/* * Copyright (c) 2008, 2016, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "c1/c1_Compilation.hpp" #include "c1/c1_LIRAssembler.hpp" #include "c1/c1_MacroAssembler.hpp" #include "c1/c1_Runtime1.hpp" #include "c1/c1_ValueStack.hpp" #include "ci/ciArrayKlass.hpp" #include "ci/ciInstance.hpp" #include "gc/shared/barrierSet.hpp" #include "gc/shared/cardTableModRefBS.hpp" #include "gc/shared/collectedHeap.hpp" #include "nativeInst_arm.hpp" #include "oops/objArrayKlass.hpp" #include "runtime/sharedRuntime.hpp" #include "vmreg_arm.inline.hpp" #define __ _masm-> // Note: Rtemp usage is this file should not impact C2 and should be // correct as long as it is not implicitly used in lower layers (the // arm [macro]assembler) and used with care in the other C1 specific // files. bool LIR_Assembler::is_small_constant(LIR_Opr opr) { ShouldNotCallThis(); // Not used on ARM return false; } LIR_Opr LIR_Assembler::receiverOpr() { // The first register in Java calling conventions return FrameMap::R0_oop_opr; } LIR_Opr LIR_Assembler::osrBufferPointer() { return FrameMap::as_pointer_opr(R0); } #ifndef PRODUCT void LIR_Assembler::verify_reserved_argument_area_size(int args_count) { assert(args_count * wordSize <= frame_map()->reserved_argument_area_size(), "not enough space for arguments"); } #endif // !PRODUCT void LIR_Assembler::store_parameter(jint c, int offset_from_sp_in_words) { assert(offset_from_sp_in_words >= 0, "invalid offset from sp"); int offset_from_sp_in_bytes = offset_from_sp_in_words * BytesPerWord; assert(offset_from_sp_in_bytes < frame_map()->reserved_argument_area_size(), "not enough space"); __ mov_slow(Rtemp, c); __ str(Rtemp, Address(SP, offset_from_sp_in_bytes)); } void LIR_Assembler::store_parameter(Metadata* m, int offset_from_sp_in_words) { assert(offset_from_sp_in_words >= 0, "invalid offset from sp"); int offset_from_sp_in_bytes = offset_from_sp_in_words * BytesPerWord; assert(offset_from_sp_in_bytes < frame_map()->reserved_argument_area_size(), "not enough space"); __ mov_metadata(Rtemp, m); __ str(Rtemp, Address(SP, offset_from_sp_in_bytes)); } //--------------fpu register translations----------------------- void LIR_Assembler::set_24bit_FPU() { ShouldNotReachHere(); } void LIR_Assembler::reset_FPU() { ShouldNotReachHere(); } void LIR_Assembler::fpop() { Unimplemented(); } void LIR_Assembler::fxch(int i) { Unimplemented(); } void LIR_Assembler::fld(int i) { Unimplemented(); } void LIR_Assembler::ffree(int i) { Unimplemented(); } void LIR_Assembler::breakpoint() { __ breakpoint(); } void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); } void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); } //------------------------------------------- Address LIR_Assembler::as_Address(LIR_Address* addr) { Register base = addr->base()->as_pointer_register(); #ifdef AARCH64 int align = exact_log2(type2aelembytes(addr->type(), true)); #endif if (addr->index()->is_illegal() || addr->index()->is_constant()) { int offset = addr->disp(); if (addr->index()->is_constant()) { offset += addr->index()->as_constant_ptr()->as_jint() << addr->scale(); } #ifdef AARCH64 if (!Assembler::is_unsigned_imm_in_range(offset, 12, align) && !Assembler::is_imm_in_range(offset, 9, 0)) { BAILOUT_("offset not in range", Address(base)); } assert(UseUnalignedAccesses || (offset & right_n_bits(align)) == 0, "offset should be aligned"); #else if ((offset <= -4096) || (offset >= 4096)) { BAILOUT_("offset not in range", Address(base)); } #endif // AARCH64 return Address(base, offset); } else { assert(addr->disp() == 0, "can't have both"); int scale = addr->scale(); #ifdef AARCH64 assert((scale == 0) || (scale == align), "scale should be zero or equal to embedded shift"); bool is_index_extended = (addr->index()->type() == T_INT); if (is_index_extended) { assert(addr->index()->is_single_cpu(), "should be"); return Address(base, addr->index()->as_register(), ex_sxtw, scale); } else { assert(addr->index()->is_double_cpu(), "should be"); return Address(base, addr->index()->as_register_lo(), ex_lsl, scale); } #else assert(addr->index()->is_single_cpu(), "should be"); return scale >= 0 ? Address(base, addr->index()->as_register(), lsl, scale) : Address(base, addr->index()->as_register(), lsr, -scale); #endif // AARCH64 } } Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { #ifdef AARCH64 ShouldNotCallThis(); // Not used on AArch64 return Address(); #else Address base = as_Address(addr); assert(base.index() == noreg, "must be"); if (base.disp() + BytesPerWord >= 4096) { BAILOUT_("offset not in range", Address(base.base(),0)); } return Address(base.base(), base.disp() + BytesPerWord); #endif // AARCH64 } Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { #ifdef AARCH64 ShouldNotCallThis(); // Not used on AArch64 return Address(); #else return as_Address(addr); #endif // AARCH64 } void LIR_Assembler::osr_entry() { offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); BlockBegin* osr_entry = compilation()->hir()->osr_entry(); ValueStack* entry_state = osr_entry->end()->state(); int number_of_locks = entry_state->locks_size(); __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); Register OSR_buf = osrBufferPointer()->as_pointer_register(); assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); int monitor_offset = (method()->max_locals() + 2 * (number_of_locks - 1)) * BytesPerWord; for (int i = 0; i < number_of_locks; i++) { int slot_offset = monitor_offset - (i * 2 * BytesPerWord); __ ldr(R1, Address(OSR_buf, slot_offset + 0*BytesPerWord)); __ ldr(R2, Address(OSR_buf, slot_offset + 1*BytesPerWord)); __ str(R1, frame_map()->address_for_monitor_lock(i)); __ str(R2, frame_map()->address_for_monitor_object(i)); } } int LIR_Assembler::check_icache() { Register receiver = LIR_Assembler::receiverOpr()->as_register(); int offset = __ offset(); __ inline_cache_check(receiver, Ricklass); return offset; } void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) { jobject o = (jobject)Universe::non_oop_word(); int index = __ oop_recorder()->allocate_oop_index(o); PatchingStub* patch = new PatchingStub(_masm, patching_id(info), index); __ patchable_mov_oop(reg, o, index); patching_epilog(patch, lir_patch_normal, reg, info); } void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) { Metadata* o = (Metadata*)Universe::non_oop_word(); int index = __ oop_recorder()->allocate_metadata_index(o); PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index); __ patchable_mov_metadata(reg, o, index); patching_epilog(patch, lir_patch_normal, reg, info); } int LIR_Assembler::initial_frame_size_in_bytes() const { // Subtracts two words to account for return address and link return frame_map()->framesize()*VMRegImpl::stack_slot_size - 2*wordSize; } int LIR_Assembler::emit_exception_handler() { // TODO: ARM __ nop(); // See comments in other ports address handler_base = __ start_a_stub(exception_handler_size); if (handler_base == NULL) { bailout("exception handler overflow"); return -1; } int offset = code_offset(); // check that there is really an exception __ verify_not_null_oop(Rexception_obj); __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type); __ should_not_reach_here(); assert(code_offset() - offset <= exception_handler_size, "overflow"); __ end_a_stub(); return offset; } // Emit the code to remove the frame from the stack in the exception // unwind path. int LIR_Assembler::emit_unwind_handler() { #ifndef PRODUCT if (CommentedAssembly) { _masm->block_comment("Unwind handler"); } #endif int offset = code_offset(); // Fetch the exception from TLS and clear out exception related thread state Register zero = __ zero_register(Rtemp); __ ldr(Rexception_obj, Address(Rthread, JavaThread::exception_oop_offset())); __ str(zero, Address(Rthread, JavaThread::exception_oop_offset())); __ str(zero, Address(Rthread, JavaThread::exception_pc_offset())); __ bind(_unwind_handler_entry); __ verify_not_null_oop(Rexception_obj); // Preform needed unlocking MonitorExitStub* stub = NULL; if (method()->is_synchronized()) { monitor_address(0, FrameMap::R0_opr); stub = new MonitorExitStub(FrameMap::R0_opr, true, 0); __ unlock_object(R2, R1, R0, Rtemp, *stub->entry()); __ bind(*stub->continuation()); } // remove the activation and dispatch to the unwind handler __ remove_frame(initial_frame_size_in_bytes()); // restores FP and LR __ jump(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type, Rtemp); // Emit the slow path assembly if (stub != NULL) { stub->emit_code(this); } return offset; } int LIR_Assembler::emit_deopt_handler() { address handler_base = __ start_a_stub(deopt_handler_size); if (handler_base == NULL) { bailout("deopt handler overflow"); return -1; } int offset = code_offset(); __ mov_relative_address(LR, __ pc()); #ifdef AARCH64 __ raw_push(LR, LR); __ jump(SharedRuntime::deopt_blob()->unpack(), relocInfo::runtime_call_type, Rtemp); #else __ push(LR); // stub expects LR to be saved __ jump(SharedRuntime::deopt_blob()->unpack(), relocInfo::runtime_call_type, noreg); #endif // AARCH64 assert(code_offset() - offset <= deopt_handler_size, "overflow"); __ end_a_stub(); return offset; } void LIR_Assembler::return_op(LIR_Opr result) { // Pop the frame before safepoint polling __ remove_frame(initial_frame_size_in_bytes()); // mov_slow here is usually one or two instruction // TODO-AARCH64 3 instructions on AArch64, so try to load polling page by ldr_literal __ mov_address(Rtemp, os::get_polling_page(), symbolic_Relocation::polling_page_reference); __ relocate(relocInfo::poll_return_type); __ ldr(Rtemp, Address(Rtemp)); __ ret(); } int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { __ mov_address(Rtemp, os::get_polling_page(), symbolic_Relocation::polling_page_reference); if (info != NULL) { add_debug_info_for_branch(info); } int offset = __ offset(); __ relocate(relocInfo::poll_type); __ ldr(Rtemp, Address(Rtemp)); return offset; } void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { if (from_reg != to_reg) { __ mov(to_reg, from_reg); } } void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { assert(src->is_constant() && dest->is_register(), "must be"); LIR_Const* c = src->as_constant_ptr(); switch (c->type()) { case T_ADDRESS: case T_INT: assert(patch_code == lir_patch_none, "no patching handled here"); __ mov_slow(dest->as_register(), c->as_jint()); break; case T_LONG: assert(patch_code == lir_patch_none, "no patching handled here"); #ifdef AARCH64 __ mov_slow(dest->as_pointer_register(), (intptr_t)c->as_jlong()); #else __ mov_slow(dest->as_register_lo(), c->as_jint_lo()); __ mov_slow(dest->as_register_hi(), c->as_jint_hi()); #endif // AARCH64 break; case T_OBJECT: if (patch_code == lir_patch_none) { __ mov_oop(dest->as_register(), c->as_jobject()); } else { jobject2reg_with_patching(dest->as_register(), info); } break; case T_METADATA: if (patch_code == lir_patch_none) { __ mov_metadata(dest->as_register(), c->as_metadata()); } else { klass2reg_with_patching(dest->as_register(), info); } break; case T_FLOAT: if (dest->is_single_fpu()) { __ mov_float(dest->as_float_reg(), c->as_jfloat()); } else { #ifdef AARCH64 ShouldNotReachHere(); #else // Simple getters can return float constant directly into r0 __ mov_slow(dest->as_register(), c->as_jint_bits()); #endif // AARCH64 } break; case T_DOUBLE: if (dest->is_double_fpu()) { __ mov_double(dest->as_double_reg(), c->as_jdouble()); } else { #ifdef AARCH64 ShouldNotReachHere(); #else // Simple getters can return double constant directly into r1r0 __ mov_slow(dest->as_register_lo(), c->as_jint_lo_bits()); __ mov_slow(dest->as_register_hi(), c->as_jint_hi_bits()); #endif // AARCH64 } break; default: ShouldNotReachHere(); } } void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { assert(src->is_constant(), "must be"); assert(dest->is_stack(), "must be"); LIR_Const* c = src->as_constant_ptr(); switch (c->type()) { case T_INT: // fall through case T_FLOAT: __ mov_slow(Rtemp, c->as_jint_bits()); __ str_32(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix())); break; case T_ADDRESS: __ mov_slow(Rtemp, c->as_jint()); __ str(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix())); break; case T_OBJECT: __ mov_oop(Rtemp, c->as_jobject()); __ str(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix())); break; case T_LONG: // fall through case T_DOUBLE: #ifdef AARCH64 __ mov_slow(Rtemp, c->as_jlong_bits()); __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix())); #else __ mov_slow(Rtemp, c->as_jint_lo_bits()); __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes)); if (c->as_jint_hi_bits() != c->as_jint_lo_bits()) { __ mov_slow(Rtemp, c->as_jint_hi_bits()); } __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes)); #endif // AARCH64 break; default: ShouldNotReachHere(); } } void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { #ifdef AARCH64 assert((src->as_constant_ptr()->type() == T_OBJECT && src->as_constant_ptr()->as_jobject() == NULL) || (src->as_constant_ptr()->type() == T_INT && src->as_constant_ptr()->as_jint() == 0) || (src->as_constant_ptr()->type() == T_LONG && src->as_constant_ptr()->as_jlong() == 0) || (src->as_constant_ptr()->type() == T_FLOAT && src->as_constant_ptr()->as_jint_bits() == 