1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/compiledIC.hpp"
  32 #include "code/codeCacheExtensions.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/abstractCompiler.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/disassembler.hpp"
  38 #include "gc/shared/gcLocker.inline.hpp"
  39 #include "interpreter/interpreter.hpp"
  40 #include "interpreter/interpreterRuntime.hpp"
  41 #include "logging/log.hpp"
  42 #include "memory/metaspaceShared.hpp"
  43 #include "memory/resourceArea.hpp"
  44 #include "memory/universe.inline.hpp"
  45 #include "oops/klass.hpp"
  46 #include "oops/objArrayKlass.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "prims/forte.hpp"
  49 #include "prims/jvmtiExport.hpp"
  50 #include "prims/methodHandles.hpp"
  51 #include "prims/nativeLookup.hpp"
  52 #include "runtime/arguments.hpp"
  53 #include "runtime/atomic.hpp"
  54 #include "runtime/biasedLocking.hpp"
  55 #include "runtime/compilationPolicy.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/init.hpp"
  58 #include "runtime/interfaceSupport.hpp"
  59 #include "runtime/java.hpp"
  60 #include "runtime/javaCalls.hpp"
  61 #include "runtime/sharedRuntime.hpp"
  62 #include "runtime/stubRoutines.hpp"
  63 #include "runtime/vframe.hpp"
  64 #include "runtime/vframeArray.hpp"
  65 #include "trace/tracing.hpp"
  66 #include "utilities/copy.hpp"
  67 #include "utilities/dtrace.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/hashtable.inline.hpp"
  70 #include "utilities/macros.hpp"
  71 #include "utilities/xmlstream.hpp"
  72 #ifdef COMPILER1
  73 #include "c1/c1_Runtime1.hpp"
  74 #endif
  75 
  76 // Shared stub locations
  77 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  78 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  79 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  80 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  81 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  82 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  83 address             SharedRuntime::_resolve_static_call_entry;
  84 
  85 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  86 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  87 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  88 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  89 
  90 #ifdef COMPILER2
  91 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  92 #endif // COMPILER2
  93 
  94 
  95 //----------------------------generate_stubs-----------------------------------
  96 void SharedRuntime::generate_stubs() {
  97   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  98   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
  99   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 100   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 101   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 102   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 103   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 104 
 105 #if defined(COMPILER2) || INCLUDE_JVMCI
 106   // Vectors are generated only by C2 and JVMCI.
 107   bool support_wide = is_wide_vector(MaxVectorSize);
 108   if (support_wide) {
 109     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 110   }
 111 #endif // COMPILER2 || INCLUDE_JVMCI
 112   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 113   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 114 
 115   generate_deopt_blob();
 116 
 117 #ifdef COMPILER2
 118   generate_uncommon_trap_blob();
 119 #endif // COMPILER2
 120 }
 121 
 122 #include <math.h>
 123 
 124 // Implementation of SharedRuntime
 125 
 126 #ifndef PRODUCT
 127 // For statistics
 128 int SharedRuntime::_ic_miss_ctr = 0;
 129 int SharedRuntime::_wrong_method_ctr = 0;
 130 int SharedRuntime::_resolve_static_ctr = 0;
 131 int SharedRuntime::_resolve_virtual_ctr = 0;
 132 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 133 int SharedRuntime::_implicit_null_throws = 0;
 134 int SharedRuntime::_implicit_div0_throws = 0;
 135 int SharedRuntime::_throw_null_ctr = 0;
 136 
 137 int SharedRuntime::_nof_normal_calls = 0;
 138 int SharedRuntime::_nof_optimized_calls = 0;
 139 int SharedRuntime::_nof_inlined_calls = 0;
 140 int SharedRuntime::_nof_megamorphic_calls = 0;
 141 int SharedRuntime::_nof_static_calls = 0;
 142 int SharedRuntime::_nof_inlined_static_calls = 0;
 143 int SharedRuntime::_nof_interface_calls = 0;
 144 int SharedRuntime::_nof_optimized_interface_calls = 0;
 145 int SharedRuntime::_nof_inlined_interface_calls = 0;
 146 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 147 int SharedRuntime::_nof_removable_exceptions = 0;
 148 
 149 int SharedRuntime::_new_instance_ctr=0;
 150 int SharedRuntime::_new_array_ctr=0;
 151 int SharedRuntime::_multi1_ctr=0;
 152 int SharedRuntime::_multi2_ctr=0;
 153 int SharedRuntime::_multi3_ctr=0;
 154 int SharedRuntime::_multi4_ctr=0;
 155 int SharedRuntime::_multi5_ctr=0;
 156 int SharedRuntime::_mon_enter_stub_ctr=0;
 157 int SharedRuntime::_mon_exit_stub_ctr=0;
 158 int SharedRuntime::_mon_enter_ctr=0;
 159 int SharedRuntime::_mon_exit_ctr=0;
 160 int SharedRuntime::_partial_subtype_ctr=0;
 161 int SharedRuntime::_jbyte_array_copy_ctr=0;
 162 int SharedRuntime::_jshort_array_copy_ctr=0;
 163 int SharedRuntime::_jint_array_copy_ctr=0;
 164 int SharedRuntime::_jlong_array_copy_ctr=0;
 165 int SharedRuntime::_oop_array_copy_ctr=0;
 166 int SharedRuntime::_checkcast_array_copy_ctr=0;
 167 int SharedRuntime::_unsafe_array_copy_ctr=0;
 168 int SharedRuntime::_generic_array_copy_ctr=0;
 169 int SharedRuntime::_slow_array_copy_ctr=0;
 170 int SharedRuntime::_find_handler_ctr=0;
 171 int SharedRuntime::_rethrow_ctr=0;
 172 
 173 int     SharedRuntime::_ICmiss_index                    = 0;
 174 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 175 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 176 
 177 
 178 void SharedRuntime::trace_ic_miss(address at) {
 179   for (int i = 0; i < _ICmiss_index; i++) {
 180     if (_ICmiss_at[i] == at) {
 181       _ICmiss_count[i]++;
 182       return;
 183     }
 184   }
 185   int index = _ICmiss_index++;
 186   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 187   _ICmiss_at[index] = at;
 188   _ICmiss_count[index] = 1;
 189 }
 190 
 191 void SharedRuntime::print_ic_miss_histogram() {
 192   if (ICMissHistogram) {
 193     tty->print_cr("IC Miss Histogram:");
 194     int tot_misses = 0;
 195     for (int i = 0; i < _ICmiss_index; i++) {
 196       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 197       tot_misses += _ICmiss_count[i];
 198     }
 199     tty->print_cr("Total IC misses: %7d", tot_misses);
 200   }
 201 }
 202 #endif // PRODUCT
 203 
 204 #if INCLUDE_ALL_GCS
 205 
 206 // G1 write-barrier pre: executed before a pointer store.
 207 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 208   if (orig == NULL) {
 209     assert(false, "should be optimized out");
 210     return;
 211   }
 212   assert(orig->is_oop(true /* ignore mark word */), "Error");
 213   // store the original value that was in the field reference
 214   thread->satb_mark_queue().enqueue(orig);
 215 JRT_END
 216 
 217 // G1 write-barrier post: executed after a pointer store.
 218 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 219   thread->dirty_card_queue().enqueue(card_addr);
 220 JRT_END
 221 
 222 #endif // INCLUDE_ALL_GCS
 223 
 224 
 225 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 226   return x * y;
 227 JRT_END
 228 
 229 
 230 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 231   if (x == min_jlong && y == CONST64(-1)) {
 232     return x;
 233   } else {
 234     return x / y;
 235   }
 236 JRT_END
 237 
 238 
 239 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 240   if (x == min_jlong && y == CONST64(-1)) {
 241     return 0;
 242   } else {
 243     return x % y;
 244   }
 245 JRT_END
 246 
 247 
 248 const juint  float_sign_mask  = 0x7FFFFFFF;
 249 const juint  float_infinity   = 0x7F800000;
 250 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 251 const julong double_infinity  = CONST64(0x7FF0000000000000);
 252 
 253 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 254 #ifdef _WIN64
 255   // 64-bit Windows on amd64 returns the wrong values for
 256   // infinity operands.
 257   union { jfloat f; juint i; } xbits, ybits;
 258   xbits.f = x;
 259   ybits.f = y;
 260   // x Mod Infinity == x unless x is infinity
 261   if (((xbits.i & float_sign_mask) != float_infinity) &&
 262        ((ybits.i & float_sign_mask) == float_infinity) ) {
 263     return x;
 264   }
 265   return ((jfloat)fmod_winx64((double)x, (double)y));
 266 #else
 267   return ((jfloat)fmod((double)x,(double)y));
 268 #endif
 269 JRT_END
 270 
 271 
 272 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 273 #ifdef _WIN64
 274   union { jdouble d; julong l; } xbits, ybits;
 275   xbits.d = x;
 276   ybits.d = y;
 277   // x Mod Infinity == x unless x is infinity
 278   if (((xbits.l & double_sign_mask) != double_infinity) &&
 279        ((ybits.l & double_sign_mask) == double_infinity) ) {
 280     return x;
 281   }
 282   return ((jdouble)fmod_winx64((double)x, (double)y));
 283 #else
 284   return ((jdouble)fmod((double)x,(double)y));
 285 #endif
 286 JRT_END
 287 
 288 #ifdef __SOFTFP__
 289 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 290   return x + y;
 291 JRT_END
 292 
 293 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 294   return x - y;
 295 JRT_END
 296 
 297 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 298   return x * y;
 299 JRT_END
 300 
 301 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 302   return x / y;
 303 JRT_END
 304 
 305 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 306   return x + y;
 307 JRT_END
 308 
 309 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 310   return x - y;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 314   return x * y;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 318   return x / y;
 319 JRT_END
 320 
 321 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 322   return (jfloat)x;
 323 JRT_END
 324 
 325 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 326   return (jdouble)x;
 327 JRT_END
 328 
 329 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 330   return (jdouble)x;
 331 JRT_END
 332 
 333 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 334   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 335 JRT_END
 336 
 337 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 338   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 339 JRT_END
 340 
 341 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 342   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 343 JRT_END
 344 
 345 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 346   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 347 JRT_END
 348 
 349 // Functions to return the opposite of the aeabi functions for nan.
 350 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 351   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 352 JRT_END
 353 
 354 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 355   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 356 JRT_END
 357 
 358 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 359   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 363   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 367   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 371   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 372 JRT_END
 373 
 374 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 375   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 376 JRT_END
 377 
 378 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 379   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 380 JRT_END
 381 
 382 // Intrinsics make gcc generate code for these.
 383 float  SharedRuntime::fneg(float f)   {
 384   return -f;
 385 }
 386 
 387 double SharedRuntime::dneg(double f)  {
 388   return -f;
 389 }
 390 
 391 #endif // __SOFTFP__
 392 
 393 #if defined(__SOFTFP__) || defined(E500V2)
 394 // Intrinsics make gcc generate code for these.
 395 double SharedRuntime::dabs(double f)  {
 396   return (f <= (double)0.0) ? (double)0.0 - f : f;
 397 }
 398 
 399 #endif
 400 
 401 #if defined(__SOFTFP__) || defined(PPC)
 402 double SharedRuntime::dsqrt(double f) {
 403   return sqrt(f);
 404 }
 405 #endif
 406 
 407 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 408   if (g_isnan(x))
 409     return 0;
 410   if (x >= (jfloat) max_jint)
 411     return max_jint;
 412   if (x <= (jfloat) min_jint)
 413     return min_jint;
 414   return (jint) x;
 415 JRT_END
 416 
 417 
 418 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 419   if (g_isnan(x))
 420     return 0;
 421   if (x >= (jfloat) max_jlong)
 422     return max_jlong;
 423   if (x <= (jfloat) min_jlong)
 424     return min_jlong;
 425   return (jlong) x;
 426 JRT_END
 427 
 428 
 429 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 430   if (g_isnan(x))
 431     return 0;
 432   if (x >= (jdouble) max_jint)
 433     return max_jint;
 434   if (x <= (jdouble) min_jint)
 435     return min_jint;
 436   return (jint) x;
 437 JRT_END
 438 
 439 
 440 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 441   if (g_isnan(x))
 442     return 0;
 443   if (x >= (jdouble) max_jlong)
 444     return max_jlong;
 445   if (x <= (jdouble) min_jlong)
 446     return min_jlong;
 447   return (jlong) x;
 448 JRT_END
 449 
 450 
 451 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 452   return (jfloat)x;
 453 JRT_END
 454 
 455 
 456 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 457   return (jfloat)x;
 458 JRT_END
 459 
 460 
 461 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 462   return (jdouble)x;
 463 JRT_END
 464 
 465 // Exception handling across interpreter/compiler boundaries
 466 //
 467 // exception_handler_for_return_address(...) returns the continuation address.
