src/hotspot/cpu/arm/c1_LIRAssembler_arm.cpp
Index Unified diffs Context diffs Sdiffs Wdiffs Patch New Old Previous File Next File open Sdiff src/hotspot/cpu/arm

src/hotspot/cpu/arm/c1_LIRAssembler_arm.cpp

Print this page




 110 void LIR_Assembler::ffree(int i) {
 111   Unimplemented();
 112 }
 113 
 114 void LIR_Assembler::breakpoint() {
 115   __ breakpoint();
 116 }
 117 
 118 void LIR_Assembler::push(LIR_Opr opr) {
 119   Unimplemented();
 120 }
 121 
 122 void LIR_Assembler::pop(LIR_Opr opr) {
 123   Unimplemented();
 124 }
 125 
 126 //-------------------------------------------
 127 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 128   Register base = addr->base()->as_pointer_register();
 129 
 130 #ifdef AARCH64
 131   int align = exact_log2(type2aelembytes(addr->type(), true));
 132 #endif
 133 
 134   if (addr->index()->is_illegal() || addr->index()->is_constant()) {
 135     int offset = addr->disp();
 136     if (addr->index()->is_constant()) {
 137       offset += addr->index()->as_constant_ptr()->as_jint() << addr->scale();
 138     }
 139 
 140 #ifdef AARCH64
 141     if (!Assembler::is_unsigned_imm_in_range(offset, 12, align) && !Assembler::is_imm_in_range(offset, 9, 0)) {
 142       BAILOUT_("offset not in range", Address(base));
 143     }
 144     assert(UseUnalignedAccesses || (offset & right_n_bits(align)) == 0, "offset should be aligned");
 145 #else
 146     if ((offset <= -4096) || (offset >= 4096)) {
 147       BAILOUT_("offset not in range", Address(base));
 148     }
 149 #endif // AARCH64
 150 
 151     return Address(base, offset);
 152 
 153   } else {
 154     assert(addr->disp() == 0, "can't have both");
 155     int scale = addr->scale();
 156 
 157 #ifdef AARCH64
 158     assert((scale == 0) || (scale == align), "scale should be zero or equal to embedded shift");
 159 
 160     bool is_index_extended = (addr->index()->type() == T_INT);
 161     if (is_index_extended) {
 162       assert(addr->index()->is_single_cpu(), "should be");
 163       return Address(base, addr->index()->as_register(), ex_sxtw, scale);
 164     } else {
 165       assert(addr->index()->is_double_cpu(), "should be");
 166       return Address(base, addr->index()->as_register_lo(), ex_lsl, scale);
 167     }
 168 #else
 169     assert(addr->index()->is_single_cpu(), "should be");
 170     return scale >= 0 ? Address(base, addr->index()->as_register(), lsl, scale) :
 171                         Address(base, addr->index()->as_register(), lsr, -scale);
 172 #endif // AARCH64
 173   }
 174 }
 175 
 176 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 177 #ifdef AARCH64
 178   ShouldNotCallThis(); // Not used on AArch64
 179   return Address();
 180 #else
 181   Address base = as_Address(addr);
 182   assert(base.index() == noreg, "must be");
 183   if (base.disp() + BytesPerWord >= 4096) { BAILOUT_("offset not in range", Address(base.base(),0)); }
 184   return Address(base.base(), base.disp() + BytesPerWord);
 185 #endif // AARCH64
 186 }
 187 
 188 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 189 #ifdef AARCH64
 190   ShouldNotCallThis(); // Not used on AArch64
 191   return Address();
 192 #else
 193   return as_Address(addr);
 194 #endif // AARCH64
 195 }
 196 
 197 
 198 void LIR_Assembler::osr_entry() {
 199   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 200   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 201   ValueStack* entry_state = osr_entry->end()->state();
 202   int number_of_locks = entry_state->locks_size();
 203 
 204   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 205   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 206 
 207   assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 208   int monitor_offset = (method()->max_locals() + 2 * (number_of_locks - 1)) * BytesPerWord;
 209   for (int i = 0; i < number_of_locks; i++) {
 210     int slot_offset = monitor_offset - (i * 2 * BytesPerWord);
 211     __ ldr(R1, Address(OSR_buf, slot_offset + 0*BytesPerWord));
 212     __ ldr(R2, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 213     __ str(R1, frame_map()->address_for_monitor_lock(i));
 214     __ str(R2, frame_map()->address_for_monitor_object(i));


 310 
 311   // Emit the slow path assembly
 312   if (stub != NULL) {
 313     stub->emit_code(this);
 314   }
 315 
 316   return offset;
 317 }
 318 
 319 
 320 int LIR_Assembler::emit_deopt_handler() {
 321   address handler_base = __ start_a_stub(deopt_handler_size());
 322   if (handler_base == NULL) {
 323     bailout("deopt handler overflow");
 324     return -1;
 325   }
 326 
 327   int offset = code_offset();
 328 
 329   __ mov_relative_address(LR, __ pc());
 330 #ifdef AARCH64
 331   __ raw_push(LR, LR);
 332   __ jump(SharedRuntime::deopt_blob()->unpack(), relocInfo::runtime_call_type, Rtemp);
 333 #else
 334   __ push(LR); // stub expects LR to be saved
 335   __ jump(SharedRuntime::deopt_blob()->unpack(), relocInfo::runtime_call_type, noreg);
 336 #endif // AARCH64
 337 
 338   assert(code_offset() - offset <= deopt_handler_size(), "overflow");
 339   __ end_a_stub();
 340 
 341   return offset;
 342 }
 343 
 344 
 345 void LIR_Assembler::return_op(LIR_Opr result) {
 346   // Pop the frame before safepoint polling
 347   __ remove_frame(initial_frame_size_in_bytes());
 348 
 349   // mov_slow here is usually one or two instruction
 350   // TODO-AARCH64 3 instructions on AArch64, so try to load polling page by ldr_literal
 351   __ mov_address(Rtemp, os::get_polling_page(), symbolic_Relocation::polling_page_reference);
 352   __ relocate(relocInfo::poll_return_type);
 353   __ ldr(Rtemp, Address(Rtemp));
 354   __ ret();
 355 }
 356 
 357 
 358 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 359   __ mov_address(Rtemp, os::get_polling_page(), symbolic_Relocation::polling_page_reference);
 360   if (info != NULL) {
 361     add_debug_info_for_branch(info);
 362   }
 363   int offset = __ offset();
 364   __ relocate(relocInfo::poll_type);
 365   __ ldr(Rtemp, Address(Rtemp));
 366   return offset;
 367 }
 368 
 369 
 370 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 371   if (from_reg != to_reg) {
 372     __ mov(to_reg, from_reg);
 373   }
 374 }
 375 
 376 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 377   assert(src->is_constant() && dest->is_register(), "must be");
 378   LIR_Const* c = src->as_constant_ptr();
 379 
 380   switch (c->type()) {
 381     case T_ADDRESS:
 382     case T_INT:
 383       assert(patch_code == lir_patch_none, "no patching handled here");
 384       __ mov_slow(dest->as_register(), c->as_jint());
 385       break;
 386 
 387     case T_LONG:
 388       assert(patch_code == lir_patch_none, "no patching handled here");
 389 #ifdef AARCH64
 390       __ mov_slow(dest->as_pointer_register(), (intptr_t)c->as_jlong());
 391 #else
 392       __ mov_slow(dest->as_register_lo(), c->as_jint_lo());
 393       __ mov_slow(dest->as_register_hi(), c->as_jint_hi());
 394 #endif // AARCH64
 395       break;
 396 
 397     case T_OBJECT:
 398       if (patch_code == lir_patch_none) {
 399         __ mov_oop(dest->as_register(), c->as_jobject());
 400       } else {
 401         jobject2reg_with_patching(dest->as_register(), info);
 402       }
 403       break;
 404 
 405     case T_METADATA:
 406       if (patch_code == lir_patch_none) {
 407         __ mov_metadata(dest->as_register(), c->as_metadata());
 408       } else {
 409         klass2reg_with_patching(dest->as_register(), info);
 410       }
 411       break;
 412 
 413     case T_FLOAT:
 414       if (dest->is_single_fpu()) {
 415         __ mov_float(dest->as_float_reg(), c->as_jfloat());
 416       } else {
 417 #ifdef AARCH64
 418         ShouldNotReachHere();
 419 #else
 420         // Simple getters can return float constant directly into r0
 421         __ mov_slow(dest->as_register(), c->as_jint_bits());
 422 #endif // AARCH64
 423       }
 424       break;
 425 
 426     case T_DOUBLE:
 427       if (dest->is_double_fpu()) {
 428         __ mov_double(dest->as_double_reg(), c->as_jdouble());
 429       } else {
 430 #ifdef AARCH64
 431         ShouldNotReachHere();
 432 #else
 433         // Simple getters can return double constant directly into r1r0
 434         __ mov_slow(dest->as_register_lo(), c->as_jint_lo_bits());
 435         __ mov_slow(dest->as_register_hi(), c->as_jint_hi_bits());
 436 #endif // AARCH64
 437       }
 438       break;
 439 
 440     default:
 441       ShouldNotReachHere();
 442   }
 443 }
 444 
 445 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 446   assert(src->is_constant(), "must be");
 447   assert(dest->is_stack(), "must be");
 448   LIR_Const* c = src->as_constant_ptr();
 449 
 450   switch (c->type()) {
 451     case T_INT:  // fall through
 452     case T_FLOAT:
 453       __ mov_slow(Rtemp, c->as_jint_bits());
 454       __ str_32(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
 455       break;
 456 
 457     case T_ADDRESS:
 458       __ mov_slow(Rtemp, c->as_jint());
 459       __ str(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
 460       break;
 461 
 462     case T_OBJECT:
 463       __ mov_oop(Rtemp, c->as_jobject());
 464       __ str(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
 465       break;
 466 
 467     case T_LONG:  // fall through
 468     case T_DOUBLE:
 469 #ifdef AARCH64
 470       __ mov_slow(Rtemp, c->as_jlong_bits());
 471       __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix()));
 472 #else
 473       __ mov_slow(Rtemp, c->as_jint_lo_bits());
 474       __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes));
 475       if (c->as_jint_hi_bits() != c->as_jint_lo_bits()) {
 476         __ mov_slow(Rtemp, c->as_jint_hi_bits());
 477       }
 478       __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes));
 479 #endif // AARCH64
 480       break;
 481 
 482     default:
 483       ShouldNotReachHere();
 484   }
 485 }
 486 
 487 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type,
 488                               CodeEmitInfo* info, bool wide) {
 489 #ifdef AARCH64
 490   assert((src->as_constant_ptr()->type() == T_OBJECT && src->as_constant_ptr()->as_jobject() == NULL) ||
 491          (src->as_constant_ptr()->type() == T_INT && src->as_constant_ptr()->as_jint() == 0) ||
 492          (src->as_constant_ptr()->type() == T_LONG && src->as_constant_ptr()->as_jlong() == 0) ||
 493          (src->as_constant_ptr()->type() == T_FLOAT && src->as_constant_ptr()->as_jint_bits() == 0) ||
 494          (src->as_constant_ptr()->type() == T_DOUBLE && src->as_constant_ptr()->as_jlong_bits() == 0),
 495         "cannot handle otherwise");
 496   assert(dest->as_address_ptr()->type() == type, "should be");
 497 
 498   Address addr = as_Address(dest->as_address_ptr());
 499   int null_check_offset = code_offset();
 500   switch (type) {
 501     case T_OBJECT:  // fall through
 502     case T_ARRAY:
 503         if (UseCompressedOops && !wide) {
 504           __ str_w(ZR, addr);
 505         } else {
 506           __ str(ZR, addr);
 507         }
 508         break;
 509     case T_ADDRESS: // fall through
 510     case T_DOUBLE:  // fall through
 511     case T_LONG:    __ str(ZR, addr);   break;
 512     case T_FLOAT:   // fall through
 513     case T_INT:     __ str_w(ZR, addr); break;
 514     case T_BOOLEAN: // fall through
 515     case T_BYTE:    __ strb(ZR, addr);  break;
 516     case T_CHAR:    // fall through
 517     case T_SHORT:   __ strh(ZR, addr);  break;
 518     default: ShouldNotReachHere();
 519   }
 520 #else
 521   assert((src->as_constant_ptr()->type() == T_OBJECT && src->as_constant_ptr()->as_jobject() == NULL),"cannot handle otherwise");
 522   __ mov(Rtemp, 0);
 523 
 524   int null_check_offset = code_offset();
 525   __ str(Rtemp, as_Address(dest->as_address_ptr()));
 526 #endif // AARCH64
 527 
 528   if (info != NULL) {
 529 #ifndef AARCH64
 530     assert(false, "arm32 didn't support this before, investigate if bug");
 531 #endif
 532     add_debug_info_for_null_check(null_check_offset, info);
 533   }
 534 }
 535 
 536 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 537   assert(src->is_register() && dest->is_register(), "must be");
 538 
 539   if (src->is_single_cpu()) {
 540     if (dest->is_single_cpu()) {
 541       move_regs(src->as_register(), dest->as_register());
 542 #ifdef AARCH64
 543     } else if (dest->is_double_cpu()) {
 544       assert ((src->type() == T_OBJECT) || (src->type() == T_ARRAY) || (src->type() == T_ADDRESS), "invalid src type");
 545       move_regs(src->as_register(), dest->as_register_lo());
 546 #else
 547     } else if (dest->is_single_fpu()) {
 548       __ fmsr(dest->as_float_reg(), src->as_register());
 549 #endif // AARCH64
 550     } else {
 551       ShouldNotReachHere();
 552     }
 553   } else if (src->is_double_cpu()) {
 554 #ifdef AARCH64
 555     move_regs(src->as_register_lo(), dest->as_register_lo());
 556 #else
 557     if (dest->is_double_cpu()) {
 558       __ long_move(dest->as_register_lo(), dest->as_register_hi(), src->as_register_lo(), src->as_register_hi());
 559     } else {
 560       __ fmdrr(dest->as_double_reg(), src->as_register_lo(), src->as_register_hi());
 561     }
 562 #endif // AARCH64
 563   } else if (src->is_single_fpu()) {
 564     if (dest->is_single_fpu()) {
 565       __ mov_float(dest->as_float_reg(), src->as_float_reg());
 566     } else if (dest->is_single_cpu()) {
 567       __ mov_fpr2gpr_float(dest->as_register(), src->as_float_reg());
 568     } else {
 569       ShouldNotReachHere();
 570     }
 571   } else if (src->is_double_fpu()) {
 572     if (dest->is_double_fpu()) {
 573       __ mov_double(dest->as_double_reg(), src->as_double_reg());
 574     } else if (dest->is_double_cpu()) {
 575 #ifdef AARCH64
 576       __ fmov_xd(dest->as_register_lo(), src->as_double_reg());
 577 #else
 578       __ fmrrd(dest->as_register_lo(), dest->as_register_hi(), src->as_double_reg());
 579 #endif // AARCH64
 580     } else {
 581       ShouldNotReachHere();
 582     }
 583   } else {
 584     ShouldNotReachHere();
 585   }
 586 }
 587 
 588 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 589   assert(src->is_register(), "should not call otherwise");
 590   assert(dest->is_stack(), "should not call otherwise");
 591 
 592   Address addr = dest->is_single_word() ?
 593     frame_map()->address_for_slot(dest->single_stack_ix()) :
 594     frame_map()->address_for_slot(dest->double_stack_ix());
 595 
 596 #ifndef AARCH64
 597   assert(lo_word_offset_in_bytes == 0 && hi_word_offset_in_bytes == 4, "little ending");
 598   if (src->is_single_fpu() || src->is_double_fpu()) {
 599     if (addr.disp() >= 1024) { BAILOUT("Too exotic case to handle here"); }
 600   }
 601 #endif // !AARCH64
 602 
 603   if (src->is_single_cpu()) {
 604     switch (type) {
 605       case T_OBJECT:
 606       case T_ARRAY:    __ verify_oop(src->as_register());   // fall through
 607       case T_ADDRESS:
 608       case T_METADATA: __ str(src->as_register(), addr);    break;
 609       case T_FLOAT:    // used in intBitsToFloat intrinsic implementation, fall through
 610       case T_INT:      __ str_32(src->as_register(), addr); break;
 611       default:
 612         ShouldNotReachHere();
 613     }
 614   } else if (src->is_double_cpu()) {
 615     __ str(src->as_register_lo(), addr);
 616 #ifndef AARCH64
 617     __ str(src->as_register_hi(), frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes));
 618 #endif // !AARCH64
 619   } else if (src->is_single_fpu()) {
 620     __ str_float(src->as_float_reg(), addr);
 621   } else if (src->is_double_fpu()) {
 622     __ str_double(src->as_double_reg(), addr);
 623   } else {
 624     ShouldNotReachHere();
 625   }
 626 }
 627 
 628 
 629 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type,
 630                             LIR_PatchCode patch_code, CodeEmitInfo* info,
 631                             bool pop_fpu_stack, bool wide,
 632                             bool unaligned) {
 633   LIR_Address* to_addr = dest->as_address_ptr();
 634   Register base_reg = to_addr->base()->as_pointer_register();
 635   const bool needs_patching = (patch_code != lir_patch_none);
 636 
 637   PatchingStub* patch = NULL;
 638   if (needs_patching) {
 639 #ifdef AARCH64
 640     // Same alignment of reg2mem code and PatchingStub code. Required to make copied bind_literal() code properly aligned.
 641     __ align(wordSize);
 642 #endif
 643     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 644 #ifdef AARCH64
 645     // Extra nop for MT safe patching
 646     __ nop();
 647 #endif // AARCH64
 648   }
 649 
 650   int null_check_offset = code_offset();
 651 
 652   switch (type) {
 653     case T_ARRAY:
 654     case T_OBJECT:
 655       if (UseCompressedOops && !wide) {
 656 #ifdef AARCH64
 657         const Register temp_src = Rtemp;
 658         assert_different_registers(temp_src, src->as_register());
 659         __ encode_heap_oop(temp_src, src->as_register());
 660         null_check_offset = code_offset();
 661         __ str_32(temp_src, as_Address(to_addr));
 662 #else
 663         ShouldNotReachHere();
 664 #endif // AARCH64
 665       } else {
 666         __ str(src->as_register(), as_Address(to_addr));
 667       }
 668       break;
 669 
 670     case T_ADDRESS:
 671 #ifdef AARCH64
 672     case T_LONG:
 673 #endif // AARCH64
 674       __ str(src->as_pointer_register(), as_Address(to_addr));
 675       break;
 676 
 677     case T_BYTE:
 678     case T_BOOLEAN:
 679       __ strb(src->as_register(), as_Address(to_addr));
 680       break;
 681 
 682     case T_CHAR:
 683     case T_SHORT:
 684       __ strh(src->as_register(), as_Address(to_addr));
 685       break;
 686 
 687     case T_INT:
 688 #ifdef __SOFTFP__
 689     case T_FLOAT:
 690 #endif // __SOFTFP__
 691       __ str_32(src->as_register(), as_Address(to_addr));
 692       break;
 693 
 694 #ifdef AARCH64
 695 
 696     case T_FLOAT:
 697       __ str_s(src->as_float_reg(), as_Address(to_addr));
 698       break;
 699 
 700     case T_DOUBLE:
 701       __ str_d(src->as_double_reg(), as_Address(to_addr));
 702       break;
 703 
 704 #else // AARCH64
 705 
 706 #ifdef __SOFTFP__
 707     case T_DOUBLE:
 708 #endif // __SOFTFP__
 709     case T_LONG: {
 710       Register from_lo = src->as_register_lo();
 711       Register from_hi = src->as_register_hi();
 712       if (to_addr->index()->is_register()) {
 713         assert(to_addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
 714         assert(to_addr->disp() == 0, "Not yet supporting both");
 715         __ add(Rtemp, base_reg, to_addr->index()->as_register());
 716         base_reg = Rtemp;
 717         __ str(from_lo, Address(Rtemp));
 718         if (patch != NULL) {
 719           patching_epilog(patch, lir_patch_low, base_reg, info);
 720           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 721           patch_code = lir_patch_high;
 722         }
 723         __ str(from_hi, Address(Rtemp, BytesPerWord));
 724       } else if (base_reg == from_lo) {


 748         __ add(Rtemp, base_reg, to_addr->index()->as_register());
 749         if ((to_addr->disp() <= -4096) || (to_addr->disp() >= 4096)) { BAILOUT("offset not in range"); }
 750         __ fsts(src->as_float_reg(), Address(Rtemp, to_addr->disp()));
 751       } else {
 752         __ fsts(src->as_float_reg(), as_Address(to_addr));
 753       }
 754       break;
 755 
 756     case T_DOUBLE:
 757       if (to_addr->index()->is_register()) {
 758         assert(to_addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
 759         __ add(Rtemp, base_reg, to_addr->index()->as_register());
 760         if ((to_addr->disp() <= -4096) || (to_addr->disp() >= 4096)) { BAILOUT("offset not in range"); }
 761         __ fstd(src->as_double_reg(), Address(Rtemp, to_addr->disp()));
 762       } else {
 763         __ fstd(src->as_double_reg(), as_Address(to_addr));
 764       }
 765       break;
 766 #endif // __SOFTFP__
 767 
 768 #endif // AARCH64
 769 
 770     default:
 771       ShouldNotReachHere();
 772   }
 773 
 774   if (info != NULL) {
 775     add_debug_info_for_null_check(null_check_offset, info);
 776   }
 777 
 778   if (patch != NULL) {
 779     // Offset embeedded into LDR/STR instruction may appear not enough
 780     // to address a field. So, provide a space for one more instruction
 781     // that will deal with larger offsets.
 782     __ nop();
 783     patching_epilog(patch, patch_code, base_reg, info);
 784   }
 785 }
 786 
 787 
 788 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
 789   assert(src->is_stack(), "should not call otherwise");
 790   assert(dest->is_register(), "should not call otherwise");
 791 
 792   Address addr = src->is_single_word() ?
 793     frame_map()->address_for_slot(src->single_stack_ix()) :
 794     frame_map()->address_for_slot(src->double_stack_ix());
 795 
 796 #ifndef AARCH64
 797   assert(lo_word_offset_in_bytes == 0 && hi_word_offset_in_bytes == 4, "little ending");
 798   if (dest->is_single_fpu() || dest->is_double_fpu()) {
 799     if (addr.disp() >= 1024) { BAILOUT("Too exotic case to handle here"); }
 800   }
 801 #endif // !AARCH64
 802 
 803   if (dest->is_single_cpu()) {
 804     switch (type) {
 805       case T_OBJECT:
 806       case T_ARRAY:
 807       case T_ADDRESS:
 808       case T_METADATA: __ ldr(dest->as_register(), addr); break;
 809       case T_FLOAT:    // used in floatToRawIntBits intrinsic implemenation
 810       case T_INT:      __ ldr_u32(dest->as_register(), addr); break;
 811       default:
 812         ShouldNotReachHere();
 813     }
 814     if ((type == T_OBJECT) || (type == T_ARRAY)) {
 815       __ verify_oop(dest->as_register());
 816     }
 817   } else if (dest->is_double_cpu()) {
 818     __ ldr(dest->as_register_lo(), addr);
 819 #ifndef AARCH64
 820     __ ldr(dest->as_register_hi(), frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes));
 821 #endif // !AARCH64
 822   } else if (dest->is_single_fpu()) {
 823     __ ldr_float(dest->as_float_reg(), addr);
 824   } else if (dest->is_double_fpu()) {
 825     __ ldr_double(dest->as_double_reg(), addr);
 826   } else {
 827     ShouldNotReachHere();
 828   }
 829 }
 830 
 831 
 832 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
 833   if (src->is_single_stack()) {
 834     switch (src->type()) {
 835       case T_OBJECT:
 836       case T_ARRAY:
 837       case T_ADDRESS:
 838       case T_METADATA:
 839         __ ldr(Rtemp, frame_map()->address_for_slot(src->single_stack_ix()));
 840         __ str(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
 841         break;
 842 
 843       case T_INT:
 844       case T_FLOAT:
 845         __ ldr_u32(Rtemp, frame_map()->address_for_slot(src->single_stack_ix()));
 846         __ str_32(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
 847         break;
 848 
 849       default:
 850         ShouldNotReachHere();
 851     }
 852   } else {
 853     assert(src->is_double_stack(), "must be");
 854     __ ldr(Rtemp, frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes));
 855     __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes));
 856 #ifdef AARCH64
 857     assert(lo_word_offset_in_bytes == 0, "adjust this code");
 858 #else
 859     __ ldr(Rtemp, frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes));
 860     __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes));
 861 #endif // AARCH64
 862   }
 863 }
 864 
 865 
 866 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type,
 867                             LIR_PatchCode patch_code, CodeEmitInfo* info,
 868                             bool wide, bool unaligned) {
 869   assert(src->is_address(), "should not call otherwise");
 870   assert(dest->is_register(), "should not call otherwise");
 871   LIR_Address* addr = src->as_address_ptr();
 872 
 873   Register base_reg = addr->base()->as_pointer_register();
 874 
 875   PatchingStub* patch = NULL;
 876   if (patch_code != lir_patch_none) {
 877     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 878 #ifdef AARCH64
 879     // Extra nop for MT safe patching
 880     __ nop();
 881 #endif // AARCH64
 882   }
 883   if (info != NULL) {
 884     add_debug_info_for_null_check_here(info);
 885   }
 886 
 887   switch (type) {
 888     case T_OBJECT:  // fall through
 889     case T_ARRAY:
 890       if (UseCompressedOops && !wide) {
 891         __ ldr_u32(dest->as_register(), as_Address(addr));
 892       } else {
 893         __ ldr(dest->as_register(), as_Address(addr));
 894       }
 895       break;
 896 
 897     case T_ADDRESS:
 898       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
 899         __ ldr_u32(dest->as_pointer_register(), as_Address(addr));
 900       } else {
 901         __ ldr(dest->as_pointer_register(), as_Address(addr));
 902       }
 903       break;
 904 
 905 #ifdef AARCH64
 906     case T_LONG:
 907 #else
 908     case T_INT:
 909 #ifdef __SOFTFP__
 910     case T_FLOAT:
 911 #endif // __SOFTFP__
 912 #endif // AARCH64
 913       __ ldr(dest->as_pointer_register(), as_Address(addr));
 914       break;
 915 
 916     case T_BOOLEAN:
 917       __ ldrb(dest->as_register(), as_Address(addr));
 918       break;
 919 
 920     case T_BYTE:
 921       __ ldrsb(dest->as_register(), as_Address(addr));
 922       break;
 923 
 924     case T_CHAR:
 925       __ ldrh(dest->as_register(), as_Address(addr));
 926       break;
 927 
 928     case T_SHORT:
 929       __ ldrsh(dest->as_register(), as_Address(addr));
 930       break;
 931 
 932 #ifdef AARCH64
 933 
 934     case T_INT:
 935       __ ldr_w(dest->as_register(), as_Address(addr));
 936       break;
 937 
 938     case T_FLOAT:
 939       __ ldr_s(dest->as_float_reg(), as_Address(addr));
 940       break;
 941 
 942     case T_DOUBLE:
 943       __ ldr_d(dest->as_double_reg(), as_Address(addr));
 944       break;
 945 
 946 #else // AARCH64
 947 
 948 #ifdef __SOFTFP__
 949     case T_DOUBLE:
 950 #endif // __SOFTFP__
 951     case T_LONG: {
 952       Register to_lo = dest->as_register_lo();
 953       Register to_hi = dest->as_register_hi();
 954       if (addr->index()->is_register()) {
 955         assert(addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
 956         assert(addr->disp() == 0, "Not yet supporting both");
 957         __ add(Rtemp, base_reg, addr->index()->as_register());
 958         base_reg = Rtemp;
 959         __ ldr(to_lo, Address(Rtemp));
 960         if (patch != NULL) {
 961           patching_epilog(patch, lir_patch_low, base_reg, info);
 962           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 963           patch_code = lir_patch_high;
 964         }
 965         __ ldr(to_hi, Address(Rtemp, BytesPerWord));
 966       } else if (base_reg == to_lo) {