0) || (src->as_constant_ptr()->type() == T_DOUBLE && src->as_constant_ptr()->as_jlong_bits() == 0), "cannot handle otherwise"); assert(dest->as_address_ptr()->type() == type, "should be"); Address addr = as_Address(dest->as_address_ptr()); int null_check_offset = code_offset(); switch (type) { case T_OBJECT: // fall through case T_ARRAY: if (UseCompressedOops && !wide) { __ str_w(ZR, addr); } else { __ str(ZR, addr); } break; case T_ADDRESS: // fall through case T_DOUBLE: // fall through case T_LONG: __ str(ZR, addr); break; case T_FLOAT: // fall through case T_INT: __ str_w(ZR, addr); break; case T_BOOLEAN: // fall through case T_BYTE: __ strb(ZR, addr); break; case T_CHAR: // fall through case T_SHORT: __ strh(ZR, addr); break; default: ShouldNotReachHere(); } #else assert((src->as_constant_ptr()->type() == T_OBJECT && src->as_constant_ptr()->as_jobject() == NULL),"cannot handle otherwise"); __ mov(Rtemp, 0); int null_check_offset = code_offset(); __ str(Rtemp, as_Address(dest->as_address_ptr())); #endif // AARCH64 if (info != NULL) { #ifndef AARCH64 assert(false, "arm32 didn't support this before, investigate if bug"); #endif add_debug_info_for_null_check(null_check_offset, info); } } void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) { assert(src->is_register() && dest->is_register(), "must be"); if (src->is_single_cpu()) { if (dest->is_single_cpu()) { move_regs(src->as_register(), dest->as_register()); #ifdef AARCH64 } else if (dest->is_double_cpu()) { assert ((src->type() == T_OBJECT) || (src->type() == T_ARRAY) || (src->type() == T_ADDRESS), "invalid src type"); move_regs(src->as_register(), dest->as_register_lo()); #else } else if (dest->is_single_fpu()) { __ fmsr(dest->as_float_reg(), src->as_register()); #endif // AARCH64 } else { ShouldNotReachHere(); } } else if (src->is_double_cpu()) { #ifdef AARCH64 move_regs(src->as_register_lo(), dest->as_register_lo()); #else if (dest->is_double_cpu()) { __ long_move(dest->as_register_lo(), dest->as_register_hi(), src->as_register_lo(), src->as_register_hi()); } else { __ fmdrr(dest->as_double_reg(), src->as_register_lo(), src->as_register_hi()); } #endif // AARCH64 } else if (src->is_single_fpu()) { if (dest->is_single_fpu()) { __ mov_float(dest->as_float_reg(), src->as_float_reg()); } else if (dest->is_single_cpu()) { __ mov_fpr2gpr_float(dest->as_register(), src->as_float_reg()); } else { ShouldNotReachHere(); } } else if (src->is_double_fpu()) { if (dest->is_double_fpu()) { __ mov_double(dest->as_double_reg(), src->as_double_reg()); } else if (dest->is_double_cpu()) { #ifdef AARCH64 __ fmov_xd(dest->as_register_lo(), src->as_double_reg()); #else __ fmrrd(dest->as_register_lo(), dest->as_register_hi(), src->as_double_reg()); #endif // AARCH64 } else { ShouldNotReachHere(); } } else { ShouldNotReachHere(); } } void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { assert(src->is_register(), "should not call otherwise"); assert(dest->is_stack(), "should not call otherwise"); Address addr = dest->is_single_word() ? frame_map()->address_for_slot(dest->single_stack_ix()) : frame_map()->address_for_slot(dest->double_stack_ix()); #ifndef AARCH64 assert(lo_word_offset_in_bytes == 0 && hi_word_offset_in_bytes == 4, "little ending"); if (src->is_single_fpu() || src->is_double_fpu()) { if (addr.disp() >= 1024) { BAILOUT("Too exotic case to handle here"); } } #endif // !AARCH64 if (src->is_single_cpu()) { switch (type) { case T_OBJECT: case T_ARRAY: __ verify_oop(src->as_register()); // fall through case T_ADDRESS: case T_METADATA: __ str(src->as_register(), addr); break; case T_FLOAT: // used in intBitsToFloat intrinsic implementation, fall through case T_INT: __ str_32(src->as_register(), addr); break; default: ShouldNotReachHere(); } } else if (src->is_double_cpu()) { __ str(src->as_register_lo(), addr); #ifndef AARCH64 __ str(src->as_register_hi(), frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes)); #endif // !AARCH64 } else if (src->is_single_fpu()) { __ str_float(src->as_float_reg(), addr); } else if (src->is_double_fpu()) { __ str_double(src->as_double_reg(), addr); } else { ShouldNotReachHere(); } } void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool unaligned) { LIR_Address* to_addr = dest->as_address_ptr(); Register base_reg = to_addr->base()->as_pointer_register(); const bool needs_patching = (patch_code != lir_patch_none); PatchingStub* patch = NULL; if (needs_patching) { #ifdef AARCH64 // Same alignment of reg2mem code and PatchingStub code. Required to make copied bind_literal() code properly aligned. __ align(wordSize); #endif patch = new PatchingStub(_masm, PatchingStub::access_field_id); #ifdef AARCH64 // Extra nop for MT safe patching __ nop(); #endif // AARCH64 } int null_check_offset = code_offset(); switch (type) { case T_ARRAY: case T_OBJECT: if (UseCompressedOops && !wide) { #ifdef AARCH64 const Register temp_src = Rtemp; assert_different_registers(temp_src, src->as_register()); __ encode_heap_oop(temp_src, src->as_register()); null_check_offset = code_offset(); __ str_32(temp_src, as_Address(to_addr)); #else ShouldNotReachHere(); #endif // AARCH64 } else { __ str(src->as_register(), as_Address(to_addr)); } break; case T_ADDRESS: #ifdef AARCH64 case T_LONG: #endif // AARCH64 __ str(src->as_pointer_register(), as_Address(to_addr)); break; case T_BYTE: case T_BOOLEAN: __ strb(src->as_register(), as_Address(to_addr)); break; case T_CHAR: case T_SHORT: __ strh(src->as_register(), as_Address(to_addr)); break; case T_INT: #ifdef __SOFTFP__ case T_FLOAT: #endif // __SOFTFP__ __ str_32(src->as_register(), as_Address(to_addr)); break; #ifdef AARCH64 case T_FLOAT: __ str_s(src->as_float_reg(), as_Address(to_addr)); break; case T_DOUBLE: __ str_d(src->as_double_reg(), as_Address(to_addr)); break; #else // AARCH64 #ifdef __SOFTFP__ case T_DOUBLE: #endif // __SOFTFP__ case T_LONG: { Register from_lo = src->as_register_lo(); Register from_hi = src->as_register_hi(); if (to_addr->index()->is_register()) { assert(to_addr->scale() == LIR_Address::times_1,"Unexpected scaled register"); assert(to_addr->disp() == 0, "Not yet supporting both"); __ add(Rtemp, base_reg, to_addr->index()->as_register()); base_reg = Rtemp; __ str(from_lo, Address(Rtemp)); if (patch != NULL) { patching_epilog(patch, lir_patch_low, base_reg, info); patch = new PatchingStub(_masm, PatchingStub::access_field_id); patch_code = lir_patch_high; } __ str(from_hi, Address(Rtemp, BytesPerWord)); } else if (base_reg == from_lo) { __ str(from_hi, as_Address_hi(to_addr)); if (patch != NULL) { patching_epilog(patch, lir_patch_high, base_reg, info); patch = new PatchingStub(_masm, PatchingStub::access_field_id); patch_code = lir_patch_low; } __ str(from_lo, as_Address_lo(to_addr)); } else { __ str(from_lo, as_Address_lo(to_addr)); if (patch != NULL) { patching_epilog(patch, lir_patch_low, base_reg, info); patch = new PatchingStub(_masm, PatchingStub::access_field_id); patch_code = lir_patch_high; } __ str(from_hi, as_Address_hi(to_addr)); } break; } #ifndef __SOFTFP__ case T_FLOAT: if (to_addr->index()->is_register()) { assert(to_addr->scale() == LIR_Address::times_1,"Unexpected scaled register"); __ add(Rtemp, base_reg, to_addr->index()->as_register()); if ((to_addr->disp() <= -4096) || (to_addr->disp() >= 4096)) { BAILOUT("offset not in range"); } __ fsts(src->as_float_reg(), Address(Rtemp, to_addr->disp())); } else { __ fsts(src->as_float_reg(), as_Address(to_addr)); } break; case T_DOUBLE: if (to_addr->index()->is_register()) { assert(to_addr->scale() == LIR_Address::times_1,"Unexpected scaled register"); __ add(Rtemp, base_reg, to_addr->index()->as_register()); if ((to_addr->disp() <= -4096) || (to_addr->disp() >= 4096)) { BAILOUT("offset not in range"); } __ fstd(src->as_double_reg(), Address(Rtemp, to_addr->disp())); } else { __ fstd(src->as_double_reg(), as_Address(to_addr)); } break; #endif // __SOFTFP__ #endif // AARCH64 default: ShouldNotReachHere(); } if (info != NULL) { add_debug_info_for_null_check(null_check_offset, info); } if (patch != NULL) { // Offset embeedded into LDR/STR instruction may appear not enough // to address a field. So, provide a space for one more instruction // that will deal with larger offsets. __ nop(); patching_epilog(patch, patch_code, base_reg, info); } } void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { assert(src->is_stack(), "should not call otherwise"); assert(dest->is_register(), "should not call otherwise"); Address addr = src->is_single_word() ? frame_map()->address_for_slot(src->single_stack_ix()) : frame_map()->address_for_slot(src->double_stack_ix()); #ifndef AARCH64 assert(lo_word_offset_in_bytes == 0 && hi_word_offset_in_bytes == 4, "little ending"); if (dest->is_single_fpu() || dest->is_double_fpu()) { if (addr.disp() >= 1024) { BAILOUT("Too exotic case to handle here"); } } #endif // !AARCH64 if (dest->is_single_cpu()) { switch (type) { case T_OBJECT: case T_ARRAY: case T_ADDRESS: case T_METADATA: __ ldr(dest->as_register(), addr); break; case T_FLOAT: // used in floatToRawIntBits intrinsic implemenation case T_INT: __ ldr_u32(dest->as_register(), addr); break; default: ShouldNotReachHere(); } if ((type == T_OBJECT) || (type == T_ARRAY)) { __ verify_oop(dest->as_register()); } } else if (dest->is_double_cpu()) { __ ldr(dest->as_register_lo(), addr); #ifndef AARCH64 __ ldr(dest->as_register_hi(), frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes)); #endif // !AARCH64 } else if (dest->is_single_fpu()) { __ ldr_float(dest->as_float_reg(), addr); } else if (dest->is_double_fpu()) { __ ldr_double(dest->as_double_reg(), addr); } else { ShouldNotReachHere(); } } void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { if (src->is_single_stack()) { switch (src->type()) { case T_OBJECT: case T_ARRAY: case T_ADDRESS: case T_METADATA: __ ldr(Rtemp, frame_map()->address_for_slot(src->single_stack_ix())); __ str(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix())); break; case T_INT: case T_FLOAT: __ ldr_u32(Rtemp, frame_map()->address_for_slot(src->single_stack_ix())); __ str_32(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix())); break; default: ShouldNotReachHere(); } } else { assert(src->is_double_stack(), "must be"); __ ldr(Rtemp, frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes)); __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes)); #ifdef AARCH64 assert(lo_word_offset_in_bytes == 0, "adjust this code"); #else __ ldr(Rtemp, frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes)); __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes)); #endif // AARCH64 } } void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) { assert(src->is_address(), "should not call otherwise"); assert(dest->is_register(), "should not call otherwise"); LIR_Address* addr = src->as_address_ptr(); Register base_reg = addr->base()->as_pointer_register(); PatchingStub* patch = NULL; if (patch_code != lir_patch_none) { patch = new PatchingStub(_masm, PatchingStub::access_field_id); #ifdef AARCH64 // Extra nop for MT safe patching __ nop(); #endif // AARCH64 } if (info != NULL) { add_debug_info_for_null_check_here(info); } switch (type) { case T_OBJECT: // fall through case T_ARRAY: if (UseCompressedOops && !wide) { __ ldr_u32(dest->as_register(), as_Address(addr)); } else { __ ldr(dest->as_register(), as_Address(addr)); } break; case T_ADDRESS: if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) { __ ldr_u32(dest->as_pointer_register(), as_Address(addr)); } else { __ ldr(dest->as_pointer_register(), as_Address(addr)); } break; #ifdef AARCH64 case T_LONG: #else case T_INT: #ifdef __SOFTFP__ case T_FLOAT: #endif // __SOFTFP__ #endif // AARCH64 __ ldr(dest->as_pointer_register(), as_Address(addr)); break; case T_BOOLEAN: __ ldrb(dest->as_register(), as_Address(addr)); break; case T_BYTE: __ ldrsb(dest->as_register(), as_Address(addr)); break; case T_CHAR: __ ldrh(dest->as_register(), as_Address(addr)); break; case T_SHORT: __ ldrsh(dest->as_register(), as_Address(addr)); break; #ifdef AARCH64 case T_INT: __ ldr_w(dest->as_register(), as_Address(addr)); break; case T_FLOAT: __ ldr_s(dest->as_float_reg(), as_Address(addr)); break; case T_DOUBLE: __ ldr_d(dest->as_double_reg(), as_Address(addr)); break; #else // AARCH64 #ifdef __SOFTFP__ case T_DOUBLE: #endif // __SOFTFP__ case T_LONG: { Register to_lo = dest->as_register_lo(); Register to_hi = dest->as_register_hi(); if (addr->index()->is_register()) { assert(addr->scale() == LIR_Address::times_1,"Unexpected scaled register"); assert(addr->disp() == 0, "Not yet supporting both"); __ add(Rtemp, base_reg, addr->index()->as_register()); base_reg = Rtemp; __ ldr(to_lo, Address(Rtemp)); if (patch != NULL) { patching_epilog(patch, lir_patch_low, base_reg, info); patch = new PatchingStub(_masm, PatchingStub::access_field_id); patch_code = lir_patch_high; } __ ldr(to_hi, Address(Rtemp, BytesPerWord)); } else if (base_reg == to_lo) { __ ldr(to_hi, as_Address_hi(addr)); if (patch != NULL) { patching_epilog(patch, lir_patch_high, base_reg, info); patch = new PatchingStub(_masm, PatchingStub::access_field_id); patch_code = lir_patch_low; } __ ldr(to_lo, as_Address_lo(addr)); } else { __ ldr(to_lo, as_Address_lo(addr)); if (patch != NULL) { patching_epilog(patch, lir_patch_low, base_reg, info); patch = new PatchingStub(_masm, PatchingStub::access_field_id); patch_code = lir_patch_high; } __ ldr(to_hi, as_Address_hi(addr)); } break; } #ifndef __SOFTFP__ case T_FLOAT: if (addr->index()->is_register()) { assert(addr->scale() == LIR_Address::times_1,"Unexpected scaled register"); __ add(Rtemp, base_reg, addr->index()->as_register()); if ((addr->disp() <= -4096) || (addr->disp() >= 4096)) { BAILOUT("offset not in range"); } __ flds(dest->as_float_reg(), Address(Rtemp, addr->disp())); } else { __ flds(dest->as_float_reg(), as_Address(addr)); } break; case T_DOUBLE: if (addr->index()->is_register()) { assert(addr->scale() == LIR_Address::times_1,"Unexpected scaled register"); __ add(Rtemp, base_reg, addr->index()->as_register()); if ((addr->disp() <= -4096) || (addr->disp() >= 4096)) { BAILOUT("offset not in range"); } __ fldd(dest->as_double_reg(), Address(Rtemp, addr->disp())); } else { __ fldd(dest->as_double_reg(), as_Address(addr)); } break; #endif // __SOFTFP__ #endif // AARCH64 default: ShouldNotReachHere(); } if (patch != NULL) { // Offset embeedded into LDR/STR instruction may appear not enough // to address a field. So, provide a space for one more instruction // that will deal with larger offsets. __ nop(); patching_epilog(patch, patch_code, base_reg, info); } #ifdef AARCH64 switch (type) { case T_ARRAY: case T_OBJECT: if (UseCompressedOops && !wide) { __ decode_heap_oop(dest->as_register()); } __ verify_oop(dest->as_register()); break; case T_ADDRESS: if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) { __ decode_klass_not_null(dest->as_register()); } break; } #endif // AARCH64 } void LIR_Assembler::emit_op3(LIR_Op3* op) { bool is_32 = op->result_opr()->is_single_cpu(); if (op->code() == lir_idiv && op->in_opr2()->is_constant() && is_32) { int c = op->in_opr2()->as_constant_ptr()->as_jint(); assert(is_power_of_2(c), "non power-of-2 constant should be put in a register"); Register left = op->in_opr1()->as_register(); Register dest = op->result_opr()->as_register(); if (c == 1) { __ mov(dest, left); } else if (c == 2) { __ add_32(dest, left, AsmOperand(left, lsr, 31)); __ asr_32(dest, dest, 1); } else if (c != (int) 0x80000000) { int power = log2_intptr(c); __ asr_32(Rtemp, left, 31); __ add_32(dest, left, AsmOperand(Rtemp, lsr, 32-power)); // dest = left + (left < 0 ? 2^power - 1 : 0); __ asr_32(dest, dest, power); // dest = dest >>> power; } else { // x/0x80000000 is a special case, since dividend is a power of two, but is negative. // The only possible result values are 0 and 1, with 1 only for dividend == divisor == 0x80000000. __ cmp_32(left, c); #ifdef AARCH64 __ cset(dest, eq); #else __ mov(dest, 0, ne); __ mov(dest, 1, eq); #endif // AARCH64 } } else { #ifdef AARCH64 Register left = op->in_opr1()->as_pointer_register(); Register right = op->in_opr2()->as_pointer_register(); Register dest = op->result_opr()->as_pointer_register(); switch (op->code()) { case lir_idiv: if (is_32) { __ sdiv_w(dest, left, right); } else { __ sdiv(dest, left, right); } break; case lir_irem: { Register tmp = op->in_opr3()->as_pointer_register(); assert_different_registers(left, tmp); assert_different_registers(right, tmp); if (is_32) { __ sdiv_w(tmp, left, right); __ msub_w(dest, right, tmp, left); } else { __ sdiv(tmp, left, right); __ msub(dest, right, tmp, left); } break; } default: ShouldNotReachHere(); } #else assert(op->code() == lir_idiv || op->code() == lir_irem, "unexpected op3"); __ call(StubRoutines::Arm::idiv_irem_entry(), relocInfo::runtime_call_type); add_debug_info_for_div0_here(op->info()); #endif // AARCH64 } } void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { #ifdef ASSERT assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label"); if (op->block() != NULL) _branch_target_blocks.append(op->block()); if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock()); assert(op->info() == NULL, "CodeEmitInfo?"); #endif // ASSERT #ifdef __SOFTFP__ assert (op->code() != lir_cond_float_branch, "this should be impossible"); #else if (op->code() == lir_cond_float_branch) { #ifndef AARCH64 __ fmstat(); #endif // !AARCH64 __ b(*(op->ublock()->label()), vs); } #endif // __SOFTFP__ AsmCondition acond = al; switch (op->cond()) { case lir_cond_equal: acond = eq; break; case lir_cond_notEqual: acond = ne; break; case lir_cond_less: acond = lt; break; case lir_cond_lessEqual: acond = le; break; case lir_cond_greaterEqual: acond = ge; break; case lir_cond_greater: acond = gt; break; case lir_cond_aboveEqual: acond = hs; break; case lir_cond_belowEqual: acond = ls; break; default: assert(op->cond() == lir_cond_always, "must be"); } __ b(*(op->label()), acond); } void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { LIR_Opr src = op->in_opr(); LIR_Opr dest = op->result_opr(); switch (op->bytecode()) { case Bytecodes::_i2l: #ifdef AARCH64 __ sign_extend(dest->as_register_lo(), src->as_register(), 32); #else move_regs(src->as_register(), dest->as_register_lo()); __ mov(dest->as_register_hi(), AsmOperand(src->as_register(), asr, 31)); #endif // AARCH64 break; case Bytecodes::_l2i: move_regs(src->as_register_lo(), dest->as_register()); break; case Bytecodes::_i2b: __ sign_extend(dest->as_register(), src->as_register(), 8); break; case Bytecodes::_i2s: __ sign_extend(dest->as_register(), src->as_register(), 16); break; case Bytecodes::_i2c: __ zero_extend(dest->as_register(), src->as_register(), 16); break; case Bytecodes::_f2d: __ convert_f2d(dest->as_double_reg(), src->as_float_reg()); break; case Bytecodes::_d2f: __ convert_d2f(dest->as_float_reg(), src->as_double_reg()); break; case Bytecodes::_i2f: #ifdef AARCH64 __ scvtf_sw(dest->as_float_reg(), src->as_register()); #else __ fmsr(Stemp, src->as_register()); __ fsitos(dest->as_float_reg(), Stemp); #endif // AARCH64 break; case Bytecodes::_i2d: #ifdef AARCH64 __ scvtf_dw(dest->as_double_reg(), src->as_register()); #else __ fmsr(Stemp, src->as_register()); __ fsitod(dest->as_double_reg(), Stemp); #endif // AARCH64 break; case Bytecodes::_f2i: #ifdef AARCH64 __ fcvtzs_ws(dest->as_register(), src->as_float_reg()); #else __ ftosizs(Stemp, src->as_float_reg()); __ fmrs(dest->as_register(), Stemp); #endif // AARCH64 break; case Bytecodes::_d2i: #ifdef AARCH64 __ fcvtzs_wd(dest->as_register(), src->as_double_reg()); #else __ ftosizd(Stemp, src->as_double_reg()); __ fmrs(dest->as_register(), Stemp); #endif // AARCH64 break; #ifdef AARCH64 case Bytecodes::_l2f: __ scvtf_sx(dest->as_float_reg(), src->as_register_lo()); break; case Bytecodes::_l2d: __ scvtf_dx(dest->as_double_reg(), src->as_register_lo()); break; case Bytecodes::_f2l: __ fcvtzs_xs(dest->as_register_lo(), src->as_float_reg()); break; case Bytecodes::_d2l: __ fcvtzs_xd(dest->as_register_lo(), src->as_double_reg()); break; #endif // AARCH64 default: ShouldNotReachHere(); } } void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { if (op->init_check()) { Register tmp = op->tmp1()->as_register(); __ ldrb(tmp, Address(op->klass()->as_register(), InstanceKlass::init_state_offset())); add_debug_info_for_null_check_here(op->stub()->info()); __ cmp(tmp, InstanceKlass::fully_initialized); __ b(*op->stub()->entry(), ne); } __ allocate_object(op->obj()->as_register(), op->tmp1()->as_register(), op->tmp2()->as_register(), op->tmp3()->as_register(), op->header_size(), op->object_size(), op->klass()->as_register(), *op->stub()->entry()); __ bind(*op->stub()->continuation()); } void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { if (UseSlowPath || (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) || (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) { __ b(*op->stub()->entry()); } else { __ allocate_array(op->obj()->as_register(), op->len()->as_register(), op->tmp1()->as_register(), op->tmp2()->as_register(), op->tmp3()->as_register(), arrayOopDesc::header_size(op->type()), type2aelembytes(op->type()), op->klass()->as_register(), *op->stub()->entry()); } __ bind(*op->stub()->continuation()); } void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias, ciMethodData *md, ciProfileData *data, Register recv, Register tmp1, Label* update_done) { assert_different_registers(mdo, recv, tmp1); uint i; for (i = 0; i < VirtualCallData::row_limit(); i++) { Label next_test; // See if the receiver is receiver[n]. Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias); __ ldr(tmp1, receiver_addr); __ verify_klass_ptr(tmp1); __ cmp(recv, tmp1); __ b(next_test, ne); Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias); __ ldr(tmp1, data_addr); __ add(tmp1, tmp1, DataLayout::counter_increment); __ str(tmp1, data_addr); __ b(*update_done); __ bind(next_test); } // Didn't find receiver; find next empty slot and fill it in for (i = 0; i < VirtualCallData::row_limit(); i++) { Label next_test; Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias); __ ldr(tmp1, recv_addr); __ cbnz(tmp1, next_test); __ str(recv, recv_addr); __ mov(tmp1, DataLayout::counter_increment); __ str(tmp1, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias)); __ b(*update_done); __ bind(next_test); } } void LIR_Assembler::setup_md_access(ciMethod* method, int bci, ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) { md = method->method_data_or_null(); assert(md != NULL, "Sanity"); data = md->bci_to_data(bci); assert(data != NULL, "need data for checkcast"); assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); if (md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes() >= 4096) { // The offset is large so bias the mdo by the base of the slot so // that the ldr can use an immediate offset to reference the slots of the data mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset()); } } // On 32-bit ARM, code before this helper should test obj for null (ZF should be set if obj is null). void LIR_Assembler::typecheck_profile_helper1(ciMethod* method, int bci, ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias, Register obj, Register mdo, Register data_val, Label* obj_is_null) { assert(method != NULL, "Should have method"); assert_different_registers(obj, mdo, data_val); setup_md_access(method, bci, md, data, mdo_offset_bias); Label not_null; #ifdef AARCH64 __ cbnz(obj, not_null); #else __ b(not_null, ne); #endif // AARCH64 __ mov_metadata(mdo, md->constant_encoding()); if (mdo_offset_bias > 0) { __ mov_slow(data_val, mdo_offset_bias); __ add(mdo, mdo, data_val); } Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias); __ ldrb(data_val, flags_addr); __ orr(data_val, data_val, (uint)BitData::null_seen_byte_constant()); __ strb(data_val, flags_addr); __ b(*obj_is_null); __ bind(not_null); } void LIR_Assembler::typecheck_profile_helper2(ciMethodData* md, ciProfileData* data, int mdo_offset_bias, Register mdo, Register recv, Register value, Register tmp1, Label* profile_cast_success, Label* profile_cast_failure, Label* success, Label* failure) { assert_different_registers(mdo, value, tmp1); __ bind(*profile_cast_success); __ mov_metadata(mdo, md->constant_encoding()); if (mdo_offset_bias > 0) { __ mov_slow(tmp1, mdo_offset_bias); __ add(mdo, mdo, tmp1); } __ load_klass(recv, value); type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success); __ b(*success); // Cast failure case __ bind(*profile_cast_failure); __ mov_metadata(mdo, md->constant_encoding()); if (mdo_offset_bias > 0) { __ mov_slow(tmp1, mdo_offset_bias); __ add(mdo, mdo, tmp1); } Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias); __ ldr(tmp1, data_addr); __ sub(tmp1, tmp1, DataLayout::counter_increment); __ str(tmp1, data_addr); __ b(*failure); } // Sets `res` to true, if `cond` holds. On AArch64 also sets `res` to false if `cond` does not hold. static void set_instanceof_result(MacroAssembler* _masm, Register res, AsmCondition cond) { #ifdef AARCH64 __ cset(res, cond); #else __ mov(res, 1, cond); #endif // AARCH64 } void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { // TODO: ARM - can be more effective with one more register switch (op->code()) { case lir_store_check: { CodeStub* stub = op->stub(); Register value = op->object()->as_register(); Register array = op->array()->as_register(); Register klass_RInfo = op->tmp1()->as_register(); Register k_RInfo = op->tmp2()->as_register(); assert_different_registers(klass_RInfo, k_RInfo, Rtemp); if (op->should_profile()) { assert_different_registers(value, klass_RInfo, k_RInfo, Rtemp); } // check if it needs to be profiled ciMethodData* md; ciProfileData* data; int mdo_offset_bias = 0; Label profile_cast_success, profile_cast_failure, done; Label *success_target = op->should_profile() ? &profile_cast_success : &done; Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry(); if (op->should_profile()) { #ifndef AARCH64 __ cmp(value, 0); #endif // !AARCH64 typecheck_profile_helper1(op->profiled_method(), op->profiled_bci(), md, data, mdo_offset_bias, value, k_RInfo, Rtemp, &done); } else { __ cbz(value, done); } assert_different_registers(k_RInfo, value); add_debug_info_for_null_check_here(op->info_for_exception()); __ load_klass(k_RInfo, array); __ load_klass(klass_RInfo, value); __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset())); // check for immediate positive hit __ ldr(Rtemp, Address(klass_RInfo, Rtemp)); __ cmp(klass_RInfo, k_RInfo); __ cond_cmp(Rtemp, k_RInfo, ne); __ b(*success_target, eq); // check for immediate negative hit __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset())); __ cmp(Rtemp, in_bytes(Klass::secondary_super_cache_offset())); __ b(*failure_target, ne); // slow case assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup"); __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type); __ cbz(R0, *failure_target); if (op->should_profile()) { Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtemp; if (mdo == value) { mdo = k_RInfo; recv = klass_RInfo; } typecheck_profile_helper2(md, data, mdo_offset_bias, mdo, recv, value, tmp1, &profile_cast_success, &profile_cast_failure, &done, stub->entry()); } __ bind(done); break; } case lir_checkcast: { CodeStub* stub = op->stub(); Register obj = op->object()->as_register(); Register res = op->result_opr()->as_register(); Register klass_RInfo = op->tmp1()->as_register(); Register k_RInfo = op->tmp2()->as_register(); ciKlass* k = op->klass(); assert_different_registers(res, k_RInfo, klass_RInfo, Rtemp); // TODO: ARM - Late binding is used to prevent confusion of register allocator assert(stub->is_exception_throw_stub(), "must be"); ((SimpleExceptionStub*)stub)->set_obj(op->result_opr()); ciMethodData* md; ciProfileData* data; int mdo_offset_bias = 0; Label done; Label profile_cast_failure, profile_cast_success; Label *failure_target = op->should_profile() ? &profile_cast_failure : op->stub()->entry(); Label *success_target = op->should_profile() ? &profile_cast_success : &done; #ifdef AARCH64 move_regs(obj, res); if (op->should_profile()) { typecheck_profile_helper1(op->profiled_method(), op->profiled_bci(), md, data, mdo_offset_bias, res, klass_RInfo, Rtemp, &done); } else { __ cbz(obj, done); } if (k->is_loaded()) { __ mov_metadata(k_RInfo, k->constant_encoding()); } else { if (res != obj) { op->info_for_patch()->add_register_oop(FrameMap::as_oop_opr(res)); } klass2reg_with_patching(k_RInfo, op->info_for_patch()); } __ load_klass(klass_RInfo, res); if (op->fast_check()) { __ cmp(klass_RInfo, k_RInfo); __ b(*failure_target, ne); } else if (k->is_loaded()) { __ ldr(Rtemp, Address(klass_RInfo, k->super_check_offset())); if (in_bytes(Klass::secondary_super_cache_offset()) != (int) k->super_check_offset()) { __ cmp(Rtemp, k_RInfo); __ b(*failure_target, ne); } else { __ cmp(klass_RInfo, k_RInfo); __ cond_cmp(Rtemp, k_RInfo, ne); __ b(*success_target, eq); assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup"); __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type); __ cbz(R0, *failure_target); } } else { __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset())); // check for immediate positive hit __ ldr(Rtemp, Address(klass_RInfo, Rtemp)); __ cmp(klass_RInfo, k_RInfo); __ cond_cmp(Rtemp, k_RInfo, ne); __ b(*success_target, eq); // check for immediate negative hit __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset())); __ cmp(Rtemp, in_bytes(Klass::secondary_super_cache_offset())); __ b(*failure_target, ne); // slow case assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup"); __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type); __ cbz(R0, *failure_target); } #else // AARCH64 __ movs(res, obj); if (op->should_profile()) { typecheck_profile_helper1(op->profiled_method(), op->profiled_bci(), md, data, mdo_offset_bias, res, klass_RInfo, Rtemp, &done); } else { __ b(done, eq); } if (k->is_loaded()) { __ mov_metadata(k_RInfo, k->constant_encoding()); } else if (k_RInfo != obj) { klass2reg_with_patching(k_RInfo, op->info_for_patch()); __ movs(res, obj); } else { // Patching doesn't update "res" register after GC, so do patching first klass2reg_with_patching(Rtemp, op->info_for_patch()); __ movs(res, obj); __ mov(k_RInfo, Rtemp); } __ load_klass(klass_RInfo, res, ne); if (op->fast_check()) { __ cmp(klass_RInfo, k_RInfo, ne); __ b(*failure_target, ne); } else if (k->is_loaded()) { __ b(*success_target, eq); __ ldr(Rtemp, Address(klass_RInfo, k->super_check_offset())); if (in_bytes(Klass::secondary_super_cache_offset()) != (int) k->super_check_offset()) { __ cmp(Rtemp, k_RInfo); __ b(*failure_target, ne); } else { __ cmp(klass_RInfo, k_RInfo); __ cmp(Rtemp, k_RInfo, ne); __ b(*success_target, eq); assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup"); __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type); __ cbz(R0, *failure_target); } } else { __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset())); __ b(*success_target, eq); // check for immediate positive hit __ ldr(Rtemp, Address(klass_RInfo, Rtemp)); __ cmp(klass_RInfo, k_RInfo); __ cmp(Rtemp, k_RInfo, ne); __ b(*success_target, eq); // check for immediate negative hit __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset())); __ cmp(Rtemp, in_bytes(Klass::secondary_super_cache_offset())); __ b(*failure_target, ne); // slow case assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup"); __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type); __ cbz(R0, *failure_target); } #endif // AARCH64 if (op->should_profile()) { Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtemp; typecheck_profile_helper2(md, data, mdo_offset_bias, mdo, recv, res, tmp1, &profile_cast_success, &profile_cast_failure, &done, stub->entry()); } __ bind(done); break; } case lir_instanceof: { Register obj = op->object()->as_register(); Register res = op->result_opr()->as_register(); Register klass_RInfo = op->tmp1()->as_register(); Register k_RInfo = op->tmp2()->as_register(); ciKlass* k = op->klass(); assert_different_registers(res, klass_RInfo, k_RInfo, Rtemp); ciMethodData* md; ciProfileData* data; int mdo_offset_bias = 0; Label done; Label profile_cast_failure, profile_cast_success; Label *failure_target = op->should_profile() ? &profile_cast_failure : &done; Label *success_target = op->should_profile() ? &profile_cast_success : &done; #ifdef AARCH64 move_regs(obj, res); #else __ movs(res, obj); #endif // AARCH64 if (op->should_profile()) { typecheck_profile_helper1(op->profiled_method(), op->profiled_bci(), md, data, mdo_offset_bias, res, klass_RInfo, Rtemp, &done); } else { #ifdef AARCH64 __ cbz(obj, done); // If obj == NULL, res is false #else __ b(done, eq); #endif // AARCH64 } if (k->is_loaded()) { __ mov_metadata(k_RInfo, k->constant_encoding()); } else { op->info_for_patch()->add_register_oop(FrameMap::as_oop_opr(res)); klass2reg_with_patching(k_RInfo, op->info_for_patch()); } __ load_klass(klass_RInfo, res); #ifndef AARCH64 if (!op->should_profile()) { __ mov(res, 0); } #endif // !AARCH64 if (op->fast_check()) { __ cmp(klass_RInfo, k_RInfo); if (!op->should_profile()) { set_instanceof_result(_masm, res, eq); } else { __ b(profile_cast_failure, ne); } } else if (k->is_loaded()) { __ ldr(Rtemp, Address(klass_RInfo, k->super_check_offset())); if (in_bytes(Klass::secondary_super_cache_offset()) != (int) k->super_check_offset()) { __ cmp(Rtemp, k_RInfo); if (!op->should_profile()) { set_instanceof_result(_masm, res, eq); } else { __ b(profile_cast_failure, ne); } } else { __ cmp(klass_RInfo, k_RInfo); __ cond_cmp(Rtemp, k_RInfo, ne); if (!op->should_profile()) { set_instanceof_result(_masm, res, eq); } __ b(*success_target, eq); assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup"); __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type); if (!op->should_profile()) { move_regs(R0, res); } else { __ cbz(R0, *failure_target); } } } else { __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset())); // check for immediate positive hit __ cmp(klass_RInfo, k_RInfo); if (!op->should_profile()) { #ifdef AARCH64 // TODO-AARCH64 check if separate conditional branch is more efficient than ldr+cond_cmp __ ldr(res, Address(klass_RInfo, Rtemp)); #else __ ldr(res, Address(klass_RInfo, Rtemp), ne); #endif // AARCH64 __ cond_cmp(res, k_RInfo, ne); set_instanceof_result(_masm, res, eq); } else { #ifdef AARCH64 // TODO-AARCH64 check if separate conditional branch is more efficient than ldr+cond_cmp __ ldr(Rtemp, Address(klass_RInfo, Rtemp)); #else __ ldr(Rtemp, Address(klass_RInfo, Rtemp), ne); #endif // AARCH64 __ cond_cmp(Rtemp, k_RInfo, ne); } __ b(*success_target, eq); // check for immediate negative hit if (op->should_profile()) { __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset())); } __ cmp(Rtemp, in_bytes(Klass::secondary_super_cache_offset())); if (!op->should_profile()) { #ifdef AARCH64 __ mov(res, 0); #else __ mov(res, 0, ne); #endif // AARCH64 } __ b(*failure_target, ne); // slow case assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup"); __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type); if (!op->should_profile()) { move_regs(R0, res); } if (op->should_profile()) { __ cbz(R0, *failure_target); } } if (op->should_profile()) { Label done_ok, done_failure; Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtemp; typecheck_profile_helper2(md, data, mdo_offset_bias, mdo, recv, res, tmp1, &profile_cast_success, &profile_cast_failure, &done_ok, &done_failure); __ bind(done_failure); __ mov(res, 0); __ b(done); __ bind(done_ok); __ mov(res, 1); } __ bind(done); break; } default: ShouldNotReachHere(); } } void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { // if (*addr == cmpval) { // *addr = newval; // dest = 1; // } else { // dest = 0; // } #ifdef AARCH64 Label retry, done; Register addr = op->addr()->as_pointer_register(); Register cmpval = op->cmp_value()->as_pointer_register(); Register newval = op->new_value()->as_pointer_register(); Register dest = op->result_opr()->as_pointer_register(); assert_different_registers(dest, addr, cmpval, newval, Rtemp); if (UseCompressedOops && op->code() == lir_cas_obj) { Register tmp1 = op->tmp1()->as_pointer_register(); Register tmp2 = op->tmp2()->as_pointer_register(); assert_different_registers(dest, addr, cmpval, newval, tmp1, tmp2, Rtemp); __ encode_heap_oop(tmp1, cmpval); cmpval = tmp1; __ encode_heap_oop(tmp2, newval); newval = tmp2; } __ mov(dest, ZR); __ bind(retry); if (((op->code() == lir_cas_obj) && !UseCompressedOops) || op->code() == lir_cas_long) { __ ldaxr(Rtemp, addr); __ cmp(Rtemp, cmpval); __ b(done, ne); __ stlxr(Rtemp, newval, addr); } else if (((op->code() == lir_cas_obj) && UseCompressedOops) || op->code() == lir_cas_int) { __ ldaxr_w(Rtemp, addr); __ cmp_w(Rtemp, cmpval); __ b(done, ne); __ stlxr_w(Rtemp, newval, addr); } else { ShouldNotReachHere(); } __ cbnz_w(Rtemp, retry); __ mov(dest, 1); __ bind(done); #else // FIXME: membar_release __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp); if (op->code() == lir_cas_int || op->code() == lir_cas_obj) { Register addr = op->addr()->as_register(); Register cmpval = op->cmp_value()->as_register(); Register newval = op->new_value()->as_register(); Register dest = op->result_opr()->as_register(); assert_different_registers(dest, addr, cmpval, newval, Rtemp); __ atomic_cas_bool(cmpval, newval, addr, 0, Rtemp); // Rtemp free by default at C1 LIR layer __ mov(dest, 1, eq); __ mov(dest, 0, ne); } else if (op->code() == lir_cas_long) { assert(VM_Version::supports_cx8(), "wrong machine"); Register addr = op->addr()->as_pointer_register(); Register cmp_value_lo = op->cmp_value()->as_register_lo(); Register cmp_value_hi = op->cmp_value()->as_register_hi(); Register new_value_lo = op->new_value()->as_register_lo(); Register new_value_hi = op->new_value()->as_register_hi(); Register dest = op->result_opr()->as_register(); Register tmp_lo = op->tmp1()->as_register_lo(); Register tmp_hi = op->tmp1()->as_register_hi(); assert_different_registers(tmp_lo, tmp_hi, cmp_value_lo, cmp_value_hi, dest, new_value_lo, new_value_hi, addr); assert(tmp_hi->encoding() == tmp_lo->encoding() + 1, "non aligned register pair"); assert(new_value_hi->encoding() == new_value_lo->encoding() + 1, "non aligned register pair"); assert((tmp_lo->encoding() & 0x1) == 0, "misaligned register pair"); assert((new_value_lo->encoding() & 0x1) == 0, "misaligned register pair"); __ atomic_cas64(tmp_lo, tmp_hi, dest, cmp_value_lo, cmp_value_hi, new_value_lo, new_value_hi, addr, 0); } else { Unimplemented(); } #endif // AARCH64 // FIXME: is full membar really needed instead of just membar_acquire? __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad | MacroAssembler::StoreStore), Rtemp); } void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) { AsmCondition acond = al; AsmCondition ncond = nv; if (opr1 != opr2) { switch (condition) { case lir_cond_equal: acond = eq; ncond = ne; break; case lir_cond_notEqual: acond = ne; ncond = eq; break; case lir_cond_less: acond = lt; ncond = ge; break; case lir_cond_lessEqual: acond = le; ncond = gt; break; case lir_cond_greaterEqual: acond = ge; ncond = lt; break; case lir_cond_greater: acond = gt; ncond = le; break; case lir_cond_aboveEqual: acond = hs; ncond = lo; break; case lir_cond_belowEqual: acond = ls; ncond = hi; break; default: ShouldNotReachHere(); } } #ifdef AARCH64 // TODO-AARCH64 implement it more efficiently if (opr1->is_register()) { reg2reg(opr1, result); } else