 468 // The continuation address is the entry point of the exception handler of the
 469 // previous frame depending on the return address.
 470 
 471 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 472   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 473   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 474 
 475   // Reset method handle flag.
 476   thread->set_is_method_handle_return(false);
 477 
 478 #if INCLUDE_JVMCI
 479   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 480   // and other exception handler continuations do not read it
 481   thread->set_exception_pc(NULL);
 482 #endif // INCLUDE_JVMCI
 483 
 484   // The fastest case first
 485   CodeBlob* blob = CodeCache::find_blob(return_address);
 486   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 487   if (nm != NULL) {
 488     // Set flag if return address is a method handle call site.
 489     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 490     // native nmethods don't have exception handlers
 491     assert(!nm->is_native_method(), "no exception handler");
 492     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 493     if (nm->is_deopt_pc(return_address)) {
 494       // If we come here because of a stack overflow, the stack may be
 495       // unguarded. Reguard the stack otherwise if we return to the
 496       // deopt blob and the stack bang causes a stack overflow we
 497       // crash.
 498       bool guard_pages_enabled = thread->stack_guards_enabled();
 499       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 500       if (thread->reserved_stack_activation() != thread->stack_base()) {
 501         thread->set_reserved_stack_activation(thread->stack_base());
 502       }
 503       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 504       return SharedRuntime::deopt_blob()->unpack_with_exception();
 505     } else {
 506       return nm->exception_begin();
 507     }
 508   }
 509 
 510 #if INCLUDE_AOT
 511   if (UseAOT && blob->is_aot()) {
 512     // AOT Compiled code
 513     return AOTLoader::exception_begin(thread, blob, return_address);
 514   }
 515 #endif
 516 
 517   // Entry code
 518   if (StubRoutines::returns_to_call_stub(return_address)) {
 519     return StubRoutines::catch_exception_entry();
 520   }
 521   // Interpreted code
 522   if (Interpreter::contains(return_address)) {
 523     return Interpreter::rethrow_exception_entry();
 524   }
 525 
 526   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 527   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 528 
 529 #ifndef PRODUCT
 530   { ResourceMark rm;
 531     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 532     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 533     tty->print_cr("b) other problem");
 534   }
 535 #endif // PRODUCT
 536 
 537   ShouldNotReachHere();
 538   return NULL;
 539 }
 540 
 541 
 542 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 543   return raw_exception_handler_for_return_address(thread, return_address);
 544 JRT_END
 545 
 546 
 547 address SharedRuntime::get_poll_stub(address pc) {
 548   address stub;
 549   // Look up the code blob
 550   CodeBlob *cb = CodeCache::find_blob(pc);
 551 
 552   // Should be an nmethod
 553   assert(cb && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 554 
 555   // Look up the relocation information
 556   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 557     "safepoint polling: type must be poll");
 558 
 559 #ifdef ASSERT
 560   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 561     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 562     Disassembler::decode(cb);
 563     fatal("Only polling locations are used for safepoint");
 564   }
 565 #endif
 566 
 567   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 568   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 569   if (at_poll_return) {
 570     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 571            "polling page return stub not created yet");
 572     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 573   } else if (has_wide_vectors) {
 574     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 575            "polling page vectors safepoint stub not created yet");
 576     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 577   } else {
 578     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 579            "polling page safepoint stub not created yet");
 580     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 581   }
 582   log_debug(safepoint)("... found polling page %s exception at pc = "
 583                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 584                        at_poll_return ? "return" : "loop",
 585                        (intptr_t)pc, (intptr_t)stub);
 586   return stub;
 587 }
 588 
 589 
 590 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 591   assert(caller.is_interpreted_frame(), "");
 592   int args_size = ArgumentSizeComputer(sig).size() + 1;
 593   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 594   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 595   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 596   return result;
 597 }
 598 
 599 
 600 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 601   if (JvmtiExport::can_post_on_exceptions()) {
 602     vframeStream vfst(thread, true);
 603     methodHandle method = methodHandle(thread, vfst.method());
 604     address bcp = method()->bcp_from(vfst.bci());
 605     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 606   }
 607   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 608 }
 609 
 610 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 611   Handle h_exception = Exceptions::new_exception(thread, name, message);
 612   throw_and_post_jvmti_exception(thread, h_exception);
 613 }
 614 
 615 // The interpreter code to call this tracing function is only
 616 // called/generated when UL is on for redefine, class and has the right level
 617 // and tags. Since obsolete methods are never compiled, we don't have
 618 // to modify the compilers to generate calls to this function.
 619 //
 620 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 621     JavaThread* thread, Method* method))
 622   if (method->is_obsolete()) {
 623     // We are calling an obsolete method, but this is not necessarily
 624     // an error. Our method could have been redefined just after we
 625     // fetched the Method* from the constant pool.
 626     ResourceMark rm;
 627     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 628   }
 629   return 0;
 630 JRT_END
 631 
 632 // ret_pc points into caller; we are returning caller's exception handler
 633 // for given exception
 634 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 635                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 636   assert(cm != NULL, "must exist");
 637   ResourceMark rm;
 638 
 639 #if INCLUDE_JVMCI
 640   if (cm->is_compiled_by_jvmci()) {
 641     // lookup exception handler for this pc
 642     int catch_pco = ret_pc - cm->code_begin();
 643     ExceptionHandlerTable table(cm);
 644     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 645     if (t != NULL) {
 646       return cm->code_begin() + t->pco();
 647     } else {
 648       // there is no exception handler for this pc => deoptimize
 649       cm->make_not_entrant();
 650 
 651       // Use Deoptimization::deoptimize for all of its side-effects:
 652       // revoking biases of monitors, gathering traps statistics, logging...
 653       // it also patches the return pc but we do not care about that
 654       // since we return a continuation to the deopt_blob below.
 655       JavaThread* thread = JavaThread::current();
 656       RegisterMap reg_map(thread, UseBiasedLocking);
 657       frame runtime_frame = thread->last_frame();
 658       frame caller_frame = runtime_frame.sender(&reg_map);
 659       Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
 660 
 661       return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 662     }
 663   }
 664 #endif // INCLUDE_JVMCI
 665 
 666   nmethod* nm = cm->as_nmethod();
 667   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 668   // determine handler bci, if any
 669   EXCEPTION_MARK;
 670 
 671   int handler_bci = -1;
 672   int scope_depth = 0;
 673   if (!force_unwind) {
 674     int bci = sd->bci();
 675     bool recursive_exception = false;
 676     do {
 677       bool skip_scope_increment = false;
 678       // exception handler lookup
 679       KlassHandle ek (THREAD, exception->klass());
 680       methodHandle mh(THREAD, sd->method());
 681       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 682       if (HAS_PENDING_EXCEPTION) {
 683         recursive_exception = true;
 684         // We threw an exception while trying to find the exception handler.
 685         // Transfer the new exception to the exception handle which will
 686         // be set into thread local storage, and do another lookup for an
 687         // exception handler for this exception, this time starting at the
 688         // BCI of the exception handler which caused the exception to be
 689         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 690         // argument to ensure that the correct exception is thrown (4870175).
 691         recursive_exception_occurred = true;
 692         exception = Handle(THREAD, PENDING_EXCEPTION);
 693         CLEAR_PENDING_EXCEPTION;
 694         if (handler_bci >= 0) {
 695           bci = handler_bci;
 696           handler_bci = -1;
 697           skip_scope_increment = true;
 698         }
 699       }
 700       else {
 701         recursive_exception = false;
 702       }
 703       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 704         sd = sd->sender();
 705         if (sd != NULL) {
 706           bci = sd->bci();
 707         }
 708         ++scope_depth;
 709       }
 710     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 711   }
 712 
 713   // found handling method => lookup exception handler
 714   int catch_pco = ret_pc - nm->code_begin();
 715 
 716   ExceptionHandlerTable table(nm);
 717   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 718   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 719     // Allow abbreviated catch tables.  The idea is to allow a method
 720     // to materialize its exceptions without committing to the exact
 721     // routing of exceptions.  In particular this is needed for adding
 722     // a synthetic handler to unlock monitors when inlining
 723     // synchronized methods since the unlock path isn't represented in
 724     // the bytecodes.
 725     t = table.entry_for(catch_pco, -1, 0);
 726   }
 727 
 728 #ifdef COMPILER1
 729   if (t == NULL && nm->is_compiled_by_c1()) {
 730     assert(nm->unwind_handler_begin() != NULL, "");
 731     return nm->unwind_handler_begin();
 732   }
 733 #endif
 734 
 735   if (t == NULL) {
 736     ttyLocker ttyl;
 737     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 738     tty->print_cr("   Exception:");
 739     exception->print();
 740     tty->cr();
 741     tty->print_cr(" Compiled exception table :");
 742     table.print();
 743     nm->print_code();
 744     guarantee(false, "missing exception handler");
 745     return NULL;
 746   }
 747 
 748   return nm->code_begin() + t->pco();
 749 }
 750 
 751 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 752   // These errors occur only at call sites
 753   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 754 JRT_END
 755 
 756 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 757   // These errors occur only at call sites
 758   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 759 JRT_END
 760 
 761 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 762   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 763 JRT_END
 764 
 765 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 766   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 767 JRT_END
 768 
 769 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 770   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 771   // cache sites (when the callee activation is not yet set up) so we are at a call site
 772   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 773 JRT_END
 774 
 775 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 776   throw_StackOverflowError_common(thread, false);
 777 JRT_END
 778 
 779 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 780   throw_StackOverflowError_common(thread, true);
 781 JRT_END
 782 
 783 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 784   // We avoid using the normal exception construction in this case because
 785   // it performs an upcall to Java, and we're already out of stack space.
 786   Thread* THREAD = thread;
 787   Klass* k = SystemDictionary::StackOverflowError_klass();
 788   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 789   if (delayed) {
 790     java_lang_Throwable::set_message(exception_oop,
 791                                      Universe::delayed_stack_overflow_error_message());
 792   }
 793   Handle exception (thread, exception_oop);
 794   if (StackTraceInThrowable) {
 795     java_lang_Throwable::fill_in_stack_trace(exception);
 796   }
 797   // Increment counter for hs_err file reporting
 798   Atomic::inc(&Exceptions::_stack_overflow_errors);
 799   throw_and_post_jvmti_exception(thread, exception);
 800 }
 801 
 802 #if INCLUDE_JVMCI
 803 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 804   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 805   thread->set_jvmci_implicit_exception_pc(pc);
 806   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 807   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 808 }
 809 #endif // INCLUDE_JVMCI
 810 
 811 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 812                                                            address pc,
 813                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 814 {
 815   address target_pc = NULL;
 816 
 817   if (Interpreter::contains(pc)) {
 818 #ifdef CC_INTERP
 819     // C++ interpreter doesn't throw implicit exceptions
 820     ShouldNotReachHere();
 821 #else
 822     switch (exception_kind) {
 823       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 824       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 825       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 826       default:                      ShouldNotReachHere();
 827     }
 828 #endif // !CC_INTERP
 829   } else {
 830     switch (exception_kind) {
 831       case STACK_OVERFLOW: {
 832         // Stack overflow only occurs upon frame setup; the callee is
 833         // going to be unwound. Dispatch to a shared runtime stub
 834         // which will cause the StackOverflowError to be fabricated
 835         // and processed.
 836         // Stack overflow should never occur during deoptimization:
 837         // the compiled method bangs the stack by as much as the
 838         // interpreter would need in case of a deoptimization. The
 839         // deoptimization blob and uncommon trap blob bang the stack
 840         // in a debug VM to verify the correctness of the compiled
 841         // method stack banging.
 842         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 843         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 844         return StubRoutines::throw_StackOverflowError_entry();
 845       }
 846 
 847       case IMPLICIT_NULL: {
 848         if (VtableStubs::contains(pc)) {
 849           // We haven't yet entered the callee frame. Fabricate an
 850           // exception and begin dispatching it in the caller. Since
 851           // the caller was at a call site, it's safe to destroy all
 852           // caller-saved registers, as these entry points do.