 990         __ add(Rtemp, base_reg, addr->index()->as_register());
 991         if ((addr->disp() <= -4096) || (addr->disp() >= 4096)) { BAILOUT("offset not in range"); }
 992         __ flds(dest->as_float_reg(), Address(Rtemp, addr->disp()));
 993       } else {
 994         __ flds(dest->as_float_reg(), as_Address(addr));
 995       }
 996       break;
 997 
 998     case T_DOUBLE:
 999       if (addr->index()->is_register()) {
1000         assert(addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
1001         __ add(Rtemp, base_reg, addr->index()->as_register());
1002         if ((addr->disp() <= -4096) || (addr->disp() >= 4096)) { BAILOUT("offset not in range"); }
1003         __ fldd(dest->as_double_reg(), Address(Rtemp, addr->disp()));
1004       } else {
1005         __ fldd(dest->as_double_reg(), as_Address(addr));
1006       }
1007       break;
1008 #endif // __SOFTFP__
1009 
1010 #endif // AARCH64
1011 
1012     default:
1013       ShouldNotReachHere();
1014   }
1015 
1016   if (patch != NULL) {
1017     // Offset embeedded into LDR/STR instruction may appear not enough
1018     // to address a field. So, provide a space for one more instruction
1019     // that will deal with larger offsets.
1020     __ nop();
1021     patching_epilog(patch, patch_code, base_reg, info);
1022   }
1023 
1024 #ifdef AARCH64
1025   switch (type) {
1026     case T_ARRAY:
1027     case T_OBJECT:
1028       if (UseCompressedOops && !wide) {
1029         __ decode_heap_oop(dest->as_register());
1030       }
1031       __ verify_oop(dest->as_register());
1032       break;
1033 
1034     case T_ADDRESS:
1035       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1036         __ decode_klass_not_null(dest->as_register());
1037       }
1038       break;
1039   }
1040 #endif // AARCH64
1041 }
1042 
1043 
1044 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1045   bool is_32 = op->result_opr()->is_single_cpu();
1046 
1047   if (op->code() == lir_idiv && op->in_opr2()->is_constant() && is_32) {
1048     int c = op->in_opr2()->as_constant_ptr()->as_jint();
1049     assert(is_power_of_2(c), "non power-of-2 constant should be put in a register");
1050 
1051     Register left = op->in_opr1()->as_register();
1052     Register dest = op->result_opr()->as_register();
1053     if (c == 1) {
1054       __ mov(dest, left);
1055     } else if (c == 2) {
1056       __ add_32(dest, left, AsmOperand(left, lsr, 31));
1057       __ asr_32(dest, dest, 1);
1058     } else if (c != (int) 0x80000000) {
1059       int power = log2_intptr(c);
1060       __ asr_32(Rtemp, left, 31);
1061       __ add_32(dest, left, AsmOperand(Rtemp, lsr, 32-power)); // dest = left + (left < 0 ? 2^power - 1 : 0);
1062       __ asr_32(dest, dest, power);                            // dest = dest >>> power;
1063     } else {
1064       // x/0x80000000 is a special case, since dividend is a power of two, but is negative.
1065       // The only possible result values are 0 and 1, with 1 only for dividend == divisor == 0x80000000.
1066       __ cmp_32(left, c);
1067 #ifdef AARCH64
1068       __ cset(dest, eq);
1069 #else
1070       __ mov(dest, 0, ne);
1071       __ mov(dest, 1, eq);
1072 #endif // AARCH64
1073     }
1074   } else {
1075 #ifdef AARCH64
1076     Register left  = op->in_opr1()->as_pointer_register();
1077     Register right = op->in_opr2()->as_pointer_register();
1078     Register dest  = op->result_opr()->as_pointer_register();
1079 
1080     switch (op->code()) {
1081       case lir_idiv:
1082         if (is_32) {
1083           __ sdiv_w(dest, left, right);
1084         } else {
1085           __ sdiv(dest, left, right);
1086         }
1087         break;
1088       case lir_irem: {
1089         Register tmp = op->in_opr3()->as_pointer_register();
1090         assert_different_registers(left, tmp);
1091         assert_different_registers(right, tmp);
1092         if (is_32) {
1093           __ sdiv_w(tmp, left, right);
1094           __ msub_w(dest, right, tmp, left);
1095         } else {
1096           __ sdiv(tmp, left, right);
1097           __ msub(dest, right, tmp, left);
1098         }
1099         break;
1100       }
1101       default:
1102         ShouldNotReachHere();
1103     }
1104 #else
1105     assert(op->code() == lir_idiv || op->code() == lir_irem, "unexpected op3");
1106     __ call(StubRoutines::Arm::idiv_irem_entry(), relocInfo::runtime_call_type);
1107     add_debug_info_for_div0_here(op->info());
1108 #endif // AARCH64
1109   }
1110 }
1111 
1112 
1113 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1114 #ifdef ASSERT
1115   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1116   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1117   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1118   assert(op->info() == NULL, "CodeEmitInfo?");
1119 #endif // ASSERT
1120 
1121 #ifdef __SOFTFP__
1122   assert (op->code() != lir_cond_float_branch, "this should be impossible");
1123 #else
1124   if (op->code() == lir_cond_float_branch) {
1125 #ifndef AARCH64
1126     __ fmstat();
1127 #endif // !AARCH64
1128     __ b(*(op->ublock()->label()), vs);
1129   }
1130 #endif // __SOFTFP__
1131 
1132   AsmCondition acond = al;
1133   switch (op->cond()) {
1134     case lir_cond_equal:        acond = eq; break;
1135     case lir_cond_notEqual:     acond = ne; break;
1136     case lir_cond_less:         acond = lt; break;
1137     case lir_cond_lessEqual:    acond = le; break;
1138     case lir_cond_greaterEqual: acond = ge; break;
1139     case lir_cond_greater:      acond = gt; break;
1140     case lir_cond_aboveEqual:   acond = hs; break;
1141     case lir_cond_belowEqual:   acond = ls; break;
1142     default: assert(op->cond() == lir_cond_always, "must be");
1143   }
1144   __ b(*(op->label()), acond);
1145 }
1146 
1147 
1148 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1149   LIR_Opr src  = op->in_opr();
1150   LIR_Opr dest = op->result_opr();
1151 
1152   switch (op->bytecode()) {
1153     case Bytecodes::_i2l:
1154 #ifdef AARCH64
1155       __ sign_extend(dest->as_register_lo(), src->as_register(), 32);
1156 #else
1157       move_regs(src->as_register(), dest->as_register_lo());
1158       __ mov(dest->as_register_hi(), AsmOperand(src->as_register(), asr, 31));
1159 #endif // AARCH64
1160       break;
1161     case Bytecodes::_l2i:
1162       move_regs(src->as_register_lo(), dest->as_register());
1163       break;
1164     case Bytecodes::_i2b:
1165       __ sign_extend(dest->as_register(), src->as_register(), 8);
1166       break;
1167     case Bytecodes::_i2s:
1168       __ sign_extend(dest->as_register(), src->as_register(), 16);
1169       break;
1170     case Bytecodes::_i2c:
1171       __ zero_extend(dest->as_register(), src->as_register(), 16);
1172       break;
1173     case Bytecodes::_f2d:
1174       __ convert_f2d(dest->as_double_reg(), src->as_float_reg());
1175       break;
1176     case Bytecodes::_d2f:
1177       __ convert_d2f(dest->as_float_reg(), src->as_double_reg());
1178       break;
1179     case Bytecodes::_i2f:
1180 #ifdef AARCH64
1181       __ scvtf_sw(dest->as_float_reg(), src->as_register());
1182 #else
1183       __ fmsr(Stemp, src->as_register());
1184       __ fsitos(dest->as_float_reg(), Stemp);
1185 #endif // AARCH64
1186       break;
1187     case Bytecodes::_i2d:
1188 #ifdef AARCH64
1189       __ scvtf_dw(dest->as_double_reg(), src->as_register());
1190 #else
1191       __ fmsr(Stemp, src->as_register());
1192       __ fsitod(dest->as_double_reg(), Stemp);
1193 #endif // AARCH64
1194       break;
1195     case Bytecodes::_f2i:
1196 #ifdef AARCH64
1197       __ fcvtzs_ws(dest->as_register(), src->as_float_reg());
1198 #else
1199       __ ftosizs(Stemp, src->as_float_reg());
1200       __ fmrs(dest->as_register(), Stemp);
1201 #endif // AARCH64
1202       break;
1203     case Bytecodes::_d2i:
1204 #ifdef AARCH64
1205       __ fcvtzs_wd(dest->as_register(), src->as_double_reg());
1206 #else
1207       __ ftosizd(Stemp, src->as_double_reg());
1208       __ fmrs(dest->as_register(), Stemp);
1209 #endif // AARCH64
1210       break;
1211 #ifdef AARCH64
1212     case Bytecodes::_l2f:
1213       __ scvtf_sx(dest->as_float_reg(), src->as_register_lo());
1214       break;
1215     case Bytecodes::_l2d:
1216       __ scvtf_dx(dest->as_double_reg(), src->as_register_lo());
1217       break;
1218     case Bytecodes::_f2l:
1219       __ fcvtzs_xs(dest->as_register_lo(), src->as_float_reg());
1220       break;
1221     case Bytecodes::_d2l:
1222       __ fcvtzs_xd(dest->as_register_lo(), src->as_double_reg());
1223       break;
1224 #endif // AARCH64
1225     default:
1226       ShouldNotReachHere();
1227   }
1228 }
1229 
1230 
1231 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1232   if (op->init_check()) {
1233     Register tmp = op->tmp1()->as_register();
1234     __ ldrb(tmp, Address(op->klass()->as_register(), InstanceKlass::init_state_offset()));
1235     add_debug_info_for_null_check_here(op->stub()->info());
1236     __ cmp(tmp, InstanceKlass::fully_initialized);
1237     __ b(*op->stub()->entry(), ne);
1238   }
1239   __ allocate_object(op->obj()->as_register(),
1240                      op->tmp1()->as_register(),
1241                      op->tmp2()->as_register(),
1242                      op->tmp3()->as_register(),
1243                      op->header_size(),
1244                      op->object_size(),


1310   md = method->method_data_or_null();
1311   assert(md != NULL, "Sanity");
1312   data = md->bci_to_data(bci);
1313   assert(data != NULL,       "need data for checkcast");
1314   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1315   if (md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes() >= 4096) {
1316     // The offset is large so bias the mdo by the base of the slot so
1317     // that the ldr can use an immediate offset to reference the slots of the data
1318     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
1319   }
1320 }
1321 
1322 // On 32-bit ARM, code before this helper should test obj for null (ZF should be set if obj is null).
1323 void LIR_Assembler::typecheck_profile_helper1(ciMethod* method, int bci,
1324                                               ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias,
1325                                               Register obj, Register mdo, Register data_val, Label* obj_is_null) {
1326   assert(method != NULL, "Should have method");
1327   assert_different_registers(obj, mdo, data_val);
1328   setup_md_access(method, bci, md, data, mdo_offset_bias);
1329   Label not_null;
1330 #ifdef AARCH64
1331   __ cbnz(obj, not_null);
1332 #else
1333   __ b(not_null, ne);
1334 #endif // AARCH64
1335   __ mov_metadata(mdo, md->constant_encoding());
1336   if (mdo_offset_bias > 0) {
1337     __ mov_slow(data_val, mdo_offset_bias);
1338     __ add(mdo, mdo, data_val);
1339   }
1340   Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
1341   __ ldrb(data_val, flags_addr);
1342   __ orr(data_val, data_val, (uint)BitData::null_seen_byte_constant());
1343   __ strb(data_val, flags_addr);
1344   __ b(*obj_is_null);
1345   __ bind(not_null);
1346 }
1347 
1348 void LIR_Assembler::typecheck_profile_helper2(ciMethodData* md, ciProfileData* data, int mdo_offset_bias,
1349                                               Register mdo, Register recv, Register value, Register tmp1,
1350                                               Label* profile_cast_success, Label* profile_cast_failure,
1351                                               Label* success, Label* failure) {
1352   assert_different_registers(mdo, value, tmp1);
1353   __ bind(*profile_cast_success);
1354   __ mov_metadata(mdo, md->constant_encoding());


1356     __ mov_slow(tmp1, mdo_offset_bias);
1357     __ add(mdo, mdo, tmp1);
1358   }
1359   __ load_klass(recv, value);
1360   type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
1361   __ b(*success);
1362   // Cast failure case
1363   __ bind(*profile_cast_failure);
1364   __ mov_metadata(mdo, md->constant_encoding());
1365   if (mdo_offset_bias > 0) {
1366     __ mov_slow(tmp1, mdo_offset_bias);
1367     __ add(mdo, mdo, tmp1);
1368   }
1369   Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
1370   __ ldr(tmp1, data_addr);
1371   __ sub(tmp1, tmp1, DataLayout::counter_increment);
1372   __ str(tmp1, data_addr);
1373   __ b(*failure);
1374 }
1375 
1376 // Sets `res` to true, if `cond` holds. On AArch64 also sets `res` to false if `cond` does not hold.
1377 static void set_instanceof_result(MacroAssembler* _masm, Register res, AsmCondition cond) {
1378 #ifdef AARCH64
1379   __ cset(res, cond);
1380 #else
1381   __ mov(res, 1, cond);
1382 #endif // AARCH64
1383 }
1384 
1385 
1386 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1387   // TODO: ARM - can be more effective with one more register
1388   switch (op->code()) {
1389     case lir_store_check: {
1390       CodeStub* stub = op->stub();
1391       Register value = op->object()->as_register();
1392       Register array = op->array()->as_register();
1393       Register klass_RInfo = op->tmp1()->as_register();
1394       Register k_RInfo = op->tmp2()->as_register();
1395       assert_different_registers(klass_RInfo, k_RInfo, Rtemp);
1396       if (op->should_profile()) {
1397         assert_different_registers(value, klass_RInfo, k_RInfo, Rtemp);
1398       }
1399 
1400       // check if it needs to be profiled
1401       ciMethodData* md;
1402       ciProfileData* data;
1403       int mdo_offset_bias = 0;
1404       Label profile_cast_success, profile_cast_failure, done;
1405       Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1406       Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1407 
1408       if (op->should_profile()) {
1409 #ifndef AARCH64
1410         __ cmp(value, 0);
1411 #endif // !AARCH64
1412         typecheck_profile_helper1(op->profiled_method(), op->profiled_bci(), md, data, mdo_offset_bias, value, k_RInfo, Rtemp, &done);
1413       } else {
1414         __ cbz(value, done);
1415       }
1416       assert_different_registers(k_RInfo, value);
1417       add_debug_info_for_null_check_here(op->info_for_exception());
1418       __ load_klass(k_RInfo, array);
1419       __ load_klass(klass_RInfo, value);
1420       __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1421       __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1422       // check for immediate positive hit
1423       __ ldr(Rtemp, Address(klass_RInfo, Rtemp));
1424       __ cmp(klass_RInfo, k_RInfo);
1425       __ cond_cmp(Rtemp, k_RInfo, ne);
1426       __ b(*success_target, eq);
1427       // check for immediate negative hit
1428       __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1429       __ cmp(Rtemp, in_bytes(Klass::secondary_super_cache_offset()));
1430       __ b(*failure_target, ne);
1431       // slow case


1453       Register klass_RInfo = op->tmp1()->as_register();
1454       Register k_RInfo = op->tmp2()->as_register();
1455       ciKlass* k = op->klass();
1456       assert_different_registers(res, k_RInfo, klass_RInfo, Rtemp);
1457 
1458       if (stub->is_simple_exception_stub()) {
1459       // TODO: ARM - Late binding is used to prevent confusion of register allocator
1460       assert(stub->is_exception_throw_stub(), "must be");
1461       ((SimpleExceptionStub*)stub)->set_obj(op->result_opr());
1462       }
1463       ciMethodData* md;
1464       ciProfileData* data;
1465       int mdo_offset_bias = 0;
1466 
1467       Label done;
1468 
1469       Label profile_cast_failure, profile_cast_success;
1470       Label *failure_target = op->should_profile() ? &profile_cast_failure : op->stub()->entry();
1471       Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1472 
1473 #ifdef AARCH64
1474       move_regs(obj, res);
1475       if (op->should_profile()) {
1476         typecheck_profile_helper1(op->profiled_method(), op->profiled_bci(), md, data, mdo_offset_bias, res, klass_RInfo, Rtemp, &done);
1477       } else {
1478         __ cbz(obj, done);
1479       }
1480       if (k->is_loaded()) {
1481         __ mov_metadata(k_RInfo, k->constant_encoding());
1482       } else {
1483         if (res != obj) {
1484           op->info_for_patch()->add_register_oop(FrameMap::as_oop_opr(res));
1485         }
1486         klass2reg_with_patching(k_RInfo, op->info_for_patch());
1487       }
1488       __ load_klass(klass_RInfo, res);
1489 
1490       if (op->fast_check()) {
1491         __ cmp(klass_RInfo, k_RInfo);
1492         __ b(*failure_target, ne);
1493       } else if (k->is_loaded()) {
1494         __ ldr(Rtemp, Address(klass_RInfo, k->super_check_offset()));
1495         if (in_bytes(Klass::secondary_super_cache_offset()) != (int) k->super_check_offset()) {
1496           __ cmp(Rtemp, k_RInfo);
1497           __ b(*failure_target, ne);
1498         } else {
1499           __ cmp(klass_RInfo, k_RInfo);
1500           __ cond_cmp(Rtemp, k_RInfo, ne);
1501           __ b(*success_target, eq);
1502           assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup");
1503           __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
1504           __ cbz(R0, *failure_target);
1505         }
1506       } else {
1507         __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1508         // check for immediate positive hit
1509         __ ldr(Rtemp, Address(klass_RInfo, Rtemp));
1510         __ cmp(klass_RInfo, k_RInfo);
1511         __ cond_cmp(Rtemp, k_RInfo, ne);
1512         __ b(*success_target, eq);
1513         // check for immediate negative hit
1514         __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1515         __ cmp(Rtemp, in_bytes(Klass::secondary_super_cache_offset()));
1516         __ b(*failure_target, ne);
1517         // slow case
1518         assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup");
1519         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
1520         __ cbz(R0, *failure_target);
1521       }
1522 
1523 #else // AARCH64
1524 
1525       __ movs(res, obj);
1526       if (op->should_profile()) {
1527         typecheck_profile_helper1(op->profiled_method(), op->profiled_bci(), md, data, mdo_offset_bias, res, klass_RInfo, Rtemp, &done);
1528       } else {
1529         __ b(done, eq);
1530       }
1531       if (k->is_loaded()) {
1532         __ mov_metadata(k_RInfo, k->constant_encoding());
1533       } else if (k_RInfo != obj) {
1534         klass2reg_with_patching(k_RInfo, op->info_for_patch());
1535         __ movs(res, obj);
1536       } else {
1537         // Patching doesn't update "res" register after GC, so do patching first
1538         klass2reg_with_patching(Rtemp, op->info_for_patch());
1539         __ movs(res, obj);
1540         __ mov(k_RInfo, Rtemp);
1541       }
1542       __ load_klass(klass_RInfo, res, ne);
1543 


1558           __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
1559           __ cbz(R0, *failure_target);
1560         }
1561       } else {
1562         __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1563         __ b(*success_target, eq);
1564         // check for immediate positive hit
1565         __ ldr(Rtemp, Address(klass_RInfo, Rtemp));
1566         __ cmp(klass_RInfo, k_RInfo);
1567         __ cmp(Rtemp, k_RInfo, ne);
1568         __ b(*success_target, eq);
1569         // check for immediate negative hit
1570         __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1571         __ cmp(Rtemp, in_bytes(Klass::secondary_super_cache_offset()));
1572         __ b(*failure_target, ne);
1573         // slow case
1574         assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup");
1575         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
1576         __ cbz(R0, *failure_target);
1577       }
1578 #endif // AARCH64
1579 
1580       if (op->should_profile()) {
1581         Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtemp;
1582         typecheck_profile_helper2(md, data, mdo_offset_bias, mdo, recv, res, tmp1,
1583                                   &profile_cast_success, &profile_cast_failure,
1584                                   &done, stub->entry());
1585       }
1586       __ bind(done);
1587       break;
1588     }
1589 
1590     case lir_instanceof: {
1591       Register obj = op->object()->as_register();
1592       Register res = op->result_opr()->as_register();
1593       Register klass_RInfo = op->tmp1()->as_register();
1594       Register k_RInfo = op->tmp2()->as_register();
1595       ciKlass* k = op->klass();
1596       assert_different_registers(res, klass_RInfo, k_RInfo, Rtemp);
1597 
1598       ciMethodData* md;
1599       ciProfileData* data;
1600       int mdo_offset_bias = 0;
1601 
1602       Label done;
1603 
1604       Label profile_cast_failure, profile_cast_success;
1605       Label *failure_target = op->should_profile() ? &profile_cast_failure : &done;
1606       Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1607 
1608 #ifdef AARCH64
1609       move_regs(obj, res);
1610 #else
1611       __ movs(res, obj);
1612 #endif // AARCH64
1613 
1614       if (op->should_profile()) {
1615         typecheck_profile_helper1(op->profiled_method(), op->profiled_bci(), md, data, mdo_offset_bias, res, klass_RInfo, Rtemp, &done);
1616       } else {
1617 #ifdef AARCH64
1618         __ cbz(obj, done); // If obj == NULL, res is false
1619 #else
1620         __ b(done, eq);
1621 #endif // AARCH64
1622       }
1623 
1624       if (k->is_loaded()) {
1625         __ mov_metadata(k_RInfo, k->constant_encoding());
1626       } else {
1627         op->info_for_patch()->add_register_oop(FrameMap::as_oop_opr(res));
1628         klass2reg_with_patching(k_RInfo, op->info_for_patch());
1629       }
1630       __ load_klass(klass_RInfo, res);
1631 
1632 #ifndef AARCH64
1633       if (!op->should_profile()) {
1634         __ mov(res, 0);
1635       }
1636 #endif // !AARCH64
1637 
1638       if (op->fast_check()) {
1639         __ cmp(klass_RInfo, k_RInfo);
1640         if (!op->should_profile()) {
1641           set_instanceof_result(_masm, res, eq);
1642         } else {
1643           __ b(profile_cast_failure, ne);
1644         }
1645       } else if (k->is_loaded()) {
1646         __ ldr(Rtemp, Address(klass_RInfo, k->super_check_offset()));
1647         if (in_bytes(Klass::secondary_super_cache_offset()) != (int) k->super_check_offset()) {
1648           __ cmp(Rtemp, k_RInfo);
1649           if (!op->should_profile()) {
1650             set_instanceof_result(_masm, res, eq);
1651           } else {
1652             __ b(profile_cast_failure, ne);
1653           }
1654         } else {
1655           __ cmp(klass_RInfo, k_RInfo);
1656           __ cond_cmp(Rtemp, k_RInfo, ne);
1657           if (!op->should_profile()) {
1658             set_instanceof_result(_masm, res, eq);
1659           }
1660           __ b(*success_target, eq);
1661           assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup");
1662           __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
1663           if (!op->should_profile()) {
1664             move_regs(R0, res);
1665           } else {
1666             __ cbz(R0, *failure_target);
1667           }
1668         }
1669       } else {
1670         __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1671         // check for immediate positive hit
1672         __ cmp(klass_RInfo, k_RInfo);
1673         if (!op->should_profile()) {
1674 #ifdef AARCH64
1675           // TODO-AARCH64 check if separate conditional branch is more efficient than ldr+cond_cmp
1676           __ ldr(res, Address(klass_RInfo, Rtemp));
1677 #else
1678           __ ldr(res, Address(klass_RInfo, Rtemp), ne);
1679 #endif // AARCH64
1680           __ cond_cmp(res, k_RInfo, ne);
1681           set_instanceof_result(_masm, res, eq);
1682         } else {
1683 #ifdef AARCH64
1684           // TODO-AARCH64 check if separate conditional branch is more efficient than ldr+cond_cmp
1685           __ ldr(Rtemp, Address(klass_RInfo, Rtemp));
1686 #else
1687           __ ldr(Rtemp, Address(klass_RInfo, Rtemp), ne);
1688 #endif // AARCH64
1689           __ cond_cmp(Rtemp, k_RInfo, ne);
1690         }
1691         __ b(*success_target, eq);
1692         // check for immediate negative hit
1693         if (op->should_profile()) {
1694           __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1695         }
1696         __ cmp(Rtemp, in_bytes(Klass::secondary_super_cache_offset()));
1697         if (!op->should_profile()) {
1698 #ifdef AARCH64
1699           __ mov(res, 0);
1700 #else
1701           __ mov(res, 0, ne);
1702 #endif // AARCH64
1703         }
1704         __ b(*failure_target, ne);
1705         // slow case
1706         assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup");
1707         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
1708         if (!op->should_profile()) {
1709           move_regs(R0, res);
1710         }
1711         if (op->should_profile()) {
1712           __ cbz(R0, *failure_target);
1713         }
1714       }
1715 
1716       if (op->should_profile()) {
1717         Label done_ok, done_failure;
1718         Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtemp;
1719         typecheck_profile_helper2(md, data, mdo_offset_bias, mdo, recv, res, tmp1,
1720                                   &profile_cast_success, &profile_cast_failure,
1721                                   &done_ok, &done_failure);
1722         __ bind(done_failure);