if (opr1->is_stack()) { stack2reg(opr1, result, result->type()); } else if (opr1->is_constant()) { const2reg(opr1, result, lir_patch_none, NULL); } else { ShouldNotReachHere(); } Label skip; __ b(skip, acond); if (opr2->is_register()) { reg2reg(opr2, result); } else if (opr2->is_stack()) { stack2reg(opr2, result, result->type()); } else if (opr2->is_constant()) { const2reg(opr2, result, lir_patch_none, NULL); } else { ShouldNotReachHere(); } __ bind(skip); #else for (;;) { // two iterations only if (opr1 == result) { // do nothing } else if (opr1->is_single_cpu()) { __ mov(result->as_register(), opr1->as_register(), acond); } else if (opr1->is_double_cpu()) { __ long_move(result->as_register_lo(), result->as_register_hi(), opr1->as_register_lo(), opr1->as_register_hi(), acond); } else if (opr1->is_single_stack()) { __ ldr(result->as_register(), frame_map()->address_for_slot(opr1->single_stack_ix()), acond); } else if (opr1->is_double_stack()) { __ ldr(result->as_register_lo(), frame_map()->address_for_slot(opr1->double_stack_ix(), lo_word_offset_in_bytes), acond); __ ldr(result->as_register_hi(), frame_map()->address_for_slot(opr1->double_stack_ix(), hi_word_offset_in_bytes), acond); } else if (opr1->is_illegal()) { // do nothing: this part of the cmove has been optimized away in the peephole optimizer } else { assert(opr1->is_constant(), "must be"); LIR_Const* c = opr1->as_constant_ptr(); switch (c->type()) { case T_INT: __ mov_slow(result->as_register(), c->as_jint(), acond); break; case T_LONG: __ mov_slow(result->as_register_lo(), c->as_jint_lo(), acond); __ mov_slow(result->as_register_hi(), c->as_jint_hi(), acond); break; case T_OBJECT: __ mov_oop(result->as_register(), c->as_jobject(), 0, acond); break; case T_FLOAT: #ifdef __SOFTFP__ // not generated now. __ mov_slow(result->as_register(), c->as_jint(), acond); #else __ mov_float(result->as_float_reg(), c->as_jfloat(), acond); #endif // __SOFTFP__ break; case T_DOUBLE: #ifdef __SOFTFP__ // not generated now. __ mov_slow(result->as_register_lo(), c->as_jint_lo(), acond); __ mov_slow(result->as_register_hi(), c->as_jint_hi(), acond); #else __ mov_double(result->as_double_reg(), c->as_jdouble(), acond); #endif // __SOFTFP__ break; default: ShouldNotReachHere(); } } // Negate the condition and repeat the algorithm with the second operand if (opr1 == opr2) { break; } opr1 = opr2; acond = ncond; } #endif // AARCH64 } #if defined(AARCH64) || defined(ASSERT) static int reg_size(LIR_Opr op) { switch (op->type()) { case T_FLOAT: case T_INT: return BytesPerInt; case T_LONG: case T_DOUBLE: return BytesPerLong; case T_OBJECT: case T_ARRAY: case T_METADATA: return BytesPerWord; case T_ADDRESS: case T_ILLEGAL: // fall through default: ShouldNotReachHere(); return -1; } } #endif void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) { assert(info == NULL, "unused on this code path"); assert(dest->is_register(), "wrong items state"); if (right->is_address()) { // special case for adding shifted/extended register const Register res = dest->as_pointer_register(); const Register lreg = left->as_pointer_register(); const LIR_Address* addr = right->as_address_ptr(); assert(addr->base()->as_pointer_register() == lreg && addr->index()->is_register() && addr->disp() == 0, "must be"); int scale = addr->scale(); AsmShift shift = lsl; #ifdef AARCH64 bool is_index_extended = reg_size(addr->base()) > reg_size(addr->index()); if (scale < 0) { scale = -scale; shift = lsr; } assert(shift == lsl || !is_index_extended, "could not have extend and right shift in one operand"); assert(0 <= scale && scale <= 63, "scale is too large"); if (is_index_extended) { assert(scale <= 4, "scale is too large for add with extended register"); assert(addr->index()->is_single_cpu(), "should be"); assert(addr->index()->type() == T_INT, "should be"); assert(dest->is_double_cpu(), "should be"); assert(code == lir_add, "special case of add with extended register"); __ add(res, lreg, addr->index()->as_register(), ex_sxtw, scale); return; } else if (reg_size(dest) == BytesPerInt) { assert(reg_size(addr->base()) == reg_size(addr->index()), "should be"); assert(reg_size(addr->base()) == reg_size(dest), "should be"); AsmOperand operand(addr->index()->as_pointer_register(), shift, scale); switch (code) { case lir_add: __ add_32(res, lreg, operand); break; case lir_sub: __ sub_32(res, lreg, operand); break; default: ShouldNotReachHere(); } return; } #endif // AARCH64 assert(reg_size(addr->base()) == reg_size(addr->index()), "should be"); assert(reg_size(addr->base()) == reg_size(dest), "should be"); assert(reg_size(dest) == wordSize, "should be"); AsmOperand operand(addr->index()->as_pointer_register(), shift, scale); switch (code) { case lir_add: __ add(res, lreg, operand); break; case lir_sub: __ sub(res, lreg, operand); break; default: ShouldNotReachHere(); } #ifndef AARCH64 } else if (left->is_address()) { assert(code == lir_sub && right->is_single_cpu(), "special case used by strength_reduce_multiply()"); const LIR_Address* addr = left->as_address_ptr(); const Register res = dest->as_register(); const Register rreg = right->as_register(); assert(addr->base()->as_register() == rreg && addr->index()->is_register() && addr->disp() == 0, "must be"); __ rsb(res, rreg, AsmOperand(addr->index()->as_register(), lsl, addr->scale())); #endif // !AARCH64 } else if (dest->is_single_cpu()) { assert(left->is_single_cpu(), "unexpected left operand"); #ifdef AARCH64 assert(dest->type() == T_INT, "unexpected dest type"); assert(left->type() == T_INT, "unexpected left type"); assert(right->type() == T_INT, "unexpected right type"); #endif // AARCH64 const Register res = dest->as_register(); const Register lreg = left->as_register(); if (right->is_single_cpu()) { const Register rreg = right->as_register(); switch (code) { case lir_add: __ add_32(res, lreg, rreg); break; case lir_sub: __ sub_32(res, lreg, rreg); break; case lir_mul: __ mul_32(res, lreg, rreg); break; default: ShouldNotReachHere(); } } else { assert(right->is_constant(), "must be"); const jint c = right->as_constant_ptr()->as_jint(); if (!Assembler::is_arith_imm_in_range(c)) { BAILOUT("illegal arithmetic operand"); } switch (code) { case lir_add: __ add_32(res, lreg, c); break; case lir_sub: __ sub_32(res, lreg, c); break; default: ShouldNotReachHere(); } } } else if (dest->is_double_cpu()) { #ifdef AARCH64 assert(left->is_double_cpu() || (left->is_single_cpu() && ((left->type() == T_OBJECT) || (left->type() == T_ARRAY) || (left->type() == T_ADDRESS))), "unexpected left operand"); const Register res = dest->as_register_lo(); const Register lreg = left->as_pointer_register(); if (right->is_constant()) { assert(right->type() == T_LONG, "unexpected right type"); assert((right->as_constant_ptr()->as_jlong() >> 24) == 0, "out of range"); jint imm = (jint)right->as_constant_ptr()->as_jlong(); switch (code) { case lir_add: __ add(res, lreg, imm); break; case lir_sub: __ sub(res, lreg, imm); break; default: ShouldNotReachHere(); } } else { assert(right->is_double_cpu() || (right->is_single_cpu() && ((right->type() == T_OBJECT) || (right->type() == T_ARRAY) || (right->type() == T_ADDRESS))), "unexpected right operand"); const Register rreg = right->as_pointer_register(); switch (code) { case lir_add: __ add(res, lreg, rreg); break; case lir_sub: __ sub(res, lreg, rreg); break; case lir_mul: __ mul(res, lreg, rreg); break; default: ShouldNotReachHere(); } } #else // AARCH64 Register res_lo = dest->as_register_lo(); Register res_hi = dest->as_register_hi(); Register lreg_lo = left->as_register_lo(); Register lreg_hi = left->as_register_hi(); if (right->is_double_cpu()) { Register rreg_lo = right->as_register_lo(); Register rreg_hi = right->as_register_hi(); if (res_lo == lreg_hi || res_lo == rreg_hi) { res_lo = Rtemp; } switch (code) { case lir_add: __ adds(res_lo, lreg_lo, rreg_lo); __ adc(res_hi, lreg_hi, rreg_hi); break; case lir_sub: __ subs(res_lo, lreg_lo, rreg_lo); __ sbc(res_hi, lreg_hi, rreg_hi); break; default: ShouldNotReachHere(); } } else { assert(right->is_constant(), "must be"); assert((right->as_constant_ptr()->as_jlong() >> 32) == 0, "out of range"); const jint c = (jint) right->as_constant_ptr()->as_jlong(); if (res_lo == lreg_hi) { res_lo = Rtemp; } switch (code) { case lir_add: __ adds(res_lo, lreg_lo, c); __ adc(res_hi, lreg_hi, 0); break; case lir_sub: __ subs(res_lo, lreg_lo, c); __ sbc(res_hi, lreg_hi, 0); break; default: ShouldNotReachHere(); } } move_regs(res_lo, dest->as_register_lo()); #endif // AARCH64 } else if (dest->is_single_fpu()) { assert(left->is_single_fpu(), "must be"); assert(right->is_single_fpu(), "must be"); const FloatRegister res = dest->as_float_reg(); const FloatRegister lreg = left->as_float_reg(); const FloatRegister rreg = right->as_float_reg(); switch (code) { case lir_add: __ add_float(res, lreg, rreg); break; case lir_sub: __ sub_float(res, lreg, rreg); break; case lir_mul_strictfp: // fall through case lir_mul: __ mul_float(res, lreg, rreg); break; case lir_div_strictfp: // fall through case lir_div: __ div_float(res, lreg, rreg); break; default: ShouldNotReachHere(); } } else if (dest->is_double_fpu()) { assert(left->is_double_fpu(), "must be"); assert(right->is_double_fpu(), "must be"); const FloatRegister res = dest->as_double_reg(); const FloatRegister lreg = left->as_double_reg(); const FloatRegister rreg = right->as_double_reg(); switch (code) { case lir_add: __ add_double(res, lreg, rreg); break; case lir_sub: __ sub_double(res, lreg, rreg); break; case lir_mul_strictfp: // fall through case lir_mul: __ mul_double(res, lreg, rreg); break; case lir_div_strictfp: // fall through case lir_div: __ div_double(res, lreg, rreg); break; default: ShouldNotReachHere(); } } else { ShouldNotReachHere(); } } void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) { switch (code) { case lir_abs: __ abs_double(dest->as_double_reg(), value->as_double_reg()); break; case lir_sqrt: __ sqrt_double(dest->as_double_reg(), value->as_double_reg()); break; default: ShouldNotReachHere(); } } void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) { assert(dest->is_register(), "wrong items state"); assert(left->is_register(), "wrong items state"); if (dest->is_single_cpu()) { #ifdef AARCH64 assert (dest->type() == T_INT, "unexpected result type"); assert (left->type() == T_INT, "unexpected left type"); assert (right->type() == T_INT, "unexpected right type"); #endif // AARCH64 const Register res = dest->as_register(); const Register lreg = left->as_register(); if (right->is_single_cpu()) { const Register rreg = right->as_register(); switch (code) { case lir_logic_and: __ and_32(res, lreg, rreg); break; case lir_logic_or: __ orr_32(res, lreg, rreg); break; case lir_logic_xor: __ eor_32(res, lreg, rreg); break; default: ShouldNotReachHere(); } } else { assert(right->is_constant(), "must be"); const uint c = (uint)right->as_constant_ptr()->as_jint(); switch (code) { case lir_logic_and: __ and_32(res, lreg, c); break; case lir_logic_or: __ orr_32(res, lreg, c); break; case lir_logic_xor: __ eor_32(res, lreg, c); break; default: ShouldNotReachHere(); } } } else { assert(dest->is_double_cpu(), "should be"); Register res_lo = dest->as_register_lo(); #ifdef AARCH64 assert ((left->is_single_cpu() && left->is_oop_register()) || left->is_double_cpu(), "should be"); const Register lreg_lo = left->as_pointer_register(); #else assert (dest->type() == T_LONG, "unexpected result type"); assert (left->type() == T_LONG, "unexpected left type"); assert (right->type() == T_LONG, "unexpected right type"); const Register res_hi = dest->as_register_hi(); const Register lreg_lo = left->as_register_lo(); const Register lreg_hi = left->as_register_hi(); #endif // AARCH64 if (right->is_register()) { #ifdef AARCH64 assert ((right->is_single_cpu() && right->is_oop_register()) || right->is_double_cpu(), "should be"); const Register rreg_lo = right->as_pointer_register(); switch (code) { case lir_logic_and: __ andr(res_lo, lreg_lo, rreg_lo); break; case lir_logic_or: __ orr (res_lo, lreg_lo, rreg_lo); break; case lir_logic_xor: __ eor (res_lo, lreg_lo, rreg_lo); break; default: ShouldNotReachHere(); } #else const Register rreg_lo = right->as_register_lo(); const Register rreg_hi = right->as_register_hi(); if (res_lo == lreg_hi || res_lo == rreg_hi) { res_lo = Rtemp; // Temp register helps to avoid overlap between result and input } switch (code) { case lir_logic_and: __ andr(res_lo, lreg_lo, rreg_lo); __ andr(res_hi, lreg_hi, rreg_hi); break; case lir_logic_or: __ orr(res_lo, lreg_lo, rreg_lo); __ orr(res_hi, lreg_hi, rreg_hi); break; case lir_logic_xor: __ eor(res_lo, lreg_lo, rreg_lo); __ eor(res_hi, lreg_hi, rreg_hi); break; default: ShouldNotReachHere(); } move_regs(res_lo, dest->as_register_lo()); #endif // AARCH64 } else { assert(right->is_constant(), "must be"); #ifdef AARCH64 const julong c = (julong)right->as_constant_ptr()->as_jlong(); Assembler::LogicalImmediate imm(c, false); if (imm.is_encoded()) { switch (code) { case lir_logic_and: __ andr(res_lo, lreg_lo, imm); break; case lir_logic_or: __ orr (res_lo, lreg_lo, imm); break; case lir_logic_xor: __ eor (res_lo, lreg_lo, imm); break; default: ShouldNotReachHere(); } } else { BAILOUT("64 bit constant cannot be inlined"); } #else const jint c_lo = (jint) right->as_constant_ptr()->as_jlong(); const jint c_hi = (jint) (right->as_constant_ptr()->as_jlong() >> 32); // Case for logic_or from do_ClassIDIntrinsic() if (c_hi == 0 && AsmOperand::is_rotated_imm(c_lo)) { switch (code) { case lir_logic_and: __ andr(res_lo, lreg_lo, c_lo); __ mov(res_hi, 0); break; case lir_logic_or: __ orr(res_lo, lreg_lo, c_lo); break; case lir_logic_xor: __ eor(res_lo, lreg_lo, c_lo); break; default: ShouldNotReachHere(); } } else if (code == lir_logic_and && c_hi == -1 && (AsmOperand::is_rotated_imm(c_lo) || AsmOperand::is_rotated_imm(~c_lo))) { // Another case which handles logic_and from do_ClassIDIntrinsic() if (AsmOperand::is_rotated_imm(c_lo)) { __ andr(res_lo, lreg_lo, c_lo); } else { __ bic(res_lo, lreg_lo, ~c_lo); } if (res_hi != lreg_hi) { __ mov(res_hi, lreg_hi); } } else { BAILOUT("64 bit constant cannot be inlined"); } #endif // AARCH64 } } } #ifdef AARCH64 void LIR_Assembler::long_compare_helper(LIR_Opr opr1, LIR_Opr opr2) { assert(opr1->is_double_cpu(), "should be"); Register x = opr1->as_register_lo(); if (opr2->is_double_cpu()) { Register y = opr2->as_register_lo(); __ cmp(x, y); } else { assert(opr2->is_constant(), "should be"); assert(opr2->as_constant_ptr()->type() == T_LONG, "long constant expected"); jlong c = opr2->as_jlong(); assert(((c >> 31) == 0) || ((c >> 31) == -1), "immediate is out of range"); if (c >= 0) { __ cmp(x, (jint)c); } else { __ cmn(x, (jint)(-c)); } } } #endif // AARCH64 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { if (opr1->is_single_cpu()) { if (opr2->is_constant()) { switch (opr2->as_constant_ptr()->type()) { case T_INT: { const jint c = opr2->as_constant_ptr()->as_jint(); if (Assembler::is_arith_imm_in_range(c)) { __ cmp_32(opr1->as_register(), c); } else if (Assembler::is_arith_imm_in_range(-c)) { __ cmn_32(opr1->as_register(), -c); } else { // This can happen when compiling lookupswitch __ mov_slow(Rtemp, c); __ cmp_32(opr1->as_register(), Rtemp); } break; } case T_OBJECT: assert(opr2->as_constant_ptr()->as_jobject() == NULL, "cannot handle otherwise"); __ cmp(opr1->as_register(), 0); break; default: ShouldNotReachHere(); } } else if (opr2->is_single_cpu()) { if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY || opr1->type() == T_METADATA || opr1->type() == T_ADDRESS) { assert(opr2->type() == T_OBJECT || opr2->type() == T_ARRAY || opr2->type() == T_METADATA || opr2->type() == T_ADDRESS, "incompatibe type"); __ cmp(opr1->as_register(), opr2->as_register()); } else { assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY && opr2->type() != T_METADATA && opr2->type() != T_ADDRESS, "incompatibe type"); __ cmp_32(opr1->as_register(), opr2->as_register()); } } else { ShouldNotReachHere(); } } else if (opr1->is_double_cpu()) { #ifdef AARCH64 long_compare_helper(opr1, opr2); #else Register xlo = opr1->as_register_lo(); Register xhi = opr1->as_register_hi(); if (opr2->is_constant() && opr2->as_jlong() == 0) { assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "cannot handle otherwise"); __ orrs(Rtemp, xlo, xhi); } else if (opr2->is_register()) { Register ylo = opr2->as_register_lo(); Register yhi = opr2->as_register_hi(); if (condition == lir_cond_equal || condition == lir_cond_notEqual) { __ teq(xhi, yhi); __ teq(xlo, ylo, eq); } else { __ subs(xlo, xlo, ylo); __ sbcs(xhi, xhi, yhi); } } else { ShouldNotReachHere(); } #endif // AARCH64 } else if (opr1->is_single_fpu()) { if (opr2->is_constant()) { assert(opr2->as_jfloat() == 0.0f, "cannot handle otherwise"); __ cmp_zero_float(opr1->as_float_reg()); } else { __ cmp_float(opr1->as_float_reg(), opr2->as_float_reg()); } } else if (opr1->is_double_fpu()) { if (opr2->is_constant()) { assert(opr2->as_jdouble() == 0.0, "cannot handle otherwise"); __ cmp_zero_double(opr1->as_double_reg()); } else { __ cmp_double(opr1->as_double_reg(), opr2->as_double_reg()); } } else { ShouldNotReachHere(); } } void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) { const Register res = dst->as_register(); if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { comp_op(lir_cond_unknown, left, right, op); #ifdef AARCH64 if (code == lir_ucmp_fd2i) { // unordered is less __ cset(res, gt); // 1 if '>', else 0 __ csinv(res, res, ZR, ge); // previous value if '>=', else -1 } else { __ cset(res, hi); // 1 if '>' or unordered, else 0 __ csinv(res, res, ZR, pl); // previous value if '>=' or unordered, else -1 } #else __ fmstat(); if (code == lir_ucmp_fd2i) { // unordered is less __ mvn(res, 0, lt); __ mov(res, 1, ge); } else { // unordered is greater __ mov(res, 1, cs); __ mvn(res, 0, cc); } __ mov(res, 0, eq); #endif // AARCH64 } else { assert(code == lir_cmp_l2i, "must be"); #ifdef AARCH64 long_compare_helper(left, right); __ cset(res, gt); // 1 if '>', else 0 __ csinv(res, res, ZR, ge); // previous value if '>=', else -1 #else Label done; const Register xlo = left->as_register_lo(); const Register xhi = left->as_register_hi(); const Register ylo = right->as_register_lo(); const Register yhi = right->as_register_hi(); __ cmp(xhi, yhi); __ mov(res, 1, gt); __ mvn(res, 0, lt); __ b(done, ne); __ subs(res, xlo, ylo); __ mov(res, 1, hi); __ mvn(res, 0, lo); __ bind(done); #endif // AARCH64 } } void LIR_Assembler::align_call(LIR_Code code) { // Not needed } void LIR_Assembler::call(LIR_OpJavaCall *op, relocInfo::relocType rtype) { int ret_addr_offset = __ patchable_call(op->addr(), rtype); assert(ret_addr_offset == __ offset(), "embedded return address not allowed"); add_call_info_here(op->info()); } void LIR_Assembler::ic_call(LIR_OpJavaCall *op) { bool near_range = __ cache_fully_reachable(); address oop_address = pc(); bool use_movw = AARCH64_ONLY(false) NOT_AARCH64(VM_Version::supports_movw()); // Ricklass may contain something that is not a metadata pointer so // mov_metadata can't be used InlinedAddress value((address)Universe::non_oop_word()); InlinedAddress addr(op->addr()); if (use_movw) { #ifdef AARCH64 ShouldNotReachHere(); #else __ movw(Ricklass, ((unsigned int)Universe::non_oop_word()) & 0xffff); __ movt(Ricklass, ((unsigned int)Universe::non_oop_word()) >> 16); #endif // AARCH64 } else { // No movw/movt, must be load a pc relative value but no // relocation so no metadata table to load from. // Use a b instruction rather than a bl, inline constant after the // branch, use a PC relative ldr to load the constant, arrange for // the call to return after the constant(s). __ ldr_literal(Ricklass, value); } __ relocate(virtual_call_Relocation::spec(oop_address)); if (near_range && use_movw) { __ bl(op->addr()); } else { Label call_return; __ adr(LR, call_return); if (near_range) { __ b(op->addr()); } else { __ indirect_jump(addr, Rtemp); __ bind_literal(addr); } if (!use_movw) { __ bind_literal(value); } __ bind(call_return); } add_call_info(code_offset(), op->info()); } /* Currently, vtable-dispatch is only enabled for sparc platforms */ void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) { ShouldNotReachHere(); } void LIR_Assembler::emit_static_call_stub() { address call_pc = __ pc(); address stub = __ start_a_stub(call_stub_size); if (stub == NULL) { BAILOUT("static call stub overflow"); } DEBUG_ONLY(int offset = code_offset();) InlinedMetadata metadata_literal(NULL); __ relocate(static_stub_Relocation::spec(call_pc)); // If not a single instruction, NativeMovConstReg::next_instruction_address() // must jump over the whole following ldr_literal. // (See CompiledStaticCall::set_to_interpreted()) #ifdef ASSERT address ldr_site = __ pc(); #endif __ ldr_literal(Rmethod, metadata_literal); assert(nativeMovConstReg_at(ldr_site)->next_instruction_address() == __ pc(), "Fix ldr_literal or its parsing"); bool near_range = __ cache_fully_reachable(); InlinedAddress dest((address)-1); if (near_range) { address branch_site = __ pc(); __ b(branch_site); // b to self maps to special NativeJump -1 destination } else { __ indirect_jump(dest, Rtemp); } __ bind_literal(metadata_literal); // includes spec_for_immediate reloc if (!near_range) { __ bind_literal(dest); // special NativeJump -1 destination } assert(code_offset() - offset <= call_stub_size, "overflow"); __ end_a_stub(); } void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { assert(exceptionOop->as_register() == Rexception_obj, "must match"); assert(exceptionPC->as_register() == Rexception_pc, "must match"); info->add_register_oop(exceptionOop); Runtime1::StubID handle_id = compilation()->has_fpu_code() ? Runtime1::handle_exception_id : Runtime1::handle_exception_nofpu_id; Label return_address; __ adr(Rexception_pc, return_address); __ call(Runtime1::entry_for(handle_id), relocInfo::runtime_call_type); __ bind(return_address); add_call_info_here(info); // for exception handler } void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { assert(exceptionOop->as_register() == Rexception_obj, "must match"); __ b(_unwind_handler_entry); } void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { #ifdef AARCH64 if (dest->is_single_cpu()) { Register res = dest->as_register(); Register x = left->as_register(); Register y = count->as_register(); assert (dest->type() == T_INT, "unexpected result type"); assert (left->type() == T_INT, "unexpected left type"); switch (code) { case lir_shl: __ lslv_w(res, x, y); break; case lir_shr: __ asrv_w(res, x, y); break; case lir_ushr: __ lsrv_w(res, x, y); break; default: ShouldNotReachHere(); } } else if (dest->is_double_cpu()) { Register res = dest->as_register_lo(); Register x = left->as_register_lo(); Register y = count->as_register(); switch (code) { case lir_shl: __ lslv(res, x, y); break; case lir_shr: __ asrv(res, x, y); break; case lir_ushr: __ lsrv(res, x, y); break; default: ShouldNotReachHere(); } } else { ShouldNotReachHere(); } #else AsmShift shift = lsl; switch (code) { case lir_shl: shift = lsl; break; case lir_shr: shift = asr; break; case lir_ushr: shift = lsr; break; default: ShouldNotReachHere(); } if (dest->is_single_cpu()) { __ andr(Rtemp, count->as_register(), 31); __ mov(dest->as_register(), AsmOperand(left->as_register(), shift, Rtemp)); } else if (dest->is_double_cpu()) { Register dest_lo = dest->as_register_lo(); Register dest_hi = dest->as_register_hi(); Register src_lo = left->as_register_lo(); Register src_hi = left->as_register_hi(); Register Rcount = count->as_register(); // Resolve possible register conflicts if (shift == lsl && dest_hi == src_lo) { dest_hi = Rtemp; } else if (shift != lsl && dest_lo == src_hi) { dest_lo = Rtemp; } else if (dest_lo == src_lo && dest_hi == src_hi) { dest_lo = Rtemp; } else if (dest_lo == Rcount || dest_hi == Rcount) { Rcount = Rtemp; } __ andr(Rcount, count->as_register(), 63); __ long_shift(dest_lo, dest_hi, src_lo, src_hi, shift, Rcount); move_regs(dest_lo, dest->as_register_lo()); move_regs(dest_hi, dest->as_register_hi()); } else { ShouldNotReachHere(); } #endif // AARCH64 } void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { #ifdef AARCH64 if (dest->is_single_cpu()) { assert (dest->type() == T_INT, "unexpected result type"); assert (left->type() == T_INT, "unexpected left type"); count &= 31; if (count != 0) { switch (code) { case lir_shl: __ _lsl_w(dest->as_register(), left->as_register(), count); break; case lir_shr: __ _asr_w(dest->as_register(), left->as_register(), count); break; case lir_ushr: __ _lsr_w(dest->as_register(), left->as_register(), count); break; default: ShouldNotReachHere(); } } else { move_regs(left->as_register(), dest->as_register()); } } else if (dest->is_double_cpu()) { count &= 63; if (count != 0) { switch (code) { case lir_shl: __ _lsl(dest->as_register_lo(), left->as_register_lo(), count); break; case lir_shr: __ _asr(dest->as_register_lo(), left->as_register_lo(), count); break; case lir_ushr: __ _lsr(dest->as_register_lo(), left->as_register_lo(), count); break; default: ShouldNotReachHere(); } } else { move_regs(left->as_register_lo(), dest->as_register_lo()); } } else { ShouldNotReachHere(); } #else AsmShift shift = lsl; switch (code) { case lir_shl: shift = lsl; break; case lir_shr: shift = asr; break; case lir_ushr: shift = lsr; break; default: ShouldNotReachHere(); } if (dest->is_single_cpu()) { count &= 31; if (count != 0) { __ mov(dest->as_register(), AsmOperand(left->as_register(), shift, count)); } else { move_regs(left->as_register(), dest->as_register()); } } else if (dest->is_double_cpu()) { count &= 63; if (count != 0) { Register dest_lo = dest->as_register_lo(); Register dest_hi = dest->as_register_hi(); Register src_lo = left->as_register_lo(); Register src_hi = left->as_register_hi(); // Resolve possible register conflicts if (shift == lsl && dest_hi == src_lo) { dest_hi = Rtemp; } else if (shift != lsl && dest_lo == src_hi) { dest_lo = Rtemp; } __ long_shift(dest_lo, dest_hi, src_lo, src_hi, shift, count); move_regs(dest_lo, dest->as_register_lo()); move_regs(dest_hi, dest->as_register_hi()); } else { __ long_move(dest->as_register_lo(), dest->as_register_hi(), left->as_register_lo(), left->as_register_hi()); } } else { ShouldNotReachHere(); } #endif // AARCH64 } // Saves 4 given