1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/codeCacheExtensions.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileTask.hpp"
  36 #include "gc/shared/gcId.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "gc/shared/workgroup.hpp"
  39 #include "interpreter/interpreter.hpp"
  40 #include "interpreter/linkResolver.hpp"
  41 #include "interpreter/oopMapCache.hpp"
  42 #include "jvmtifiles/jvmtiEnv.hpp"
  43 #include "logging/log.hpp"
  44 #include "logging/logConfiguration.hpp"
  45 #include "memory/metaspaceShared.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "memory/universe.inline.hpp"
  49 #include "oops/instanceKlass.hpp"
  50 #include "oops/objArrayOop.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "oops/symbol.hpp"
  53 #include "oops/verifyOopClosure.hpp"
  54 #include "prims/jvm_misc.hpp"
  55 #include "prims/jvmtiExport.hpp"
  56 #include "prims/jvmtiThreadState.hpp"
  57 #include "prims/privilegedStack.hpp"
  58 #include "runtime/arguments.hpp"
  59 #include "runtime/atomic.hpp"
  60 #include "runtime/biasedLocking.hpp"
  61 #include "runtime/commandLineFlagConstraintList.hpp"
  62 #include "runtime/commandLineFlagWriteableList.hpp"
  63 #include "runtime/commandLineFlagRangeList.hpp"
  64 #include "runtime/deoptimization.hpp"
  65 #include "runtime/fprofiler.hpp"
  66 #include "runtime/frame.inline.hpp"
  67 #include "runtime/globals.hpp"
  68 #include "runtime/init.hpp"
  69 #include "runtime/interfaceSupport.hpp"
  70 #include "runtime/java.hpp"
  71 #include "runtime/javaCalls.hpp"
  72 #include "runtime/jniPeriodicChecker.hpp"
  73 #include "runtime/timerTrace.hpp"
  74 #include "runtime/memprofiler.hpp"
  75 #include "runtime/mutexLocker.hpp"
  76 #include "runtime/objectMonitor.hpp"
  77 #include "runtime/orderAccess.inline.hpp"
  78 #include "runtime/osThread.hpp"
  79 #include "runtime/safepoint.hpp"
  80 #include "runtime/sharedRuntime.hpp"
  81 #include "runtime/statSampler.hpp"
  82 #include "runtime/stubRoutines.hpp"
  83 #include "runtime/sweeper.hpp"
  84 #include "runtime/task.hpp"
  85 #include "runtime/thread.inline.hpp"
  86 #include "runtime/threadCritical.hpp"
  87 #include "runtime/vframe.hpp"
  88 #include "runtime/vframeArray.hpp"
  89 #include "runtime/vframe_hp.hpp"
  90 #include "runtime/vmThread.hpp"
  91 #include "runtime/vm_operations.hpp"
  92 #include "runtime/vm_version.hpp"
  93 #include "services/attachListener.hpp"
  94 #include "services/management.hpp"
  95 #include "services/memTracker.hpp"
  96 #include "services/threadService.hpp"
  97 #include "trace/traceMacros.hpp"
  98 #include "trace/tracing.hpp"
  99 #include "utilities/defaultStream.hpp"
 100 #include "utilities/dtrace.hpp"
 101 #include "utilities/events.hpp"
 102 #include "utilities/macros.hpp"
 103 #include "utilities/preserveException.hpp"
 104 #if INCLUDE_ALL_GCS
 105 #include "gc/cms/concurrentMarkSweepThread.hpp"
 106 #include "gc/g1/concurrentMarkThread.inline.hpp"
 107 #include "gc/parallel/pcTasks.hpp"
 108 #endif // INCLUDE_ALL_GCS
 109 #if INCLUDE_JVMCI
 110 #include "jvmci/jvmciCompiler.hpp"
 111 #include "jvmci/jvmciRuntime.hpp"
 112 #endif
 113 #ifdef COMPILER1
 114 #include "c1/c1_Compiler.hpp"
 115 #endif
 116 #ifdef COMPILER2
 117 #include "opto/c2compiler.hpp"
 118 #include "opto/idealGraphPrinter.hpp"
 119 #endif
 120 #if INCLUDE_RTM_OPT
 121 #include "runtime/rtmLocking.hpp"
 122 #endif
 123 
 124 // Initialization after module runtime initialization
 125 void universe_post_module_init();  // must happen after call_initPhase2
 126 
 127 #ifdef DTRACE_ENABLED
 128 
 129 // Only bother with this argument setup if dtrace is available
 130 
 131   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 132   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 133 
 134   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 135     {                                                                      \
 136       ResourceMark rm(this);                                               \
 137       int len = 0;                                                         \
 138       const char* name = (javathread)->get_thread_name();                  \
 139       len = strlen(name);                                                  \
 140       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 141         (char *) name, len,                                                \
 142         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 143         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 144         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 145     }
 146 
 147 #else //  ndef DTRACE_ENABLED
 148 
 149   #define DTRACE_THREAD_PROBE(probe, javathread)
 150 
 151 #endif // ndef DTRACE_ENABLED
 152 
 153 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 154 // Current thread is maintained as a thread-local variable
 155 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 156 #endif
 157 // Class hierarchy
 158 // - Thread
 159 //   - VMThread
 160 //   - WatcherThread
 161 //   - ConcurrentMarkSweepThread
 162 //   - JavaThread
 163 //     - CompilerThread
 164 
 165 // ======= Thread ========
 166 // Support for forcing alignment of thread objects for biased locking
 167 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 168   if (UseBiasedLocking) {
 169     const int alignment = markOopDesc::biased_lock_alignment;
 170     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 171     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 172                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 173                                                          AllocFailStrategy::RETURN_NULL);
 174     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 175     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 176            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 177            "JavaThread alignment code overflowed allocated storage");
 178     if (aligned_addr != real_malloc_addr) {
 179       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 180                               p2i(real_malloc_addr),
 181                               p2i(aligned_addr));
 182     }
 183     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 184     return aligned_addr;
 185   } else {
 186     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 187                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 188   }
 189 }
 190 
 191 void Thread::operator delete(void* p) {
 192   if (UseBiasedLocking) {
 193     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 194     FreeHeap(real_malloc_addr);
 195   } else {
 196     FreeHeap(p);
 197   }
 198 }
 199 
 200 
 201 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 202 // JavaThread
 203 
 204 
 205 Thread::Thread() {
 206   // stack and get_thread
 207   set_stack_base(NULL);
 208   set_stack_size(0);
 209   set_self_raw_id(0);
 210   set_lgrp_id(-1);
 211   DEBUG_ONLY(clear_suspendible_thread();)
 212 
 213   // allocated data structures
 214   set_osthread(NULL);
 215   set_resource_area(new (mtThread)ResourceArea());
 216   DEBUG_ONLY(_current_resource_mark = NULL;)
 217   set_handle_area(new (mtThread) HandleArea(NULL));
 218   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 219   set_active_handles(NULL);
 220   set_free_handle_block(NULL);
 221   set_last_handle_mark(NULL);
 222 
 223   // This initial value ==> never claimed.
 224   _oops_do_parity = 0;
 225 
 226   // the handle mark links itself to last_handle_mark
 227   new HandleMark(this);
 228 
 229   // plain initialization
 230   debug_only(_owned_locks = NULL;)
 231   debug_only(_allow_allocation_count = 0;)
 232   NOT_PRODUCT(_allow_safepoint_count = 0;)
 233   NOT_PRODUCT(_skip_gcalot = false;)
 234   _jvmti_env_iteration_count = 0;
 235   set_allocated_bytes(0);
 236   _vm_operation_started_count = 0;
 237   _vm_operation_completed_count = 0;
 238   _current_pending_monitor = NULL;
 239   _current_pending_monitor_is_from_java = true;
 240   _current_waiting_monitor = NULL;
 241   _num_nested_signal = 0;
 242   omFreeList = NULL;
 243   omFreeCount = 0;
 244   omFreeProvision = 32;
 245   omInUseList = NULL;
 246   omInUseCount = 0;
 247 
 248 #ifdef ASSERT
 249   _visited_for_critical_count = false;
 250 #endif
 251 
 252   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 253                          Monitor::_safepoint_check_sometimes);
 254   _suspend_flags = 0;
 255 
 256   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 257   _hashStateX = os::random();
 258   _hashStateY = 842502087;
 259   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 260   _hashStateW = 273326509;
 261 
 262   _OnTrap   = 0;
 263   _schedctl = NULL;
 264   _Stalled  = 0;
 265   _TypeTag  = 0x2BAD;
 266 
 267   // Many of the following fields are effectively final - immutable
 268   // Note that nascent threads can't use the Native Monitor-Mutex
 269   // construct until the _MutexEvent is initialized ...
 270   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 271   // we might instead use a stack of ParkEvents that we could provision on-demand.
 272   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 273   // and ::Release()
 274   _ParkEvent   = ParkEvent::Allocate(this);
 275   _SleepEvent  = ParkEvent::Allocate(this);
 276   _MutexEvent  = ParkEvent::Allocate(this);
 277   _MuxEvent    = ParkEvent::Allocate(this);
 278 
 279 #ifdef CHECK_UNHANDLED_OOPS
 280   if (CheckUnhandledOops) {
 281     _unhandled_oops = new UnhandledOops(this);
 282   }
 283 #endif // CHECK_UNHANDLED_OOPS
 284 #ifdef ASSERT
 285   if (UseBiasedLocking) {
 286     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 287     assert(this == _real_malloc_address ||
 288            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 289            "bug in forced alignment of thread objects");
 290   }
 291 #endif // ASSERT
 292 }
 293 
 294 void Thread::initialize_thread_current() {
 295 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 296   assert(_thr_current == NULL, "Thread::current already initialized");
 297   _thr_current = this;
 298 #endif
 299   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 300   ThreadLocalStorage::set_thread(this);
 301   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 302 }
 303 
 304 void Thread::clear_thread_current() {
 305   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 306 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 307   _thr_current = NULL;
 308 #endif
 309   ThreadLocalStorage::set_thread(NULL);
 310 }
 311 
 312 void Thread::record_stack_base_and_size() {
 313   set_stack_base(os::current_stack_base());
 314   set_stack_size(os::current_stack_size());
 315   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 316   // in initialize_thread(). Without the adjustment, stack size is
 317   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 318   // So far, only Solaris has real implementation of initialize_thread().
 319   //
 320   // set up any platform-specific state.
 321   os::initialize_thread(this);
 322 
 323   // Set stack limits after thread is initialized.
 324   if (is_Java_thread()) {
 325     ((JavaThread*) this)->set_stack_overflow_limit();
 326     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 327   }
 328 #if INCLUDE_NMT
 329   // record thread's native stack, stack grows downward
 330   MemTracker::record_thread_stack(stack_end(), stack_size());
 331 #endif // INCLUDE_NMT
 332   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 333     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 334     os::current_thread_id(), p2i(stack_base() - stack_size()),
 335     p2i(stack_base()), stack_size()/1024);
 336 }
 337 
 338 
 339 Thread::~Thread() {
 340   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 341   ObjectSynchronizer::omFlush(this);
 342 
 343   EVENT_THREAD_DESTRUCT(this);
 344 
 345   // stack_base can be NULL if the thread is never started or exited before
 346   // record_stack_base_and_size called. Although, we would like to ensure
 347   // that all started threads do call record_stack_base_and_size(), there is
 348   // not proper way to enforce that.
 349 #if INCLUDE_NMT
 350   if (_stack_base != NULL) {
 351     MemTracker::release_thread_stack(stack_end(), stack_size());
 352 #ifdef ASSERT
 353     set_stack_base(NULL);
 354 #endif
 355   }
 356 #endif // INCLUDE_NMT
 357 
 358   // deallocate data structures
 359   delete resource_area();
 360   // since the handle marks are using the handle area, we have to deallocated the root
 361   // handle mark before deallocating the thread's handle area,
 362   assert(last_handle_mark() != NULL, "check we have an element");
 363   delete last_handle_mark();
 364   assert(last_handle_mark() == NULL, "check we have reached the end");
 365 
 366   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 367   // We NULL out the fields for good hygiene.
 368   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 369   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 370   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 371   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 372 
 373   delete handle_area();
 374   delete metadata_handles();
 375 
 376   // SR_handler uses this as a termination indicator -
 377   // needs to happen before os::free_thread()
 378   delete _SR_lock;
 379   _SR_lock = NULL;
 380 
 381   // osthread() can be NULL, if creation of thread failed.
 382   if (osthread() != NULL) os::free_thread(osthread());
 383 
 384   // clear Thread::current if thread is deleting itself.
 385   // Needed to ensure JNI correctly detects non-attached threads.
 386   if (this == Thread::current()) {
 387     clear_thread_current();
 388   }
 389 
 390   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 391 }
 392 
 393 // NOTE: dummy function for assertion purpose.
 394 void Thread::run() {
 395   ShouldNotReachHere();
 396 }
 397 
 398 #ifdef ASSERT
 399 // Private method to check for dangling thread pointer
 400 void check_for_dangling_thread_pointer(Thread *thread) {
 401   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 402          "possibility of dangling Thread pointer");
 403 }
 404 #endif
 405 
 406 ThreadPriority Thread::get_priority(const Thread* const thread) {
 407   ThreadPriority priority;
 408   // Can return an error!
 409   (void)os::get_priority(thread, priority);
 410   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 411   return priority;
 412 }
 413 
 414 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 415   debug_only(check_for_dangling_thread_pointer(thread);)
 416   // Can return an error!
 417   (void)os::set_priority(thread, priority);
 418 }
 419 
 420 
 421 void Thread::start(Thread* thread) {
 422   // Start is different from resume in that its safety is guaranteed by context or
 423   // being called from a Java method synchronized on the Thread object.
 424   if (!DisableStartThread) {
 425     if (thread->is_Java_thread()) {
 426       // Initialize the thread state to RUNNABLE before starting this thread.
 427       // Can not set it after the thread started because we do not know the
 428       // exact thread state at that time. It could be in MONITOR_WAIT or
 429       // in SLEEPING or some other state.
 430       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 431                                           java_lang_Thread::RUNNABLE);
 432     }
 433     os::start_thread(thread);
 434   }
 435 }
 436 
 437 // Enqueue a VM_Operation to do the job for us - sometime later
 438 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 439   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 440   VMThread::execute(vm_stop);
 441 }
 442 
 443 
 444 // Check if an external suspend request has completed (or has been
 445 // cancelled). Returns true if the thread is externally suspended and
 446 // false otherwise.
 447 //
 448 // The bits parameter returns information about the code path through
 449 // the routine. Useful for debugging:
 450 //
 451 // set in is_ext_suspend_completed():
 452 // 0x00000001 - routine was entered
 453 // 0x00000010 - routine return false at end
 454 // 0x00000100 - thread exited (return false)
 455 // 0x00000200 - suspend request cancelled (return false)
 456 // 0x00000400 - thread suspended (return true)
 457 // 0x00001000 - thread is in a suspend equivalent state (return true)
 458 // 0x00002000 - thread is native and walkable (return true)
 459 // 0x00004000 - thread is native_trans and walkable (needed retry)
 460 //
 461 // set in wait_for_ext_suspend_completion():
 462 // 0x00010000 - routine was entered
 463 // 0x00020000 - suspend request cancelled before loop (return false)
 464 // 0x00040000 - thread suspended before loop (return true)
 465 // 0x00080000 - suspend request cancelled in loop (return false)
 466 // 0x00100000 - thread suspended in loop (return true)
 467 // 0x00200000 - suspend not completed during retry loop (return false)
 468 
 469 // Helper class for tracing suspend wait debug bits.
 470 //
 471 // 0x00000100 indicates that the target thread exited before it could
 472 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 473 // 0x00080000 each indicate a cancelled suspend request so they don't
 474 // count as wait failures either.
 475 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 476 
 477 class TraceSuspendDebugBits : public StackObj {
 478  private:
 479   JavaThread * jt;
 480   bool         is_wait;
 481   bool         called_by_wait;  // meaningful when !is_wait
 482   uint32_t *   bits;
 483 
 484  public:
 485   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 486                         uint32_t *_bits) {
 487     jt             = _jt;
 488     is_wait        = _is_wait;
 489     called_by_wait = _called_by_wait;
 490     bits           = _bits;
 491   }
 492 
 493   ~TraceSuspendDebugBits() {
 494     if (!is_wait) {
 495 #if 1
 496       // By default, don't trace bits for is_ext_suspend_completed() calls.
 497       // That trace is very chatty.
 498       return;
 499 #else
 500       if (!called_by_wait) {
 501         // If tracing for is_ext_suspend_completed() is enabled, then only
 502         // trace calls to it from wait_for_ext_suspend_completion()
 503         return;
 504       }
 505 #endif
 506     }
 507 
 508     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 509       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 510         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 511         ResourceMark rm;
 512 
 513         tty->print_cr(
 514                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 515                       jt->get_thread_name(), *bits);
 516 
 517         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 518       }
 519     }
 520   }
 521 };
 522 #undef DEBUG_FALSE_BITS
 523 
 524 
 525 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 526                                           uint32_t *bits) {
 527   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 528 
 529   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 530   bool do_trans_retry;           // flag to force the retry
 531 
 532   *bits |= 0x00000001;
 533 
 534   do {
 535     do_trans_retry = false;
 536 
 537     if (is_exiting()) {
 538       // Thread is in the process of exiting. This is always checked
 539       // first to reduce the risk of dereferencing a freed JavaThread.
 540       *bits |= 0x00000100;
 541       return false;
 542     }
 543 
 544     if (!is_external_suspend()) {
 545       // Suspend request is cancelled. This is always checked before
 546       // is_ext_suspended() to reduce the risk of a rogue resume
 547       // confusing the thread that made the suspend request.
 548       *bits |= 0x00000200;
 549       return false;
 550     }
 551 
 552     if (is_ext_suspended()) {
 553       // thread is suspended
 554       *bits |= 0x00000400;
 555       return true;
 556     }
 557 
 558     // Now that we no longer do hard suspends of threads running
 559     // native code, the target thread can be changing thread state
 560     // while we are in this routine:
 561     //
 562     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 563     //
 564     // We save a copy of the thread state as observed at this moment
 565     // and make our decision about suspend completeness based on the
 566     // copy. This closes the race where the thread state is seen as
 567     // _thread_in_native_trans in the if-thread_blocked check, but is
 568     // seen as _thread_blocked in if-thread_in_native_trans check.
 569     JavaThreadState save_state = thread_state();
 570 
 571     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 572       // If the thread's state is _thread_blocked and this blocking
 573       // condition is known to be equivalent to a suspend, then we can
 574       // consider the thread to be externally suspended. This means that
 575       // the code that sets _thread_blocked has been modified to do
 576       // self-suspension if the blocking condition releases. We also
 577       // used to check for CONDVAR_WAIT here, but that is now covered by
 578       // the _thread_blocked with self-suspension check.
 579       //
 580       // Return true since we wouldn't be here unless there was still an
 581       // external suspend request.
 582       *bits |= 0x00001000;
 583       return true;
 584     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 585       // Threads running native code will self-suspend on native==>VM/Java
 586       // transitions. If its stack is walkable (should always be the case
 587       // unless this function is called before the actual java_suspend()
 588       // call), then the wait is done.
 589       *bits |= 0x00002000;
 590       return true;
 591     } else if (!called_by_wait && !did_trans_retry &&
 592                save_state == _thread_in_native_trans &&
 593                frame_anchor()->walkable()) {
 594       // The thread is transitioning from thread_in_native to another
 595       // thread state. check_safepoint_and_suspend_for_native_trans()
 596       // will force the thread to self-suspend. If it hasn't gotten
 597       // there yet we may have caught the thread in-between the native
 598       // code check above and the self-suspend. Lucky us. If we were
 599       // called by wait_for_ext_suspend_completion(), then it
 600       // will be doing the retries so we don't have to.