1724         __ b(done);
1725         __ bind(done_ok);
1726         __ mov(res, 1);
1727       }
1728       __ bind(done);
1729       break;
1730     }
1731     default:
1732       ShouldNotReachHere();
1733   }
1734 }
1735 
1736 
1737 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1738   //   if (*addr == cmpval) {
1739   //     *addr = newval;
1740   //     dest = 1;
1741   //   } else {
1742   //     dest = 0;
1743   //   }
1744 #ifdef AARCH64
1745   Label retry, done;
1746   Register addr = op->addr()->as_pointer_register();
1747   Register cmpval = op->cmp_value()->as_pointer_register();
1748   Register newval = op->new_value()->as_pointer_register();
1749   Register dest = op->result_opr()->as_pointer_register();
1750   assert_different_registers(dest, addr, cmpval, newval, Rtemp);
1751 
1752   if (UseCompressedOops && op->code() == lir_cas_obj) {
1753     Register tmp1 = op->tmp1()->as_pointer_register();
1754     Register tmp2 = op->tmp2()->as_pointer_register();
1755     assert_different_registers(dest, addr, cmpval, newval, tmp1, tmp2, Rtemp);
1756     __ encode_heap_oop(tmp1, cmpval); cmpval = tmp1;
1757     __ encode_heap_oop(tmp2, newval); newval = tmp2;
1758   }
1759 
1760   __ mov(dest, ZR);
1761   __ bind(retry);
1762   if (((op->code() == lir_cas_obj) && !UseCompressedOops) || op->code() == lir_cas_long) {
1763     __ ldaxr(Rtemp, addr);
1764     __ cmp(Rtemp, cmpval);
1765     __ b(done, ne);
1766     __ stlxr(Rtemp, newval, addr);
1767   } else if (((op->code() == lir_cas_obj) && UseCompressedOops) || op->code() == lir_cas_int) {
1768     __ ldaxr_w(Rtemp, addr);
1769     __ cmp_w(Rtemp, cmpval);
1770     __ b(done, ne);
1771     __ stlxr_w(Rtemp, newval, addr);
1772   } else {
1773     ShouldNotReachHere();
1774   }
1775   __ cbnz_w(Rtemp, retry);
1776   __ mov(dest, 1);
1777   __ bind(done);
1778 #else
1779   // FIXME: membar_release
1780   __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp);
1781   Register addr = op->addr()->is_register() ?
1782     op->addr()->as_pointer_register() :
1783     op->addr()->as_address_ptr()->base()->as_pointer_register();
1784   assert(op->addr()->is_register() || op->addr()->as_address_ptr()->disp() == 0, "unexpected disp");
1785   assert(op->addr()->is_register() || op->addr()->as_address_ptr()->index() == LIR_OprDesc::illegalOpr(), "unexpected index");
1786   if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
1787     Register cmpval = op->cmp_value()->as_register();
1788     Register newval = op->new_value()->as_register();
1789     Register dest = op->result_opr()->as_register();
1790     assert_different_registers(dest, addr, cmpval, newval, Rtemp);
1791 
1792     __ atomic_cas_bool(cmpval, newval, addr, 0, Rtemp); // Rtemp free by default at C1 LIR layer
1793     __ mov(dest, 1, eq);
1794     __ mov(dest, 0, ne);
1795   } else if (op->code() == lir_cas_long) {
1796     assert(VM_Version::supports_cx8(), "wrong machine");
1797     Register cmp_value_lo = op->cmp_value()->as_register_lo();
1798     Register cmp_value_hi = op->cmp_value()->as_register_hi();
1799     Register new_value_lo = op->new_value()->as_register_lo();
1800     Register new_value_hi = op->new_value()->as_register_hi();
1801     Register dest = op->result_opr()->as_register();
1802     Register tmp_lo = op->tmp1()->as_register_lo();
1803     Register tmp_hi = op->tmp1()->as_register_hi();
1804 
1805     assert_different_registers(tmp_lo, tmp_hi, cmp_value_lo, cmp_value_hi, dest, new_value_lo, new_value_hi, addr);
1806     assert(tmp_hi->encoding() == tmp_lo->encoding() + 1, "non aligned register pair");
1807     assert(new_value_hi->encoding() == new_value_lo->encoding() + 1, "non aligned register pair");
1808     assert((tmp_lo->encoding() & 0x1) == 0, "misaligned register pair");
1809     assert((new_value_lo->encoding() & 0x1) == 0, "misaligned register pair");
1810     __ atomic_cas64(tmp_lo, tmp_hi, dest, cmp_value_lo, cmp_value_hi,
1811                     new_value_lo, new_value_hi, addr, 0);
1812   } else {
1813     Unimplemented();
1814   }
1815 #endif // AARCH64
1816   // FIXME: is full membar really needed instead of just membar_acquire?
1817   __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad | MacroAssembler::StoreStore), Rtemp);
1818 }
1819 
1820 
1821 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1822   AsmCondition acond = al;
1823   AsmCondition ncond = nv;
1824   if (opr1 != opr2) {
1825     switch (condition) {
1826       case lir_cond_equal:        acond = eq; ncond = ne; break;
1827       case lir_cond_notEqual:     acond = ne; ncond = eq; break;
1828       case lir_cond_less:         acond = lt; ncond = ge; break;
1829       case lir_cond_lessEqual:    acond = le; ncond = gt; break;
1830       case lir_cond_greaterEqual: acond = ge; ncond = lt; break;
1831       case lir_cond_greater:      acond = gt; ncond = le; break;
1832       case lir_cond_aboveEqual:   acond = hs; ncond = lo; break;
1833       case lir_cond_belowEqual:   acond = ls; ncond = hi; break;
1834       default: ShouldNotReachHere();
1835     }
1836   }
1837 
1838 #ifdef AARCH64
1839 
1840   // TODO-AARCH64 implement it more efficiently
1841 
1842   if (opr1->is_register()) {
1843     reg2reg(opr1, result);
1844   } else if (opr1->is_stack()) {
1845     stack2reg(opr1, result, result->type());
1846   } else if (opr1->is_constant()) {
1847     const2reg(opr1, result, lir_patch_none, NULL);
1848   } else {
1849     ShouldNotReachHere();
1850   }
1851 
1852   Label skip;
1853   __ b(skip, acond);
1854 
1855   if (opr2->is_register()) {
1856     reg2reg(opr2, result);
1857   } else if (opr2->is_stack()) {
1858     stack2reg(opr2, result, result->type());
1859   } else if (opr2->is_constant()) {
1860     const2reg(opr2, result, lir_patch_none, NULL);
1861   } else {
1862     ShouldNotReachHere();
1863   }
1864 
1865   __ bind(skip);
1866 
1867 #else
1868   for (;;) {                         // two iterations only
1869     if (opr1 == result) {
1870       // do nothing
1871     } else if (opr1->is_single_cpu()) {
1872       __ mov(result->as_register(), opr1->as_register(), acond);
1873     } else if (opr1->is_double_cpu()) {
1874       __ long_move(result->as_register_lo(), result->as_register_hi(),
1875                    opr1->as_register_lo(), opr1->as_register_hi(), acond);
1876     } else if (opr1->is_single_stack()) {
1877       __ ldr(result->as_register(), frame_map()->address_for_slot(opr1->single_stack_ix()), acond);
1878     } else if (opr1->is_double_stack()) {
1879       __ ldr(result->as_register_lo(),
1880              frame_map()->address_for_slot(opr1->double_stack_ix(), lo_word_offset_in_bytes), acond);
1881       __ ldr(result->as_register_hi(),
1882              frame_map()->address_for_slot(opr1->double_stack_ix(), hi_word_offset_in_bytes), acond);
1883     } else if (opr1->is_illegal()) {
1884       // do nothing: this part of the cmove has been optimized away in the peephole optimizer
1885     } else {
1886       assert(opr1->is_constant(), "must be");
1887       LIR_Const* c = opr1->as_constant_ptr();


1907           break;
1908         case T_DOUBLE:
1909 #ifdef __SOFTFP__
1910           // not generated now.
1911           __ mov_slow(result->as_register_lo(), c->as_jint_lo(), acond);
1912           __ mov_slow(result->as_register_hi(), c->as_jint_hi(), acond);
1913 #else
1914           __ mov_double(result->as_double_reg(), c->as_jdouble(), acond);
1915 #endif // __SOFTFP__
1916           break;
1917         default:
1918           ShouldNotReachHere();
1919       }
1920     }
1921 
1922     // Negate the condition and repeat the algorithm with the second operand
1923     if (opr1 == opr2) { break; }
1924     opr1 = opr2;
1925     acond = ncond;
1926   }
1927 #endif // AARCH64
1928 }
1929 
1930 #if defined(AARCH64) || defined(ASSERT)
1931 static int reg_size(LIR_Opr op) {
1932   switch (op->type()) {
1933   case T_FLOAT:
1934   case T_INT:      return BytesPerInt;
1935   case T_LONG:
1936   case T_DOUBLE:   return BytesPerLong;
1937   case T_OBJECT:
1938   case T_ARRAY:
1939   case T_METADATA: return BytesPerWord;
1940   case T_ADDRESS:
1941   case T_ILLEGAL:  // fall through
1942   default: ShouldNotReachHere(); return -1;
1943   }
1944 }
1945 #endif
1946 
1947 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1948   assert(info == NULL, "unused on this code path");
1949   assert(dest->is_register(), "wrong items state");
1950 
1951   if (right->is_address()) {
1952     // special case for adding shifted/extended register
1953     const Register res = dest->as_pointer_register();
1954     const Register lreg = left->as_pointer_register();
1955     const LIR_Address* addr = right->as_address_ptr();
1956 
1957     assert(addr->base()->as_pointer_register() == lreg && addr->index()->is_register() && addr->disp() == 0, "must be");
1958 
1959     int scale = addr->scale();
1960     AsmShift shift = lsl;
1961 
1962 #ifdef AARCH64
1963     bool is_index_extended = reg_size(addr->base()) > reg_size(addr->index());
1964     if (scale < 0) {
1965       scale = -scale;
1966       shift = lsr;
1967     }
1968     assert(shift == lsl || !is_index_extended, "could not have extend and right shift in one operand");
1969     assert(0 <= scale && scale <= 63, "scale is too large");
1970 
1971     if (is_index_extended) {
1972       assert(scale <= 4, "scale is too large for add with extended register");
1973       assert(addr->index()->is_single_cpu(), "should be");
1974       assert(addr->index()->type() == T_INT, "should be");
1975       assert(dest->is_double_cpu(), "should be");
1976       assert(code == lir_add, "special case of add with extended register");
1977 
1978       __ add(res, lreg, addr->index()->as_register(), ex_sxtw, scale);
1979       return;
1980     } else if (reg_size(dest) == BytesPerInt) {
1981       assert(reg_size(addr->base()) == reg_size(addr->index()), "should be");
1982       assert(reg_size(addr->base()) == reg_size(dest), "should be");
1983 
1984       AsmOperand operand(addr->index()->as_pointer_register(), shift, scale);
1985       switch (code) {
1986         case lir_add: __ add_32(res, lreg, operand); break;
1987         case lir_sub: __ sub_32(res, lreg, operand); break;
1988         default: ShouldNotReachHere();
1989       }
1990       return;
1991     }
1992 #endif // AARCH64
1993 
1994     assert(reg_size(addr->base()) == reg_size(addr->index()), "should be");
1995     assert(reg_size(addr->base()) == reg_size(dest), "should be");
1996     assert(reg_size(dest) == wordSize, "should be");
1997 
1998     AsmOperand operand(addr->index()->as_pointer_register(), shift, scale);
1999     switch (code) {
2000       case lir_add: __ add(res, lreg, operand); break;
2001       case lir_sub: __ sub(res, lreg, operand); break;
2002       default: ShouldNotReachHere();
2003     }
2004 
2005 #ifndef AARCH64
2006   } else if (left->is_address()) {
2007     assert(code == lir_sub && right->is_single_cpu(), "special case used by strength_reduce_multiply()");
2008     const LIR_Address* addr = left->as_address_ptr();
2009     const Register res = dest->as_register();
2010     const Register rreg = right->as_register();
2011     assert(addr->base()->as_register() == rreg && addr->index()->is_register() && addr->disp() == 0, "must be");
2012     __ rsb(res, rreg, AsmOperand(addr->index()->as_register(), lsl, addr->scale()));
2013 #endif // !AARCH64
2014 
2015   } else if (dest->is_single_cpu()) {
2016     assert(left->is_single_cpu(), "unexpected left operand");
2017 #ifdef AARCH64
2018     assert(dest->type() == T_INT, "unexpected dest type");
2019     assert(left->type() == T_INT, "unexpected left type");
2020     assert(right->type() == T_INT, "unexpected right type");
2021 #endif // AARCH64
2022 
2023     const Register res = dest->as_register();
2024     const Register lreg = left->as_register();
2025 
2026     if (right->is_single_cpu()) {
2027       const Register rreg = right->as_register();
2028       switch (code) {
2029         case lir_add: __ add_32(res, lreg, rreg); break;
2030         case lir_sub: __ sub_32(res, lreg, rreg); break;
2031         case lir_mul: __ mul_32(res, lreg, rreg); break;
2032         default: ShouldNotReachHere();
2033       }
2034     } else {
2035       assert(right->is_constant(), "must be");
2036       const jint c = right->as_constant_ptr()->as_jint();
2037       if (!Assembler::is_arith_imm_in_range(c)) {
2038         BAILOUT("illegal arithmetic operand");
2039       }
2040       switch (code) {
2041         case lir_add: __ add_32(res, lreg, c); break;
2042         case lir_sub: __ sub_32(res, lreg, c); break;
2043         default: ShouldNotReachHere();
2044       }
2045     }
2046 
2047   } else if (dest->is_double_cpu()) {
2048 #ifdef AARCH64
2049     assert(left->is_double_cpu() ||
2050            (left->is_single_cpu() && ((left->type() == T_OBJECT) || (left->type() == T_ARRAY) || (left->type() == T_ADDRESS))),
2051            "unexpected left operand");
2052 
2053     const Register res = dest->as_register_lo();
2054     const Register lreg = left->as_pointer_register();
2055 
2056     if (right->is_constant()) {
2057       assert(right->type() == T_LONG, "unexpected right type");
2058       assert((right->as_constant_ptr()->as_jlong() >> 24) == 0, "out of range");
2059       jint imm = (jint)right->as_constant_ptr()->as_jlong();
2060       switch (code) {
2061         case lir_add: __ add(res, lreg, imm); break;
2062         case lir_sub: __ sub(res, lreg, imm); break;
2063         default: ShouldNotReachHere();
2064       }
2065     } else {
2066       assert(right->is_double_cpu() ||
2067              (right->is_single_cpu() && ((right->type() == T_OBJECT) || (right->type() == T_ARRAY) || (right->type() == T_ADDRESS))),
2068              "unexpected right operand");
2069       const Register rreg = right->as_pointer_register();
2070       switch (code) {
2071         case lir_add: __ add(res, lreg, rreg); break;
2072         case lir_sub: __ sub(res, lreg, rreg); break;
2073         case lir_mul: __ mul(res, lreg, rreg); break;
2074         default: ShouldNotReachHere();
2075       }
2076     }
2077 #else // AARCH64
2078     Register res_lo = dest->as_register_lo();
2079     Register res_hi = dest->as_register_hi();
2080     Register lreg_lo = left->as_register_lo();
2081     Register lreg_hi = left->as_register_hi();
2082     if (right->is_double_cpu()) {
2083       Register rreg_lo = right->as_register_lo();
2084       Register rreg_hi = right->as_register_hi();
2085       if (res_lo == lreg_hi || res_lo == rreg_hi) {
2086         res_lo = Rtemp;
2087       }
2088       switch (code) {
2089         case lir_add:
2090           __ adds(res_lo, lreg_lo, rreg_lo);
2091           __ adc(res_hi, lreg_hi, rreg_hi);
2092           break;
2093         case lir_sub:
2094           __ subs(res_lo, lreg_lo, rreg_lo);
2095           __ sbc(res_hi, lreg_hi, rreg_hi);
2096           break;
2097         default:


2101       assert(right->is_constant(), "must be");
2102       assert((right->as_constant_ptr()->as_jlong() >> 32) == 0, "out of range");
2103       const jint c = (jint) right->as_constant_ptr()->as_jlong();
2104       if (res_lo == lreg_hi) {
2105         res_lo = Rtemp;
2106       }
2107       switch (code) {
2108         case lir_add:
2109           __ adds(res_lo, lreg_lo, c);
2110           __ adc(res_hi, lreg_hi, 0);
2111           break;
2112         case lir_sub:
2113           __ subs(res_lo, lreg_lo, c);
2114           __ sbc(res_hi, lreg_hi, 0);
2115           break;
2116         default:
2117           ShouldNotReachHere();
2118       }
2119     }
2120     move_regs(res_lo, dest->as_register_lo());
2121 #endif // AARCH64
2122 
2123   } else if (dest->is_single_fpu()) {
2124     assert(left->is_single_fpu(), "must be");
2125     assert(right->is_single_fpu(), "must be");
2126     const FloatRegister res = dest->as_float_reg();
2127     const FloatRegister lreg = left->as_float_reg();
2128     const FloatRegister rreg = right->as_float_reg();
2129     switch (code) {
2130       case lir_add: __ add_float(res, lreg, rreg); break;
2131       case lir_sub: __ sub_float(res, lreg, rreg); break;
2132       case lir_mul_strictfp: // fall through
2133       case lir_mul: __ mul_float(res, lreg, rreg); break;
2134       case lir_div_strictfp: // fall through
2135       case lir_div: __ div_float(res, lreg, rreg); break;
2136       default: ShouldNotReachHere();
2137     }
2138   } else if (dest->is_double_fpu()) {
2139     assert(left->is_double_fpu(), "must be");
2140     assert(right->is_double_fpu(), "must be");
2141     const FloatRegister res = dest->as_double_reg();