registers in reserved argument area. void LIR_Assembler::save_in_reserved_area(Register r1, Register r2, Register r3, Register r4) { verify_reserved_argument_area_size(4); #ifdef AARCH64 __ stp(r1, r2, Address(SP, 0)); __ stp(r3, r4, Address(SP, 2*wordSize)); #else __ stmia(SP, RegisterSet(r1) | RegisterSet(r2) | RegisterSet(r3) | RegisterSet(r4)); #endif // AARCH64 } // Restores 4 given registers from reserved argument area. void LIR_Assembler::restore_from_reserved_area(Register r1, Register r2, Register r3, Register r4) { #ifdef AARCH64 __ ldp(r1, r2, Address(SP, 0)); __ ldp(r3, r4, Address(SP, 2*wordSize)); #else __ ldmia(SP, RegisterSet(r1) | RegisterSet(r2) | RegisterSet(r3) | RegisterSet(r4), no_writeback); #endif // AARCH64 } void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { ciArrayKlass* default_type = op->expected_type(); Register src = op->src()->as_register(); Register src_pos = op->src_pos()->as_register(); Register dst = op->dst()->as_register(); Register dst_pos = op->dst_pos()->as_register(); Register length = op->length()->as_register(); Register tmp = op->tmp()->as_register(); Register tmp2 = Rtemp; assert(src == R0 && src_pos == R1 && dst == R2 && dst_pos == R3, "code assumption"); #ifdef AARCH64 assert(length == R4, "code assumption"); #endif // AARCH64 CodeStub* stub = op->stub(); int flags = op->flags(); BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL; if (basic_type == T_ARRAY) basic_type = T_OBJECT; // If we don't know anything or it's an object array, just go through the generic arraycopy if (default_type == NULL) { // save arguments, because they will be killed by a runtime call save_in_reserved_area(R0, R1, R2, R3); #ifdef AARCH64 // save length argument, will be killed by a runtime call __ raw_push(length, ZR); #else // pass length argument on SP[0] __ str(length, Address(SP, -2*wordSize, pre_indexed)); // 2 words for a proper stack alignment #endif // AARCH64 address copyfunc_addr = StubRoutines::generic_arraycopy(); if (copyfunc_addr == NULL) { // Use C version if stub was not generated __ call(CAST_FROM_FN_PTR(address, Runtime1::arraycopy)); } else { #ifndef PRODUCT if (PrintC1Statistics) { __ inc_counter((address)&Runtime1::_generic_arraycopystub_cnt, tmp, tmp2); } #endif // !PRODUCT // the stub is in the code cache so close enough __ call(copyfunc_addr, relocInfo::runtime_call_type); } #ifdef AARCH64 __ raw_pop(length, ZR); #else __ add(SP, SP, 2*wordSize); #endif // AARCH64 __ cbz_32(R0, *stub->continuation()); if (copyfunc_addr != NULL) { __ mvn_32(tmp, R0); restore_from_reserved_area(R0, R1, R2, R3); // load saved arguments in slow case only __ sub_32(length, length, tmp); __ add_32(src_pos, src_pos, tmp); __ add_32(dst_pos, dst_pos, tmp); } else { restore_from_reserved_area(R0, R1, R2, R3); // load saved arguments in slow case only } __ b(*stub->entry()); __ bind(*stub->continuation()); return; } assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); int elem_size = type2aelembytes(basic_type); int shift = exact_log2(elem_size); // Check for NULL if (flags & LIR_OpArrayCopy::src_null_check) { if (flags & LIR_OpArrayCopy::dst_null_check) { __ cmp(src, 0); __ cond_cmp(dst, 0, ne); // make one instruction shorter if both checks are needed __ b(*stub->entry(), eq); } else { __ cbz(src, *stub->entry()); } } else if (flags & LIR_OpArrayCopy::dst_null_check) { __ cbz(dst, *stub->entry()); } // If the compiler was not able to prove that exact type of the source or the destination // of the arraycopy is an array type, check at runtime if the source or the destination is // an instance type. if (flags & LIR_OpArrayCopy::type_check) { if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) { __ load_klass(tmp, dst); __ ldr_u32(tmp2, Address(tmp, in_bytes(Klass::layout_helper_offset()))); __ mov_slow(tmp, Klass::_lh_neutral_value); __ cmp_32(tmp2, tmp); __ b(*stub->entry(), ge); } if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) { __ load_klass(tmp, src); __ ldr_u32(tmp2, Address(tmp, in_bytes(Klass::layout_helper_offset()))); __ mov_slow(tmp, Klass::_lh_neutral_value); __ cmp_32(tmp2, tmp); __ b(*stub->entry(), ge); } } // Check if negative const int all_positive_checks = LIR_OpArrayCopy::src_pos_positive_check | LIR_OpArrayCopy::dst_pos_positive_check | LIR_OpArrayCopy::length_positive_check; switch (flags & all_positive_checks) { case LIR_OpArrayCopy::src_pos_positive_check: __ branch_if_negative_32(src_pos, *stub->entry()); break; case LIR_OpArrayCopy::dst_pos_positive_check: __ branch_if_negative_32(dst_pos, *stub->entry()); break; case LIR_OpArrayCopy::length_positive_check: __ branch_if_negative_32(length, *stub->entry()); break; case LIR_OpArrayCopy::src_pos_positive_check | LIR_OpArrayCopy::dst_pos_positive_check: __ branch_if_any_negative_32(src_pos, dst_pos, tmp, *stub->entry()); break; case LIR_OpArrayCopy::src_pos_positive_check | LIR_OpArrayCopy::length_positive_check: __ branch_if_any_negative_32(src_pos, length, tmp, *stub->entry()); break; case LIR_OpArrayCopy::dst_pos_positive_check | LIR_OpArrayCopy::length_positive_check: __ branch_if_any_negative_32(dst_pos, length, tmp, *stub->entry()); break; case all_positive_checks: __ branch_if_any_negative_32(src_pos, dst_pos, length, tmp, *stub->entry()); break; default: assert((flags & all_positive_checks) == 0, "the last option"); } // Range checks if (flags & LIR_OpArrayCopy::src_range_check) { __ ldr_s32(tmp2, Address(src, arrayOopDesc::length_offset_in_bytes())); __ add_32(tmp, src_pos, length); __ cmp_32(tmp, tmp2); __ b(*stub->entry(), hi); } if (flags & LIR_OpArrayCopy::dst_range_check) { __ ldr_s32(tmp2, Address(dst, arrayOopDesc::length_offset_in_bytes())); __ add_32(tmp, dst_pos, length); __ cmp_32(tmp, tmp2); __ b(*stub->entry(), hi); } // Check if src and dst are of the same type if (flags & LIR_OpArrayCopy::type_check) { // We don't know the array types are compatible if (basic_type != T_OBJECT) { // Simple test for basic type arrays if (UseCompressedClassPointers) { // We don't need decode because we just need to compare __ ldr_u32(tmp, Address(src, oopDesc::klass_offset_in_bytes())); __ ldr_u32(tmp2, Address(dst, oopDesc::klass_offset_in_bytes())); __ cmp_32(tmp, tmp2); } else { __ load_klass(tmp, src); __ load_klass(tmp2, dst); __ cmp(tmp, tmp2); } __ b(*stub->entry(), ne); } else { // For object arrays, if src is a sub class of dst then we can // safely do the copy. Label cont, slow; address copyfunc_addr = StubRoutines::checkcast_arraycopy(); __ load_klass(tmp, src); __ load_klass(tmp2, dst); // We are at a call so all live registers are saved before we // get here assert_different_registers(tmp, tmp2, R6, altFP_7_11); __ check_klass_subtype_fast_path(tmp, tmp2, R6, altFP_7_11, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL); __ mov(R6, R0); __ mov(altFP_7_11, R1); __ mov(R0, tmp); __ mov(R1, tmp2); __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type); // does not blow any registers except R0, LR and Rtemp __ cmp_32(R0, 0); __ mov(R0, R6); __ mov(R1, altFP_7_11); if (copyfunc_addr != NULL) { // use stub if available // src is not a sub class of dst so we have to do a // per-element check. __ b(cont, ne); __ bind(slow); int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; if ((flags & mask) != mask) { // Check that at least both of them object arrays. assert(flags & mask, "one of the two should be known to be an object array"); if (!(flags & LIR_OpArrayCopy::src_objarray)) { __ load_klass(tmp, src); } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { __ load_klass(tmp, dst); } int lh_offset = in_bytes(Klass::layout_helper_offset()); __ ldr_u32(tmp2, Address(tmp, lh_offset)); jint objArray_lh = Klass::array_layout_helper(T_OBJECT); __ mov_slow(tmp, objArray_lh); __ cmp_32(tmp, tmp2); __ b(*stub->entry(), ne); } save_in_reserved_area(R0, R1, R2, R3); Register src_ptr = R0; Register dst_ptr = R1; Register len = R2; Register chk_off = R3; Register super_k = AARCH64_ONLY(R4) NOT_AARCH64(tmp); __ add(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type)); __ add_ptr_scaled_int32(src_ptr, src_ptr, src_pos, shift); __ add(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type)); __ add_ptr_scaled_int32(dst_ptr, dst_ptr, dst_pos, shift); __ load_klass(tmp, dst); int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset()); int sco_offset = in_bytes(Klass::super_check_offset_offset()); #ifdef AARCH64 __ raw_push(length, ZR); // Preserve length around *copyfunc_addr call __ mov(len, length); __ ldr(super_k, Address(tmp, ek_offset)); // super_k == R4 == length, so this load cannot be performed earlier // TODO-AARCH64: check whether it is faster to load super klass early by using tmp and additional mov. __ ldr_u32(chk_off, Address(super_k, sco_offset)); #else // AARCH64 __ ldr(super_k, Address(tmp, ek_offset)); __ mov(len, length); __ ldr_u32(chk_off, Address(super_k, sco_offset)); __ push(super_k); #endif // AARCH64 __ call(copyfunc_addr, relocInfo::runtime_call_type); #ifndef PRODUCT if (PrintC1Statistics) { Label failed; __ cbnz_32(R0, failed); __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, tmp, tmp2); __ bind(failed); } #endif // PRODUCT #ifdef AARCH64 __ raw_pop(length, ZR); #else __ add(SP, SP, wordSize); // Drop super_k argument #endif // AARCH64 __ cbz_32(R0, *stub->continuation()); __ mvn_32(tmp, R0); // load saved arguments in slow case only restore_from_reserved_area(R0, R1, R2, R3); __ sub_32(length, length, tmp); __ add_32(src_pos, src_pos, tmp); __ add_32(dst_pos, dst_pos, tmp); #ifndef PRODUCT if (PrintC1Statistics) { __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, tmp, tmp2); } #endif __ b(*stub->entry()); __ bind(cont); } else { __ b(*stub->entry(), eq); __ bind(cont); } } } #ifndef PRODUCT if (PrintC1Statistics) { address counter = Runtime1::arraycopy_count_address(basic_type); __ inc_counter(counter, tmp, tmp2); } #endif // !PRODUCT bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; const char *name; address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); Register src_ptr = R0; Register dst_ptr = R1; Register len = R2; __ add(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type)); __ add_ptr_scaled_int32(src_ptr, src_ptr, src_pos, shift); __ add(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type)); __ add_ptr_scaled_int32(dst_ptr, dst_ptr, dst_pos, shift); __ mov(len, length); __ call(entry, relocInfo::runtime_call_type); __ bind(*stub->continuation()); } #ifdef ASSERT // emit run-time assertion void LIR_Assembler::emit_assert(LIR_OpAssert* op) { assert(op->code() == lir_assert, "must be"); #ifdef AARCH64 __ NOT_IMPLEMENTED(); #else if (op->in_opr1()->is_valid()) { assert(op->in_opr2()->is_valid(), "both operands must be valid"); comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op); } else { assert(op->in_opr2()->is_illegal(), "both operands must be illegal"); assert(op->condition() == lir_cond_always, "no other conditions allowed"); } Label ok; if (op->condition() != lir_cond_always) { AsmCondition acond; switch (op->condition()) { case lir_cond_equal: acond = eq; break; case lir_cond_notEqual: acond = ne; break; case lir_cond_less: acond = lt; break; case lir_cond_lessEqual: acond = le; break; case lir_cond_greaterEqual: acond = ge; break; case lir_cond_greater: acond = gt; break; case lir_cond_aboveEqual: acond = hs; break; case lir_cond_belowEqual: acond = ls; break; default: ShouldNotReachHere(); } __ b(ok, acond); } if (op->halt()) { const char* str = __ code_string(op->msg()); __ stop(str); } else { breakpoint(); } __ bind(ok); #endif // AARCH64 } #endif // ASSERT void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { fatal("CRC32 intrinsic is not implemented on this platform"); } void LIR_Assembler::emit_lock(LIR_OpLock* op) { Register obj = op->obj_opr()->as_pointer_register(); Register hdr = op->hdr_opr()->as_pointer_register(); Register lock = op->lock_opr()->as_pointer_register(); Register tmp = op->scratch_opr()->is_illegal() ? noreg : op->scratch_opr()->as_pointer_register(); if (!UseFastLocking) { __ b(*op->stub()->entry()); } else if (op->code() == lir_lock) { assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry()); if (op->info() != NULL) { add_debug_info_for_null_check(null_check_offset, op->info()); } } else if (op->code() == lir_unlock) { __ unlock_object(hdr, obj, lock, tmp, *op->stub()->entry()); } else { ShouldNotReachHere(); } __ bind(*op->stub()->continuation()); } void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { ciMethod* method = op->profiled_method(); int bci = op->profiled_bci(); ciMethod* callee = op->profiled_callee(); // Update counter for all call types ciMethodData* md = method->method_data_or_null(); assert(md != NULL, "Sanity"); ciProfileData* data = md->bci_to_data(bci); assert(data->is_CounterData(), "need CounterData for calls"); assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); Register mdo = op->mdo()->as_register(); assert(op->tmp1()->is_register(), "tmp1 must be allocated"); Register tmp1 = op->tmp1()->as_pointer_register(); assert_different_registers(mdo, tmp1); __ mov_metadata(mdo, md->constant_encoding()); int mdo_offset_bias = 0; int