 601       //
 602       // Since we use the saved thread state in the if-statement above,
 603       // there is a chance that the thread has already transitioned to
 604       // _thread_blocked by the time we get here. In that case, we will
 605       // make a single unnecessary pass through the logic below. This
 606       // doesn't hurt anything since we still do the trans retry.
 607 
 608       *bits |= 0x00004000;
 609 
 610       // Once the thread leaves thread_in_native_trans for another
 611       // thread state, we break out of this retry loop. We shouldn't
 612       // need this flag to prevent us from getting back here, but
 613       // sometimes paranoia is good.
 614       did_trans_retry = true;
 615 
 616       // We wait for the thread to transition to a more usable state.
 617       for (int i = 1; i <= SuspendRetryCount; i++) {
 618         // We used to do an "os::yield_all(i)" call here with the intention
 619         // that yielding would increase on each retry. However, the parameter
 620         // is ignored on Linux which means the yield didn't scale up. Waiting
 621         // on the SR_lock below provides a much more predictable scale up for
 622         // the delay. It also provides a simple/direct point to check for any
 623         // safepoint requests from the VMThread
 624 
 625         // temporarily drops SR_lock while doing wait with safepoint check
 626         // (if we're a JavaThread - the WatcherThread can also call this)
 627         // and increase delay with each retry
 628         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 629 
 630         // check the actual thread state instead of what we saved above
 631         if (thread_state() != _thread_in_native_trans) {
 632           // the thread has transitioned to another thread state so
 633           // try all the checks (except this one) one more time.
 634           do_trans_retry = true;
 635           break;
 636         }
 637       } // end retry loop
 638 
 639 
 640     }
 641   } while (do_trans_retry);
 642 
 643   *bits |= 0x00000010;
 644   return false;
 645 }
 646 
 647 // Wait for an external suspend request to complete (or be cancelled).
 648 // Returns true if the thread is externally suspended and false otherwise.
 649 //
 650 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 651                                                  uint32_t *bits) {
 652   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 653                              false /* !called_by_wait */, bits);
 654 
 655   // local flag copies to minimize SR_lock hold time
 656   bool is_suspended;
 657   bool pending;
 658   uint32_t reset_bits;
 659 
 660   // set a marker so is_ext_suspend_completed() knows we are the caller
 661   *bits |= 0x00010000;
 662 
 663   // We use reset_bits to reinitialize the bits value at the top of
 664   // each retry loop. This allows the caller to make use of any
 665   // unused bits for their own marking purposes.
 666   reset_bits = *bits;
 667 
 668   {
 669     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 670     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 671                                             delay, bits);
 672     pending = is_external_suspend();
 673   }
 674   // must release SR_lock to allow suspension to complete
 675 
 676   if (!pending) {
 677     // A cancelled suspend request is the only false return from
 678     // is_ext_suspend_completed() that keeps us from entering the
 679     // retry loop.
 680     *bits |= 0x00020000;
 681     return false;
 682   }
 683 
 684   if (is_suspended) {
 685     *bits |= 0x00040000;
 686     return true;
 687   }
 688 
 689   for (int i = 1; i <= retries; i++) {
 690     *bits = reset_bits;  // reinit to only track last retry
 691 
 692     // We used to do an "os::yield_all(i)" call here with the intention
 693     // that yielding would increase on each retry. However, the parameter
 694     // is ignored on Linux which means the yield didn't scale up. Waiting
 695     // on the SR_lock below provides a much more predictable scale up for
 696     // the delay. It also provides a simple/direct point to check for any
 697     // safepoint requests from the VMThread
 698 
 699     {
 700       MutexLocker ml(SR_lock());
 701       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 702       // can also call this)  and increase delay with each retry
 703       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 704 
 705       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 706                                               delay, bits);
 707 
 708       // It is possible for the external suspend request to be cancelled
 709       // (by a resume) before the actual suspend operation is completed.
 710       // Refresh our local copy to see if we still need to wait.
 711       pending = is_external_suspend();
 712     }
 713 
 714     if (!pending) {
 715       // A cancelled suspend request is the only false return from
 716       // is_ext_suspend_completed() that keeps us from staying in the
 717       // retry loop.
 718       *bits |= 0x00080000;
 719       return false;
 720     }
 721 
 722     if (is_suspended) {
 723       *bits |= 0x00100000;
 724       return true;
 725     }
 726   } // end retry loop
 727 
 728   // thread did not suspend after all our retries
 729   *bits |= 0x00200000;
 730   return false;
 731 }
 732 
 733 #ifndef PRODUCT
 734 void JavaThread::record_jump(address target, address instr, const char* file,
 735                              int line) {
 736 
 737   // This should not need to be atomic as the only way for simultaneous
 738   // updates is via interrupts. Even then this should be rare or non-existent
 739   // and we don't care that much anyway.
 740 
 741   int index = _jmp_ring_index;
 742   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 743   _jmp_ring[index]._target = (intptr_t) target;
 744   _jmp_ring[index]._instruction = (intptr_t) instr;
 745   _jmp_ring[index]._file = file;
 746   _jmp_ring[index]._line = line;
 747 }
 748 #endif // PRODUCT
 749 
 750 // Called by flat profiler
 751 // Callers have already called wait_for_ext_suspend_completion
 752 // The assertion for that is currently too complex to put here:
 753 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 754   bool gotframe = false;
 755   // self suspension saves needed state.
 756   if (has_last_Java_frame() && _anchor.walkable()) {
 757     *_fr = pd_last_frame();
 758     gotframe = true;
 759   }
 760   return gotframe;
 761 }
 762 
 763 void Thread::interrupt(Thread* thread) {
 764   debug_only(check_for_dangling_thread_pointer(thread);)
 765   os::interrupt(thread);
 766 }
 767 
 768 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 769   debug_only(check_for_dangling_thread_pointer(thread);)
 770   // Note:  If clear_interrupted==false, this simply fetches and
 771   // returns the value of the field osthread()->interrupted().
 772   return os::is_interrupted(thread, clear_interrupted);
 773 }
 774 
 775 
 776 // GC Support
 777 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 778   jint thread_parity = _oops_do_parity;
 779   if (thread_parity != strong_roots_parity) {
 780     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 781     if (res == thread_parity) {
 782       return true;
 783     } else {
 784       guarantee(res == strong_roots_parity, "Or else what?");
 785       return false;
 786     }
 787   }
 788   return false;
 789 }
 790 
 791 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 792   active_handles()->oops_do(f);
 793   // Do oop for ThreadShadow
 794   f->do_oop((oop*)&_pending_exception);
 795   handle_area()->oops_do(f);
 796 }
 797 
 798 void Thread::metadata_handles_do(void f(Metadata*)) {
 799   // Only walk the Handles in Thread.
 800   if (metadata_handles() != NULL) {
 801     for (int i = 0; i< metadata_handles()->length(); i++) {
 802       f(metadata_handles()->at(i));
 803     }
 804   }
 805 }
 806 
 807 void Thread::print_on(outputStream* st) const {
 808   // get_priority assumes osthread initialized
 809   if (osthread() != NULL) {
 810     int os_prio;
 811     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 812       st->print("os_prio=%d ", os_prio);
 813     }
 814     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 815     ext().print_on(st);
 816     osthread()->print_on(st);
 817   }
 818   debug_only(if (WizardMode) print_owned_locks_on(st);)
 819 }
 820 
 821 // Thread::print_on_error() is called by fatal error handler. Don't use
 822 // any lock or allocate memory.
 823 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 824   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 825 
 826   if (is_VM_thread())                 { st->print("VMThread"); }
 827   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 828   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 829   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 830   else                                { st->print("Thread"); }
 831 
 832   if (is_Named_thread()) {
 833     st->print(" \"%s\"", name());
 834   }
 835 
 836   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 837             p2i(stack_end()), p2i(stack_base()));
 838 
 839   if (osthread()) {
 840     st->print(" [id=%d]", osthread()->thread_id());
 841   }
 842 }
 843 
 844 #ifdef ASSERT
 845 void Thread::print_owned_locks_on(outputStream* st) const {
 846   Monitor *cur = _owned_locks;
 847   if (cur == NULL) {
 848     st->print(" (no locks) ");
 849   } else {
 850     st->print_cr(" Locks owned:");
 851     while (cur) {
 852       cur->print_on(st);
 853       cur = cur->next();
 854     }
 855   }
 856 }
 857 
 858 static int ref_use_count  = 0;
 859 
 860 bool Thread::owns_locks_but_compiled_lock() const {
 861   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 862     if (cur != Compile_lock) return true;
 863   }
 864   return false;
 865 }
 866 
 867 
 868 #endif
 869 
 870 #ifndef PRODUCT
 871 
 872 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 873 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 874 // no threads which allow_vm_block's are held
 875 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 876   // Check if current thread is allowed to block at a safepoint
 877   if (!(_allow_safepoint_count == 0)) {
 878     fatal("Possible safepoint reached by thread that does not allow it");
 879   }
 880   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 881     fatal("LEAF method calling lock?");
 882   }
 883 
 884 #ifdef ASSERT
 885   if (potential_vm_operation && is_Java_thread()
 886       && !Universe::is_bootstrapping()) {
 887     // Make sure we do not hold any locks that the VM thread also uses.
 888     // This could potentially lead to deadlocks
 889     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 890       // Threads_lock is special, since the safepoint synchronization will not start before this is
 891       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 892       // since it is used to transfer control between JavaThreads and the VMThread
 893       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 894       if ((cur->allow_vm_block() &&
 895            cur != Threads_lock &&
 896            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 897            cur != VMOperationRequest_lock &&
 898            cur != VMOperationQueue_lock) ||
 899            cur->rank() == Mutex::special) {
 900         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 901       }
 902     }
 903   }
 904 
 905   if (GCALotAtAllSafepoints) {
 906     // We could enter a safepoint here and thus have a gc
 907     InterfaceSupport::check_gc_alot();
 908   }
 909 #endif
 910 }
 911 #endif
 912 
 913 bool Thread::is_in_stack(address adr) const {
 914   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 915   address end = os::current_stack_pointer();
 916   // Allow non Java threads to call this without stack_base
 917   if (_stack_base == NULL) return true;
 918   if (stack_base() >= adr && adr >= end) return true;
 919 
 920   return false;
 921 }
 922 
 923 bool Thread::is_in_usable_stack(address adr) const {
 924   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 925   size_t usable_stack_size = _stack_size - stack_guard_size;
 926 
 927   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 928 }
 929 
 930 
 931 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 932 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 933 // used for compilation in the future. If that change is made, the need for these methods
 934 // should be revisited, and they should be removed if possible.
 935 
 936 bool Thread::is_lock_owned(address adr) const {
 937   return on_local_stack(adr);
 938 }
 939 
 940 bool Thread::set_as_starting_thread() {
 941   // NOTE: this must be called inside the main thread.
 942   return os::create_main_thread((JavaThread*)this);
 943 }
 944 
 945 static void initialize_class(Symbol* class_name, TRAPS) {
 946   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 947   InstanceKlass::cast(klass)->initialize(CHECK);
 948 }
 949 
 950 
 951 // Creates the initial ThreadGroup
 952 static Handle create_initial_thread_group(TRAPS) {
 953   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 954   instanceKlassHandle klass (THREAD, k);
 955 
 956   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 957   {
 958     JavaValue result(T_VOID);
 959     JavaCalls::call_special(&result,
 960                             system_instance,
 961                             klass,
 962                             vmSymbols::object_initializer_name(),
 963                             vmSymbols::void_method_signature(),
 964                             CHECK_NH);
 965   }
 966   Universe::set_system_thread_group(system_instance());
 967 
 968   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 969   {
 970     JavaValue result(T_VOID);
 971     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 972     JavaCalls::call_special(&result,
 973                             main_instance,
 974                             klass,
 975                             vmSymbols::object_initializer_name(),
 976                             vmSymbols::threadgroup_string_void_signature(),
 977                             system_instance,
 978                             string,
 979                             CHECK_NH);
 980   }
 981   return main_instance;
 982 }
 983 
 984 // Creates the initial Thread
 985 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 986                                  TRAPS) {
 987   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 988   instanceKlassHandle klass (THREAD, k);
 989   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
 990 
 991   java_lang_Thread::set_thread(thread_oop(), thread);
 992   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 993   thread->set_threadObj(thread_oop());
 994 
 995   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
 996 
 997   JavaValue result(T_VOID);
 998   JavaCalls::call_special(&result, thread_oop,
 999                           klass,
1000                           vmSymbols::object_initializer_name(),
1001                           vmSymbols::threadgroup_string_void_signature(),
1002                           thread_group,
1003                           string,
1004                           CHECK_NULL);
1005   return thread_oop();
1006 }
1007 
1008 char java_runtime_name[128] = "";
1009 char java_runtime_version[128] = "";
1010 
1011 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1012 static const char* get_java_runtime_name(TRAPS) {
1013   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1014                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1015   fieldDescriptor fd;
1016   bool found = k != NULL &&
1017                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1018                                                         vmSymbols::string_signature(), &fd);
1019   if (found) {
1020     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1021     if (name_oop == NULL) {
1022       return NULL;
1023     }
1024     const char* name = java_lang_String::as_utf8_string(name_oop,
1025                                                         java_runtime_name,
1026                                                         sizeof(java_runtime_name));
1027     return name;
1028   } else {
1029     return NULL;
1030   }
1031 }
1032 
1033 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1034 static const char* get_java_runtime_version(TRAPS) {
1035   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1036                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1037   fieldDescriptor fd;
1038   bool found = k != NULL &&
1039                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1040                                                         vmSymbols::string_signature(), &fd);
1041   if (found) {
1042     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1043     if (name_oop == NULL) {
1044       return NULL;
1045     }
1046     const char* name = java_lang_String::as_utf8_string(name_oop,
1047                                                         java_runtime_version,
1048                                                         sizeof(java_runtime_version));
1049     return name;
1050   } else {
1051     return NULL;
1052   }
1053 }
1054 
1055 // General purpose hook into Java code, run once when the VM is initialized.
1056 // The Java library method itself may be changed independently from the VM.
1057 static void call_postVMInitHook(TRAPS) {
1058   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1059   instanceKlassHandle klass (THREAD, k);
1060   if (klass.not_null()) {
1061     JavaValue result(T_VOID);
1062     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1063                            vmSymbols::void_method_signature(),
1064                            CHECK);
1065   }
1066 }
1067 
1068 static void reset_vm_info_property(TRAPS) {
1069   // the vm info string
1070   ResourceMark rm(THREAD);
1071   const char *vm_info = VM_Version::vm_info_string();
1072 
1073   // java.lang.System class
1074   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1075   instanceKlassHandle klass (THREAD, k);
1076 
1077   // setProperty arguments
1078   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1079   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1080 
1081   // return value
1082   JavaValue r(T_OBJECT);
1083 
1084   // public static String setProperty(String key, String value);
1085   JavaCalls::call_static(&r,
1086                          klass,
1087                          vmSymbols::setProperty_name(),
1088                          vmSymbols::string_string_string_signature(),
1089                          key_str,
1090                          value_str,
1091                          CHECK);
1092 }
1093 
1094 
1095 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1096                                     bool daemon, TRAPS) {
1097   assert(thread_group.not_null(), "thread group should be specified");
1098   assert(threadObj() == NULL, "should only create Java thread object once");
1099 
1100   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1101   instanceKlassHandle klass (THREAD, k);
1102   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1103 
1104   java_lang_Thread::set_thread(thread_oop(), this);
1105   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1106   set_threadObj(thread_oop());
1107 
1108   JavaValue result(T_VOID);
1109   if (thread_name != NULL) {
1110     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1111     // Thread gets assigned specified name and null target
1112     JavaCalls::call_special(&result,
1113                             thread_oop,
1114                             klass,
1115                             vmSymbols::object_initializer_name(),
1116                             vmSymbols::threadgroup_string_void_signature(),
1117                             thread_group, // Argument 1
1118                             name,         // Argument 2
1119                             THREAD);
1120   } else {
1121     // Thread gets assigned name "Thread-nnn" and null target
1122     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1123     JavaCalls::call_special(&result,
1124                             thread_oop,
1125                             klass,
1126                             vmSymbols::object_initializer_name(),
1127                             vmSymbols::threadgroup_runnable_void_signature(),
1128                             thread_group, // Argument 1
1129                             Handle(),     // Argument 2
1130                             THREAD);
1131   }
1132 
1133 
1134   if (daemon) {
1135     java_lang_Thread::set_daemon(thread_oop());
1136   }
1137 
1138   if (HAS_PENDING_EXCEPTION) {
1139     return;
1140   }
1141 
1142   KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
1143   Handle threadObj(THREAD, this->threadObj());
1144 
1145   JavaCalls::call_special(&result,
1146                           thread_group,
1147                           group,
1148                           vmSymbols::add_method_name(),
1149                           vmSymbols::thread_void_signature(),
1150                           threadObj,          // Arg 1
1151                           THREAD);
1152 }
1153 
1154 // NamedThread --  non-JavaThread subclasses with multiple
1155 // uniquely named instances should derive from this.
1156 NamedThread::NamedThread() : Thread() {
1157   _name = NULL;
1158   _processed_thread = NULL;
1159   _gc_id = GCId::undefined();
1160 }
1161 
1162 NamedThread::~NamedThread() {
1163   if (_name != NULL) {
1164     FREE_C_HEAP_ARRAY(char, _name);
1165     _name = NULL;
1166   }
1167 }
1168 
1169 void NamedThread::set_name(const char* format, ...) {
1170   guarantee(_name == NULL, "Only get to set name once.");
1171   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1172   guarantee(_name != NULL, "alloc failure");
1173   va_list ap;
1174   va_start(ap, format);
1175   jio_vsnprintf(_name, max_name_len, format, ap);
1176   va_end(ap);
1177 }
1178 
1179 void NamedThread::initialize_named_thread() {
1180   set_native_thread_name(name());
1181 }
1182 
1183 void NamedThread::print_on(outputStream* st) const {
1184   st->print("\"%s\" ", name());
1185   Thread::print_on(st);
1186   st->cr();
1187 }
1188 
1189 
1190 // ======= WatcherThread ========
1191 
1192 // The watcher thread exists to simulate timer interrupts.  It should
1193 // be replaced by an abstraction over whatever native support for
1194 // timer interrupts exists on the platform.
1195 
1196 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1197 bool WatcherThread::_startable = false;
1198 volatile bool  WatcherThread::_should_terminate = false;
1199 
1200 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1201   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1202   if (os::create_thread(this, os::watcher_thread)) {
1203     _watcher_thread = this;
1204 
1205     // Set the watcher thread to the highest OS priority which should not be
1206     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1207     // is created. The only normal thread using this priority is the reference
1208     // handler thread, which runs for very short intervals only.
1209     // If the VMThread's priority is not lower than the WatcherThread profiling
1210     // will be inaccurate.
1211     os::set_priority(this, MaxPriority);
1212     if (!DisableStartThread) {
1213       os::start_thread(this);
1214     }
1215   }
1216 }
1217 
1218 int WatcherThread::sleep() const {
1219   // The WatcherThread does not participate in the safepoint protocol
1220   // for the PeriodicTask_lock because it is not a JavaThread.
1221   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1222 
1223   if (_should_terminate) {
1224     // check for termination before we do any housekeeping or wait
1225     return 0;  // we did not sleep.