 853           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 854 
 855           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 856           if (vt_stub == NULL) return NULL;
 857 
 858           if (vt_stub->is_abstract_method_error(pc)) {
 859             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 860             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 861             return StubRoutines::throw_AbstractMethodError_entry();
 862           } else {
 863             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 864             return StubRoutines::throw_NullPointerException_at_call_entry();
 865           }
 866         } else {
 867           CodeBlob* cb = CodeCache::find_blob(pc);
 868 
 869           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 870           if (cb == NULL) return NULL;
 871 
 872           // Exception happened in CodeCache. Must be either:
 873           // 1. Inline-cache check in C2I handler blob,
 874           // 2. Inline-cache check in nmethod, or
 875           // 3. Implicit null exception in nmethod
 876 
 877           if (!cb->is_compiled()) {
 878             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 879             if (!is_in_blob) {
 880               // Allow normal crash reporting to handle this
 881               return NULL;
 882             }
 883             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 884             // There is no handler here, so we will simply unwind.
 885             return StubRoutines::throw_NullPointerException_at_call_entry();
 886           }
 887 
 888           // Otherwise, it's a compiled method.  Consult its exception handlers.
 889           CompiledMethod* cm = (CompiledMethod*)cb;
 890           if (cm->inlinecache_check_contains(pc)) {
 891             // exception happened inside inline-cache check code
 892             // => the nmethod is not yet active (i.e., the frame
 893             // is not set up yet) => use return address pushed by
 894             // caller => don't push another return address
 895             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 896             return StubRoutines::throw_NullPointerException_at_call_entry();
 897           }
 898 
 899           if (cm->method()->is_method_handle_intrinsic()) {
 900             // exception happened inside MH dispatch code, similar to a vtable stub
 901             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 902             return StubRoutines::throw_NullPointerException_at_call_entry();
 903           }
 904 
 905 #ifndef PRODUCT
 906           _implicit_null_throws++;
 907 #endif
 908 #if INCLUDE_JVMCI
 909           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 910             // If there's no PcDesc then we'll die way down inside of
 911             // deopt instead of just getting normal error reporting,
 912             // so only go there if it will succeed.
 913             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 914           } else {
 915 #endif // INCLUDE_JVMCI
 916           assert (cm->is_nmethod(), "Expect nmethod");
 917           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 918 #if INCLUDE_JVMCI
 919           }
 920 #endif // INCLUDE_JVMCI
 921           // If there's an unexpected fault, target_pc might be NULL,
 922           // in which case we want to fall through into the normal
 923           // error handling code.
 924         }
 925 
 926         break; // fall through
 927       }
 928 
 929 
 930       case IMPLICIT_DIVIDE_BY_ZERO: {
 931         CompiledMethod* cm = CodeCache::find_compiled(pc);
 932         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 933 #ifndef PRODUCT
 934         _implicit_div0_throws++;
 935 #endif
 936 #if INCLUDE_JVMCI
 937         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 938           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 939         } else {
 940 #endif // INCLUDE_JVMCI
 941         target_pc = cm->continuation_for_implicit_exception(pc);
 942 #if INCLUDE_JVMCI
 943         }
 944 #endif // INCLUDE_JVMCI
 945         // If there's an unexpected fault, target_pc might be NULL,
 946         // in which case we want to fall through into the normal
 947         // error handling code.
 948         break; // fall through
 949       }
 950 
 951       default: ShouldNotReachHere();
 952     }
 953 
 954     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 955 
 956     if (exception_kind == IMPLICIT_NULL) {
 957 #ifndef PRODUCT
 958       // for AbortVMOnException flag
 959       Exceptions::debug_check_abort("java.lang.NullPointerException");
 960 #endif //PRODUCT
 961       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 962     } else {
 963 #ifndef PRODUCT
 964       // for AbortVMOnException flag
 965       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 966 #endif //PRODUCT
 967       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 968     }
 969     return target_pc;
 970   }
 971 
 972   ShouldNotReachHere();
 973   return NULL;
 974 }
 975 
 976 
 977 /**
 978  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 979  * installed in the native function entry of all native Java methods before
 980  * they get linked to their actual native methods.
 981  *
 982  * \note
 983  * This method actually never gets called!  The reason is because
 984  * the interpreter's native entries call NativeLookup::lookup() which
 985  * throws the exception when the lookup fails.  The exception is then
 986  * caught and forwarded on the return from NativeLookup::lookup() call
 987  * before the call to the native function.  This might change in the future.
 988  */
 989 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 990 {
 991   // We return a bad value here to make sure that the exception is
 992   // forwarded before we look at the return value.
 993   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 994 }
 995 JNI_END
 996 
 997 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 998   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 999 }
1000 
1001 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
1002 #if INCLUDE_JVMCI
1003   if (!obj->klass()->has_finalizer()) {
1004     return;
1005   }
1006 #endif // INCLUDE_JVMCI
1007   assert(obj->is_oop(), "must be a valid oop");
1008   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1009   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1010 JRT_END
1011 
1012 
1013 jlong SharedRuntime::get_java_tid(Thread* thread) {
1014   if (thread != NULL) {
1015     if (thread->is_Java_thread()) {
1016       oop obj = ((JavaThread*)thread)->threadObj();
1017       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1018     }
1019   }
1020   return 0;
1021 }
1022 
1023 /**
1024  * This function ought to be a void function, but cannot be because
1025  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1026  * 6254741.  Once that is fixed we can remove the dummy return value.
1027  */
1028 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1029   return dtrace_object_alloc_base(Thread::current(), o, size);
1030 }
1031 
1032 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1033   assert(DTraceAllocProbes, "wrong call");
1034   Klass* klass = o->klass();
1035   Symbol* name = klass->name();
1036   HOTSPOT_OBJECT_ALLOC(
1037                    get_java_tid(thread),
1038                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1039   return 0;
1040 }
1041 
1042 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1043     JavaThread* thread, Method* method))
1044   assert(DTraceMethodProbes, "wrong call");
1045   Symbol* kname = method->klass_name();
1046   Symbol* name = method->name();
1047   Symbol* sig = method->signature();
1048   HOTSPOT_METHOD_ENTRY(
1049       get_java_tid(thread),
1050       (char *) kname->bytes(), kname->utf8_length(),
1051       (char *) name->bytes(), name->utf8_length(),
1052       (char *) sig->bytes(), sig->utf8_length());
1053   return 0;
1054 JRT_END
1055 
1056 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1057     JavaThread* thread, Method* method))
1058   assert(DTraceMethodProbes, "wrong call");
1059   Symbol* kname = method->klass_name();
1060   Symbol* name = method->name();
1061   Symbol* sig = method->signature();
1062   HOTSPOT_METHOD_RETURN(
1063       get_java_tid(thread),
1064       (char *) kname->bytes(), kname->utf8_length(),
1065       (char *) name->bytes(), name->utf8_length(),
1066       (char *) sig->bytes(), sig->utf8_length());
1067   return 0;
1068 JRT_END
1069 
1070 
1071 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1072 // for a call current in progress, i.e., arguments has been pushed on stack
1073 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1074 // vtable updates, etc.  Caller frame must be compiled.
1075 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1076   ResourceMark rm(THREAD);
1077 
1078   // last java frame on stack (which includes native call frames)
1079   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1080 
1081   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1082 }
1083 
1084 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1085   CompiledMethod* caller = vfst.nm();
1086 
1087   nmethodLocker caller_lock(caller);
1088 
1089   address pc = vfst.frame_pc();
1090   { // Get call instruction under lock because another thread may be busy patching it.
1091     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1092     return caller->attached_method_before_pc(pc);
1093   }
1094   return NULL;
1095 }
1096 
1097 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1098 // for a call current in progress, i.e., arguments has been pushed on stack
1099 // but callee has not been invoked yet.  Caller frame must be compiled.
1100 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1101                                               vframeStream& vfst,
1102                                               Bytecodes::Code& bc,
1103                                               CallInfo& callinfo, TRAPS) {
1104   Handle receiver;
1105   Handle nullHandle;  //create a handy null handle for exception returns
1106 
1107   assert(!vfst.at_end(), "Java frame must exist");
1108 
1109   // Find caller and bci from vframe
1110   methodHandle caller(THREAD, vfst.method());
1111   int          bci   = vfst.bci();
1112 
1113   Bytecode_invoke bytecode(caller, bci);
1114   int bytecode_index = bytecode.index();
1115 
1116   methodHandle attached_method = extract_attached_method(vfst);
1117   if (attached_method.not_null()) {
1118     methodHandle callee = bytecode.static_target(CHECK_NH);
1119     vmIntrinsics::ID id = callee->intrinsic_id();
1120     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1121     // it attaches statically resolved method to the call site.
1122     if (MethodHandles::is_signature_polymorphic(id) &&
1123         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1124       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1125 
1126       // Adjust invocation mode according to the attached method.
1127       switch (bc) {
1128         case Bytecodes::_invokeinterface:
1129           if (!attached_method->method_holder()->is_interface()) {
1130             bc = Bytecodes::_invokevirtual;
1131           }
1132           break;
1133         case Bytecodes::_invokehandle:
1134           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1135             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1136                                               : Bytecodes::_invokevirtual;
1137           }
1138           break;
1139       }
1140     }
1141   } else {
1142     bc = bytecode.invoke_code();
1143   }
1144 
1145   bool has_receiver = bc != Bytecodes::_invokestatic &&
1146                       bc != Bytecodes::_invokedynamic &&
1147                       bc != Bytecodes::_invokehandle;
1148 
1149   // Find receiver for non-static call
1150   if (has_receiver) {
1151     // This register map must be update since we need to find the receiver for
1152     // compiled frames. The receiver might be in a register.
1153     RegisterMap reg_map2(thread);
1154     frame stubFrame   = thread->last_frame();
1155     // Caller-frame is a compiled frame
1156     frame callerFrame = stubFrame.sender(&reg_map2);
1157 
1158     if (attached_method.is_null()) {
1159       methodHandle callee = bytecode.static_target(CHECK_NH);
1160       if (callee.is_null()) {
1161         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1162       }
1163     }
1164 
1165     // Retrieve from a compiled argument list
1166     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1167 
1168     if (receiver.is_null()) {
1169       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1170     }
1171   }
1172 
1173   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1174 
1175   // Resolve method
1176   if (attached_method.not_null()) {
1177     // Parameterized by attached method.
1178     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1179   } else {
1180     // Parameterized by bytecode.
1181     constantPoolHandle constants(THREAD, caller->constants());
1182     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1183   }
1184 
1185 #ifdef ASSERT
1186   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1187   if (has_receiver) {
1188     assert(receiver.not_null(), "should have thrown exception");
1189     KlassHandle receiver_klass(THREAD, receiver->klass());
1190     Klass* rk = NULL;
1191     if (attached_method.not_null()) {
1192       // In case there's resolved method attached, use its holder during the check.
1193       rk = attached_method->method_holder();
1194     } else {
1195       // Klass is already loaded.
1196       constantPoolHandle constants(THREAD, caller->constants());
1197       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1198     }
1199     KlassHandle static_receiver_klass(THREAD, rk);
1200     methodHandle callee = callinfo.selected_method();
1201     assert(receiver_klass->is_subtype_of(static_receiver_klass()),
1202            "actual receiver must be subclass of static receiver klass");
1203     if (receiver_klass->is_instance_klass()) {
1204       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1205         tty->print_cr("ERROR: Klass not yet initialized!!");
1206         receiver_klass()->print();
1207       }
1208       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1209     }
1210   }
1211 #endif
1212 
1213   return receiver;
1214 }
1215 
1216 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1217   ResourceMark rm(THREAD);
1218   // We need first to check if any Java activations (compiled, interpreted)
1219   // exist on the stack since last JavaCall.  If not, we need
1220   // to get the target method from the JavaCall wrapper.
1221   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1222   methodHandle callee_method;
1223   if (vfst.at_end()) {
1224     // No Java frames were found on stack since we did the JavaCall.
1225     // Hence the stack can only contain an entry_frame.  We need to
1226     // find the target method from the stub frame.
1227     RegisterMap reg_map(thread, false);
1228     frame fr = thread->last_frame();
1229     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1230     fr = fr.sender(&reg_map);
1231     assert(fr.is_entry_frame(), "must be");
1232     // fr is now pointing to the entry frame.
1233     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1234   } else {
1235     Bytecodes::Code bc;
1236     CallInfo callinfo;
1237     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1238     callee_method = callinfo.selected_method();
1239   }
1240   assert(callee_method()->is_method(), "must be");
1241   return callee_method;
1242 }
1243 
1244 // Resolves a call.