2158 
2159 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2160   switch (code) {
2161     case lir_abs:
2162       __ abs_double(dest->as_double_reg(), value->as_double_reg());
2163       break;
2164     case lir_sqrt:
2165       __ sqrt_double(dest->as_double_reg(), value->as_double_reg());
2166       break;
2167     default:
2168       ShouldNotReachHere();
2169   }
2170 }
2171 
2172 
2173 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
2174   assert(dest->is_register(), "wrong items state");
2175   assert(left->is_register(), "wrong items state");
2176 
2177   if (dest->is_single_cpu()) {
2178 #ifdef AARCH64
2179     assert (dest->type() == T_INT, "unexpected result type");
2180     assert (left->type() == T_INT, "unexpected left type");
2181     assert (right->type() == T_INT, "unexpected right type");
2182 #endif // AARCH64
2183 
2184     const Register res = dest->as_register();
2185     const Register lreg = left->as_register();
2186 
2187     if (right->is_single_cpu()) {
2188       const Register rreg = right->as_register();
2189       switch (code) {
2190         case lir_logic_and: __ and_32(res, lreg, rreg); break;
2191         case lir_logic_or:  __ orr_32(res, lreg, rreg); break;
2192         case lir_logic_xor: __ eor_32(res, lreg, rreg); break;
2193         default: ShouldNotReachHere();
2194       }
2195     } else {
2196       assert(right->is_constant(), "must be");
2197       const uint c = (uint)right->as_constant_ptr()->as_jint();
2198       switch (code) {
2199         case lir_logic_and: __ and_32(res, lreg, c); break;
2200         case lir_logic_or:  __ orr_32(res, lreg, c); break;
2201         case lir_logic_xor: __ eor_32(res, lreg, c); break;
2202         default: ShouldNotReachHere();
2203       }
2204     }
2205   } else {
2206     assert(dest->is_double_cpu(), "should be");
2207     Register res_lo = dest->as_register_lo();
2208 
2209 #ifdef AARCH64
2210     assert ((left->is_single_cpu() && left->is_oop_register()) || left->is_double_cpu(), "should be");
2211     const Register lreg_lo = left->as_pointer_register();
2212 #else
2213     assert (dest->type() == T_LONG, "unexpected result type");
2214     assert (left->type() == T_LONG, "unexpected left type");
2215     assert (right->type() == T_LONG, "unexpected right type");
2216 
2217     const Register res_hi = dest->as_register_hi();
2218     const Register lreg_lo = left->as_register_lo();
2219     const Register lreg_hi = left->as_register_hi();
2220 #endif // AARCH64
2221 
2222     if (right->is_register()) {
2223 #ifdef AARCH64
2224       assert ((right->is_single_cpu() && right->is_oop_register()) || right->is_double_cpu(), "should be");
2225       const Register rreg_lo = right->as_pointer_register();
2226       switch (code) {
2227         case lir_logic_and: __ andr(res_lo, lreg_lo, rreg_lo); break;
2228         case lir_logic_or:  __ orr (res_lo, lreg_lo, rreg_lo); break;
2229         case lir_logic_xor: __ eor (res_lo, lreg_lo, rreg_lo); break;
2230         default: ShouldNotReachHere();
2231       }
2232 #else
2233       const Register rreg_lo = right->as_register_lo();
2234       const Register rreg_hi = right->as_register_hi();
2235       if (res_lo == lreg_hi || res_lo == rreg_hi) {
2236         res_lo = Rtemp; // Temp register helps to avoid overlap between result and input
2237       }
2238       switch (code) {
2239         case lir_logic_and:
2240           __ andr(res_lo, lreg_lo, rreg_lo);
2241           __ andr(res_hi, lreg_hi, rreg_hi);
2242           break;
2243         case lir_logic_or:
2244           __ orr(res_lo, lreg_lo, rreg_lo);
2245           __ orr(res_hi, lreg_hi, rreg_hi);
2246           break;
2247         case lir_logic_xor:
2248           __ eor(res_lo, lreg_lo, rreg_lo);
2249           __ eor(res_hi, lreg_hi, rreg_hi);
2250           break;
2251         default:
2252           ShouldNotReachHere();
2253       }
2254       move_regs(res_lo, dest->as_register_lo());
2255 #endif // AARCH64
2256     } else {
2257       assert(right->is_constant(), "must be");
2258 #ifdef AARCH64
2259       const julong c = (julong)right->as_constant_ptr()->as_jlong();
2260       Assembler::LogicalImmediate imm(c, false);
2261       if (imm.is_encoded()) {
2262         switch (code) {
2263           case lir_logic_and: __ andr(res_lo, lreg_lo, imm); break;
2264           case lir_logic_or:  __ orr (res_lo, lreg_lo, imm); break;
2265           case lir_logic_xor: __ eor (res_lo, lreg_lo, imm); break;
2266           default: ShouldNotReachHere();
2267         }
2268       } else {
2269         BAILOUT("64 bit constant cannot be inlined");
2270       }
2271 #else
2272       const jint c_lo = (jint) right->as_constant_ptr()->as_jlong();
2273       const jint c_hi = (jint) (right->as_constant_ptr()->as_jlong() >> 32);
2274       // Case for logic_or from do_ClassIDIntrinsic()
2275       if (c_hi == 0 && AsmOperand::is_rotated_imm(c_lo)) {
2276         switch (code) {
2277           case lir_logic_and:
2278             __ andr(res_lo, lreg_lo, c_lo);
2279             __ mov(res_hi, 0);
2280             break;
2281           case lir_logic_or:
2282             __ orr(res_lo, lreg_lo, c_lo);
2283             break;
2284           case lir_logic_xor:
2285             __ eor(res_lo, lreg_lo, c_lo);
2286             break;
2287         default:
2288           ShouldNotReachHere();
2289         }
2290       } else if (code == lir_logic_and &&
2291                  c_hi == -1 &&
2292                  (AsmOperand::is_rotated_imm(c_lo) ||
2293                   AsmOperand::is_rotated_imm(~c_lo))) {
2294         // Another case which handles logic_and from do_ClassIDIntrinsic()
2295         if (AsmOperand::is_rotated_imm(c_lo)) {
2296           __ andr(res_lo, lreg_lo, c_lo);
2297         } else {
2298           __ bic(res_lo, lreg_lo, ~c_lo);
2299         }
2300         if (res_hi != lreg_hi) {
2301           __ mov(res_hi, lreg_hi);
2302         }
2303       } else {
2304         BAILOUT("64 bit constant cannot be inlined");
2305       }
2306 #endif // AARCH64
2307     }
2308   }
2309 }
2310 
2311 
2312 #ifdef AARCH64
2313 
2314 void LIR_Assembler::long_compare_helper(LIR_Opr opr1, LIR_Opr opr2) {
2315   assert(opr1->is_double_cpu(), "should be");
2316   Register x = opr1->as_register_lo();
2317 
2318   if (opr2->is_double_cpu()) {
2319     Register y = opr2->as_register_lo();
2320     __ cmp(x, y);
2321 
2322   } else {
2323     assert(opr2->is_constant(), "should be");
2324     assert(opr2->as_constant_ptr()->type() == T_LONG, "long constant expected");
2325     jlong c = opr2->as_jlong();
2326     assert(((c >> 31) == 0) || ((c >> 31) == -1), "immediate is out of range");
2327     if (c >= 0) {
2328       __ cmp(x, (jint)c);
2329     } else {
2330       __ cmn(x, (jint)(-c));
2331     }
2332   }
2333 }
2334 
2335 #endif // AARCH64
2336 
2337 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2338   if (opr1->is_single_cpu()) {
2339     if (opr2->is_constant()) {
2340       switch (opr2->as_constant_ptr()->type()) {
2341         case T_INT: {
2342           const jint c = opr2->as_constant_ptr()->as_jint();
2343           if (Assembler::is_arith_imm_in_range(c)) {
2344             __ cmp_32(opr1->as_register(), c);
2345           } else if (Assembler::is_arith_imm_in_range(-c)) {
2346             __ cmn_32(opr1->as_register(), -c);
2347           } else {
2348             // This can happen when compiling lookupswitch
2349             __ mov_slow(Rtemp, c);
2350             __ cmp_32(opr1->as_register(), Rtemp);
2351           }
2352           break;
2353         }
2354         case T_OBJECT:
2355           assert(opr2->as_constant_ptr()->as_jobject() == NULL, "cannot handle otherwise");
2356           __ cmp(opr1->as_register(), 0);
2357           break;
2358         default:
2359           ShouldNotReachHere();
2360       }
2361     } else if (opr2->is_single_cpu()) {
2362       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY || opr1->type() == T_METADATA || opr1->type() == T_ADDRESS) {
2363         assert(opr2->type() == T_OBJECT || opr2->type() == T_ARRAY || opr2->type() == T_METADATA || opr2->type() == T_ADDRESS, "incompatibe type");
2364         __ cmp(opr1->as_register(), opr2->as_register());
2365       } else {
2366         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY && opr2->type() != T_METADATA && opr2->type() != T_ADDRESS, "incompatibe type");
2367         __ cmp_32(opr1->as_register(), opr2->as_register());
2368       }
2369     } else {
2370       ShouldNotReachHere();
2371     }
2372   } else if (opr1->is_double_cpu()) {
2373 #ifdef AARCH64
2374     long_compare_helper(opr1, opr2);
2375 #else
2376     Register xlo = opr1->as_register_lo();
2377     Register xhi = opr1->as_register_hi();
2378     if (opr2->is_constant() && opr2->as_jlong() == 0) {
2379       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "cannot handle otherwise");
2380       __ orrs(Rtemp, xlo, xhi);
2381     } else if (opr2->is_register()) {
2382       Register ylo = opr2->as_register_lo();
2383       Register yhi = opr2->as_register_hi();
2384       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2385         __ teq(xhi, yhi);
2386         __ teq(xlo, ylo, eq);
2387       } else {
2388         __ subs(xlo, xlo, ylo);
2389         __ sbcs(xhi, xhi, yhi);
2390       }
2391     } else {
2392       ShouldNotReachHere();
2393     }
2394 #endif // AARCH64
2395   } else if (opr1->is_single_fpu()) {
2396     if (opr2->is_constant()) {
2397       assert(opr2->as_jfloat() == 0.0f, "cannot handle otherwise");
2398       __ cmp_zero_float(opr1->as_float_reg());
2399     } else {
2400       __ cmp_float(opr1->as_float_reg(), opr2->as_float_reg());
2401     }
2402   } else if (opr1->is_double_fpu()) {
2403     if (opr2->is_constant()) {
2404       assert(opr2->as_jdouble() == 0.0, "cannot handle otherwise");
2405       __ cmp_zero_double(opr1->as_double_reg());
2406     } else {
2407       __ cmp_double(opr1->as_double_reg(), opr2->as_double_reg());
2408     }
2409   } else {
2410     ShouldNotReachHere();
2411   }
2412 }
2413 
2414 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2415   const Register res = dst->as_register();
2416   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2417     comp_op(lir_cond_unknown, left, right, op);
2418 #ifdef AARCH64
2419     if (code == lir_ucmp_fd2i) {         // unordered is less
2420       __ cset(res, gt);                  // 1 if '>', else 0
2421       __ csinv(res, res, ZR, ge);        // previous value if '>=', else -1
2422     } else {
2423       __ cset(res, hi);                  // 1 if '>' or unordered, else 0
2424       __ csinv(res, res, ZR, pl);        // previous value if '>=' or unordered, else -1
2425     }
2426 #else
2427     __ fmstat();
2428     if (code == lir_ucmp_fd2i) {  // unordered is less
2429       __ mvn(res, 0, lt);
2430       __ mov(res, 1, ge);
2431     } else {                      // unordered is greater
2432       __ mov(res, 1, cs);
2433       __ mvn(res, 0, cc);
2434     }
2435     __ mov(res, 0, eq);
2436 #endif // AARCH64
2437 
2438   } else {
2439     assert(code == lir_cmp_l2i, "must be");
2440 
2441 #ifdef AARCH64
2442     long_compare_helper(left, right);
2443 
2444     __ cset(res, gt);            // 1 if '>', else 0
2445     __ csinv(res, res, ZR, ge);  // previous value if '>=', else -1
2446 #else
2447     Label done;
2448     const Register xlo = left->as_register_lo();
2449     const Register xhi = left->as_register_hi();
2450     const Register ylo = right->as_register_lo();
2451     const Register yhi = right->as_register_hi();
2452     __ cmp(xhi, yhi);
2453     __ mov(res, 1, gt);
2454     __ mvn(res, 0, lt);
2455     __ b(done, ne);
2456     __ subs(res, xlo, ylo);
2457     __ mov(res, 1, hi);
2458     __ mvn(res, 0, lo);
2459     __ bind(done);
2460 #endif // AARCH64
2461   }
2462 }
2463 
2464 
2465 void LIR_Assembler::align_call(LIR_Code code) {
2466   // Not needed
2467 }
2468 
2469 
2470 void LIR_Assembler::call(LIR_OpJavaCall *op, relocInfo::relocType rtype) {
2471   int ret_addr_offset = __ patchable_call(op->addr(), rtype);
2472   assert(ret_addr_offset == __ offset(), "embedded return address not allowed");
2473   add_call_info_here(op->info());
2474 }
2475 
2476 
2477 void LIR_Assembler::ic_call(LIR_OpJavaCall *op) {
2478   bool near_range = __ cache_fully_reachable();
2479   address oop_address = pc();
2480 
2481   bool use_movw = AARCH64_ONLY(false) NOT_AARCH64(VM_Version::supports_movw());
2482 
2483   // Ricklass may contain something that is not a metadata pointer so
2484   // mov_metadata can't be used
2485   InlinedAddress value((address)Universe::non_oop_word());
2486   InlinedAddress addr(op->addr());
2487   if (use_movw) {
2488 #ifdef AARCH64
2489     ShouldNotReachHere();
2490 #else
2491     __ movw(Ricklass, ((unsigned int)Universe::non_oop_word()) & 0xffff);
2492     __ movt(Ricklass, ((unsigned int)Universe::non_oop_word()) >> 16);
2493 #endif // AARCH64
2494   } else {
2495     // No movw/movt, must be load a pc relative value but no
2496     // relocation so no metadata table to load from.
2497     // Use a b instruction rather than a bl, inline constant after the
2498     // branch, use a PC relative ldr to load the constant, arrange for
2499     // the call to return after the constant(s).
2500     __ ldr_literal(Ricklass, value);
2501   }
2502   __ relocate(virtual_call_Relocation::spec(oop_address));
2503   if (near_range && use_movw) {
2504     __ bl(op->addr());
2505   } else {
2506     Label call_return;
2507     __ adr(LR, call_return);
2508     if (near_range) {
2509       __ b(op->addr());
2510     } else {
2511       __ indirect_jump(addr, Rtemp);
2512       __ bind_literal(addr);
2513     }


2565   assert(exceptionOop->as_register() == Rexception_obj, "must match");
2566   assert(exceptionPC->as_register()  == Rexception_pc, "must match");
2567   info->add_register_oop(exceptionOop);
2568 
2569   Runtime1::StubID handle_id = compilation()->has_fpu_code() ?
2570                                Runtime1::handle_exception_id :
2571                                Runtime1::handle_exception_nofpu_id;
2572   Label return_address;
2573   __ adr(Rexception_pc, return_address);
2574   __ call(Runtime1::entry_for(handle_id), relocInfo::runtime_call_type);
2575   __ bind(return_address);
2576   add_call_info_here(info);  // for exception handler
2577 }
2578 
2579 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2580   assert(exceptionOop->as_register() == Rexception_obj, "must match");
2581   __ b(_unwind_handler_entry);
2582 }
2583 
2584 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2585 #ifdef AARCH64
2586   if (dest->is_single_cpu()) {
2587     Register res = dest->as_register();
2588     Register x = left->as_register();
2589     Register y = count->as_register();
2590     assert (dest->type() == T_INT, "unexpected result type");
2591     assert (left->type() == T_INT, "unexpected left type");
2592 
2593     switch (code) {
2594       case lir_shl:  __ lslv_w(res, x, y); break;
2595       case lir_shr:  __ asrv_w(res, x, y); break;
2596       case lir_ushr: __ lsrv_w(res, x, y); break;
2597       default: ShouldNotReachHere();
2598     }
2599   } else if (dest->is_double_cpu()) {
2600     Register res = dest->as_register_lo();
2601     Register x = left->as_register_lo();
2602     Register y = count->as_register();
2603 
2604     switch (code) {
2605       case lir_shl:  __ lslv(res, x, y); break;
2606       case lir_shr:  __ asrv(res, x, y); break;
2607       case lir_ushr: __ lsrv(res, x, y); break;
2608       default: ShouldNotReachHere();
2609     }
2610   } else {
2611     ShouldNotReachHere();
2612   }
2613 #else
2614   AsmShift shift = lsl;
2615   switch (code) {
2616     case lir_shl:  shift = lsl; break;
2617     case lir_shr:  shift = asr; break;
2618     case lir_ushr: shift = lsr; break;
2619     default: ShouldNotReachHere();
2620   }
2621 
2622   if (dest->is_single_cpu()) {
2623     __ andr(Rtemp, count->as_register(), 31);
2624     __ mov(dest->as_register(), AsmOperand(left->as_register(), shift, Rtemp));
2625   } else if (dest->is_double_cpu()) {
2626     Register dest_lo = dest->as_register_lo();
2627     Register dest_hi = dest->as_register_hi();
2628     Register src_lo  = left->as_register_lo();
2629     Register src_hi  = left->as_register_hi();
2630     Register Rcount  = count->as_register();
2631     // Resolve possible register conflicts
2632     if (shift == lsl && dest_hi == src_lo) {
2633       dest_hi = Rtemp;
2634     } else if (shift != lsl && dest_lo == src_hi) {
2635       dest_lo = Rtemp;
2636     } else if (dest_lo == src_lo && dest_hi == src_hi) {
2637       dest_lo = Rtemp;
2638     } else if (dest_lo == Rcount || dest_hi == Rcount) {
2639       Rcount = Rtemp;
2640     }
2641     __ andr(Rcount, count->as_register(), 63);
2642     __ long_shift(dest_lo, dest_hi, src_lo, src_hi, shift, Rcount);
2643     move_regs(dest_lo, dest->as_register_lo());
2644     move_regs(dest_hi, dest->as_register_hi());
2645   } else {
2646     ShouldNotReachHere();
2647   }
2648 #endif // AARCH64
2649 }
2650 
2651 
2652 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2653 #ifdef AARCH64
2654   if (dest->is_single_cpu()) {
2655     assert (dest->type() == T_INT, "unexpected result type");
2656     assert (left->type() == T_INT, "unexpected left type");
2657     count &= 31;
2658     if (count != 0) {
2659       switch (code) {
2660         case lir_shl:  __ _lsl_w(dest->as_register(), left->as_register(), count); break;
2661         case lir_shr:  __ _asr_w(dest->as_register(), left->as_register(), count); break;
2662         case lir_ushr: __ _lsr_w(dest->as_register(), left->as_register(), count); break;
2663         default: ShouldNotReachHere();
2664       }
2665     } else {
2666       move_regs(left->as_register(), dest->as_register());
2667     }
2668   } else if (dest->is_double_cpu()) {
2669     count &= 63;
2670     if (count != 0) {
2671       switch (code) {
2672         case lir_shl:  __ _lsl(dest->as_register_lo(), left->as_register_lo(), count); break;
2673         case lir_shr:  __ _asr(dest->as_register_lo(), left->as_register_lo(), count); break;
2674         case lir_ushr: __ _lsr(dest->as_register_lo(), left->as_register_lo(), count); break;
2675         default: ShouldNotReachHere();
2676       }
2677     } else {
2678       move_regs(left->as_register_lo(), dest->as_register_lo());
2679     }
2680   } else {
2681     ShouldNotReachHere();
2682   }
2683 
2684 #else
2685   AsmShift shift = lsl;
2686   switch (code) {
2687     case lir_shl:  shift = lsl; break;
2688     case lir_shr:  shift = asr; break;
2689     case lir_ushr: shift = lsr; break;
2690     default: ShouldNotReachHere();
2691   }
2692 
2693   if (dest->is_single_cpu()) {
2694     count &= 31;
2695     if (count != 0) {
2696       __ mov(dest->as_register(), AsmOperand(left->as_register(), shift, count));
2697     } else {
2698       move_regs(left->as_register(), dest->as_register());
2699     }
2700   } else if (dest->is_double_cpu()) {
2701     count &= 63;
2702     if (count != 0) {
2703       Register dest_lo = dest->as_register_lo();
2704       Register dest_hi = dest->as_register_hi();
2705       Register src_lo  = left->as_register_lo();
2706       Register src_hi  = left->as_register_hi();
2707       // Resolve possible register conflicts
2708       if (shift == lsl && dest_hi == src_lo) {
2709         dest_hi = Rtemp;
2710       } else if (shift != lsl && dest_lo == src_hi) {
2711         dest_lo = Rtemp;
2712       }
2713       __ long_shift(dest_lo, dest_hi, src_lo, src_hi, shift, count);
2714       move_regs(dest_lo, dest->as_register_lo());
2715       move_regs(dest_hi, dest->as_register_hi());
2716     } else {
2717       __ long_move(dest->as_register_lo(), dest->as_register_hi(),
2718                    left->as_register_lo(), left->as_register_hi());
2719     }
2720   } else {
2721     ShouldNotReachHere();
2722   }
2723 #endif // AARCH64
2724 }
2725 
2726 
2727 // Saves 4 given registers in reserved argument area.
2728 void LIR_Assembler::save_in_reserved_area(Register r1, Register r2, Register r3, Register r4) {
2729   verify_reserved_argument_area_size(4);
2730 #ifdef AARCH64
2731   __ stp(r1, r2, Address(SP, 0));
2732   __ stp(r3, r4, Address(SP, 2*wordSize));
2733 #else
2734   __ stmia(SP, RegisterSet(r1) | RegisterSet(r2) | RegisterSet(r3) | RegisterSet(r4));
2735 #endif // AARCH64
2736 }
2737 
2738 // Restores 4 given registers from reserved argument area.
2739 void LIR_Assembler::restore_from_reserved_area(Register r1, Register r2, Register r3, Register r4) {
2740 #ifdef AARCH64
2741   __ ldp(r1, r2, Address(SP, 0));
2742   __ ldp(r3, r4, Address(SP, 2*wordSize));
2743 #else
2744   __ ldmia(SP, RegisterSet(r1) | RegisterSet(r2) | RegisterSet(r3) | RegisterSet(r4), no_writeback);
2745 #endif // AARCH64
2746 }
2747 
2748 
2749 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2750   ciArrayKlass* default_type = op->expected_type();
2751   Register src = op->src()->as_register();
2752   Register src_pos = op->src_pos()->as_register();
2753   Register dst = op->dst()->as_register();
2754   Register dst_pos = op->dst_pos()->as_register();
2755   Register length  = op->length()->as_register();
2756   Register tmp = op->tmp()->as_register();
2757   Register tmp2 = Rtemp;
2758 
2759   assert(src == R0 && src_pos == R1 && dst == R2 && dst_pos == R3, "code assumption");
2760 #ifdef AARCH64
2761   assert(length == R4, "code assumption");
2762 #endif // AARCH64
2763 
2764   CodeStub* stub = op->stub();
2765 
2766   int flags = op->flags();
2767   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2768   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2769 
2770   // If we don't know anything or it's an object array, just go through the generic arraycopy
2771   if (default_type == NULL) {
2772 
2773     // save arguments, because they will be killed by a runtime call
2774     save_in_reserved_area(R0, R1, R2, R3);
2775 
2776 #ifdef AARCH64
2777     // save length argument, will be killed by a runtime call
2778     __ raw_push(length, ZR);
2779 #else
2780     // pass length argument on SP[0]
2781     __ str(length, Address(SP, -2*wordSize, pre_indexed));  // 2 words for a proper stack alignment
2782 #endif // AARCH64
2783 
2784     address copyfunc_addr = StubRoutines::generic_arraycopy();
2785     assert(copyfunc_addr != NULL, "generic arraycopy stub required");
2786 #ifndef PRODUCT
2787     if (PrintC1Statistics) {
2788       __ inc_counter((address)&Runtime1::_generic_arraycopystub_cnt, tmp, tmp2);
2789     }
2790 #endif // !PRODUCT
2791     // the stub is in the code cache so close enough
2792     __ call(copyfunc_addr, relocInfo::runtime_call_type);
2793 
2794 #ifdef AARCH64
2795     __ raw_pop(length, ZR);
2796 #else
2797     __ add(SP, SP, 2*wordSize);
2798 #endif // AARCH64
2799 
2800     __ cbz_32(R0, *stub->continuation());
2801 
2802     __ mvn_32(tmp, R0);
2803     restore_from_reserved_area(R0, R1, R2, R3);  // load saved arguments in slow case only
2804     __ sub_32(length, length, tmp);
2805     __ add_32(src_pos, src_pos, tmp);
2806     __ add_32(dst_pos, dst_pos, tmp);
2807 
2808     __ b(*stub->entry());
2809 
2810     __ bind(*stub->continuation());
2811     return;
2812   }
2813 
2814   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(),
2815          "must be true at this point");
2816   int elem_size = type2aelembytes(basic_type);
2817   int shift = exact_log2(elem_size);
2818 


2952             __ load_klass(tmp, src);
2953           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2954             __ load_klass(tmp, dst);
2955           }
2956           int lh_offset = in_bytes(Klass::layout_helper_offset());
2957 
2958           __ ldr_u32(tmp2, Address(tmp, lh_offset));
2959 
2960           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2961           __ mov_slow(tmp, objArray_lh);
2962           __ cmp_32(tmp, tmp2);
2963           __ b(*stub->entry(), ne);
2964         }
2965 
2966         save_in_reserved_area(R0, R1, R2, R3);
2967 
2968         Register src_ptr = R0;
2969         Register dst_ptr = R1;
2970         Register len     = R2;
2971         Register chk_off = R3;
2972         Register super_k = AARCH64_ONLY(R4) NOT_AARCH64(tmp);
2973 
2974         __ add(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type));
2975         __ add_ptr_scaled_int32(src_ptr, src_ptr, src_pos, shift);
2976 
2977         __ add(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type));
2978         __ add_ptr_scaled_int32(dst_ptr, dst_ptr, dst_pos, shift);
2979         __ load_klass(tmp, dst);
2980 
2981         int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
2982         int sco_offset = in_bytes(Klass::super_check_offset_offset());
2983 
2984 #ifdef AARCH64
2985         __ raw_push(length, ZR); // Preserve length around *copyfunc_addr call
2986 
2987         __ mov(len, length);
2988         __ ldr(super_k, Address(tmp, ek_offset)); // super_k == R4 == length, so this load cannot be performed earlier
2989         // TODO-AARCH64: check whether it is faster to load super klass early by using tmp and additional mov.
2990         __ ldr_u32(chk_off, Address(super_k, sco_offset));
2991 #else // AARCH64
2992         __ ldr(super_k, Address(tmp, ek_offset));
2993 
2994         __ mov(len, length);
2995         __ ldr_u32(chk_off, Address(super_k, sco_offset));
2996         __ push(super_k);
2997 #endif // AARCH64
2998 
2999         __ call(copyfunc_addr, relocInfo::runtime_call_type);
3000 
3001 #ifndef PRODUCT
3002         if (PrintC1Statistics) {
3003           Label failed;
3004           __ cbnz_32(R0, failed);
3005           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, tmp, tmp2);
3006           __ bind(failed);
3007         }
3008 #endif // PRODUCT
3009 
3010 #ifdef AARCH64
3011         __ raw_pop(length, ZR);
3012 #else
3013         __ add(SP, SP, wordSize);  // Drop super_k argument
3014 #endif // AARCH64
3015 
3016         __ cbz_32(R0, *stub->continuation());
3017         __ mvn_32(tmp, R0);
3018 
3019         // load saved arguments in slow case only
3020         restore_from_reserved_area(R0, R1, R2, R3);
3021 
3022         __ sub_32(length, length, tmp);
3023         __ add_32(src_pos, src_pos, tmp);
3024         __ add_32(dst_pos, dst_pos, tmp);
3025 
3026 #ifndef PRODUCT
3027         if (PrintC1Statistics) {
3028           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, tmp, tmp2);
3029         }
3030 #endif
3031 
3032         __ b(*stub->entry());
3033 
3034         __ bind(cont);


3056   Register len     = R2;
3057 
3058   __ add(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type));
3059   __ add_ptr_scaled_int32(src_ptr, src_ptr, src_pos, shift);
3060 
3061   __ add(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type));
3062   __ add_ptr_scaled_int32(dst_ptr, dst_ptr, dst_pos, shift);
3063 
3064   __ mov(len, length);
3065 
3066   __ call(entry, relocInfo::runtime_call_type);
3067 
3068   __ bind(*stub->continuation());
3069 }
3070 
3071 #ifdef ASSERT
3072  // emit run-time assertion
3073 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3074   assert(op->code() == lir_assert, "must be");
3075 
3076 #ifdef AARCH64
3077   __ NOT_IMPLEMENTED();
3078 #else
3079   if (op->in_opr1()->is_valid()) {
3080     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3081     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3082   } else {
3083     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3084     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3085   }
3086 
3087   Label ok;
3088   if (op->condition() != lir_cond_always) {
3089     AsmCondition acond = al;
3090     switch (op->condition()) {
3091       case lir_cond_equal:        acond = eq; break;
3092       case lir_cond_notEqual:     acond = ne; break;
3093       case lir_cond_less:         acond = lt; break;
3094       case lir_cond_lessEqual:    acond = le; break;
3095       case lir_cond_greaterEqual: acond = ge; break;
3096       case lir_cond_greater:      acond = gt; break;
3097       case lir_cond_aboveEqual:   acond = hs; break;
3098       case lir_cond_belowEqual:   acond = ls; break;
3099       default:                    ShouldNotReachHere();
3100     }
3101     __ b(ok, acond);
3102   }
3103   if (op->halt()) {
3104     const char* str = __ code_string(op->msg());
3105     __ stop(str);
3106   } else {
3107     breakpoint();
3108   }
3109   __ bind(ok);
3110 #endif // AARCH64
3111 }
3112 #endif // ASSERT
3113 
3114 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3115   fatal("CRC32 intrinsic is not implemented on this platform");
3116 }
3117 
3118 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3119   Register obj = op->obj_opr()->as_pointer_register();
3120   Register hdr = op->hdr_opr()->as_pointer_register();
3121   Register lock = op->lock_opr()->as_pointer_register();
3122   Register tmp = op->scratch_opr()->is_illegal() ? noreg :
3123                  op->scratch_opr()->as_pointer_register();
3124 
3125   if (!UseFastLocking) {
3126     __ b(*op->stub()->entry());
3127   } else if (op->code() == lir_lock) {
3128     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3129     int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry());
3130     if (op->info() != NULL) {