1226   }
1227 
1228   // remaining will be zero if there are no tasks,
1229   // causing the WatcherThread to sleep until a task is
1230   // enrolled
1231   int remaining = PeriodicTask::time_to_wait();
1232   int time_slept = 0;
1233 
1234   // we expect this to timeout - we only ever get unparked when
1235   // we should terminate or when a new task has been enrolled
1236   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1237 
1238   jlong time_before_loop = os::javaTimeNanos();
1239 
1240   while (true) {
1241     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1242                                             remaining);
1243     jlong now = os::javaTimeNanos();
1244 
1245     if (remaining == 0) {
1246       // if we didn't have any tasks we could have waited for a long time
1247       // consider the time_slept zero and reset time_before_loop
1248       time_slept = 0;
1249       time_before_loop = now;
1250     } else {
1251       // need to recalculate since we might have new tasks in _tasks
1252       time_slept = (int) ((now - time_before_loop) / 1000000);
1253     }
1254 
1255     // Change to task list or spurious wakeup of some kind
1256     if (timedout || _should_terminate) {
1257       break;
1258     }
1259 
1260     remaining = PeriodicTask::time_to_wait();
1261     if (remaining == 0) {
1262       // Last task was just disenrolled so loop around and wait until
1263       // another task gets enrolled
1264       continue;
1265     }
1266 
1267     remaining -= time_slept;
1268     if (remaining <= 0) {
1269       break;
1270     }
1271   }
1272 
1273   return time_slept;
1274 }
1275 
1276 void WatcherThread::run() {
1277   assert(this == watcher_thread(), "just checking");
1278 
1279   this->record_stack_base_and_size();
1280   this->set_native_thread_name(this->name());
1281   this->set_active_handles(JNIHandleBlock::allocate_block());
1282   while (true) {
1283     assert(watcher_thread() == Thread::current(), "thread consistency check");
1284     assert(watcher_thread() == this, "thread consistency check");
1285 
1286     // Calculate how long it'll be until the next PeriodicTask work
1287     // should be done, and sleep that amount of time.
1288     int time_waited = sleep();
1289 
1290     if (is_error_reported()) {
1291       // A fatal error has happened, the error handler(VMError::report_and_die)
1292       // should abort JVM after creating an error log file. However in some
1293       // rare cases, the error handler itself might deadlock. Here we try to
1294       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1295       //
1296       // This code is in WatcherThread because WatcherThread wakes up
1297       // periodically so the fatal error handler doesn't need to do anything;
1298       // also because the WatcherThread is less likely to crash than other
1299       // threads.
1300 
1301       for (;;) {
1302         if (!ShowMessageBoxOnError
1303             && (OnError == NULL || OnError[0] == '\0')
1304             && Arguments::abort_hook() == NULL) {
1305           os::sleep(this, (jlong)ErrorLogTimeout * 1000, false); // in seconds
1306           fdStream err(defaultStream::output_fd());
1307           err.print_raw_cr("# [ timer expired, abort... ]");
1308           // skip atexit/vm_exit/vm_abort hooks
1309           os::die();
1310         }
1311 
1312         // Wake up 5 seconds later, the fatal handler may reset OnError or
1313         // ShowMessageBoxOnError when it is ready to abort.
1314         os::sleep(this, 5 * 1000, false);
1315       }
1316     }
1317 
1318     if (_should_terminate) {
1319       // check for termination before posting the next tick
1320       break;
1321     }
1322 
1323     PeriodicTask::real_time_tick(time_waited);
1324   }
1325 
1326   // Signal that it is terminated
1327   {
1328     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1329     _watcher_thread = NULL;
1330     Terminator_lock->notify();
1331   }
1332 }
1333 
1334 void WatcherThread::start() {
1335   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1336 
1337   if (watcher_thread() == NULL && _startable) {
1338     _should_terminate = false;
1339     // Create the single instance of WatcherThread
1340     new WatcherThread();
1341   }
1342 }
1343 
1344 void WatcherThread::make_startable() {
1345   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1346   _startable = true;
1347 }
1348 
1349 void WatcherThread::stop() {
1350   {
1351     // Follow normal safepoint aware lock enter protocol since the
1352     // WatcherThread is stopped by another JavaThread.
1353     MutexLocker ml(PeriodicTask_lock);
1354     _should_terminate = true;
1355 
1356     WatcherThread* watcher = watcher_thread();
1357     if (watcher != NULL) {
1358       // unpark the WatcherThread so it can see that it should terminate
1359       watcher->unpark();
1360     }
1361   }
1362 
1363   MutexLocker mu(Terminator_lock);
1364 
1365   while (watcher_thread() != NULL) {
1366     // This wait should make safepoint checks, wait without a timeout,
1367     // and wait as a suspend-equivalent condition.
1368     //
1369     // Note: If the FlatProfiler is running, then this thread is waiting
1370     // for the WatcherThread to terminate and the WatcherThread, via the
1371     // FlatProfiler task, is waiting for the external suspend request on
1372     // this thread to complete. wait_for_ext_suspend_completion() will
1373     // eventually timeout, but that takes time. Making this wait a
1374     // suspend-equivalent condition solves that timeout problem.
1375     //
1376     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1377                           Mutex::_as_suspend_equivalent_flag);
1378   }
1379 }
1380 
1381 void WatcherThread::unpark() {
1382   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1383   PeriodicTask_lock->notify();
1384 }
1385 
1386 void WatcherThread::print_on(outputStream* st) const {
1387   st->print("\"%s\" ", name());
1388   Thread::print_on(st);
1389   st->cr();
1390 }
1391 
1392 // ======= JavaThread ========
1393 
1394 #if INCLUDE_JVMCI
1395 
1396 jlong* JavaThread::_jvmci_old_thread_counters;
1397 
1398 bool jvmci_counters_include(JavaThread* thread) {
1399   oop threadObj = thread->threadObj();
1400   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1401 }
1402 
1403 void JavaThread::collect_counters(typeArrayOop array) {
1404   if (JVMCICounterSize > 0) {
1405     MutexLocker tl(Threads_lock);
1406     for (int i = 0; i < array->length(); i++) {
1407       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1408     }
1409     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1410       if (jvmci_counters_include(tp)) {
1411         for (int i = 0; i < array->length(); i++) {
1412           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1413         }
1414       }
1415     }
1416   }
1417 }
1418 
1419 #endif // INCLUDE_JVMCI
1420 
1421 // A JavaThread is a normal Java thread
1422 
1423 void JavaThread::initialize() {
1424   // Initialize fields
1425 
1426   set_saved_exception_pc(NULL);
1427   set_threadObj(NULL);
1428   _anchor.clear();
1429   set_entry_point(NULL);
1430   set_jni_functions(jni_functions());
1431   set_callee_target(NULL);
1432   set_vm_result(NULL);
1433   set_vm_result_2(NULL);
1434   set_vframe_array_head(NULL);
1435   set_vframe_array_last(NULL);
1436   set_deferred_locals(NULL);
1437   set_deopt_mark(NULL);
1438   set_deopt_compiled_method(NULL);
1439   clear_must_deopt_id();
1440   set_monitor_chunks(NULL);
1441   set_next(NULL);
1442   set_thread_state(_thread_new);
1443   _terminated = _not_terminated;
1444   _privileged_stack_top = NULL;
1445   _array_for_gc = NULL;
1446   _suspend_equivalent = false;
1447   _in_deopt_handler = 0;
1448   _doing_unsafe_access = false;
1449   _stack_guard_state = stack_guard_unused;
1450 #if INCLUDE_JVMCI
1451   _pending_monitorenter = false;
1452   _pending_deoptimization = -1;
1453   _pending_failed_speculation = NULL;
1454   _pending_transfer_to_interpreter = false;
1455   _adjusting_comp_level = false;
1456   _jvmci._alternate_call_target = NULL;
1457   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1458   if (JVMCICounterSize > 0) {
1459     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1460     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1461   } else {
1462     _jvmci_counters = NULL;
1463   }
1464 #endif // INCLUDE_JVMCI
1465   _reserved_stack_activation = NULL;  // stack base not known yet
1466   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1467   _exception_pc  = 0;
1468   _exception_handler_pc = 0;
1469   _is_method_handle_return = 0;
1470   _jvmti_thread_state= NULL;
1471   _should_post_on_exceptions_flag = JNI_FALSE;
1472   _jvmti_get_loaded_classes_closure = NULL;
1473   _interp_only_mode    = 0;
1474   _special_runtime_exit_condition = _no_async_condition;
1475   _pending_async_exception = NULL;
1476   _thread_stat = NULL;
1477   _thread_stat = new ThreadStatistics();
1478   _blocked_on_compilation = false;
1479   _jni_active_critical = 0;
1480   _pending_jni_exception_check_fn = NULL;
1481   _do_not_unlock_if_synchronized = false;
1482   _cached_monitor_info = NULL;
1483   _parker = Parker::Allocate(this);
1484 
1485 #ifndef PRODUCT
1486   _jmp_ring_index = 0;
1487   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1488     record_jump(NULL, NULL, NULL, 0);
1489   }
1490 #endif // PRODUCT
1491 
1492   set_thread_profiler(NULL);
1493   if (FlatProfiler::is_active()) {
1494     // This is where we would decide to either give each thread it's own profiler
1495     // or use one global one from FlatProfiler,
1496     // or up to some count of the number of profiled threads, etc.
1497     ThreadProfiler* pp = new ThreadProfiler();
1498     pp->engage();
1499     set_thread_profiler(pp);
1500   }
1501 
1502   // Setup safepoint state info for this thread
1503   ThreadSafepointState::create(this);
1504 
1505   debug_only(_java_call_counter = 0);
1506 
1507   // JVMTI PopFrame support
1508   _popframe_condition = popframe_inactive;
1509   _popframe_preserved_args = NULL;
1510   _popframe_preserved_args_size = 0;
1511   _frames_to_pop_failed_realloc = 0;
1512 
1513   pd_initialize();
1514 }
1515 
1516 #if INCLUDE_ALL_GCS
1517 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1518 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1519 #endif // INCLUDE_ALL_GCS
1520 
1521 JavaThread::JavaThread(bool is_attaching_via_jni) :
1522                        Thread()
1523 #if INCLUDE_ALL_GCS
1524                        , _satb_mark_queue(&_satb_mark_queue_set),
1525                        _dirty_card_queue(&_dirty_card_queue_set)
1526 #endif // INCLUDE_ALL_GCS
1527 {
1528   initialize();
1529   if (is_attaching_via_jni) {
1530     _jni_attach_state = _attaching_via_jni;
1531   } else {
1532     _jni_attach_state = _not_attaching_via_jni;
1533   }
1534   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1535 }
1536 
1537 bool JavaThread::reguard_stack(address cur_sp) {
1538   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1539       && _stack_guard_state != stack_guard_reserved_disabled) {
1540     return true; // Stack already guarded or guard pages not needed.
1541   }
1542 
1543   if (register_stack_overflow()) {
1544     // For those architectures which have separate register and
1545     // memory stacks, we must check the register stack to see if
1546     // it has overflowed.
1547     return false;
1548   }
1549 
1550   // Java code never executes within the yellow zone: the latter is only
1551   // there to provoke an exception during stack banging.  If java code
1552   // is executing there, either StackShadowPages should be larger, or
1553   // some exception code in c1, c2 or the interpreter isn't unwinding
1554   // when it should.
1555   guarantee(cur_sp > stack_reserved_zone_base(),
1556             "not enough space to reguard - increase StackShadowPages");
1557   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1558     enable_stack_yellow_reserved_zone();
1559     if (reserved_stack_activation() != stack_base()) {
1560       set_reserved_stack_activation(stack_base());
1561     }
1562   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1563     set_reserved_stack_activation(stack_base());
1564     enable_stack_reserved_zone();
1565   }
1566   return true;
1567 }
1568 
1569 bool JavaThread::reguard_stack(void) {
1570   return reguard_stack(os::current_stack_pointer());
1571 }
1572 
1573 
1574 void JavaThread::block_if_vm_exited() {
1575   if (_terminated == _vm_exited) {
1576     // _vm_exited is set at safepoint, and Threads_lock is never released
1577     // we will block here forever
1578     Threads_lock->lock_without_safepoint_check();
1579     ShouldNotReachHere();
1580   }
1581 }
1582 
1583 
1584 // Remove this ifdef when C1 is ported to the compiler interface.
1585 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1586 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1587 
1588 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1589                        Thread()
1590 #if INCLUDE_ALL_GCS
1591                        , _satb_mark_queue(&_satb_mark_queue_set),
1592                        _dirty_card_queue(&_dirty_card_queue_set)
1593 #endif // INCLUDE_ALL_GCS
1594 {
1595   initialize();
1596   _jni_attach_state = _not_attaching_via_jni;
1597   set_entry_point(entry_point);
1598   // Create the native thread itself.
1599   // %note runtime_23
1600   os::ThreadType thr_type = os::java_thread;
1601   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1602                                                      os::java_thread;
1603   os::create_thread(this, thr_type, stack_sz);
1604   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1605   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1606   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1607   // the exception consists of creating the exception object & initializing it, initialization
1608   // will leave the VM via a JavaCall and then all locks must be unlocked).
1609   //
1610   // The thread is still suspended when we reach here. Thread must be explicit started
1611   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1612   // by calling Threads:add. The reason why this is not done here, is because the thread
1613   // object must be fully initialized (take a look at JVM_Start)
1614 }
1615 
1616 JavaThread::~JavaThread() {
1617 
1618   // JSR166 -- return the parker to the free list
1619   Parker::Release(_parker);
1620   _parker = NULL;
1621 
1622   // Free any remaining  previous UnrollBlock
1623   vframeArray* old_array = vframe_array_last();
1624 
1625   if (old_array != NULL) {
1626     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1627     old_array->set_unroll_block(NULL);
1628     delete old_info;
1629     delete old_array;
1630   }
1631 
1632   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1633   if (deferred != NULL) {
1634     // This can only happen if thread is destroyed before deoptimization occurs.
1635     assert(deferred->length() != 0, "empty array!");
1636     do {
1637       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1638       deferred->remove_at(0);
1639       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1640       delete dlv;
1641     } while (deferred->length() != 0);
1642     delete deferred;
1643   }
1644 
1645   // All Java related clean up happens in exit
1646   ThreadSafepointState::destroy(this);
1647   if (_thread_profiler != NULL) delete _thread_profiler;
1648   if (_thread_stat != NULL) delete _thread_stat;
1649 
1650 #if INCLUDE_JVMCI
1651   if (JVMCICounterSize > 0) {
1652     if (jvmci_counters_include(this)) {
1653       for (int i = 0; i < JVMCICounterSize; i++) {
1654         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1655       }
1656     }
1657     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1658   }
1659 #endif // INCLUDE_JVMCI
1660 }
1661 
1662 
1663 // The first routine called by a new Java thread
1664 void JavaThread::run() {
1665   // initialize thread-local alloc buffer related fields
1666   this->initialize_tlab();
1667 
1668   // used to test validity of stack trace backs
1669   this->record_base_of_stack_pointer();
1670 
1671   // Record real stack base and size.
1672   this->record_stack_base_and_size();
1673 
1674   this->create_stack_guard_pages();
1675 
1676   this->cache_global_variables();
1677 
1678   // Thread is now sufficient initialized to be handled by the safepoint code as being
1679   // in the VM. Change thread state from _thread_new to _thread_in_vm
1680   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1681 
1682   assert(JavaThread::current() == this, "sanity check");
1683   assert(!Thread::current()->owns_locks(), "sanity check");
1684 
1685   DTRACE_THREAD_PROBE(start, this);
1686 
1687   // This operation might block. We call that after all safepoint checks for a new thread has
1688   // been completed.
1689   this->set_active_handles(JNIHandleBlock::allocate_block());
1690 
1691   if (JvmtiExport::should_post_thread_life()) {
1692     JvmtiExport::post_thread_start(this);
1693   }
1694 
1695   EventThreadStart event;
1696   if (event.should_commit()) {
1697     event.set_thread(THREAD_TRACE_ID(this));
1698     event.commit();
1699   }
1700 
1701   // We call another function to do the rest so we are sure that the stack addresses used
1702   // from there will be lower than the stack base just computed
1703   thread_main_inner();
1704 
1705   // Note, thread is no longer valid at this point!
1706 }
1707 
1708 
1709 void JavaThread::thread_main_inner() {
1710   assert(JavaThread::current() == this, "sanity check");
1711   assert(this->threadObj() != NULL, "just checking");
1712 
1713   // Execute thread entry point unless this thread has a pending exception
1714   // or has been stopped before starting.
1715   // Note: Due to JVM_StopThread we can have pending exceptions already!
1716   if (!this->has_pending_exception() &&
1717       !java_lang_Thread::is_stillborn(this->threadObj())) {
1718     {
1719       ResourceMark rm(this);
1720       this->set_native_thread_name(this->get_thread_name());
1721     }
1722     HandleMark hm(this);
1723     this->entry_point()(this, this);
1724   }
1725 
1726   DTRACE_THREAD_PROBE(stop, this);
1727 
1728   this->exit(false);
1729   delete this;
1730 }
1731 
1732 
1733 static void ensure_join(JavaThread* thread) {
1734   // We do not need to grap the Threads_lock, since we are operating on ourself.
1735   Handle threadObj(thread, thread->threadObj());
1736   assert(threadObj.not_null(), "java thread object must exist");
1737   ObjectLocker lock(threadObj, thread);
1738   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1739   thread->clear_pending_exception();
1740   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1741   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1742   // Clear the native thread instance - this makes isAlive return false and allows the join()
1743   // to complete once we've done the notify_all below
1744   java_lang_Thread::set_thread(threadObj(), NULL);
1745   lock.notify_all(thread);
1746   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1747   thread->clear_pending_exception();
1748 }
1749 
1750 
1751 // For any new cleanup additions, please check to see if they need to be applied to
1752 // cleanup_failed_attach_current_thread as well.
1753 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1754   assert(this == JavaThread::current(), "thread consistency check");
1755 
1756   HandleMark hm(this);
1757   Handle uncaught_exception(this, this->pending_exception());
1758   this->clear_pending_exception();
1759   Handle threadObj(this, this->threadObj());
1760   assert(threadObj.not_null(), "Java thread object should be created");
1761 
1762   if (get_thread_profiler() != NULL) {
1763     get_thread_profiler()->disengage();
1764     ResourceMark rm;
1765     get_thread_profiler()->print(get_thread_name());
1766   }
1767 
1768 
1769   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1770   {
1771     EXCEPTION_MARK;
1772 
1773     CLEAR_PENDING_EXCEPTION;
1774   }
1775   if (!destroy_vm) {
1776     if (uncaught_exception.not_null()) {
1777       EXCEPTION_MARK;
1778       // Call method Thread.dispatchUncaughtException().
1779       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1780       JavaValue result(T_VOID);
1781       JavaCalls::call_virtual(&result,
1782                               threadObj, thread_klass,
1783                               vmSymbols::dispatchUncaughtException_name(),
1784                               vmSymbols::throwable_void_signature(),
1785                               uncaught_exception,
1786                               THREAD);
1787       if (HAS_PENDING_EXCEPTION) {
1788         ResourceMark rm(this);
1789         jio_fprintf(defaultStream::error_stream(),
1790                     "\nException: %s thrown from the UncaughtExceptionHandler"
1791                     " in thread \"%s\"\n",
1792                     pending_exception()->klass()->external_name(),
1793                     get_thread_name());
1794         CLEAR_PENDING_EXCEPTION;
1795       }
1796     }
1797 
1798     // Called before the java thread exit since we want to read info
1799     // from java_lang_Thread object
1800     EventThreadEnd event;
1801     if (event.should_commit()) {
1802       event.set_thread(THREAD_TRACE_ID(this));
1803       event.commit();
1804     }
1805 
1806     // Call after last event on thread
1807     EVENT_THREAD_EXIT(this);
1808 
1809     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1810     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1811     // is deprecated anyhow.