1245 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1246                                            bool is_virtual,
1247                                            bool is_optimized, TRAPS) {
1248   methodHandle callee_method;
1249   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1250   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1251     int retry_count = 0;
1252     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1253            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1254       // If has a pending exception then there is no need to re-try to
1255       // resolve this method.
1256       // If the method has been redefined, we need to try again.
1257       // Hack: we have no way to update the vtables of arrays, so don't
1258       // require that java.lang.Object has been updated.
1259 
1260       // It is very unlikely that method is redefined more than 100 times
1261       // in the middle of resolve. If it is looping here more than 100 times
1262       // means then there could be a bug here.
1263       guarantee((retry_count++ < 100),
1264                 "Could not resolve to latest version of redefined method");
1265       // method is redefined in the middle of resolve so re-try.
1266       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1267     }
1268   }
1269   return callee_method;
1270 }
1271 
1272 // Resolves a call.  The compilers generate code for calls that go here
1273 // and are patched with the real destination of the call.
1274 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1275                                            bool is_virtual,
1276                                            bool is_optimized, TRAPS) {
1277 
1278   ResourceMark rm(thread);
1279   RegisterMap cbl_map(thread, false);
1280   frame caller_frame = thread->last_frame().sender(&cbl_map);
1281 
1282   CodeBlob* caller_cb = caller_frame.cb();
1283   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1284   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1285 
1286   // make sure caller is not getting deoptimized
1287   // and removed before we are done with it.
1288   // CLEANUP - with lazy deopt shouldn't need this lock
1289   nmethodLocker caller_lock(caller_nm);
1290 
1291   // determine call info & receiver
1292   // note: a) receiver is NULL for static calls
1293   //       b) an exception is thrown if receiver is NULL for non-static calls
1294   CallInfo call_info;
1295   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1296   Handle receiver = find_callee_info(thread, invoke_code,
1297                                      call_info, CHECK_(methodHandle()));
1298   methodHandle callee_method = call_info.selected_method();
1299 
1300   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1301          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1302          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1303          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1304          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1305 
1306   assert(caller_nm->is_alive(), "It should be alive");
1307 
1308 #ifndef PRODUCT
1309   // tracing/debugging/statistics
1310   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1311                 (is_virtual) ? (&_resolve_virtual_ctr) :
1312                                (&_resolve_static_ctr);
1313   Atomic::inc(addr);
1314 
1315   if (TraceCallFixup) {
1316     ResourceMark rm(thread);
1317     tty->print("resolving %s%s (%s) call to",
1318       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1319       Bytecodes::name(invoke_code));
1320     callee_method->print_short_name(tty);
1321     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1322                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1323   }
1324 #endif
1325 
1326   // JSR 292 key invariant:
1327   // If the resolved method is a MethodHandle invoke target, the call
1328   // site must be a MethodHandle call site, because the lambda form might tail-call
1329   // leaving the stack in a state unknown to either caller or callee
1330   // TODO detune for now but we might need it again
1331 //  assert(!callee_method->is_compiled_lambda_form() ||
1332 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1333 
1334   // Compute entry points. This might require generation of C2I converter
1335   // frames, so we cannot be holding any locks here. Furthermore, the
1336   // computation of the entry points is independent of patching the call.  We
1337   // always return the entry-point, but we only patch the stub if the call has
1338   // not been deoptimized.  Return values: For a virtual call this is an
1339   // (cached_oop, destination address) pair. For a static call/optimized
1340   // virtual this is just a destination address.
1341 
1342   StaticCallInfo static_call_info;
1343   CompiledICInfo virtual_call_info;
1344 
1345   // Make sure the callee nmethod does not get deoptimized and removed before
1346   // we are done patching the code.
1347   CompiledMethod* callee = callee_method->code();
1348 
1349   if (callee != NULL) {
1350     assert(callee->is_compiled(), "must be nmethod for patching");
1351   }
1352 
1353   if (callee != NULL && !callee->is_in_use()) {
1354     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1355     callee = NULL;
1356   }
1357   nmethodLocker nl_callee(callee);
1358 #ifdef ASSERT
1359   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1360 #endif
1361 
1362   bool is_nmethod = caller_nm->is_nmethod();
1363 
1364   if (is_virtual) {
1365     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1366     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1367     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1368     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1369                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1370                      CHECK_(methodHandle()));
1371   } else {
1372     // static call
1373     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1374   }
1375 
1376   // grab lock, check for deoptimization and potentially patch caller
1377   {
1378     MutexLocker ml_patch(CompiledIC_lock);
1379 
1380     // Lock blocks for safepoint during which both nmethods can change state.
1381 
1382     // Now that we are ready to patch if the Method* was redefined then
1383     // don't update call site and let the caller retry.
1384     // Don't update call site if callee nmethod was unloaded or deoptimized.
1385     // Don't update call site if callee nmethod was replaced by an other nmethod
1386     // which may happen when multiply alive nmethod (tiered compilation)
1387     // will be supported.
1388     if (!callee_method->is_old() &&
1389         (callee == NULL || callee->is_in_use() && (callee_method->code() == callee))) {
1390 #ifdef ASSERT
1391       // We must not try to patch to jump to an already unloaded method.
1392       if (dest_entry_point != 0) {
1393         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1394         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1395                "should not call unloaded nmethod");
1396       }
1397 #endif
1398       if (is_virtual) {
1399         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1400         if (inline_cache->is_clean()) {
1401           inline_cache->set_to_monomorphic(virtual_call_info);
1402         }
1403       } else {
1404         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1405         if (ssc->is_clean()) ssc->set(static_call_info);
1406       }
1407     }
1408 
1409   } // unlock CompiledIC_lock
1410 
1411   return callee_method;
1412 }
1413 
1414 
1415 // Inline caches exist only in compiled code
1416 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1417 #ifdef ASSERT
1418   RegisterMap reg_map(thread, false);
1419   frame stub_frame = thread->last_frame();
1420   assert(stub_frame.is_runtime_frame(), "sanity check");
1421   frame caller_frame = stub_frame.sender(&reg_map);
1422   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1423 #endif /* ASSERT */
1424 
1425   methodHandle callee_method;
1426   JRT_BLOCK
1427     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1428     // Return Method* through TLS
1429     thread->set_vm_result_2(callee_method());
1430   JRT_BLOCK_END
1431   // return compiled code entry point after potential safepoints
1432   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1433   return callee_method->verified_code_entry();
1434 JRT_END
1435 
1436 
1437 // Handle call site that has been made non-entrant
1438 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1439   // 6243940 We might end up in here if the callee is deoptimized
1440   // as we race to call it.  We don't want to take a safepoint if
1441   // the caller was interpreted because the caller frame will look
1442   // interpreted to the stack walkers and arguments are now
1443   // "compiled" so it is much better to make this transition
1444   // invisible to the stack walking code. The i2c path will
1445   // place the callee method in the callee_target. It is stashed
1446   // there because if we try and find the callee by normal means a
1447   // safepoint is possible and have trouble gc'ing the compiled args.
1448   RegisterMap reg_map(thread, false);
1449   frame stub_frame = thread->last_frame();
1450   assert(stub_frame.is_runtime_frame(), "sanity check");
1451   frame caller_frame = stub_frame.sender(&reg_map);
1452 
1453   if (caller_frame.is_interpreted_frame() ||
1454       caller_frame.is_entry_frame()) {
1455     Method* callee = thread->callee_target();
1456     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1457     thread->set_vm_result_2(callee);
1458     thread->set_callee_target(NULL);
1459     return callee->get_c2i_entry();
1460   }
1461 
1462   // Must be compiled to compiled path which is safe to stackwalk
1463   methodHandle callee_method;
1464   JRT_BLOCK
1465     // Force resolving of caller (if we called from compiled frame)
1466     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1467     thread->set_vm_result_2(callee_method());
1468   JRT_BLOCK_END
1469   // return compiled code entry point after potential safepoints
1470   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1471   return callee_method->verified_code_entry();
1472 JRT_END
1473 
1474 // Handle abstract method call
1475 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1476   return StubRoutines::throw_AbstractMethodError_entry();
1477 JRT_END
1478 
1479 
1480 // resolve a static call and patch code
1481 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1482   methodHandle callee_method;
1483   JRT_BLOCK
1484     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1485     thread->set_vm_result_2(callee_method());
1486   JRT_BLOCK_END
1487   // return compiled code entry point after potential safepoints
1488   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1489   return callee_method->verified_code_entry();
1490 JRT_END
1491 
1492 
1493 // resolve virtual call and update inline cache to monomorphic
1494 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1495   methodHandle callee_method;
1496   JRT_BLOCK
1497     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1498     thread->set_vm_result_2(callee_method());
1499   JRT_BLOCK_END
1500   // return compiled code entry point after potential safepoints
1501   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1502   return callee_method->verified_code_entry();
1503 JRT_END
1504 
1505 
1506 // Resolve a virtual call that can be statically bound (e.g., always
1507 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1508 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1509   methodHandle callee_method;
1510   JRT_BLOCK
1511     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1512     thread->set_vm_result_2(callee_method());
1513   JRT_BLOCK_END
1514   // return compiled code entry point after potential safepoints
1515   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1516   return callee_method->verified_code_entry();
1517 JRT_END
1518 
1519 
1520 
1521 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1522   ResourceMark rm(thread);
1523   CallInfo call_info;
1524   Bytecodes::Code bc;
1525 
1526   // receiver is NULL for static calls. An exception is thrown for NULL
1527   // receivers for non-static calls
1528   Handle receiver = find_callee_info(thread, bc, call_info,
1529                                      CHECK_(methodHandle()));
1530   // Compiler1 can produce virtual call sites that can actually be statically bound
1531   // If we fell thru to below we would think that the site was going megamorphic
1532   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1533   // we'd try and do a vtable dispatch however methods that can be statically bound
1534   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1535   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1536   // plain ic_miss) and the site will be converted to an optimized virtual call site
1537   // never to miss again. I don't believe C2 will produce code like this but if it
1538   // did this would still be the correct thing to do for it too, hence no ifdef.
1539   //
1540   if (call_info.resolved_method()->can_be_statically_bound()) {
1541     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1542     if (TraceCallFixup) {
1543       RegisterMap reg_map(thread, false);
1544       frame caller_frame = thread->last_frame().sender(&reg_map);
1545       ResourceMark rm(thread);
1546       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1547       callee_method->print_short_name(tty);
1548       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1549       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1550     }
1551     return callee_method;
1552   }
1553 
1554   methodHandle callee_method = call_info.selected_method();
1555 
1556   bool should_be_mono = false;
1557 
1558 #ifndef PRODUCT
1559   Atomic::inc(&_ic_miss_ctr);
1560 
1561   // Statistics & Tracing
1562   if (TraceCallFixup) {
1563     ResourceMark rm(thread);
1564     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1565     callee_method->print_short_name(tty);
1566     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1567   }
1568 
1569   if (ICMissHistogram) {
1570     MutexLocker m(VMStatistic_lock);
1571     RegisterMap reg_map(thread, false);
1572     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1573     // produce statistics under the lock
1574     trace_ic_miss(f.pc());
1575   }
1576 #endif
1577 
1578   // install an event collector so that when a vtable stub is created the
1579   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1580   // event can't be posted when the stub is created as locks are held
1581   // - instead the event will be deferred until the event collector goes
1582   // out of scope.
1583   JvmtiDynamicCodeEventCollector event_collector;
1584 
1585   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1586   { MutexLocker ml_patch (CompiledIC_lock);
1587     RegisterMap reg_map(thread, false);
1588     frame caller_frame = thread->last_frame().sender(&reg_map);
1589     CodeBlob* cb = caller_frame.cb();
1590     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1591     if (cb->is_compiled()) {
1592       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1593       bool should_be_mono = false;
1594       if (inline_cache->is_optimized()) {
1595         if (TraceCallFixup) {
1596           ResourceMark rm(thread);
1597           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1598           callee_method->print_short_name(tty);
1599           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1600         }
1601         should_be_mono = true;
1602       } else if (inline_cache->is_icholder_call()) {
1603         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1604         if (ic_oop != NULL) {
1605 
1606           if (receiver()->klass() == ic_oop->holder_klass()) {
1607             // This isn't a real miss. We must have seen that compiled code
1608             // is now available and we want the call site converted to a
1609             // monomorphic compiled call site.