3139 }
3140 
3141 
3142 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3143   ciMethod* method = op->profiled_method();
3144   int bci          = op->profiled_bci();
3145   ciMethod* callee = op->profiled_callee();
3146 
3147   // Update counter for all call types
3148   ciMethodData* md = method->method_data_or_null();
3149   assert(md != NULL, "Sanity");
3150   ciProfileData* data = md->bci_to_data(bci);
3151   assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
3152   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3153   Register mdo  = op->mdo()->as_register();
3154   assert(op->tmp1()->is_register(), "tmp1 must be allocated");
3155   Register tmp1 = op->tmp1()->as_pointer_register();
3156   assert_different_registers(mdo, tmp1);
3157   __ mov_metadata(mdo, md->constant_encoding());
3158   int mdo_offset_bias = 0;
3159   int max_offset = AARCH64_ONLY(4096 << LogBytesPerWord) NOT_AARCH64(4096);
3160   if (md->byte_offset_of_slot(data, CounterData::count_offset()) + data->size_in_bytes() >= max_offset) {
3161     // The offset is large so bias the mdo by the base of the slot so
3162     // that the ldr can use an immediate offset to reference the slots of the data
3163     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
3164     __ mov_slow(tmp1, mdo_offset_bias);
3165     __ add(mdo, mdo, tmp1);
3166   }
3167 
3168   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
3169   // Perform additional virtual call profiling for invokevirtual and
3170   // invokeinterface bytecodes
3171   if (op->should_profile_receiver_type()) {
3172     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3173     Register recv = op->recv()->as_register();
3174     assert_different_registers(mdo, tmp1, recv);
3175     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3176     ciKlass* known_klass = op->known_holder();
3177     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3178       // We know the type that will be seen at this call site; we can
3179       // statically update the MethodData* rather than needing to do


3235     __ str(tmp1, counter_addr);
3236   }
3237 }
3238 
3239 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3240   fatal("Type profiling not implemented on this platform");
3241 }
3242 
3243 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3244   Unimplemented();
3245 }
3246 
3247 
3248 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3249   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
3250   __ add_slow(dst->as_pointer_register(), mon_addr.base(), mon_addr.disp());
3251 }
3252 
3253 
3254 void LIR_Assembler::align_backward_branch_target() {
3255   // TODO-AARCH64 review it
3256   // Some ARM processors do better with 8-byte branch target alignment
3257   __ align(8);
3258 }
3259 
3260 
3261 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3262 
3263   if (left->is_single_cpu()) {
3264     assert (dest->type() == T_INT, "unexpected result type");
3265     assert (left->type() == T_INT, "unexpected left type");
3266     __ neg_32(dest->as_register(), left->as_register());
3267   } else if (left->is_double_cpu()) {
3268 #ifdef AARCH64
3269     __ neg(dest->as_register_lo(), left->as_register_lo());
3270 #else
3271     Register dest_lo = dest->as_register_lo();
3272     Register dest_hi = dest->as_register_hi();
3273     Register src_lo = left->as_register_lo();
3274     Register src_hi = left->as_register_hi();
3275     if (dest_lo == src_hi) {
3276       dest_lo = Rtemp;
3277     }
3278     __ rsbs(dest_lo, src_lo, 0);
3279     __ rsc(dest_hi, src_hi, 0);
3280     move_regs(dest_lo, dest->as_register_lo());
3281 #endif // AARCH64
3282   } else if (left->is_single_fpu()) {
3283     __ neg_float(dest->as_float_reg(), left->as_float_reg());
3284   } else if (left->is_double_fpu()) {
3285     __ neg_double(dest->as_double_reg(), left->as_double_reg());
3286   } else {
3287     ShouldNotReachHere();
3288   }
3289 }
3290 
3291 
3292 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
3293   assert(patch_code == lir_patch_none, "Patch code not supported");
3294   LIR_Address* addr = addr_opr->as_address_ptr();
3295   if (addr->index()->is_illegal()) {
3296     jint c = addr->disp();
3297     if (!Assembler::is_arith_imm_in_range(c)) {
3298       BAILOUT("illegal arithmetic operand");
3299     }
3300     __ add(dest->as_pointer_register(), addr->base()->as_pointer_register(), c);
3301   } else {
3302     assert(addr->disp() == 0, "cannot handle otherwise");
3303 #ifdef AARCH64
3304     assert(addr->index()->is_double_cpu(), "should be");
3305 #endif // AARCH64
3306     __ add(dest->as_pointer_register(), addr->base()->as_pointer_register(),
3307            AsmOperand(addr->index()->as_pointer_register(), lsl, addr->scale()));
3308   }
3309 }
3310 
3311 
3312 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3313   assert(!tmp->is_valid(), "don't need temporary");
3314   __ call(dest);
3315   if (info != NULL) {
3316     add_call_info_here(info);
3317   }
3318 }
3319 
3320 
3321 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3322 #ifdef AARCH64
3323   Unimplemented(); // TODO-AARCH64: Use stlr/ldar instructions for volatile load/store
3324 #else
3325   assert(src->is_double_cpu() && dest->is_address() ||
3326          src->is_address() && dest->is_double_cpu(),
3327          "Simple move_op is called for all other cases");
3328 
3329   int null_check_offset;
3330   if (dest->is_address()) {
3331     // Store
3332     const LIR_Address* addr = dest->as_address_ptr();
3333     const Register src_lo = src->as_register_lo();
3334     const Register src_hi = src->as_register_hi();
3335     assert(addr->index()->is_illegal() && addr->disp() == 0, "The address is simple already");
3336 
3337     if (src_lo < src_hi) {
3338       null_check_offset = __ offset();
3339       __ stmia(addr->base()->as_register(), RegisterSet(src_lo) | RegisterSet(src_hi));
3340     } else {
3341       assert(src_lo < Rtemp, "Rtemp is higher than any allocatable register");
3342       __ mov(Rtemp, src_hi);
3343       null_check_offset = __ offset();
3344       __ stmia(addr->base()->as_register(), RegisterSet(src_lo) | RegisterSet(Rtemp));


3346   } else {
3347     // Load
3348     const LIR_Address* addr = src->as_address_ptr();
3349     const Register dest_lo = dest->as_register_lo();
3350     const Register dest_hi = dest->as_register_hi();
3351     assert(addr->index()->is_illegal() && addr->disp() == 0, "The address is simple already");
3352 
3353     null_check_offset = __ offset();
3354     if (dest_lo < dest_hi) {
3355       __ ldmia(addr->base()->as_register(), RegisterSet(dest_lo) | RegisterSet(dest_hi));
3356     } else {
3357       assert(dest_lo < Rtemp, "Rtemp is higher than any allocatable register");
3358       __ ldmia(addr->base()->as_register(), RegisterSet(dest_lo) | RegisterSet(Rtemp));
3359       __ mov(dest_hi, Rtemp);
3360     }
3361   }
3362 
3363   if (info != NULL) {
3364     add_debug_info_for_null_check(null_check_offset, info);
3365   }
3366 #endif // AARCH64
3367 }
3368 
3369 
3370 void LIR_Assembler::membar() {
3371   __ membar(MacroAssembler::StoreLoad, Rtemp);
3372 }
3373 
3374 void LIR_Assembler::membar_acquire() {
3375   __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::LoadLoad | MacroAssembler::LoadStore), Rtemp);
3376 }
3377 
3378 void LIR_Assembler::membar_release() {
3379   __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp);
3380 }
3381 
3382 void LIR_Assembler::membar_loadload() {
3383   __ membar(MacroAssembler::LoadLoad, Rtemp);
3384 }
3385 
3386 void LIR_Assembler::membar_storestore() {


3388 }
3389 
3390 void LIR_Assembler::membar_loadstore() {
3391   __ membar(MacroAssembler::LoadStore, Rtemp);
3392 }
3393 
3394 void LIR_Assembler::membar_storeload() {
3395   __ membar(MacroAssembler::StoreLoad, Rtemp);
3396 }
3397 
3398 void LIR_Assembler::on_spin_wait() {
3399   Unimplemented();
3400 }
3401 
3402 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3403   // Not used on ARM
3404   Unimplemented();
3405 }
3406 
3407 void LIR_Assembler::peephole(LIR_List* lir) {
3408 #ifdef AARCH64
3409   return; // TODO-AARCH64 implement peephole optimizations
3410 #endif
3411   LIR_OpList* inst = lir->instructions_list();
3412   const int inst_length = inst->length();
3413   for (int i = 0; i < inst_length; i++) {
3414     LIR_Op* op = inst->at(i);
3415     switch (op->code()) {
3416       case lir_cmp: {
3417         // Replace:
3418         //   cmp rX, y
3419         //   cmove [EQ] y, z, rX
3420         // with
3421         //   cmp rX, y
3422         //   cmove [EQ] illegalOpr, z, rX
3423         //
3424         // or
3425         //   cmp rX, y
3426         //   cmove [NE] z, y, rX
3427         // with
3428         //   cmp rX, y
3429         //   cmove [NE] z, illegalOpr, rX
3430         //


3454             if (cmp_res != LIR_OprFact::illegalOpr) {
3455               LIR_Condition cond = cmove->condition();
3456               if (cond == lir_cond_equal && cmove->in_opr1() == cmp_arg) {
3457                 cmove->set_in_opr1(LIR_OprFact::illegalOpr);
3458               } else if (cond == lir_cond_notEqual && cmove->in_opr2() == cmp_arg) {
3459                 cmove->set_in_opr2(LIR_OprFact::illegalOpr);
3460               }
3461             }
3462           }
3463         }
3464         break;
3465       }
3466 
3467       default:
3468         break;
3469     }
3470   }
3471 }
3472 
3473 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3474 #ifdef AARCH64
3475   Register ptr = src->as_pointer_register();
3476 #else
3477   assert(src->is_address(), "sanity");
3478   Address addr = as_Address(src->as_address_ptr());
3479 #endif
3480 
3481   if (code == lir_xchg) {
3482 #ifdef AARCH64
3483     if (UseCompressedOops && data->is_oop()) {
3484       __ encode_heap_oop(tmp->as_pointer_register(), data->as_register());
3485     }
3486 #endif // AARCH64
3487   } else {
3488     assert (!data->is_oop(), "xadd for oops");
3489   }
3490 
3491 #ifndef AARCH64
3492   __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp);
3493 #endif // !AARCH64
3494 
3495   Label retry;
3496   __ bind(retry);
3497 
3498   if ((data->type() == T_INT) || (data->is_oop() AARCH64_ONLY(&& UseCompressedOops))) {
3499     Register dst = dest->as_register();
3500     Register new_val = noreg;
3501 #ifdef AARCH64
3502     __ ldaxr_w(dst, ptr);
3503 #else
3504     __ ldrex(dst, addr);
3505 #endif
3506     if (code == lir_xadd) {
3507       Register tmp_reg = tmp->as_register();
3508       if (data->is_constant()) {
3509         assert_different_registers(dst, tmp_reg);
3510         __ add_32(tmp_reg, dst, data->as_constant_ptr()->as_jint());
3511       } else {
3512         assert_different_registers(dst, tmp_reg, data->as_register());
3513         __ add_32(tmp_reg, dst, data->as_register());
3514       }
3515       new_val = tmp_reg;
3516     } else {
3517       if (UseCompressedOops && data->is_oop()) {
3518         new_val = tmp->as_pointer_register();
3519       } else {
3520         new_val = data->as_register();
3521       }
3522       assert_different_registers(dst, new_val);
3523     }
3524 #ifdef AARCH64
3525     __ stlxr_w(Rtemp, new_val, ptr);
3526 #else
3527     __ strex(Rtemp, new_val, addr);
3528 #endif // AARCH64
3529 
3530 #ifdef AARCH64
3531   } else if ((data->type() == T_LONG) || (data->is_oop() && !UseCompressedOops)) {
3532     Register dst = dest->as_pointer_register();
3533     Register new_val = noreg;
3534     __ ldaxr(dst, ptr);
3535     if (code == lir_xadd) {
3536       Register tmp_reg = tmp->as_pointer_register();
3537       if (data->is_constant()) {
3538         assert_different_registers(dst, ptr, tmp_reg);
3539         jlong c = data->as_constant_ptr()->as_jlong();
3540         assert((jlong)((jint)c) == c, "overflow");
3541         __ add(tmp_reg, dst, (jint)c);
3542       } else {
3543         assert_different_registers(dst, ptr, tmp_reg, data->as_pointer_register());
3544         __ add(tmp_reg, dst, data->as_pointer_register());
3545       }
3546       new_val = tmp_reg;
3547     } else {
3548       new_val = data->as_pointer_register();
3549       assert_different_registers(dst, ptr, new_val);
3550     }
3551     __ stlxr(Rtemp, new_val, ptr);
3552 #else
3553   } else if (data->type() == T_LONG) {
3554     Register dst_lo = dest->as_register_lo();
3555     Register new_val_lo = noreg;
3556     Register dst_hi = dest->as_register_hi();
3557 
3558     assert(dst_hi->encoding() == dst_lo->encoding() + 1, "non aligned register pair");
3559     assert((dst_lo->encoding() & 0x1) == 0, "misaligned register pair");
3560 
3561     __ bind(retry);
3562     __ ldrexd(dst_lo, addr);
3563     if (code == lir_xadd) {
3564       Register tmp_lo = tmp->as_register_lo();
3565       Register tmp_hi = tmp->as_register_hi();
3566 
3567       assert(tmp_hi->encoding() == tmp_lo->encoding() + 1, "non aligned register pair");
3568       assert((tmp_lo->encoding() & 0x1) == 0, "misaligned register pair");
3569 
3570       if (data->is_constant()) {
3571         jlong c = data->as_constant_ptr()->as_jlong();
3572         assert((jlong)((jint)c) == c, "overflow");
3573         assert_different_registers(dst_lo, dst_hi, tmp_lo, tmp_hi);
3574         __ adds(tmp_lo, dst_lo, (jint)c);
3575         __ adc(tmp_hi, dst_hi, 0);
3576       } else {
3577         Register new_val_lo = data->as_register_lo();
3578         Register new_val_hi = data->as_register_hi();
3579         __ adds(tmp_lo, dst_lo, new_val_lo);
3580         __ adc(tmp_hi, dst_hi, new_val_hi);
3581         assert_different_registers(dst_lo, dst_hi, tmp_lo, tmp_hi, new_val_lo, new_val_hi);
3582       }
3583       new_val_lo = tmp_lo;
3584     } else {
3585       new_val_lo = data->as_register_lo();
3586       Register new_val_hi = data->as_register_hi();
3587 
3588       assert_different_registers(dst_lo, dst_hi, new_val_lo, new_val_hi);
3589       assert(new_val_hi->encoding() == new_val_lo->encoding() + 1, "non aligned register pair");
3590       assert((new_val_lo->encoding() & 0x1) == 0, "misaligned register pair");
3591     }
3592     __ strexd(Rtemp, new_val_lo, addr);
3593 #endif // AARCH64
3594   } else {
3595     ShouldNotReachHere();
3596   }
3597 
3598   __ cbnz_32(Rtemp, retry);
3599   __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad | MacroAssembler::StoreStore), Rtemp);
3600 
3601 #ifdef AARCH64
3602   if (UseCompressedOops && data->is_oop()) {
3603     __ decode_heap_oop(dest->as_register());
3604   }
3605 #endif // AARCH64
3606 }
3607 
3608 #undef __


 110 void LIR_Assembler::ffree(int i) {
 111   Unimplemented();
 112 }
 113 
 114 void LIR_Assembler::breakpoint() {
 115   __ breakpoint();
 116 }
 117 
 118 void LIR_Assembler::push(LIR_Opr opr) {
 119   Unimplemented();
 120 }
 121 
 122 void LIR_Assembler::pop(LIR_Opr opr) {
 123   Unimplemented();
 124 }
 125 
 126 //-------------------------------------------
 127 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 128   Register base = addr->base()->as_pointer_register();
 129 



 130 
 131   if (addr->index()->is_illegal() || addr->index()->is_constant()) {
 132     int offset = addr->disp();
 133     if (addr->index()->is_constant()) {
 134       offset += addr->index()->as_constant_ptr()->as_jint() << addr->scale();
 135     }
 136 






 137     if ((offset <= -4096) || (offset >= 4096)) {
 138       BAILOUT_("offset not in range", Address(base));
 139     }

 140 
 141     return Address(base, offset);
 142 
 143   } else {
 144     assert(addr->disp() == 0, "can't have both");
 145     int scale = addr->scale();
 146 












 147     assert(addr->index()->is_single_cpu(), "should be");
 148     return scale >= 0 ? Address(base, addr->index()->as_register(), lsl, scale) :
 149                         Address(base, addr->index()->as_register(), lsr, -scale);

 150   }
 151 }
 152 
 153 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {




 154   Address base = as_Address(addr);
 155   assert(base.index() == noreg, "must be");
 156   if (base.disp() + BytesPerWord >= 4096) { BAILOUT_("offset not in range", Address(base.base(),0)); }
 157   return Address(base.base(), base.disp() + BytesPerWord);

 158 }
 159 
 160 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {




 161   return as_Address(addr);

 162 }
 163 
 164 
 165 void LIR_Assembler::osr_entry() {
 166   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 167   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 168   ValueStack* entry_state = osr_entry->end()->state();
 169   int number_of_locks = entry_state->locks_size();
 170 
 171   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 172   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 173 
 174   assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 175   int monitor_offset = (method()->max_locals() + 2 * (number_of_locks - 1)) * BytesPerWord;
 176   for (int i = 0; i < number_of_locks; i++) {
 177     int slot_offset = monitor_offset - (i * 2 * BytesPerWord);
 178     __ ldr(R1, Address(OSR_buf, slot_offset + 0*BytesPerWord));
 179     __ ldr(R2, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 180     __ str(R1, frame_map()->address_for_monitor_lock(i));
 181     __ str(R2, frame_map()->address_for_monitor_object(i));


 277 
 278   // Emit the slow path assembly
 279   if (stub != NULL) {
 280     stub->emit_code(this);
 281   }
 282 
 283   return offset;
 284 }
 285 
 286 
 287 int LIR_Assembler::emit_deopt_handler() {
 288   address handler_base = __ start_a_stub(deopt_handler_size());
 289   if (handler_base == NULL) {
 290     bailout("deopt handler overflow");
 291     return -1;
 292   }
 293 
 294   int offset = code_offset();
 295 
 296   __ mov_relative_address(LR, __ pc());




 297   __ push(LR); // stub expects LR to be saved
 298   __ jump(SharedRuntime::deopt_blob()->unpack(), relocInfo::runtime_call_type, noreg);

 299 
 300   assert(code_offset() - offset <= deopt_handler_size(), "overflow");
 301   __ end_a_stub();
 302 
 303   return offset;
 304 }
 305 
 306 
 307 void LIR_Assembler::return_op(LIR_Opr result) {
 308   // Pop the frame before safepoint polling
 309   __ remove_frame(initial_frame_size_in_bytes());
 310 
 311   // mov_slow here is usually one or two instruction

 312   __ mov_address(Rtemp, os::get_polling_page(), symbolic_Relocation::polling_page_reference);
 313   __ relocate(relocInfo::poll_return_type);
 314   __ ldr(Rtemp, Address(Rtemp));
 315   __ ret();
 316 }
 317 
 318 
 319 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 320   __ mov_address(Rtemp, os::get_polling_page(), symbolic_Relocation::polling_page_reference);
 321   if (info != NULL) {
 322     add_debug_info_for_branch(info);
 323   }
 324   int offset = __ offset();
 325   __ relocate(relocInfo::poll_type);
 326   __ ldr(Rtemp, Address(Rtemp));
 327   return offset;
 328 }
 329 
 330 
 331 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 332   if (from_reg != to_reg) {
 333     __ mov(to_reg, from_reg);
 334   }
 335 }
 336 
 337 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 338   assert(src->is_constant() && dest->is_register(), "must be");
 339   LIR_Const* c = src->as_constant_ptr();
 340 
 341   switch (c->type()) {
 342     case T_ADDRESS:
 343     case T_INT:
 344       assert(patch_code == lir_patch_none, "no patching handled here");
 345       __ mov_slow(dest->as_register(), c->as_jint());
 346       break;
 347 
 348     case T_LONG:
 349       assert(patch_code == lir_patch_none, "no patching handled here");



 350       __ mov_slow(dest->as_register_lo(), c->as_jint_lo());
 351       __ mov_slow(dest->as_register_hi(), c->as_jint_hi());

 352       break;
 353 
 354     case T_OBJECT:
 355       if (patch_code == lir_patch_none) {
 356         __ mov_oop(dest->as_register(), c->as_jobject());
 357       } else {
 358         jobject2reg_with_patching(dest->as_register(), info);
 359       }
 360       break;
 361 
 362     case T_METADATA:
 363       if (patch_code == lir_patch_none) {
 364         __ mov_metadata(dest->as_register(), c->as_metadata());
 365       } else {
 366         klass2reg_with_patching(dest->as_register(), info);
 367       }
 368       break;
 369 
 370     case T_FLOAT:
 371       if (dest->is_single_fpu()) {
 372         __ mov_float(dest->as_float_reg(), c->as_jfloat());
 373       } else {



 374         // Simple getters can return float constant directly into r0
 375         __ mov_slow(dest->as_register(), c->as_jint_bits());

 376       }
 377       break;
 378 
 379     case T_DOUBLE:
 380       if (dest->is_double_fpu()) {
 381         __ mov_double(dest->as_double_reg(), c->as_jdouble());
 382       } else {



 383         // Simple getters can return double constant directly into r1r0
 384         __ mov_slow(dest->as_register_lo(), c->as_jint_lo_bits());
 385         __ mov_slow(dest->as_register_hi(), c->as_jint_hi_bits());

 386       }
 387       break;
 388 
 389     default:
 390       ShouldNotReachHere();
 391   }
 392 }
 393 
 394 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 395   assert(src->is_constant(), "must be");
 396   assert(dest->is_stack(), "must be");
 397   LIR_Const* c = src->as_constant_ptr();
 398 
 399   switch (c->type()) {
 400     case T_INT:  // fall through
 401     case T_FLOAT:
 402       __ mov_slow(Rtemp, c->as_jint_bits());
 403       __ str_32(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
 404       break;
 405 
 406     case T_ADDRESS:
 407       __ mov_slow(Rtemp, c->as_jint());
 408       __ str(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
 409       break;
 410 
 411     case T_OBJECT:
 412       __ mov_oop(Rtemp, c->as_jobject());
 413       __ str(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
 414       break;
 415 
 416     case T_LONG:  // fall through
 417     case T_DOUBLE:




 418       __ mov_slow(Rtemp, c->as_jint_lo_bits());
 419       __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes));
 420       if (c->as_jint_hi_bits() != c->as_jint_lo_bits()) {
 421         __ mov_slow(Rtemp, c->as_jint_hi_bits());
 422       }
 423       __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes));

 424       break;
 425 
 426     default:
 427       ShouldNotReachHere();
 428   }
 429 }
 430 
 431 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type,
 432                               CodeEmitInfo* info, bool wide) {
































 433   assert((src->as_constant_ptr()->type() == T_OBJECT && src->as_constant_ptr()->as_jobject() == NULL),"cannot handle otherwise");
 434   __ mov(Rtemp, 0);
 435 
 436   int null_check_offset = code_offset();
 437   __ str(Rtemp, as_Address(dest->as_address_ptr()));

 438 
 439   if (info != NULL) {

 440     assert(false, "arm32 didn't support this before, investigate if bug");

 441     add_debug_info_for_null_check(null_check_offset, info);
 442   }
 443 }
 444 
 445 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 446   assert(src->is_register() && dest->is_register(), "must be");
 447 
 448   if (src->is_single_cpu()) {
 449     if (dest->is_single_cpu()) {
 450       move_regs(src->as_register(), dest->as_register());





 451     } else if (dest->is_single_fpu()) {
 452       __ fmsr(dest->as_float_reg(), src->as_register());

 453     } else {
 454       ShouldNotReachHere();
 455     }
 456   } else if (src->is_double_cpu()) {



 457     if (dest->is_double_cpu()) {
 458       __ long_move(dest->as_register_lo(), dest->as_register_hi(), src->as_register_lo(), src->as_register_hi());
 459     } else {
 460       __ fmdrr(dest->as_double_reg(), src->as_register_lo(), src->as_register_hi());
 461     }

 462   } else if (src->is_single_fpu()) {
 463     if (dest->is_single_fpu()) {
 464       __ mov_float(dest->as_float_reg(), src->as_float_reg());
 465     } else if (dest->is_single_cpu()) {
 466       __ mov_fpr2gpr_float(dest->as_register(), src->as_float_reg());
 467     } else {
 468       ShouldNotReachHere();
 469     }
 470   } else if (src->is_double_fpu()) {
 471     if (dest->is_double_fpu()) {
 472       __ mov_double(dest->as_double_reg(), src->as_double_reg());
 473     } else if (dest->is_double_cpu()) {



 474       __ fmrrd(dest->as_register_lo(), dest->as_register_hi(), src->as_double_reg());

 475     } else {
 476       ShouldNotReachHere();
 477     }
 478   } else {
 479     ShouldNotReachHere();
 480   }
 481 }
 482 
 483 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 484   assert(src->is_register(), "should not call otherwise");
 485   assert(dest->is_stack(), "should not call otherwise");
 486 
 487   Address addr = dest->is_single_word() ?
 488     frame_map()->address_for_slot(dest->single_stack_ix()) :
 489     frame_map()->address_for_slot(dest->double_stack_ix());
 490 

 491   assert(lo_word_offset_in_bytes == 0 && hi_word_offset_in_bytes == 4, "little ending");
 492   if (src->is_single_fpu() || src->is_double_fpu()) {
 493     if (addr.disp() >= 1024) { BAILOUT("Too exotic case to handle here"); }
 494   }