1812     if (!is_Compiler_thread()) {
1813       int count = 3;
1814       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1815         EXCEPTION_MARK;
1816         JavaValue result(T_VOID);
1817         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1818         JavaCalls::call_virtual(&result,
1819                                 threadObj, thread_klass,
1820                                 vmSymbols::exit_method_name(),
1821                                 vmSymbols::void_method_signature(),
1822                                 THREAD);
1823         CLEAR_PENDING_EXCEPTION;
1824       }
1825     }
1826     // notify JVMTI
1827     if (JvmtiExport::should_post_thread_life()) {
1828       JvmtiExport::post_thread_end(this);
1829     }
1830 
1831     // We have notified the agents that we are exiting, before we go on,
1832     // we must check for a pending external suspend request and honor it
1833     // in order to not surprise the thread that made the suspend request.
1834     while (true) {
1835       {
1836         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1837         if (!is_external_suspend()) {
1838           set_terminated(_thread_exiting);
1839           ThreadService::current_thread_exiting(this);
1840           break;
1841         }
1842         // Implied else:
1843         // Things get a little tricky here. We have a pending external
1844         // suspend request, but we are holding the SR_lock so we
1845         // can't just self-suspend. So we temporarily drop the lock
1846         // and then self-suspend.
1847       }
1848 
1849       ThreadBlockInVM tbivm(this);
1850       java_suspend_self();
1851 
1852       // We're done with this suspend request, but we have to loop around
1853       // and check again. Eventually we will get SR_lock without a pending
1854       // external suspend request and will be able to mark ourselves as
1855       // exiting.
1856     }
1857     // no more external suspends are allowed at this point
1858   } else {
1859     // before_exit() has already posted JVMTI THREAD_END events
1860   }
1861 
1862   // Notify waiters on thread object. This has to be done after exit() is called
1863   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1864   // group should have the destroyed bit set before waiters are notified).
1865   ensure_join(this);
1866   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1867 
1868   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1869   // held by this thread must be released. The spec does not distinguish
1870   // between JNI-acquired and regular Java monitors. We can only see
1871   // regular Java monitors here if monitor enter-exit matching is broken.
1872   //
1873   // Optionally release any monitors for regular JavaThread exits. This
1874   // is provided as a work around for any bugs in monitor enter-exit
1875   // matching. This can be expensive so it is not enabled by default.
1876   //
1877   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1878   // ObjectSynchronizer::release_monitors_owned_by_thread().
1879   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1880     // Sanity check even though JNI DetachCurrentThread() would have
1881     // returned JNI_ERR if there was a Java frame. JavaThread exit
1882     // should be done executing Java code by the time we get here.
1883     assert(!this->has_last_Java_frame(),
1884            "should not have a Java frame when detaching or exiting");
1885     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1886     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1887   }
1888 
1889   // These things needs to be done while we are still a Java Thread. Make sure that thread
1890   // is in a consistent state, in case GC happens
1891   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1892 
1893   if (active_handles() != NULL) {
1894     JNIHandleBlock* block = active_handles();
1895     set_active_handles(NULL);
1896     JNIHandleBlock::release_block(block);
1897   }
1898 
1899   if (free_handle_block() != NULL) {
1900     JNIHandleBlock* block = free_handle_block();
1901     set_free_handle_block(NULL);
1902     JNIHandleBlock::release_block(block);
1903   }
1904 
1905   // These have to be removed while this is still a valid thread.
1906   remove_stack_guard_pages();
1907 
1908   if (UseTLAB) {
1909     tlab().make_parsable(true);  // retire TLAB
1910   }
1911 
1912   if (JvmtiEnv::environments_might_exist()) {
1913     JvmtiExport::cleanup_thread(this);
1914   }
1915 
1916   // We must flush any deferred card marks before removing a thread from
1917   // the list of active threads.
1918   Universe::heap()->flush_deferred_store_barrier(this);
1919   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1920 
1921 #if INCLUDE_ALL_GCS
1922   // We must flush the G1-related buffers before removing a thread
1923   // from the list of active threads. We must do this after any deferred
1924   // card marks have been flushed (above) so that any entries that are
1925   // added to the thread's dirty card queue as a result are not lost.
1926   if (UseG1GC) {
1927     flush_barrier_queues();
1928   }
1929 #endif // INCLUDE_ALL_GCS
1930 
1931   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1932     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1933     os::current_thread_id());
1934 
1935   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1936   Threads::remove(this);
1937 }
1938 
1939 #if INCLUDE_ALL_GCS
1940 // Flush G1-related queues.
1941 void JavaThread::flush_barrier_queues() {
1942   satb_mark_queue().flush();
1943   dirty_card_queue().flush();
1944 }
1945 
1946 void JavaThread::initialize_queues() {
1947   assert(!SafepointSynchronize::is_at_safepoint(),
1948          "we should not be at a safepoint");
1949 
1950   SATBMarkQueue& satb_queue = satb_mark_queue();
1951   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1952   // The SATB queue should have been constructed with its active
1953   // field set to false.
1954   assert(!satb_queue.is_active(), "SATB queue should not be active");
1955   assert(satb_queue.is_empty(), "SATB queue should be empty");
1956   // If we are creating the thread during a marking cycle, we should
1957   // set the active field of the SATB queue to true.
1958   if (satb_queue_set.is_active()) {
1959     satb_queue.set_active(true);
1960   }
1961 
1962   DirtyCardQueue& dirty_queue = dirty_card_queue();
1963   // The dirty card queue should have been constructed with its
1964   // active field set to true.
1965   assert(dirty_queue.is_active(), "dirty card queue should be active");
1966 }
1967 #endif // INCLUDE_ALL_GCS
1968 
1969 void JavaThread::cleanup_failed_attach_current_thread() {
1970   if (get_thread_profiler() != NULL) {
1971     get_thread_profiler()->disengage();
1972     ResourceMark rm;
1973     get_thread_profiler()->print(get_thread_name());
1974   }
1975 
1976   if (active_handles() != NULL) {
1977     JNIHandleBlock* block = active_handles();
1978     set_active_handles(NULL);
1979     JNIHandleBlock::release_block(block);
1980   }
1981 
1982   if (free_handle_block() != NULL) {
1983     JNIHandleBlock* block = free_handle_block();
1984     set_free_handle_block(NULL);
1985     JNIHandleBlock::release_block(block);
1986   }
1987 
1988   // These have to be removed while this is still a valid thread.
1989   remove_stack_guard_pages();
1990 
1991   if (UseTLAB) {
1992     tlab().make_parsable(true);  // retire TLAB, if any
1993   }
1994 
1995 #if INCLUDE_ALL_GCS
1996   if (UseG1GC) {
1997     flush_barrier_queues();
1998   }
1999 #endif // INCLUDE_ALL_GCS
2000 
2001   Threads::remove(this);
2002   delete this;
2003 }
2004 
2005 
2006 
2007 
2008 JavaThread* JavaThread::active() {
2009   Thread* thread = Thread::current();
2010   if (thread->is_Java_thread()) {
2011     return (JavaThread*) thread;
2012   } else {
2013     assert(thread->is_VM_thread(), "this must be a vm thread");
2014     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2015     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2016     assert(ret->is_Java_thread(), "must be a Java thread");
2017     return ret;
2018   }
2019 }
2020 
2021 bool JavaThread::is_lock_owned(address adr) const {
2022   if (Thread::is_lock_owned(adr)) return true;
2023 
2024   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2025     if (chunk->contains(adr)) return true;
2026   }
2027 
2028   return false;
2029 }
2030 
2031 
2032 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2033   chunk->set_next(monitor_chunks());
2034   set_monitor_chunks(chunk);
2035 }
2036 
2037 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2038   guarantee(monitor_chunks() != NULL, "must be non empty");
2039   if (monitor_chunks() == chunk) {
2040     set_monitor_chunks(chunk->next());
2041   } else {
2042     MonitorChunk* prev = monitor_chunks();
2043     while (prev->next() != chunk) prev = prev->next();
2044     prev->set_next(chunk->next());
2045   }
2046 }
2047 
2048 // JVM support.
2049 
2050 // Note: this function shouldn't block if it's called in
2051 // _thread_in_native_trans state (such as from
2052 // check_special_condition_for_native_trans()).
2053 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2054 
2055   if (has_last_Java_frame() && has_async_condition()) {
2056     // If we are at a polling page safepoint (not a poll return)
2057     // then we must defer async exception because live registers
2058     // will be clobbered by the exception path. Poll return is
2059     // ok because the call we a returning from already collides
2060     // with exception handling registers and so there is no issue.
2061     // (The exception handling path kills call result registers but
2062     //  this is ok since the exception kills the result anyway).
2063 
2064     if (is_at_poll_safepoint()) {
2065       // if the code we are returning to has deoptimized we must defer
2066       // the exception otherwise live registers get clobbered on the
2067       // exception path before deoptimization is able to retrieve them.
2068       //
2069       RegisterMap map(this, false);
2070       frame caller_fr = last_frame().sender(&map);
2071       assert(caller_fr.is_compiled_frame(), "what?");
2072       if (caller_fr.is_deoptimized_frame()) {
2073         log_info(exceptions)("deferred async exception at compiled safepoint");
2074         return;
2075       }
2076     }
2077   }
2078 
2079   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2080   if (condition == _no_async_condition) {
2081     // Conditions have changed since has_special_runtime_exit_condition()
2082     // was called:
2083     // - if we were here only because of an external suspend request,
2084     //   then that was taken care of above (or cancelled) so we are done
2085     // - if we were here because of another async request, then it has
2086     //   been cleared between the has_special_runtime_exit_condition()
2087     //   and now so again we are done
2088     return;
2089   }
2090 
2091   // Check for pending async. exception
2092   if (_pending_async_exception != NULL) {
2093     // Only overwrite an already pending exception, if it is not a threadDeath.
2094     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2095 
2096       // We cannot call Exceptions::_throw(...) here because we cannot block
2097       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2098 
2099       if (log_is_enabled(Info, exceptions)) {
2100         ResourceMark rm;
2101         outputStream* logstream = Log(exceptions)::info_stream();
2102         logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2103           if (has_last_Java_frame()) {
2104             frame f = last_frame();
2105            logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2106           }
2107         logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2108       }
2109       _pending_async_exception = NULL;
2110       clear_has_async_exception();
2111     }
2112   }
2113 
2114   if (check_unsafe_error &&
2115       condition == _async_unsafe_access_error && !has_pending_exception()) {
2116     condition = _no_async_condition;  // done
2117     switch (thread_state()) {
2118     case _thread_in_vm: {
2119       JavaThread* THREAD = this;
2120       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2121     }
2122     case _thread_in_native: {
2123       ThreadInVMfromNative tiv(this);
2124       JavaThread* THREAD = this;
2125       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2126     }
2127     case _thread_in_Java: {
2128       ThreadInVMfromJava tiv(this);
2129       JavaThread* THREAD = this;
2130       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2131     }
2132     default:
2133       ShouldNotReachHere();
2134     }
2135   }
2136 
2137   assert(condition == _no_async_condition || has_pending_exception() ||
2138          (!check_unsafe_error && condition == _async_unsafe_access_error),
2139          "must have handled the async condition, if no exception");
2140 }
2141 
2142 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2143   //
2144   // Check for pending external suspend. Internal suspend requests do
2145   // not use handle_special_runtime_exit_condition().
2146   // If JNIEnv proxies are allowed, don't self-suspend if the target
2147   // thread is not the current thread. In older versions of jdbx, jdbx
2148   // threads could call into the VM with another thread's JNIEnv so we
2149   // can be here operating on behalf of a suspended thread (4432884).
2150   bool do_self_suspend = is_external_suspend_with_lock();
2151   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2152     //
2153     // Because thread is external suspended the safepoint code will count
2154     // thread as at a safepoint. This can be odd because we can be here
2155     // as _thread_in_Java which would normally transition to _thread_blocked
2156     // at a safepoint. We would like to mark the thread as _thread_blocked
2157     // before calling java_suspend_self like all other callers of it but
2158     // we must then observe proper safepoint protocol. (We can't leave
2159     // _thread_blocked with a safepoint in progress). However we can be
2160     // here as _thread_in_native_trans so we can't use a normal transition
2161     // constructor/destructor pair because they assert on that type of
2162     // transition. We could do something like:
2163     //
2164     // JavaThreadState state = thread_state();
2165     // set_thread_state(_thread_in_vm);
2166     // {
2167     //   ThreadBlockInVM tbivm(this);
2168     //   java_suspend_self()
2169     // }
2170     // set_thread_state(_thread_in_vm_trans);
2171     // if (safepoint) block;
2172     // set_thread_state(state);
2173     //
2174     // but that is pretty messy. Instead we just go with the way the
2175     // code has worked before and note that this is the only path to
2176     // java_suspend_self that doesn't put the thread in _thread_blocked
2177     // mode.
2178 
2179     frame_anchor()->make_walkable(this);
2180     java_suspend_self();
2181 
2182     // We might be here for reasons in addition to the self-suspend request
2183     // so check for other async requests.
2184   }
2185 
2186   if (check_asyncs) {
2187     check_and_handle_async_exceptions();
2188   }
2189 }
2190 
2191 void JavaThread::send_thread_stop(oop java_throwable)  {
2192   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2193   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2194   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2195 
2196   // Do not throw asynchronous exceptions against the compiler thread
2197   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2198   if (!can_call_java()) return;
2199 
2200   {
2201     // Actually throw the Throwable against the target Thread - however
2202     // only if there is no thread death exception installed already.
2203     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2204       // If the topmost frame is a runtime stub, then we are calling into
2205       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2206       // must deoptimize the caller before continuing, as the compiled  exception handler table
2207       // may not be valid
2208       if (has_last_Java_frame()) {
2209         frame f = last_frame();
2210         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2211           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2212           RegisterMap reg_map(this, UseBiasedLocking);
2213           frame compiled_frame = f.sender(&reg_map);
2214           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2215             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2216           }
2217         }
2218       }
2219 
2220       // Set async. pending exception in thread.
2221       set_pending_async_exception(java_throwable);
2222 
2223       if (log_is_enabled(Info, exceptions)) {
2224          ResourceMark rm;
2225         log_info(exceptions)("Pending Async. exception installed of type: %s",
2226                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2227       }
2228       // for AbortVMOnException flag
2229       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2230     }
2231   }
2232 
2233 
2234   // Interrupt thread so it will wake up from a potential wait()
2235   Thread::interrupt(this);
2236 }
2237 
2238 // External suspension mechanism.
2239 //
2240 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2241 // to any VM_locks and it is at a transition
2242 // Self-suspension will happen on the transition out of the vm.
2243 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2244 //
2245 // Guarantees on return:
2246 //   + Target thread will not execute any new bytecode (that's why we need to
2247 //     force a safepoint)
2248 //   + Target thread will not enter any new monitors
2249 //
2250 void JavaThread::java_suspend() {
2251   { MutexLocker mu(Threads_lock);
2252     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2253       return;
2254     }
2255   }
2256 
2257   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2258     if (!is_external_suspend()) {
2259       // a racing resume has cancelled us; bail out now
2260       return;
2261     }
2262 
2263     // suspend is done
2264     uint32_t debug_bits = 0;
2265     // Warning: is_ext_suspend_completed() may temporarily drop the
2266     // SR_lock to allow the thread to reach a stable thread state if
2267     // it is currently in a transient thread state.
2268     if (is_ext_suspend_completed(false /* !called_by_wait */,
2269                                  SuspendRetryDelay, &debug_bits)) {
2270       return;
2271     }
2272   }
2273 
2274   VM_ForceSafepoint vm_suspend;
2275   VMThread::execute(&vm_suspend);
2276 }
2277 
2278 // Part II of external suspension.
2279 // A JavaThread self suspends when it detects a pending external suspend
2280 // request. This is usually on transitions. It is also done in places
2281 // where continuing to the next transition would surprise the caller,
2282 // e.g., monitor entry.
2283 //
2284 // Returns the number of times that the thread self-suspended.
2285 //
2286 // Note: DO NOT call java_suspend_self() when you just want to block current
2287 //       thread. java_suspend_self() is the second stage of cooperative
2288 //       suspension for external suspend requests and should only be used
2289 //       to complete an external suspend request.
2290 //
2291 int JavaThread::java_suspend_self() {
2292   int ret = 0;
2293 
2294   // we are in the process of exiting so don't suspend
2295   if (is_exiting()) {
2296     clear_external_suspend();
2297     return ret;
2298   }
2299 
2300   assert(_anchor.walkable() ||
2301          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2302          "must have walkable stack");
2303 
2304   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2305 
2306   assert(!this->is_ext_suspended(),
2307          "a thread trying to self-suspend should not already be suspended");
2308 
2309   if (this->is_suspend_equivalent()) {
2310     // If we are self-suspending as a result of the lifting of a
2311     // suspend equivalent condition, then the suspend_equivalent
2312     // flag is not cleared until we set the ext_suspended flag so
2313     // that wait_for_ext_suspend_completion() returns consistent
2314     // results.
2315     this->clear_suspend_equivalent();
2316   }
2317 
2318   // A racing resume may have cancelled us before we grabbed SR_lock
2319   // above. Or another external suspend request could be waiting for us
2320   // by the time we return from SR_lock()->wait(). The thread
2321   // that requested the suspension may already be trying to walk our
2322   // stack and if we return now, we can change the stack out from under
2323   // it. This would be a "bad thing (TM)" and cause the stack walker
2324   // to crash. We stay self-suspended until there are no more pending
2325   // external suspend requests.
2326   while (is_external_suspend()) {
2327     ret++;
2328     this->set_ext_suspended();
2329 
2330     // _ext_suspended flag is cleared by java_resume()
2331     while (is_ext_suspended()) {
2332       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2333     }
2334   }
2335 
2336   return ret;
2337 }
2338 
2339 #ifdef ASSERT
2340 // verify the JavaThread has not yet been published in the Threads::list, and
2341 // hence doesn't need protection from concurrent access at this stage
2342 void JavaThread::verify_not_published() {
2343   if (!Threads_lock->owned_by_self()) {
2344     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2345     assert(!Threads::includes(this),
2346            "java thread shouldn't have been published yet!");
2347   } else {
2348     assert(!Threads::includes(this),
2349            "java thread shouldn't have been published yet!");
2350   }
2351 }
2352 #endif
2353 
2354 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2355 // progress or when _suspend_flags is non-zero.
2356 // Current thread needs to self-suspend if there is a suspend request and/or
2357 // block if a safepoint is in progress.
2358 // Async exception ISN'T checked.
2359 // Note only the ThreadInVMfromNative transition can call this function
2360 // directly and when thread state is _thread_in_native_trans
2361 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2362   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2363 
2364   JavaThread *curJT = JavaThread::current();
2365   bool do_self_suspend = thread->is_external_suspend();
2366 
2367   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2368 
2369   // If JNIEnv proxies are allowed, don't self-suspend if the target
2370   // thread is not the current thread. In older versions of jdbx, jdbx
2371   // threads could call into the VM with another thread's JNIEnv so we
2372   // can be here operating on behalf of a suspended thread (4432884).
2373   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2374     JavaThreadState state = thread->thread_state();
2375 
2376     // We mark this thread_blocked state as a suspend-equivalent so
2377     // that a caller to is_ext_suspend_completed() won't be confused.
2378     // The suspend-equivalent state is cleared by java_suspend_self().
2379     thread->set_suspend_equivalent();
2380 
2381     // If the safepoint code sees the _thread_in_native_trans state, it will
2382     // wait until the thread changes to other thread state. There is no
2383     // guarantee on how soon we can obtain the SR_lock and complete the
2384     // self-suspend request. It would be a bad idea to let safepoint wait for
2385     // too long. Temporarily change the state to _thread_blocked to
2386     // let the VM thread know that this thread is ready for GC. The problem
2387     // of changing thread state is that safepoint could happen just after
2388     // java_suspend_self() returns after being resumed, and VM thread will
2389     // see the _thread_blocked state. We must check for safepoint
2390     // after restoring the state and make sure we won't leave while a safepoint
2391     // is in progress.