1610             // We can't assert for callee_method->code() != NULL because it
1611             // could have been deoptimized in the meantime
1612             if (TraceCallFixup) {
1613               ResourceMark rm(thread);
1614               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1615               callee_method->print_short_name(tty);
1616               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1617             }
1618             should_be_mono = true;
1619           }
1620         }
1621       }
1622 
1623       if (should_be_mono) {
1624 
1625         // We have a path that was monomorphic but was going interpreted
1626         // and now we have (or had) a compiled entry. We correct the IC
1627         // by using a new icBuffer.
1628         CompiledICInfo info;
1629         KlassHandle receiver_klass(THREAD, receiver()->klass());
1630         inline_cache->compute_monomorphic_entry(callee_method,
1631                                                 receiver_klass,
1632                                                 inline_cache->is_optimized(),
1633                                                 false, caller_nm->is_nmethod(),
1634                                                 info, CHECK_(methodHandle()));
1635         inline_cache->set_to_monomorphic(info);
1636       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1637         // Potential change to megamorphic
1638         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1639         if (!successful) {
1640           inline_cache->set_to_clean();
1641         }
1642       } else {
1643         // Either clean or megamorphic
1644       }
1645     } else {
1646       fatal("Unimplemented");
1647     }
1648   } // Release CompiledIC_lock
1649 
1650   return callee_method;
1651 }
1652 
1653 //
1654 // Resets a call-site in compiled code so it will get resolved again.
1655 // This routines handles both virtual call sites, optimized virtual call
1656 // sites, and static call sites. Typically used to change a call sites
1657 // destination from compiled to interpreted.
1658 //
1659 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1660   ResourceMark rm(thread);
1661   RegisterMap reg_map(thread, false);
1662   frame stub_frame = thread->last_frame();
1663   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1664   frame caller = stub_frame.sender(&reg_map);
1665 
1666   // Do nothing if the frame isn't a live compiled frame.
1667   // nmethod could be deoptimized by the time we get here
1668   // so no update to the caller is needed.
1669 
1670   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1671 
1672     address pc = caller.pc();
1673 
1674     // Check for static or virtual call
1675     bool is_static_call = false;
1676     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1677 
1678     // Default call_addr is the location of the "basic" call.
1679     // Determine the address of the call we a reresolving. With
1680     // Inline Caches we will always find a recognizable call.
1681     // With Inline Caches disabled we may or may not find a
1682     // recognizable call. We will always find a call for static
1683     // calls and for optimized virtual calls. For vanilla virtual
1684     // calls it depends on the state of the UseInlineCaches switch.
1685     //
1686     // With Inline Caches disabled we can get here for a virtual call
1687     // for two reasons:
1688     //   1 - calling an abstract method. The vtable for abstract methods
1689     //       will run us thru handle_wrong_method and we will eventually
1690     //       end up in the interpreter to throw the ame.
1691     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1692     //       call and between the time we fetch the entry address and
1693     //       we jump to it the target gets deoptimized. Similar to 1
1694     //       we will wind up in the interprter (thru a c2i with c2).
1695     //
1696     address call_addr = NULL;
1697     {
1698       // Get call instruction under lock because another thread may be
1699       // busy patching it.
1700       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1701       // Location of call instruction
1702       call_addr = caller_nm->call_instruction_address(pc);
1703     }
1704     // Make sure nmethod doesn't get deoptimized and removed until
1705     // this is done with it.
1706     // CLEANUP - with lazy deopt shouldn't need this lock
1707     nmethodLocker nmlock(caller_nm);
1708 
1709     if (call_addr != NULL) {
1710       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1711       int ret = iter.next(); // Get item
1712       if (ret) {
1713         assert(iter.addr() == call_addr, "must find call");
1714         if (iter.type() == relocInfo::static_call_type) {
1715           is_static_call = true;
1716         } else {
1717           assert(iter.type() == relocInfo::virtual_call_type ||
1718                  iter.type() == relocInfo::opt_virtual_call_type
1719                 , "unexpected relocInfo. type");
1720         }
1721       } else {
1722         assert(!UseInlineCaches, "relocation info. must exist for this address");
1723       }
1724 
1725       // Cleaning the inline cache will force a new resolve. This is more robust
1726       // than directly setting it to the new destination, since resolving of calls
1727       // is always done through the same code path. (experience shows that it
1728       // leads to very hard to track down bugs, if an inline cache gets updated
1729       // to a wrong method). It should not be performance critical, since the
1730       // resolve is only done once.
1731 
1732       bool is_nmethod = caller_nm->is_nmethod();
1733       MutexLocker ml(CompiledIC_lock);
1734       if (is_static_call) {
1735         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1736         ssc->set_to_clean();
1737       } else {
1738         // compiled, dispatched call (which used to call an interpreted method)
1739         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1740         inline_cache->set_to_clean();
1741       }
1742     }
1743   }
1744 
1745   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1746 
1747 
1748 #ifndef PRODUCT
1749   Atomic::inc(&_wrong_method_ctr);
1750 
1751   if (TraceCallFixup) {
1752     ResourceMark rm(thread);
1753     tty->print("handle_wrong_method reresolving call to");
1754     callee_method->print_short_name(tty);
1755     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1756   }
1757 #endif
1758 
1759   return callee_method;
1760 }
1761 
1762 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1763   // The faulting unsafe accesses should be changed to throw the error
1764   // synchronously instead. Meanwhile the faulting instruction will be
1765   // skipped over (effectively turning it into a no-op) and an
1766   // asynchronous exception will be raised which the thread will
1767   // handle at a later point. If the instruction is a load it will
1768   // return garbage.
1769 
1770   // Request an async exception.
1771   thread->set_pending_unsafe_access_error();
1772 
1773   // Return address of next instruction to execute.
1774   return next_pc;
1775 }
1776 
1777 #ifdef ASSERT
1778 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1779                                                                 const BasicType* sig_bt,
1780                                                                 const VMRegPair* regs) {
1781   ResourceMark rm;
1782   const int total_args_passed = method->size_of_parameters();
1783   const VMRegPair*    regs_with_member_name = regs;
1784         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1785 
1786   const int member_arg_pos = total_args_passed - 1;
1787   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1788   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1789 
1790   const bool is_outgoing = method->is_method_handle_intrinsic();
1791   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1792 
1793   for (int i = 0; i < member_arg_pos; i++) {
1794     VMReg a =    regs_with_member_name[i].first();
1795     VMReg b = regs_without_member_name[i].first();
1796     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1797   }
1798   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1799 }
1800 #endif
1801 
1802 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1803   if (destination != entry_point) {
1804     CodeBlob* callee = CodeCache::find_blob(destination);
1805     // callee == cb seems weird. It means calling interpreter thru stub.
1806     if (callee == cb || callee->is_adapter_blob()) {
1807       // static call or optimized virtual
1808       if (TraceCallFixup) {
1809         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1810         moop->print_short_name(tty);
1811         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1812       }
1813       return true;
1814     } else {
1815       if (TraceCallFixup) {
1816         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1817         moop->print_short_name(tty);
1818         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1819       }
1820       // assert is too strong could also be resolve destinations.
1821       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1822     }
1823   } else {
1824     if (TraceCallFixup) {
1825       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1826       moop->print_short_name(tty);
1827       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1828     }
1829   }
1830   return false;
1831 }
1832 
1833 // ---------------------------------------------------------------------------
1834 // We are calling the interpreter via a c2i. Normally this would mean that
1835 // we were called by a compiled method. However we could have lost a race
1836 // where we went int -> i2c -> c2i and so the caller could in fact be
1837 // interpreted. If the caller is compiled we attempt to patch the caller
1838 // so he no longer calls into the interpreter.
1839 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1840   Method* moop(method);
1841 
1842   address entry_point = moop->from_compiled_entry_no_trampoline();
1843 
1844   // It's possible that deoptimization can occur at a call site which hasn't
1845   // been resolved yet, in which case this function will be called from
1846   // an nmethod that has been patched for deopt and we can ignore the
1847   // request for a fixup.
1848   // Also it is possible that we lost a race in that from_compiled_entry
1849   // is now back to the i2c in that case we don't need to patch and if
1850   // we did we'd leap into space because the callsite needs to use
1851   // "to interpreter" stub in order to load up the Method*. Don't
1852   // ask me how I know this...
1853 
1854   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1855   if (!cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1856     return;
1857   }
1858 
1859   // The check above makes sure this is a nmethod.
1860   CompiledMethod* nm = cb->as_compiled_method_or_null();
1861   assert(nm, "must be");
1862 
1863   // Get the return PC for the passed caller PC.
1864   address return_pc = caller_pc + frame::pc_return_offset;
1865 
1866   // There is a benign race here. We could be attempting to patch to a compiled
1867   // entry point at the same time the callee is being deoptimized. If that is
1868   // the case then entry_point may in fact point to a c2i and we'd patch the
1869   // call site with the same old data. clear_code will set code() to NULL
1870   // at the end of it. If we happen to see that NULL then we can skip trying
1871   // to patch. If we hit the window where the callee has a c2i in the
1872   // from_compiled_entry and the NULL isn't present yet then we lose the race
1873   // and patch the code with the same old data. Asi es la vida.
1874 
1875   if (moop->code() == NULL) return;
1876 
1877   if (nm->is_in_use()) {
1878 
1879     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1880     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1881     if (NativeCall::is_call_before(return_pc)) {
1882       ResourceMark mark;
1883       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1884       //
1885       // bug 6281185. We might get here after resolving a call site to a vanilla
1886       // virtual call. Because the resolvee uses the verified entry it may then
1887       // see compiled code and attempt to patch the site by calling us. This would
1888       // then incorrectly convert the call site to optimized and its downhill from
1889       // there. If you're lucky you'll get the assert in the bugid, if not you've
1890       // just made a call site that could be megamorphic into a monomorphic site
1891       // for the rest of its life! Just another racing bug in the life of
1892       // fixup_callers_callsite ...
1893       //
1894       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1895       iter.next();
1896       assert(iter.has_current(), "must have a reloc at java call site");
1897       relocInfo::relocType typ = iter.reloc()->type();
1898       if (typ != relocInfo::static_call_type &&
1899            typ != relocInfo::opt_virtual_call_type &&
1900            typ != relocInfo::static_stub_type) {
1901         return;
1902       }
1903       address destination = call->destination();
1904       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1905         call->set_destination_mt_safe(entry_point);
1906       }
1907     }
1908   }
1909 IRT_END
1910 
1911 
1912 // same as JVM_Arraycopy, but called directly from compiled code
1913 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1914                                                 oopDesc* dest, jint dest_pos,
1915                                                 jint length,
1916                                                 JavaThread* thread)) {
1917 #ifndef PRODUCT
1918   _slow_array_copy_ctr++;
1919 #endif
1920   // Check if we have null pointers
1921   if (src == NULL || dest == NULL) {
1922     THROW(vmSymbols::java_lang_NullPointerException());
1923   }
1924   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1925   // even though the copy_array API also performs dynamic checks to ensure
1926   // that src and dest are truly arrays (and are conformable).
1927   // The copy_array mechanism is awkward and could be removed, but
1928   // the compilers don't call this function except as a last resort,
1929   // so it probably doesn't matter.
1930   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1931                                         (arrayOopDesc*)dest, dest_pos,
1932                                         length, thread);
1933 }
1934 JRT_END
1935 
1936 // The caller of generate_class_cast_message() (or one of its callers)
1937 // must use a ResourceMark in order to correctly free the result.
1938 char* SharedRuntime::generate_class_cast_message(
1939     JavaThread* thread, Klass* caster_klass) {
1940 
1941   // Get target class name from the checkcast instruction
1942   vframeStream vfst(thread, true);
1943   assert(!vfst.at_end(), "Java frame must exist");
1944   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1945   Klass* target_klass = vfst.method()->constants()->klass_at(
1946     cc.index(), thread);
1947   return generate_class_cast_message(caster_klass, target_klass);
1948 }
1949 
1950 // The caller of class_loader_and_module_name() (or one of its callers)
1951 // must use a ResourceMark in order to correctly free the result.