 495 
 496   if (src->is_single_cpu()) {
 497     switch (type) {
 498       case T_OBJECT:
 499       case T_ARRAY:    __ verify_oop(src->as_register());   // fall through
 500       case T_ADDRESS:
 501       case T_METADATA: __ str(src->as_register(), addr);    break;
 502       case T_FLOAT:    // used in intBitsToFloat intrinsic implementation, fall through
 503       case T_INT:      __ str_32(src->as_register(), addr); break;
 504       default:
 505         ShouldNotReachHere();
 506     }
 507   } else if (src->is_double_cpu()) {
 508     __ str(src->as_register_lo(), addr);

 509     __ str(src->as_register_hi(), frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes));

 510   } else if (src->is_single_fpu()) {
 511     __ str_float(src->as_float_reg(), addr);
 512   } else if (src->is_double_fpu()) {
 513     __ str_double(src->as_double_reg(), addr);
 514   } else {
 515     ShouldNotReachHere();
 516   }
 517 }
 518 
 519 
 520 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type,
 521                             LIR_PatchCode patch_code, CodeEmitInfo* info,
 522                             bool pop_fpu_stack, bool wide,
 523                             bool unaligned) {
 524   LIR_Address* to_addr = dest->as_address_ptr();
 525   Register base_reg = to_addr->base()->as_pointer_register();
 526   const bool needs_patching = (patch_code != lir_patch_none);
 527 
 528   PatchingStub* patch = NULL;
 529   if (needs_patching) {




 530     patch = new PatchingStub(_masm, PatchingStub::access_field_id);




 531   }
 532 
 533   int null_check_offset = code_offset();
 534 
 535   switch (type) {
 536     case T_ARRAY:
 537     case T_OBJECT:
 538       if (UseCompressedOops && !wide) {







 539         ShouldNotReachHere();

 540       } else {
 541         __ str(src->as_register(), as_Address(to_addr));
 542       }
 543       break;
 544 
 545     case T_ADDRESS:



 546       __ str(src->as_pointer_register(), as_Address(to_addr));
 547       break;
 548 
 549     case T_BYTE:
 550     case T_BOOLEAN:
 551       __ strb(src->as_register(), as_Address(to_addr));
 552       break;
 553 
 554     case T_CHAR:
 555     case T_SHORT:
 556       __ strh(src->as_register(), as_Address(to_addr));
 557       break;
 558 
 559     case T_INT:
 560 #ifdef __SOFTFP__
 561     case T_FLOAT:
 562 #endif // __SOFTFP__
 563       __ str_32(src->as_register(), as_Address(to_addr));
 564       break;
 565 











 566 
 567 #ifdef __SOFTFP__
 568     case T_DOUBLE:
 569 #endif // __SOFTFP__
 570     case T_LONG: {
 571       Register from_lo = src->as_register_lo();
 572       Register from_hi = src->as_register_hi();
 573       if (to_addr->index()->is_register()) {
 574         assert(to_addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
 575         assert(to_addr->disp() == 0, "Not yet supporting both");
 576         __ add(Rtemp, base_reg, to_addr->index()->as_register());
 577         base_reg = Rtemp;
 578         __ str(from_lo, Address(Rtemp));
 579         if (patch != NULL) {
 580           patching_epilog(patch, lir_patch_low, base_reg, info);
 581           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 582           patch_code = lir_patch_high;
 583         }
 584         __ str(from_hi, Address(Rtemp, BytesPerWord));
 585       } else if (base_reg == from_lo) {


 609         __ add(Rtemp, base_reg, to_addr->index()->as_register());
 610         if ((to_addr->disp() <= -4096) || (to_addr->disp() >= 4096)) { BAILOUT("offset not in range"); }
 611         __ fsts(src->as_float_reg(), Address(Rtemp, to_addr->disp()));
 612       } else {
 613         __ fsts(src->as_float_reg(), as_Address(to_addr));
 614       }
 615       break;
 616 
 617     case T_DOUBLE:
 618       if (to_addr->index()->is_register()) {
 619         assert(to_addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
 620         __ add(Rtemp, base_reg, to_addr->index()->as_register());
 621         if ((to_addr->disp() <= -4096) || (to_addr->disp() >= 4096)) { BAILOUT("offset not in range"); }
 622         __ fstd(src->as_double_reg(), Address(Rtemp, to_addr->disp()));
 623       } else {
 624         __ fstd(src->as_double_reg(), as_Address(to_addr));
 625       }
 626       break;
 627 #endif // __SOFTFP__
 628 

 629 
 630     default:
 631       ShouldNotReachHere();
 632   }
 633 
 634   if (info != NULL) {
 635     add_debug_info_for_null_check(null_check_offset, info);
 636   }
 637 
 638   if (patch != NULL) {
 639     // Offset embeedded into LDR/STR instruction may appear not enough
 640     // to address a field. So, provide a space for one more instruction
 641     // that will deal with larger offsets.
 642     __ nop();
 643     patching_epilog(patch, patch_code, base_reg, info);
 644   }
 645 }
 646 
 647 
 648 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
 649   assert(src->is_stack(), "should not call otherwise");
 650   assert(dest->is_register(), "should not call otherwise");
 651 
 652   Address addr = src->is_single_word() ?
 653     frame_map()->address_for_slot(src->single_stack_ix()) :
 654     frame_map()->address_for_slot(src->double_stack_ix());
 655 

 656   assert(lo_word_offset_in_bytes == 0 && hi_word_offset_in_bytes == 4, "little ending");
 657   if (dest->is_single_fpu() || dest->is_double_fpu()) {
 658     if (addr.disp() >= 1024) { BAILOUT("Too exotic case to handle here"); }
 659   }

 660 
 661   if (dest->is_single_cpu()) {
 662     switch (type) {
 663       case T_OBJECT:
 664       case T_ARRAY:
 665       case T_ADDRESS:
 666       case T_METADATA: __ ldr(dest->as_register(), addr); break;
 667       case T_FLOAT:    // used in floatToRawIntBits intrinsic implemenation
 668       case T_INT:      __ ldr_u32(dest->as_register(), addr); break;
 669       default:
 670         ShouldNotReachHere();
 671     }
 672     if ((type == T_OBJECT) || (type == T_ARRAY)) {
 673       __ verify_oop(dest->as_register());
 674     }
 675   } else if (dest->is_double_cpu()) {
 676     __ ldr(dest->as_register_lo(), addr);

 677     __ ldr(dest->as_register_hi(), frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes));

 678   } else if (dest->is_single_fpu()) {
 679     __ ldr_float(dest->as_float_reg(), addr);
 680   } else if (dest->is_double_fpu()) {
 681     __ ldr_double(dest->as_double_reg(), addr);
 682   } else {
 683     ShouldNotReachHere();
 684   }
 685 }
 686 
 687 
 688 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
 689   if (src->is_single_stack()) {
 690     switch (src->type()) {
 691       case T_OBJECT:
 692       case T_ARRAY:
 693       case T_ADDRESS:
 694       case T_METADATA:
 695         __ ldr(Rtemp, frame_map()->address_for_slot(src->single_stack_ix()));
 696         __ str(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
 697         break;
 698 
 699       case T_INT:
 700       case T_FLOAT:
 701         __ ldr_u32(Rtemp, frame_map()->address_for_slot(src->single_stack_ix()));
 702         __ str_32(Rtemp, frame_map()->address_for_slot(dest->single_stack_ix()));
 703         break;
 704 
 705       default:
 706         ShouldNotReachHere();
 707     }
 708   } else {
 709     assert(src->is_double_stack(), "must be");
 710     __ ldr(Rtemp, frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes));
 711     __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes));



 712     __ ldr(Rtemp, frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes));
 713     __ str(Rtemp, frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes));

 714   }
 715 }
 716 
 717 
 718 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type,
 719                             LIR_PatchCode patch_code, CodeEmitInfo* info,
 720                             bool wide, bool unaligned) {
 721   assert(src->is_address(), "should not call otherwise");
 722   assert(dest->is_register(), "should not call otherwise");
 723   LIR_Address* addr = src->as_address_ptr();
 724 
 725   Register base_reg = addr->base()->as_pointer_register();
 726 
 727   PatchingStub* patch = NULL;
 728   if (patch_code != lir_patch_none) {
 729     patch = new PatchingStub(_masm, PatchingStub::access_field_id);




 730   }
 731   if (info != NULL) {
 732     add_debug_info_for_null_check_here(info);
 733   }
 734 
 735   switch (type) {
 736     case T_OBJECT:  // fall through
 737     case T_ARRAY:
 738       if (UseCompressedOops && !wide) {
 739         __ ldr_u32(dest->as_register(), as_Address(addr));
 740       } else {
 741         __ ldr(dest->as_register(), as_Address(addr));
 742       }
 743       break;
 744 
 745     case T_ADDRESS:
 746       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
 747         __ ldr_u32(dest->as_pointer_register(), as_Address(addr));
 748       } else {
 749         __ ldr(dest->as_pointer_register(), as_Address(addr));
 750       }
 751       break;
 752 



 753     case T_INT:
 754 #ifdef __SOFTFP__
 755     case T_FLOAT:
 756 #endif // __SOFTFP__

 757       __ ldr(dest->as_pointer_register(), as_Address(addr));
 758       break;
 759 
 760     case T_BOOLEAN:
 761       __ ldrb(dest->as_register(), as_Address(addr));
 762       break;
 763 
 764     case T_BYTE:
 765       __ ldrsb(dest->as_register(), as_Address(addr));
 766       break;
 767 
 768     case T_CHAR:
 769       __ ldrh(dest->as_register(), as_Address(addr));
 770       break;
 771 
 772     case T_SHORT:
 773       __ ldrsh(dest->as_register(), as_Address(addr));
 774       break;
 775 















 776 
 777 #ifdef __SOFTFP__
 778     case T_DOUBLE:
 779 #endif // __SOFTFP__
 780     case T_LONG: {
 781       Register to_lo = dest->as_register_lo();
 782       Register to_hi = dest->as_register_hi();
 783       if (addr->index()->is_register()) {
 784         assert(addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
 785         assert(addr->disp() == 0, "Not yet supporting both");
 786         __ add(Rtemp, base_reg, addr->index()->as_register());
 787         base_reg = Rtemp;
 788         __ ldr(to_lo, Address(Rtemp));
 789         if (patch != NULL) {
 790           patching_epilog(patch, lir_patch_low, base_reg, info);
 791           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 792           patch_code = lir_patch_high;
 793         }
 794         __ ldr(to_hi, Address(Rtemp, BytesPerWord));
 795       } else if (base_reg == to_lo) {


 819         __ add(Rtemp, base_reg, addr->index()->as_register());
 820         if ((addr->disp() <= -4096) || (addr->disp() >= 4096)) { BAILOUT("offset not in range"); }
 821         __ flds(dest->as_float_reg(), Address(Rtemp, addr->disp()));
 822       } else {
 823         __ flds(dest->as_float_reg(), as_Address(addr));
 824       }
 825       break;
 826 
 827     case T_DOUBLE:
 828       if (addr->index()->is_register()) {
 829         assert(addr->scale() == LIR_Address::times_1,"Unexpected scaled register");
 830         __ add(Rtemp, base_reg, addr->index()->as_register());
 831         if ((addr->disp() <= -4096) || (addr->disp() >= 4096)) { BAILOUT("offset not in range"); }
 832         __ fldd(dest->as_double_reg(), Address(Rtemp, addr->disp()));
 833       } else {
 834         __ fldd(dest->as_double_reg(), as_Address(addr));
 835       }
 836       break;
 837 #endif // __SOFTFP__
 838 

 839 
 840     default:
 841       ShouldNotReachHere();
 842   }
 843 
 844   if (patch != NULL) {
 845     // Offset embeedded into LDR/STR instruction may appear not enough
 846     // to address a field. So, provide a space for one more instruction
 847     // that will deal with larger offsets.
 848     __ nop();
 849     patching_epilog(patch, patch_code, base_reg, info);
 850   }
 851 

















 852 }
 853 
 854 
 855 void LIR_Assembler::emit_op3(LIR_Op3* op) {
 856   bool is_32 = op->result_opr()->is_single_cpu();
 857 
 858   if (op->code() == lir_idiv && op->in_opr2()->is_constant() && is_32) {
 859     int c = op->in_opr2()->as_constant_ptr()->as_jint();
 860     assert(is_power_of_2(c), "non power-of-2 constant should be put in a register");
 861 
 862     Register left = op->in_opr1()->as_register();
 863     Register dest = op->result_opr()->as_register();
 864     if (c == 1) {
 865       __ mov(dest, left);
 866     } else if (c == 2) {
 867       __ add_32(dest, left, AsmOperand(left, lsr, 31));
 868       __ asr_32(dest, dest, 1);
 869     } else if (c != (int) 0x80000000) {
 870       int power = log2_intptr(c);
 871       __ asr_32(Rtemp, left, 31);
 872       __ add_32(dest, left, AsmOperand(Rtemp, lsr, 32-power)); // dest = left + (left < 0 ? 2^power - 1 : 0);
 873       __ asr_32(dest, dest, power);                            // dest = dest >>> power;
 874     } else {
 875       // x/0x80000000 is a special case, since dividend is a power of two, but is negative.
 876       // The only possible result values are 0 and 1, with 1 only for dividend == divisor == 0x80000000.
 877       __ cmp_32(left, c);



 878       __ mov(dest, 0, ne);
 879       __ mov(dest, 1, eq);

 880     }
 881   } else {






























 882     assert(op->code() == lir_idiv || op->code() == lir_irem, "unexpected op3");
 883     __ call(StubRoutines::Arm::idiv_irem_entry(), relocInfo::runtime_call_type);
 884     add_debug_info_for_div0_here(op->info());

 885   }
 886 }
 887 
 888 
 889 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
 890 #ifdef ASSERT
 891   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
 892   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
 893   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
 894   assert(op->info() == NULL, "CodeEmitInfo?");
 895 #endif // ASSERT
 896 
 897 #ifdef __SOFTFP__
 898   assert (op->code() != lir_cond_float_branch, "this should be impossible");
 899 #else
 900   if (op->code() == lir_cond_float_branch) {

 901     __ fmstat();

 902     __ b(*(op->ublock()->label()), vs);
 903   }
 904 #endif // __SOFTFP__
 905 
 906   AsmCondition acond = al;
 907   switch (op->cond()) {
 908     case lir_cond_equal:        acond = eq; break;
 909     case lir_cond_notEqual:     acond = ne; break;
 910     case lir_cond_less:         acond = lt; break;
 911     case lir_cond_lessEqual:    acond = le; break;
 912     case lir_cond_greaterEqual: acond = ge; break;
 913     case lir_cond_greater:      acond = gt; break;
 914     case lir_cond_aboveEqual:   acond = hs; break;
 915     case lir_cond_belowEqual:   acond = ls; break;
 916     default: assert(op->cond() == lir_cond_always, "must be");
 917   }
 918   __ b(*(op->label()), acond);
 919 }
 920 
 921 
 922 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
 923   LIR_Opr src  = op->in_opr();
 924   LIR_Opr dest = op->result_opr();
 925 
 926   switch (op->bytecode()) {
 927     case Bytecodes::_i2l:



 928       move_regs(src->as_register(), dest->as_register_lo());
 929       __ mov(dest->as_register_hi(), AsmOperand(src->as_register(), asr, 31));

 930       break;
 931     case Bytecodes::_l2i:
 932       move_regs(src->as_register_lo(), dest->as_register());
 933       break;
 934     case Bytecodes::_i2b:
 935       __ sign_extend(dest->as_register(), src->as_register(), 8);
 936       break;
 937     case Bytecodes::_i2s:
 938       __ sign_extend(dest->as_register(), src->as_register(), 16);
 939       break;
 940     case Bytecodes::_i2c:
 941       __ zero_extend(dest->as_register(), src->as_register(), 16);
 942       break;
 943     case Bytecodes::_f2d:
 944       __ convert_f2d(dest->as_double_reg(), src->as_float_reg());
 945       break;
 946     case Bytecodes::_d2f:
 947       __ convert_d2f(dest->as_float_reg(), src->as_double_reg());
 948       break;
 949     case Bytecodes::_i2f:



 950       __ fmsr(Stemp, src->as_register());
 951       __ fsitos(dest->as_float_reg(), Stemp);

 952       break;
 953     case Bytecodes::_i2d:



 954       __ fmsr(Stemp, src->as_register());
 955       __ fsitod(dest->as_double_reg(), Stemp);

 956       break;
 957     case Bytecodes::_f2i:



 958       __ ftosizs(Stemp, src->as_float_reg());
 959       __ fmrs(dest->as_register(), Stemp);

 960       break;
 961     case Bytecodes::_d2i:



 962       __ ftosizd(Stemp, src->as_double_reg());
 963       __ fmrs(dest->as_register(), Stemp);








 964       break;







 965     default:
 966       ShouldNotReachHere();
 967   }
 968 }
 969 
 970 
 971 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
 972   if (op->init_check()) {
 973     Register tmp = op->tmp1()->as_register();
 974     __ ldrb(tmp, Address(op->klass()->as_register(), InstanceKlass::init_state_offset()));
 975     add_debug_info_for_null_check_here(op->stub()->info());
 976     __ cmp(tmp, InstanceKlass::fully_initialized);
 977     __ b(*op->stub()->entry(), ne);
 978   }
 979   __ allocate_object(op->obj()->as_register(),
 980                      op->tmp1()->as_register(),
 981                      op->tmp2()->as_register(),
 982                      op->tmp3()->as_register(),
 983                      op->header_size(),
 984                      op->object_size(),


1050   md = method->method_data_or_null();
1051   assert(md != NULL, "Sanity");
1052   data = md->bci_to_data(bci);
1053   assert(data != NULL,       "need data for checkcast");
1054   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1055   if (md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes() >= 4096) {
1056     // The offset is large so bias the mdo by the base of the slot so
1057     // that the ldr can use an immediate offset to reference the slots of the data
1058     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
1059   }
1060 }
1061 
1062 // On 32-bit ARM, code before this helper should test obj for null (ZF should be set if obj is null).
1063 void LIR_Assembler::typecheck_profile_helper1(ciMethod* method, int bci,
1064                                               ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias,
1065                                               Register obj, Register mdo, Register data_val, Label* obj_is_null) {
1066   assert(method != NULL, "Should have method");
1067   assert_different_registers(obj, mdo, data_val);
1068   setup_md_access(method, bci, md, data, mdo_offset_bias);
1069   Label not_null;



1070   __ b(not_null, ne);

1071   __ mov_metadata(mdo, md->constant_encoding());
1072   if (mdo_offset_bias > 0) {
1073     __ mov_slow(data_val, mdo_offset_bias);
1074     __ add(mdo, mdo, data_val);
1075   }
1076   Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
1077   __ ldrb(data_val, flags_addr);
1078   __ orr(data_val, data_val, (uint)BitData::null_seen_byte_constant());
1079   __ strb(data_val, flags_addr);
1080   __ b(*obj_is_null);
1081   __ bind(not_null);
1082 }
1083 
1084 void LIR_Assembler::typecheck_profile_helper2(ciMethodData* md, ciProfileData* data, int mdo_offset_bias,
1085                                               Register mdo, Register recv, Register value, Register tmp1,
1086                                               Label* profile_cast_success, Label* profile_cast_failure,
1087                                               Label* success, Label* failure) {
1088   assert_different_registers(mdo, value, tmp1);
1089   __ bind(*profile_cast_success);
1090   __ mov_metadata(mdo, md->constant_encoding());


1092     __ mov_slow(tmp1, mdo_offset_bias);
1093     __ add(mdo, mdo, tmp1);
1094   }
1095   __ load_klass(recv, value);
1096   type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
1097   __ b(*success);
1098   // Cast failure case
1099   __ bind(*profile_cast_failure);
1100   __ mov_metadata(mdo, md->constant_encoding());
1101   if (mdo_offset_bias > 0) {
1102     __ mov_slow(tmp1, mdo_offset_bias);
1103     __ add(mdo, mdo, tmp1);
1104   }
1105   Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
1106   __ ldr(tmp1, data_addr);
1107   __ sub(tmp1, tmp1, DataLayout::counter_increment);
1108   __ str(tmp1, data_addr);
1109   __ b(*failure);
1110 }
1111 
1112 // Sets `res` to true, if `cond` holds.
1113 static void set_instanceof_result(MacroAssembler* _masm, Register res, AsmCondition cond) {



1114   __ mov(res, 1, cond);

1115 }
1116 
1117 
1118 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1119   // TODO: ARM - can be more effective with one more register
1120   switch (op->code()) {
1121     case lir_store_check: {
1122       CodeStub* stub = op->stub();
1123       Register value = op->object()->as_register();
1124       Register array = op->array()->as_register();
1125       Register klass_RInfo = op->tmp1()->as_register();
1126       Register k_RInfo = op->tmp2()->as_register();
1127       assert_different_registers(klass_RInfo, k_RInfo, Rtemp);
1128       if (op->should_profile()) {
1129         assert_different_registers(value, klass_RInfo, k_RInfo, Rtemp);
1130       }
1131 
1132       // check if it needs to be profiled
1133       ciMethodData* md;
1134       ciProfileData* data;
1135       int mdo_offset_bias = 0;
1136       Label profile_cast_success, profile_cast_failure, done;
1137       Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1138       Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1139 
1140       if (op->should_profile()) {

1141         __ cmp(value, 0);

1142         typecheck_profile_helper1(op->profiled_method(), op->profiled_bci(), md, data, mdo_offset_bias, value, k_RInfo, Rtemp, &done);
1143       } else {
1144         __ cbz(value, done);
1145       }
1146       assert_different_registers(k_RInfo, value);
1147       add_debug_info_for_null_check_here(op->info_for_exception());
1148       __ load_klass(k_RInfo, array);
1149       __ load_klass(klass_RInfo, value);
1150       __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1151       __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1152       // check for immediate positive hit
1153       __ ldr(Rtemp, Address(klass_RInfo, Rtemp));
1154       __ cmp(klass_RInfo, k_RInfo);
1155       __ cond_cmp(Rtemp, k_RInfo, ne);
1156       __ b(*success_target, eq);
1157       // check for immediate negative hit
1158       __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1159       __ cmp(Rtemp, in_bytes(Klass::secondary_super_cache_offset()));
1160       __ b(*failure_target, ne);
1161       // slow case


1183       Register klass_RInfo = op->tmp1()->as_register();
1184       Register k_RInfo = op->tmp2()->as_register();
1185       ciKlass* k = op->klass();
1186       assert_different_registers(res, k_RInfo, klass_RInfo, Rtemp);
1187 
1188       if (stub->is_simple_exception_stub()) {
1189       // TODO: ARM - Late binding is used to prevent confusion of register allocator
1190       assert(stub->is_exception_throw_stub(), "must be");
1191       ((SimpleExceptionStub*)stub)->set_obj(op->result_opr());
1192       }
1193       ciMethodData* md;
1194       ciProfileData* data;
1195       int mdo_offset_bias = 0;
1196 
1197       Label done;
1198 
1199       Label profile_cast_failure, profile_cast_success;
1200       Label *failure_target = op->should_profile() ? &profile_cast_failure : op->stub()->entry();
1201       Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1202 



















































1203 
1204       __ movs(res, obj);
1205       if (op->should_profile()) {
1206         typecheck_profile_helper1(op->profiled_method(), op->profiled_bci(), md, data, mdo_offset_bias, res, klass_RInfo, Rtemp, &done);
1207       } else {
1208         __ b(done, eq);
1209       }
1210       if (k->is_loaded()) {
1211         __ mov_metadata(k_RInfo, k->constant_encoding());
1212       } else if (k_RInfo != obj) {
1213         klass2reg_with_patching(k_RInfo, op->info_for_patch());
1214         __ movs(res, obj);
1215       } else {
1216         // Patching doesn't update "res" register after GC, so do patching first
1217         klass2reg_with_patching(Rtemp, op->info_for_patch());
1218         __ movs(res, obj);
1219         __ mov(k_RInfo, Rtemp);
1220       }
1221       __ load_klass(klass_RInfo, res, ne);
1222 


1237           __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
1238           __ cbz(R0, *failure_target);
1239         }
1240       } else {
1241         __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1242         __ b(*success_target, eq);
1243         // check for immediate positive hit
1244         __ ldr(Rtemp, Address(klass_RInfo, Rtemp));
1245         __ cmp(klass_RInfo, k_RInfo);
1246         __ cmp(Rtemp, k_RInfo, ne);
1247         __ b(*success_target, eq);
1248         // check for immediate negative hit
1249         __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1250         __ cmp(Rtemp, in_bytes(Klass::secondary_super_cache_offset()));
1251         __ b(*failure_target, ne);
1252         // slow case
1253         assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup");
1254         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
1255         __ cbz(R0, *failure_target);
1256       }

1257 
1258       if (op->should_profile()) {
1259         Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtemp;
1260         typecheck_profile_helper2(md, data, mdo_offset_bias, mdo, recv, res, tmp1,
1261                                   &profile_cast_success, &profile_cast_failure,
1262                                   &done, stub->entry());
1263       }
1264       __ bind(done);
1265       break;
1266     }
1267 
1268     case lir_instanceof: {
1269       Register obj = op->object()->as_register();
1270       Register res = op->result_opr()->as_register();
1271       Register klass_RInfo = op->tmp1()->as_register();
1272       Register k_RInfo = op->tmp2()->as_register();
1273       ciKlass* k = op->klass();
1274       assert_different_registers(res, klass_RInfo, k_RInfo, Rtemp);
1275 
1276       ciMethodData* md;
1277       ciProfileData* data;
1278       int mdo_offset_bias = 0;
1279 
1280       Label done;
1281 
1282       Label profile_cast_failure, profile_cast_success;
1283       Label *failure_target = op->should_profile() ? &profile_cast_failure : &done;
1284       Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1285 



1286       __ movs(res, obj);