2392     thread->set_thread_state(_thread_blocked);
2393     thread->java_suspend_self();
2394     thread->set_thread_state(state);
2395     // Make sure new state is seen by VM thread
2396     if (os::is_MP()) {
2397       if (UseMembar) {
2398         // Force a fence between the write above and read below
2399         OrderAccess::fence();
2400       } else {
2401         // Must use this rather than serialization page in particular on Windows
2402         InterfaceSupport::serialize_memory(thread);
2403       }
2404     }
2405   }
2406 
2407   if (SafepointSynchronize::do_call_back()) {
2408     // If we are safepointing, then block the caller which may not be
2409     // the same as the target thread (see above).
2410     SafepointSynchronize::block(curJT);
2411   }
2412 
2413   if (thread->is_deopt_suspend()) {
2414     thread->clear_deopt_suspend();
2415     RegisterMap map(thread, false);
2416     frame f = thread->last_frame();
2417     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2418       f = f.sender(&map);
2419     }
2420     if (f.id() == thread->must_deopt_id()) {
2421       thread->clear_must_deopt_id();
2422       f.deoptimize(thread);
2423     } else {
2424       fatal("missed deoptimization!");
2425     }
2426   }
2427 }
2428 
2429 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2430 // progress or when _suspend_flags is non-zero.
2431 // Current thread needs to self-suspend if there is a suspend request and/or
2432 // block if a safepoint is in progress.
2433 // Also check for pending async exception (not including unsafe access error).
2434 // Note only the native==>VM/Java barriers can call this function and when
2435 // thread state is _thread_in_native_trans.
2436 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2437   check_safepoint_and_suspend_for_native_trans(thread);
2438 
2439   if (thread->has_async_exception()) {
2440     // We are in _thread_in_native_trans state, don't handle unsafe
2441     // access error since that may block.
2442     thread->check_and_handle_async_exceptions(false);
2443   }
2444 }
2445 
2446 // This is a variant of the normal
2447 // check_special_condition_for_native_trans with slightly different
2448 // semantics for use by critical native wrappers.  It does all the
2449 // normal checks but also performs the transition back into
2450 // thread_in_Java state.  This is required so that critical natives
2451 // can potentially block and perform a GC if they are the last thread
2452 // exiting the GCLocker.
2453 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2454   check_special_condition_for_native_trans(thread);
2455 
2456   // Finish the transition
2457   thread->set_thread_state(_thread_in_Java);
2458 
2459   if (thread->do_critical_native_unlock()) {
2460     ThreadInVMfromJavaNoAsyncException tiv(thread);
2461     GCLocker::unlock_critical(thread);
2462     thread->clear_critical_native_unlock();
2463   }
2464 }
2465 
2466 // We need to guarantee the Threads_lock here, since resumes are not
2467 // allowed during safepoint synchronization
2468 // Can only resume from an external suspension
2469 void JavaThread::java_resume() {
2470   assert_locked_or_safepoint(Threads_lock);
2471 
2472   // Sanity check: thread is gone, has started exiting or the thread
2473   // was not externally suspended.
2474   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2475     return;
2476   }
2477 
2478   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2479 
2480   clear_external_suspend();
2481 
2482   if (is_ext_suspended()) {
2483     clear_ext_suspended();
2484     SR_lock()->notify_all();
2485   }
2486 }
2487 
2488 size_t JavaThread::_stack_red_zone_size = 0;
2489 size_t JavaThread::_stack_yellow_zone_size = 0;
2490 size_t JavaThread::_stack_reserved_zone_size = 0;
2491 size_t JavaThread::_stack_shadow_zone_size = 0;
2492 
2493 void JavaThread::create_stack_guard_pages() {
2494   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2495   address low_addr = stack_end();
2496   size_t len = stack_guard_zone_size();
2497 
2498   int must_commit = os::must_commit_stack_guard_pages();
2499   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2500 
2501   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2502     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2503     return;
2504   }
2505 
2506   if (os::guard_memory((char *) low_addr, len)) {
2507     _stack_guard_state = stack_guard_enabled;
2508   } else {
2509     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2510       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2511     if (os::uncommit_memory((char *) low_addr, len)) {
2512       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2513     }
2514     return;
2515   }
2516 
2517   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2518     PTR_FORMAT "-" PTR_FORMAT ".",
2519     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2520 }
2521 
2522 void JavaThread::remove_stack_guard_pages() {
2523   assert(Thread::current() == this, "from different thread");
2524   if (_stack_guard_state == stack_guard_unused) return;
2525   address low_addr = stack_end();
2526   size_t len = stack_guard_zone_size();
2527 
2528   if (os::must_commit_stack_guard_pages()) {
2529     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2530       _stack_guard_state = stack_guard_unused;
2531     } else {
2532       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2533         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2534       return;
2535     }
2536   } else {
2537     if (_stack_guard_state == stack_guard_unused) return;
2538     if (os::unguard_memory((char *) low_addr, len)) {
2539       _stack_guard_state = stack_guard_unused;
2540     } else {
2541       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2542         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2543       return;
2544     }
2545   }
2546 
2547   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2548     PTR_FORMAT "-" PTR_FORMAT ".",
2549     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2550 }
2551 
2552 void JavaThread::enable_stack_reserved_zone() {
2553   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2554   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2555 
2556   // The base notation is from the stack's point of view, growing downward.
2557   // We need to adjust it to work correctly with guard_memory()
2558   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2559 
2560   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2561   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2562 
2563   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2564     _stack_guard_state = stack_guard_enabled;
2565   } else {
2566     warning("Attempt to guard stack reserved zone failed.");
2567   }
2568   enable_register_stack_guard();
2569 }
2570 
2571 void JavaThread::disable_stack_reserved_zone() {
2572   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2573   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2574 
2575   // Simply return if called for a thread that does not use guard pages.
2576   if (_stack_guard_state == stack_guard_unused) return;
2577 
2578   // The base notation is from the stack's point of view, growing downward.
2579   // We need to adjust it to work correctly with guard_memory()
2580   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2581 
2582   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2583     _stack_guard_state = stack_guard_reserved_disabled;
2584   } else {
2585     warning("Attempt to unguard stack reserved zone failed.");
2586   }
2587   disable_register_stack_guard();
2588 }
2589 
2590 void JavaThread::enable_stack_yellow_reserved_zone() {
2591   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2592   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2593 
2594   // The base notation is from the stacks point of view, growing downward.
2595   // We need to adjust it to work correctly with guard_memory()
2596   address base = stack_red_zone_base();
2597 
2598   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2599   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2600 
2601   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2602     _stack_guard_state = stack_guard_enabled;
2603   } else {
2604     warning("Attempt to guard stack yellow zone failed.");
2605   }
2606   enable_register_stack_guard();
2607 }
2608 
2609 void JavaThread::disable_stack_yellow_reserved_zone() {
2610   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2611   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2612 
2613   // Simply return if called for a thread that does not use guard pages.
2614   if (_stack_guard_state == stack_guard_unused) return;
2615 
2616   // The base notation is from the stacks point of view, growing downward.
2617   // We need to adjust it to work correctly with guard_memory()
2618   address base = stack_red_zone_base();
2619 
2620   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2621     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2622   } else {
2623     warning("Attempt to unguard stack yellow zone failed.");
2624   }
2625   disable_register_stack_guard();
2626 }
2627 
2628 void JavaThread::enable_stack_red_zone() {
2629   // The base notation is from the stacks point of view, growing downward.
2630   // We need to adjust it to work correctly with guard_memory()
2631   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2632   address base = stack_red_zone_base() - stack_red_zone_size();
2633 
2634   guarantee(base < stack_base(), "Error calculating stack red zone");
2635   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2636 
2637   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2638     warning("Attempt to guard stack red zone failed.");
2639   }
2640 }
2641 
2642 void JavaThread::disable_stack_red_zone() {
2643   // The base notation is from the stacks point of view, growing downward.
2644   // We need to adjust it to work correctly with guard_memory()
2645   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2646   address base = stack_red_zone_base() - stack_red_zone_size();
2647   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2648     warning("Attempt to unguard stack red zone failed.");
2649   }
2650 }
2651 
2652 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2653   // ignore is there is no stack
2654   if (!has_last_Java_frame()) return;
2655   // traverse the stack frames. Starts from top frame.
2656   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2657     frame* fr = fst.current();
2658     f(fr, fst.register_map());
2659   }
2660 }
2661 
2662 
2663 #ifndef PRODUCT
2664 // Deoptimization
2665 // Function for testing deoptimization
2666 void JavaThread::deoptimize() {
2667   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2668   StackFrameStream fst(this, UseBiasedLocking);
2669   bool deopt = false;           // Dump stack only if a deopt actually happens.
2670   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2671   // Iterate over all frames in the thread and deoptimize
2672   for (; !fst.is_done(); fst.next()) {
2673     if (fst.current()->can_be_deoptimized()) {
2674 
2675       if (only_at) {
2676         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2677         // consists of comma or carriage return separated numbers so
2678         // search for the current bci in that string.
2679         address pc = fst.current()->pc();
2680         nmethod* nm =  (nmethod*) fst.current()->cb();
2681         ScopeDesc* sd = nm->scope_desc_at(pc);
2682         char buffer[8];
2683         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2684         size_t len = strlen(buffer);
2685         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2686         while (found != NULL) {
2687           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2688               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2689             // Check that the bci found is bracketed by terminators.
2690             break;
2691           }
2692           found = strstr(found + 1, buffer);
2693         }
2694         if (!found) {
2695           continue;
2696         }
2697       }
2698 
2699       if (DebugDeoptimization && !deopt) {
2700         deopt = true; // One-time only print before deopt
2701         tty->print_cr("[BEFORE Deoptimization]");
2702         trace_frames();
2703         trace_stack();
2704       }
2705       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2706     }
2707   }
2708 
2709   if (DebugDeoptimization && deopt) {
2710     tty->print_cr("[AFTER Deoptimization]");
2711     trace_frames();
2712   }
2713 }
2714 
2715 
2716 // Make zombies
2717 void JavaThread::make_zombies() {
2718   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2719     if (fst.current()->can_be_deoptimized()) {
2720       // it is a Java nmethod
2721       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2722       nm->make_not_entrant();
2723     }
2724   }
2725 }
2726 #endif // PRODUCT
2727 
2728 
2729 void JavaThread::deoptimized_wrt_marked_nmethods() {
2730   if (!has_last_Java_frame()) return;
2731   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2732   StackFrameStream fst(this, UseBiasedLocking);
2733   for (; !fst.is_done(); fst.next()) {
2734     if (fst.current()->should_be_deoptimized()) {
2735       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2736     }
2737   }
2738 }
2739 
2740 
2741 // If the caller is a NamedThread, then remember, in the current scope,
2742 // the given JavaThread in its _processed_thread field.
2743 class RememberProcessedThread: public StackObj {
2744   NamedThread* _cur_thr;
2745  public:
2746   RememberProcessedThread(JavaThread* jthr) {
2747     Thread* thread = Thread::current();
2748     if (thread->is_Named_thread()) {
2749       _cur_thr = (NamedThread *)thread;
2750       _cur_thr->set_processed_thread(jthr);
2751     } else {
2752       _cur_thr = NULL;
2753     }
2754   }
2755 
2756   ~RememberProcessedThread() {
2757     if (_cur_thr) {
2758       _cur_thr->set_processed_thread(NULL);
2759     }
2760   }
2761 };
2762 
2763 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2764   // Verify that the deferred card marks have been flushed.
2765   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2766 
2767   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2768   // since there may be more than one thread using each ThreadProfiler.
2769 
2770   // Traverse the GCHandles
2771   Thread::oops_do(f, cf);
2772 
2773   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2774 
2775   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2776          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2777 
2778   if (has_last_Java_frame()) {
2779     // Record JavaThread to GC thread
2780     RememberProcessedThread rpt(this);
2781 
2782     // Traverse the privileged stack
2783     if (_privileged_stack_top != NULL) {
2784       _privileged_stack_top->oops_do(f);
2785     }
2786 
2787     // traverse the registered growable array
2788     if (_array_for_gc != NULL) {
2789       for (int index = 0; index < _array_for_gc->length(); index++) {
2790         f->do_oop(_array_for_gc->adr_at(index));
2791       }
2792     }
2793 
2794     // Traverse the monitor chunks
2795     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2796       chunk->oops_do(f);
2797     }
2798 
2799     // Traverse the execution stack
2800     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2801       fst.current()->oops_do(f, cf, fst.register_map());
2802     }
2803   }
2804 
2805   // callee_target is never live across a gc point so NULL it here should
2806   // it still contain a methdOop.
2807 
2808   set_callee_target(NULL);
2809 
2810   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2811   // If we have deferred set_locals there might be oops waiting to be
2812   // written
2813   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2814   if (list != NULL) {
2815     for (int i = 0; i < list->length(); i++) {
2816       list->at(i)->oops_do(f);
2817     }
2818   }
2819 
2820   // Traverse instance variables at the end since the GC may be moving things
2821   // around using this function
2822   f->do_oop((oop*) &_threadObj);
2823   f->do_oop((oop*) &_vm_result);
2824   f->do_oop((oop*) &_exception_oop);
2825   f->do_oop((oop*) &_pending_async_exception);
2826 
2827   if (jvmti_thread_state() != NULL) {
2828     jvmti_thread_state()->oops_do(f);
2829   }
2830 }
2831 
2832 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2833   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2834          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2835 
2836   if (has_last_Java_frame()) {
2837     // Traverse the execution stack
2838     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2839       fst.current()->nmethods_do(cf);
2840     }
2841   }
2842 }
2843 
2844 void JavaThread::metadata_do(void f(Metadata*)) {
2845   if (has_last_Java_frame()) {
2846     // Traverse the execution stack to call f() on the methods in the stack
2847     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2848       fst.current()->metadata_do(f);
2849     }
2850   } else if (is_Compiler_thread()) {
2851     // need to walk ciMetadata in current compile tasks to keep alive.
2852     CompilerThread* ct = (CompilerThread*)this;
2853     if (ct->env() != NULL) {
2854       ct->env()->metadata_do(f);
2855     }
2856     if (ct->task() != NULL) {
2857       ct->task()->metadata_do(f);
2858     }
2859   }
2860 }
2861 
2862 // Printing
2863 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2864   switch (_thread_state) {
2865   case _thread_uninitialized:     return "_thread_uninitialized";
2866   case _thread_new:               return "_thread_new";
2867   case _thread_new_trans:         return "_thread_new_trans";
2868   case _thread_in_native:         return "_thread_in_native";
2869   case _thread_in_native_trans:   return "_thread_in_native_trans";
2870   case _thread_in_vm:             return "_thread_in_vm";
2871   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2872   case _thread_in_Java:           return "_thread_in_Java";
2873   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2874   case _thread_blocked:           return "_thread_blocked";
2875   case _thread_blocked_trans:     return "_thread_blocked_trans";
2876   default:                        return "unknown thread state";
2877   }
2878 }
2879 
2880 #ifndef PRODUCT
2881 void JavaThread::print_thread_state_on(outputStream *st) const {
2882   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2883 };
2884 void JavaThread::print_thread_state() const {
2885   print_thread_state_on(tty);
2886 }
2887 #endif // PRODUCT
2888 
2889 // Called by Threads::print() for VM_PrintThreads operation
2890 void JavaThread::print_on(outputStream *st) const {
2891   st->print_raw("\"");
2892   st->print_raw(get_thread_name());
2893   st->print_raw("\" ");
2894   oop thread_oop = threadObj();
2895   if (thread_oop != NULL) {
2896     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2897     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2898     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2899   }
2900   Thread::print_on(st);
2901   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2902   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2903   if (thread_oop != NULL) {
2904     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2905   }
2906 #ifndef PRODUCT
2907   print_thread_state_on(st);
2908   _safepoint_state->print_on(st);
2909 #endif // PRODUCT
2910   if (is_Compiler_thread()) {
2911     CompilerThread* ct = (CompilerThread*)this;
2912     if (ct->task() != NULL) {
2913       st->print("   Compiling: ");
2914       ct->task()->print(st, NULL, true, false);
2915     } else {
2916       st->print("   No compile task");
2917     }
2918     st->cr();
2919   }
2920 }
2921 
2922 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2923   st->print("%s", get_thread_name_string(buf, buflen));
2924 }
2925 
2926 // Called by fatal error handler. The difference between this and
2927 // JavaThread::print() is that we can't grab lock or allocate memory.
2928 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2929   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2930   oop thread_obj = threadObj();
2931   if (thread_obj != NULL) {
2932     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2933   }
2934   st->print(" [");
2935   st->print("%s", _get_thread_state_name(_thread_state));
2936   if (osthread()) {
2937     st->print(", id=%d", osthread()->thread_id());
2938   }
2939   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2940             p2i(stack_end()), p2i(stack_base()));
2941   st->print("]");
2942   return;
2943 }
2944 
2945 // Verification
2946 
2947 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2948 
2949 void JavaThread::verify() {
2950   // Verify oops in the thread.
2951   oops_do(&VerifyOopClosure::verify_oop, NULL);
2952 
2953   // Verify the stack frames.
2954   frames_do(frame_verify);
2955 }
2956 
2957 // CR 6300358 (sub-CR 2137150)
2958 // Most callers of this method assume that it can't return NULL but a
2959 // thread may not have a name whilst it is in the process of attaching to
2960 // the VM - see CR 6412693, and there are places where a JavaThread can be
2961 // seen prior to having it's threadObj set (eg JNI attaching threads and
2962 // if vm exit occurs during initialization). These cases can all be accounted
2963 // for such that this method never returns NULL.
2964 const char* JavaThread::get_thread_name() const {
2965 #ifdef ASSERT
2966   // early safepoints can hit while current thread does not yet have TLS
2967   if (!SafepointSynchronize::is_at_safepoint()) {
2968     Thread *cur = Thread::current();
2969     if (!(cur->is_Java_thread() && cur == this)) {
2970       // Current JavaThreads are allowed to get their own name without
2971       // the Threads_lock.
2972       assert_locked_or_safepoint(Threads_lock);
2973     }
2974   }
2975 #endif // ASSERT
2976   return get_thread_name_string();
2977 }
2978 
2979 // Returns a non-NULL representation of this thread's name, or a suitable
2980 // descriptive string if there is no set name
2981 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2982   const char* name_str;
2983   oop thread_obj = threadObj();
2984   if (thread_obj != NULL) {
2985     oop name = java_lang_Thread::name(thread_obj);
2986     if (name != NULL) {
2987       if (buf == NULL) {
2988         name_str = java_lang_String::as_utf8_string(name);
2989       } else {
2990         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2991       }
2992     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2993       name_str = "<no-name - thread is attaching>";
2994     } else {
2995       name_str = Thread::name();
2996     }
2997   } else {
2998     name_str = Thread::name();
2999   }
3000   assert(name_str != NULL, "unexpected NULL thread name");
3001   return name_str;
3002 }
3003 
3004 
3005 const char* JavaThread::get_threadgroup_name() const {
3006   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3007   oop thread_obj = threadObj();
3008   if (thread_obj != NULL) {
3009     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3010     if (thread_group != NULL) {
3011       // ThreadGroup.name can be null
3012       return java_lang_ThreadGroup::name(thread_group);
3013     }
3014   }
3015   return NULL;
3016 }
3017 
3018 const char* JavaThread::get_parent_name() const {
3019   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3020   oop thread_obj = threadObj();
3021   if (thread_obj != NULL) {
3022     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3023     if (thread_group != NULL) {
3024       oop parent = java_lang_ThreadGroup::parent(thread_group);
3025       if (parent != NULL) {
3026         // ThreadGroup.name can be null
3027         return java_lang_ThreadGroup::name(parent);
3028       }
3029     }
3030   }
3031   return NULL;
3032 }
3033 
3034 ThreadPriority JavaThread::java_priority() const {
3035   oop thr_oop = threadObj();
3036   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3037   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3038   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3039   return priority;
3040 }
3041 
3042 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3043 
3044   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3045   // Link Java Thread object <-> C++ Thread
3046 
3047   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3048   // and put it into a new Handle.  The Handle "thread_oop" can then
3049   // be used to pass the C++ thread object to other methods.