1952 const char* class_loader_and_module_name(Klass* klass) {
1953   const char* delim = "/";
1954   size_t delim_len = strlen(delim);
1955 
1956   const char* fqn = klass->external_name();
1957   // Length of message to return; always include FQN
1958   size_t msglen = strlen(fqn) + 1;
1959 
1960   bool has_cl_name = false;
1961   bool has_mod_name = false;
1962   bool has_version = false;
1963 
1964   // Use class loader name, if exists and not builtin
1965   const char* class_loader_name = "";
1966   ClassLoaderData* cld = klass->class_loader_data();
1967   assert(cld != NULL, "class_loader_data should not be NULL");
1968   if (!cld->is_builtin_class_loader_data()) {
1969     // If not builtin, look for name
1970     oop loader = klass->class_loader();
1971     if (loader != NULL) {
1972       oop class_loader_name_oop = java_lang_ClassLoader::name(loader);
1973       if (class_loader_name_oop != NULL) {
1974         class_loader_name = java_lang_String::as_utf8_string(class_loader_name_oop);
1975         if (class_loader_name != NULL && class_loader_name[0] != '\0') {
1976           has_cl_name = true;
1977           msglen += strlen(class_loader_name) + delim_len;
1978         }
1979       }
1980     }
1981   }
1982 
1983   const char* module_name = "";
1984   const char* version = "";
1985   Klass* bottom_klass = klass->is_objArray_klass() ?
1986     ObjArrayKlass::cast(klass)->bottom_klass() : klass;
1987   if (bottom_klass->is_instance_klass()) {
1988     ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module();
1989     // Use module name, if exists
1990     if (module->is_named()) {
1991       has_mod_name = true;
1992       module_name = module->name()->as_C_string();
1993       msglen += strlen(module_name);
1994       // Use version if exists and is not a jdk module
1995       if (module->is_non_jdk_module() && module->version() != NULL) {
1996         has_version = true;
1997         version = module->version()->as_C_string();
1998         msglen += strlen("@") + strlen(version);
1999       }
2000     }
2001   } else {
2002     // klass is an array of primitives, so its module is java.base
2003     module_name = JAVA_BASE_NAME;
2004   }
2005 
2006   if (has_cl_name || has_mod_name) {
2007     msglen += delim_len;
2008   }
2009 
2010   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2011 
2012   // Just return the FQN if error in allocating string
2013   if (message == NULL) {
2014     return fqn;
2015   }
2016 
2017   jio_snprintf(message, msglen, "%s%s%s%s%s%s%s",
2018                class_loader_name,
2019                (has_cl_name) ? delim : "",
2020                (has_mod_name) ? module_name : "",
2021                (has_version) ? "@" : "",
2022                (has_version) ? version : "",
2023                (has_cl_name || has_mod_name) ? delim : "",
2024                fqn);
2025   return message;
2026 }
2027 
2028 char* SharedRuntime::generate_class_cast_message(
2029     Klass* caster_klass, Klass* target_klass) {
2030 
2031   const char* caster_name = class_loader_and_module_name(caster_klass);
2032 
2033   const char* target_name = class_loader_and_module_name(target_klass);
2034 
2035   size_t msglen = strlen(caster_name) + strlen(" cannot be cast to ") + strlen(target_name) + 1;
2036 
2037   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2038   if (message == NULL) {
2039     // Shouldn't happen, but don't cause even more problems if it does
2040     message = const_cast<char*>(caster_klass->external_name());
2041   } else {
2042     jio_snprintf(message,
2043                  msglen,
2044                  "%s cannot be cast to %s",
2045                  caster_name,
2046                  target_name);
2047   }
2048   return message;
2049 }
2050 
2051 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2052   (void) JavaThread::current()->reguard_stack();
2053 JRT_END
2054 
2055 
2056 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2057 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2058   // Disable ObjectSynchronizer::quick_enter() in default config
2059   // on AARCH64 and ARM until JDK-8153107 is resolved.
2060   if (ARM_ONLY((SyncFlags & 256) != 0 &&)
2061       AARCH64_ONLY((SyncFlags & 256) != 0 &&)
2062       !SafepointSynchronize::is_synchronizing()) {
2063     // Only try quick_enter() if we're not trying to reach a safepoint
2064     // so that the calling thread reaches the safepoint more quickly.
2065     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2066   }
2067   // NO_ASYNC required because an async exception on the state transition destructor
2068   // would leave you with the lock held and it would never be released.
2069   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2070   // and the model is that an exception implies the method failed.
2071   JRT_BLOCK_NO_ASYNC
2072   oop obj(_obj);
2073   if (PrintBiasedLockingStatistics) {
2074     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2075   }
2076   Handle h_obj(THREAD, obj);
2077   if (UseBiasedLocking) {
2078     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2079     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2080   } else {
2081     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2082   }
2083   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2084   JRT_BLOCK_END
2085 JRT_END
2086 
2087 // Handles the uncommon cases of monitor unlocking in compiled code
2088 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2089    oop obj(_obj);
2090   assert(JavaThread::current() == THREAD, "invariant");
2091   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2092   // testing was unable to ever fire the assert that guarded it so I have removed it.
2093   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2094 #undef MIGHT_HAVE_PENDING
2095 #ifdef MIGHT_HAVE_PENDING
2096   // Save and restore any pending_exception around the exception mark.
2097   // While the slow_exit must not throw an exception, we could come into
2098   // this routine with one set.
2099   oop pending_excep = NULL;
2100   const char* pending_file;
2101   int pending_line;
2102   if (HAS_PENDING_EXCEPTION) {
2103     pending_excep = PENDING_EXCEPTION;
2104     pending_file  = THREAD->exception_file();
2105     pending_line  = THREAD->exception_line();
2106     CLEAR_PENDING_EXCEPTION;
2107   }
2108 #endif /* MIGHT_HAVE_PENDING */
2109 
2110   {
2111     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2112     EXCEPTION_MARK;
2113     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2114   }
2115 
2116 #ifdef MIGHT_HAVE_PENDING
2117   if (pending_excep != NULL) {
2118     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2119   }
2120 #endif /* MIGHT_HAVE_PENDING */
2121 JRT_END
2122 
2123 #ifndef PRODUCT
2124 
2125 void SharedRuntime::print_statistics() {
2126   ttyLocker ttyl;
2127   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2128 
2129   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2130 
2131   SharedRuntime::print_ic_miss_histogram();
2132 
2133   if (CountRemovableExceptions) {
2134     if (_nof_removable_exceptions > 0) {
2135       Unimplemented(); // this counter is not yet incremented
2136       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2137     }
2138   }
2139 
2140   // Dump the JRT_ENTRY counters
2141   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2142   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2143   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2144   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2145   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2146   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2147   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2148 
2149   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2150   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2151   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2152   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2153   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2154 
2155   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2156   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2157   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2158   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2159   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2160   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2161   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2162   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2163   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2164   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2165   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2166   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2167   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2168   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2169   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2170   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2171 
2172   AdapterHandlerLibrary::print_statistics();
2173 
2174   if (xtty != NULL)  xtty->tail("statistics");
2175 }
2176 
2177 inline double percent(int x, int y) {
2178   return 100.0 * x / MAX2(y, 1);
2179 }
2180 
2181 class MethodArityHistogram {
2182  public:
2183   enum { MAX_ARITY = 256 };
2184  private:
2185   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2186   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2187   static int _max_arity;                      // max. arity seen
2188   static int _max_size;                       // max. arg size seen
2189 
2190   static void add_method_to_histogram(nmethod* nm) {
2191     Method* m = nm->method();
2192     ArgumentCount args(m->signature());
2193     int arity   = args.size() + (m->is_static() ? 0 : 1);
2194     int argsize = m->size_of_parameters();
2195     arity   = MIN2(arity, MAX_ARITY-1);
2196     argsize = MIN2(argsize, MAX_ARITY-1);
2197     int count = nm->method()->compiled_invocation_count();
2198     _arity_histogram[arity]  += count;
2199     _size_histogram[argsize] += count;
2200     _max_arity = MAX2(_max_arity, arity);
2201     _max_size  = MAX2(_max_size, argsize);
2202   }
2203 
2204   void print_histogram_helper(int n, int* histo, const char* name) {
2205     const int N = MIN2(5, n);
2206     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2207     double sum = 0;
2208     double weighted_sum = 0;
2209     int i;
2210     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2211     double rest = sum;
2212     double percent = sum / 100;
2213     for (i = 0; i <= N; i++) {
2214       rest -= histo[i];
2215       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2216     }
2217     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2218     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2219   }
2220 
2221   void print_histogram() {
2222     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2223     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2224     tty->print_cr("\nSame for parameter size (in words):");
2225     print_histogram_helper(_max_size, _size_histogram, "size");
2226     tty->cr();
2227   }
2228 
2229  public:
2230   MethodArityHistogram() {
2231     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2232     _max_arity = _max_size = 0;
2233     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2234     CodeCache::nmethods_do(add_method_to_histogram);
2235     print_histogram();
2236   }
2237 };
2238 
2239 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2240 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2241 int MethodArityHistogram::_max_arity;
2242 int MethodArityHistogram::_max_size;
2243 
2244 void SharedRuntime::print_call_statistics(int comp_total) {
2245   tty->print_cr("Calls from compiled code:");
2246   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2247   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2248   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2249   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2250   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2251   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2252   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2253   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2254   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2255   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2256   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2257   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2258   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2259   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2260   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2261   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2262   tty->cr();
2263   tty->print_cr("Note 1: counter updates are not MT-safe.");
2264   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2265   tty->print_cr("        %% in nested categories are relative to their category");
2266   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2267   tty->cr();
2268 
2269   MethodArityHistogram h;
2270 }
2271 #endif
2272 
2273 
2274 // A simple wrapper class around the calling convention information
2275 // that allows sharing of adapters for the same calling convention.
2276 class AdapterFingerPrint : public CHeapObj<mtCode> {
2277  private:
2278   enum {
2279     _basic_type_bits = 4,
2280     _basic_type_mask = right_n_bits(_basic_type_bits),
2281     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2282     _compact_int_count = 3
2283   };
2284   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2285   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2286 
2287   union {
2288     int  _compact[_compact_int_count];
2289     int* _fingerprint;
2290   } _value;
2291   int _length; // A negative length indicates the fingerprint is in the compact form,
2292                // Otherwise _value._fingerprint is the array.
2293 
2294   // Remap BasicTypes that are handled equivalently by the adapters.
2295   // These are correct for the current system but someday it might be
2296   // necessary to make this mapping platform dependent.
2297   static int adapter_encoding(BasicType in) {
2298     switch (in) {
2299       case T_BOOLEAN:
2300       case T_BYTE:
2301       case T_SHORT:
2302       case T_CHAR:
2303         // There are all promoted to T_INT in the calling convention
2304         return T_INT;
2305 
2306       case T_OBJECT:
2307       case T_ARRAY:
2308         // In other words, we assume that any register good enough for
2309         // an int or long is good enough for a managed pointer.
2310 #ifdef _LP64
2311         return T_LONG;
2312 #else
2313         return T_INT;
2314 #endif
2315 
2316       case T_INT:
2317       case T_LONG:
2318       case T_FLOAT:
2319       case T_DOUBLE:
2320       case T_VOID:
2321         return in;
2322 
2323       default:
2324         ShouldNotReachHere();
2325         return T_CONFLICT;
2326     }
2327   }
2328 
2329  public:
2330   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2331     // The fingerprint is based on the BasicType signature encoded
2332     // into an array of ints with eight entries per int.
2333     int* ptr;
2334     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2335     if (len <= _compact_int_count) {
2336       assert(_compact_int_count == 3, "else change next line");
2337       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2338       // Storing the signature encoded as signed chars hits about 98%
2339       // of the time.