1287 
1288       if (op->should_profile()) {
1289         typecheck_profile_helper1(op->profiled_method(), op->profiled_bci(), md, data, mdo_offset_bias, res, klass_RInfo, Rtemp, &done);
1290       } else {



1291         __ b(done, eq);

1292       }
1293 
1294       if (k->is_loaded()) {
1295         __ mov_metadata(k_RInfo, k->constant_encoding());
1296       } else {
1297         op->info_for_patch()->add_register_oop(FrameMap::as_oop_opr(res));
1298         klass2reg_with_patching(k_RInfo, op->info_for_patch());
1299       }
1300       __ load_klass(klass_RInfo, res);
1301 

1302       if (!op->should_profile()) {
1303         __ mov(res, 0);
1304       }

1305 
1306       if (op->fast_check()) {
1307         __ cmp(klass_RInfo, k_RInfo);
1308         if (!op->should_profile()) {
1309           set_instanceof_result(_masm, res, eq);
1310         } else {
1311           __ b(profile_cast_failure, ne);
1312         }
1313       } else if (k->is_loaded()) {
1314         __ ldr(Rtemp, Address(klass_RInfo, k->super_check_offset()));
1315         if (in_bytes(Klass::secondary_super_cache_offset()) != (int) k->super_check_offset()) {
1316           __ cmp(Rtemp, k_RInfo);
1317           if (!op->should_profile()) {
1318             set_instanceof_result(_masm, res, eq);
1319           } else {
1320             __ b(profile_cast_failure, ne);
1321           }
1322         } else {
1323           __ cmp(klass_RInfo, k_RInfo);
1324           __ cond_cmp(Rtemp, k_RInfo, ne);
1325           if (!op->should_profile()) {
1326             set_instanceof_result(_masm, res, eq);
1327           }
1328           __ b(*success_target, eq);
1329           assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup");
1330           __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
1331           if (!op->should_profile()) {
1332             move_regs(R0, res);
1333           } else {
1334             __ cbz(R0, *failure_target);
1335           }
1336         }
1337       } else {
1338         __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1339         // check for immediate positive hit
1340         __ cmp(klass_RInfo, k_RInfo);
1341         if (!op->should_profile()) {




1342           __ ldr(res, Address(klass_RInfo, Rtemp), ne);

1343           __ cond_cmp(res, k_RInfo, ne);
1344           set_instanceof_result(_masm, res, eq);
1345         } else {




1346           __ ldr(Rtemp, Address(klass_RInfo, Rtemp), ne);

1347           __ cond_cmp(Rtemp, k_RInfo, ne);
1348         }
1349         __ b(*success_target, eq);
1350         // check for immediate negative hit
1351         if (op->should_profile()) {
1352           __ ldr_u32(Rtemp, Address(k_RInfo, Klass::super_check_offset_offset()));
1353         }
1354         __ cmp(Rtemp, in_bytes(Klass::secondary_super_cache_offset()));
1355         if (!op->should_profile()) {



1356           __ mov(res, 0, ne);

1357         }
1358         __ b(*failure_target, ne);
1359         // slow case
1360         assert(klass_RInfo == R0 && k_RInfo == R1, "runtime call setup");
1361         __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
1362         if (!op->should_profile()) {
1363           move_regs(R0, res);
1364         }
1365         if (op->should_profile()) {
1366           __ cbz(R0, *failure_target);
1367         }
1368       }
1369 
1370       if (op->should_profile()) {
1371         Label done_ok, done_failure;
1372         Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtemp;
1373         typecheck_profile_helper2(md, data, mdo_offset_bias, mdo, recv, res, tmp1,
1374                                   &profile_cast_success, &profile_cast_failure,
1375                                   &done_ok, &done_failure);
1376         __ bind(done_failure);


1378         __ b(done);
1379         __ bind(done_ok);
1380         __ mov(res, 1);
1381       }
1382       __ bind(done);
1383       break;
1384     }
1385     default:
1386       ShouldNotReachHere();
1387   }
1388 }
1389 
1390 
1391 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1392   //   if (*addr == cmpval) {
1393   //     *addr = newval;
1394   //     dest = 1;
1395   //   } else {
1396   //     dest = 0;
1397   //   }



































1398   // FIXME: membar_release
1399   __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp);
1400   Register addr = op->addr()->is_register() ?
1401     op->addr()->as_pointer_register() :
1402     op->addr()->as_address_ptr()->base()->as_pointer_register();
1403   assert(op->addr()->is_register() || op->addr()->as_address_ptr()->disp() == 0, "unexpected disp");
1404   assert(op->addr()->is_register() || op->addr()->as_address_ptr()->index() == LIR_OprDesc::illegalOpr(), "unexpected index");
1405   if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
1406     Register cmpval = op->cmp_value()->as_register();
1407     Register newval = op->new_value()->as_register();
1408     Register dest = op->result_opr()->as_register();
1409     assert_different_registers(dest, addr, cmpval, newval, Rtemp);
1410 
1411     __ atomic_cas_bool(cmpval, newval, addr, 0, Rtemp); // Rtemp free by default at C1 LIR layer
1412     __ mov(dest, 1, eq);
1413     __ mov(dest, 0, ne);
1414   } else if (op->code() == lir_cas_long) {
1415     assert(VM_Version::supports_cx8(), "wrong machine");
1416     Register cmp_value_lo = op->cmp_value()->as_register_lo();
1417     Register cmp_value_hi = op->cmp_value()->as_register_hi();
1418     Register new_value_lo = op->new_value()->as_register_lo();
1419     Register new_value_hi = op->new_value()->as_register_hi();
1420     Register dest = op->result_opr()->as_register();
1421     Register tmp_lo = op->tmp1()->as_register_lo();
1422     Register tmp_hi = op->tmp1()->as_register_hi();
1423 
1424     assert_different_registers(tmp_lo, tmp_hi, cmp_value_lo, cmp_value_hi, dest, new_value_lo, new_value_hi, addr);
1425     assert(tmp_hi->encoding() == tmp_lo->encoding() + 1, "non aligned register pair");
1426     assert(new_value_hi->encoding() == new_value_lo->encoding() + 1, "non aligned register pair");
1427     assert((tmp_lo->encoding() & 0x1) == 0, "misaligned register pair");
1428     assert((new_value_lo->encoding() & 0x1) == 0, "misaligned register pair");
1429     __ atomic_cas64(tmp_lo, tmp_hi, dest, cmp_value_lo, cmp_value_hi,
1430                     new_value_lo, new_value_hi, addr, 0);
1431   } else {
1432     Unimplemented();
1433   }

1434   // FIXME: is full membar really needed instead of just membar_acquire?
1435   __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad | MacroAssembler::StoreStore), Rtemp);
1436 }
1437 
1438 
1439 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1440   AsmCondition acond = al;
1441   AsmCondition ncond = nv;
1442   if (opr1 != opr2) {
1443     switch (condition) {
1444       case lir_cond_equal:        acond = eq; ncond = ne; break;
1445       case lir_cond_notEqual:     acond = ne; ncond = eq; break;
1446       case lir_cond_less:         acond = lt; ncond = ge; break;
1447       case lir_cond_lessEqual:    acond = le; ncond = gt; break;
1448       case lir_cond_greaterEqual: acond = ge; ncond = lt; break;
1449       case lir_cond_greater:      acond = gt; ncond = le; break;
1450       case lir_cond_aboveEqual:   acond = hs; ncond = lo; break;
1451       case lir_cond_belowEqual:   acond = ls; ncond = hi; break;
1452       default: ShouldNotReachHere();
1453     }
1454   }
1455 






























1456   for (;;) {                         // two iterations only
1457     if (opr1 == result) {
1458       // do nothing
1459     } else if (opr1->is_single_cpu()) {
1460       __ mov(result->as_register(), opr1->as_register(), acond);
1461     } else if (opr1->is_double_cpu()) {
1462       __ long_move(result->as_register_lo(), result->as_register_hi(),
1463                    opr1->as_register_lo(), opr1->as_register_hi(), acond);
1464     } else if (opr1->is_single_stack()) {
1465       __ ldr(result->as_register(), frame_map()->address_for_slot(opr1->single_stack_ix()), acond);
1466     } else if (opr1->is_double_stack()) {
1467       __ ldr(result->as_register_lo(),
1468              frame_map()->address_for_slot(opr1->double_stack_ix(), lo_word_offset_in_bytes), acond);
1469       __ ldr(result->as_register_hi(),
1470              frame_map()->address_for_slot(opr1->double_stack_ix(), hi_word_offset_in_bytes), acond);
1471     } else if (opr1->is_illegal()) {
1472       // do nothing: this part of the cmove has been optimized away in the peephole optimizer
1473     } else {
1474       assert(opr1->is_constant(), "must be");
1475       LIR_Const* c = opr1->as_constant_ptr();


1495           break;
1496         case T_DOUBLE:
1497 #ifdef __SOFTFP__
1498           // not generated now.
1499           __ mov_slow(result->as_register_lo(), c->as_jint_lo(), acond);
1500           __ mov_slow(result->as_register_hi(), c->as_jint_hi(), acond);
1501 #else
1502           __ mov_double(result->as_double_reg(), c->as_jdouble(), acond);
1503 #endif // __SOFTFP__
1504           break;
1505         default:
1506           ShouldNotReachHere();
1507       }
1508     }
1509 
1510     // Negate the condition and repeat the algorithm with the second operand
1511     if (opr1 == opr2) { break; }
1512     opr1 = opr2;
1513     acond = ncond;
1514   }

1515 }
1516 
1517 #if defined(ASSERT)
1518 static int reg_size(LIR_Opr op) {
1519   switch (op->type()) {
1520   case T_FLOAT:
1521   case T_INT:      return BytesPerInt;
1522   case T_LONG:
1523   case T_DOUBLE:   return BytesPerLong;
1524   case T_OBJECT:
1525   case T_ARRAY:
1526   case T_METADATA: return BytesPerWord;
1527   case T_ADDRESS:
1528   case T_ILLEGAL:  // fall through
1529   default: ShouldNotReachHere(); return -1;
1530   }
1531 }
1532 #endif
1533 
1534 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1535   assert(info == NULL, "unused on this code path");
1536   assert(dest->is_register(), "wrong items state");
1537 
1538   if (right->is_address()) {
1539     // special case for adding shifted/extended register
1540     const Register res = dest->as_pointer_register();
1541     const Register lreg = left->as_pointer_register();
1542     const LIR_Address* addr = right->as_address_ptr();
1543 
1544     assert(addr->base()->as_pointer_register() == lreg && addr->index()->is_register() && addr->disp() == 0, "must be");
1545 
1546     int scale = addr->scale();
1547     AsmShift shift = lsl;
1548 































1549 
1550     assert(reg_size(addr->base()) == reg_size(addr->index()), "should be");
1551     assert(reg_size(addr->base()) == reg_size(dest), "should be");
1552     assert(reg_size(dest) == wordSize, "should be");
1553 
1554     AsmOperand operand(addr->index()->as_pointer_register(), shift, scale);
1555     switch (code) {
1556       case lir_add: __ add(res, lreg, operand); break;
1557       case lir_sub: __ sub(res, lreg, operand); break;
1558       default: ShouldNotReachHere();
1559     }
1560 

1561   } else if (left->is_address()) {
1562     assert(code == lir_sub && right->is_single_cpu(), "special case used by strength_reduce_multiply()");
1563     const LIR_Address* addr = left->as_address_ptr();
1564     const Register res = dest->as_register();
1565     const Register rreg = right->as_register();
1566     assert(addr->base()->as_register() == rreg && addr->index()->is_register() && addr->disp() == 0, "must be");
1567     __ rsb(res, rreg, AsmOperand(addr->index()->as_register(), lsl, addr->scale()));

1568 
1569   } else if (dest->is_single_cpu()) {
1570     assert(left->is_single_cpu(), "unexpected left operand");





1571 
1572     const Register res = dest->as_register();
1573     const Register lreg = left->as_register();
1574 
1575     if (right->is_single_cpu()) {
1576       const Register rreg = right->as_register();
1577       switch (code) {
1578         case lir_add: __ add_32(res, lreg, rreg); break;
1579         case lir_sub: __ sub_32(res, lreg, rreg); break;
1580         case lir_mul: __ mul_32(res, lreg, rreg); break;
1581         default: ShouldNotReachHere();
1582       }
1583     } else {
1584       assert(right->is_constant(), "must be");
1585       const jint c = right->as_constant_ptr()->as_jint();
1586       if (!Assembler::is_arith_imm_in_range(c)) {
1587         BAILOUT("illegal arithmetic operand");
1588       }
1589       switch (code) {
1590         case lir_add: __ add_32(res, lreg, c); break;
1591         case lir_sub: __ sub_32(res, lreg, c); break;
1592         default: ShouldNotReachHere();
1593       }
1594     }
1595 
1596   } else if (dest->is_double_cpu()) {






























1597     Register res_lo = dest->as_register_lo();
1598     Register res_hi = dest->as_register_hi();
1599     Register lreg_lo = left->as_register_lo();
1600     Register lreg_hi = left->as_register_hi();
1601     if (right->is_double_cpu()) {
1602       Register rreg_lo = right->as_register_lo();
1603       Register rreg_hi = right->as_register_hi();
1604       if (res_lo == lreg_hi || res_lo == rreg_hi) {
1605         res_lo = Rtemp;
1606       }
1607       switch (code) {
1608         case lir_add:
1609           __ adds(res_lo, lreg_lo, rreg_lo);
1610           __ adc(res_hi, lreg_hi, rreg_hi);
1611           break;
1612         case lir_sub:
1613           __ subs(res_lo, lreg_lo, rreg_lo);
1614           __ sbc(res_hi, lreg_hi, rreg_hi);
1615           break;
1616         default:


1620       assert(right->is_constant(), "must be");
1621       assert((right->as_constant_ptr()->as_jlong() >> 32) == 0, "out of range");
1622       const jint c = (jint) right->as_constant_ptr()->as_jlong();
1623       if (res_lo == lreg_hi) {
1624         res_lo = Rtemp;
1625       }
1626       switch (code) {
1627         case lir_add:
1628           __ adds(res_lo, lreg_lo, c);
1629           __ adc(res_hi, lreg_hi, 0);
1630           break;
1631         case lir_sub:
1632           __ subs(res_lo, lreg_lo, c);
1633           __ sbc(res_hi, lreg_hi, 0);
1634           break;
1635         default:
1636           ShouldNotReachHere();
1637       }
1638     }
1639     move_regs(res_lo, dest->as_register_lo());

1640 
1641   } else if (dest->is_single_fpu()) {
1642     assert(left->is_single_fpu(), "must be");
1643     assert(right->is_single_fpu(), "must be");
1644     const FloatRegister res = dest->as_float_reg();
1645     const FloatRegister lreg = left->as_float_reg();
1646     const FloatRegister rreg = right->as_float_reg();
1647     switch (code) {
1648       case lir_add: __ add_float(res, lreg, rreg); break;
1649       case lir_sub: __ sub_float(res, lreg, rreg); break;
1650       case lir_mul_strictfp: // fall through
1651       case lir_mul: __ mul_float(res, lreg, rreg); break;
1652       case lir_div_strictfp: // fall through
1653       case lir_div: __ div_float(res, lreg, rreg); break;
1654       default: ShouldNotReachHere();
1655     }
1656   } else if (dest->is_double_fpu()) {
1657     assert(left->is_double_fpu(), "must be");
1658     assert(right->is_double_fpu(), "must be");
1659     const FloatRegister res = dest->as_double_reg();


1676 
1677 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
1678   switch (code) {
1679     case lir_abs:
1680       __ abs_double(dest->as_double_reg(), value->as_double_reg());
1681       break;
1682     case lir_sqrt:
1683       __ sqrt_double(dest->as_double_reg(), value->as_double_reg());
1684       break;
1685     default:
1686       ShouldNotReachHere();
1687   }
1688 }
1689 
1690 
1691 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
1692   assert(dest->is_register(), "wrong items state");
1693   assert(left->is_register(), "wrong items state");
1694 
1695   if (dest->is_single_cpu()) {





1696 
1697     const Register res = dest->as_register();
1698     const Register lreg = left->as_register();
1699 
1700     if (right->is_single_cpu()) {
1701       const Register rreg = right->as_register();
1702       switch (code) {
1703         case lir_logic_and: __ and_32(res, lreg, rreg); break;
1704         case lir_logic_or:  __ orr_32(res, lreg, rreg); break;
1705         case lir_logic_xor: __ eor_32(res, lreg, rreg); break;
1706         default: ShouldNotReachHere();
1707       }
1708     } else {
1709       assert(right->is_constant(), "must be");
1710       const uint c = (uint)right->as_constant_ptr()->as_jint();
1711       switch (code) {
1712         case lir_logic_and: __ and_32(res, lreg, c); break;
1713         case lir_logic_or:  __ orr_32(res, lreg, c); break;
1714         case lir_logic_xor: __ eor_32(res, lreg, c); break;
1715         default: ShouldNotReachHere();
1716       }
1717     }
1718   } else {
1719     assert(dest->is_double_cpu(), "should be");
1720     Register res_lo = dest->as_register_lo();
1721 




1722     assert (dest->type() == T_LONG, "unexpected result type");
1723     assert (left->type() == T_LONG, "unexpected left type");
1724     assert (right->type() == T_LONG, "unexpected right type");
1725 
1726     const Register res_hi = dest->as_register_hi();
1727     const Register lreg_lo = left->as_register_lo();
1728     const Register lreg_hi = left->as_register_hi();

1729 
1730     if (right->is_register()) {










1731       const Register rreg_lo = right->as_register_lo();
1732       const Register rreg_hi = right->as_register_hi();
1733       if (res_lo == lreg_hi || res_lo == rreg_hi) {
1734         res_lo = Rtemp; // Temp register helps to avoid overlap between result and input
1735       }
1736       switch (code) {
1737         case lir_logic_and:
1738           __ andr(res_lo, lreg_lo, rreg_lo);
1739           __ andr(res_hi, lreg_hi, rreg_hi);
1740           break;
1741         case lir_logic_or:
1742           __ orr(res_lo, lreg_lo, rreg_lo);
1743           __ orr(res_hi, lreg_hi, rreg_hi);
1744           break;
1745         case lir_logic_xor:
1746           __ eor(res_lo, lreg_lo, rreg_lo);
1747           __ eor(res_hi, lreg_hi, rreg_hi);
1748           break;
1749         default:
1750           ShouldNotReachHere();
1751       }
1752       move_regs(res_lo, dest->as_register_lo());

1753     } else {
1754       assert(right->is_constant(), "must be");














1755       const jint c_lo = (jint) right->as_constant_ptr()->as_jlong();
1756       const jint c_hi = (jint) (right->as_constant_ptr()->as_jlong() >> 32);
1757       // Case for logic_or from do_ClassIDIntrinsic()
1758       if (c_hi == 0 && AsmOperand::is_rotated_imm(c_lo)) {
1759         switch (code) {
1760           case lir_logic_and:
1761             __ andr(res_lo, lreg_lo, c_lo);
1762             __ mov(res_hi, 0);
1763             break;
1764           case lir_logic_or:
1765             __ orr(res_lo, lreg_lo, c_lo);
1766             break;
1767           case lir_logic_xor:
1768             __ eor(res_lo, lreg_lo, c_lo);
1769             break;
1770         default:
1771           ShouldNotReachHere();
1772         }
1773       } else if (code == lir_logic_and &&
1774                  c_hi == -1 &&
1775                  (AsmOperand::is_rotated_imm(c_lo) ||
1776                   AsmOperand::is_rotated_imm(~c_lo))) {
1777         // Another case which handles logic_and from do_ClassIDIntrinsic()
1778         if (AsmOperand::is_rotated_imm(c_lo)) {
1779           __ andr(res_lo, lreg_lo, c_lo);
1780         } else {
1781           __ bic(res_lo, lreg_lo, ~c_lo);
1782         }
1783         if (res_hi != lreg_hi) {
1784           __ mov(res_hi, lreg_hi);
1785         }
1786       } else {
1787         BAILOUT("64 bit constant cannot be inlined");
1788       }

1789     }
1790   }
1791 }
1792 
1793 
























1794 
1795 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1796   if (opr1->is_single_cpu()) {
1797     if (opr2->is_constant()) {
1798       switch (opr2->as_constant_ptr()->type()) {
1799         case T_INT: {
1800           const jint c = opr2->as_constant_ptr()->as_jint();
1801           if (Assembler::is_arith_imm_in_range(c)) {
1802             __ cmp_32(opr1->as_register(), c);
1803           } else if (Assembler::is_arith_imm_in_range(-c)) {
1804             __ cmn_32(opr1->as_register(), -c);
1805           } else {
1806             // This can happen when compiling lookupswitch
1807             __ mov_slow(Rtemp, c);
1808             __ cmp_32(opr1->as_register(), Rtemp);
1809           }
1810           break;
1811         }
1812         case T_OBJECT:
1813           assert(opr2->as_constant_ptr()->as_jobject() == NULL, "cannot handle otherwise");
1814           __ cmp(opr1->as_register(), 0);
1815           break;
1816         default:
1817           ShouldNotReachHere();
1818       }
1819     } else if (opr2->is_single_cpu()) {
1820       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY || opr1->type() == T_METADATA || opr1->type() == T_ADDRESS) {
1821         assert(opr2->type() == T_OBJECT || opr2->type() == T_ARRAY || opr2->type() == T_METADATA || opr2->type() == T_ADDRESS, "incompatibe type");
1822         __ cmp(opr1->as_register(), opr2->as_register());
1823       } else {
1824         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY && opr2->type() != T_METADATA && opr2->type() != T_ADDRESS, "incompatibe type");
1825         __ cmp_32(opr1->as_register(), opr2->as_register());
1826       }
1827     } else {
1828       ShouldNotReachHere();
1829     }
1830   } else if (opr1->is_double_cpu()) {



1831     Register xlo = opr1->as_register_lo();
1832     Register xhi = opr1->as_register_hi();
1833     if (opr2->is_constant() && opr2->as_jlong() == 0) {
1834       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "cannot handle otherwise");
1835       __ orrs(Rtemp, xlo, xhi);
1836     } else if (opr2->is_register()) {
1837       Register ylo = opr2->as_register_lo();
1838       Register yhi = opr2->as_register_hi();
1839       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
1840         __ teq(xhi, yhi);
1841         __ teq(xlo, ylo, eq);
1842       } else {
1843         __ subs(xlo, xlo, ylo);
1844         __ sbcs(xhi, xhi, yhi);
1845       }
1846     } else {
1847       ShouldNotReachHere();
1848     }

1849   } else if (opr1->is_single_fpu()) {
1850     if (opr2->is_constant()) {
1851       assert(opr2->as_jfloat() == 0.0f, "cannot handle otherwise");
1852       __ cmp_zero_float(opr1->as_float_reg());
1853     } else {
1854       __ cmp_float(opr1->as_float_reg(), opr2->as_float_reg());
1855     }
1856   } else if (opr1->is_double_fpu()) {
1857     if (opr2->is_constant()) {
1858       assert(opr2->as_jdouble() == 0.0, "cannot handle otherwise");
1859       __ cmp_zero_double(opr1->as_double_reg());
1860     } else {
1861       __ cmp_double(opr1->as_double_reg(), opr2->as_double_reg());
1862     }
1863   } else {
1864     ShouldNotReachHere();
1865   }
1866 }
1867 
1868 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
1869   const Register res = dst->as_register();
1870   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1871     comp_op(lir_cond_unknown, left, right, op);









1872     __ fmstat();
1873     if (code == lir_ucmp_fd2i) {  // unordered is less
1874       __ mvn(res, 0, lt);
1875       __ mov(res, 1, ge);
1876     } else {                      // unordered is greater
1877       __ mov(res, 1, cs);
1878       __ mvn(res, 0, cc);
1879     }
1880     __ mov(res, 0, eq);

1881 
1882   } else {
1883     assert(code == lir_cmp_l2i, "must be");
1884 






1885     Label done;
1886     const Register xlo = left->as_register_lo();
1887     const Register xhi = left->as_register_hi();
1888     const Register ylo = right->as_register_lo();
1889     const Register yhi = right->as_register_hi();
1890     __ cmp(xhi, yhi);
1891     __ mov(res, 1, gt);
1892     __ mvn(res, 0, lt);
1893     __ b(done, ne);
1894     __ subs(res, xlo, ylo);
1895     __ mov(res, 1, hi);
1896     __ mvn(res, 0, lo);
1897     __ bind(done);

1898   }
1899 }
1900 
1901 
1902 void LIR_Assembler::align_call(LIR_Code code) {
1903   // Not needed
1904 }
1905 
1906 
1907 void LIR_Assembler::call(LIR_OpJavaCall *op, relocInfo::relocType rtype) {
1908   int ret_addr_offset = __ patchable_call(op->addr(), rtype);
1909   assert(ret_addr_offset == __ offset(), "embedded return address not allowed");
1910   add_call_info_here(op->info());
1911 }
1912 
1913 
1914 void LIR_Assembler::ic_call(LIR_OpJavaCall *op) {
1915   bool near_range = __ cache_fully_reachable();
1916   address oop_address = pc();
1917 
1918   bool use_movw = VM_Version::supports_movw();
1919 
1920   // Ricklass may contain something that is not a metadata pointer so
1921   // mov_metadata can't be used
1922   InlinedAddress value((address)Universe::non_oop_word());
1923   InlinedAddress addr(op->addr());
1924   if (use_movw) {



1925     __ movw(Ricklass, ((unsigned int)Universe::non_oop_word()) & 0xffff);
1926     __ movt(Ricklass, ((unsigned int)Universe::non_oop_word()) >> 16);