3050 
3051   // Set the Java level thread object (jthread) field of the
3052   // new thread (a JavaThread *) to C++ thread object using the
3053   // "thread_oop" handle.
3054 
3055   // Set the thread field (a JavaThread *) of the
3056   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3057 
3058   Handle thread_oop(Thread::current(),
3059                     JNIHandles::resolve_non_null(jni_thread));
3060   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3061          "must be initialized");
3062   set_threadObj(thread_oop());
3063   java_lang_Thread::set_thread(thread_oop(), this);
3064 
3065   if (prio == NoPriority) {
3066     prio = java_lang_Thread::priority(thread_oop());
3067     assert(prio != NoPriority, "A valid priority should be present");
3068   }
3069 
3070   // Push the Java priority down to the native thread; needs Threads_lock
3071   Thread::set_priority(this, prio);
3072 
3073   prepare_ext();
3074 
3075   // Add the new thread to the Threads list and set it in motion.
3076   // We must have threads lock in order to call Threads::add.
3077   // It is crucial that we do not block before the thread is
3078   // added to the Threads list for if a GC happens, then the java_thread oop
3079   // will not be visited by GC.
3080   Threads::add(this);
3081 }
3082 
3083 oop JavaThread::current_park_blocker() {
3084   // Support for JSR-166 locks
3085   oop thread_oop = threadObj();
3086   if (thread_oop != NULL &&
3087       JDK_Version::current().supports_thread_park_blocker()) {
3088     return java_lang_Thread::park_blocker(thread_oop);
3089   }
3090   return NULL;
3091 }
3092 
3093 
3094 void JavaThread::print_stack_on(outputStream* st) {
3095   if (!has_last_Java_frame()) return;
3096   ResourceMark rm;
3097   HandleMark   hm;
3098 
3099   RegisterMap reg_map(this);
3100   vframe* start_vf = last_java_vframe(&reg_map);
3101   int count = 0;
3102   for (vframe* f = start_vf; f; f = f->sender()) {
3103     if (f->is_java_frame()) {
3104       javaVFrame* jvf = javaVFrame::cast(f);
3105       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3106 
3107       // Print out lock information
3108       if (JavaMonitorsInStackTrace) {
3109         jvf->print_lock_info_on(st, count);
3110       }
3111     } else {
3112       // Ignore non-Java frames
3113     }
3114 
3115     // Bail-out case for too deep stacks
3116     count++;
3117     if (MaxJavaStackTraceDepth == count) return;
3118   }
3119 }
3120 
3121 
3122 // JVMTI PopFrame support
3123 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3124   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3125   if (in_bytes(size_in_bytes) != 0) {
3126     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3127     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3128     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3129   }
3130 }
3131 
3132 void* JavaThread::popframe_preserved_args() {
3133   return _popframe_preserved_args;
3134 }
3135 
3136 ByteSize JavaThread::popframe_preserved_args_size() {
3137   return in_ByteSize(_popframe_preserved_args_size);
3138 }
3139 
3140 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3141   int sz = in_bytes(popframe_preserved_args_size());
3142   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3143   return in_WordSize(sz / wordSize);
3144 }
3145 
3146 void JavaThread::popframe_free_preserved_args() {
3147   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3148   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3149   _popframe_preserved_args = NULL;
3150   _popframe_preserved_args_size = 0;
3151 }
3152 
3153 #ifndef PRODUCT
3154 
3155 void JavaThread::trace_frames() {
3156   tty->print_cr("[Describe stack]");
3157   int frame_no = 1;
3158   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3159     tty->print("  %d. ", frame_no++);
3160     fst.current()->print_value_on(tty, this);
3161     tty->cr();
3162   }
3163 }
3164 
3165 class PrintAndVerifyOopClosure: public OopClosure {
3166  protected:
3167   template <class T> inline void do_oop_work(T* p) {
3168     oop obj = oopDesc::load_decode_heap_oop(p);
3169     if (obj == NULL) return;
3170     tty->print(INTPTR_FORMAT ": ", p2i(p));
3171     if (obj->is_oop_or_null()) {
3172       if (obj->is_objArray()) {
3173         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3174       } else {
3175         obj->print();
3176       }
3177     } else {
3178       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3179     }
3180     tty->cr();
3181   }
3182  public:
3183   virtual void do_oop(oop* p) { do_oop_work(p); }
3184   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3185 };
3186 
3187 
3188 static void oops_print(frame* f, const RegisterMap *map) {
3189   PrintAndVerifyOopClosure print;
3190   f->print_value();
3191   f->oops_do(&print, NULL, (RegisterMap*)map);
3192 }
3193 
3194 // Print our all the locations that contain oops and whether they are
3195 // valid or not.  This useful when trying to find the oldest frame
3196 // where an oop has gone bad since the frame walk is from youngest to
3197 // oldest.
3198 void JavaThread::trace_oops() {
3199   tty->print_cr("[Trace oops]");
3200   frames_do(oops_print);
3201 }
3202 
3203 
3204 #ifdef ASSERT
3205 // Print or validate the layout of stack frames
3206 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3207   ResourceMark rm;
3208   PRESERVE_EXCEPTION_MARK;
3209   FrameValues values;
3210   int frame_no = 0;
3211   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3212     fst.current()->describe(values, ++frame_no);
3213     if (depth == frame_no) break;
3214   }
3215   if (validate_only) {
3216     values.validate();
3217   } else {
3218     tty->print_cr("[Describe stack layout]");
3219     values.print(this);
3220   }
3221 }
3222 #endif
3223 
3224 void JavaThread::trace_stack_from(vframe* start_vf) {
3225   ResourceMark rm;
3226   int vframe_no = 1;
3227   for (vframe* f = start_vf; f; f = f->sender()) {
3228     if (f->is_java_frame()) {
3229       javaVFrame::cast(f)->print_activation(vframe_no++);
3230     } else {
3231       f->print();
3232     }
3233     if (vframe_no > StackPrintLimit) {
3234       tty->print_cr("...<more frames>...");
3235       return;
3236     }
3237   }
3238 }
3239 
3240 
3241 void JavaThread::trace_stack() {
3242   if (!has_last_Java_frame()) return;
3243   ResourceMark rm;
3244   HandleMark   hm;
3245   RegisterMap reg_map(this);
3246   trace_stack_from(last_java_vframe(&reg_map));
3247 }
3248 
3249 
3250 #endif // PRODUCT
3251 
3252 
3253 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3254   assert(reg_map != NULL, "a map must be given");
3255   frame f = last_frame();
3256   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3257     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3258   }
3259   return NULL;
3260 }
3261 
3262 
3263 Klass* JavaThread::security_get_caller_class(int depth) {
3264   vframeStream vfst(this);
3265   vfst.security_get_caller_frame(depth);
3266   if (!vfst.at_end()) {
3267     return vfst.method()->method_holder();
3268   }
3269   return NULL;
3270 }
3271 
3272 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3273   assert(thread->is_Compiler_thread(), "must be compiler thread");
3274   CompileBroker::compiler_thread_loop();
3275 }
3276 
3277 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3278   NMethodSweeper::sweeper_loop();
3279 }
3280 
3281 // Create a CompilerThread
3282 CompilerThread::CompilerThread(CompileQueue* queue,
3283                                CompilerCounters* counters)
3284                                : JavaThread(&compiler_thread_entry) {
3285   _env   = NULL;
3286   _log   = NULL;
3287   _task  = NULL;
3288   _queue = queue;
3289   _counters = counters;
3290   _buffer_blob = NULL;
3291   _compiler = NULL;
3292 
3293 #ifndef PRODUCT
3294   _ideal_graph_printer = NULL;
3295 #endif
3296 }
3297 
3298 bool CompilerThread::can_call_java() const {
3299   return _compiler != NULL && _compiler->is_jvmci();
3300 }
3301 
3302 // Create sweeper thread
3303 CodeCacheSweeperThread::CodeCacheSweeperThread()
3304 : JavaThread(&sweeper_thread_entry) {
3305   _scanned_compiled_method = NULL;
3306 }
3307 
3308 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3309   JavaThread::oops_do(f, cf);
3310   if (_scanned_compiled_method != NULL && cf != NULL) {
3311     // Safepoints can occur when the sweeper is scanning an nmethod so
3312     // process it here to make sure it isn't unloaded in the middle of
3313     // a scan.
3314     cf->do_code_blob(_scanned_compiled_method);
3315   }
3316 }
3317 
3318 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3319   JavaThread::nmethods_do(cf);
3320   if (_scanned_compiled_method != NULL && cf != NULL) {
3321     // Safepoints can occur when the sweeper is scanning an nmethod so
3322     // process it here to make sure it isn't unloaded in the middle of
3323     // a scan.
3324     cf->do_code_blob(_scanned_compiled_method);
3325   }
3326 }
3327 
3328 
3329 // ======= Threads ========
3330 
3331 // The Threads class links together all active threads, and provides
3332 // operations over all threads.  It is protected by its own Mutex
3333 // lock, which is also used in other contexts to protect thread
3334 // operations from having the thread being operated on from exiting
3335 // and going away unexpectedly (e.g., safepoint synchronization)
3336 
3337 JavaThread* Threads::_thread_list = NULL;
3338 int         Threads::_number_of_threads = 0;
3339 int         Threads::_number_of_non_daemon_threads = 0;
3340 int         Threads::_return_code = 0;
3341 int         Threads::_thread_claim_parity = 0;
3342 size_t      JavaThread::_stack_size_at_create = 0;
3343 #ifdef ASSERT
3344 bool        Threads::_vm_complete = false;
3345 #endif
3346 
3347 // All JavaThreads
3348 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3349 
3350 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3351 void Threads::threads_do(ThreadClosure* tc) {
3352   assert_locked_or_safepoint(Threads_lock);
3353   // ALL_JAVA_THREADS iterates through all JavaThreads
3354   ALL_JAVA_THREADS(p) {
3355     tc->do_thread(p);
3356   }
3357   // Someday we could have a table or list of all non-JavaThreads.
3358   // For now, just manually iterate through them.
3359   tc->do_thread(VMThread::vm_thread());
3360   Universe::heap()->gc_threads_do(tc);
3361   WatcherThread *wt = WatcherThread::watcher_thread();
3362   // Strictly speaking, the following NULL check isn't sufficient to make sure
3363   // the data for WatcherThread is still valid upon being examined. However,
3364   // considering that WatchThread terminates when the VM is on the way to
3365   // exit at safepoint, the chance of the above is extremely small. The right
3366   // way to prevent termination of WatcherThread would be to acquire
3367   // Terminator_lock, but we can't do that without violating the lock rank
3368   // checking in some cases.
3369   if (wt != NULL) {
3370     tc->do_thread(wt);
3371   }
3372 
3373   // If CompilerThreads ever become non-JavaThreads, add them here
3374 }
3375 
3376 // The system initialization in the library has three phases.
3377 //
3378 // Phase 1: java.lang.System class initialization
3379 //     java.lang.System is a primordial class loaded and initialized
3380 //     by the VM early during startup.  java.lang.System.<clinit>
3381 //     only does registerNatives and keeps the rest of the class
3382 //     initialization work later until thread initialization completes.
3383 //
3384 //     System.initPhase1 initializes the system properties, the static
3385 //     fields in, out, and err. Set up java signal handlers, OS-specific
3386 //     system settings, and thread group of the main thread.
3387 static void call_initPhase1(TRAPS) {
3388   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3389   instanceKlassHandle klass (THREAD, k);
3390 
3391   JavaValue result(T_VOID);
3392   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3393                                          vmSymbols::void_method_signature(), CHECK);
3394 }
3395 
3396 // Phase 2. Module system initialization
3397 //     This will initialize the module system.  Only java.base classes
3398 //     can be loaded until phase 2 completes.
3399 //
3400 //     Call System.initPhase2 after the compiler initialization and jsr292
3401 //     classes get initialized because module initialization runs a lot of java
3402 //     code, that for performance reasons, should be compiled.  Also, this will
3403 //     enable the startup code to use lambda and other language features in this
3404 //     phase and onward.
3405 //
3406 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3407 static void call_initPhase2(TRAPS) {
3408   TraceTime timer("Phase2 initialization", TRACETIME_LOG(Info, modules, startuptime));
3409 
3410   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3411   instanceKlassHandle klass (THREAD, k);
3412 
3413   JavaValue result(T_VOID);
3414   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3415                                          vmSymbols::void_method_signature(), CHECK);
3416   universe_post_module_init();
3417 }
3418 
3419 // Phase 3. final setup - set security manager, system class loader and TCCL
3420 //
3421 //     This will instantiate and set the security manager, set the system class
3422 //     loader as well as the thread context class loader.  The security manager
3423 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3424 //     other modules or the application's classpath.
3425 static void call_initPhase3(TRAPS) {
3426   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3427   instanceKlassHandle klass (THREAD, k);
3428 
3429   JavaValue result(T_VOID);
3430   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3431                                          vmSymbols::void_method_signature(), CHECK);
3432 }
3433 
3434 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3435   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3436 
3437   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3438     create_vm_init_libraries();
3439   }
3440 
3441   initialize_class(vmSymbols::java_lang_String(), CHECK);
3442 
3443   // Inject CompactStrings value after the static initializers for String ran.
3444   java_lang_String::set_compact_strings(CompactStrings);
3445 
3446   // Initialize java_lang.System (needed before creating the thread)
3447   initialize_class(vmSymbols::java_lang_System(), CHECK);
3448   // The VM creates & returns objects of this class. Make sure it's initialized.
3449   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3450   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3451   Handle thread_group = create_initial_thread_group(CHECK);
3452   Universe::set_main_thread_group(thread_group());
3453   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3454   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3455   main_thread->set_threadObj(thread_object);
3456   // Set thread status to running since main thread has
3457   // been started and running.
3458   java_lang_Thread::set_thread_status(thread_object,
3459                                       java_lang_Thread::RUNNABLE);
3460 
3461   // The VM creates objects of this class.
3462   initialize_class(vmSymbols::java_lang_reflect_Module(), CHECK);
3463 
3464   // The VM preresolves methods to these classes. Make sure that they get initialized
3465   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3466   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3467 
3468   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3469   call_initPhase1(CHECK);
3470 
3471   // get the Java runtime name after java.lang.System is initialized
3472   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3473   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3474 
3475   // an instance of OutOfMemory exception has been allocated earlier
3476   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3477   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3478   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3479   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3480   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3481   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3482   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3483   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3484 }
3485 
3486 void Threads::initialize_jsr292_core_classes(TRAPS) {
3487   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3488 
3489   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3490   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3491   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3492 }
3493 
3494 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3495   extern void JDK_Version_init();
3496 
3497   // Preinitialize version info.
3498   VM_Version::early_initialize();
3499 
3500   // Check version
3501   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3502 
3503   // Initialize library-based TLS
3504   ThreadLocalStorage::init();
3505 
3506   // Initialize the output stream module
3507   ostream_init();
3508 
3509   // Process java launcher properties.
3510   Arguments::process_sun_java_launcher_properties(args);
3511 
3512   // Initialize the os module
3513   os::init();
3514 
3515   // Record VM creation timing statistics
3516   TraceVmCreationTime create_vm_timer;
3517   create_vm_timer.start();
3518 
3519   // Initialize system properties.
3520   Arguments::init_system_properties();
3521 
3522   // So that JDK version can be used as a discriminator when parsing arguments
3523   JDK_Version_init();
3524 
3525   // Update/Initialize System properties after JDK version number is known
3526   Arguments::init_version_specific_system_properties();
3527 
3528   // Make sure to initialize log configuration *before* parsing arguments
3529   LogConfiguration::initialize(create_vm_timer.begin_time());
3530 
3531   // Parse arguments
3532   jint parse_result = Arguments::parse(args);
3533   if (parse_result != JNI_OK) return parse_result;
3534 
3535   os::init_before_ergo();
3536 
3537   jint ergo_result = Arguments::apply_ergo();
3538   if (ergo_result != JNI_OK) return ergo_result;
3539 
3540   // Final check of all ranges after ergonomics which may change values.
3541   if (!CommandLineFlagRangeList::check_ranges()) {
3542     return JNI_EINVAL;
3543   }
3544 
3545   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3546   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3547   if (!constraint_result) {
3548     return JNI_EINVAL;
3549   }
3550 
3551   CommandLineFlagWriteableList::mark_startup();
3552 
3553   if (PauseAtStartup) {
3554     os::pause();
3555   }
3556 
3557   HOTSPOT_VM_INIT_BEGIN();
3558 
3559   // Timing (must come after argument parsing)
3560   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3561 
3562   // Initialize the os module after parsing the args
3563   jint os_init_2_result = os::init_2();
3564   if (os_init_2_result != JNI_OK) return os_init_2_result;
3565 
3566   jint adjust_after_os_result = Arguments::adjust_after_os();
3567   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3568 
3569   // Initialize output stream logging
3570   ostream_init_log();
3571 
3572   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3573   // Must be before create_vm_init_agents()
3574   if (Arguments::init_libraries_at_startup()) {
3575     convert_vm_init_libraries_to_agents();
3576   }
3577 
3578   // Launch -agentlib/-agentpath and converted -Xrun agents
3579   if (Arguments::init_agents_at_startup()) {
3580     create_vm_init_agents();
3581   }
3582 
3583   // Initialize Threads state
3584   _thread_list = NULL;
3585   _number_of_threads = 0;
3586   _number_of_non_daemon_threads = 0;
3587 
3588   // Initialize global data structures and create system classes in heap
3589   vm_init_globals();
3590 
3591 #if INCLUDE_JVMCI
3592   if (JVMCICounterSize > 0) {
3593     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3594     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3595   } else {
3596     JavaThread::_jvmci_old_thread_counters = NULL;
3597   }
3598 #endif // INCLUDE_JVMCI
3599 
3600   // Attach the main thread to this os thread
3601   JavaThread* main_thread = new JavaThread();
3602   main_thread->set_thread_state(_thread_in_vm);
3603   main_thread->initialize_thread_current();
3604   // must do this before set_active_handles
3605   main_thread->record_stack_base_and_size();
3606   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3607 
3608   if (!main_thread->set_as_starting_thread()) {
3609     vm_shutdown_during_initialization(
3610                                       "Failed necessary internal allocation. Out of swap space");
3611     delete main_thread;
3612     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3613     return JNI_ENOMEM;
3614   }
3615 
3616   // Enable guard page *after* os::create_main_thread(), otherwise it would
3617   // crash Linux VM, see notes in os_linux.cpp.
3618   main_thread->create_stack_guard_pages();
3619 
3620   // Initialize Java-Level synchronization subsystem
3621   ObjectMonitor::Initialize();
3622 
3623   // Initialize global modules
3624   jint status = init_globals();
3625   if (status != JNI_OK) {
3626     delete main_thread;
3627     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3628     return status;
3629   }
3630 
3631   if (TRACE_INITIALIZE() != JNI_OK) {
3632     vm_exit_during_initialization("Failed to initialize tracing backend");
3633   }
3634 
3635   // Should be done after the heap is fully created
3636   main_thread->cache_global_variables();
3637 
3638   HandleMark hm;
3639 
3640   { MutexLocker mu(Threads_lock);
3641     Threads::add(main_thread);
3642   }
3643 
3644   // Any JVMTI raw monitors entered in onload will transition into
3645   // real raw monitor. VM is setup enough here for raw monitor enter.
