state);        // restore tosca
1896 
1897   // return
1898   __ ret();
1899 
1900   return entry;
1901 }
1902 
1903 
1904 void TemplateInterpreterGenerator::count_bytecode() {
1905   __ inc_global_counter((address) &BytecodeCounter::_counter_value, 0, Rtemp, R2_tmp, true);
1906 }
1907 
1908 
1909 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
1910   __ inc_global_counter((address)&BytecodeHistogram::_counters[0], sizeof(BytecodeHistogram::_counters[0]) * t->bytecode(), Rtemp, R2_tmp, true);
1911 }
1912 
1913 
1914 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
1915   const Register Rindex_addr = R2_tmp;
1916   Label Lcontinue;
1917   InlinedAddress Lcounters((address)BytecodePairHistogram::_counters);
1918   InlinedAddress Lindex((address)&BytecodePairHistogram::_index);
1919   const Register Rcounters_addr = R2_tmp;
1920   const Register Rindex = R4_tmp;
1921 
1922   // calculate new index for counter:
1923   // index = (_index >> log2_number_of_codes) | (bytecode << log2_number_of_codes).
1924   // (_index >> log2_number_of_codes) is previous bytecode
1925 
1926   __ ldr_literal(Rindex_addr, Lindex);
1927   __ ldr_s32(Rindex, Address(Rindex_addr));
1928   __ mov_slow(Rtemp, ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
1929   __ orr(Rindex, Rtemp, AsmOperand(Rindex, lsr, BytecodePairHistogram::log2_number_of_codes));
1930   __ str_32(Rindex, Address(Rindex_addr));
1931 
1932   // Rindex (R4) contains index of counter
1933 
1934   __ ldr_literal(Rcounters_addr, Lcounters);
1935   __ ldr_s32(Rtemp, Address::indexed_32(Rcounters_addr, Rindex));
1936   __ adds_32(Rtemp, Rtemp, 1);
1937   __ b(Lcontinue, mi);                           // avoid overflow
1938   __ str_32(Rtemp, Address::indexed_32(Rcounters_addr, Rindex));
1939 
1940   __ b(Lcontinue);
1941 
1942   __ bind_literal(Lindex);
1943   __ bind_literal(Lcounters);
1944 
1945   __ bind(Lcontinue);
1946 }
1947 
1948 
1949 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
1950   // Call a little run-time stub to avoid blow-up for each bytecode.
1951   // The run-time runtime saves the right registers, depending on
1952   // the tosca in-state for the given template.
1953   assert(Interpreter::trace_code(t->tos_in()) != NULL,
1954          "entry must have been generated");
1955   address trace_entry = Interpreter::trace_code(t->tos_in());
1956   __ call(trace_entry, relocInfo::none);
1957 }
1958 
1959 
1960 void TemplateInterpreterGenerator::stop_interpreter_at() {
1961   Label Lcontinue;
1962   const Register stop_at = R2_tmp;
1963 
1964   __ ldr_global_s32(Rtemp, (address) &BytecodeCounter::_counter_value);
1965   __ mov_slow(stop_at, StopInterpreterAt);
1966 
1967   // test bytecode counter
1968   __ cmp(Rtemp, stop_at);
1969   __ b(Lcontinue, ne);
1970 
1971   __ trace_state("stop_interpreter_at");
1972   __ breakpoint();
1973 
1974   __ bind(Lcontinue);
1975 }
1976 #endif // !PRODUCT