max_offset = AARCH64_ONLY(4096 << LogBytesPerWord) NOT_AARCH64(4096); if (md->byte_offset_of_slot(data, CounterData::count_offset()) + data->size_in_bytes() >= max_offset) { // The offset is large so bias the mdo by the base of the slot so // that the ldr can use an immediate offset to reference the slots of the data mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset()); __ mov_slow(tmp1, mdo_offset_bias); __ add(mdo, mdo, tmp1); } Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias); Bytecodes::Code bc = method->java_code_at_bci(bci); const bool callee_is_static = callee->is_loaded() && callee->is_static(); // Perform additional virtual call profiling for invokevirtual and // invokeinterface bytecodes if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) && !callee_is_static && // required for optimized MH invokes C1ProfileVirtualCalls) { assert(op->recv()->is_single_cpu(), "recv must be allocated"); Register recv = op->recv()->as_register(); assert_different_registers(mdo, tmp1, recv); assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); ciKlass* known_klass = op->known_holder(); if (C1OptimizeVirtualCallProfiling && known_klass != NULL) { // We know the type that will be seen at this call site; we can // statically update the MethodData* rather than needing to do // dynamic tests on the receiver type // NOTE: we should probably put a lock around this search to // avoid collisions by concurrent compilations ciVirtualCallData* vc_data = (ciVirtualCallData*) data; uint i; for (i = 0; i < VirtualCallData::row_limit(); i++) { ciKlass* receiver = vc_data->receiver(i); if (known_klass->equals(receiver)) { Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias); __ ldr(tmp1, data_addr); __ add(tmp1, tmp1, DataLayout::counter_increment); __ str(tmp1, data_addr); return; } } // Receiver type not found in profile data; select an empty slot // Note that this is less efficient than it should be because it // always does a write to the receiver part of the // VirtualCallData rather than just the first time for (i = 0; i < VirtualCallData::row_limit(); i++) { ciKlass* receiver = vc_data->receiver(i); if (receiver == NULL) { Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) - mdo_offset_bias); __ mov_metadata(tmp1, known_klass->constant_encoding()); __ str(tmp1, recv_addr); Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias); __ ldr(tmp1, data_addr); __ add(tmp1, tmp1, DataLayout::counter_increment); __ str(tmp1, data_addr); return; } } } else { __ load_klass(recv, recv); Label update_done; type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done); // Receiver did not match any saved receiver and there is no empty row for it. // Increment total counter to indicate polymorphic case. __ ldr(tmp1, counter_addr); __ add(tmp1, tmp1, DataLayout::counter_increment); __ str(tmp1, counter_addr); __ bind(update_done); } } else { // Static call __ ldr(tmp1, counter_addr); __ add(tmp1, tmp1, DataLayout::counter_increment); __ str(tmp1, counter_addr); } } void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { fatal("Type profiling not implemented on this platform"); } void LIR_Assembler::emit_delay(LIR_OpDelay*) { Unimplemented(); } void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) { Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no); __ add_slow(dst->as_pointer_register(), mon_addr.base(), mon_addr.disp()); } void LIR_Assembler::align_backward_branch_target() { // TODO-AARCH64 review it // Some ARM processors do better with 8-byte branch target alignment __ align(8); } void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) { if (left->is_single_cpu()) { assert (dest->type() == T_INT, "unexpected result type"); assert (left->type() == T_INT, "unexpected left type"); __ neg_32(dest->as_register(), left->as_register()); } else if (left->is_double_cpu()) { #ifdef AARCH64 __ neg(dest->as_register_lo(), left->as_register_lo()); #else Register dest_lo = dest->as_register_lo(); Register dest_hi = dest->as_register_hi(); Register src_lo = left->as_register_lo(); Register src_hi = left->as_register_hi(); if (dest_lo == src_hi) { dest_lo = Rtemp; } __ rsbs(dest_lo, src_lo, 0); __ rsc(dest_hi, src_hi, 0); move_regs(dest_lo, dest->as_register_lo()); #endif // AARCH64 } else if (left->is_single_fpu()) { __ neg_float(dest->as_float_reg(), left->as_float_reg()); } else if (left->is_double_fpu()) { __ neg_double(dest->as_double_reg(), left->as_double_reg()); } else { ShouldNotReachHere(); } } void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) { LIR_Address* addr = addr_opr->as_address_ptr(); if (addr->index()->is_illegal()) { jint c = addr->disp(); if (!Assembler::is_arith_imm_in_range(c)) { BAILOUT("illegal arithmetic operand"); } __ add(dest->as_pointer_register(), addr->base()->as_pointer_register(), c); } else { assert(addr->disp() == 0, "cannot handle otherwise"); #ifdef AARCH64 assert(addr->index()->is_double_cpu(), "should be"); #endif // AARCH64 __ add(dest->as_pointer_register(), addr->base()->as_pointer_register(), AsmOperand(addr->index()->as_pointer_register(), lsl, addr->scale())); } } void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { assert(!tmp->is_valid(), "don't need temporary"); __ call(dest); if (info != NULL) { add_call_info_here(info); } } void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { #ifdef AARCH64 Unimplemented(); // TODO-AARCH64: Use stlr/ldar instructions for volatile load/store #else assert(src->is_double_cpu() && dest->is_address() || src->is_address() && dest->is_double_cpu(), "Simple move_op is called for all other cases"); int null_check_offset; if (dest->is_address()) { // Store const LIR_Address* addr = dest->as_address_ptr(); const Register src_lo = src->as_register_lo(); const Register src_hi = src->as_register_hi(); assert(addr->index()->is_illegal() && addr->disp() == 0, "The address is simple already"); if (src_lo < src_hi) { null_check_offset = __ offset(); __ stmia(addr->base()->as_register(), RegisterSet(src_lo) | RegisterSet(src_hi)); } else { assert(src_lo < Rtemp, "Rtemp is higher than any allocatable register"); __ mov(Rtemp, src_hi); null_check_offset = __ offset(); __ stmia(addr->base()->as_register(), RegisterSet(src_lo) | RegisterSet(Rtemp)); } } else { // Load const LIR_Address* addr = src->as_address_ptr(); const Register dest_lo = dest->as_register_lo(); const Register dest_hi = dest->as_register_hi(); assert(addr->index()->is_illegal() && addr->disp() == 0, "The address is simple already"); null_check_offset = __ offset(); if (dest_lo < dest_hi) { __ ldmia(addr->base()->as_register(), RegisterSet(dest_lo) | RegisterSet(dest_hi)); } else { assert(dest_lo < Rtemp, "Rtemp is higher than any allocatable register"); __ ldmia(addr->base()->as_register(), RegisterSet(dest_lo) | RegisterSet(Rtemp)); __ mov(dest_hi, Rtemp); } } if (info != NULL) { add_debug_info_for_null_check(null_check_offset, info); } #endif // AARCH64 } void LIR_Assembler::membar() { __ membar(MacroAssembler::StoreLoad, Rtemp); } void LIR_Assembler::membar_acquire() { __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::LoadLoad | MacroAssembler::LoadStore), Rtemp); } void LIR_Assembler::membar_release() { __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp); } void LIR_Assembler::membar_loadload() { __ membar(MacroAssembler::LoadLoad, Rtemp); } void LIR_Assembler::membar_storestore() { __ membar(MacroAssembler::StoreStore, Rtemp); } void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore, Rtemp); } void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad, Rtemp); } void LIR_Assembler::on_spin_wait() { Unimplemented(); } void LIR_Assembler::get_thread(LIR_Opr result_reg) { // Not used on ARM Unimplemented(); } void LIR_Assembler::peephole(LIR_List* lir) { #ifdef AARCH64 return; // TODO-AARCH64 implement peephole optimizations #endif LIR_OpList* inst = lir->instructions_list(); const int inst_length = inst->length(); for (int i = 0; i < inst_length; i++) { LIR_Op* op = inst->at(i); switch (op->code()) { case lir_cmp: { // Replace: // cmp rX, y // cmove [EQ] y, z, rX // with // cmp rX, y // cmove [EQ] illegalOpr, z, rX // // or // cmp rX, y // cmove [NE] z, y, rX // with // cmp rX, y // cmove [NE] z, illegalOpr, rX // // moves from illegalOpr should be removed when converting LIR to native assembly LIR_Op2* cmp = op->as_Op2(); assert(cmp != NULL, "cmp LIR instruction is not an op2"); if (i + 1 < inst_length) { LIR_Op2* cmove = inst->at(i + 1)->as_Op2(); if (cmove != NULL && cmove->code() == lir_cmove) { LIR_Opr cmove_res = cmove->result_opr(); bool res_is_op1 = cmove_res == cmp->in_opr1(); bool res_is_op2 = cmove_res == cmp->in_opr2(); LIR_Opr cmp_res, cmp_arg; if (res_is_op1) { cmp_res = cmp->in_opr1(); cmp_arg = cmp->in_opr2(); } else if (res_is_op2) { cmp_res = cmp->in_opr2(); cmp_arg = cmp->in_opr1(); } else { cmp_res = LIR_OprFact::illegalOpr; cmp_arg = LIR_OprFact::illegalOpr; } if (cmp_res != LIR_OprFact::illegalOpr) { LIR_Condition cond = cmove->condition(); if (cond == lir_cond_equal && cmove->in_opr1() == cmp_arg) { cmove->set_in_opr1(LIR_OprFact::illegalOpr); } else if (cond == lir_cond_notEqual && cmove->in_opr2() == cmp_arg) { cmove->set_in_opr2(LIR_OprFact::illegalOpr); } } } } break; } default: break; } } } void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) { Register ptr = src->as_pointer_register(); if (code == lir_xchg) { #ifdef AARCH64 if (UseCompressedOops && data->is_oop()) { __ encode_heap_oop(tmp->as_pointer_register(), data->as_register()); } #endif // AARCH64 } else { assert (!data->is_oop(), "xadd for oops"); } #ifndef AARCH64 __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp); #endif // !AARCH64 Label retry; __ bind(retry); if ((data->type() == T_INT) || (data->is_oop() AARCH64_ONLY(&& UseCompressedOops))) { Register dst = dest->as_register(); Register new_val = noreg; #ifdef AARCH64 __ ldaxr_w(dst, ptr); #else __ ldrex(dst, Address(ptr)); #endif if (code == lir_xadd) { Register tmp_reg = tmp->as_register(); if (data->is_constant()) { assert_different_registers(dst, ptr, tmp_reg); __ add_32(tmp_reg, dst, data->as_constant_ptr()->as_jint()); } else { assert_different_registers(dst, ptr, tmp_reg, data->as_register()); __ add_32(tmp_reg, dst, data->as_register()); } new_val = tmp_reg; } else { if (UseCompressedOops && data->is_oop()) { new_val = tmp->as_pointer_register(); } else { new_val = data->as_register(); } assert_different_registers(dst, ptr, new_val); } #ifdef AARCH64 __ stlxr_w(Rtemp, new_val, ptr); #else __ strex(Rtemp, new_val, Address(ptr)); #endif // AARCH64 #ifdef AARCH64 } else if ((data->type() == T_LONG) || (data->is_oop() && !UseCompressedOops)) { Register dst = dest->as_pointer_register(); Register new_val = noreg; __ ldaxr(dst, ptr); if (code == lir_xadd) { Register tmp_reg = tmp->as_pointer_register(); if (data->is_constant()) { assert_different_registers(dst, ptr, tmp_reg); jlong c = data->as_constant_ptr()->as_jlong(); assert((jlong)((jint)c) == c, "overflow"); __ add(tmp_reg, dst, (jint)c); } else { assert_different_registers(dst, ptr, tmp_reg, data->as_pointer_register()); __ add(tmp_reg, dst, data->as_pointer_register()); } new_val = tmp_reg; } else { new_val = data->as_pointer_register(); assert_different_registers(dst, ptr, new_val); } __ stlxr(Rtemp, new_val, ptr); #else } else if (data->type() == T_LONG) { Register dst_lo = dest->as_register_lo(); Register new_val_lo = noreg; Register dst_hi = dest->as_register_hi(); assert(dst_hi->encoding() == dst_lo->encoding() + 1, "non aligned register pair"); assert((dst_lo->encoding() & 0x1) == 0, "misaligned register pair"); __ bind(retry); __ ldrexd(dst_lo, Address(ptr)); if (code == lir_xadd) { Register tmp_lo = tmp->as_register_lo(); Register tmp_hi = tmp->as_register_hi(); assert(tmp_hi->encoding() == tmp_lo->encoding() + 1, "non aligned register pair"); assert((tmp_lo->encoding() & 0x1) == 0, "misaligned register pair"); if (data->is_constant()) { jlong c = data->as_constant_ptr()->as_jlong(); assert((jlong)((jint)c) == c, "overflow"); assert_different_registers(dst_lo, dst_hi, ptr, tmp_lo, tmp_hi); __ adds(tmp_lo, dst_lo, (jint)c); __ adc(tmp_hi, dst_hi, 0); } else { Register new_val_lo = data->as_register_lo(); Register new_val_hi = data->as_register_hi(); __ adds(tmp_lo, dst_lo, new_val_lo); __ adc(tmp_hi, dst_hi, new_val_hi); assert_different_registers(dst_lo, dst_hi, ptr, tmp_lo, tmp_hi, new_val_lo, new_val_hi); } new_val_lo = tmp_lo; } else { new_val_lo = data->as_register_lo(); Register new_val_hi = data->as_register_hi(); assert_different_registers(dst_lo, dst_hi, ptr, new_val_lo, new_val_hi); assert(new_val_hi->encoding() == new_val_lo->encoding() + 1, "non aligned register pair"); assert((new_val_lo->encoding() & 0x1) == 0, "misaligned register pair"); } __ strexd(Rtemp, new_val_lo, Address(ptr)); #endif // AARCH64 } else { ShouldNotReachHere(); } __ cbnz_32(Rtemp, retry); __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad | MacroAssembler::StoreStore), Rtemp); #ifdef AARCH64 if (UseCompressedOops && data->is_oop()) { __ decode_heap_oop(dest->as_register()); } #endif // AARCH64 } int LIR_Assembler::exception_handler_size = -1; #undef __