3646   JvmtiExport::transition_pending_onload_raw_monitors();
3647 
3648   // Create the VMThread
3649   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3650 
3651   VMThread::create();
3652     Thread* vmthread = VMThread::vm_thread();
3653 
3654     if (!os::create_thread(vmthread, os::vm_thread)) {
3655       vm_exit_during_initialization("Cannot create VM thread. "
3656                                     "Out of system resources.");
3657     }
3658 
3659     // Wait for the VM thread to become ready, and VMThread::run to initialize
3660     // Monitors can have spurious returns, must always check another state flag
3661     {
3662       MutexLocker ml(Notify_lock);
3663       os::start_thread(vmthread);
3664       while (vmthread->active_handles() == NULL) {
3665         Notify_lock->wait();
3666       }
3667     }
3668   }
3669 
3670   assert(Universe::is_fully_initialized(), "not initialized");
3671   if (VerifyDuringStartup) {
3672     // Make sure we're starting with a clean slate.
3673     VM_Verify verify_op;
3674     VMThread::execute(&verify_op);
3675   }
3676 
3677   Thread* THREAD = Thread::current();
3678 
3679   // At this point, the Universe is initialized, but we have not executed
3680   // any byte code.  Now is a good time (the only time) to dump out the
3681   // internal state of the JVM for sharing.
3682   if (DumpSharedSpaces) {
3683     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3684     ShouldNotReachHere();
3685   }
3686 
3687   // Always call even when there are not JVMTI environments yet, since environments
3688   // may be attached late and JVMTI must track phases of VM execution
3689   JvmtiExport::enter_early_start_phase();
3690 
3691   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3692   JvmtiExport::post_early_vm_start();
3693 
3694   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3695 
3696   // We need this for ClassDataSharing - the initial vm.info property is set
3697   // with the default value of CDS "sharing" which may be reset through
3698   // command line options.
3699   reset_vm_info_property(CHECK_JNI_ERR);
3700 
3701   quicken_jni_functions();
3702 
3703   // No more stub generation allowed after that point.
3704   StubCodeDesc::freeze();
3705 
3706   // Set flag that basic initialization has completed. Used by exceptions and various
3707   // debug stuff, that does not work until all basic classes have been initialized.
3708   set_init_completed();
3709 
3710   LogConfiguration::post_initialize();
3711   Metaspace::post_initialize();
3712 
3713   HOTSPOT_VM_INIT_END();
3714 
3715   // record VM initialization completion time
3716 #if INCLUDE_MANAGEMENT
3717   Management::record_vm_init_completed();
3718 #endif // INCLUDE_MANAGEMENT
3719 
3720   // Signal Dispatcher needs to be started before VMInit event is posted
3721   os::signal_init();
3722 
3723   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3724   if (!DisableAttachMechanism) {
3725     AttachListener::vm_start();
3726     if (StartAttachListener || AttachListener::init_at_startup()) {
3727       AttachListener::init();
3728     }
3729   }
3730 
3731   // Launch -Xrun agents
3732   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3733   // back-end can launch with -Xdebug -Xrunjdwp.
3734   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3735     create_vm_init_libraries();
3736   }
3737 
3738   if (CleanChunkPoolAsync) {
3739     Chunk::start_chunk_pool_cleaner_task();
3740   }
3741 
3742   // initialize compiler(s)
3743 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3744   CompileBroker::compilation_init(CHECK_JNI_ERR);
3745 #endif
3746 
3747   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3748   // It is done after compilers are initialized, because otherwise compilations of
3749   // signature polymorphic MH intrinsics can be missed
3750   // (see SystemDictionary::find_method_handle_intrinsic).
3751   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3752 
3753   // This will initialize the module system.  Only java.base classes can be
3754   // loaded until phase 2 completes
3755   call_initPhase2(CHECK_JNI_ERR);
3756 
3757   // Always call even when there are not JVMTI environments yet, since environments
3758   // may be attached late and JVMTI must track phases of VM execution
3759   JvmtiExport::enter_start_phase();
3760 
3761   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3762   JvmtiExport::post_vm_start();
3763 
3764   // Final system initialization including security manager and system class loader
3765   call_initPhase3(CHECK_JNI_ERR);
3766 
3767   // cache the system class loader
3768   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3769 
3770 #if INCLUDE_JVMCI
3771   if (EnableJVMCI) {
3772     // Initialize JVMCI eagerly if JVMCIPrintProperties is enabled.
3773     // The JVMCI Java initialization code will read this flag and
3774     // do the printing if it's set.
3775     bool init = JVMCIPrintProperties;
3776 
3777     if (!init) {
3778       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3779       // compilations via JVMCI will not actually block until JVMCI is initialized.
3780       init = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3781     }
3782 
3783     if (init) {
3784       JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3785     }
3786   }
3787 #endif
3788 
3789   // Always call even when there are not JVMTI environments yet, since environments
3790   // may be attached late and JVMTI must track phases of VM execution
3791   JvmtiExport::enter_live_phase();
3792 
3793   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3794   JvmtiExport::post_vm_initialized();
3795 
3796   if (TRACE_START() != JNI_OK) {
3797     vm_exit_during_initialization("Failed to start tracing backend.");
3798   }
3799 
3800 #if INCLUDE_MANAGEMENT
3801   Management::initialize(THREAD);
3802 
3803   if (HAS_PENDING_EXCEPTION) {
3804     // management agent fails to start possibly due to
3805     // configuration problem and is responsible for printing
3806     // stack trace if appropriate. Simply exit VM.
3807     vm_exit(1);
3808   }
3809 #endif // INCLUDE_MANAGEMENT
3810 
3811   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3812   if (MemProfiling)                   MemProfiler::engage();
3813   StatSampler::engage();
3814   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3815 
3816   BiasedLocking::init();
3817 
3818 #if INCLUDE_RTM_OPT
3819   RTMLockingCounters::init();
3820 #endif
3821 
3822   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3823     call_postVMInitHook(THREAD);
3824     // The Java side of PostVMInitHook.run must deal with all
3825     // exceptions and provide means of diagnosis.
3826     if (HAS_PENDING_EXCEPTION) {
3827       CLEAR_PENDING_EXCEPTION;
3828     }
3829   }
3830 
3831   {
3832     MutexLocker ml(PeriodicTask_lock);
3833     // Make sure the WatcherThread can be started by WatcherThread::start()
3834     // or by dynamic enrollment.
3835     WatcherThread::make_startable();
3836     // Start up the WatcherThread if there are any periodic tasks
3837     // NOTE:  All PeriodicTasks should be registered by now. If they
3838     //   aren't, late joiners might appear to start slowly (we might
3839     //   take a while to process their first tick).
3840     if (PeriodicTask::num_tasks() > 0) {
3841       WatcherThread::start();
3842     }
3843   }
3844 
3845   CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM);
3846 
3847   create_vm_timer.end();
3848 #ifdef ASSERT
3849   _vm_complete = true;
3850 #endif
3851   return JNI_OK;
3852 }
3853 
3854 // type for the Agent_OnLoad and JVM_OnLoad entry points
3855 extern "C" {
3856   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3857 }
3858 // Find a command line agent library and return its entry point for
3859 //         -agentlib:  -agentpath:   -Xrun
3860 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3861 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3862                                     const char *on_load_symbols[],
3863                                     size_t num_symbol_entries) {
3864   OnLoadEntry_t on_load_entry = NULL;
3865   void *library = NULL;
3866 
3867   if (!agent->valid()) {
3868     char buffer[JVM_MAXPATHLEN];
3869     char ebuf[1024] = "";
3870     const char *name = agent->name();
3871     const char *msg = "Could not find agent library ";
3872 
3873     // First check to see if agent is statically linked into executable
3874     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3875       library = agent->os_lib();
3876     } else if (agent->is_absolute_path()) {
3877       library = os::dll_load(name, ebuf, sizeof ebuf);
3878       if (library == NULL) {
3879         const char *sub_msg = " in absolute path, with error: ";
3880         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3881         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3882         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3883         // If we can't find the agent, exit.
3884         vm_exit_during_initialization(buf, NULL);
3885         FREE_C_HEAP_ARRAY(char, buf);
3886       }
3887     } else {
3888       // Try to load the agent from the standard dll directory
3889       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3890                              name)) {
3891         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3892       }
3893       if (library == NULL) { // Try the local directory
3894         char ns[1] = {0};
3895         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3896           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3897         }
3898         if (library == NULL) {
3899           const char *sub_msg = " on the library path, with error: ";
3900           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3901           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3902           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3903           // If we can't find the agent, exit.
3904           vm_exit_during_initialization(buf, NULL);
3905           FREE_C_HEAP_ARRAY(char, buf);
3906         }
3907       }
3908     }
3909     agent->set_os_lib(library);
3910     agent->set_valid();
3911   }
3912 
3913   // Find the OnLoad function.
3914   on_load_entry =
3915     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3916                                                           false,
3917                                                           on_load_symbols,
3918                                                           num_symbol_entries));
3919   return on_load_entry;
3920 }
3921 
3922 // Find the JVM_OnLoad entry point
3923 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3924   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3925   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3926 }
3927 
3928 // Find the Agent_OnLoad entry point
3929 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3930   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3931   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3932 }
3933 
3934 // For backwards compatibility with -Xrun
3935 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3936 // treated like -agentpath:
3937 // Must be called before agent libraries are created
3938 void Threads::convert_vm_init_libraries_to_agents() {
3939   AgentLibrary* agent;
3940   AgentLibrary* next;
3941 
3942   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3943     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3944     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3945 
3946     // If there is an JVM_OnLoad function it will get called later,
3947     // otherwise see if there is an Agent_OnLoad
3948     if (on_load_entry == NULL) {
3949       on_load_entry = lookup_agent_on_load(agent);
3950       if (on_load_entry != NULL) {
3951         // switch it to the agent list -- so that Agent_OnLoad will be called,
3952         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3953         Arguments::convert_library_to_agent(agent);
3954       } else {
3955         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3956       }
3957     }
3958   }
3959 }
3960 
3961 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3962 // Invokes Agent_OnLoad
3963 // Called very early -- before JavaThreads exist
3964 void Threads::create_vm_init_agents() {
3965   extern struct JavaVM_ main_vm;
3966   AgentLibrary* agent;
3967 
3968   JvmtiExport::enter_onload_phase();
3969 
3970   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3971     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3972 
3973     if (on_load_entry != NULL) {
3974       // Invoke the Agent_OnLoad function
3975       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3976       if (err != JNI_OK) {
3977         vm_exit_during_initialization("agent library failed to init", agent->name());
3978       }
3979     } else {
3980       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3981     }
3982   }
3983   JvmtiExport::enter_primordial_phase();
3984 }
3985 
3986 extern "C" {
3987   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3988 }
3989 
3990 void Threads::shutdown_vm_agents() {
3991   // Send any Agent_OnUnload notifications
3992   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3993   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3994   extern struct JavaVM_ main_vm;
3995   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3996 
3997     // Find the Agent_OnUnload function.
3998     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3999                                                    os::find_agent_function(agent,
4000                                                    false,
4001                                                    on_unload_symbols,
4002                                                    num_symbol_entries));
4003 
4004     // Invoke the Agent_OnUnload function
4005     if (unload_entry != NULL) {
4006       JavaThread* thread = JavaThread::current();
4007       ThreadToNativeFromVM ttn(thread);
4008       HandleMark hm(thread);
4009       (*unload_entry)(&main_vm);
4010     }
4011   }
4012 }
4013 
4014 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4015 // Invokes JVM_OnLoad
4016 void Threads::create_vm_init_libraries() {
4017   extern struct JavaVM_ main_vm;
4018   AgentLibrary* agent;
4019 
4020   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4021     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4022 
4023     if (on_load_entry != NULL) {
4024       // Invoke the JVM_OnLoad function
4025       JavaThread* thread = JavaThread::current();
4026       ThreadToNativeFromVM ttn(thread);
4027       HandleMark hm(thread);
4028       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4029       if (err != JNI_OK) {
4030         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4031       }
4032     } else {
4033       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4034     }
4035   }
4036 }
4037 
4038 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4039   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4040 
4041   JavaThread* java_thread = NULL;
4042   // Sequential search for now.  Need to do better optimization later.
4043   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4044     oop tobj = thread->threadObj();
4045     if (!thread->is_exiting() &&
4046         tobj != NULL &&
4047         java_tid == java_lang_Thread::thread_id(tobj)) {
4048       java_thread = thread;
4049       break;
4050     }
4051   }
4052   return java_thread;
4053 }
4054 
4055 
4056 // Last thread running calls java.lang.Shutdown.shutdown()
4057 void JavaThread::invoke_shutdown_hooks() {
4058   HandleMark hm(this);
4059 
4060   // We could get here with a pending exception, if so clear it now.
4061   if (this->has_pending_exception()) {
4062     this->clear_pending_exception();
4063   }
4064 
4065   EXCEPTION_MARK;
4066   Klass* k =
4067     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4068                                       THREAD);
4069   if (k != NULL) {
4070     // SystemDictionary::resolve_or_null will return null if there was
4071     // an exception.  If we cannot load the Shutdown class, just don't
4072     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4073     // and finalizers (if runFinalizersOnExit is set) won't be run.
4074     // Note that if a shutdown hook was registered or runFinalizersOnExit
4075     // was called, the Shutdown class would have already been loaded
4076     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4077     instanceKlassHandle shutdown_klass (THREAD, k);
4078     JavaValue result(T_VOID);
4079     JavaCalls::call_static(&result,
4080                            shutdown_klass,
4081                            vmSymbols::shutdown_method_name(),
4082                            vmSymbols::void_method_signature(),
4083                            THREAD);
4084   }
4085   CLEAR_PENDING_EXCEPTION;
4086 }
4087 
4088 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4089 // the program falls off the end of main(). Another VM exit path is through
4090 // vm_exit() when the program calls System.exit() to return a value or when
4091 // there is a serious error in VM. The two shutdown paths are not exactly
4092 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4093 // and VM_Exit op at VM level.
4094 //
4095 // Shutdown sequence:
4096 //   + Shutdown native memory tracking if it is on
4097 //   + Wait until we are the last non-daemon thread to execute
4098 //     <-- every thing is still working at this moment -->
4099 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4100 //        shutdown hooks, run finalizers if finalization-on-exit
4101 //   + Call before_exit(), prepare for VM exit
4102 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4103 //        currently the only user of this mechanism is File.deleteOnExit())
4104 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4105 //        post thread end and vm death events to JVMTI,
4106 //        stop signal thread
4107 //   + Call JavaThread::exit(), it will:
4108 //      > release JNI handle blocks, remove stack guard pages
4109 //      > remove this thread from Threads list
4110 //     <-- no more Java code from this thread after this point -->
4111 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4112 //     the compiler threads at safepoint
4113 //     <-- do not use anything that could get blocked by Safepoint -->
4114 //   + Disable tracing at JNI/JVM barriers
4115 //   + Set _vm_exited flag for threads that are still running native code
4116 //   + Delete this thread
4117 //   + Call exit_globals()
4118 //      > deletes tty
4119 //      > deletes PerfMemory resources
4120 //   + Return to caller
4121 
4122 bool Threads::destroy_vm() {
4123   JavaThread* thread = JavaThread::current();
4124 
4125 #ifdef ASSERT
4126   _vm_complete = false;
4127 #endif
4128   // Wait until we are the last non-daemon thread to execute
4129   { MutexLocker nu(Threads_lock);
4130     while (Threads::number_of_non_daemon_threads() > 1)
4131       // This wait should make safepoint checks, wait without a timeout,
4132       // and wait as a suspend-equivalent condition.
4133       //
4134       // Note: If the FlatProfiler is running and this thread is waiting
4135       // for another non-daemon thread to finish, then the FlatProfiler
4136       // is waiting for the external suspend request on this thread to
4137       // complete. wait_for_ext_suspend_completion() will eventually
4138       // timeout, but that takes time. Making this wait a suspend-
4139       // equivalent condition solves that timeout problem.
4140       //
4141       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4142                          Mutex::_as_suspend_equivalent_flag);
4143   }
4144 
4145   // Hang forever on exit if we are reporting an error.
4146   if (ShowMessageBoxOnError && is_error_reported()) {
4147     os::infinite_sleep();
4148   }
4149   os::wait_for_keypress_at_exit();
4150 
4151   // run Java level shutdown hooks
4152   thread->invoke_shutdown_hooks();
4153 
4154   before_exit(thread);
4155 
4156   thread->exit(true);
4157 
4158   // Stop VM thread.
4159   {
4160     // 4945125 The vm thread comes to a safepoint during exit.
4161     // GC vm_operations can get caught at the safepoint, and the
4162     // heap is unparseable if they are caught. Grab the Heap_lock
4163     // to prevent this. The GC vm_operations will not be able to
4164     // queue until after the vm thread is dead. After this point,
4165     // we'll never emerge out of the safepoint before the VM exits.
4166 
4167     MutexLocker ml(Heap_lock);
4168 
4169     VMThread::wait_for_vm_thread_exit();
4170     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4171     VMThread::destroy();
4172   }
4173 
4174   // clean up ideal graph printers
4175 #if defined(COMPILER2) && !defined(PRODUCT)
4176   IdealGraphPrinter::clean_up();
4177 #endif
4178 
4179   // Now, all Java threads are gone except daemon threads. Daemon threads
4180   // running Java code or in VM are stopped by the Safepoint. However,
4181   // daemon threads executing native code are still running.  But they
4182   // will be stopped at native=>Java/VM barriers. Note that we can't
4183   // simply kill or suspend them, as it is inherently deadlock-prone.
4184 
4185   VM_Exit::set_vm_exited();
4186 
4187   notify_vm_shutdown();
4188 
4189   delete thread;
4190 
4191 #if INCLUDE_JVMCI
4192   if (JVMCICounterSize > 0) {
4193     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4194   }
4195 #endif
4196 
4197   // exit_globals() will delete tty
4198   exit_globals();
4199 
4200   LogConfiguration::finalize();
4201 
4202   return true;
4203 }
4204 
4205 
4206 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4207   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4208   return is_supported_jni_version(version);
4209 }
4210 
4211 
4212 jboolean Threads::is_supported_jni_version(jint version) {
4213   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4214   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4215   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4216   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4217   if (version == JNI_VERSION_9) return JNI_TRUE;
4218   return JNI_FALSE;
4219 }
4220 
4221 
4222 void Threads::add(JavaThread* p, bool force_daemon) {
4223   // The threads lock must be owned at this point
4224   assert_locked_or_safepoint(Threads_lock);
4225 
4226   // See the comment for this method in thread.hpp for its purpose and
4227   // why it is called here.
4228   p->initialize_queues();
4229   p->set_next(_thread_list);
4230   _thread_list = p;
4231   _number_of_threads++;
4232   oop threadObj = p->threadObj();
4233   bool daemon = true;
4234   // Bootstrapping problem: threadObj can be null for initial
4235   // JavaThread (or for threads attached via JNI)
4236   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4237     _number_of_non_daemon_threads++;
4238     daemon = false;
4239   }
4240 
4241   ThreadService::add_thread(p, daemon);
4242 
4243   // Possible GC point.
4244   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4245 }
4246 
4247 void Threads::remove(JavaThread* p) {
4248   // Extra scope needed for Thread_lock, so we can check
4249   // that we do not remove thread without safepoint code notice
4250   { MutexLocker ml(Threads_lock);
4251 
4252     assert(includes(p), "p must be present");
4253 
4254     JavaThread* current = _thread_list;
4255     JavaThread* prev    = NULL;
4256 
4257     while (current != p) {
4258       prev    = current;
4259       current = current->next();
4260     }
4261 
4262     if (prev) {
4263       prev->set_next(current->next());
4264     } else {
4265       _thread_list = p->next();
4266     }
4267     _number_of_threads--;
4268     oop threadObj = p->threadObj();
4269     bool daemon = true;
4270     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4271       _number_of_non_daemon_threads--;
4272       daemon = false;
4273 
4274       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4275       // on destroy_vm will wake up.