2340       _length = -len;
2341       ptr = _value._compact;
2342     } else {
2343       _length = len;
2344       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2345       ptr = _value._fingerprint;
2346     }
2347 
2348     // Now pack the BasicTypes with 8 per int
2349     int sig_index = 0;
2350     for (int index = 0; index < len; index++) {
2351       int value = 0;
2352       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2353         int bt = ((sig_index < total_args_passed)
2354                   ? adapter_encoding(sig_bt[sig_index++])
2355                   : 0);
2356         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2357         value = (value << _basic_type_bits) | bt;
2358       }
2359       ptr[index] = value;
2360     }
2361   }
2362 
2363   ~AdapterFingerPrint() {
2364     if (_length > 0) {
2365       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2366     }
2367   }
2368 
2369   int value(int index) {
2370     if (_length < 0) {
2371       return _value._compact[index];
2372     }
2373     return _value._fingerprint[index];
2374   }
2375   int length() {
2376     if (_length < 0) return -_length;
2377     return _length;
2378   }
2379 
2380   bool is_compact() {
2381     return _length <= 0;
2382   }
2383 
2384   unsigned int compute_hash() {
2385     int hash = 0;
2386     for (int i = 0; i < length(); i++) {
2387       int v = value(i);
2388       hash = (hash << 8) ^ v ^ (hash >> 5);
2389     }
2390     return (unsigned int)hash;
2391   }
2392 
2393   const char* as_string() {
2394     stringStream st;
2395     st.print("0x");
2396     for (int i = 0; i < length(); i++) {
2397       st.print("%08x", value(i));
2398     }
2399     return st.as_string();
2400   }
2401 
2402   bool equals(AdapterFingerPrint* other) {
2403     if (other->_length != _length) {
2404       return false;
2405     }
2406     if (_length < 0) {
2407       assert(_compact_int_count == 3, "else change next line");
2408       return _value._compact[0] == other->_value._compact[0] &&
2409              _value._compact[1] == other->_value._compact[1] &&
2410              _value._compact[2] == other->_value._compact[2];
2411     } else {
2412       for (int i = 0; i < _length; i++) {
2413         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2414           return false;
2415         }
2416       }
2417     }
2418     return true;
2419   }
2420 };
2421 
2422 
2423 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2424 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2425   friend class AdapterHandlerTableIterator;
2426 
2427  private:
2428 
2429 #ifndef PRODUCT
2430   static int _lookups; // number of calls to lookup
2431   static int _buckets; // number of buckets checked
2432   static int _equals;  // number of buckets checked with matching hash
2433   static int _hits;    // number of successful lookups
2434   static int _compact; // number of equals calls with compact signature
2435 #endif
2436 
2437   AdapterHandlerEntry* bucket(int i) {
2438     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2439   }
2440 
2441  public:
2442   AdapterHandlerTable()
2443     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2444 
2445   // Create a new entry suitable for insertion in the table
2446   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2447     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2448     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2449     if (DumpSharedSpaces) {
2450       ((CDSAdapterHandlerEntry*)entry)->init();
2451     }
2452     return entry;
2453   }
2454 
2455   // Insert an entry into the table
2456   void add(AdapterHandlerEntry* entry) {
2457     int index = hash_to_index(entry->hash());
2458     add_entry(index, entry);
2459   }
2460 
2461   void free_entry(AdapterHandlerEntry* entry) {
2462     entry->deallocate();
2463     BasicHashtable<mtCode>::free_entry(entry);
2464   }
2465 
2466   // Find a entry with the same fingerprint if it exists
2467   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2468     NOT_PRODUCT(_lookups++);
2469     AdapterFingerPrint fp(total_args_passed, sig_bt);
2470     unsigned int hash = fp.compute_hash();
2471     int index = hash_to_index(hash);
2472     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2473       NOT_PRODUCT(_buckets++);
2474       if (e->hash() == hash) {
2475         NOT_PRODUCT(_equals++);
2476         if (fp.equals(e->fingerprint())) {
2477 #ifndef PRODUCT
2478           if (fp.is_compact()) _compact++;
2479           _hits++;
2480 #endif
2481           return e;
2482         }
2483       }
2484     }
2485     return NULL;
2486   }
2487 
2488 #ifndef PRODUCT
2489   void print_statistics() {
2490     ResourceMark rm;
2491     int longest = 0;
2492     int empty = 0;
2493     int total = 0;
2494     int nonempty = 0;
2495     for (int index = 0; index < table_size(); index++) {
2496       int count = 0;
2497       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2498         count++;
2499       }
2500       if (count != 0) nonempty++;
2501       if (count == 0) empty++;
2502       if (count > longest) longest = count;
2503       total += count;
2504     }
2505     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2506                   empty, longest, total, total / (double)nonempty);
2507     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2508                   _lookups, _buckets, _equals, _hits, _compact);
2509   }
2510 #endif
2511 };
2512 
2513 
2514 #ifndef PRODUCT
2515 
2516 int AdapterHandlerTable::_lookups;
2517 int AdapterHandlerTable::_buckets;
2518 int AdapterHandlerTable::_equals;
2519 int AdapterHandlerTable::_hits;
2520 int AdapterHandlerTable::_compact;
2521 
2522 #endif
2523 
2524 class AdapterHandlerTableIterator : public StackObj {
2525  private:
2526   AdapterHandlerTable* _table;
2527   int _index;
2528   AdapterHandlerEntry* _current;
2529 
2530   void scan() {
2531     while (_index < _table->table_size()) {
2532       AdapterHandlerEntry* a = _table->bucket(_index);
2533       _index++;
2534       if (a != NULL) {
2535         _current = a;
2536         return;
2537       }
2538     }
2539   }
2540 
2541  public:
2542   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2543     scan();
2544   }
2545   bool has_next() {
2546     return _current != NULL;
2547   }
2548   AdapterHandlerEntry* next() {
2549     if (_current != NULL) {
2550       AdapterHandlerEntry* result = _current;
2551       _current = _current->next();
2552       if (_current == NULL) scan();
2553       return result;
2554     } else {
2555       return NULL;
2556     }
2557   }
2558 };
2559 
2560 
2561 // ---------------------------------------------------------------------------
2562 // Implementation of AdapterHandlerLibrary
2563 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2564 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2565 const int AdapterHandlerLibrary_size = 16*K;
2566 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2567 
2568 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2569   // Should be called only when AdapterHandlerLibrary_lock is active.
2570   if (_buffer == NULL) // Initialize lazily
2571       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2572   return _buffer;
2573 }
2574 
2575 extern "C" void unexpected_adapter_call() {
2576   ShouldNotCallThis();
2577 }
2578 
2579 void AdapterHandlerLibrary::initialize() {
2580   if (_adapters != NULL) return;
2581   _adapters = new AdapterHandlerTable();
2582 
2583   if (!CodeCacheExtensions::skip_compiler_support()) {
2584     // Create a special handler for abstract methods.  Abstract methods
2585     // are never compiled so an i2c entry is somewhat meaningless, but
2586     // throw AbstractMethodError just in case.
2587     // Pass wrong_method_abstract for the c2i transitions to return
2588     // AbstractMethodError for invalid invocations.
2589     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2590     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2591                                                                 StubRoutines::throw_AbstractMethodError_entry(),
2592                                                                 wrong_method_abstract, wrong_method_abstract);
2593   } else {
2594     // Adapters are not supposed to be used.
2595     // Generate a special one to cause an error if used (and store this
2596     // singleton in place of the useless _abstract_method_error adapter).
2597     address entry = (address) &unexpected_adapter_call;
2598     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2599                                                                 entry,
2600                                                                 entry,
2601                                                                 entry);
2602 
2603   }
2604 }
2605 
2606 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2607                                                       address i2c_entry,
2608                                                       address c2i_entry,
2609                                                       address c2i_unverified_entry) {
2610   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2611 }
2612 
2613 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2614   AdapterHandlerEntry* entry = get_adapter0(method);
2615   if (method->is_shared()) {
2616     // See comments around Method::link_method()
2617     MutexLocker mu(AdapterHandlerLibrary_lock);
2618     if (method->adapter() == NULL) {
2619       method->update_adapter_trampoline(entry);
2620     }
2621     address trampoline = method->from_compiled_entry();
2622     if (*(int*)trampoline == 0) {
2623       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2624       MacroAssembler _masm(&buffer);
2625       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2626       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2627 
2628       if (PrintInterpreter) {
2629         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2630       }
2631     }
2632   }
2633 
2634   return entry;
2635 }
2636 
2637 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2638   // Use customized signature handler.  Need to lock around updates to
2639   // the AdapterHandlerTable (it is not safe for concurrent readers
2640   // and a single writer: this could be fixed if it becomes a
2641   // problem).
2642 
2643   ResourceMark rm;
2644 
2645   NOT_PRODUCT(int insts_size);
2646   AdapterBlob* new_adapter = NULL;
2647   AdapterHandlerEntry* entry = NULL;
2648   AdapterFingerPrint* fingerprint = NULL;
2649   {
2650     MutexLocker mu(AdapterHandlerLibrary_lock);
2651     // make sure data structure is initialized
2652     initialize();
2653 
2654     // during dump time, always generate adapters, even if the
2655     // compiler has been turned off.
2656     if (!DumpSharedSpaces && CodeCacheExtensions::skip_compiler_support()) {
2657       // adapters are useless and should not be used, including the
2658       // abstract_method_handler. However, some callers check that
2659       // an adapter was installed.
2660       // Return the singleton adapter, stored into _abstract_method_handler
2661       // and modified to cause an error if we ever call it.
2662       return _abstract_method_handler;
2663     }
2664 
2665     if (method->is_abstract()) {
2666       return _abstract_method_handler;
2667     }
2668 
2669     // Fill in the signature array, for the calling-convention call.
2670     int total_args_passed = method->size_of_parameters(); // All args on stack
2671 
2672     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2673     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2674     int i = 0;
2675     if (!method->is_static())  // Pass in receiver first
2676       sig_bt[i++] = T_OBJECT;
2677     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2678       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2679       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2680         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2681     }
2682     assert(i == total_args_passed, "");
2683 
2684     // Lookup method signature's fingerprint
2685     entry = _adapters->lookup(total_args_passed, sig_bt);
2686 
2687 #ifdef ASSERT
2688     AdapterHandlerEntry* shared_entry = NULL;
2689     // Start adapter sharing verification only after the VM is booted.
2690     if (VerifyAdapterSharing && (entry != NULL)) {
2691       shared_entry = entry;
2692       entry = NULL;
2693     }
2694 #endif
2695 
2696     if (entry != NULL) {
2697       return entry;
2698     }
2699 
2700     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2701     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2702 
2703     // Make a C heap allocated version of the fingerprint to store in the adapter
2704     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2705 
2706     // StubRoutines::code2() is initialized after this function can be called. As a result,
2707     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2708     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2709     // stub that ensure that an I2C stub is called from an interpreter frame.
2710     bool contains_all_checks = StubRoutines::code2() != NULL;
2711 
2712     // Create I2C & C2I handlers
2713     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2714     if (buf != NULL) {
2715       CodeBuffer buffer(buf);
2716       short buffer_locs[20];
2717       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2718                                              sizeof(buffer_locs)/sizeof(relocInfo));
2719 
2720       MacroAssembler _masm(&buffer);
2721       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2722                                                      total_args_passed,
2723                                                      comp_args_on_stack,
2724                                                      sig_bt,
2725                                                      regs,
2726                                                      fingerprint);
2727 #ifdef ASSERT
2728       if (VerifyAdapterSharing) {
2729         if (shared_entry != NULL) {
2730           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2731           // Release the one just created and return the original
2732           _adapters->free_entry(entry);
2733           return shared_entry;
2734         } else  {
2735           entry->save_code(buf->code_begin(), buffer.insts_size());
2736         }
2737       }
2738 #endif
2739 
2740       new_adapter = AdapterBlob::create(&buffer);
2741       NOT_PRODUCT(insts_size = buffer.insts_size());
2742     }
2743     if (new_adapter == NULL) {
2744       // CodeCache is full, disable compilation
2745       // Ought to log this but compile log is only per compile thread
2746       // and we're some non descript Java thread.
2747       return NULL; // Out of CodeCache space
2748     }
2749     entry->relocate(new_adapter->content_begin());
2750 #ifndef PRODUCT
2751     // debugging suppport
2752     if (PrintAdapterHandlers || PrintStubCode) {
2753       ttyLocker ttyl;
2754       entry->print_adapter_on(tty);
2755       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2756                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2757                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2758       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2759       if (Verbose || PrintStubCode) {
2760         address first_pc = entry->base_address();
2761         if (first_pc != NULL) {
2762           Disassembler::decode(first_pc, first_pc + insts_size);
2763           tty->cr();
2764         }
2765       }
2766     }
2767 #endif
2768     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2769     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2770     if (contains_all_checks || !VerifyAdapterCalls) {
2771       _adapters->add(entry);
2772     }
2773   }
2774   // Outside of the lock
2775   if (new_adapter != NULL) {
2776     char blob_id[256];
2777     jio_snprintf(blob_id,
2778                  sizeof(blob_id),
2779                  "%s(%s)@" PTR_FORMAT,
2780                  new_adapter->name(),
2781                  fingerprint->as_string(),
2782                  new_adapter->content_begin());
2783     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2784 
2785     if (JvmtiExport::should_post_dynamic_code_generated()) {
2786       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2787     }
2788   }
2789   return entry;
2790 }
2791 
2792 address AdapterHandlerEntry::base_address() {
2793   address base = _i2c_entry;
2794   if (base == NULL)  base = _c2i_entry;
2795   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2796   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2797   return base;
2798 }
2799 
2800 void AdapterHandlerEntry::relocate(address new_base) {
2801   address old_base = base_address();
2802   assert(old_base != NULL, "");
2803   ptrdiff_t delta = new_base - old_base;
2804   if (_i2c_entry != NULL)
2805     _i2c_entry += delta;
2806   if (_c2i_entry != NULL)
2807     _c2i_entry += delta;
2808   if (_c2i_unverified_entry != NULL)
2809     _c2i_unverified_entry += delta;
2810   assert(base_address() == new_base, "");
2811 }
2812 
2813 
2814 void AdapterHandlerEntry::deallocate() {
2815   delete _fingerprint;
2816 #ifdef ASSERT
2817   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2818 #endif
2819 }
2820 
2821 
2822 #ifdef ASSERT
2823 // Capture the code before relocation so that it can be compared
2824 // against other versions.  If the code is captured after relocation
2825 // then relative instructions won't be equivalent.