1927   } else {
1928     // No movw/movt, must be load a pc relative value but no
1929     // relocation so no metadata table to load from.
1930     // Use a b instruction rather than a bl, inline constant after the
1931     // branch, use a PC relative ldr to load the constant, arrange for
1932     // the call to return after the constant(s).
1933     __ ldr_literal(Ricklass, value);
1934   }
1935   __ relocate(virtual_call_Relocation::spec(oop_address));
1936   if (near_range && use_movw) {
1937     __ bl(op->addr());
1938   } else {
1939     Label call_return;
1940     __ adr(LR, call_return);
1941     if (near_range) {
1942       __ b(op->addr());
1943     } else {
1944       __ indirect_jump(addr, Rtemp);
1945       __ bind_literal(addr);
1946     }


1998   assert(exceptionOop->as_register() == Rexception_obj, "must match");
1999   assert(exceptionPC->as_register()  == Rexception_pc, "must match");
2000   info->add_register_oop(exceptionOop);
2001 
2002   Runtime1::StubID handle_id = compilation()->has_fpu_code() ?
2003                                Runtime1::handle_exception_id :
2004                                Runtime1::handle_exception_nofpu_id;
2005   Label return_address;
2006   __ adr(Rexception_pc, return_address);
2007   __ call(Runtime1::entry_for(handle_id), relocInfo::runtime_call_type);
2008   __ bind(return_address);
2009   add_call_info_here(info);  // for exception handler
2010 }
2011 
2012 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2013   assert(exceptionOop->as_register() == Rexception_obj, "must match");
2014   __ b(_unwind_handler_entry);
2015 }
2016 
2017 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {





























2018   AsmShift shift = lsl;
2019   switch (code) {
2020     case lir_shl:  shift = lsl; break;
2021     case lir_shr:  shift = asr; break;
2022     case lir_ushr: shift = lsr; break;
2023     default: ShouldNotReachHere();
2024   }
2025 
2026   if (dest->is_single_cpu()) {
2027     __ andr(Rtemp, count->as_register(), 31);
2028     __ mov(dest->as_register(), AsmOperand(left->as_register(), shift, Rtemp));
2029   } else if (dest->is_double_cpu()) {
2030     Register dest_lo = dest->as_register_lo();
2031     Register dest_hi = dest->as_register_hi();
2032     Register src_lo  = left->as_register_lo();
2033     Register src_hi  = left->as_register_hi();
2034     Register Rcount  = count->as_register();
2035     // Resolve possible register conflicts
2036     if (shift == lsl && dest_hi == src_lo) {
2037       dest_hi = Rtemp;
2038     } else if (shift != lsl && dest_lo == src_hi) {
2039       dest_lo = Rtemp;
2040     } else if (dest_lo == src_lo && dest_hi == src_hi) {
2041       dest_lo = Rtemp;
2042     } else if (dest_lo == Rcount || dest_hi == Rcount) {
2043       Rcount = Rtemp;
2044     }
2045     __ andr(Rcount, count->as_register(), 63);
2046     __ long_shift(dest_lo, dest_hi, src_lo, src_hi, shift, Rcount);
2047     move_regs(dest_lo, dest->as_register_lo());
2048     move_regs(dest_hi, dest->as_register_hi());
2049   } else {
2050     ShouldNotReachHere();
2051   }

2052 }
2053 
2054 
2055 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
































2056   AsmShift shift = lsl;
2057   switch (code) {
2058     case lir_shl:  shift = lsl; break;
2059     case lir_shr:  shift = asr; break;
2060     case lir_ushr: shift = lsr; break;
2061     default: ShouldNotReachHere();
2062   }
2063 
2064   if (dest->is_single_cpu()) {
2065     count &= 31;
2066     if (count != 0) {
2067       __ mov(dest->as_register(), AsmOperand(left->as_register(), shift, count));
2068     } else {
2069       move_regs(left->as_register(), dest->as_register());
2070     }
2071   } else if (dest->is_double_cpu()) {
2072     count &= 63;
2073     if (count != 0) {
2074       Register dest_lo = dest->as_register_lo();
2075       Register dest_hi = dest->as_register_hi();
2076       Register src_lo  = left->as_register_lo();
2077       Register src_hi  = left->as_register_hi();
2078       // Resolve possible register conflicts
2079       if (shift == lsl && dest_hi == src_lo) {
2080         dest_hi = Rtemp;
2081       } else if (shift != lsl && dest_lo == src_hi) {
2082         dest_lo = Rtemp;
2083       }
2084       __ long_shift(dest_lo, dest_hi, src_lo, src_hi, shift, count);
2085       move_regs(dest_lo, dest->as_register_lo());
2086       move_regs(dest_hi, dest->as_register_hi());
2087     } else {
2088       __ long_move(dest->as_register_lo(), dest->as_register_hi(),
2089                    left->as_register_lo(), left->as_register_hi());
2090     }
2091   } else {
2092     ShouldNotReachHere();
2093   }

2094 }
2095 
2096 
2097 // Saves 4 given registers in reserved argument area.
2098 void LIR_Assembler::save_in_reserved_area(Register r1, Register r2, Register r3, Register r4) {
2099   verify_reserved_argument_area_size(4);




2100   __ stmia(SP, RegisterSet(r1) | RegisterSet(r2) | RegisterSet(r3) | RegisterSet(r4));

2101 }
2102 
2103 // Restores 4 given registers from reserved argument area.
2104 void LIR_Assembler::restore_from_reserved_area(Register r1, Register r2, Register r3, Register r4) {




2105   __ ldmia(SP, RegisterSet(r1) | RegisterSet(r2) | RegisterSet(r3) | RegisterSet(r4), no_writeback);

2106 }
2107 
2108 
2109 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2110   ciArrayKlass* default_type = op->expected_type();
2111   Register src = op->src()->as_register();
2112   Register src_pos = op->src_pos()->as_register();
2113   Register dst = op->dst()->as_register();
2114   Register dst_pos = op->dst_pos()->as_register();
2115   Register length  = op->length()->as_register();
2116   Register tmp = op->tmp()->as_register();
2117   Register tmp2 = Rtemp;
2118 
2119   assert(src == R0 && src_pos == R1 && dst == R2 && dst_pos == R3, "code assumption");



2120 
2121   CodeStub* stub = op->stub();
2122 
2123   int flags = op->flags();
2124   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2125   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2126 
2127   // If we don't know anything or it's an object array, just go through the generic arraycopy
2128   if (default_type == NULL) {
2129 
2130     // save arguments, because they will be killed by a runtime call
2131     save_in_reserved_area(R0, R1, R2, R3);
2132 




2133     // pass length argument on SP[0]
2134     __ str(length, Address(SP, -2*wordSize, pre_indexed));  // 2 words for a proper stack alignment

2135 
2136     address copyfunc_addr = StubRoutines::generic_arraycopy();
2137     assert(copyfunc_addr != NULL, "generic arraycopy stub required");
2138 #ifndef PRODUCT
2139     if (PrintC1Statistics) {
2140       __ inc_counter((address)&Runtime1::_generic_arraycopystub_cnt, tmp, tmp2);
2141     }
2142 #endif // !PRODUCT
2143     // the stub is in the code cache so close enough
2144     __ call(copyfunc_addr, relocInfo::runtime_call_type);
2145 



2146     __ add(SP, SP, 2*wordSize);

2147 
2148     __ cbz_32(R0, *stub->continuation());
2149 
2150     __ mvn_32(tmp, R0);
2151     restore_from_reserved_area(R0, R1, R2, R3);  // load saved arguments in slow case only
2152     __ sub_32(length, length, tmp);
2153     __ add_32(src_pos, src_pos, tmp);
2154     __ add_32(dst_pos, dst_pos, tmp);
2155 
2156     __ b(*stub->entry());
2157 
2158     __ bind(*stub->continuation());
2159     return;
2160   }
2161 
2162   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(),
2163          "must be true at this point");
2164   int elem_size = type2aelembytes(basic_type);
2165   int shift = exact_log2(elem_size);
2166 


2300             __ load_klass(tmp, src);
2301           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2302             __ load_klass(tmp, dst);
2303           }
2304           int lh_offset = in_bytes(Klass::layout_helper_offset());
2305 
2306           __ ldr_u32(tmp2, Address(tmp, lh_offset));
2307 
2308           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2309           __ mov_slow(tmp, objArray_lh);
2310           __ cmp_32(tmp, tmp2);
2311           __ b(*stub->entry(), ne);
2312         }
2313 
2314         save_in_reserved_area(R0, R1, R2, R3);
2315 
2316         Register src_ptr = R0;
2317         Register dst_ptr = R1;
2318         Register len     = R2;
2319         Register chk_off = R3;
2320         Register super_k = tmp;
2321 
2322         __ add(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type));
2323         __ add_ptr_scaled_int32(src_ptr, src_ptr, src_pos, shift);
2324 
2325         __ add(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type));
2326         __ add_ptr_scaled_int32(dst_ptr, dst_ptr, dst_pos, shift);
2327         __ load_klass(tmp, dst);
2328 
2329         int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
2330         int sco_offset = in_bytes(Klass::super_check_offset_offset());
2331 








2332         __ ldr(super_k, Address(tmp, ek_offset));
2333 
2334         __ mov(len, length);
2335         __ ldr_u32(chk_off, Address(super_k, sco_offset));
2336         __ push(super_k);

2337 
2338         __ call(copyfunc_addr, relocInfo::runtime_call_type);
2339 
2340 #ifndef PRODUCT
2341         if (PrintC1Statistics) {
2342           Label failed;
2343           __ cbnz_32(R0, failed);
2344           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, tmp, tmp2);
2345           __ bind(failed);
2346         }
2347 #endif // PRODUCT
2348 



2349         __ add(SP, SP, wordSize);  // Drop super_k argument

2350 
2351         __ cbz_32(R0, *stub->continuation());
2352         __ mvn_32(tmp, R0);
2353 
2354         // load saved arguments in slow case only
2355         restore_from_reserved_area(R0, R1, R2, R3);
2356 
2357         __ sub_32(length, length, tmp);
2358         __ add_32(src_pos, src_pos, tmp);
2359         __ add_32(dst_pos, dst_pos, tmp);
2360 
2361 #ifndef PRODUCT
2362         if (PrintC1Statistics) {
2363           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, tmp, tmp2);
2364         }
2365 #endif
2366 
2367         __ b(*stub->entry());
2368 
2369         __ bind(cont);


2391   Register len     = R2;
2392 
2393   __ add(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type));
2394   __ add_ptr_scaled_int32(src_ptr, src_ptr, src_pos, shift);
2395 
2396   __ add(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type));
2397   __ add_ptr_scaled_int32(dst_ptr, dst_ptr, dst_pos, shift);
2398 
2399   __ mov(len, length);
2400 
2401   __ call(entry, relocInfo::runtime_call_type);
2402 
2403   __ bind(*stub->continuation());
2404 }
2405 
2406 #ifdef ASSERT
2407  // emit run-time assertion
2408 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
2409   assert(op->code() == lir_assert, "must be");
2410 



2411   if (op->in_opr1()->is_valid()) {
2412     assert(op->in_opr2()->is_valid(), "both operands must be valid");
2413     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
2414   } else {
2415     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
2416     assert(op->condition() == lir_cond_always, "no other conditions allowed");
2417   }
2418 
2419   Label ok;
2420   if (op->condition() != lir_cond_always) {
2421     AsmCondition acond = al;
2422     switch (op->condition()) {
2423       case lir_cond_equal:        acond = eq; break;
2424       case lir_cond_notEqual:     acond = ne; break;
2425       case lir_cond_less:         acond = lt; break;
2426       case lir_cond_lessEqual:    acond = le; break;
2427       case lir_cond_greaterEqual: acond = ge; break;
2428       case lir_cond_greater:      acond = gt; break;
2429       case lir_cond_aboveEqual:   acond = hs; break;
2430       case lir_cond_belowEqual:   acond = ls; break;
2431       default:                    ShouldNotReachHere();
2432     }
2433     __ b(ok, acond);
2434   }
2435   if (op->halt()) {
2436     const char* str = __ code_string(op->msg());
2437     __ stop(str);
2438   } else {
2439     breakpoint();
2440   }
2441   __ bind(ok);

2442 }
2443 #endif // ASSERT
2444 
2445 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
2446   fatal("CRC32 intrinsic is not implemented on this platform");
2447 }
2448 
2449 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2450   Register obj = op->obj_opr()->as_pointer_register();
2451   Register hdr = op->hdr_opr()->as_pointer_register();
2452   Register lock = op->lock_opr()->as_pointer_register();
2453   Register tmp = op->scratch_opr()->is_illegal() ? noreg :
2454                  op->scratch_opr()->as_pointer_register();
2455 
2456   if (!UseFastLocking) {
2457     __ b(*op->stub()->entry());
2458   } else if (op->code() == lir_lock) {
2459     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2460     int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry());
2461     if (op->info() != NULL) {


2470 }
2471 
2472 
2473 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2474   ciMethod* method = op->profiled_method();
2475   int bci          = op->profiled_bci();
2476   ciMethod* callee = op->profiled_callee();
2477 
2478   // Update counter for all call types
2479   ciMethodData* md = method->method_data_or_null();
2480   assert(md != NULL, "Sanity");
2481   ciProfileData* data = md->bci_to_data(bci);
2482   assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
2483   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2484   Register mdo  = op->mdo()->as_register();
2485   assert(op->tmp1()->is_register(), "tmp1 must be allocated");
2486   Register tmp1 = op->tmp1()->as_pointer_register();
2487   assert_different_registers(mdo, tmp1);
2488   __ mov_metadata(mdo, md->constant_encoding());
2489   int mdo_offset_bias = 0;
2490   int max_offset = 4096;
2491   if (md->byte_offset_of_slot(data, CounterData::count_offset()) + data->size_in_bytes() >= max_offset) {
2492     // The offset is large so bias the mdo by the base of the slot so
2493     // that the ldr can use an immediate offset to reference the slots of the data
2494     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2495     __ mov_slow(tmp1, mdo_offset_bias);
2496     __ add(mdo, mdo, tmp1);
2497   }
2498 
2499   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2500   // Perform additional virtual call profiling for invokevirtual and
2501   // invokeinterface bytecodes
2502   if (op->should_profile_receiver_type()) {
2503     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2504     Register recv = op->recv()->as_register();
2505     assert_different_registers(mdo, tmp1, recv);
2506     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2507     ciKlass* known_klass = op->known_holder();
2508     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
2509       // We know the type that will be seen at this call site; we can
2510       // statically update the MethodData* rather than needing to do


2566     __ str(tmp1, counter_addr);
2567   }
2568 }
2569 
2570 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2571   fatal("Type profiling not implemented on this platform");
2572 }
2573 
2574 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
2575   Unimplemented();
2576 }
2577 
2578 
2579 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
2580   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2581   __ add_slow(dst->as_pointer_register(), mon_addr.base(), mon_addr.disp());
2582 }
2583 
2584 
2585 void LIR_Assembler::align_backward_branch_target() {

2586   // Some ARM processors do better with 8-byte branch target alignment
2587   __ align(8);
2588 }
2589 
2590 
2591 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
2592 
2593   if (left->is_single_cpu()) {
2594     assert (dest->type() == T_INT, "unexpected result type");
2595     assert (left->type() == T_INT, "unexpected left type");
2596     __ neg_32(dest->as_register(), left->as_register());
2597   } else if (left->is_double_cpu()) {



2598     Register dest_lo = dest->as_register_lo();
2599     Register dest_hi = dest->as_register_hi();
2600     Register src_lo = left->as_register_lo();
2601     Register src_hi = left->as_register_hi();
2602     if (dest_lo == src_hi) {
2603       dest_lo = Rtemp;
2604     }
2605     __ rsbs(dest_lo, src_lo, 0);
2606     __ rsc(dest_hi, src_hi, 0);
2607     move_regs(dest_lo, dest->as_register_lo());

2608   } else if (left->is_single_fpu()) {
2609     __ neg_float(dest->as_float_reg(), left->as_float_reg());
2610   } else if (left->is_double_fpu()) {
2611     __ neg_double(dest->as_double_reg(), left->as_double_reg());
2612   } else {
2613     ShouldNotReachHere();
2614   }
2615 }
2616 
2617 
2618 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
2619   assert(patch_code == lir_patch_none, "Patch code not supported");
2620   LIR_Address* addr = addr_opr->as_address_ptr();
2621   if (addr->index()->is_illegal()) {
2622     jint c = addr->disp();
2623     if (!Assembler::is_arith_imm_in_range(c)) {
2624       BAILOUT("illegal arithmetic operand");
2625     }
2626     __ add(dest->as_pointer_register(), addr->base()->as_pointer_register(), c);
2627   } else {
2628     assert(addr->disp() == 0, "cannot handle otherwise");



2629     __ add(dest->as_pointer_register(), addr->base()->as_pointer_register(),
2630            AsmOperand(addr->index()->as_pointer_register(), lsl, addr->scale()));
2631   }
2632 }
2633 
2634 
2635 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2636   assert(!tmp->is_valid(), "don't need temporary");
2637   __ call(dest);
2638   if (info != NULL) {
2639     add_call_info_here(info);
2640   }
2641 }
2642 
2643 
2644 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {



2645   assert(src->is_double_cpu() && dest->is_address() ||
2646          src->is_address() && dest->is_double_cpu(),
2647          "Simple move_op is called for all other cases");
2648 
2649   int null_check_offset;
2650   if (dest->is_address()) {
2651     // Store
2652     const LIR_Address* addr = dest->as_address_ptr();
2653     const Register src_lo = src->as_register_lo();
2654     const Register src_hi = src->as_register_hi();
2655     assert(addr->index()->is_illegal() && addr->disp() == 0, "The address is simple already");
2656 
2657     if (src_lo < src_hi) {
2658       null_check_offset = __ offset();
2659       __ stmia(addr->base()->as_register(), RegisterSet(src_lo) | RegisterSet(src_hi));
2660     } else {
2661       assert(src_lo < Rtemp, "Rtemp is higher than any allocatable register");
2662       __ mov(Rtemp, src_hi);
2663       null_check_offset = __ offset();
2664       __ stmia(addr->base()->as_register(), RegisterSet(src_lo) | RegisterSet(Rtemp));


2666   } else {
2667     // Load
2668     const LIR_Address* addr = src->as_address_ptr();
2669     const Register dest_lo = dest->as_register_lo();
2670     const Register dest_hi = dest->as_register_hi();
2671     assert(addr->index()->is_illegal() && addr->disp() == 0, "The address is simple already");
2672 
2673     null_check_offset = __ offset();
2674     if (dest_lo < dest_hi) {
2675       __ ldmia(addr->base()->as_register(), RegisterSet(dest_lo) | RegisterSet(dest_hi));
2676     } else {
2677       assert(dest_lo < Rtemp, "Rtemp is higher than any allocatable register");
2678       __ ldmia(addr->base()->as_register(), RegisterSet(dest_lo) | RegisterSet(Rtemp));
2679       __ mov(dest_hi, Rtemp);
2680     }
2681   }
2682 
2683   if (info != NULL) {
2684     add_debug_info_for_null_check(null_check_offset, info);
2685   }

2686 }
2687 
2688 
2689 void LIR_Assembler::membar() {
2690   __ membar(MacroAssembler::StoreLoad, Rtemp);
2691 }
2692 
2693 void LIR_Assembler::membar_acquire() {
2694   __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::LoadLoad | MacroAssembler::LoadStore), Rtemp);
2695 }
2696 
2697 void LIR_Assembler::membar_release() {
2698   __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp);
2699 }
2700 
2701 void LIR_Assembler::membar_loadload() {
2702   __ membar(MacroAssembler::LoadLoad, Rtemp);
2703 }
2704 
2705 void LIR_Assembler::membar_storestore() {


2707 }
2708 
2709 void LIR_Assembler::membar_loadstore() {
2710   __ membar(MacroAssembler::LoadStore, Rtemp);
2711 }
2712 
2713 void LIR_Assembler::membar_storeload() {
2714   __ membar(MacroAssembler::StoreLoad, Rtemp);
2715 }
2716 
2717 void LIR_Assembler::on_spin_wait() {
2718   Unimplemented();
2719 }
2720 
2721 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
2722   // Not used on ARM
2723   Unimplemented();
2724 }
2725 
2726 void LIR_Assembler::peephole(LIR_List* lir) {



2727   LIR_OpList* inst = lir->instructions_list();
2728   const int inst_length = inst->length();
2729   for (int i = 0; i < inst_length; i++) {
2730     LIR_Op* op = inst->at(i);
2731     switch (op->code()) {
2732       case lir_cmp: {
2733         // Replace:
2734         //   cmp rX, y
2735         //   cmove [EQ] y, z, rX
2736         // with
2737         //   cmp rX, y
2738         //   cmove [EQ] illegalOpr, z, rX
2739         //
2740         // or
2741         //   cmp rX, y
2742         //   cmove [NE] z, y, rX
2743         // with
2744         //   cmp rX, y
2745         //   cmove [NE] z, illegalOpr, rX
2746         //


2770             if (cmp_res != LIR_OprFact::illegalOpr) {
2771               LIR_Condition cond = cmove->condition();
2772               if (cond == lir_cond_equal && cmove->in_opr1() == cmp_arg) {
2773                 cmove->set_in_opr1(LIR_OprFact::illegalOpr);
2774               } else if (cond == lir_cond_notEqual && cmove->in_opr2() == cmp_arg) {
2775                 cmove->set_in_opr2(LIR_OprFact::illegalOpr);
2776               }
2777             }
2778           }
2779         }
2780         break;
2781       }
2782 
2783       default:
2784         break;
2785     }
2786   }
2787 }
2788 
2789 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {



2790   assert(src->is_address(), "sanity");
2791   Address addr = as_Address(src->as_address_ptr());

2792 
2793   if (code == lir_xchg) {





2794   } else {
2795     assert (!data->is_oop(), "xadd for oops");
2796   }
2797 

2798   __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreStore | MacroAssembler::LoadStore), Rtemp);

2799 
2800   Label retry;
2801   __ bind(retry);
2802 
2803   if (data->type() == T_INT || data->is_oop()) {
2804     Register dst = dest->as_register();
2805     Register new_val = noreg;



2806     __ ldrex(dst, addr);

2807     if (code == lir_xadd) {
2808       Register tmp_reg = tmp->as_register();
2809       if (data->is_constant()) {
2810         assert_different_registers(dst, tmp_reg);
2811         __ add_32(tmp_reg, dst, data->as_constant_ptr()->as_jint());
2812       } else {
2813         assert_different_registers(dst, tmp_reg, data->as_register());
2814         __ add_32(tmp_reg, dst, data->as_register());
2815       }
2816       new_val = tmp_reg;
2817     } else {
2818       if (UseCompressedOops && data->is_oop()) {
2819         new_val = tmp->as_pointer_register();
2820       } else {
2821         new_val = data->as_register();
2822       }
2823       assert_different_registers(dst, new_val);
2824     }



2825     __ strex(Rtemp, new_val, addr);

2826 























2827   } else if (data->type() == T_LONG) {
2828     Register dst_lo = dest->as_register_lo();
2829     Register new_val_lo = noreg;
2830     Register dst_hi = dest->as_register_hi();
2831 
2832     assert(dst_hi->encoding() == dst_lo->encoding() + 1, "non aligned register pair");
2833     assert((dst_lo->encoding() & 0x1) == 0, "misaligned register pair");
2834 
2835     __ bind(retry);
2836     __ ldrexd(dst_lo, addr);
2837     if (code == lir_xadd) {
2838       Register tmp_lo = tmp->as_register_lo();
2839       Register tmp_hi = tmp->as_register_hi();
2840 
2841       assert(tmp_hi->encoding() == tmp_lo->encoding() + 1, "non aligned register pair");
2842       assert((tmp_lo->encoding() & 0x1) == 0, "misaligned register pair");
2843 
2844       if (data->is_constant()) {
2845         jlong c = data->as_constant_ptr()->as_jlong();
2846         assert((jlong)((jint)c) == c, "overflow");
2847         assert_different_registers(dst_lo, dst_hi, tmp_lo, tmp_hi);
2848         __ adds(tmp_lo, dst_lo, (jint)c);
2849         __ adc(tmp_hi, dst_hi, 0);
2850       } else {
2851         Register new_val_lo = data->as_register_lo();
2852         Register new_val_hi = data->as_register_hi();
2853         __ adds(tmp_lo, dst_lo, new_val_lo);
2854         __ adc(tmp_hi, dst_hi, new_val_hi);
2855         assert_different_registers(dst_lo, dst_hi, tmp_lo, tmp_hi, new_val_lo, new_val_hi);
2856       }
2857       new_val_lo = tmp_lo;
2858     } else {
2859       new_val_lo = data->as_register_lo();
2860       Register new_val_hi = data->as_register_hi();
2861 
2862       assert_different_registers(dst_lo, dst_hi, new_val_lo, new_val_hi);
2863       assert(new_val_hi->encoding() == new_val_lo->encoding() + 1, "non aligned register pair");
2864       assert((new_val_lo->encoding() & 0x1) == 0, "misaligned register pair");
2865     }
2866     __ strexd(Rtemp, new_val_lo, addr);

2867   } else {
2868     ShouldNotReachHere();
2869   }
2870 
2871   __ cbnz_32(Rtemp, retry);
2872   __ membar(MacroAssembler::Membar_mask_bits(MacroAssembler::StoreLoad | MacroAssembler::StoreStore), Rtemp);
2873 





2874 }
2875 
2876 #undef __
src/hotspot/cpu/arm/c1_LIRAssembler_arm.cpp
Index Unified diffs Context diffs Sdiffs Wdiffs Patch New Old Previous File Next File