4276       if (number_of_non_daemon_threads() == 1) {
4277         Threads_lock->notify_all();
4278       }
4279     }
4280     ThreadService::remove_thread(p, daemon);
4281 
4282     // Make sure that safepoint code disregard this thread. This is needed since
4283     // the thread might mess around with locks after this point. This can cause it
4284     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4285     // of this thread since it is removed from the queue.
4286     p->set_terminated_value();
4287   } // unlock Threads_lock
4288 
4289   // Since Events::log uses a lock, we grab it outside the Threads_lock
4290   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4291 }
4292 
4293 // Threads_lock must be held when this is called (or must be called during a safepoint)
4294 bool Threads::includes(JavaThread* p) {
4295   assert(Threads_lock->is_locked(), "sanity check");
4296   ALL_JAVA_THREADS(q) {
4297     if (q == p) {
4298       return true;
4299     }
4300   }
4301   return false;
4302 }
4303 
4304 // Operations on the Threads list for GC.  These are not explicitly locked,
4305 // but the garbage collector must provide a safe context for them to run.
4306 // In particular, these things should never be called when the Threads_lock
4307 // is held by some other thread. (Note: the Safepoint abstraction also
4308 // uses the Threads_lock to guarantee this property. It also makes sure that
4309 // all threads gets blocked when exiting or starting).
4310 
4311 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4312   ALL_JAVA_THREADS(p) {
4313     p->oops_do(f, cf);
4314   }
4315   VMThread::vm_thread()->oops_do(f, cf);
4316 }
4317 
4318 void Threads::change_thread_claim_parity() {
4319   // Set the new claim parity.
4320   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4321          "Not in range.");
4322   _thread_claim_parity++;
4323   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4324   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4325          "Not in range.");
4326 }
4327 
4328 #ifdef ASSERT
4329 void Threads::assert_all_threads_claimed() {
4330   ALL_JAVA_THREADS(p) {
4331     const int thread_parity = p->oops_do_parity();
4332     assert((thread_parity == _thread_claim_parity),
4333            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4334   }
4335 }
4336 #endif // ASSERT
4337 
4338 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4339   int cp = Threads::thread_claim_parity();
4340   ALL_JAVA_THREADS(p) {
4341     if (p->claim_oops_do(is_par, cp)) {
4342       p->oops_do(f, cf);
4343     }
4344   }
4345   VMThread* vmt = VMThread::vm_thread();
4346   if (vmt->claim_oops_do(is_par, cp)) {
4347     vmt->oops_do(f, cf);
4348   }
4349 }
4350 
4351 #if INCLUDE_ALL_GCS
4352 // Used by ParallelScavenge
4353 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4354   ALL_JAVA_THREADS(p) {
4355     q->enqueue(new ThreadRootsTask(p));
4356   }
4357   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4358 }
4359 
4360 // Used by Parallel Old
4361 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4362   ALL_JAVA_THREADS(p) {
4363     q->enqueue(new ThreadRootsMarkingTask(p));
4364   }
4365   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4366 }
4367 #endif // INCLUDE_ALL_GCS
4368 
4369 void Threads::nmethods_do(CodeBlobClosure* cf) {
4370   ALL_JAVA_THREADS(p) {
4371     // This is used by the code cache sweeper to mark nmethods that are active
4372     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4373     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4374     if(!p->is_Code_cache_sweeper_thread()) {
4375       p->nmethods_do(cf);
4376     }
4377   }
4378 }
4379 
4380 void Threads::metadata_do(void f(Metadata*)) {
4381   ALL_JAVA_THREADS(p) {
4382     p->metadata_do(f);
4383   }
4384 }
4385 
4386 class ThreadHandlesClosure : public ThreadClosure {
4387   void (*_f)(Metadata*);
4388  public:
4389   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4390   virtual void do_thread(Thread* thread) {
4391     thread->metadata_handles_do(_f);
4392   }
4393 };
4394 
4395 void Threads::metadata_handles_do(void f(Metadata*)) {
4396   // Only walk the Handles in Thread.
4397   ThreadHandlesClosure handles_closure(f);
4398   threads_do(&handles_closure);
4399 }
4400 
4401 void Threads::deoptimized_wrt_marked_nmethods() {
4402   ALL_JAVA_THREADS(p) {
4403     p->deoptimized_wrt_marked_nmethods();
4404   }
4405 }
4406 
4407 
4408 // Get count Java threads that are waiting to enter the specified monitor.
4409 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4410                                                          address monitor,
4411                                                          bool doLock) {
4412   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4413          "must grab Threads_lock or be at safepoint");
4414   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4415 
4416   int i = 0;
4417   {
4418     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4419     ALL_JAVA_THREADS(p) {
4420       if (!p->can_call_java()) continue;
4421 
4422       address pending = (address)p->current_pending_monitor();
4423       if (pending == monitor) {             // found a match
4424         if (i < count) result->append(p);   // save the first count matches
4425         i++;
4426       }
4427     }
4428   }
4429   return result;
4430 }
4431 
4432 
4433 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4434                                                       bool doLock) {
4435   assert(doLock ||
4436          Threads_lock->owned_by_self() ||
4437          SafepointSynchronize::is_at_safepoint(),
4438          "must grab Threads_lock or be at safepoint");
4439 
4440   // NULL owner means not locked so we can skip the search
4441   if (owner == NULL) return NULL;
4442 
4443   {
4444     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4445     ALL_JAVA_THREADS(p) {
4446       // first, see if owner is the address of a Java thread
4447       if (owner == (address)p) return p;
4448     }
4449   }
4450   // Cannot assert on lack of success here since this function may be
4451   // used by code that is trying to report useful problem information
4452   // like deadlock detection.
4453   if (UseHeavyMonitors) return NULL;
4454 
4455   // If we didn't find a matching Java thread and we didn't force use of
4456   // heavyweight monitors, then the owner is the stack address of the
4457   // Lock Word in the owning Java thread's stack.
4458   //
4459   JavaThread* the_owner = NULL;
4460   {
4461     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4462     ALL_JAVA_THREADS(q) {
4463       if (q->is_lock_owned(owner)) {
4464         the_owner = q;
4465         break;
4466       }
4467     }
4468   }
4469   // cannot assert on lack of success here; see above comment
4470   return the_owner;
4471 }
4472 
4473 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4474 void Threads::print_on(outputStream* st, bool print_stacks,
4475                        bool internal_format, bool print_concurrent_locks) {
4476   char buf[32];
4477   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4478 
4479   st->print_cr("Full thread dump %s (%s %s):",
4480                Abstract_VM_Version::vm_name(),
4481                Abstract_VM_Version::vm_release(),
4482                Abstract_VM_Version::vm_info_string());
4483   st->cr();
4484 
4485 #if INCLUDE_SERVICES
4486   // Dump concurrent locks
4487   ConcurrentLocksDump concurrent_locks;
4488   if (print_concurrent_locks) {
4489     concurrent_locks.dump_at_safepoint();
4490   }
4491 #endif // INCLUDE_SERVICES
4492 
4493   ALL_JAVA_THREADS(p) {
4494     ResourceMark rm;
4495     p->print_on(st);
4496     if (print_stacks) {
4497       if (internal_format) {
4498         p->trace_stack();
4499       } else {
4500         p->print_stack_on(st);
4501       }
4502     }
4503     st->cr();
4504 #if INCLUDE_SERVICES
4505     if (print_concurrent_locks) {
4506       concurrent_locks.print_locks_on(p, st);
4507     }
4508 #endif // INCLUDE_SERVICES
4509   }
4510 
4511   VMThread::vm_thread()->print_on(st);
4512   st->cr();
4513   Universe::heap()->print_gc_threads_on(st);
4514   WatcherThread* wt = WatcherThread::watcher_thread();
4515   if (wt != NULL) {
4516     wt->print_on(st);
4517     st->cr();
4518   }
4519   st->flush();
4520 }
4521 
4522 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4523                              int buflen, bool* found_current) {
4524   if (this_thread != NULL) {
4525     bool is_current = (current == this_thread);
4526     *found_current = *found_current || is_current;
4527     st->print("%s", is_current ? "=>" : "  ");
4528 
4529     st->print(PTR_FORMAT, p2i(this_thread));
4530     st->print(" ");
4531     this_thread->print_on_error(st, buf, buflen);
4532     st->cr();
4533   }
4534 }
4535 
4536 class PrintOnErrorClosure : public ThreadClosure {
4537   outputStream* _st;
4538   Thread* _current;
4539   char* _buf;
4540   int _buflen;
4541   bool* _found_current;
4542  public:
4543   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4544                       int buflen, bool* found_current) :
4545    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4546 
4547   virtual void do_thread(Thread* thread) {
4548     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4549   }
4550 };
4551 
4552 // Threads::print_on_error() is called by fatal error handler. It's possible
4553 // that VM is not at safepoint and/or current thread is inside signal handler.
4554 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4555 // memory (even in resource area), it might deadlock the error handler.
4556 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4557                              int buflen) {
4558   bool found_current = false;
4559   st->print_cr("Java Threads: ( => current thread )");
4560   ALL_JAVA_THREADS(thread) {
4561     print_on_error(thread, st, current, buf, buflen, &found_current);
4562   }
4563   st->cr();
4564 
4565   st->print_cr("Other Threads:");
4566   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4567   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4568 
4569   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4570   Universe::heap()->gc_threads_do(&print_closure);
4571 
4572   if (!found_current) {
4573     st->cr();
4574     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4575     current->print_on_error(st, buf, buflen);
4576     st->cr();
4577   }
4578   st->cr();
4579   st->print_cr("Threads with active compile tasks:");
4580   print_threads_compiling(st, buf, buflen);
4581 }
4582 
4583 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4584   ALL_JAVA_THREADS(thread) {
4585     if (thread->is_Compiler_thread()) {
4586       CompilerThread* ct = (CompilerThread*) thread;
4587       if (ct->task() != NULL) {
4588         thread->print_name_on_error(st, buf, buflen);
4589         ct->task()->print(st, NULL, true, true);
4590       }
4591     }
4592   }
4593 }
4594 
4595 
4596 // Internal SpinLock and Mutex
4597 // Based on ParkEvent
4598 
4599 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4600 //
4601 // We employ SpinLocks _only for low-contention, fixed-length
4602 // short-duration critical sections where we're concerned
4603 // about native mutex_t or HotSpot Mutex:: latency.
4604 // The mux construct provides a spin-then-block mutual exclusion
4605 // mechanism.
4606 //
4607 // Testing has shown that contention on the ListLock guarding gFreeList
4608 // is common.  If we implement ListLock as a simple SpinLock it's common
4609 // for the JVM to devolve to yielding with little progress.  This is true
4610 // despite the fact that the critical sections protected by ListLock are
4611 // extremely short.
4612 //
4613 // TODO-FIXME: ListLock should be of type SpinLock.
4614 // We should make this a 1st-class type, integrated into the lock
4615 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4616 // should have sufficient padding to avoid false-sharing and excessive
4617 // cache-coherency traffic.
4618 
4619 
4620 typedef volatile int SpinLockT;
4621 
4622 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4623   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4624     return;   // normal fast-path return
4625   }
4626 
4627   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4628   TEVENT(SpinAcquire - ctx);
4629   int ctr = 0;
4630   int Yields = 0;
4631   for (;;) {
4632     while (*adr != 0) {
4633       ++ctr;
4634       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4635         if (Yields > 5) {
4636           os::naked_short_sleep(1);
4637         } else {
4638           os::naked_yield();
4639           ++Yields;
4640         }
4641       } else {
4642         SpinPause();
4643       }
4644     }
4645     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4646   }
4647 }
4648 
4649 void Thread::SpinRelease(volatile int * adr) {
4650   assert(*adr != 0, "invariant");
4651   OrderAccess::fence();      // guarantee at least release consistency.
4652   // Roach-motel semantics.
4653   // It's safe if subsequent LDs and STs float "up" into the critical section,
4654   // but prior LDs and STs within the critical section can't be allowed
4655   // to reorder or float past the ST that releases the lock.
4656   // Loads and stores in the critical section - which appear in program
4657   // order before the store that releases the lock - must also appear
4658   // before the store that releases the lock in memory visibility order.
4659   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4660   // the ST of 0 into the lock-word which releases the lock, so fence
4661   // more than covers this on all platforms.
4662   *adr = 0;
4663 }
4664 
4665 // muxAcquire and muxRelease:
4666 //
4667 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4668 //    The LSB of the word is set IFF the lock is held.
4669 //    The remainder of the word points to the head of a singly-linked list
4670 //    of threads blocked on the lock.
4671 //
4672 // *  The current implementation of muxAcquire-muxRelease uses its own
4673 //    dedicated Thread._MuxEvent instance.  If we're interested in
4674 //    minimizing the peak number of extant ParkEvent instances then
4675 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4676 //    as certain invariants were satisfied.  Specifically, care would need
4677 //    to be taken with regards to consuming unpark() "permits".
4678 //    A safe rule of thumb is that a thread would never call muxAcquire()
4679 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4680 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4681 //    consume an unpark() permit intended for monitorenter, for instance.
4682 //    One way around this would be to widen the restricted-range semaphore
4683 //    implemented in park().  Another alternative would be to provide
4684 //    multiple instances of the PlatformEvent() for each thread.  One
4685 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4686 //
4687 // *  Usage:
4688 //    -- Only as leaf locks
4689 //    -- for short-term locking only as muxAcquire does not perform
4690 //       thread state transitions.
4691 //
4692 // Alternatives:
4693 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4694 //    but with parking or spin-then-park instead of pure spinning.
4695 // *  Use Taura-Oyama-Yonenzawa locks.
4696 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4697 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4698 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4699 //    acquiring threads use timers (ParkTimed) to detect and recover from
4700 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4701 //    boundaries by using placement-new.
4702 // *  Augment MCS with advisory back-link fields maintained with CAS().
4703 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4704 //    The validity of the backlinks must be ratified before we trust the value.
4705 //    If the backlinks are invalid the exiting thread must back-track through the
4706 //    the forward links, which are always trustworthy.
4707 // *  Add a successor indication.  The LockWord is currently encoded as
4708 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4709 //    to provide the usual futile-wakeup optimization.
4710 //    See RTStt for details.
4711 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4712 //
4713 
4714 
4715 typedef volatile intptr_t MutexT;      // Mux Lock-word
4716 enum MuxBits { LOCKBIT = 1 };
4717 
4718 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4719   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4720   if (w == 0) return;
4721   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4722     return;
4723   }
4724 
4725   TEVENT(muxAcquire - Contention);
4726   ParkEvent * const Self = Thread::current()->_MuxEvent;
4727   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4728   for (;;) {
4729     int its = (os::is_MP() ? 100 : 0) + 1;
4730 
4731     // Optional spin phase: spin-then-park strategy
4732     while (--its >= 0) {
4733       w = *Lock;
4734       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4735         return;
4736       }
4737     }
4738 
4739     Self->reset();
4740     Self->OnList = intptr_t(Lock);
4741     // The following fence() isn't _strictly necessary as the subsequent
4742     // CAS() both serializes execution and ratifies the fetched *Lock value.
4743     OrderAccess::fence();
4744     for (;;) {
4745       w = *Lock;
4746       if ((w & LOCKBIT) == 0) {
4747         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4748           Self->OnList = 0;   // hygiene - allows stronger asserts
4749           return;
4750         }
4751         continue;      // Interference -- *Lock changed -- Just retry
4752       }
4753       assert(w & LOCKBIT, "invariant");
4754       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4755       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4756     }
4757 
4758     while (Self->OnList != 0) {
4759       Self->park();
4760     }
4761   }
4762 }
4763 
4764 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4765   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4766   if (w == 0) return;
4767   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4768     return;
4769   }
4770 
4771   TEVENT(muxAcquire - Contention);
4772   ParkEvent * ReleaseAfter = NULL;
4773   if (ev == NULL) {
4774     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4775   }
4776   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4777   for (;;) {
4778     guarantee(ev->OnList == 0, "invariant");
4779     int its = (os::is_MP() ? 100 : 0) + 1;
4780 
4781     // Optional spin phase: spin-then-park strategy
4782     while (--its >= 0) {
4783       w = *Lock;
4784       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4785         if (ReleaseAfter != NULL) {
4786           ParkEvent::Release(ReleaseAfter);
4787         }
4788         return;
4789       }
4790     }
4791 
4792     ev->reset();
4793     ev->OnList = intptr_t(Lock);
4794     // The following fence() isn't _strictly necessary as the subsequent
4795     // CAS() both serializes execution and ratifies the fetched *Lock value.
4796     OrderAccess::fence();
4797     for (;;) {
4798       w = *Lock;
4799       if ((w & LOCKBIT) == 0) {
4800         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4801           ev->OnList = 0;
4802           // We call ::Release while holding the outer lock, thus
4803           // artificially lengthening the critical section.
4804           // Consider deferring the ::Release() until the subsequent unlock(),
4805           // after we've dropped the outer lock.
4806           if (ReleaseAfter != NULL) {
4807             ParkEvent::Release(ReleaseAfter);
4808           }
4809           return;
4810         }
4811         continue;      // Interference -- *Lock changed -- Just retry
4812       }
4813       assert(w & LOCKBIT, "invariant");
4814       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4815       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4816     }
4817 
4818     while (ev->OnList != 0) {
4819       ev->park();
4820     }
4821   }
4822 }
4823 
4824 // Release() must extract a successor from the list and then wake that thread.
4825 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4826 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4827 // Release() would :
4828 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4829 // (B) Extract a successor from the private list "in-hand"
4830 // (C) attempt to CAS() the residual back into *Lock over null.
4831 //     If there were any newly arrived threads and the CAS() would fail.
4832 //     In that case Release() would detach the RATs, re-merge the list in-hand
4833 //     with the RATs and repeat as needed.  Alternately, Release() might
4834 //     detach and extract a successor, but then pass the residual list to the wakee.
4835 //     The wakee would be responsible for reattaching and remerging before it
4836 //     competed for the lock.
4837 //
4838 // Both "pop" and DMR are immune from ABA corruption -- there can be
4839 // multiple concurrent pushers, but only one popper or detacher.
4840 // This implementation pops from the head of the list.  This is unfair,
4841 // but tends to provide excellent throughput as hot threads remain hot.
4842 // (We wake recently run threads first).
4843 //
4844 // All paths through muxRelease() will execute a CAS.
4845 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4846 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4847 // executed within the critical section are complete and globally visible before the
4848 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4849 void Thread::muxRelease(volatile intptr_t * Lock)  {
4850   for (;;) {
4851     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4852     assert(w & LOCKBIT, "invariant");
4853     if (w == LOCKBIT) return;
4854     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4855     assert(List != NULL, "invariant");
4856     assert(List->OnList == intptr_t(Lock), "invariant");
4857     ParkEvent * const nxt = List->ListNext;
4858     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4859 
4860     // The following CAS() releases the lock and pops the head element.
4861     // The CAS() also ratifies the previously fetched lock-word value.
4862     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4863       continue;
4864     }
4865     List->OnList = 0;
4866     OrderAccess::fence();
4867     List->unpark();
4868     return;
4869   }
4870 }
4871 
4872 
4873 void Threads::verify() {
4874   ALL_JAVA_THREADS(p) {
4875     p->verify();
4876   }
4877   VMThread* thread = VMThread::vm_thread();
4878   if (thread != NULL) thread->verify();
4879 }