2826 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2827   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2828   _saved_code_length = length;
2829   memcpy(_saved_code, buffer, length);
2830 }
2831 
2832 
2833 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2834   if (length != _saved_code_length) {
2835     return false;
2836   }
2837 
2838   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2839 }
2840 #endif
2841 
2842 
2843 /**
2844  * Create a native wrapper for this native method.  The wrapper converts the
2845  * Java-compiled calling convention to the native convention, handles
2846  * arguments, and transitions to native.  On return from the native we transition
2847  * back to java blocking if a safepoint is in progress.
2848  */
2849 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2850   ResourceMark rm;
2851   nmethod* nm = NULL;
2852 
2853   assert(method->is_native(), "must be native");
2854   assert(method->is_method_handle_intrinsic() ||
2855          method->has_native_function(), "must have something valid to call!");
2856 
2857   {
2858     // Perform the work while holding the lock, but perform any printing outside the lock
2859     MutexLocker mu(AdapterHandlerLibrary_lock);
2860     // See if somebody beat us to it
2861     if (method->code() != NULL) {
2862       return;
2863     }
2864 
2865     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2866     assert(compile_id > 0, "Must generate native wrapper");
2867 
2868 
2869     ResourceMark rm;
2870     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2871     if (buf != NULL) {
2872       CodeBuffer buffer(buf);
2873       double locs_buf[20];
2874       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2875       MacroAssembler _masm(&buffer);
2876 
2877       // Fill in the signature array, for the calling-convention call.
2878       const int total_args_passed = method->size_of_parameters();
2879 
2880       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2881       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2882       int i=0;
2883       if (!method->is_static())  // Pass in receiver first
2884         sig_bt[i++] = T_OBJECT;
2885       SignatureStream ss(method->signature());
2886       for (; !ss.at_return_type(); ss.next()) {
2887         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2888         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2889           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2890       }
2891       assert(i == total_args_passed, "");
2892       BasicType ret_type = ss.type();
2893 
2894       // Now get the compiled-Java layout as input (or output) arguments.
2895       // NOTE: Stubs for compiled entry points of method handle intrinsics
2896       // are just trampolines so the argument registers must be outgoing ones.
2897       const bool is_outgoing = method->is_method_handle_intrinsic();
2898       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2899 
2900       // Generate the compiled-to-native wrapper code
2901       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2902 
2903       if (nm != NULL) {
2904         method->set_code(method, nm);
2905 
2906         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2907         if (directive->PrintAssemblyOption) {
2908           nm->print_code();
2909         }
2910         DirectivesStack::release(directive);
2911       }
2912     }
2913   } // Unlock AdapterHandlerLibrary_lock
2914 
2915 
2916   // Install the generated code.
2917   if (nm != NULL) {
2918     if (PrintCompilation) {
2919       ttyLocker ttyl;
2920       CompileTask::print(tty, nm, method->is_static() ? "(static)" : "");
2921     }
2922     nm->post_compiled_method_load_event();
2923   }
2924 }
2925 
2926 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2927   assert(thread == JavaThread::current(), "must be");
2928   // The code is about to enter a JNI lazy critical native method and
2929   // _needs_gc is true, so if this thread is already in a critical
2930   // section then just return, otherwise this thread should block
2931   // until needs_gc has been cleared.
2932   if (thread->in_critical()) {
2933     return;
2934   }
2935   // Lock and unlock a critical section to give the system a chance to block
2936   GCLocker::lock_critical(thread);
2937   GCLocker::unlock_critical(thread);
2938 JRT_END
2939 
2940 // -------------------------------------------------------------------------
2941 // Java-Java calling convention
2942 // (what you use when Java calls Java)
2943 
2944 //------------------------------name_for_receiver----------------------------------
2945 // For a given signature, return the VMReg for parameter 0.
2946 VMReg SharedRuntime::name_for_receiver() {
2947   VMRegPair regs;
2948   BasicType sig_bt = T_OBJECT;
2949   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2950   // Return argument 0 register.  In the LP64 build pointers
2951   // take 2 registers, but the VM wants only the 'main' name.
2952   return regs.first();
2953 }
2954 
2955 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2956   // This method is returning a data structure allocating as a
2957   // ResourceObject, so do not put any ResourceMarks in here.
2958   char *s = sig->as_C_string();
2959   int len = (int)strlen(s);
2960   s++; len--;                   // Skip opening paren
2961 
2962   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2963   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2964   int cnt = 0;
2965   if (has_receiver) {
2966     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2967   }
2968 
2969   while (*s != ')') {          // Find closing right paren
2970     switch (*s++) {            // Switch on signature character
2971     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2972     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2973     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2974     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2975     case 'I': sig_bt[cnt++] = T_INT;     break;
2976     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2977     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2978     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2979     case 'V': sig_bt[cnt++] = T_VOID;    break;
2980     case 'L':                   // Oop
2981       while (*s++ != ';');   // Skip signature
2982       sig_bt[cnt++] = T_OBJECT;
2983       break;
2984     case '[': {                 // Array
2985       do {                      // Skip optional size
2986         while (*s >= '0' && *s <= '9') s++;
2987       } while (*s++ == '[');   // Nested arrays?
2988       // Skip element type
2989       if (s[-1] == 'L')
2990         while (*s++ != ';'); // Skip signature
2991       sig_bt[cnt++] = T_ARRAY;
2992       break;
2993     }
2994     default : ShouldNotReachHere();
2995     }
2996   }
2997 
2998   if (has_appendix) {
2999     sig_bt[cnt++] = T_OBJECT;
3000   }
3001 
3002   assert(cnt < 256, "grow table size");
3003 
3004   int comp_args_on_stack;
3005   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
3006 
3007   // the calling convention doesn't count out_preserve_stack_slots so
3008   // we must add that in to get "true" stack offsets.
3009 
3010   if (comp_args_on_stack) {
3011     for (int i = 0; i < cnt; i++) {
3012       VMReg reg1 = regs[i].first();
3013       if (reg1->is_stack()) {
3014         // Yuck
3015         reg1 = reg1->bias(out_preserve_stack_slots());
3016       }
3017       VMReg reg2 = regs[i].second();
3018       if (reg2->is_stack()) {
3019         // Yuck
3020         reg2 = reg2->bias(out_preserve_stack_slots());
3021       }
3022       regs[i].set_pair(reg2, reg1);
3023     }
3024   }
3025 
3026   // results
3027   *arg_size = cnt;
3028   return regs;
3029 }
3030 
3031 // OSR Migration Code
3032 //
3033 // This code is used convert interpreter frames into compiled frames.  It is
3034 // called from very start of a compiled OSR nmethod.  A temp array is
3035 // allocated to hold the interesting bits of the interpreter frame.  All
3036 // active locks are inflated to allow them to move.  The displaced headers and
3037 // active interpreter locals are copied into the temp buffer.  Then we return
3038 // back to the compiled code.  The compiled code then pops the current
3039 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3040 // copies the interpreter locals and displaced headers where it wants.
3041 // Finally it calls back to free the temp buffer.
3042 //
3043 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3044 
3045 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3046 
3047   //
3048   // This code is dependent on the memory layout of the interpreter local
3049   // array and the monitors. On all of our platforms the layout is identical
3050   // so this code is shared. If some platform lays the their arrays out
3051   // differently then this code could move to platform specific code or
3052   // the code here could be modified to copy items one at a time using
3053   // frame accessor methods and be platform independent.
3054 
3055   frame fr = thread->last_frame();
3056   assert(fr.is_interpreted_frame(), "");
3057   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3058 
3059   // Figure out how many monitors are active.
3060   int active_monitor_count = 0;
3061   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3062        kptr < fr.interpreter_frame_monitor_begin();
3063        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3064     if (kptr->obj() != NULL) active_monitor_count++;
3065   }
3066 
3067   // QQQ we could place number of active monitors in the array so that compiled code
3068   // could double check it.
3069 
3070   Method* moop = fr.interpreter_frame_method();
3071   int max_locals = moop->max_locals();
3072   // Allocate temp buffer, 1 word per local & 2 per active monitor
3073   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3074   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3075 
3076   // Copy the locals.  Order is preserved so that loading of longs works.
3077   // Since there's no GC I can copy the oops blindly.
3078   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3079   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3080                        (HeapWord*)&buf[0],
3081                        max_locals);
3082 
3083   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3084   int i = max_locals;
3085   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3086        kptr2 < fr.interpreter_frame_monitor_begin();
3087        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3088     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3089       BasicLock *lock = kptr2->lock();
3090       // Inflate so the displaced header becomes position-independent
3091       if (lock->displaced_header()->is_unlocked())
3092         ObjectSynchronizer::inflate_helper(kptr2->obj());
3093       // Now the displaced header is free to move
3094       buf[i++] = (intptr_t)lock->displaced_header();
3095       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3096     }
3097   }
3098   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3099 
3100   return buf;
3101 JRT_END
3102 
3103 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3104   FREE_C_HEAP_ARRAY(intptr_t, buf);
3105 JRT_END
3106 
3107 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3108   AdapterHandlerTableIterator iter(_adapters);
3109   while (iter.has_next()) {
3110     AdapterHandlerEntry* a = iter.next();
3111     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3112   }
3113   return false;
3114 }
3115 
3116 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3117   AdapterHandlerTableIterator iter(_adapters);
3118   while (iter.has_next()) {
3119     AdapterHandlerEntry* a = iter.next();
3120     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3121       st->print("Adapter for signature: ");
3122       a->print_adapter_on(tty);
3123       return;
3124     }
3125   }
3126   assert(false, "Should have found handler");
3127 }
3128 
3129 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3130   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3131                p2i(this), fingerprint()->as_string(),
3132                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3133 
3134 }
3135 
3136 #if INCLUDE_CDS
3137 
3138 void CDSAdapterHandlerEntry::init() {
3139   assert(DumpSharedSpaces, "used during dump time only");
3140   _c2i_entry_trampoline = (address)MetaspaceShared::misc_data_space_alloc(SharedRuntime::trampoline_size());
3141   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_data_space_alloc(sizeof(AdapterHandlerEntry*));
3142 };
3143 
3144 #endif // INCLUDE_CDS
3145 
3146 
3147 #ifndef PRODUCT
3148 
3149 void AdapterHandlerLibrary::print_statistics() {
3150   _adapters->print_statistics();
3151 }
3152 
3153 #endif /* PRODUCT */
3154 
3155 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3156   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3157   thread->enable_stack_reserved_zone();
3158   thread->set_reserved_stack_activation(thread->stack_base());
3159 JRT_END
3160 
3161 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3162   frame activation;
3163   CompiledMethod* nm = NULL;
3164   int count = 1;
3165 
3166   assert(fr.is_java_frame(), "Must start on Java frame");
3167 
3168   while (true) {
3169     Method* method = NULL;
3170     if (fr.is_interpreted_frame()) {
3171       method = fr.interpreter_frame_method();
3172     } else {
3173       CodeBlob* cb = fr.cb();
3174       if (cb != NULL && cb->is_compiled()) {
3175         nm = cb->as_compiled_method();
3176         method = nm->method();
3177       }
3178     }
3179     if ((method != NULL) && method->has_reserved_stack_access()) {
3180       ResourceMark rm(thread);
3181       activation = fr;
3182       warning("Potentially dangerous stack overflow in "
3183               "ReservedStackAccess annotated method %s [%d]",
3184               method->name_and_sig_as_C_string(), count++);
3185       EventReservedStackActivation event;
3186       if (event.should_commit()) {
3187         event.set_method(method);
3188         event.commit();
3189       }
3190     }
3191     if (fr.is_first_java_frame()) {
3192       break;
3193     } else {
3194       fr = fr.java_sender();
3195     }
3196   }
3197   return activation;
3198 }
3199